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Prefacio

Este libro esta dirigido a estudiantes de ingenieria de sistemas, con conocimientos basicos de programacion
en algun lenguaje de alto nivel, de preferencia C. En la Universidad de los Andes esta planteado como el texto
del tercer curso del ciclo de formacién basica en informatica, y supone que el estudiante maneja con cierta
habilidad los conceptos basicos de la programacion de computadores.

El objetivo del libro es servir como guia para un curso en disefio y manejo de estructuras de datos en C. Al
final, el estudiante sera capaz de disefiar las estructuras de datos, en memoria principal, mas adecuadas para
un problema especifico, y desarrollar los algoritmos para el manejo de éstas. El libro utiliza metodologias de
Tipos Abstractos de Datos y soporta todo el proceso de disefio en sélidas bases tedricas. Brinda al estudiante
herramientas para la evaluacion de soluciones, como la complejidad de algoritmos, de manera que cuente
con criterios concretos de decision. El libro no se queda en consideraciones teédricas, sino que muestra la
dimension practica de las metodologias de disefio propuestas y la manera de aplicarlas para mejorar la
calidad del software obtenido.

El lenguaje escogido para el libro es C, dada su enorme difusion en el medio informatico, su eficiencia, su
estandarizacién y porque ha sido seleccionado como el lenguaje de base por muchas universidades del
mundo. Ademas, el contenido del libro se ajusta muy bien para ser utilizado en desarrollo de software en C++.
Cada algoritmo que trae el libro tiene una especificacion formal, una explicacién de su funcionamiento y el
calculo de su complejidad. Todos los programas del libro han sido desarrollados y probados en ANSI C, sobre
diferentes plataformas computacionales.

En cada capitulo, el estudiante encuentra un conjunto de ejemplos y ejercicios propuestos, tanto a nivel de
disefio como a nivel de implementacién. Esto permite al estudiante ver la aplicacion de las metodologias
propuestas en problemas reales y practicar para obtener destreza en su utilizacion. Los ejercicios estan
organizados por temas vy clasificados por nivel de complejidad. En cada capitulo se dan algunas referencias
bibliograficas a través de las cuales es posible profundizar en los temas alli tratados. Cada capitulo presenta
un tipo de estructura de datos, un TAD que la administra y ejemplos de la parte algoritmica.

El libro viene apoyado por un disquete, que incluye la implementacién y los programas de prueba de todos los
algoritmos que son presentados en la parte tedrica, lo mismo que la solucion de algunos de los ejercicios
propuestos. Esto permite al estudiante ver el funcionamiento de cada una de las rutinas planteadas, lo mismo
que reutilizar el soffware para el desarrollo de sus propios proyectos. Existe también una guia completa del
profesor, en la cual se hacen varias recomendaciones metodolégicas para la presentacion en clase del
material, lo mismo que la solucién de otros de los ejercicios propuestos a lo largo del libro.

Este libro es el producto de mas de 8 afios de trabajo en la Universidad de los Andes, en el curso Estructuras
de Datos. Materiales previos han sido utilizados por mas de 3000 estudiantes en ésta y otras universidades
del pais.

En el capitulo 0 se presentan algunos conceptos basicos de programacion y las nociones elementales de
anadlisis de algoritmos. En el capitulo 1 se dan las pautas generales de la metodologia de disefio de



estructuras de datos. Su utilizacion se ilustra a lo largo de todo el libro a través del estudio de casos. Los
capitulos 2 y 3 presentan las estructuras lineales de datos, tales como listas, pilas y colas. Los capitulos 4 y 5
estudian las estructuras recursivas de datos como los arboles binarios y los arboles n-arios. El capitulo 6 hace
un estudio de estructuras de datos no lineales, como grafos dirigidos. Por ultimo, el capitulo 7 trata el tema de
estructuras de acceso directo, en particular, tablas de hashing.

Al interior del libro se utilizan las siguientes convenciones:

= Algoritmo implementado en el disquete

Ejercicio medianamente complejo

Ejercicio con alto grado de dificultad

Ejercicio de programacioén

J Marca de final de ejemplo

times, sin tilde Nombre de rutinas en el texto

negrilla Definicion de un nuevo concepto

italica Palabra en inglés que, por razones de claridad, no ha

sido traducida al espaniol
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(Universidad Nacional de Colombia - Bogota), Yadran Eterovic (Pontificia Universidad Catdlica de Chile),
Silvia Takahashi (Universidad de los Andes - Bogota), Diego Andrade (Pontificia Universidad Catdlica del
Ecuador), Jorge Elias Morales (Fundaciéon Universitaria San Martin - Bogota), Carlos Figueira (Universidad
Simén Bolivar - Venezuela), Ariel Ortiz Ramirez (Instituto Tecnolégico de Monterrey - México), John A.
Atkinson (Universidad Federico Santa Maria - Chile), Demetrio Ovalle (Universidad Nacional de Colombia -
Medellin), Hernan Dario Toro (Universidad EAFIT - Medellin), Emilio Insfran (Universidad Catolica de
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CAPITULOO
CONCEPTOS BASICOS

Este capitulo presenta algunos conceptos fundamentales sobre desarrollo y analisis de algoritmos. Se
muestra una metodologia de programacion, basada en aserciones, utilizada a lo largo de todo el libro. Se
estudia la manera de calcular la complejidad de un algoritmo, como una herramienta para comparar varias
soluciones a un mismo problema, sin necesidad de implementarlas.

0.1. Disefio y Documentacion de Algoritmos

Aunque suene contradictorio, programar es mucho mas que escribir un programa. No es suficiente con
escribir cédigo en un lenguaje para resolver un problema y que éste funcione correctamente. El programa
resultante debe ser también claro, eficiente y facil de modificar. Eso implica una disciplina de programacion y
una metodologia, que impongan un estilo de desarrollo que garantice la calidad del producto. Esto es mas
importante entre mas grande sea el programa que se va a desarrollar, y se vuelve un factor critico en grandes
sistemas de informacion.

El objetivo de esta seccion, mas que mostrar a fondo la metodologia de desarrollo formal de algoritmos, es
ilustrar los elementos basicos que la componen, de tal manera que, aunque el estudiante no la utilice para
programar, sea capaz de entender los elementos de especificacion y documentacion de un programa, que se
usan a lo largo del libro.

Esta secciodn sélo supone que el estudiante tiene habilidad de programacion en algun lenguaje, de preferencia
C, y que maneja los fundamentos de las técnicas de solucién de problemas. Para profundizar en cualquiera
de esos temas se recomienda consultar la bibliografia que se sugiere al final del capitulo.

0.1.1. Los Conceptos de Estado y Aserciéon

Cuando se programa, se busca modelar a través de datos los elementos que intervienen en el problema, y
describir los procesos, en términos de estos datos, para resolverlo. Un dato es un nombre que se le da a un
valor de algun tipo para representar una caracteristica del mundo. Al comenzar el programa, algunos datos
tienen ya un valor (datos de entrada) y representan la situacion exacta que se debe resolver. Al terminar, unos
datos tienen los resultados esperados (datos de salida), que se interpretan de acuerdo al modelaje que se
hizo del mundo.

Se define el estado de la ejecucion de un programa, como el conjunto de los valores de todos sus datos. Eso
quiere decir que el estado inicial lo determinan los datos de entrada y el estado final, los datos de salida.
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2 Disefio y Manejo de Estructuras de Datos en C

Ejemplo 0.1:

Suponga que existe el problema de calcular el salario de un empleado de una empresa. Los datos de entrada
contienen toda la informacidén necesaria para resolver el problema exacto, como podrian ser el cargo, el
sueldo basico, las primas extralegales, las horas extra trabajadas, la antigiiedad, etc. Los datos de salida se
pueden manejar como un solo dato: el salario.

El programa debe comenzar en un estado en el cual estan definidas todas las caracteristicas del
empleado, y terminar en un estado en el cual el dato llamado salario contenga el sueldo que se le debe
pagar. El proceso exacto de célculo de este valor depende de la empresa, y se describe en un lenguaje de
programacion.

El estado del programa en cualquier etapa de la solucién, esta definido por los valores de los datos de
entrada, los datos de salida y los datos temporales o de trabajo. En este caso, el estado estaria compuesto
por 6 valores, asociados con 6 variables.

J

Una asercion es una afirmaciéon que se hace en un punto de un programa sobre el estado vigente de la
ejecucion. Esta afirmacion se refiere al valor de las variables del programa en ese instante y puede
expresarse bajo cualquier formalismo (calculo de predicados, un dibujo, etc.) o, incluso, en lenguaje natural.

Cuando el control del programa pasa por el sitio donde se encuentra una asercion, el estado de la ejecucion
debe ser tal que dicha afirmacién sea verdadera.

Durante la especificaciéon, una asercidon se coloca entre los simbolos { }. En el programa, se coloca entre
comentarios una breve descripcidn de la asercion en lenguaje natural. Una asercion esta compuesta por un
conjunto de afirmaciones separadas por coma. En algunos casos es conveniente asociarle un nombre, que se
coloca al comienzo, para permitir referirse a ellas sin ambigliedad. Al igual que en el estandar definido en el
lenguaje C, se utilizan minusculas para variables y mayusculas para constantes.

Ejemplo 0.2:

Si en un programa se encuentran declaradas 3 variables enteras varl, var2, var3 y una constante MAX, es
posible tener las siguientes aserciones:

{ A1:var1 =var2, var3 > MAX}
{var1t =2 vyvar1 > MAX}
{A3: TRUE }

La asercion A1 expresa dos condiciones que debe cumplir el programa al pasar por el punto en el que ésta
se encuentre situada, si el funcionamiento del programa es correcto. En este ejemplo, se usan los
operadores relacionales igual (=) y mayor (>) para expresar la nociéon de validez. La segunda asercion
utiliza el operador légico OR (v), el cual hace que la asercidn sea cierta si cualquiera de las dos
condiciones se cumple. La tercera asercion siempre es cierta. Se coloca para expresar que con cualquier
estado que pase por alli el programa, el funcionamiento es correcto.

J

Ejemplo 0.3:
Existen muchas formas distintas de expresar la misma asercién. Si en un punto de un programa se tiene un

vector vec de tamafno N, ordenado en sus k primeras casillas, tres maneras posibles de construir una asercion
que establezca este hecho son:

© Todos los derechos reservados — Jorge Villalobos



Capitulo 0 - Conceptos Basicos 3

J

0 k N-1

{vec=| | | | | | | | | | | |‘|:Iestéordenado}

o] o]~ o]
{vec = ,

Xi_1SXi,0<iSk-1}

{ vec[ 0 — k-1 ] esta ordenado, vec [ k > N-1 ] no esta ordenado }

Ejemplo 0.4:

Para indicar que existe un apuntador p en la k-ésima posicidon de una lista encadenada apuntada por cab, una
asercion posible es:

J

lp
{ &. }

Para este tipo de estructuras, se va a suponer a través de los ejemplos del capitulo, que existe la siguiente
declaracion:

struct Nodo
{ intinfo;
struct Nodo *sig;

¥

Fijese en el simbolo que se utiliza al final de la lista encadenada para representar el valor NULL. A lo largo
del libro se utilizan indistintamente los siguientes simbolos para indicar este hecho:

& 0 X Gt

En la asercion del ejemplo, ademas de situar el apuntador p en la secuencia, se le da un nombre a cada
uno de los elementos que la componen. La misma asercion podria referirse a xx como el valor apuntado

por p (v.g. Xk > 0).

Ejemplo 0.5:

El lenguaje grafico puede ser de gran ayuda para expresar alguna condicion sobre las estructuras de datos de
un programa. En el momento de incluirlo, como parte del cédigo del programa, se debe remplazar por
lenguaje natural. Por ejemplo, con el fin de mostrar que los k primeros elementos de un vector vec son
distintos a un valor V dado, se pueden construir las siguientes aserciones:

0 k N-1
{ vec= | | | | | | | | | |‘|:IdiferentesdeV}

{Vec=|x0| |xk| |XN_1|,Xi I=V,0<i<k }

/vec[i]!=V,0<i<k<N-1%

/* Los k primeros elementos del vector vec son distintos de V */

© Todos los derechos reservados — Jorge Villalobos



4 Disefio y Manejo de Estructuras de Datos en C

Ejemplo 0.6:

Para afirmar que el mayor elemento de un vector vec se encuentra en la posicion k, es posible utilizar
cualquiera de las aserciones que se dan a continuacion:

0 k N-1

{vec=|| | | | | | . I I | .eselmayorelementodevec}

/*vec[ k]=vec[i], Vi|0<i<N?*

/* vec[ k ] es el mayor elemento del vector vec */

Una asercién debe ser muy precisa con respecto a lo que pretende afirmar. En las aserciones anteriores,
por ejemplo, no es claro en qué posicidon queda k si existen varios elementos iguales al mayor. Si este
hecho es importante, se debe completar la asercién con una afirmacién que elimine dicha ambigiliedad, y
diga, por ejemplo, que es la primera ocurrencia de dicho valor.

J

Ejemplo 0.7:

Para indicar que en un punto de un programa todos los elementos de una lista encadenada apuntada por cab
son diferentes entre si, se puede colocar la siguiente asercion:

I*cab > x4 = ... > XN, Xk =X, Vi, K| 0<i<N,0<k<N,il=k*

J

0.1.2. La Especificacion de un Programa

Un programa es una secuencia de instrucciones que hace que se transforme un estado inicial en un estado
final, donde el problema se encuentra resuelto. Esto permite especificar un programa mediante dos
aserciones: una, que describa el estado inicial (condiciones de los datos de entrada) y otra, el estado final
(condiciones de los datos de salida). Estas dos aserciones asociadas con un programa se denominan
respectivamente la precondicién y la postcondicién.

Basicamente, la precondicion define las condiciones del estado inicial para que el programa pueda comenzar
a resolver el problema. La postcondicion, por su parte, establece las caracteristicas de los datos de salida, en
términos de los datos de entrada.

La notacion:
{ pre: <asercion> } <programa> { post: <aserciéon> }

significa que si la ejecucion del programa se inicia en un estado que satisface la precondicién, se garantiza su
terminacién en un estado que satisface la postcondicion.

Ejemplo 0.8:

Un programa que calcula el factorial de un ndmero num y deja el resultado en una variable fact tiene la
siguiente especificacion:

{pre:num >0}

{ post: fact = num!}

© Todos los derechos reservados — Jorge Villalobos



Capitulo 0 - Conceptos Basicos 5

Las aserciones establecen que si el valor de la variable num es no negativo, al ejecutar el programa se
obtendra el factorial de dicho valor en la variable fact. La postcondicion no explica la manera de obtener un
resultado, sino Unicamente afirma la relacion que debe existir al final del programa entre los datos de
salida y los datos de entrada.

J

Ejemplo 0.9:

Es muy importante que la postcondicion sea suficiente para describir el estado final de la ejecucion. Para un
programa que ordena un vector vec de N posiciones, sin elementos repetidos, dada la precondicion:

{ pre: vec =[xq ... XN-1 ], todos los x; son diferentes }
No es suficiente la postcondicion:
{ post: vec =[yq ... YN-1 | ¥j < Yj+1. todos los y; son diferentes }

Puesto que todo vector ordenado cumple la postcondicion, sin importar el estado inicial. Note que la
postcondicidon sélo exige que el vector resultante tenga sus elementos ordenados, pero no indica su
relacion con los valores iniciales. Lo correcto seria:

{ post: vec =[yq ... YN-1 | ¥j < Yj+1, todos los y; son diferentes, Vi 3k | yj = xi }

Incluso, es suficiente con una asercion como la siguiente:

/* vec ha sido ordenado ascendentemente */

J

Ejemplo 0.10:

Un programa que encuentre el mayor elemento de una lista encadenada apuntada por cab, se puede
especificar mediante la siguiente pareja de aserciones:

{ pre: cab ol w1 |ef—p - Xk |eb—» - XN |+4+—_ . N>0}

{ post: mayor = xy, Xk > X; Vi |1 <i<N}

Es importante que la precondicion dé suficiente notacion para referirse a los datos de entrada, de tal
manera que sea posible expresar el valor de los datos de salida en funcién de éstos. En el ejemplo, no es
suficiente con decir que cab apunta al comienzo de una lista sencillamente encadenada, sino que es
necesario darle un nombre a cada uno de los elementos que la componen, para expresar, sin ambigledad,
el valor que tiene la variable mayor al final de la ejecucion.

J

Ejemplo 0.11:

La postcondicidon de un programa puede considerar diferentes casos. Por ejemplo, calcular el valor absoluto
de un valor num, dejandolo en esa misma variable, se puede especificar asi:

{pre:num=N}
{post: (N<O,num=-N)v(N>0,num=N)}

© Todos los derechos reservados — Jorge Villalobos



6 Disefio y Manejo de Estructuras de Datos en C

Note la necesidad de utilizar en la precondicién una constante adicional N para darle un nombre al valor
inicial de la variable num, ya que la postcondicion debe referirse a dicho valor. Esto se debe hacer siempre
que un dato de entrada sea a la vez un dato de salida, y este valor final sea una funcion del valor inicial.

J

Ejemplo 0.12:

Una rutina que elimina el k-ésimo elemento de una lista encadenada se puede especificar con las siguientes
aserciones:

0l Xt e | Xk [ | xn e
{ pre: =,nxk}
eab p X1 [e— - | Xk-1|¢—P| Xk+1 [#F—> | Xn |¢—_
{ post: =}

En este caso xix es un nombre para el valor que se encuentra inicialmente en la posicion k de la lista. Es
incorrecto, por tanto, colocar la siguiente postcondicion:

@b ol x1 |e—> | xk |[ef—> | xn-1|e]

;

{ post:

Porque, aunque ahora solo hay n-1 elementos, se deben respetar los nhombres dados a los datos de
entrada. En la ultima asercion se afirma que se ha eliminado el ultimo elemento de los que aparecian en la
lista inicial.

J

Ejercicios Propuestos:

Especifique formalmente los siguientes problemas:

0.1. Calcular la suma de todos los elementos de un vector vec.

0.2. Indicar si un valor num se encuentra presente en un vector vec.

0.3. Calcular el numero de veces que aparece un valor num en un vector vec.

0.4. Calcular el elemento que aparece un mayor numero de veces en una lista encadenada apuntada por
cab.

0.5. Invertir una lista encadenada apuntada por cab.

0.6. Remplazar en un vector vec todas las ocurrencias del valor num1 por el valor num2.

0.7. Imprimir los elementos del vector vec.

0.8. Indicar si dos listas encadenadas tienen los mismos elementos, aunque sea en diferente orden.
0.9. Calcular el numero de elementos de una lista encadenada apuntada por cab.

0.10. Invertir los elementos de un vector vec de N posiciones, intercambiando el primero con el ultimo, el
segundo con el penultimo y asi sucesivamente hasta terminar.

0.11. Informar la posicion donde aparece por ultima vez un valor val en una lista encadenada apuntada por
cab.

0.12. Informar si un valor val aparece entre los elementos de una lista encadenada apuntada por cab.

© Todos los derechos reservados — Jorge Villalobos



Capitulo 0 - Conceptos Basicos 7

0.13. Retornar el elemento que se encuentra en la i-ésima posicién de una lista encadenada apuntada por
cab.

0.14. Adicionar un elemento val al final de una lista encadenada apuntada por cab.

0.15. Calcular el numero de valores diferentes que se encuentran en un vector vec.

0.1.3. Dividir y Conquistar

Una de las técnicas mas comunes de solucion de problemas consiste en dividir el problema en dos o mas
subproblemas, mas sencillos, de manera que la solucion global sea la unién de las subsoluciones. Para esto,
se colocan una o mas aserciones intermedias entre la precondicion y la postcondicion, mostrando un estado
en el cual una parte del problema ya ha sido resuelto.

{ pre: <asercion> } <subproblema-1> { A1: <asercién>} <subproblema-2> { post: <asercion> }
Ejemplo 0.13:

Para eliminar el valor elem presente en una lista doblemente encadenada apuntada por cab, se puede dividir el
problema en dos partes: localizar el elemento y desencadenarlo.

cab

. 4+— 4+—>e
{pre: 4 X1 b Xk Xn ¢— }
<subproblema-1: localizar el elemento >
g}
cab )

a3 x ,_,".... xk [0 | x $— Xk =elem}
<subproblema-2: desencadenar el elemento >

cab ) P
{ post: dox1 e | ok T ke 4 ] xn =

En este ejemplo, el problema de eliminar un elemento de una lista doblemente encadenada se reduce a
dos problemas mas sencillos: localizar un elemento en una lista doblemente encadenada y eliminar un
nodo dado un apuntador a él. Cada subproblema se resuelve con un programa independiente, con su
propia especificacion, en la cual su precondicion y/o su precondicién corresponden a una asercion
intermedia.

J

Ejemplo 0.14:

Agregar ordenadamente un valor elem a un vector vec de MAX posiciones cuyas N primeras estan ocupadas.
Un posible planteamiento es el siguiente, que incluye dos aserciones intermedias, y divide el problema en 3
subproblemas mas sencillos:

0

ocupado/ordenado

vec =

{ pre:

,elem=E}

<subproblema-1: localizar el punto de insercién >
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{A1; VeC= , i es la posicion que debe ocupar E }

<subproblema-2: desplazar la informacién del vector >

0 i N MAX-1

vec =

{A2: — }

<subproblema-3: colocar el nuevo valor >

0 i N MAX-1

Ll [T [T
vec =

{ pOStZ ocupado/ordenado }

Para cada uno de los subproblemas encontrados, se busca una solucién que puede consistir en volver a
dividir el problema, en utilizar una de las técnicas que se muestran en las siguientes secciones o, si es
posible hacerlo, en escribir una secuencia de asignaciones y llamadas de rutinas que lo resuelvan. Este
ultimo es el caso del subproblema-3, cuya solucién es:

vec[ 1 ]=elem;

J

0.1.4. Consideracion de Casos

Otra forma de resolver un problema es dividirlo en casos, cada uno con una soluciéon mas sencilla que el
problema completo. De esta forma, un problema planteado con una precondiciéon y una postcondicion se
resuelve con la siguiente estructura de algoritmo:

{ pre: <asercion> }

if (<condicion>)
{ pre-caso-1: <asercion> }
<subproblema -1>

else
{ pre-caso-2: <asercion> }
<subproblema-2>

{ post: <asercion> }

Donde la <condicién> define las caracteristicas de la precondiciéon que distinguen cada caso.

Ejemplo 0.15:

Calcular el valor absoluto de un nimero num, dejando el resultado en la variable abs. La estructura del
algoritmo de solucion es:
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/* pre: TRUE */
if (num>=0)
/* prel: num > 0 */

<subproblema-1: valor absoluto de un nimero no negativo>
else
/* pre2: num < 0 */

<subproblema-2: valor absoluto de un nimero negativo>
/* post: abs = | num | */
El problema global se divide en dos subproblemas, donde cada uno considera un caso distinto. La
precondicién de cada uno de ellos agrega condiciones a la precondicién inicial, para distinguir la situacion

especifica que debe tratar.

J

Ejemplo 0.16:

Calcular la longitud de una lista encadenada apuntada por cab. La estructura condicional para resolver este
problema puede ser:

/* pre: % ,NZO*/

if (cab==NULL )

cab
/* pre-1: _—L:,NIO */

<subproblema-1: longitud de una lista vacia>

else

/* pre-2: &’ N> %/

<subproblema-2: longitud de una lista no vacia>

{ post: long=N }
J

0.1.5. Ciclos e Invariantes

La solucion de un problema puede consistir en la repeticion de un proceso, a través del cual se va
transformando gradualmente el estado de la ejecucion, para llevarlo de la precondicién a la postcondicion. La
estructura del algoritmo, en ese caso, es:

{ pre: <asercion> }

{ inv: <invariante> }
while( <condicién>)  <subproblema>

{ post: <asercion> }
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La <condicion> representa la situacién en la cual el proceso iterativo ya ha llevado el estado del programa a
cumplir la postcondicién: cuando la <condicion> es falsa, el problema ha sido resuelto. El <subproblema> es
el proceso que se repite para avanzar en la solucion del problema global. El <invariante> es una asercion
que describe el ciclo. Se debe cumplir antes y después de cada iteracion y su funciéon es especificar el
<subproblema>.

Ejemplo 0.17:
Calcular el factorial de un numero no negativo num y dejar el resultado en la variable fact. La solucion es:

/* pre: num > 0 */

inti=0;
int fact =1,

/*inv: fact=1!, 0 <i < num */

while( i <num )
{ i+t

fact *=1;
H

/* post: fact = num! */

El invariante afirma que, después de cada iteracion, en la variable fact se encuentra el valor il. Esta es una
variable de trabajo que cuenta el numero de iteraciones, y varia entre 0 y num. En cada iteracion, el cédigo
del ciclo debe garantizar que se sigue cumpliendo el invariante, aunque hayan avanzado las variables de
trabajo. En este caso, se debe garantizar que al avanzar i, se modifique el valor de la variable fact.

El invariante se cumple antes de entrar la primera vez al ciclo y después de abandonarlo. Esa es la
caracteristica que garantiza la continuidad de la solucion y, por lo tanto, su correccion. La condicion de
salida es (i == num ), puesto que en ese instante se ha llegado a la postcondicién del problema.

J

Ejemplo 0.18:
Encontrar el menor valor de un vector vec.

/* pre: vec es un vector de N posiciones */
int menor = vec[ 0 ];

0 i K
oo LTI ITITT]

/* inv: examinado , menor = vec[ 1], es el menor de la parte examinada */
for(k=1; k <N; k++)
if( menor > vec[ k ])
menor = vec[ k |;

/* post: menor contiene el menor elemento del vector vec */

El invariante afirma que para cualquier valor de la variable de trabajo k, que avanza de 1 hasta N, en la
variable menor va a estar el minimo elemento que existe en el vector en el rango de posiciones 0 a k-1.
Cuando k = N, menor tiene la respuesta que se esta buscando. En este caso, para conservar el invariante
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J

después de cada ciclo, antes de avanzar la variable k es necesario constatar si se debe alterar el valor de
la variable menor.

Es importante anotar que la variable i no se utiliza como parte del programa, sino Unicamente como parte
de la especificacion, y se refiere a la posicion del menor elemento dentro del vector hasta el lugar
examinado por el proceso iterativo.

En la siguiente asercion se puede ver claramente que el invariante se cumple al entrar la primera vez al

ciclo:
ik N-1
W NIRNEEEEEE
{A1: examinado , menor = vec[ 0 ], es el menor elemento entre 0 y 0 }
Lo mismo ocurre al terminar:
0 i N-1 k
oo L LT TTTT]
{ A2: examinado , menor = vec][ i ], es el menor elemento entre 0 y N-1}

Al escribir el invariante es importante verificar que estas dos situaciones limite se encuentren
adecuadamente consideradas.

Ejemplo 0.19:

Una funcion para calcular y dejar en la variable longitud el niumero de elementos de una lista encadenada
apuntada por cab:

&, _>
/* pre: = */

lp
/* inv: % , longitud =k - 1 */

for( p = cab, longitud = 0; p != NULL; p = p->sig )

longitud++;
pl
@b ol x1 |e}—> - —» xn -+ .
/* post: =, longitud =n */

La funcién se limita a recorrer la estructura encadenada contando los elementos. El invariante relaciona la
posicion en la que va apuntando p con el valor de la variable longitud, afirmando que cuando p apunte al
elemento xi, el valor de la variable longitud debe ser k-1. Al final, cuando p haya llegado a NULL, la

variable longitud tiene almacenada la longitud de la lista ( n ).
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Ejemplo 0.20:

Invertir una lista encadenada, modificando el sentido de los apuntadores.

[ 1
a1 x1 o —p| Xn
/* pre: =*/

p = cab;
cab=NULL;
cab p

s 0L 2 x| [0 [ [d= s,

while( p !=NULL )

{ q=p->sig;
p->sig = cab;
cab=p;
pP=q

}

/* post: % _> =L #/

La idea de fondo es ir cambiando uno por uno el sentido de los apuntadores. Para esto se trabaja con dos
listas: una, con los elementos que no han sido procesados (encabezada por p), y otra, con los elementos
cuyo encadenamiento ya ha sido invertido (encabezada por cab). Al entrar la primera vez al ciclo se cumple
un caso particular del invariante, en el cual todos los elementos estan sin procesar:

cabl
N Ea e Tt

En el momento en el cual se terminan los elementos de la lista encabezada por p (elementos por
procesar), ya no es interesante volver a entrar al proceso iterativo. Ese también es un caso particular del

invariante:
cab

p
{AZ===IHI*_""" Ilﬂl,zi}

El cuerpo del ciclo debe resolver el problema de pasar de un estado que cumple el invariante, a otro que lo
sigue cumpliendo, pero que se encuentra mas cerca de la situacién final esperada. En este ejemplo, debe
resolver el problema de pasar un nodo de la lista de no procesados a la lista de procesados. La manera de
hacerlo se ilustra con la siguiente secuencia de aserciones intermedias:

cab P
e L 5 e E

q = p->sig;
cabl pl Ql
/% 4—‘-‘| Xk | | Xk+1 "‘—>| Xk+2

R
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p->sig = cab;

<—H Xk+1

cab p q

| Xk+2

- .

/%
cab=p;
P=9q
cabl pl
S e R oL

J

Ejercicios Propuestos:

Para los siguientes problemas, siga todo el proceso metodoldgico planteado para obtener y documentar la
funcién que lo resuelve. Empiece por una especificacion clara y, luego, utilice las técnicas de refinamiento
antes enunciadas. Defina claramente el invariante de cada proceso iterativo y verifique que se cumpla antes
de comezar el ciclo y después de terminar.

0.16.

0.17.
0.18.
0.19.
0.20.
0.21.

0.22.

0.23.

0.24.

0.25.
0.26.

0.27.

0.28.
0.29.

Invertir los elementos de un vector vec de N posiciones, intercambiando el primero con el ultimo, el
segundo con el penultimo y asi sucesivamente hasta terminar.

Sumar los elementos de un vector vec de N posiciones y retornar el resultado.

Determinar si dos vectores vecl y vec2 de N posiciones son iguales.

Remplazar en un vector vecl de N posiciones todas las ocurrencias del valor vall por el valor val2.
Imprimir todos los elementos de un vector vec de N posiciones, tales que son mayores que el valor val.

Agregar ordenadamente un valor elem a un vector vec de N posiciones, cuyas primeras M estan
ocupadas (ver ejemplo 0.14).

Rotar M posiciones los elementos de un vector vec de N casillas. Rotar una posicién significa
desplazar todos los elementos una posicién hacia la izquierda y pasar a la ultima posicion el que antes
se encontraba de primero.

Decidir si dos vectores vecl y vec2 de N posiciones tienen los mismos elementos, aunque estén en
diferente orden.

Compactar un vector vec de N posiciones. Esto significa que, al terminar, en la parte inicial del
vector se deben encontrar todos los valores diferentes de cero. Por ejemplo:

0 N-1 0 N-1
vec={3]o[s[o]o[3]o]s]o]s o] vec=1{3]s[s[o]s [o]o]o oo o]

compactar —»

Informar si un valor val aparece entre los elementos de una lista encadenada apuntada por cab.

L] ’ .
Calcular y retornar el elemento que aparece un mayor nimero de veces en una lista encadenada
apuntada por cab.

Eliminar de una lista encadenada apuntada por cab los elementos que se encuentran en una posicién
par.

Retornar el elemento presente en la i-ésima posicion de una lista encadenada apuntada por cab.

Eliminar de una lista encadenada apuntada por cab todas las apariciones de un elemento dado.
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0.30.

0.31.

0.32.
0.33.
0.34.

0.35.
0.36.

Disefio y Manejo de Estructuras de Datos en C

Informar la posicion donde aparece por Ultima vez un valor val en una lista encadenada apuntada
por cab.

Invertir los elementos de una lista encadenada apuntada por cab, moviendo Unicamente la
informacion y no el encadenamiento.

Eliminar de una lista doblemente encadenada apuntada por cab todas las apariciones de un elemento.
Invertir los elementos de una lista doblemente encadenada apuntada por cab, moviendo la informacion.

Rotar una posicién una lista doblemente encadenada apuntada por cab. Esto implica pasar el primer
elemento al final de la secuencia.

Leer del teclado una secuencia de valores enteros y construir una lista doblemente encadenada.

En un vector vec de N posiciones existe un elemento que no se encuentra ordenado con respecto a
los demas. Localizar el elemento y colocarlo en el sitio adecuado.

Una lista circular tiene la siguiente estructura:

0.37.
0.38.

0.39.

0.40.

cab
s — [ =

Calcular el numero de elementos presentes en una lista circular apuntada por cab.

Adicionar un elemento val al final de una lista circular apuntada por cab.
Eliminar de una lista circular apuntada por cab todas las ocurrencias de un elemento val.

Concatenar dos listas circulares no vacias apuntadas por cabl y cab2, dejando el resultado en la
primera de ellas.

0.2. Recursion

En esta seccion se presenta un breve resumen de una técnica muy utilizada en soluciéon de problemas,
denominada recursion. Este enfoque se utiliza con frecuencia en los capitulos de estructuras de datos
recursivas, como arboles, en las cuales resulta mucho mas sencillo plantear un algoritmo recursivo que uno
iterativo. Para profundizar en el tema, se recomienda consultar la bibliografia dada al final del capitulo.

0.2.1.

Conceptos Basicos

Un algoritmo es recursivo si se encuentra definido en términos de si mismo. El ejemplo tipico es el factorial
de un numero, que consiste en la multiplicacion de dicho nimero por el factorial del nimero anterior (N! = N *
(N- 1)!). Para indicar la forma de calcular el factorial de un ndmero se utiliza la misma solucion planteada, pero
aplicada en otro valor. El cédigo de dicha funcién recursiva es:

int factorial( int num )

{

if (num==0)
return 1;
else
return num * factorial( num - 1 );
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En general, un algoritmo recursivo se plantea él mismo un problema con la misma estructura del inicial, pero
de un tamano menor. Luego, decide cémo extender esa solucién para que incluya el problema completo.

Ejemplo 0.21:

Calcular la longitud de una lista encadenada. La funcién debe plantearse a si misma un problema mas
sencillo, pero con la misma estructura. En este caso puede pedir que se calcule la longitud de la lista que
comienza en la segunda posicion. Tan pronto la funcién dé su respuesta, la manera de extender la solucion al
problema completo se reduce a sumarle 1 al valor obtenido.

/* pre: cab > x1 > x2 > ... > xn ¥/
/* post: longLista =n */

int longLista( struct Nodo *cab )
{ if (cab==NULL)
return 0;
else
return 1 + longLista( cab->sig );

El planteamiento se puede resumir en el siguiente esquema recursivo:

longLista( x4 = Xo — ... & X ) = longLista(x9 > ... > xp ) + 1

J

Esta técnica de solucién de problemas tiene como ventajas la simplicidad de expresion (los algoritmos suelen
ser muy sencillos) y lo natural que resulta utilizarlo en algunos problemas. Como desventajas estan el espacio
extra que ocupa en memoria por cada llamada de la rutina y el tiempo adicional de ejecucién que todo esto
implica.

Para dar una idea del funcionamiento de una rutina recursiva, la figura 0.1. muestra un resumen del proceso
de ejecucioén de la funcion factorial, y de la manera como cada llamada va delegando la responsabilidad de
resolver un problema mas sencillo, para luego armar la respuesta a partir de la informacién que le retornan.
fact( 5 ) espera hasta que fact( 4 ) se resuelva, lo cual solo se lleva a cabo cuando fact( 3 ) es calculado, y asi
sucesivamente hasta llegar a plantear el problema en términos de fact( 0 ), que constituye un caso trivial.

fact(5)=fact(4)*5 24*5=120
fact(4 ) =fact(3)*4 6*4=24
N\
fact(3)=fact(2)*3 2*3=6
fact(2)=fact(1)*2 1*2=2

/ \

fact(1)=fact(0)*1=1*1=1

Fig. 0.1 - Ejecucion de la funcion recursiva de factorial

La figura 0.2. muestra el proceso de ejecucion de la rutina que calcula la longitud de una lista. De nuevo se va
descomponiendo el problema en problemas mas pequefos, a medida que avanza.
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longLista(—_—{_—1 ) = longLista(——ll ) + 1 =3

!

longLista( ——Jill ) = 'ongLista(—lll )+1=2

longLista(—[lll ) = longLista( ; y+1=1

Fig. 0.2 - Ejecucion de la funcion recursiva de longLista

0.2.2. Estructura de una Rutina Recursiva

En toda rutina recursiva se deben considerar dos conjuntos distintos de casos. Los primeros, son los llamados
casos ftriviales, en los cuales se puede dar una respuesta sin necesidad de generar una llamada recursiva.
Por ejemplo, para la funcién factorial, si el argumento vale 0, sin necesidad de una llamada recursiva se puede
dar como respuesta el valor 1. En el caso de la funcién longLista, el caso trivial corresponde a la lista vacia,
con respuesta 0. Estos casos se denominan las salidas de la recursion, y es necesario que exista por lo
menos una de éstas dentro de cada rutina recursiva, para garantizar que el proceso termina.

Como segunda medida, se deben considerar los casos en los cuales, para poder dar una respuesta, es
necesario esperar hasta obtener la respuesta de una llamada recursiva. Estos casos se conocen como los
avances de la recursion, y también es necesaria la presencia de al menos uno de éstos en toda rutina
recursiva.

La estructura general de una rutina recursiva, en la cual existen varias salidas y varios avances de la
recursion, es la siguiente:

if (<condicion-1>)
<salida-1>

else if (<condicion-2>)
<salida-2>

else if (<condicion-k>)
<avance-1>

else <avance-n>

Ejemplo 0.22:

Eliminar un elemento de una lista encadenada ordenada ascendentemente. El planteamiento recursivo
contempla tres salidas o casos triviales:

o Lalista es vacia = la respuesta es la lista vacia

o El primer elemento de la lista es el que se quiere eliminar = la respuesta es la lista que comienza con
el segundo elemento.

e EIl primer elemento de la lista es mayor que el que se quiere eliminar = la lista permanece sin
modificacion, puesto que el elemento no esta presente.

Incluye un avance de la recursién, que se puede resumir en el siguiente esquema:

elimLista(—»| X1 [ x2[e—> .. [ xn |r|—_|_= )= —belimLista( —> )
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La rutina recursiva es la siguiente:

struct Nodo *elimLista( struct Nodo *cab, int elem )

{ if (cab==NULL || cab->info > elem ) /* Salidas 1y 3 */
return cab;
else if( cab->info == elem ) /* Salida 2 */
{ p=cab->sig;
free( cab );
return p;
H
else
{  cab->sig = elimLista( cab->sig, elem ); /*Avance */
return cab;
H
H

Es importante resaltar que a partir del planteamiento recursivo, el cédigo del programa se obtiene de
manera natural.

J

Ejemplo 0.23:

Buscar un elemento en una lista encadenada. El planteamiento tiene 2 salidas de la recursion (la lista es
vacia o el primer elemento es el buscado) y un avance (buscar desde el segundo elemento):

int estalista( struct Nodo *cab, int valor )
{ if (cab==NULL)
return 0;
else if ( cab->info == valor )
return 1;
else
return estal.ista( cab->sig,valor );
H
J

0.2.3. Metodologia de Desarrollo

Para el caso de una rutina recursiva, se debe abordar el desarrollo en tres etapas:

o Buscar las salidas de la recursion: en qué casos o bajo qué circunstancias se puede dar una respuesta
inmediata al problema planteado.

e Determinar los avances de la recursion: en qué casos se debe plantear la respuesta en términos de una
llamada recursiva. Para esto es conveniente: (1) identificar los casos posibles, (2) definir qué significa un
problema con la misma estructura pero menor tamafo y plantear la llamada recursiva y (3) explicar en
cada caso la manera de construir la respuesta a partir del retorno de dicha llamada.

o Escribir el algoritmo que implementa el planteamiento antes logrado.

] .
Ejemplo 0.24:
Contar el numero de veces que aparece un elemento en una lista encadenada.

e Prototipo de la funcion: int contar( xq — ... = X, elem)
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Caso trivial: la lista es vacia = aparece 0 veces
Avance-1: e El primer elemento de la lista es el que se busca (elem)

e Llamada recursiva: contar( xo - ... > Xp )
e Construccion de la respuesta: 1 + contar(xo — ... > Xp )

Avance-2: ¢ El primer elemento de la lista no es el que se busca (elem)

e Llamada recursiva: contar( xo - ... > Xp )

e Construccion de la respuesta: contar( xo — ... = Xp )

int contar( struct Nodo *cab )

{

i
g

if( cab==NULL )

return 0;
else if( cab->info == elem )

return 1 + contar( cab->sig, elem );
else

return contar( cab->sig, elem );

Ejercicios Propuestos

Desarrolle rutinas recursivas para resolver cada uno de los siguientes problemas:

0.41.
0.42.
0.43.
0.44.
0.45.
0.46.
0.47.

0.48.

0.49.
0.50.

0.51.
0.52.
0.53.

0.54.
0.55.
0.56.

Imprimir los elementos de una lista encadenada.

Imprimir en orden contrario los elementos de una lista encadenada.

Determinar si dos vectores vecl y vec2, de N posiciones, son iguales.

Calcular el numero de ocurrencias del elemento elem en una lista encadenada.

Decidir si un elemento elem aparece en una lista encadenada ordenada ascendentemente.
Encontrar el menor valor de un vector.

Decidir si un elemento elem aparece en un vector.
Decidir si un vector se encuentra ordenado.

L] ” .
Calcular el numero de valores diferentes que se encuentran en un vector.

Retornar la posicién de la i-ésima ocurrencia de un elemento elem, en una lista encadenada.

Retornar el elemento que aparece un mayor numero de veces en una lista encadenada.
Concatenar dos listas Istl y Ist2, dejando todos los elementos de Ist2 al final de Istl.

Eliminar todas las ocurrencias del elemento elem en una lista encadenada.
] .. .

Retornar el i-ésimo elemento de una lista encadenada.

Invertir una lista encadenada.

Ordenar ascendentemente un vector.
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0.3. Analisis de Algoritmos

Una de las herramientas con que cuenta un ingeniero, para hacer la evaluacién de un diseno, es el analisis de
algoritmos. A través de éste, es posible establecer la calidad de un programa y compararlo con otros
programas que se puedan escribir para resolver el mismo problema, sin necesidad de desarrollarlos. El
analisis se basa en las caracteristicas estructurales del algoritmo que respalda el programa y en la cantidad
de memoria que éste utiliza para resolver un problema.

El analisis de algoritmos se utiliza también para evaluar el disefio de las estructuras de datos de un programa,
midiendo la eficiencia con que los algoritmos del programa son capaces de resolver el problema planteado, si
la informacién que se debe manipular se representa de una forma dada.

La presentacion que se hace en esta seccion del tema de analisis de algoritmos no es completa. Sélo se ven
las bases para que el estudiante pueda evaluar los algoritmos que se presentan en el libro. Para una
presentacion mas profunda se recomienda consultar la bibliografia que se sugiere al final del capitulo.

0.3.1. Definicion del Problema

Suponga que existen dos programas P1 y P2 para resolver el mismo problema. Para decidir cual de los dos
es mejor, la solucién mas sencilla parece ser desarrollarlos y medir el tiempo que cada uno de ellos gasta
para resolver el problema. Después, se podrian modificar los datos de entrada, de alguna manera
preestablecida, y promediar al final su desempefio para establecer su comportamiento en el caso promedio.

La solucién anterior tiene varios problemas. Primero, que pueden existir muchos algoritmos para resolver un
mismo problema y resulta muy costoso, por no decir imposible, implementarlos todos para poder llevar a cabo
la comparacion. Segundo, modificar los datos de entrada para encontrar el tiempo promedio puede ser una
labor sin sentido en muchos problemas, llevando a que la comparacion pierda significado.

El objetivo del analisis de algoritmos es establecer una medida de la calidad de los algoritmos, que permita
compararlos sin necesidad de implementarlos. Esto es, tratar de asociar con cada algoritmo una funcién
matematica que mida su eficiencia, utilizando para este efecto Unicamente las caracteristicas estructurales del
algoritmo. Asi, se podrian llegar a comparar diversos algoritmos sin necesidad, siquiera, de tenerlos
implementados. Como una extension de esto, seria posible comparar diferentes estructuras de datos,
tomando como factor de comparacion el algoritmo mas eficiente que se pueda escribir sobre ellas, para
resolver un problema dado, tal como se sugiere en la figura 0.3.

Estructuras de Posibles Medida de
Datos Algoritmos Eficiencia
: i o N
DISENO-1 Algoritmo
pN
Mejores estructuras
de datos para resolver
g-1 el problema?
~ gk o] Moior /*
DISENO-2 Algoritmo
Y

Fig. 0.3- Analisis de algoritmos como herramienta para el disefio de estructuras de datos
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Adicional al tiempo de ejecucion, existe otro factor que también se debe considerar al medir la eficiencia de un
algoritmo: el espacio que ocupa en memoria. No tiene sentido escoger un algoritmo muy veloz, cuyas
exigencias de memoria puedan impedir su uso en algunas situaciones. Esta es la segunda medida que se va
a utilizar en el disefio de las estructuras de datos.

0.3.2. Tiempo de Ejecucion de un Algoritmo

Para poder tener una medida del tiempo de ejecuciéon de un programa, se debe pensar en los factores que
tienen influencia en dicho valor. Inicialmente, se pueden citar los siguientes:

e La velocidad de operacién del computador en el que se ejecuta. Es diferente ejecutar el programa en un
micro 80386 que en un Pentium de 150 Mhz.

e EIl compilador utilizado (calidad del cédigo generado). Cada compilador utiliza diferentes estrategias de
optimizacion, siendo algunas mas efectivas que otras.

e La estructura del algoritmo para resolver el problema.

Con excepciéon del ultimo, los factores mencionados no son inherentes a la solucién, sino a su
implementacion, y por esta razon se pueden descartar durante el analisis.

Ademas de la estructura del algoritmo, se debe tener en cuenta que el niumero de datos con los cuales trabaja
un programa también influye en su tiempo de ejecucién. Por ejemplo, un programa para ordenar los
elementos de un vector, se demora menos ordenando un vector de 100 posiciones que uno de 500. Eso
significa que el tiempo de ejecucién de un algoritmo debe medirse en funcién del tamafio de los datos de
entrada que debe procesar. Esta medida se interpreta segun el tipo de programa sobre el cual se esté
trabajando.

Se define Tp(n) como el tiempo empleado por el algoritmo A en procesar una entrada de tamario n y producir
una solucioén al problema.

Ejemplo 0.25:

Considere dos rutinas que invierten una lista sencillamente encadenada de n elementos. Ambas cumplen la
siguiente especificacion:

{ pre: &’ _' }
tpost. =l =~ =[x [,

El primero de los algoritmos en cuestiéon es el presentado en el ejemplo 0.20., que modifica los
encadenamientos de la lista para invertirla. Hace solo una pasada sobre la estructura, haciendo en cada
iteracion el cambio de sentido de un apuntador. El segundo algoritmo es el que se desarrolla a
continuacion, que, para invertir la lista, mueve la informacién en lugar de alterar los encadenamientos.
Para esto remplaza el primer elemento por el ultimo, el segundo por el penultimo, y asi sucesivamente
hasta terminar, como se muestra en la siguiente secuencia:

) %| X1 H—>| x2 H—>| X3 H—> |XN-2H—>| XN-1H—>| XN |'-|—_|_=
2 &4 XN H—>| X2 H—>| X3 H—» |XN-2|-|—>| ><N-1H—>| X1 H—_L=
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3) %| XN H—>| xN-1H—>| X3 H—> |XN-2|-|—>| x2 H—>| X1 H—_L=

struct nodo *inv2( struct nodo *cab )

{ inttemp;
struct nodo *p, *q, *;

for( q = cab; g->sig != NULL; q = g->sig );

for( p = cab; p !=q && g->sig |=p; p = p->sig)

{  temp = p->info;
p->info = g->info;
g->info = temp;

for(r =p; r->sig !=q; r =r->sig );

q=r
H

return cab;

}

21

El tamafio de los datos de entrada es el numero de elementos de la lista encadenada. Los tiempos de
ejecucion de cada algoritmo se resumen en la siguiente tabla y dan una idea de la eficiencia de cada uno:

Algoritmo 1: tiempo de ejecucién (tomado cada 20.000 nodos)

# nodos T(n)segs
20,000 0.05
40,000 0.05
60,000 0.1
80,000 0.16
100,000 0.22
120,000 0.27
140,000 0.33
160,000 0.38
180,000 0.38
200,000 0.44
220,000 0.55
240,000 0.60

1.00

0.90
% 0.80
Q

)

070
3 0.60
.0.50
[}
g 040
goao
& 0.20
0.10
0.00

Algoritmo 2: tiempo de ejecucion (tomado cada 1.000 nodos)

# Nodos T(n) segs
1,000 0.22
2,000 1.32
3,000 291
4,000 4.95
5,000 7.69
6,000 10.93
7,000 14.89
8,000 19.34
9,000 24 45
10,000 30.16

/I/
././-
l/
I/
l/
l/
l/
I/
o o (=3 [=3 (=] (=] o o (=3 (=3 o o
s 8 8 8 8 8 &8 8 & 8 8 8
& § 8 8 8 8§ 8 8 8 8 & ¢
- - - - - 39 N N
Numero de nodos procesados
35.00
« 30.00 -
j=J
& /
< 25.00 I~
2 /
o
32
H 0.00 /l
o
g 15.00 ol
8 I/
10.00
s e
=
5.00 ./'
/l/
0.00
O 9 9 9 9 9 9 9 9O 9
S & & ©& & © © © © o
S & & & & & & & & ©°o
- a4 o F 1B © N ©o o o
=4

Numero de nodos procesados
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Si se consideran los resultados obtenidos, lo que a primera vista podria parecer una pequefia ineficiencia
del segundo algoritmo, consistente en la relocalizacion -en cada iteracion- del apuntador q, lleva a
desempeios muy diferentes: mientras el primer algoritmo alcanza a invertir 240.000 nodos en menos de 1
segundo, el segundo gasta mas de 30 segundos en procesar sélo 10.000.

J

Lo ideal, al hacer la evaluacion de la eficiencia de un algoritmo, seria encontrar una funcién matematica que
describiera de manera exacta Tp(n). Sin embargo, en muchos casos, el calculo de esta funcién no se puede

realizar, ya que depende de otro factor no considerado y que es, la mayoria de las veces, imposible de medir:
el contenido o calidad de la entrada. Esto se ilustra en el siguiente ejemplo.

Ejemplo 0.26:

Considere el siguiente algoritmo, utilizado para decidir si el elemento elem se encuentra en un vector vec de N
posiciones.

{pre: vec =[ Xg, ..., XN-1 1}
{ post: ( X; = elem, existe = TRUE ) v ( X} !=elem, Vk | 0 <k <N, existe = FALSE ) }

for(i=0;i <N && vec[ i ] != elem; i++);
existe =1 <N;

Haciendo un analisis puramente tedrico, se puede ver la influencia que tienen los datos especificos de la
entrada (no sélamente su cantidad) en el tiempo de ejecucién. Suponga que se fija el valor de N en 6 y que
la evaluacion de cada expresion del programa toma t microsegundos. Si los datos de entrada son:

0 1 2 3 4 5 :):<06;&&wc[0]!:5 :ﬁzzi
vec=|5|6|7|8|9|10| ,elem=5 existe = 0 < 6; t puseg

El algoritmo gasta en total 3t microsegundos, como se puede apreciar en el desarrollo anterior. Mientras
que, para la siguiente entrada, el mismo algoritmo, con el mismo valor para N, toma 11t microsegundos.

0 1 2 3 4 5 :):<06;&&VCC[O]':5'H'+ tZiILSZE
Vec=|5|6|7|8|9|10|,elem=9 1 <6 && vec[ 1]!=5;i++ Ztisei
2<6&& vec[2]!=5; i++ 2t useg
3<6&& vec[ 3] !=5; i++ 2t puseg
4<6&&vec[4]!=5; t useg
existe = 4 < 6;
t useg

Esto implica que, por mas que se conozca el tamafio de los datos de entrada, es imposible -para muchos
problemas- determinar el tiempo de ejecucién para cada una de las posibles entradas.

J
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Por la raz6n antes enunciada, se va a trabajar con el tiempo utilizado por el algoritmo en el peor de los casos,
ya que es mucho mas facil definir cual es el peor de los casos, que considerarlos todos, o incluso, que
considerar el caso promedio. Se redefine la funcion de tiempo asi:

Ta( n ) = tiempo que se demora el algoritmo A, en el peor de los casos, para encontrar una solucién a un
problema de tamafio n.

Asi, se pueden comparar dos algoritmos cuando tratan de resolver el mismo problema en el peor de los
casos. Para el ejemplo 0.26, el peor de los casos es cuando no encuentra el elemento en el vector, puesto
que debe iterar N veces antes de darse cuenta de su inexistencia.

En algunos casos particulares de este libro, sobre todo en los capitulos 4 y 5, se utiliza el céalculo de la
complejidad de un algoritmo en el caso promedio. Para eso se debe tener en cuenta la distribucion
probabilistica de los datos que se manejan. Alli se ilustra este proceso.

0.3.3. El Concepto de Complejidad

La idea detras del concepto de complejidad es tratar de encontrar una funcion f( n ), facil de calcular y
conocida, que acote el crecimiento de la funcion de tiempo, para poder decir "Ta(n) crece aproximadamente

como f' 0, mas exactamente, "en ningun caso Tp(n) se comporta peor que f al aumentar el tamario del

problema". En la figura 0.4. aparece la manera como crecen algunas de las funciones mas utilizadas en el
calculo de la complejidad.

Fig. 0.4 - Crecimiento de las funciones tipicas de complejidad de algoritmos

Al afirmar que un algoritmo es O( f ( n ) ), se esta diciendo que al aumentar el nimero de datos que debe
procesar, el tiempo del algoritmo va a crecer como crece f en relacién a n. En el ejemplo 0.25, una de las
rutinas para invertir la lista es O( n ), mientras que la otra es O( n? ), y esto se puede apreciar claramente en
la forma de la grafica de tiempos incluida en dicho ejemplo.

Ejemplo 0.27:

Suponga que se tienen 8 algoritmos distintos A1, ..., A8 para resolver un problema dado, cada uno con una
complejidad diferente. Si a cada algoritmo le toma 1 microsegundo procesar 1 dato, en la siguiente tabla
aparece el tamafio maximo del problema que puede resolver en una cierta unidad de tiempo [TAR91].

Alli se puede apreciar claramente como algunos algoritmos pueden resultar inaplicables para problemas de
un cierto tamano.
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Complejidad 1seg 102 seg 10% seg 106 seg 108 seg 1010 seg
(1.7 min) (2.7 horas) (12 dias) (3 afos) (3 siglos)
Al 1000n 103 105 107 109 T 1013
A2 | 1000nlogon | 14+102 | 7.7+103 | 52+10° | 39+107 | 3.1+10° | 26*10™
A3 100n? 102 103 104 109 106 107
A4 10n3 46 2.1 %102 103 46103 | 2.1+10% 109
A5 - Tog2n 22 36 54 79 112 156
A6 R 59 79 99 119 139 159
A7 on 19 26 33 39 46 53
A8 an 12 16 20 25 29 33

J

Un problema se denomina tratable si existe un algoritmo de complejidad polinomial para resolverlo. En otro
caso se denomina intratable. Esta clasificacion es importante porque, cuando el tamafio del problema
aumenta, los algoritmos de complejidad polinomial dejan de ser utilizables de manera gradual, como se puede
apreciar en la figura 0.5. Por su parte, los algoritmos para resolver los problemas intratables explotan de un
momento a otro, volviéndose completamente incapaces de llegar a una respuesta para el problema

planteado. En la figura 0.5 se puede apreciar como un algoritmo de complejidad O( 2" ) es capaz de resolver
un problema de tamafio 20 en 1 segundo, pero ya es completamente inutilizable para problemas de tamafio
50, puesto que se demoraria 35 afios buscando la solucion.

El caso limite de los problemas intratables son los problemas indecidibles. Esos son problemas para los
cuales no existe ningun algoritmo que los resuelva.

Complejidad 20 50 100 200 500 1000
1000n 0.02 seg 0.05 seg 0.1 seg 0.2 seg 0.5 seg 1 seg
1000nlogon 0.09 seg 0.3 seg 0.6 seg 1.5 seg 4.5 seg 10 seg
100n2 0.04 seg 0.25 seg 1 seg 4 seg 25 seg 2 min
10n3 0.02 seg 1 seg 10 seg 1 min 21 min 2.7 horas
n log2n 0.4 seg 1.1 horas 220 dias 125 siglos
on/3 0.001 seg 0.1 seg 2.7 horas | 3x1p4 siglos
on 1 seg 35 afios 3104 siglos
3" 58 min | 2*109 siglos

Fig. 0.5 - Estimativos de tiempo para resolver un problema de tamafo N [TAR91]

En el momento de calcular la complejidad de un algoritmo, se debe encontrar la funcién que mejor se ajuste al
crecimiento de Ta(n), y no simplemente una cota cualquiera. En particular, todo algoritmo O( n ) es a la vez

O(n?), y también es O( f(n ) ), para toda funcién f que crezca mas rapido que f(n ) = n.

Formalmente, se dice que:

Ta(n)esO(f(n)) (lacomplejidadde Aesf(n))ssi 3¢c,ng>0 | Vnxng,Ta(n)<cf(n)
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Esto implica que, para demostrar que un algoritmo tiene complejidad f(n), se debe buscar un punto ng sobre
el eje del tamario del problema, a partir del cual se pueda garantizar el acotamiento de Ta(n) por la funcién

f(n), ignorando los factores constantes de esta ultima (solo interesa la forma de la funcion y no su valor
exacto).

0.3.4. Aritmética en Notacion O

Para facilitar el calculo de la complejidad de un algoritmo es necesario desarrollar aritmética en notacion O,
de tal manera que sea posible dividir un algoritmo y, a partir del estudio de sus partes, establecer el calculo
global. Las siguientes demostraciones utilizan la definiciéon formal de complejidad. Mas importante que la
demostracién misma, es la interpretacién intuitiva que se puede hacer de los resultados.

Teorema 0.1:
SiTa(n)esO(kf(n))=Ta(n)tambiénes O(f(n)).

Este teorema expresa una de las bases del analisis de algoritmos: lo importante no es el valor exacto de la
funcién que acota el tiempo, sino su forma. Esto permite eliminar todos los factores constantes de la funcién
cota. Por ejemplo, un algoritmo que es O( 2n ) también es O( n ), puesto que ambas funciones tienen la
misma forma, aunque tienen diferente pendiente.

Demostracion:

SiTa(n)esO(kf(n))= dc,ng>0|Vvnxng,Ta(n)<ckf(n)
Altomar cq = c.k > 0 se tiene que
3cq,ng>0[Vnz2ngTa(n)<cqf(n)=
Ta(n)esO(f(n)) e

Teorema 0.2:
Si A1y A2 son algoritmos, tales que Taq(n)es O(f1(n) )y Tao(n)es O(f2(n)), el tiempo empleado en
ejecutarse A1 seguido de A2 es O( max(f1(n),f2(n))).

Esto quiere decir que si se tienen dos bloques de cédigo y se ejecuta uno después del otro, la complejidad del
programa resultante es igual a la complejidad del bloque mas costoso. Por esta razon, si hay una secuencia
de comandos O( 1 ), también esta secuencia tendra, en conjunto, complejidad constante. Pero si alguna de
sus instrucciones es O( n ), todo el programa sera O( n ).

Demostracion:
SiTaq(n)esO(fl(n))= 3 cq,nq >0|Vn2n1,,TA1(n)£c1.f1(n)
SiTao(n)esO(f2(n))= Jco,np>0|Vnxng, Tao(n)<cofo(n)
=>Ta(n)=Taq(n)+Tpao(n)<cqfy(n)+cofa(n), vn=>max(n1, n2)=
=Ta(n)< (cg+co)*max(fq(n),fo(n)), Vn=max(nl, n2)=

Al tomar: ng =max(nq,ny)>0

cg=(cq +co)>0, se tiene que:

3¢a,Ng>0|Vn=ngTa(n)<cgmax(fi(n), fo(n))

=Ta(n)esO(max(fl(n), f2(n))) e
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La demostracion se basa en la idea de que la suma de las funciones de tiempo T1 y T2, acotadas por f1 y f2
respectivamente, se puede acotar con una funcién de la misma forma que la cota que crezca mas rapido de
las dos.

Teorema 0.3:
Sea A1 un algoritmo que se repite itera(n) veces dentro de un ciclo, tal que itera(n) es O( f2(n) )y Taq(n ) es
O( f1(n) ). El tiempo de ejecucion del programa completo Ta(n ) =Taq(n ) *itera( n ) es O( f1(n) * f2(n)),
suponiendo que el tiempo de evaluacion de la condicién se encuentra incluido en el tiempo de ejecucion del
algoritmo A1.

Este resultado permite que, al analizar un ciclo, se puedan estudiar primero el cuerpo y la condicién, y
finalmente acotar el numero de iteraciones con una funcién conocida, de manera que la unién de estos
resultados sea sencilla.

Demostracion:
SiTaq(n)esO(fl(n))= J3cq,nq >0V n>ngTaq(n)<cqfq(n)
Siitera(n)es O(f2(n))=  3cp,np>0|Vn2nyitera(n)<cpfa(n)

=Ta(n)=Tpaq(n)*itera(n)<cqfy(n)*cofo(n), Vn=max(ni,n2)=
=Ta(n) <(cq*co)*fq(n)*fo(n)=
Al tomar: ng =max(nq,ny)>0
co=(cq*cp)>0, setiene que:
3cg,Ng>0[Vn=ngTa(n)<cyfi(n)fo(n)
=Ta(n)esO(fI(n)*f2(n)) &

0.3.5. Ejemplos
En los siguientes ejemplos se ilustra la manera de calcular la complejidad de un algoritmo, utilizando los

resultados obtenidos en la seccion anterior. Los ejemplos van de lo elemental a lo complejo, y por esta razén
es conveniente seguirlos en orden.

Ejemplo 0.28:
Calcular la complejidad de la asignacion var = 5.

Este programa es O(1), porque una asignacion que no tiene llamadas a funciones se ejecuta en un tiempo
constante, sin depender del nimero de datos del problema. Si Tk es el tiempo que toma la asignacién

(expresado en cualquier unidad de tiempo), TA( n ) es O( Tk ) puesto que se puede acotar con una funcién
constante con ese mismo valor:
TA(n)‘k

Tk

10 20 30 40 n

De acuerdo con el teorema 0.1., si TA(n ) es O( Tk ) =TA(n ) también es O( 1).

J
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Ejemplo 0.29:

Calcular la complejidad del programa:

J

>

1
2;
3

N < >
Il

>

La complejidad de cada asignacion es O( 1 ), segun se mostré en el ejemplo anterior. De acuerdo con el
teorema 0.2., se puede concluir que TA( n ) es O( max( 1,1,1) ), es decir O( 1 ). Intuitivamente se puede
establecer esta misma respuesta, al verificar que el nimero de asignaciones no depende del tamario del
problema que se quiere resolver.

Ejemplo 0.30:

Calcular la complejidad del programa x = abs(y ), donde abs( ) es una funcion con el siguiente codigo:

J

float abs( float n )

{if(n<0)
return -n;
else
return n;
H

Primero, se debe calcular la complejidad de la funcidn, ya que la asignacioén va a tener la complejidad de la
llamada.

El tiempo de ejecucion de la instruccion if se puede acotar con el tiempo de evaluacion de la condicion
mas el tiempo de ejecucion del subprograma méas demorado de los dos asociados con la estructura
condicional.

Taps( N) < Teond + Max( Treturns Treturn ) < Tcond + Treturn

Ahora, la condiciéon (n <0 ) es O( 1) porque toma un tiempo constante ejecutarla. Lo mismo sucede con la
instruccion return. Entonces,

Tapbs(n)es O(max(1,1))=0(1)

Esto hace que la asignacion x = abs(y ) seaasuvez O(1).

Ejemplo 0.31:

Calcular la complejidad del programa x = fact( n ), si la funcién fact viene dada por el siguiente cédigo:

int fact( int num )

{ inti, acum;
1i=0;
acum = 1;
while (1 <num )
{ it+;

acum *=1i;

H

return acum;
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Para calcular la complejidad de un algoritmo se suele comenzar de arriba hacia abajo y de adentro hacia
afuera (en el caso de ciclos).

El subprograma:

i=0;
acum = 1;

es O( 1) lo mismo que la instruccion:
return acum;

Para calcular la complejidad del ciclo se comienza por evaluar la complejidad del subprograma asociado,
incluyendo la evaluacion de la condicion.

while (1 <num )
{ i+t
acum *=i;

}

Tanto la comparaciéon como las dos asignaciones son O( 1 ). Ahora, se busca una funcién que acote el
numero de iteraciones del ciclo. En este caso, podemos escoger f( num ) = num, puesto que éste nunca se
va a ejecutar mas de num veces.

Esto hace que:

Twhile( NUM ) sea O(num * 1) =0O( num)

Y la complejidad de toda la funcién:

Ttact( nUM ) es O( max( 1, num, 1)) =0O( num)

En todos los casos, la complejidad de una funcién debe quedar en términos de sus parametros de entrada,
puesto que son los que definen el tamario del problema.

El programa x = fact(n ) es O( n ), porque ese es el costo de evaluar la parte derecha de la asignacion.

J

Ejemplo 0.32:
Calcular la complejidad del siguiente programa:

for (1=0;1<9;it++)
a[i]=0;

La complejidad del ciclo es O(1), porque equivale a 9 asignaciones y siempre va a tomar un tiempo
constante. Note que este programa se podria reescribir como:

a[0]=0;
a[1]=0;
a[2]=0;
a[3]=0;
a[4]=0;
a[5]=0;
a[6]=0;
a[ 7]1=0;
a[8]=0;

Y por lo visto en ejemplos anteriores es O( 1).
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Ejemplo 0.33:

Calcular la complejidad del siguiente procedimiento, que inicializa un vector de tamario tam.

void inic( int a[ ], int tam )
{ inti;
for (i=0;1<tam; i++)
a[1]=0;
H

En este caso la rutina es O( tam ), porque el tiempo de ejecucion va a depender, de manera proporcional,
del tamario del vector. Es importante apreciar la diferencia entre este ejemplo y el anterior, que a primera
vista pueden parecer semejantes. En este ejemplo el nUmero de asignaciones no es fijo, y el tiempo que
va a demorar en ejecutarse la rutina va a depender del tamafio del vector que se debe inicializar. Si el
tamafo es N, se va a demorar T segundos, mientras que si es 2N se va a gastar 2T segundos.

J

Ejemplo 0.34:

Calcular la complejidad del siguiente programa, que suma dos matrices matl y mat2 de dimensién N*M y deja
el resultado en una tercera matriz mat3 de las mismas dimensiones:

for (i=0;1<N;it+)
for (k=0; k <M; k++)
mat3[i][k]=matl[i][ k [+ mat2[i][ k];

El ciclo interno es O( M ), porque la asignacion es O( 1 ) y se repite M veces. Puesto que el ciclo exterior
se repite N veces, el programa completo es O( N*M ).

J

Ejemplo 0.35:
Establecer la complejidad de un procedimiento que calcula e imprime la longitud de una lista encadenada:

void impLongitud( struct Nodo* cab )

{ intcont;
struct Nodo *p;
cont = 0;
for (p = cab; p !=NULL; p = p->sig )
cont ++;
printf( "%d", cont );
H

El tiempo de ejecucion de este algoritmo es O( n ), donde n es el niumero de elementos presentes en la
lista encadenada. Note que, en este caso, la complejidad se da en funcién de un valor implicito en un
parametro de entrada. Para este calculo, suponemos que todas las operaciones de entrada/salida se
ejecutan en tiempo constante.

J

Ejemplo 0.36:

Calcular la complejidad de una rutina que ordena un vector de tamafio N. La rutina se encuentra apoyada por
un funcién que retorna el menor elemento de un vector a partir de una posicién dada:
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void ordenar( int vec[ ])
{ inti, temp, pos;
for(i=0;i<N-1;it++)
{  pos =posMenor( vec,1i);
temp = vec[ i ];
vec[ 1] = vec[ pos ];
vec[ pos | = temp;

}

int posMenor( int vec[ ], int desde )
{ int1i, menor;
menor = desde;
for (i=desde + 1;1<N;i++)
if (vec[ 1] <vec[ menor | )
menor = i,
return menor;

}

TposMenor €8 O( N ), porque en el peor de los casos el parametro de entrada desde vale 0, y debe recorrer

todo el vector buscando el menor elemento. Torgenar, POr su parte, es O( N2 ), puesto que repite N veces la
llamada de la otra funcion.

J

Ejemplo 0.37:

La busqueda binaria es un proceso muy eficiente para localizar un elemento en un vector ordenado. En cada
iteracion, el algoritmo compara el valor que esta buscando con el elemento que se encuentra en la mitad del
vector, y, basado en si el elemento es menor o mayor, descarta la otra mitad de los valores, antes de
continuar el proceso de busqueda bajo el mismo esquema. El codigo de dicha rutina es el siguiente:

int busquedaBinaria( int vec[ ], int elem, int dim )
{ int desde = 0;
int hasta = dim - 1;
int mitad;
while( desde <= hasta )
{  if( vec[ mitad = (desde + hasta+1)/2 ]==clem )
return TRUE;
if( vec[ mitad ] > elem )
hasta = mitad - 1;
else
desde = mitad + 1;
H
return FALSE;

}

Puesto que el cuerpo del ciclo es evidentemente O( 1), el problema se reduce a encontrar una funcién que
acote el numero de iteraciones del ciclo. La primera posibilidad es utilizar la funcién f( dim ) = dim (donde
dim es el tamafio del vector), puesto que nunca va a entrar mas de dim veces al ciclo. Pero, dado que en
cada iteracion se reduce a la mitad el tamafo del problema, es mejor, como cota del numero de

iteraciones, una funcién f( dim ), que cumpla que 2f(dim ) = gim (v.g. 2 al numero de iteraciones es igual al
tamafo del vector). Despejando de alli la funcion, se obtiene que la complejidad de la busqueda binaria es
O(logodim).
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Este algoritmo resulta tan eficiente, que encontrar un valor en un vector de 25.000 elementos requiere
solamente 15 comparaciones.

J

0.3.6. Complejidad en Espacio

La misma idea que se utiliza para medir la complejidad en tiempo de un algoritmo se utiliza para medir su
complejidad en espacio. Decir que un programa es O( N ) en espacio significa que sus requerimientos de
memoria aumentan proporcionalmente con el tamafio del problema. Esto es, si el problema se duplica, se

necesita el doble de memoria. Del mismo modo, para un programa de complejidad O( N2 ) en espacio, la
cantidad de memoria que se necesita para almacenar los datos crece con el cuadrado del tamafo del
problema: si el problema se duplica, se requiere cuatro veces mas memoria. En general, el calculo de la
complejidad en espacio de un algoritmo es un proceso sencillo que se realiza mediante el estudio de las
estructuras de datos y su relacion con el tamafio del problema.

El problema de eficiencia de un programa se puede plantear como un compromiso entre el tiempo y el
espacio utilizados. En general, al aumentar el espacio utilizado para almacenar la informacién, se puede
conseguir un mejor desempefo, y, entre mas compactas sean las estructuras de datos, menos veloces
resultan los algoritmos. Lo mismo sucede con el tipo de estructura de datos que utilice un programa, puesto
que cada una de ellas lleva implicitas unas limitaciones de eficiencia para sus operaciones basicas de
administracion. Por eso, la etapa de disefio es tan importante dentro del proceso de construccion de software,
ya que va a determinar en muchos aspectos la calidad del producto obtenido.

0.3.7. Seleccion de un Algoritmo

La escogencia de un algoritmo para resolver un problema es un proceso en el que se deben tener en cuenta
muchos factores, entre los cuales se pueden nombrar los siguientes:

e La complejidad en tiempo del algoritmo. Es una primera medida de la calidad de una rutina, y establece
su comportamiento cuando el numero de datos que debe procesar es muy grande. Es importante tenerla
en cuenta, pero no es el unico factor que se debe considerar.

e La complejidad en espacio del algoritmo. Es una medida de la cantidad de espacio que necesita la rutina
para representar la informacion. Sélo cuando esta complejidad resulta razonable es posible utilizar este
algoritmo con seguridad. Si las necesidades de memoria crecen desmesuradamente con respecto al
tamano del problema, el rango de utilidad del algoritmo es bajo y se debe descartar.

e La dificultad de implementar el algoritmo. En algunos casos el algoritmo 6ptimo puede resultar tan dificil
de implementar, que no se justifique desarrollarlo para la aplicacién que se le va a dar a la rutina. Si su
uso es bajo o no es una operacion critica del programa que se esta escribiendo, puede resultar mejor
adoptar un algoritmo sencillo y facil de implementar, aunque no sea el mejor de todos.

e El tamafio del problema que se va a resolver. Si se debe trabajar sobre un problema de tamafo pequefio
(v.g. procesar 20 datos), da practicamente lo mismo cualquier rutina y cualquier estructura de datos para
representar la informacién. No vale la pena complicarse demasiado y es conveniente seleccionar el
algoritmo mas facil de implementar o el que menos recursos utilice.

e El valor de la constante asociada con la funcion de complejidad. Si hay dos algoritmos A1 y A2 de
complejidad O( f( n ) ), el estudio de la funcion cota debe hacerse de una manera mas profunda y precisa
en ambos casos, para tratar de establecer la que tenga una menor constante. Las diferencias en tiempo
de ejecucion de dos rutinas con la misma complejidad pueden ser muy grandes, como se muestra en la
figura 0.6. Ademas, este es un factor que se puede ajustar en la implementacion del algoritmo, lo cual
hace que la calidad de la programacién del algoritmo deba ser tenida en cuenta.
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[ T(n)

8
4
2n
"
—n

Fig. 0.6 - Funciones cota con diferentes constantes asociadas

e El rango de tamarfios del problema en el cual debe trabajar eficientemente el algoritmo. Para cierto

numero de datos, un algoritmo de complejidad O( n2 ) puede ser mas eficiente que uno de complejidad O(
n ), o incluso que uno O( 1), como se sugiere en la figura 0.7. Por eso se debe determinar el rango de
datos para el cual se espera que el algoritmo sea eficiente.

T(n)
O(n*n)

4 o(n)

Fig. 0.7 - Comparacion de varias funciones para valores pequefios de un problema

0.3.8. Complejidad de Rutinas Recursivas

Antes de comenzar esta seccién, vale la pena advertir que el calculo de la complejidad de una funcién
recursiva puede resultar, en algunos casos, un problema matematico dificil de resolver. Para los problemas
sencillos, como los presentados a través de ejemplos en esta parte, la solucion matematica exacta es trivial. A
lo largo del libro, cuando se haga el calculo de la complejidad de una funcién recursiva cuya deduccién no sea
simple, se hara una presentacion intuitiva del resultado, en lugar de una demostraciéon formal.

Para las rutina iterativas, la solucién planteada consistia basicamente en encontrar una funcion cota para el
tiempo de ejecucion T( n ), mediante el estudio estructural del algoritmo. Ahora, el problema radica en que
dicha funcién de tiempo se encuentra definida en términos de si misma, y ya no es posible hacer una
descomposicion para estudiar el algoritmo, sino se hace necesaria la solucion de una ecuaciéon de
recurrencia.

En los siguientes ejemplos se ilustra el proceso:
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Ejemplo 0.38:

Calcular la complejidad de la funcién factorial:

J

int factorial( int num )
{ if(num==0)
return 1;
else
return num * factorial( num - 1 );

}

La funcion de tiempo de ejecucidon T( num ), se puede plantear mediante la siguiente ecuacion de
recurrencia:

T(num) Tk, num=20
u =
Tk + T(num—-1), num>0

En ella aparece expresado que si num vale cero, la funcién toma un tiempo constante en calcular la
respuesta. Si el parametro num tiene un valor mayor que cero, el tiempo total viene definido como la suma
del tiempo de calcular el factorial de num-1, mas un tiempo constante, correspondiente a la multiplicacion y
al retorno de la respuesta.

La solucion de dicha ecuacién se puede hacer mediante la expansién simple de la recurrencia, como se
muestra a continuacion:

T(num) =Tk + T(num-1)
=T+ T+ T(num-2)
Tk + Tk + Tk + T( num-3 )

num* T +T(0)
Tk *(num+1)

De alli se puede concluir que T( num ) es O( num+1 ) = T( num ) es O( num ).

Ejemplo 0.39:

Calcular la complejidad de una funcién recursiva que cuente el nimero de elementos que tienen en comun
dos listas encadenadas no ordenadas, sin elementos repetidos:

int num( struct Nodo *1stl, struct Nodo *Ist2 )
{ if(1stl ==NULL)
return 0;
else if( esta( Ist2, Ist1->info )
return 1 + num( Ist1->sig, 1st2 );
else
return num( Ist1->sig, Ist2 );

}

Esta funcion utiliza una segunda rutina recursiva que informa si un elemento se encuentra en una lista
encadenada, cuyo codigo es:
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int esta( struct Nodo *1st, int elem )
{ if(1st==NULL)
return FALSE;
else if( Ist->info == elem )
return TRUE;
else
return esta( Ist->sig, elem );

}

Primero se calcula la complejidad de la segunda funcién. Para ésta, la ecuacion de recurrencia es:
1 n=0

Testa(n) =
estal) = | Testa(n—1), n>0

Por las siguientes razones:

e El parametro n corresponde al nimero de nodos de la lista, y define el tamafio del problema, de
manera que la ecuacion de recurrencia debe estar definida en términos suyos.

e El tiempo de ejecucion que interesa medir es el del peor de los casos, y éste corresponde a la
situacion en la cual el elemento no aparece en la lista. Esto implica que sélo se utiliza la primera salida
de la recursién.

e Enlugar de la constante Ty se utiliza el valor 1, porque segun se pudo apreciar en el ejemplo anterior,
el valor de dicha constante es intrascendente para el resultado final.

La solucion se obtiene por expansion simple de la recurrencia, como en el ejemplo anterior, y se llega a
que Tggtg(n)es O(n).

Para la funcion num, la ecuacién de recurrencia para el tiempo de ejecucién en el peor de los casos es:
1, n1=0

T 1n2)=
num(n1,n2) Testa(n2)+1+ Tnum(n1-1,n2), n1>0

Donde n1 es el numero de nodos de Ist1 y n2 es el numero de nodos de Ist2. La solucidn de esta ecuacion
lleva a lo siguiente:

T.um(N1,Nn2) =T

num

(n2)+1 +Tnum(n1-1, n2)

esta

Testa(N2)+1+T n2)+1+T n1-2,n2)

esta( num(

=n1 " (Tega(n2)+1)+T,n(0,n2)

=n1* (Toga(n2)+1)+1

esta

Puesto que T,g,( N2 ) es O(n2 ), se obtiene que T n1,n2)es O(n1*n2).

num(
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Ejemplo 0.40:
Calcular la complejidad de la implementacién recursiva de la busqueda binaria.

int busqueda( int vec|[ ], int elem, int limiteInf, int limiteSup )
{ int medio;
if ( limiteInf > limiteSup )
return FALSE;
else if ( vec[ medio = ( limiteInf + limiteSup + 1) /2 ] ==clem )
return TRUE;
else if ( elem < vec[ medio ])
return busqueda( vec, elem, limiteIlnf, medio-1 );
else
return busqueda( vec, elem, medio+1, limiteSup );

}
La ecuacion de recurrencia resultante es:

1, n<1
T(n)=
1+T(n/2), n>1

Por las siguientes razones:

o El tamano del problema corresponde al nimero de elementos entre las marcas de limiteInf y limiteSup.
Dicho valor se denomina en este caso n. Cuando sélo queda un elemento en ese rango, o el rango sea
vacio, utiliza la primera salida de la recursion.

o La segunda salida se puede ignorar, porque en el peor de los casos nunca la utiliza.

e Los dos avances de la recursion disminuyen a la mitad el tamafio del problema, y, sin importar cual de
los dos utilice, va a gastar el mismo tiempo.

Al resolver la ecuacion de recurrencia por simple expansion se obtiene:
T(n) =1+T(n/2)

=1+1+T(n/4)
1+1+1+T(n/8)

=logon*1+T(n/n) (suponiendo que n es potencia de 2)

=logon + 1

Por lo tanto, T(n ) es O(logon )
9y

Ejercicios Propuestos

0.57. Desarrollar una rutina iterativa, de complejidad O(N), que lea una lista encadenada. N es el numero de
elementos leidos.

0.58. Calcular la complejidad de un programa que multiplique dos matrices cuadradas.

0.59. Calcular la complejidad del siguiente procedimiento, teniendo en cuenta que n es un entero positivo:
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void proc( intn )

{ int i, k;
1=1;
while (i<=n)
{ k=i
while (k<=n)
k+-+;
k=1,
while (k<=1)
k++;
i++;
H
H
0.60. Calcular la complejidad del siguiente algoritmo, teniendo en cuenta que num es una potencia de 2 (v.g.
2,4,8,16,...):
void proc( int num )
{ inti
1=2;
while (1 <num )
1*=2;
H

0.61. Calcular la complejidad del siguiente algoritmo, sabiendo que val es un entero positivo:

void proc( int val )

{ intik, t
1=1;
while (i <=val - 1)
{ k=i+1;
while (k <= val)
{ t=1
while (t <= k)
t++;
k+-+;
;
1++;
H
H

0.62. Calcular la complejidad del siguiente procedimiento, sabiendo que n es un entero positivo:

void proc( intn )

{ inti=1,k;
while (i<=n)
{ k=n-i
while (k>=1)
k=k/5;
i++;
§
i
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0.63.

0.64.

0.65.

0.66.

0.67.

Calcular la complejidad de los algoritmos que resuelven los ejercicios propuestos de todas las
secciones anteriores.

SeaP(n)=agp+aqn+ azn2 + ... + apn™, un polinomio de grado m. Demostrar que si un algoritmo A
tiene complejidad O( P( n ) ), entonces también es O( n™M ).

Implementar un algoritmo de multiplicacion de matrices. Graficar la curva de tiempo de ejecucion

para matrices de diferentes tamafios. Comparar los resultados obtenidos con los tedricos.

Implementar el algoritmo de busqueda binaria, de manera recursiva e iterativa. Construir una grafica
de tiempos de ejecucién para el peor de los casos, en la cual se pueda apreciar la complejidad
logaritmica. Utilizar esta grafica para calcular el sobrecosto que tiene en términos de la constante, una
rutina recursiva sobre una rutina iterativa.

Considere el siguiente problema: rotar k posiciones los elementos de un vector de N casillas. Rotar
una posicion significa desplazar todos los elementos una posicién hacia la izquierda y pasar a la ultima
posicion el que antes se encontraba de primero. Desarrolle dos rutinas que lo resuelvan, de manera
que una tenga complejidad O(N) y la otra O(N*k). Impleméntelas y grafique el tiempo de ejecucion a
medida que crecen N y k.
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CAPITULO 1
DISENO DE SOFTWARE Y TIPOS ABSTRACTOS

El objetivo de este capitulo es enmarcar el disefio de estructuras de datos dentro del proceso completo de
produccion de soffware. Para esto se muestra una metodologia de disefio a varios niveles: el primero, a nivel
de Tipos Abstractos (TAD), en el cual se define la arquitectura global de un programa a partir del enunciado
del problema, y el segundo, a nivel de disefio e implementacién de estructuras de datos al interior de cada
TAD. La metodologia presentada incluye el analisis de algoritmos, visto en el capitulo anterior, como uno de
los mecanismos de evaluacion de disefos.

1.1. Ingenieria de Software

El propésito de la ingenieria de software es permitir al disefiador enfrentar el problema de construccién de
software como un problema de ingenieria, con guias y principios concretos, al igual que con herramientas de
evaluacién y validacion. Ultimamente, se le ha dado especial importancia al estudio de este tema, dados los
enormes costos de desarrollo de los sistemas informaticos y la forma vertiginosa como se multiplica su
demanda.

1.1.1. Ciclo de Vida del Software

El ciclo de vida del software se suele representar mediante un modelo de cascada (Figura 1.1), en el cual,
en cada etapa, se cumplen unos ciertos objetivos, para lograr obtener como producto un programa que
satisfaga los requerimientos del usuario y cumpla con ciertos estandares de calidad.

Analisis _l
Disefio
Desarrollo
Implementacion j

Mantenimiento Mantenimiento

Fig. 1.1 - Ciclo de vida del software
El ciclo de vida de un programa se divide en dos partes: el desarrollo, que cubre las etapas de analisis,

disefio e implementacion, y el mantenimiento, en la cual se modifica el software para que continte
satisfaciendo los requerimientos del usuario durante la vida util de una aplicacion.
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Las tres etapas de la fase de desarrollo, antes mencionadas, tienen el siguiente proposito:

e Analisis: el ingeniero debe entender a fondo el problema al cual se enfrenta, conseguir la informacién
pertinente al mundo en el cual ocurre el problema, estructurar esta informacion, validarla y crear a partir
de ella un modelo que refleje todo este conocimiento.

o Disefio: en esta etapa se estructura el programa que va a resolver el problema y se toman las decisiones
de como representar la informacion, como dividir los procesos, como comunicarlos, etc.

e Implementacion: en esta ultima etapa, se parte del disefo detallado del software y se escribe el programa
correspondiente, expresando todos los elementos del disefio en un lenguaje de programacion.

Al interior del ciclo de vida, la relacion de costos entre las etapas de desarrollo y mantenimiento suele ser del
orden de 30% - 70% (Figura 1.2), lo cual da una idea de por qué puede resultar tan costoso para un
departamento de sistemas mantener en funcionamiento el software de una organizacion.

Mantenimiento

0,
Desarrollo e

30%

Fig. 1.2 - Costos comparativos de desarrollo y mantenimiento

1.1.2. Software de Alta Calidad

La calidad del software se mide a través de algunos factores que se pueden dividir en externos e internos.
Los externos son los que ve el usuario final del software, como son la eficiencia, la correccion, la facilidad de
uso, etc., indispensables en cualquier solucion. Los factores internos de calidad son aquellos que vienen
dados por la estructura misma del codigo, y solo los ve el ingeniero de software. Entre otros, se pueden
mencionar la documentacion, la claridad del cédigo, la modularidad, etc. Pero, considerando los grandes
problemas y costos asociados con el mantenimiento, se puede afirmar que el principal factor de calidad
interna de un programa es la facilidad que éste tiene para evolucionar, lo cual esta fuertemente relacionado
con su arquitectura interna. A esta caracteristica del soffware se le denomina extensibilidad.

Los cambios en el soffware se pueden clasificar en tres grupos:

e Correcciones al programa: estas modificaciones son causadas por errores en el desarrollo, tanto a nivel
de disefio como de implementacion.

e Cambios en los requerimientos del usuario: a medida que la organizaciéon para la cual fue escrito el
software evoluciona, las necesidades de los usuarios hacia los sistemas informaticos de apoyo van
cambiando, y eso se debe reflejar en las posibilidades que ofrecen las aplicaciones.

e Evolucion del mundo del problema: estas modificaciones responden a cambios en los elementos del
mundo que participan en el problema, en sus relaciones, en las reglas de validez, etc. Son cambios muy
frecuentes, con serias repercusiones sobre la estructura del software.

La misma vida util de un programa esta relacionada con su estructura y su extensibilidad. Si se define la
entropia del soffware como el nivel de desorden interno que éste tiene, y se acepta que todo mantenimiento
tiende a aumentarlo, en la figura 1.3 se ilustra como la vida Util de un programa esta limitada por un umbral de
entropia por encima del cual no es rentable seguir manteniendo el software, y que éste se alcanza mas o
menos cerca en el tiempo dependiendo de la entropia inicial.

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 41

Programa-1 Programa-2

/

Fig. 1.3 - Vida util del software en funcién de la estructura inicial

Entropia del software

Tiempo

Por todas estas razones, las metodologias de disefio de software no se deben contentar con garantizar
correccidon o eficiencia en su producto, sino que, ademas de esto, deben generar un programa con una
arquitectura interna que garantice una facil evolucion.

1.1.3. Arquitectura del Software

Una arquitectura que facilite la extensibilidad debe separar desde un comienzo toda la parte de
requerimientos del usuario (interfaz), de la solucién misma del problema (algoritmica de la aplicacién), como
se muestra en la figura 1.4.

Modelo del mundo
Interfaz

del problema

Fig. 1.4 - Separacion entre la interfaz y el resto de la aplicacion

La interfaz de un programa es la parte encargada de mantener el didlogo con el usuario, mientras va
haciendo las llamadas adecuadas a las rutinas de la aplicacion. Existen interfaces graficas y alfanuméricas,
segun la manera como el usuario expresa sus comandos y como la aplicacion le presenta la situacién actual
del problema que esta resolviendo. Lo ideal es que el usuario pueda trabajar sobre elementos graficos de
interaccion que pueda relacionar faciimente con elementos de su mundo.

En el segundo mddulo de la aplicacién, denominado el modelo del mundo, esta contenida toda la algoritmica
del programa. La metodologia de disefio de software, planteada en este capitulo, se restringe al disefio de
esta parte de la aplicacion, olvidando todo lo referente a la interfaz.

Para garantizar la extensibilidad del software, éste debe estar estructurado de tal manera que resulte sencillo
localizar los puntos del programa que son afectados por un cambio en el mundo del problema. Ademas, debe
asegurar que cualquier modificacidon que se haga tenga minimas repercusiones sobre el resto del software.
Esto hace que el disefio sea un proceso que exige una gran disciplina de parte del ingeniero, y en el cual,
cualquier error que se cometa, comprometera seriamente la calidad del producto obtenido. En el programa
deben quedar situados y relacionados todos sus componentes de manera adecuada y solida: disefar es una
labor de ingenieria y no un proceso puramente intuitivo.
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Pensando en esto, las metodologias modernas de disefio de soffware incluyen nuevos elementos
estructuradores, diferentes de los datos y los procesos, que van a convertirse en las unidades de disefio y
mantenimiento de las aplicaciones. Cada unidad de estas se denomina un Tipo Abstracto de Dato (TAD).
Asi, la concepcion de las estructuras de datos y el papel que juegan en la metodologia de disefio se modifica
radicalmente. Si se pretendiera reescribir la clasica ecuacion de Wirth:

Programa = Datos + Algoritmos
Con este nuevo enfoque, se llegaria a algo del estilo:
Programa = { TAD } + Interfaz.
En la seccién 1.2 se hace una presentacion formal del concepto de tipo abstracto. Por ahora, solo se

enuncian algunas ideas sobre la forma como un conjunto de TAD van a conformar el modelo del mundo:

e Un TAD es un ente cerrado y autosuficiente, que no requiere de un contexto especifico para que pueda
ser utilizado en un programa. Esto garantiza portabilidad y reutilizacion del software, y minimiza los
efectos de borde que puede producir un cambio al interior de un TAD. Esta propiedad se denomina
encapsulamiento.

e Cada elemento del mundo que participa en el problema va a tener un representante dentro del software
que simule su operacién. Cada uno de estos trozos de software se va a denominar un Tipo Abstracto de
Dato, e, internamente, corresponde a una composicién de datos y rutinas.

Elemento del mundo Objeto abstracto

Modelaje Datos

»
»

Rutinas

Fig. 1.5 - Relacién elemento del mundo - objeto abstracto

e En el fondo, un programa va a estar compuesto por un conjunto de TAD, cada uno representando un tipo
de elemento del mundo, estructurados y relacionados igual a como estan estructurados y relacionados
estos mismos elementos en el mundo del problema.

e Si el mundo cambia y el software debe evolucionar, la localizacion dentro del software del lugar que debe
ser modificado resulta trivial, y el tamafio de la modificacion, proporcional al cambio en el mundo. Se
evitan efectos de borde indeseables y dependencias entre partes del programa.

Ejemplo 1.0:
Suponga que se va a desarrollar un programa para administrar la informacién de una biblioteca.

Puesto que alli hay elementos como ficheros, usuarios, libros, etc., que participan en el problema, en el
software existira un TAD que represente y simule la operacién de cada uno de ellos: el TAD Fichero, el
TAD Usuario y el TAD Libro. Estos TAD estaran relacionados dentro del programa, de la misma manera
como los elementos que modelan estan relacionados en la biblioteca: un elemento del TAD Usuario puede
tener en préstamo un elemento del TAD Libro, los elementos del TAD Fichero tienen elementos del TAD
Ficha, que representan libros de la biblioteca, etc.

No existira un TAD Pared, puesto que no participa en el problema, asi haga parte de la biblioteca (a menos,

claro estd, que se trate de un sistema de disefo arquitectonico, en el cual las paredes sean los elementos
de base.
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1.1.4. Reutilizacion de Software: Genericidad

Ademas de la facilidad de mantenimiento, es importante que la metodologia simplifique el proceso de
creacion de software. Uno de los principales mecanismos con que se cuenta para esto es la reutilizacion de
software mediante la genericidad, que se basa en patrones de software aplicables a distintos tipos de dato.
Por ejemplo, el codigo de una rutina es igual para ordenar un vector de enteros, que para ordenar un vector
de elementos graficos, de manera que con un solo patrén de rutina es posible resolver ambos problemas.

Un TAD genérico es un patron de Tipo Abstracto en el cual se parametrizan algunas de sus caracteristicas,
de tal forma que todos los elementos del mundo que se puedan modelar como variantes del mismo TAD, solo
requieran un TAD de soporte, con el consecuente ahorro en disefio e implementacion. El caso mas comun de
TAD genérico es el TAD contenedor, cuya mision es agrupar y relacionar elementos de otros tipos. En esos
casos, es posible definir un TAD contenedor en abstracto, sin necesidad de comprometerse con el tipo de los
elementos que va a manejar. Por ejemplo, es posible disefiar el TAD Lista sin necesidad de restringir el tipo
de los elementos que almacena, colocando dicho tipo como parametro del tipo abstracto.

Esta forma de reutilizacion tiene multiples ventajas. Es posible adquirir soluciones genéricas implementadas
(existen grandes bibliotecas de TAD de soporte), y utilizarlas en cualquier problema que lo requiera. Esto ha
demostrado que disminuye considerablemente el tiempo de desarrollo.

Los TAD genéricos y las rutinas genéricas tienen una implementacion sencilla en lenguajes como C++
(templates), pero, en lenguajes como C, es necesario simularlos mediante algin mecanismo, que no siempre
resulta sencillo.

1.2. Tipos Abstractos de Datos

A partir del contexto dado en la seccion anterior, en esta parte se formaliza la nocion de Tipo Abstracto (TAD)
y se da notacién para expresar un diseno.

1.2.1. Motivacién y Definiciones

Informalmente, se puede decir que un TAD es un tipo de dato, que se agrega al lenguaje de programacion,
para representar un tipo de elemento involucrado en el problema que se quiere resolver. De esta forma se
hace que el lenguaje se acerque al mundo del problema, manejando los elementos que alli se encuentran.
Por ejemplo, si se va a desarrollar software para la administraciéon de notas de una universidad, los TAD
Curso, Estudiante, Nota, Lista, etc., van a permitir expresar la solucion de cualquier problema planteado, en
términos mas sencillos, mas faciles de mantener y de probar.

Desde un punto de vista mas formal, se define un TAD como una estructura algebraica compuesta por un
conjunto de objetos abstractos, que modelan elementos del mundo, y un conjunto de operaciones para su
manipulacion, las cuales simulan el comportamiento que el elemento modelado tiene en el mundo del
problema.

Se denomina un cliente de un TAD a toda rutina que utilice un objeto de dicho tipo. En particular, un TAD T1
es cliente de un TAD T2 si alguna operacion de T1 es cliente de T2.

1.2.2. Representacion de un Objeto Abstracto
En el momento de comenzar el disefio de un TAD es necesario tener una representacion abstracta del objeto

sobre el cual se quiere trabajar, sin necesidad de establecer un compromiso con ninguna estructura de datos
concreta, ni con ningun tipo de dato del lenguaje de programacion seleccionado. Esto va a permitir expresar
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las condiciones, relaciones, restricciones y operaciones de los elementos modelados, sin necesidad de
restringirse a una representacion interna concreta.

Para esto, lo primero que se hace es dar nombre y estructura a los elementos a través de los cuales se puede
modelar el estado interno de un objeto abstracto, utilizando algun formalismo matematico o grafico.

Ejemplo 1.1:

Para el TAD Matriz, una manera grafica de representar el objeto abstracto sobre el cual se va a trabajar es la
siguiente:

0 [ M-1

N-1

Con esta notacion es posible hablar de cada uno de los componentes de una matriz, de sus dimensiones,
de la nocion de fila y columna, de la relacion de vecindad entre elementos, etc., sin necesidad de
establecer unas estructuras de datos concretas para manejarlas.

J

Ejemplo 1.2:

Para el TAD Diccionario, en el cual cada palabra tiene uno a mas significados asociados, el objeto abstracto
se puede representar mediante el siguiente formalismo:

palabra: String
<elem-1 , ..., elem-N > elem-i

< sig-1, ..., sig-k >
Asi, se define claramente su estructura general, dandole nombre a cada una de sus partes y relacionando
las palabras con sus significados. En este caso, se utiliza la notacion < ... > para expresar multiples
repeticiones y el simbolo de bifurcacién para mostrar composicién.
Otra manera de definir el mismo objeto abstracto podria ser la siguiente:

<[palabras, <s44, ..., 84 >1, ..., [ palabray, < sy1q, .--» Snie > 1>
p 1 11 1k p N N1 Nk

Incluso, podria pensarse en la siguiente representacion grafica:

palabra-1| s-11, ..., s-1k

palabra-N| s-N1, ..., s-Nk

Lo importante en todos los casos, es que los componentes del objeto abstracto sean referenciables, y que
su estructura global se haga explicita.

J
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Ejemplo 1.3:
Existen objetos abstractos con una representacion grafica natural. Los siguientes son algunos ejemplos:
Conjunto {x1, .., XN }
Cadena de caracteres "c1Co...cN"
Vector |° | ! | | |N1|
Polinomio Co+CqX+Co X2 + +cN xN
Red x3
x5
x1 x6
x2
x4
Lista < X1, X2, <.y XN 2
Poligono y p1 p2
p8
b6 e
p5 p4 .
J
Ejemplo 1.4:

Algunos elementos del mundo se pueden modelar como una composicién de atributos, los cuales
representan las caracteristicas importantes del objeto abstracto, en términos de otros elementos del mundo.
En el caso de una biblioteca, se puede tener el siguiente formalismo:

fichero1: FicheroAutor
Biblioteca— fichero2: FicheroTitulo
libros: Bodega
Los atributos corresponden a objetos abstractos de los TAD FicheroAutor, FicheroTitulo y Bodega. En ese
caso se dice que la Biblioteca es un cliente de dichos TAD. Por claridad en la notacién, los nombres de los
TAD se colocan en mayusculas, mientras los nombres de los atributos tienen las caracteristicas de

cualquier variable.

J

1.2.3. El Invariante de un TAD
El invariante de un TAD establece una nocién de validez para cada uno de sus objetos abstractos, en

términos de condiciones sobre su estructura interna y sus componentes. Esto es, indica en qué casos un
objeto abstracto modela un elemento posible del mundo del problema. Por ejemplo, para el TAD Conjunto y la
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notacion { x4, ..., XN }, el invariante debe exigir que todos los x; pertenezcan al mismo tipo de dato, y que sean

diferentes entre si, para que un objeto abstracto esté modelando realmente un conjunto. Estructuralmente, el
invariante estd compuesto por condiciones que restringen el dominio de los componentes internos y por
relaciones entre ellos.

Ejemplo 1.5:
Para el TAD Diccionario, cuyo objeto abstracto tiene la siguiente estructura:

palabra: String
<elem-1 ,...,elem-N > | elem-i
< sig-1, ..., sig-k >

El invariante debe incluir tres condiciones, enunciadas a continuacién en lenguaje natural y en lenguaje
formal:

e Las palabras estan ordenadas ascendentemente y no hay repetidas:
elem;.palabra < elem;;.q.palabra, 1 <i<N

e Los significados estan ordenados ascendentemente y no hay repetidos:
elem;.sig, < elem;.sigp4+1, 1<i<N,1<r<k

e Toda palabra tiene asociado por lo menos un significado:
V elem; = [ palabra, < sigq, ..., sigg > ], k>0

Si un objeto del TAD Diccionario no cumple cualquiera de ellas, implica que no se encuentra modelando un
diccionario real, de acuerdo con el modelaje que se ha hecho de ellos.

J

1.2.4. Especificacion de un TAD

Un TAD se define con un nombre, un formalismo para expresar un objeto abstracto, un invariante y un
conjunto de operaciones sobre este objeto. En este libro se usa el siguiente esquema:

TAD <nombre>

<Objeto abstracto>

<Invariante del TAD>

<Operaciones>

La especificacion de las operaciones consta de dos partes: inicialmente, se coloca la funcionalidad de cada
una de ellas (dominio y codominio de la operacion), y, luego, su comportamiento. Esto Ultimo se hace
mediante dos aserciones (precondicion y postcondicion) que indican la manera como se ve afectado el estado
del objeto una vez se ha ejecutado la operacioén.

®  <operacioni1>: <dominio> — <codominio>
[ ]
®  <operacionk>: <dominio> — <codominio>

<prototipo operacion1>
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/* Explicacion de la operacién */
{pre:...}
{post: ... }

La precondicion y la postcondicion de una operacion pueden referirse, Unicamente, a los elementos que
componen el objeto abstracto y a los argumentos que recibe. No puede incluir ningun otro elemento del
contexto en el cual se va a ejecutar. En la especificacion de las operaciones, se debe considerar implicito en
la precondicion y la postcondicién, que el objeto abstracto sobre el cual se va a operar cumple el invariante.
Eso quiere decir, que dichas aserciones so6lo deben incluir condiciones adicionales a las de validez del objeto.
Por claridad, si la precondicion de una operacién es TRUE, es decir no impone ninguna restriccién al objeto
abstracto ni a los argumentos, se omite de la especificacion.

Es importante colocar una breve descripcion de cada operacion, de manera que el cliente pueda darse una
rapida idea de los servicios que un TAD ofrece, sin necesidad de entrar a hacer una interpretacion de su
especificacion formal. Esta Ultima esta dirigida sobre todo al programador.

Al seleccionar los nombres de las operaciones se debe tener en cuenta que no pueden existir dos
operaciones con el mismo nombre en un programa, incluso si pertenecen a TAD diferentes. Por esta razon,
es conveniente agregar un mismo sufijo a todas las operaciones de un TAD, de tal forma que las identifique.
Es conveniente que este sufijo tenga por lo menos 3 caracteres.

Ejemplo 1.6:
Para definir el TAD Matriz de valores enteros, se puede utilizar la siguiente especificacion:
TAD Matriz
0 k M-1
0
I Xik
N-1
{inv:N>0,M>0}
e crearMat: int x int — Matriz
e asignarMat: Matriz x int x int x int — Matriz
e infoMat: Matriz x int x int — int
o filasMat: Matriz — int
e columnasMat: Matriz — int
Matriz crearMat( int fil, int col )
/* Construye y retorna una matriz de dimension [ 0...fil-1, 0...col-1 ], inicializada en 0 */
{pre:fil>0,col>0}
{ post: crearMat es una matriz de dimension [ 0...fil-1, 0...col-1 ], x;k = 0 }

|void asignarMat( Matriz mat, int fil, int col, int val )
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/* Asigna a la casilla de coordenadas [ fil, col ] el valor val */

{pre:0<fil<N,0<col<M}
{ post: X j| ¢ol = val'}

int infoMat( Matriz mat, int fil, int col )
/* Retorna el contenido de la casilla de coordenadas [ fil, col ] */

{pre: 0<fil<N,0<col<M}
{ post: infoMat = X | ¢ol }

int filasMat( Matriz mat )
/* Retorna el niumero de filas de la matriz */

{ post: filasMat = N }

int columnasMat( Matriz mat )
/* Retorna el nUmero de columnas de la matriz */

{ post: columnasMat = M }

En el caso del TAD Matriz, el invariante solo establece una restriccion para el niumero de filas y de
columnas (coloca una limitante al dominio en el cual puede tomar valores). Cuenta con 5 operaciones para
administrar un objeto del TAD: una para crearlo, una para asignar un valor a una casilla, otra para tomar el
valor de una casilla, y dos para informar sus dimensiones. Con ese conjunto de operaciones, y sin
necesidad de seleccionar unas estructuras de datos especificas, es posible resolver cualquier problema
que involucre una matriz.

Es importante anotar que todo elemento utilizado como parte del formalismo de un objeto abstracto, puede
utilizarse directamente como parte de la especificacion de una operacion. Ese es el caso de los valores N y
M, utilizados como parte de la postcondicion de las operaciones filasMat y columnasMat.

J

Ejemplo 1.7:

Para definir el TAD Diccionario, se puede utilizar la siguiente especificacién, la cual supone que esta ya
disefiado el TAD String, al cual pertenecen las palabras y sus significados:

TAD Diccionario

palabra: String
<elem-1 , ..., elem-N > elem-i

<sig-1, ..., sig-k >

{iinv: elem;.palabra < elem;, q.palabra, 1 <i<N
elem;.sig, < elem;.sigr4+1, 1<i<N,1<r<k

elem; = [ palabra, < sigq, ..., sigx>1, k>0}

e crearDic: — Diccionario
e agregarPalabraDic: Diccionario x String x String — Diccionario

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 49

e eliminarPalabraDic: Diccionario x String — Diccionario
e agregarSignifDic: Diccionario x String x String — Diccionario
e numSignifDic: Diccionario x String — int

e signifDic: Diccionario x String x int — String

Diccionario crearDic( void )
/* Construye y retorna un diccionario sin palabras */

{ post: crearDic = <>}

void agregarPalabraDic( Diccionario dic, String pal, String sig )
/* Agrega la palabra pal al diccionario, suponiendo que no estd, y le asocia como significado sig */

{ pre: dic = < elemy, ..., elemy >, Vi elem;.palabra != pal }
{ post: dic = < elemq, ..., elem;, [ pal, < sig > ], elemj; 1, ..., elemp > }

void eliminarPalabraDic( Diccionario dic, String pal )
/* Elimina una palabra del diccionario, con todos los significados que tiene asociados */

{ pre: dic = < elemq, ..., elemy >, elem;.palabra = pal }
{ post: dic = < elemq, ..., elem;_q, elem;41, ..., elemp >}

void agregarSignifDic( Diccionario dic, String pal, String sig )
/* Agrega el significado sig a la palabra pal, presente en el diccionario */

{ pre: elem; = [ pal, <sigq, ..., sigx > 1}
{ post: elem; = [ pal, < sig1, ..., sig, ..., sigk > 1}

int numSignifDic( Diccionario dic, String pal )
/* Retorna el numero de significados de la palabra pal en el diccionario */

{ pre: elem; = [ pal, <sigq, ..., sigx > 1}
{ post: numSignifDic = k }

String signifDic( Diccionario dic, String pal, int numSig )
/* Retorna el significado numSig asociado con la palabra pal en el diccionario */

{ pre: elem; = [ pal, <sigq, ..., Sigx > 1, 1 <numSig <k }
{ post: signifDic = signumSig}

J
1.2.5. Clasificacion de las Operaciones
Las operaciones de un TAD se clasifican en 3 grupos, segun su funcién sobre el objeto abstracto:

e Constructora: es la operacion encargada de crear elementos del TAD. En el caso tipico, es la encargada
de crear el objeto abstracto mas simple. Tiene la siguiente estructura:

Clase <constructora> ( <argumentos> )
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{ pre: <condiciones de los argumentos> }

{ post: <condiciones del objeto inicial, adicionales al invariante> }

En los ejemplos anteriores, las operaciones crearMat y crearDic son las constructoras de los TAD Matriz y
Diccionario respectivamente. Un TAD puede tener multiples constructoras.

Modificadora: es la operacién que puede alterar el estado de un elemento del TAD. Su misién es simular
una reaccion del objeto. Su estructura tipica es:

void <modificadora> ( <objetoAbstracto>, <argumentos> )

{ pre: <condiciones del objeto adicionales al invariante, condiciones de los argumentos> }

{ post: <condiciones del objeto adicionales al invariante> }

En el ejemplo del TAD Matriz, la Unica modificadora es la operacidn asignarMat, que altera el contenido de
una casilla de la matriz. Otra modificadora posible de ese TAD seria una que cambiara sus dimensiones.
Al final de toda modificadora se tiene que seguir cumpliendo el invariante.

Analizadora: es una operacion que no altera el estado del objeto, sino que tiene como misién consultar su
estado y retornar algun tipo de informacion. Su estructura es la siguiente:

<tipo> <analizadora> ( <objetoAbstracto>, <argumentos> )

{ pre: <condiciones del objeto adicionales al invariante, condiciones de los argumentos> }

{ post: <analizadora> = funcién ( <estado del objetoAbstracto>) }

En el TAD Matriz, las operaciones infoMat, filasMat y columnasMat son analizadoras. A partir de ellas, es
posible consultar cualquier aspecto del objeto abstracto.

En la especificacion del TAD es conveniente hacer explicito el tipo de operacién al cual corresponde cada una
de ellas, porque, en el momento de hacer el disefio de manejo de error, es necesario tomar decisiones
diferentes. Existen ademas varias operaciones interesantes que se deben agregar a un TAD para aumentar
su portabilidad. Son casos particulares de las operaciones ya vistas, pero, dada su importancia, merecen una
atencioén especial. Entre estas operaciones se pueden nombrar las siguientes:

Comparacion: Es una analizadora que permite hacer calculable la nocién de igualdad entre dos objetos
del TAD.

Copia: Es una modificadora que permite alterar el estado de un objeto del TAD copiandolo a partir de otro.

Destruccion: Es una modificadora que se encarga de retornar el espacio de memoria dinamica ocupado
por un objeto abstracto. Después de su ejecucion el objeto abstracto deja de existir, y cualquier operacién
que se aplique sobre él va a generar un error. Sélo se debe llamar esta operacién, cuando un objeto
temporal del programa ha dejado de utilizarse.

Salida a pantalla: Es una analizadora que le permite al cliente visualizar el estado de un elemento del
TAD. Esta operacién, que parece mas asociada con la interfaz que con el modelo del mundo, puede
resultar una excelente herramienta de depuracion en la etapa de pruebas del TAD.

Persistencia: Son operaciones que permiten salvar/leer el estado de un objeto abstracto de algun medio
de almacenamiento en memoria secundaria. Esto permite a los elementos de un TAD sobrevivir a la
ejecucion del programa que los utiliza.

En general, las aplicaciones estan soportadas por manejadores de bases de datos que se encargan de
resolver los problemas de persistencia, lo mismo que los problemas de concurrencia, coherencia, etc.
Pero, para aplicaciones pequefias, puede ser suficiente un esquema de persistencia sencillo, en el cual
cada TAD sea responsable de su propia administracion.
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Ejemplo 1.8:

Con el fin de enriquecer el TAD Matriz con algunas de las operaciones interesantes mencionadas en la
seccion anterior, se tiene la siguiente especificacion:

J

void copiarMat( Matriz mat1, Matriz mat2 )
/* Modificadora: Asigna a matl el contenido de mat2 */

{ pre: mat2 = MAT2 }
{ post: mat1.N = MAT2.N, mat1.M = MAT2.M, Vik, mat1.x;x = MAT2.x }

int igualMat( Matriz mat1, Matriz mat2 )
/* Analizadora: Informa si las dos matrices son iguales (dimensiones y contenido) */

{ post: igualMat = mat1.N = mat2.N, mat1.M = mat2.M, Vik, mat1.x;x = mat2.x;, }

void destruirMat( Matriz mat )
/* Modificadora: Destruye el objeto abstracto */

{ post: se ha destruido el objeto abstracto y se ha recuperado toda la memoria que ocupaba }

void imprimirMat( Matriz mat )
/* Analizadora: Presenta por pantalla el estado interno de la matriz */

{ post: se ha presentado por pantalla el contenido de la matriz }

Matriz cargarMat( FILE *fp )
/* Persistencia: Lee una matriz del archivo fp. Es un caso particular de constructora */

{ pre: archivo abierto listo para leer, informacion valida en el archivo }
{ post: se ha construido una matriz con las dimensiones y la informacion del archivo }

void salvarMat( Matriz mat, FILE *fp )
/* Persistencia: Escribe una matriz en el archivo fp. Es un caso particular de analizadora */

{ pre: archivo abierto listo para escribir }
{ post: las dimensiones y el contenido de la matriz han sido escritos en el archivo, de tal manera que la
operacion cargarMat sea capaz de reconstruir la matriz }

1.2.6. Manejo de Error

Uno de los aspectos que se debe estudiar con especial cuidado en el momento de disefiar un TAD, es el
manejo y recuperacion de errores. Para esto existen tres aproximaciones basicas:

Responsabilidad del usuario: La operacién supone que el elemento del TAD sobre el cual se va a ejecutar
la operacién, lo mismo que los argumentos de la llamada, cumplen todos los requisitos planteados por la
precondicién de la operacion. En caso de no cumplirlos, las consecuencias son problema del cliente y el
comportamiento de la operacion es indefinido.
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e Informa el error: En este caso, cada operacion -sobre todo las modificadoras- verifican que la operacién
haya tenido éxito. Lo usual es que retorne un codigo informandole al cliente el tipo de error detectado, o el
éxito de la operacion.

La estructura tipica de las modificadoras resulta la siguiente:

int <modificadora> ( <objetoAbstracto>, <argumentos> )

{ pre: <condiciones del objeto adicionales al invariante, condiciones de los argumentos> }

{ post: <condiciones del objeto adicionales al invariante>, <modificadora> = <cédigo éxito>}
{ error: <caso de error>, <modificadora> = <cédigo error> }

Antes de disefiar cualquier operacién es necesario hacer la lista de los errores posibles y asignarles
constantes con un cédigo de retorno. Esta forma de especificar el manejo de error tiene la ventaja de no
oscurecer la especificacion para situaciones normales.

o Responsabilidad de la operacién: En este caso, la operacién intenta recuperarse y si no lo consigue
cancela la ejecucion e informa la razén. Este esquema es utilizado por las operaciones que pueden verse
afectadas por problemas de memoria, o de Entrada/Salida, para las cuales no tiene sentido continuar la
ejecucion si no se da la adecuada recuperacion.

Ejemplo 1.9:
Para el TAD Diccionario, la operacion que elimina una palabra tendria la siguiente especificacion, si se utiliza
el segundo tipo de manejo de error:

int eliminarPalabraDic( Diccionario dic, String pal )
/* Elimina una palabra del diccionario, con todos los significados que tiene asociados */

{ pre: dic = < elemy, ..., elemy >, elem;.palabra = pal, dic = DIC }

{ post: dic = < elemq, ..., elem;_q, elemj1, ..., elemy >, eliminarPalabraDic = TRUE }

{ error: Vi ej.palabra != pal, dic = DIC, eliminarPalabraDic = FALSE }

Una posible variante al segundo tipo de manejo de error, es retornar un mensaje con el error detectado, en
lugar del codigo. Algo como lo sugerido en la siguiente especificacion:

char *eliminarPalabraDic( Diccionario dic, String pal )
/* Elimina una palabra del diccionario, con todos los significados que tiene asociados */

{ pre: dic = < elemy, ..., elemy >, elem;.palabra = pal, dic = DIC }

{ post: dic = < elemq, ..., elem;_4, elem;,1, ..., elemy >, eliminarPalabraDic = NULL }

{ error: Vi ej.palabra != pal, dic = DIC, eliminarPalabraDic = "ERROR: Palabra inexistente" }
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Ejemplo 1.10:

Para el TAD Matriz, la operacion que construye una matriz a partir del nimero de filas y columnas, tendria la
siguiente especificacion, si se utiliza el tercer enfoque de manejo de error:

J

Matriz crearMat( int fil, int col )
/* Construye y retorna una matriz de dimension [ 0...fil-1, 0...col-1 ], inicializada en 0 */

{pre:fil>0,col>0}

{ post: crearMat es una matriz de dimensién [ 0...fil-1, 0...col-1 ], Xjx = 0 }

{ error: (fil <0 v col < 0 v no hay suficiente memoria ), mensaje + cancelacion de la ejecucion }

1.2.7. Metodologia de Disefio de TAD

Para el disefio de un Tipo Abstracto se siguen los pasos mostrados en la figura 1.6, y explicados mas
adelante.

Identificar —> Otras
slomor o — Constructoras operaciones
Formalismo Modificadoras Persistencia
Invariante Analizadoras Estructuras
de datos

Fig. 1.6 - Pasos para el disefio de un Tipo Abstracto de Dato

Identificar claramente los objetos del mundo que se quieren modelar, sus propiedades, relaciones,
estructura, etc., y darles un nombre.

Definir un formalismo para reflejar el estado de un objeto abstracto.

Hacer explicitas, sobre el formalismo, mediante un invariante, las condiciones de validez de un objeto
abstracto: restricciones y relaciones entre sus componentes.

Disenar las constructoras del TAD. Para esto, se debe pensar inicialmente en el objeto mas elemental del
TAD y la forma de generarlo mediante una operacion. Luego, adicionar otras constructoras interesantes.

Disefiar las modificadoras del TAD. Se debe pensar en todos los cambios que puede sufrir el elemento
del mundo que se estd modelando. Se comienza por las operaciones mas elementales y se van
agregando operaciones hasta que cualquier modificacion imaginable se pueda expresar en términos de
las operaciones ya incluidas. Luego se decide el tipo de manejo de error que se va a hacer y, por ultimo,
se hace una especificacion de cada operacion.

Para decidir cuales son los parametros de cada modificadora, se establece cual es la informacion
necesaria para que el objeto pueda llevar a cabo el cambio de estado que debe producir la operacion.
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Durante esta etapa se debe intentar que el TAD asuma Unicamente sus propias responsabilidades. Se
debe evitar la tentacion de delegar responsabilidades a los clientes o resolver un problema de un cliente
como parte del TAD.

Disefiar las analizadoras del TAD. Se deben colocar suficientes analizadoras para que cualquier cliente
pueda obtener la informaciéon necesaria del objeto para su adecuado funcionamiento. La idea no es
colocar una analizadora por atributo, sino buscar un conjunto de operaciones, independientes de las
estructuras de datos concretas, que le permita a los clientes consultar el estado interno del objeto. Para
cada una de estas operaciones se debe construir su especificacion y, para aquellas que puedan fallar,
definir el manejo que se va a hacer del posible error.

Enriquecer el TAD con operaciones interesantes para los clientes. Casi siempre es conveniente ofrecer al
cliente, ademas de las operaciones indispensables, un buen conjunto de operaciones de frecuente uso.
Aunque estas operaciones se pueden escribir en términos de operaciones mas sencillas del TAD, por
eficiencia, satisfaccion del cliente y extensibilidad del software, es conveniente agregarlas.

Disefar el manejo de la persistencia. Basicamente se deben agregar dos operaciones: una constructora
que tome la informacion de memoria secundaria y cree un objeto del TAD, y otra que lleve el estado del
objeto al disco en algun formato coherente con la primera operacién. A lo largo de todo el libro se
muestran ejemplos de como disefar estas operaciones y de la forma de disefar el esquema de
persistencia de los objetos del TAD.

Disefiar las estructuras de datos para representar el estado de un objeto (ver §1.3).

Ejemplo 1.11:

En este ejemplo se muestra el proceso completo de disefio de un TAD. Se va a utilizar como objeto abstracto
un conjunto de valores naturales en un rango dado (i.e. enteros entre 25 y 100).

e Objeto abstracto: conjunto de nimeros naturales en un rango dado, no vacio.
e Nombre: Conjunto (sufijo de las operaciones: Conj)

e Formalismo: inf: {xq, X9, ..., XN } : Sup

e Invariante: inf<x;<sup /* Todos los elementos estan en el rango [inf...sup] */

Xj 1= xg, iI=k /" No hay elementos repetidos */

1<inf<sup /* Elrango es valido */

e Constructoras: Unicamente se requiere una constructora, que permita crear conjuntos vacios, dado un

rango de enteros

Conjunto crearConj( int infer, int super );

e Manejo de error: Retorno de un objeto invalido

crearConj — { error: inf <1 v sup < inf, crearConj = NULL }

¢ Modificadoras: Son necesarias dos operaciones para alterar el estado de un conjunto. Una para

agregar elementos y otra para eliminarlos. Estas dos operaciones son suficientes para simular
cualquier modificacion posible de un conjunto.

int insertarConj( Conjunto conj, int elem );

int eliminarConj( Conjunto conj, int elem );
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e Manejo de error: Informe de fallas por cédigo de retorno. Se seleccionan las siguientes constantes y
codigos de error.

0 OK Operacién con éxito

1 RANGO Elemento fuera de rango
2 INEXIS Elemento inexistente

3 DUPLI Elemento ya presente

insertarConj — { error: ( elem < inf v elem > sup, insertarConj = RANGO ) v

(3 | Xj = elem, insertarConj = DUPLI ) }

eliminarConj — { error: elem != x; Vi, eliminarConj = INEXIS }

e Analizadoras: La operacion basica de consulta a un conjunto es si un elemento pertenece a él.
Adicionalmente, es necesario permitirle al cliente consultar los limites del rango de enteros que puede
contener. Con estas tres operaciones es posible extraer toda la informacioén del conjunto.

int estaConj( Conjunto conj, int elem );
int inferiorConj( Conjunto conj );
int superiorConj( Conjunto conj );

e Manejo de error: Ninguna analizadora puede fallar

e Operaciones interesantes: Se colocan operaciones para copiar, comparar, visualizar y destruir.

int igualConj( Conjunto c1, Conjunto c2 ); /* Informa si c1 == c2 */

int subConj( Conjunto c1, Conjunto c2 ); /* Informa sic1 o c2 */

void imprimirConj( Conjunto conj ); /* Presenta los elementos del conjunto */
void destruirConj( Conjunto conj ); /* Destruye un conjunto */

También agregan operaciones de amplio uso por parte de los clientes:
int cardinalidadConj( Conjunto conj ); /* Numero de elementos de un conjunto */

void unirConjunto( Conjunto c1, Conjunto c2 ); [*c1=ctUc2*

e Persistencia: Lo usual es colocar dos operaciones para la persistencia. Una, para salvar un objeto en
disco y otra, para cargarlo de nuevo en memoria.

Conjunto cargarConj( FILE *fp ); /* Lee un conjunto de disco */
void salvarConj( Conjunto conj, FILE *fp ); /* Salva un conjunto en disco */

El formato exacto de la persistencia en un archivo se define en el momento de disefiar las estructuras
de datos. El cliente no necesita esta informacion.

e Especificacion de las operaciones:

Conjunto crearConij( int infer, int super )
/* Crea un conjunto vacio con rango de valores potenciales [ infer .. super ] */

{ pre: 1 <infer < super }
{ post: crearConj = infer: { } :super }
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int insertarConj( Conjunto conj, int elem )
/* Inserta al conjunto un elemento valido */

{ pre: conj = inf: { X4, X9, ..., XN } :sup, elem !=x; Vi, inf < elem < sup }
{ post: conj = inf: { x4, X9, ..., XN, €lem } isup }

int eliminarConj( Conjunto conj, int elem )
/* Elimina un elemento del conjunto */

{ pre: conj =inf: { x4, X9, ..., X\ } :sup, Xj = elem }
{ post: conj = inf: { X4, ..., Xj_1, Xj+1, --» XN }: SuUp }

int estaConj( Conjunto conj, int elem )
/* Informa si un elemento se encuentra en el conjunto */

{ post: estaConjunto = ( i | x; = elem ) }

int inferiorConj( Conjunto conj )
/* Retorna el limite inferior del rango de valores validos del conjunto */

{ post: inferiorConj = inf }

int superiorConj( Conjunto conj )
/* Retorna el limite superior del rango de valores validos del conjunto */

{ post: superiorConj = sup }

J

1.2.8. Uso de TAD en Solucion de Problemas

Para resolver un problema utilizando como base un TAD, se debe expresar la soluciéon en términos de las
operaciones disponibles sobre los objetos abstractos. Un TAD puede ser visto, en el momento de utilizarlo,
como un tipo de dato basico del lenguaje, con un conjunto restringido de operaciones.

Ejemplo 1.12:

Desarrollar una rutina que retorne un conjunto que corresponda a la interseccion de dos conjuntos dados.

Conjunto interConj( Conjunto c1, Conjunto c2 )
/*pre: cl =infl :{ X1, X9, ..., XNy }:supl, c2=1inf2 : { yq,y9, .., YV }: sup2 */
/* post: interConj = min( infl, inf2 ) : { 2y, 2y, ..., zc } : max( supl, sup2) | zieclazyec2*
{ inti;

int infer = min( inferiorConj( c1 ), inferiorConj( c2 ) );

int super = max( superiorConj( cl ), superiorConj( c2 ) );

Conjunto ct = crearConj( infer, super );

for( i = infer; i <= super; i++)

if( estaConj( cl,i ) && estaConj( c2,i) )
insertarConj( ct, 1 );
return ct;
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Ejemplo 1.13:

Una rutina que sume a una matriz matl otra matriz mat2, viene dada por el siguiente cédigo. Fijese que no
existe en el algoritmo ningun compromiso con estructuras de datos, sino solamente se plantea la solucion
para cualquier implementacion que se haga de matrices.

void sumarMatriz( Matriz matl, Matriz mat2 )
/* pre: matl.N = mat2.N, matl.M = mat2.M (v.g. tienen las mismas dimensiones) */
/* post: matl += mat2 */
{ inti, k;
for(i=0; i < filasMat( matl ); i++)
for( k = 0; k < columnasMat( matl ); k++)

asignarMat( matl, i, k, infoMat( matl, i, k ) + infoMat( mat2, i,k ) );

H
J

1.2.9. Genericidad: TAD Paramétricos

La idea de desarrollar un TAD contenedor parametrizado tiene la ventaja de que deja claro qué puntos del
disefio son dependientes del tipo de elemento que maneja. Lo ideal es poder reutilizar todo el software de una
aplicacion a otra, y no solo el disefio, de tal forma que sea posible contar con librerias genéricas
perfectamente portables, capaces de contener elementos de cualquier tipo. La sintaxis para especificar un
TAD paramétrico se puede apreciar en el siguiente ejemplo.

Ejemplo 1.14:

Si se quiere definir un TAD Conjunto, para cualquier tipo de elemento, se puede utilizar un esquema como el
siguiente:

TAD Conjunto[ Tipo ]

{X1, X2, vy XN }

{inv: Xj 1= x, i I= Kk, xj pertenece al TAD Tipo }

e crearConjunto: — Conjunto
¢ insertarConjunto: Conjunto x Tipo — Conjunto
¢ eliminarConjunto: Conjunto x Tipo — Conjunto
e estaConjunto: Conjunto x Tipo — int

e vacioConjunto: Conjunto — int

void insertarConjunto( Conjunto conj, Tipo elem )
{ pre: conj ={xq, X9, ..., XN }, elem !=x; Vi }

{ post: conj = { x4, X9, ..., XN, elem } }
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Ejercicios Propuestos

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

1.7.

1.8.

1.9.

Una lista es una estructura muy flexible, de longitud variable, en la cual se pueden agregar y eliminar
elementos en cualquier posicion. Disefie el TAD Lista de enteros.

Una pila es una estructura lineal, en la cual unicamente es posible insertar y eliminar por uno de sus
extremos. Disefie el TAD Pila[ Tipo ].

Una fila es una estructura lineal, en la cual entran los elementos por un extremo y salen por el otro, una
vez son atendidos. Disefie el TAD Fila[ Tipo ]

En muchos lenguajes de programacion (i.e. Pascal) existe un tipo de dato denominado string, que
corresponde a una cadena de caracteres de longitud variable. En C el manejo de este tipo de objetos
abstractos es limitado. Disefie el TAD String.

Con el fin de hacer manipulaciéon simbdlica de polinomios, es conveniente tener definido un TAD
Polinomio, a través del cual sea posible sumarlos, multiplicarlos, derivarlos, etc. Disefie y especifique un
TAD Polinomio.

En diversas aplicaciones es necesario manejar valores numéricos por fuera del rango representable
con el tipo int de un lenguaje de programacién. Piense, por ejemplo, en un niumero con 200.000 digitos.
Para trabajar con estos valores, es necesario contar con un TAD SuperEntero, que sea capaz de
manejar numeros enteros positivos de cualquier longitud. Haga el disefio de este TAD.

Se define un vector en un espacio tridimensional como una magnitud (un escalar) y una direccion (dada
por 3 coordenadas). Disefie el TAD Vector3D. Debe incluir operaciones como producto punto y producto
cruz.

Se quiere modelar una calculadora como un objeto abstracto, con las siguientes caracteristicas
minimas: 10 memorias, operaciones aritméticas basicas, borrar la pantalla, desplegar el valor actual en
pantalla, leer un valor de teclado, etc. Haga el disefio del TAD Calculadora.

En un sistema de atencién al publico, el orden de entrada corresponde estrictamente al orden de
llegada. Hay casos en los cuales este tipo de filas de espera deben ser mas flexibles. Considere, por
ejemplo, la fila de entrada a la unidad de urgencias de un hospital. Hay enfermos que por su estado
merecen una mayor prioridad que otros y debe entrar antes que algunos de los que llegaron antes.
Disefie el TAD Fila con prioridades.

Una tabla de asociacion es una estructura que permite asociar llaves con informacion. Por ejemplo, si
se quiere almacenar la informaciéon de un conjunto de personas y se quiere permitir el acceso por la
cédula (llave) se utiliza este tipo de contenedora. Disefie el TAD genérico Tabla[ Llave, Tipo ].

Un texto es una secuencia de renglones de cualquier longitud, cada uno de los cuales corresponde a
una cadena de caracteres. Disefie y especifique el TAD Texto.

Un directorio es una estructura ordenada, en la cual se asocia un teléfono y una direccién con un
nombre y un apellido. Esta pareja [ nombre, apellido ] no es unica, de manera que la respuesta a una
consulta puede ser una lista de teléfonos. Disefie el TAD Directorio telefénico teniendo en cuenta las
restricciones anteriores.

La pantalla del computador se puede modelar mediante el conjunto de textos y elementos graficos
(lineas y circulos) alli desplegados, cada uno de los cuales se encuentra en una posicion dada. Disefie
el TAD Pantalla.

Para los siguientes enunciados abiertos, disefie los TAD que considere necesarios para modelar todos los
elementos involucrados:

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 59

En la universidad se maneja la informacion académica de cada uno de sus estudiantes. Alli se coloca el
apellido, el nombre, la fecha de nacimiento, la facultad a la que pertenece y la lista de materias que ha
cursado con la nota obtenida.

Un club de squash esta formado por 9 canchas, disponibles a los socios en el horario 7 am - 7pm
(turnos cada hora). Los socios son atendidos por teléfono, y asi pueden reservar o cancelar turnos
hasta con tres dias de anticipacion.

Un banco administra toda la informacion de sus clientes, en la cual aparece registrada cada
consignacion y retiro, lo mismo que el saldo actual. Los clientes pueden abrir o cerrar una cuenta,
consultar el saldo, depositar o retirar, consultar las ultimas transacciones y transferir dinero de una
cuenta a otra del mismo banco.

En un almacén se debe manejar el inventario de los productos con que cuenta. Cada producto tiene un
cédigo, un nombre, un precio y una cantidad. Se necesita desarrollar un sistema de informacién para
que el gerente administre toda la informacion referente al inventario.

Un hospital esta compuesto por un conjunto de cuartos en los cuales se situan los pacientes. Cada
cuarto tiene una identificacion y una capacidad. Cada paciente es atendido por un médico
especializado en la enfermedad que éste sufre. La historia clinica de cada paciente incluye un apellido,
un nombre, un sexo, una enfermedad y un niumero de dias hospitalizado.

Por reglamento del hospital, todos los pacientes que se encuentran en una misma habitacion deben
tener la misma enfermedad, para evitar posibles contagios. Ademas, si llega un paciente y no existe un
médico disponible para la enfermedad que éste sufre, o si no hay un lugar disponible en una habitacion,
el enfermo no se admite. Otra regla del hospital es que ningin médico puede tener a su cargo mas de
10 pacientes. Eso garantiza la calidad del servicio. Cuando se da de alta un paciente, se le presenta
una cuenta de cobro que corresponde al nimero de dias que estuvo hospitalizado por $20.000, mas un
14% de impuestos.

Usando los TAD definidos en los ejemplos y ejercicios de las secciones anteriores, desarrolle los algoritmos
que resuelven los siguientes problemas:

1.19.

1.20.

1.21.

1.22.

1.23.

1.24.

1.25.

Utilizando los TAD Diccionario y String, desarrolle un procedimiento que, dados una palabra y un
significado, informe si en el diccionario se encuentran relacionados.

Utilizando los TAD Diccionario y String, desarrolle una rutina que, dadas dos palabras, informe si son
sinénimas. Esto es, si comparten por lo menos un significado en el diccionario.

Utilizando las operaciones de los TAD Diccionario y String, desarrolle una rutina que, dadas dos
palabras, retorne el numero de significados que comparten en un diccionario. Debe considerar el caso
en el cual no comparten ninguno.

Utilizando el TAD Conjunto, desarrolle una funcién que calcule y retorne el conjunto diferencia de otros
dos conjuntos.

Utilizando el TAD Conjunto de enteros en un rango, desarrolle una funcién que retorne su mediana.
Se define la mediana de un conjunto como el valor del conjunto que cumple que la mitad de los
elementos presentes son mayores que él, y la otra mitad menores o iguales.

Utilizando las operaciones del TAD Matriz, desarrolle una funcién que calcule y retorne la transpuesta
de una matriz.

Utilizando las operaciones del TAD Matriz, desarrolle una funcién que informe si una matriz es un
cuadrado magico. Una matriz es un cuadrado magico si el resultado de sumar los elementos de cada
una de las filas es el mismo e igual a la suma de los elementos de cada una de las columnas y a la
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suma de los elementos de cada una de las diagonales principales. Por ejemplo, la matriz de la figura es
un cuadrado magico, puesto que tanto sus filas como sus columnas y sus diagonales suman 15.

8 1 6
3 5 7
4 9 2

1.3. Diseino de Estructuras de Datos

Para hacer operacional un TAD, es decir, para que funcione realmente sobre un lenguaje de programacion, es
necesario implementarlo y dejarlo disponible para que las otras partes del software lo utilicen. Esto es
equivalente a aumentar el lenguaje para que maneje un nuevo tipo de dato, generando una estratificacion
conceptual como la mostrada en la figura 1.7.

INTERFAZ
{TAD}

tipos basicos

lenguaje

Fig. 1.7 - Estratificacion conceptual

Para implementar un TAD se siguen dos pasos:
o Disefiar las estructuras de datos que van a representar cada objeto abstracto.

e Desarrollar una funcién, por cada operacion del TAD, que simule el comportamiento del objeto abstracto,
sobre las estructuras de datos seleccionadas.

En esta seccion se estudia la etapa de disefio de las estructuras de datos para un TAD. En la siguiente, se
aborda la parte de implementacion de operaciones.

1.3.1. Relaciéon Objeto Abstracto-Estructuras de Datos

El propdsito de esta etapa es disefiar unas estructuras de datos que representen de manera adecuada el
estado de un objeto abstracto. Para esto, es necesario verificar que toda la informacion sea almacenada
convenientemente en dichas estructuras. El resultado es un esquema de representacidon y almacenamiento
del objeto abstracto en estructuras concretas de datos. Este esquema corresponde a una funcién que explica
la manera de interpretar y almacenar la informacién. Es necesario verificar que los casos especiales (lista
vacia, conjunto vacio, pila llena, etc.) tengan una adecuada representacion con las estructuras de datos
disefiadas.

Ejemplo 1.15:

Para el TAD Conjunto de enteros en un rango, se pueden utilizar diversas estructuras de datos. El esquema
de representacion se puede expresar de manera grafica, como se muestra a continuacion, sefialando la forma
de almacenar cada uno de los elementos que componen el objeto abstracto. En este ejemplo se presentan
dos esquemas diferentes, ambos validos.
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La primera posibilidad consiste en un registro con 3 campos: dos con los limites del conjunto y uno con un
apuntador a una lista sencillamente encadenada con sus elementos. Graficamente, el esquema se podria
expresar de la siguiente manera:

inf
sup
inf: {x1, ..., xN }: sup ’

e Py

El segundo disefio corresponde a un vector de tamafo dinamico de valores légicos (TRUE, FALSE), con
una posicion por cada posible elemento del conjunto. Si el elemento estd presente, en la casilla
correspondiente hay un TRUE. En caso contrario, un FALSE.

inf
sup _ . _
inf: {x1, ..., xN}:sup » x1inf — x2:inf - sup-inf

} }
—>plolrlolololol+[ [ | [ ] |

Este segundo esquema se puede ilustrar mediante el siguiente caso:

5
12
5:{7,9,11}:12 ¢ 012 3 4

56 7
—>{ojo]1]o]1]o]1]o]

Note la eficiencia con la cual se pueden hacer las operaciones de insercidon y supresion de elementos
sobre este segundo esquema.

J

1.3.2. Consideraciones Basicas

Para cualquier proceso de disefio, en particular para el disefio de estructuras de datos, es dificil hablar de un
método Unico e infalible, que garantice la obtencion de un buen producto. Una metodologia se debe contentar
con dar unas guias generales de trabajo, que incluyan todas las consideraciones teéricas del producto que se
va a disefiar, y unos mecanismos de evaluacion y medicién de calidad (férmulas, teoremas, ecuaciones, etc.).
A partir de esto, el disefiador debe utilizar su experiencia y habilidad para lograr un buen disefio, tanto si es un
ingeniero civil o mecanico, como si es un ingeniero de software.

En esta parte del capitulo, se presentan algunos lineamientos generales del disefio de estructuras de datos, y
se ilustran, mediante el uso de ejemplos muy sencillos, algunas de las opciones y decisiones que tiene que
tomar un disefiador. Estos ejemplos utilizan Unicamente estructuras lineales de datos, de complejidad minima.
A lo largo de todo el libro, se muestra la manera de extender esta teoria a estructuras mas complejas.

Basicamente, en la metodologia de disefio se siguen las lineas de desarrollo expuestas a continuacion:

e Construir un conjunto de disefios validos, es decir, que satisfagan las condiciones establecidas. Esto se
refiere a si una estructura de datos es capaz de almacenar y recuperar toda la informacién asociada con
el objeto abstracto que quiere representar. Para cada uno de estos disefios, se debe comenzar por una
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versién inicial (un borrador) e irlo refinando segun consideraciones de eficiencia, facilidad de

Disefio y Manejo de Estructuras de Datos en C

mantenimiento, etc., hasta llegar a una solucion viable.

Evaluar y comparar los disefios obtenidos y escoger uno de acuerdo con el problema especifico que se

quiera resolver. Este proceso se expone con detenimiento en una seccién posterior.

Hacer la declaracion de las estructuras de datos, de manera que los clientes puedan comenzar a utilizar
los objetos del TAD. Para esta parte se deben tener en cuenta las siguientes consideraciones, basicas

para la portabilidad del producto:

(1) Los objetos se van a manejar en memoria dinamica, de manera que un objeto siempre va a

corresponder a un apuntador. La declaracion del TAD <nombre> debe tener la siguiente estructura:

typedef <estructuras de datos> T<nombre>, *<nombre>;

(2) Debido al primer punto, los objetos siempre se pasan como parametros por referencia a las

operaciones que los manipulan.

(3) Si el objeto tiene un conjunto de atributos asociados, se utiliza un registro para encapsularlos y un

campo por cada uno de los atributos.

(4) Si un atributo corresponde a otro objeto del mundo, se utiliza un elemento del TAD correspondiente

como atributo.

(5) Si ya se cuenta con otros TAD, se debe intentar reutilizar el cédigo, o utilizar un TAD genérico como

parte del modelaje.

Ejemplo 1.16:

La declaracion de las estructuras de datos para los esquemas de representacion sugeridos en el ejemplo

anterior son:

J

Para hacer la evaluacion de los disefios de las estructuras de datos validas (v.g. que son capaces de

/* Primer esquema */
typedef struct
{ intinf;
int sup;
struct Nodo *Ist;
} TConjunto, *Conjunto;

/* Segundo esquema */
typedef struct
{ intinf;

int sup;

int *vec;

} TConjunto, *Conjunto;

/* Limite inferior */
/* Limite superior */
/* Lista encadenada de elementos */

/* Limite inferior */

/* Limite superior */

/* Vector de longitud dindmica, pedido en ejecucion, de acuerdo */
/* con los valores de los atributos inf'y sup */

En cualquier caso, la declaracion de una variable del TAD debe ser:

Conjunto conj;

representar todo el estado de un objeto), se tienen en cuenta tres factores principales:

Complejidad de las operaciones del TAD bajo esa implementacion. Se hace una tabla como se muestra

en el siguiente ejemplo, para poder medir la eficiencia de las operaciones.
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e Espacio ocupado en términos de los atributos que maneja. Se hace una columna adicional a la tabla del
primer punto.

e Restricciones inherentes a la representaciéon. Se coloca una columna en la que se hacen explicitas las
restricciones que tienen los objetos abstractos, al representarse mediante esas estructuras de datos

Ejemplo 1.17:

En el ejemplo 1.15, se presentaron dos posibles disefios de estructuras de datos para el TAD Conjunto de
enteros en un rango. La tabla comparativa para estos dos disefos es:

crear insertar eliminar esta inferior superior espacio restricciones
1 o(1) o(1) O(N) O(N) o(1) o(1) O(N) ninguna
2 o(M) o(1) o(1) o(1) o(1) o(1) o(M) tamario de M
donde: N = cardinalidad del conjunto
M = sup-inf+1

Este resultado confirma la relacion tiempo-espacio mencionada en el capitulo anterior: casi siempre es
posible mejorar el tiempo de respuesta de una operacion a costa de espacio en memoria.

J

Para escoger uno de los disefios de estructuras de datos es necesario tener en cuenta lo siguiente, con
respecto al uso que se le va a dar al TAD dentro del software:

e Operaciones criticas. Para el ejemplo anterior, si es muy dinamico el conjunto (se insertan y eliminan muy
frecuentemente sus elementos), o si se necesita contestar muy rapidamente a la pregunta de si un
elemento esta en el conjunto, es mejor la segunda implementacién. Todo eso lo hace en O(1).

e Restricciones de implementacién inaceptables. En el ejemplo del TAD Conjunto, el gran problema de la
segunda implementacion es la cantidad de memoria que ocupa. Si alguien quiere manejar un conjunto
con enteros en el rango [0...64K], las estructuras de datos van a ocupar 128K, suponiendo una
representacion de la maquina de 2 bytes por entero (se puede pensar en una representacion a nivel de
bits, pero siempre habra un conjunto suficientemente disperso para que esa representacion resulte
inadecuada). Eso implica que, si no se conoce con certeza un limite razonable para el tamafo del vector,
se debe descartar la segunda implementacion.

o Restricciones de espacio. En algunos casos el espacio ocupado por las estructuras de datos descarta su
posible utilizacion. El ejemplo es el mismo utilizado en el punto anterior.

¢ Dificultad de escribir los algoritmos vs. eficiencia esperada de los mismos. Si el TAD Unicamente se va a
utilizar en un proceso no critico, no se justifica la dificultad de escribir un algoritmo sobre estructuras de
datos complejas. En ese caso, es mejor escoger las estructuras de datos para las cuales los algoritmos
resulten mas faciles de implementar y probar.

e Numero de movimientos de la informacién. Cuando el tamafio de la informacién que se maneja es
considerable (i.e. registros de 4K bytes), el costo de su movimiento comienza a ser otro factor que se
debe tener en cuenta en el tiempo de ejecucion de un algoritmo. No es lo mismo desplazar la informacion
en un vector de enteros, que mover textos completos sobre el mismo tipo de estructura.

En las siguientes secciones aparecen algunas de las opciones que tiene un ingeniero para el disefio de

estructuras de datos, ilustradas mediante ejemplos sobre la representacion interna de una cadena de
caracteres.
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1.3.3. Representacion de Longitud Variable

El primer punto se refiere a la representacion de atributos que pueden aparecer una o varias veces al interior
de un objeto. Se debe escoger una estructura de datos sobre la cual se pueda hacer una simulaciéon de
longitud variable. En general, cualquier TAD contenedor de los presentados a lo largo del libro puede
utilizarse para esto. En el siguiente ejemplo se muestran los esquemas mas sencillos que existen.

Ejemplo 1.18:

Para representar cadenas de caracteres de cualquier longitud, es posible utilizar alguno de los siguientes
esquemas. Se ilustra la representacion con la cadena "LA CASA™

e Vector con marca de final: la informacioén se sitla secuencialmente en un vector y se coloca una marca
para sefalar la posicién final. Esta marca hace parte de la informacion, luego debe ser un elemento
distinguido (el caracter NULL en este ejemplo). Asi maneja internamente las cadenas de caracteres el
lenguaje C.

A Tclals [ATo[ TTTTTTT]

e Vector con campo adicional para marcar la longitud: la informacion se coloca secuencialmente en el
vector y desde un segundo campo se indica la posicion final. Este segundo campo puede ser un

entero o un apuntador.
ILIAI lclalsal TTTTTTTT]
E+ILIAI ICIAISIAI*I HEEEEEE

También es posible colocar este campo como parte de la informacion, tal como hace el lenguaje
Pascal para representar la longitud variable de un elemento de tipo String.

PlAL JelalsTaT T T TTTTT]

e Apuntadores: El medio ideal para manejar multiples repeticiones de informacion es el encadenamiento
de registros mediante apuntadores. La estructura mas sencilla es la siguiente:

— L= {Al—= H—lcl—= Al sH—aln

Se puede pensar también en listas doblemente encadenadas, listas circulares, etc.

J

1.3.4. Manejo de Informacién Redundante

En algunos casos, aunque la informacion se pueda calcular a partir de los datos almacenados en las
estructuras, es conveniente agregar informacion redundante. Esto puede mejorar el tiempo de ejecucion de
las operaciones. Para decidir si es conveniente agregar informacién, se debe calcular el costo marginal de
ejecucion de las modificadoras para mantener este nuevo dato actualizado, contra el tiempo que se gana al
tenerlo.

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 65

Ejemplo 1.19:

Suponga que una operacion del TAD String es anexarStr, que agrega un caracter al final de toda la cadena. Si
las estructuras de datos seleccionadas son apuntadores, la complejidad sera O( n ), donde n es el numero de
caracteres de la cadena, porque debe recorrer toda la estructura antes de poder adicionar el elemento.

— LA B el a s H—laky

La posibilidad de adicionar un campo en las estructuras de datos, que indique la posicién final de la
cadena, para aumentar la eficiencia de la operacién anexarStr, y hacerla en O( 1 ), se debe medir contra el
costo adicional que le implica a cada modificadora mantenerlo actualizado.

L v
LAl et ald—[s[—lal

Suponga que el TAD tiene dos modificadoras: insertarStr y eliminarStr, que insertan y eliminan
respectivamente un caracter, dada una posicion en la cadena. Con las estructuras originales la
complejidad de ambas es O( n ), lo cual se sigue manteniendo igual aunque deban actualizar el nuevo
campo. Esto hace que resulte una buena decision adicionarlo a las estructuras de datos.

J

El caso limite de las representaciones redundantes es el de las representaciones muiltiples. En ellas se
decide tener duplicada y estructurada de dos formas distintas toda la informacion, cada una con el fin de
responder eficientemente a algun conjunto de operaciones. Esto se suele aplicar cominmente en el desarrollo
de software grafico, en el cual el tiempo de respuesta es un factor critico, y las estructuras de datos que
permiten realizar operaciones como interseccion o union de sdlidos tridimensionales, suelen ser muy malas
para hacer la visualizacion realista de los mismos. Esto obliga a que cada objeto tenga en sus estructuras de
datos todas sus caracteristicas geométricas duplicadas, bajo dos esquemas diferentes, orientados a
operaciones distintas.

1.3.5. Representaciones Compactas vs. Exhaustivas

Las representaciones vistas hasta ahora corresponden a representaciones exhaustivas: se representa
independientemente cada componente del objeto abstracto. En esta seccion se estudia la posibilidad de
utilizar una representacién compacta, que disminuya el volumen de la informacidon almacenada, a costa
muchas veces de pérdida de eficiencia en las operaciones.

Ejemplo 1.20:

Una manera compacta de representar cadenas de caracteres se puede basar en la idea de que una
secuencia de caracteres iguales se puede colocar en un solo nodo. En la figura se muestra la representacion
de la cadena "AAABBCDDDD":

—>|Al 3]

v
oY)
N

p
v
@)
-

p
v
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SN
L d

III-|

J

1.3.6. Ordenamiento Fisico vs. Légico
Cuando los componentes de un objeto abstracto deben guardar un orden relativo entre ellos, la

representacion interna escogida, en lugar de un ordenamiento fisico, puede corresponder a un ordenamiento
virtual. Esto es, aunque en las estructuras de datos los elementos no se encuentren fisicamente consecutivos,
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existe la forma de interpretarlos como si lo estuvieran. Esto tiene dos ventajas: la primera, que no es
necesario mover la informacién en si cada vez que se agrega un elemento, y la segunda, que se pueden
manejar al mismo tiempo multiples ordenamientos.

Ejemplo 1.21:
Si se escoge un vector con marca de final para manejar un elemento del TAD String:

AL Ic]as Ao T T TTTTT]

El ordenamiento fisico se podria remplazar por un ordenamiento légico, en el cual, cada registro, informa
cual es el elemento que sigue en la secuencia. En este caso la solucién no parece muy adecuada, pero si
la informacién que se debe manejar no fuera un caracter sino un registro mas complejo (i.e. un texto), este
enfoque seria una buena solucién.

01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

> [A] [as[L] [a] [
(5] Llol lalz 4] [l I1[ [s

En el registro de encabezado aparece un campo con el valor 5, que indica el punto de entrada en la
estructura fisica. Cada elemento tiene la posicion en el vector del elemento que lo sucede. El ultimo
elemento tiene una marca especial (-1 en este caso), para indicar el final del encadenamiento.

J

1.3.7. Representacion Implicita vs. Explicita

La unica manera de representar un componente del objeto abstracto no es almacenandolo en las estructuras
de datos. Se puede pensar en una representacion implicita, en la cual, si el elemento no se encuentra
explicitamente como parte de la informacion, significa que tiene una cierta caracteristica especial, o un valor
especifico.

Ejemplo 1.22:

Suponga que se quiere manejar un bitstring: un elemento formado por una secuencia de tamafio variable de
ceros y unos. Es posible representar de manera explicita unicamente los unos y de manera implicita los
ceros. Por ejemplo, el bitstring "010010000100100", se representaria asi:

6 7 8 9 10 11 12 13 14 15

Pl T T T T T T LI II1]

Estas estructuras de datos simulan longitud variable marcando el final de la secuencia con un -1 y utilizan
un campo para almacenar el tamafo del bitstring. En el vector se encuentran las posiciones del bitstring
que tienen valor 1. Las que no se encuentran alli tienen valor 0. En este ejemplo, s6lo se necesitan 5
posiciones para representar un bitstring de 15 elementos.

J

1.3.8. Incorporacién de Restricciones del Problema

Algunas caracteristicas especificas del problema que se esta resolviendo pueden permitirle al ingeniero de
software encontrar mejores representaciones internas, mas compactas, o mas eficientes. Se debe verificar

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 67

que sean caracteristicas no volatiles del mundo (v.g. que dificilmente van a cambiar), porque de lo contrario
se pueden generar problemas de mantenimiento.

Ejemplo 1.23:

Suponga que se quiere manejar una cadena de caracteres, en la cual sélo pueden aparecer palabras de un
conjunto limitado y predefinido de ellas, separadas por un blanco. En lugar de hacer una representacion
general de las cadenas de caracteres, el problema permite disefiar unas estructuras de datos muy compactas,
como las que se sugieren a continuacion. En el ejemplo se representa la cadena "LA CASA ES LA CASA
MUY VERDE".

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2[of+[2]olaf4[-A] [ [ [ [ ][]
"CASA"
"ES" |1
LAY |2
"MUY" |3
"VERDE"

o

IS

En las estructuras se coloca un diccionario con las palabras que pueden aparecer, y en el vector
Unicamente se hace referencia al orden en el cual éstas se encuentran en la cadena que se quiere
representar.

J

1.3.9. Estructuras de Datos para el TAD Matriz

Para las estructuras de datos del TAD Matriz se pueden hacer muchos disefios diferentes, cada uno con sus
ventajas y desventajas, y cada uno orientado hacia un tipo especifico de problema. A continuacion se
presentan seis de ellos, para ilustrar la gran gama de posibilidades que tiene un disefiador, incluso para un

objeto abstracto tan sencillo como es una matriz. El formalismo para expresar una matriz es:
0 K M-1

0

N-1

a-) Matriz en memoria dinamica. Es una de las implementaciones mas sencillas y naturales. El espacio en
memoria para los elementos de la matriz se maneja como un vector de apuntadores a apuntadores, y la
constructora es la encargada de reservar en memoria dindmica el espacio necesario. Las estructuras de
datos se pueden definir mediante el siguiente dibujo:

- 0 M-1
— ]
N -
] | |
| |
| |
|| 0 M-1
w17 ]

Este disefio tiene las siguientes declaraciones:

© Todos los derechos reservados — Jorge Villalobos



68 Disefio y Manejo de Estructuras de Datos en C

typedef struct
{ intN; /* Numero de filas */
int M; /¥ Nimero de columnas */
int **mat; /* Matriz dinamica de enteros, pedida en ejecucion */

} TMatriz, *Matriz;

b-) Matriz dispersa. Esta implementacion se utiliza en casos en los cuales la matriz es de tamafo
considerable, y existen muy pocos valores diferentes de cero en su interior. La idea es representar de
manera explicita los valores no nulos, y encadenarlos por las filas y las columnas, como se muestra en

la siguiente figura:
— N

i A r
0 [

|| r
1 Pele—
1 v v =

i |k iJr

| Xi,k Xi,r

1| ® > o] @& » =
— - =1

N-1

Los algoritmos son mucho mas complicados de implementar y mas lentos que los del primer disefio,
pero el ahorro en espacio justifica algunas veces este costo adicional. Este disefio tiene las siguientes

declaraciones:
struct Nodo
{ intfil; /* Fila a la cual pertenece el elemento */
int col; /* Columna a la cual pertenece el elemento */
int info; /* Elemento almacenado en la posicion [ fil, col | */
struct Nodo *sigFila; /* Siguiente nodo en la misma fila */
struct Nodo *sigColumna; /* Siguiente nodo en la misma columna */
¥
typedef struct
{ intN; /* Numero de filas */
int M; /* Numero de columnas */
struct Nodo **filas; /* Vector de apuntadores a nodos de la matriz */
struct Nodo **columnas; /* Vector de apuntadores a nodos de la matriz */

} TMatriz, *Matriz;

c-) Vector de tripletas. Es otra implementacion usada para manejar matrices con multiples valores nulos.
Esta estructura de datos se basa en un vector de tripletas, en el cual, en cada posicion, se almacena la
fila, la columna vy el valor respectivo. Se tiene ademas un apuntador a la Ultima posicion ocupada del
vector, para simular asi longitud variable. Todo elemento que no aparezca alli referenciado tiene valor
cero. Los elementos no tienen ningun orden especifico en la estructura de datos.

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 69

i | k| Xik

Este disefio tiene las siguientes declaraciones:

struct Nodo

{ intfil; /* Fila a la cual pertenece el elemento */
int col; /* Columna a la cual pertenece el elemento */
int info; /* Elemento almacenado en la posicion [ fil, col | */

¥

typedef struct

{ intN; /* Numero de filas */
int M; /* Numero de columnas */
struct Nodo *vector; /* Vector dindmico de tripletas */
struct Nodo *ultimo; /* Ultima posicion ocupada del vector de tripletas */

} TMatriz, *Matriz;

Vector en memoria dinamica. Esta representacion utiliza un vector de N * M posiciones para
representar la matriz. Es muy parecida a la primera representacion, pero se simplifica un poco el cédigo
de la constructora que pide la memoria para manejar los elementos. El elemento que se encuentra en la
posicion [ fil, col ] de la matriz, va a aparecer en la casilla ( fil * M ) + col del vector.

[N |
—’0 N*M-1
INEEEEEEEENEEEEE

Este disefio tiene las siguientes declaraciones:

typedef struct
{ intN;
int M;

int *vector;
} TMatriz, *Matriz;

Vector de secuencias de valores. Suponga que se quiere manejar una matriz de ceros y unos (i.e.
imagenes en blanco y negro). En lugar de hacer una representacion exhaustiva, es posible pensar en
una representacion compacta. Coloque en la posicién 0 de un vector el niumero de ceros consecutivos
de la matriz comenzando en la primera fila, y continuando con las filas siguientes. En la posicion 1, el
numero de unos; en la posicion 2, el numero de ceros, y asi consecutivamente hasta completar toda la
informacion de la matriz. Por ejemplo, la matriz:

0 1 2 3 4 5
0|0 (O 0ofo0o]o0

110]0 |1 1 1 0
0

A woN
-
o
o
o
o
o
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Se representaria con las siguientes estructuras de datos:

Esta representacion es muy ineficiente para modificar el contenido de la matriz y para consultar su
contenido, pero puede disminuir considerablemente el espacio ocupado en memoria.

Este disefio tiene las siguientes declaraciones:

typedef struct

{ intN;
int M;
int *ultimo;
int *vector;

} TMatriz, *Matriz;

Cuadtree. Un cuadtree es una estructura de datos que corresponde a una descomposicion recursiva de
una matriz, en bloques uniformes rectangulares. En la siguiente figura aparecen dos ejemplos que
ilustran su uso. En el capitulo de estructuras recursivas de datos se profundiza en este tema. La idea es
representar bloques de ceros de manera compacta. Esta representacion se utiliza frecuentemente para
representar imagenes digitalizadas.

v
5
[

==4 5
TEE U
71000 1 L
y - - *
olof|9|5
olofo]o -+ I L
8 4 7 — 9 5

1.3.10. Un TAD como Estructura de Datos

Es usual que un objeto abstracto utilice como parte de sus estructuras de datos un elemento de otro TAD.
Esta situacion se presenta en dos casos: el primero, cuando en el modelaje se decide que parte del estado
del objeto abstracto corresponde a otro elemento del mundo, mas simple, pero con su propia estructura. El
segundo caso se presenta cuando un TAD contenedor utiliza como estructura de datos otro TAD contenedor
mas general, como una manera de simplificar su desarrollo.

Ejemplo 1.24:

Considere el TAD Estudiante, definido mediante el siguiente formalismo:

apellido: String

nombre: String
Estudiante |

pénsum

< curso-1, ..., curso-N >
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Una de las caracteristicas del objeto abstracto estd dada por el pénsum de la carrera que se encuentra
cursando el estudiante, y para el cual se debe hacer el disefio completo de un TAD. En este caso, las
estructuras de datos incluirian uno de esos objetos:

typedef struct
{ String apellido;
String nombre;
Pensum pensum; /* Objeto del TAD Pénsum */
ListaCurso listaCursos; /* Lista] Curso ] listaCursos */
} TEstudiante, *Estudiante;

Las estructuras de datos también incluyen una lista de cursos (un TAD contenedor Lista y un TAD
componente Curso) como parte del modelaje de un estudiante. Todas las operaciones del TAD Estudiante
deben expresarse en términos de las operaciones de los TAD Pensum, ListaCurso y Curso. Por ejemplo, una
operacion que retorne el numero de créditos que se encuentra cursando un estudiante, se reduce a utilizar
una operacién que retorne cada curso de la lista, y, a cada uno de ellos, invocarle la analizadora que
informa el numero de créditos que tiene. Algo del siguiente estilo:

int numCreditosEst( Estudiante est )
{ inti, acum;
for(i=1, acum = 0; i <= longLista( est->listaCursos ); i++)
acum += numCreditosCurso( infoLista ( est->listaCursos, i) );
return acum;

}

En esta rutina, las operaciones que utiliza de los otros TAD retornan los siguientes valores:

e longLista: numero de elementos de la lista
e infoLista: i-€simo elemento de la lista
e numCreditosCurso: numero de créditos de un curso

J

Ejemplo 1.25:

Suponga que se quieren disefiar las estructuras de datos para el TAD Fila, una contenedora en la cual la
entrada de nuevos elementos se hace por un extremo y la supresion, por el otro. El formalismo grafico para
representar una fila es:

_
x1, ..., XN
—

Ademas de todos los disefios posibles de estructuras de datos, como vectores, apuntadores, etc., es
posible utilizar un objeto de otro TAD contenedor, como seria el TAD Lista, para su representacion interna.
En este caso, el esquema de representacion se debe definir entre los formalismos de los dos objetos
abstractos. Esto es, explicar la manera de colocar cada uno de los componentes de un objeto del TAD Fila
en un objeto del TAD Lista, permitiendo asi almacenar convenientemente toda la informacién. El esquema
se puede resumir graficamente de la siguiente manera:

P —
x1, ..., xN <x1, ..., XN >
P

El formalismo explica que el elemento que se encuentra préximo a salir de la fila se debe colocar en la
primera posicion de la lista, y el ultimo elemento en ingresar, debe colocarse al final de ella. Las
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operaciones, por su parte, deben escribirse en términos de las operaciones del TAD de base, sin entrar en
ningun momento a manipular directamente sus estructuras de datos. Esto implica, que la implementacion
del TAD Fila es completamente independiente de las estructuras de datos que utilice internamente una
lista, teniendo la posibilidad de cambiarlas sin que haya que modificar su implementacion.

J

1.3.11. Esquema de Persistencia

El esquema de persistencia de un TAD define la manera como se salva y lee de memoria secundaria la
informacion asociada con un objeto abstracto: cada objeto es responsable de sobrevivir a la ejecucion del
programa que lo crea. La Unica diferencia con el esquema de representacion interno, mediante estructuras de
datos en memoria principal, es que se debe trabajar con todas las dificultades y restricciones que implica la
administracion de informacion en memoria secundaria, las cuales no se entran a detallar aqui.

Este tema de persistencia se trata unicamente de manera tangencial para mostrar la manera de relacionar el
disefio de un tipo abstracto de dato con todo el problema de disefio de estructuras de datos en memoria
secundaria (bases de datos, archivos, etc.). Los ejemplos que se utilizan a lo largo del libro corresponden a
esquemas triviales, y no deben ser entendidos como la solucidon adecuada para software de alguna
envergadura.

En la figura 1.8 se muestra la relacion entre un objeto abstracto y sus estructuras de datos en memoria
principal y en memoria secundaria. El esquema de persistencia debe cumplir la condicién de validez con
respecto al formalismo del objeto abstracto (v.g. ser capaz de representar completamente su estado interno),
como lo hace el esquema de representacion, y es de esta manera como se garantiza que se puedan
implementar las operaciones de lectura y escritura de un objeto abstracto en memoria secundaria.

En algunos casos las operaciones de persistencia se pueden implementar sobre las demas operaciones del
TAD, haciendo independientes ambos disefios, pero a veces, es mas conveniente escribir directamente las
operaciones de persistencia sobre las estructuras de datos en memoria principal.

leer

Estructuras de datos en Formalismo . Estructuras de datos en
+—r

memoria principal TAD memoria secundaria
Esquema Esquema
representacion persistencia

salvar

Fig. 1.8 - Esquema de persistencia en un TAD

Ejemplo 1.26:

Para el TAD String, un esquema posible de representacién y de persistencia se puede resumir, de manera
grafica, de la siguiente manera:
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Esquema de representacion Formalismo Esquema de persistencia

n

—[cf> .. el "Cq Cp ... Cp" z;

cn

El esquema de persistencia indica la manera de colocar la informacion en un archivo. En este caso, se
utiliza un archivo de texto, en cuyo primer rengldén se coloca el numero de caracteres que conforman la
cadena, seguido de cada uno de los elementos. Cada caracter se coloca en un renglén aparte.

La implementacion de las dos operaciones de persistencia del TAD seria:

String leerStr( FILE * fp )

{

}

int longit;

char car;

String st = inicStr( );

fscanf( fp, "%d", &longit ); /* Lee del archivo el nimero de elementos */

for( ; longit > 0; longit-- )

{  fscanf( fp, "%c", &car ); /* Lee del archivo cada caracter de la cadena */
anexarStr( st, car ); /* Adiciona el nuevo caracter a las estructuras de datos */

}

return st;

void salvarStr( String st, FILE *fp )

{

}

int k, longit = longitudStr( st );
fprintf( fp, "%d\n", longit ); /* Escribe en el archivo el nimero de elementos */
for( k = 1; k <= longit; k--)

fprintf( fp, "%c\n", infoStr( st, k) ); /* Escribe el k-ésimo caracter en el archivo */

Si se quisiera escribir el cédigo de estas rutinas, directamente sobre las estructuras de datos, en lugar de
las llamadas a las operaciones anexarStr 0 longitudStr, se deberian manipular los apuntadores y los nodos
que representan la cadena en memoria principal.

J

Ejercicios Propuestos

1.26.

1.27.

1.28.

1.29.

Disefie diferentes esquemas de representacion y persistencia para el TAD String y haga una tabla para
compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Polinomio y haga una tabla
para compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Poligono y haga una tabla
para compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Lista y haga una tabla para
compararlos.
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1.30.

1.31.

1.32.

1.33.

1.34.

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

Disefio y Manejo de Estructuras de Datos en C

Disefie diferentes esquemas de representacion y persistencia para el TAD Pila y haga una tabla para
compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Fila y haga una tabla para
compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD SuperEntero y haga una tabla
para compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD ColaPrioridad y haga una
tabla para compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Bicola y haga una tabla para
compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Diccionario y haga una tabla
para compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Texto y haga una tabla para
compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD TablaAsociacion y haga una
tabla para compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD Bolsa y haga una tabla para
compararlos.

Disefie diferentes esquemas de representacion y persistencia para el TAD DirectorioTelefonico y haga
una tabla para compararlos.

En las salas de micros de la Facultad se piensa desarrollar un sistema informatico para el manejo
de los turnos. En la actualidad hay 4 salas, cada una con un numero variable de micros. Las salas
funcionan de 7 a.m. a 7 p.m. Los micros de cada sala se encuentran numerados de 0 en adelante.
Cada curso tiene asignada una sala y sélo los estudiantes inscritos pueden trabajar en ellas. En el
momento de reservar un turno, el sistema debe verificar que el carnet del estudiante haga parte de un
curso valido. Un estudiante debe pedir turno el mismo dia en que piensa trabajar.

Las operaciones importantes del sistema son:
e Reservar un turno para un estudiante

¢ Cancelar una reserva de un turno de un estudiante: dados el carnet del estudiante y la hora, el
sistema anula dicho turno.

e Consultar un turno a una hora dada: dados el carnet de un estudiante y la hora, el sistema informa la
sala y el micro en el cual el estudiante tiene turno.

Para el desarrollo del software, se contrataron 4 disefios de estructuras de datos, los cuales se
denominan D-1 hasta D-4, y se presentan a continuacién. Todos los disefios son validos, en el sentido
de que modelan toda la informaciéon importante del problema:
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. 0
D'1 . Ccurso

#sala ——}l carnet | '|—> | carnet |_|

#micros-1

0 | #micros

carne

1"

Las salas estan representadas
por dos vectores: uno con los
cursos, cuyo final viene marcado
por un curso de coédigo 0, y otro
de 4 posiciones, con las planillas
de turnos de cada una de las
salas.

typedef struct

{  Curso cursos[ N [;
Sala salas[ 4 |;

} *Salas;

struct Nodo
{  intcarnet;
struct Nodo *sig;

¥

typedef struct
{ int codigo;

int Nsala;

struct Nodo *est;
} Curso;

typedef struct
{  int Nmicros;
int **turno;

/* Informacién de cada uno de los cursos. Final marcado con cédigo 0 */
/* Informacién de cada una de las salas */

/* Carnet del estudiante */

/* Siguiente nodo en el encadenamiento */

/* Codigo del curso */

/* Ntmero de sala asignada al curso: 0..3 */

/* Lista encadenada con los carnets de los estudiantes del curso */

/* Ntimero de micros en la respectiva sala */

/* Matriz de dimensién [ 0..11, 0.. Nmicros-1 ]. 0 =7 am, 11= 7pm. */

/* Cada casilla tiene un carnet si el turno esta asignado o 0 */

/* El espacio para la matriz lo pide la constructora segin el numero de micros */
/* Este campo se maneja como cualquier matriz: turno[ i ][ j ] */

} Sala;
curso curso
D-2 —
»| carnet e Emd #sala La estr'uctura de datos se basa en
una lista ordenada, con los
—+—| hora |4+—> hora carnets de los esFudlantes, en la
| l cual se referencian los cursos
l #sala #sala que cada uno se encuentra
#micro #micro cursando y los turnos que tiene
reservados.
carnet —> ...
—> .
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struct curso
{ int codigo;
int sala;
struct curso *sig;

1
struct turno
{ inthora;
int sala;
int Nmicro:
struct turno *sig;
1
typedef struct Nodo

{  intcarnet;
struct curso *cursos:
struct turno *turnos;
struct Nodo *sig;

} *Salas;

Disefio y Manejo de Estructuras de Datos en C

/* Codigo del curso */
/* Sala asignada al curso: 0..3 */
/* Siguiente curso en la lista */

/* Hora del turno: 0..11— 0 =7 am,..., 11 = 7pm */
/* Sala en la cual tiene el turno reservado */

/* Ntimero del micro que tiene reservado */

/* Siguiente turno en la lista */

/* Carnet del estudiante. La lista estd ordenada ascendentemente */
/* Lista de cursos que esta tomando el estudiante */

/* Lista de turnos reservados por el estudiante */

/* Siguiente estudiante en la lista */

" —»| curso »|carnet I‘_> -+ |carnet
La estructura de datos se basa en
#sala | ! 4 una lista de cursos, cada uno de
l l los cuales tiene los estudiantes
l en él inscritos. Por su parte, cada
hora estudiante tiene los turnos
#micro pedidos para ese curso.
curso l
#sala l
hora
#micro

struct Turno
{ inthora;
int micro;
struct Turno *sig;

¥

struct Estud

{  intcarnet;
struct Turno *turnos;
struct Estud *sig;

¥

typedef struct Nodo
{ int codigo;

int Nsala;

struct Estud *est;

struct Nodo *sig;
} *Salas;

/* Hora del turno: 0..11—- 0 =7 am,..., 11 =7 pm */
/* Ntimero de micro asignado */
/* Siguiente turno del estudiante */

/* Carnet del estudiante */
/* Turnos del estudiante */
/* Siguiente estudiante en la lista */

/* Codigo del curso */

/* Ntimero de sala asignada al curso */

/* Lista de los carnets de los estudiantes que estan inscritos en el curso */
/* Siguiente curso en la lista */

© Todos los derechos reservados — Jorge Villalobos




Capitulo 1 - Disefio de Software y Tipos Abstractos 77

MAX-1

Compuesta por una planilla de

turnos para las 4 salas, y por 4

carnet listas de cursos, una asociada con

carnet cada sala de micros. La planilla

tiene una fila por cada hora y MAX

carnet

columnas, que corresponde al

carnet

w N =~ O

numero maximo de micros que
puede haber en una sala. En cada

—curso > ...

4

carnet

A WO N -

v

carnet

casilla de la planilla hay 4 espacios,

curso | | para colocar los carnets de los

+ estudiantes que tienen turno en

cada sala. Cuando una sala tiene

menos de MAX micros, se marca

con -1 en la planilla. Si el turno no
ha sido asignado, se marca con 0.

typedef Turno int[ 4 ];

struct Estud
{ intcarnet;
struct Estud *sig;

¥

struct Nodo

{ int codigo;
struct Estud *est;
struct Nodo *sig;

¥

typedef struct

{  Turno turnos[12][MAX];

struct Nodo *salal

struct Nodo *sala2

struct Nodo *sala3

struct Nodo *sala4
} *Salas;

a-) Calcule y explique la complejidad de las operaciones reservar, cancelar y consultar, descritas

b

b
b

b

/* Carnet de los estudiantes que tienen turno en cada una de las salas */
/* 0 = micro libre , -1 = micro inexistente */

/* Carnet del estudiante */
/* Siguiente estudiante en la lista */

/* Codigo del curso */
/* Lista de estudiantes en el curso */
/* Siguiente curso en la lista */

/* Matriz de turnos */

/* Lista de cursos asignados a la sala 1 */
/* Lista de cursos asignados a la sala 2 */
/* Lista de cursos asignados a la sala 3*/
/* Lista de cursos asignados a la sala 4 */

anteriormente, para cada disefio propuesto de estructuras de datos.

b-) Para cada uno de los disefios, desarrolle la operacion para dar un turno a un estudiante, dado el
numero de carnet (int), la hora (int: 7 h - 18 h) y el cédigo del curso al cual pertenece (int). La funcion
debe retornar un entero que indique si fue posible asignar el turno pedido de la siguiente manera: -1,
indica que no fue posible darle un turno, cualquier otro nimero, indica el niumero de micro que le fue

asignado para el turno pedido.

c-) Compare los disefios propuestos y escoja el mejor, justificando claramente su eleccion.
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1.4. Implementacién de las Operaciones de un TAD

En esta seccidn se estudia la segunda etapa de la implementacion de un Tipo Abstracto. Cuando se llega a
este punto, ya se han escogido las estructuras de datos mas adecuadas y se va a hacer la implementacion de
las operaciones.

1.4.1. Esquema de Implementacion en C

Para cada operacion del TAD se debe escribir una funcién en C que simule su comportamiento sobre las
estructuras de datos seleccionadas. Es necesario cefiirse a un estdndar de implementacion, de manera que
en el momento de hacer el mantenimiento del software, se tenga una idea clara de los problemas que puede
producir un cambio en el cédigo.

Un TAD se implementa en dos archivos:

e <nombre>. h: Se denomina el archivo de encabezado del TAD, y contiene una descripcion del objeto
abstracto, la declaracién de las estructuras de datos y el prototipo de cada una de las operaciones,
ordenadas por tipo de operacion. Incluye también las constantes con cédigos de error. Este archivo lo
debe incluir todo programa que utilice el TAD.

Para evitar que el archivo de encabezado de un TAD sea incluido mas de una vez durante una
compilacién, se debe asociar con €l una constante, de tal manera que cuando se incluya el archivo por
primera vez, quede definida, y evite que se vuelvan a incluir las declaraciones. El nombre de la constante
se forma a partir del nombre del archivo de encabezado. Esto se hace utilizando las facilidades de
compilacién condicional que da C:

#ifndef ARCH H
#define  ARCH H

<declaraciones del TAD>

#endif

e <nombre>.c: Contiene las rutinas que implementan las operaciones del TAD. Para aprovechar las
facilidades de compilacion independiente que tiene C, cada uno de estos archivos se debe incluir en el
proyecto (project o makefile), para que el compilador y el encadenador lo consideren como parte del
software.

Ejemplo 1.27:

Para implementar el TAD Conjunto de enteros en un rango, se construyen los archivos conj.h y conj.c, con
todas las declaraciones del TAD y la implementacion de las operaciones respectivamente. Las estructuras de
datos seleccionadas en este caso corresponden a las ilustradas en el siguiente dibujo:

inf
sup

A
O EO: Sy

inf:{x1,...,xN}:sup

A continuacién se presentan los dos archivos que implementan el TAD Conjunto. Como el objetivo del
ejemplo es ilustrar la estructura de los mismos y no su contenido exacto, se eliminé toda la documentacién
de las operaciones, la cual se debe tomar del disefio (comentarios, precondicién y postcondicion, etc.)
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Archivo: conj.h:
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#ifndef  CONJ_H
#define  CONJ H

/* CONSTRUCTORA */
Conjunto crearConj( int infer, int super );

/* MODIFICADORAS */
void insertarConj( Conjunto conj, int elem );
void eliminarConj( Conjunto conj, int elem );

/* ANALIZADORAS */

int estaConj( Conjunto conj, int elem );
int inferiorConj( Conjunto conj );

int superiorConj( Conjunto conj );
#endif

/* */
/* TAD: Conjunto */
/* Objeto abstracto: Conjunto de enteros en un rango definido */
/* Estructuras de datos: Lista sencillamente encadenada de enteros */
/* Manejo de error: Responsabilidad del cliente */
/* */
/* ESTRUCTURAS DE DATOS */
/* */
struct NodoConj
{ intelem; /* Informacién en el nodo */

struct NodoConj *sig; /* Encadenamiento al siguiente */
35
typedef struct
{ intinf, sup; /* Rango de valores del conjunto */

struct NodoConj *primero; /* Cabeza de la lista de valores */
} TConjunto, *Conjunto;
/* */
/¥ OPERACIONES DEL TAD */
/* */

Archivo: conj.c:

#include "conj.h"
#define NULL 0

Conjunto crearConj( int infer, int super )
{ Conjunto pconj = ( Conjunto )malloc( sizeof( TConjunto ) );
pconj->primero = NULL;
pconj->inf = infer;
pconj->sup = super;
return pconj;
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/* */

void insertarConj( Conjunto conj, int elem )

{ struct NodoConj *p = ( struct NodoConj * )malloc( sizeof( struct NodoConj ) );
p->elem = elem;
p->sig = conj->primero;
conj->primero = p;

}

/* */

void eliminarConj( Conjunto conj, int elem )
{ struct NodoConj *q, *p = conj->primero;
if( p->elem == elem )
{  conj->primero = p->sig;
free(p );
H

else
{  for(; p->sig |=NULL && p->sig->elem != elem; p = p->sig );
if( p->sig !=NULL )

{ q=p->sig
p->sig = g->sig;
free( q );
}
}
}
/* */

int estaConj( Conjunto conj, int elem )

{ struct NodoConj *p;
for( p = conj->primero; p != NULL && p->elem !=elem; p = p->sig );
return p = NULL;

H

/* */

int inferiorConj( Conjunto conj )
{ return conj->inf;

}

/* */

int superiorConj( Conjunto conj )
{ return conj->sup;

}
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Ejemplo 1.28:

En este ejemplo se muestra otra implementacion del TAD Conjunto. Fijese que el archivo de encabezado es
igual para ambas implementaciones, salvo por la seccion de estructuras de datos. Esto hace que dos
implementaciones de un mismo TAD se puedan intercambiar al interior de un programa sin ninguna dificultad.
Si en algun momento, a causa de la evolucion del software, se necesita pasar todo el manejo que se hacia
con vectores a apuntadores, basta con remplazar los dos archivos del TAD respectivo y no habra ningun
problema con el funcionamiento del resto del programa, porque nadie podra darse cuenta del cambio.

inf
inf:{x1,...,xN}:sup s:p x1!-inf x2-!inf ... sup-inf
—>{o[of[ofofofoft[ | | [ ] |

Archivo: conj.h:

#ifndef  CONJ_H
#define  CONJ H

/* */
/* TAD: Conjunto */
/* Objeto abstracto: Conjunto de enteros en un rango definido */
/* Estructuras de datos: Vector de booleanos */
/* Manejo de error: Responsabilidad del cliente */
/* */
/* ESTRUCTURAS DE DATOS */
/* */
typedef struct
{ intinf, sup; /* Rango de valores del conjunto */

int *info; /* Vector de booleanos */

} TConjunto, *Conjunto;

/* */
/¥ OPERACIONES DEL TAD */
/* */

/* CONSTRUCTORA */
Conjunto crear( int infer, int super );

/* MODIFICADORAS */
void insertar( Conjunto conj, int elem );
void eliminar( Conjunto conj, int elem );

/* ANALIZADORAS */

int esta( Conjunto conj, int elem );
int inferior( Conjunto conj );

int superior( Conjunto conj );
#endif
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Archivo: conj.c:

#include "conj.h"

Conjunto crear( int infer, int super )
{ inti;
Conjunto pconj = ( Conjunto )malloc( sizeof( TConjunto ) );
pconj->info = (int * )calloc( super - infer + 1,sizeof( int ) );
for(i=0; 1 <super - infer + 1; i++)
pconj->info[ i ] = 0;
pconj->inf = infer;
pconj->sup = super;
return pconj;

}

/* */

void insertar( Conjunto conj, int elem )
{ conj->info[ elem - conj->inf | = 1;

}

/* */

void eliminar( Conjunto conj, int elem )
{ conj->info[ elem - conj->inf | = 0;

}

/* */

int esta( Conjunto conj, int elem )
{ return conj->info[ elem - conj->inf | == 1;

}

/* */

int inferior( Conjunto conj )
{ return conj->inf;

}

/* */

int superior( Conjunto conj )
{ return conj->sup;

}

J

1.4.2. Documentacion

En el archivo de encabezado de un TAD es conveniente agregar la siguiente informacion:

e Informacion administrativa de desarrollo: Nombre, autor, fecha de creacién, fecha de la ultima
modificacion, version, etc.

© Todos los derechos reservados — Jorge Villalobos



Capitulo 1 - Disefio de Software y Tipos Abstractos 83

o Descripcion detallada del objeto abstracto que se maneja.
o Declaracion de las estructuras de datos y la relacion que guardan con el objeto abstracto.
o Restricciones de implementacion del TAD.

e Prototipo de las operaciones, clasificadas por tipo: constructoras, modificadoras, analizadoras,
persistencia, Entrada/Salida.

e Complejidad de cada una de las operaciones.

La indentacién y la documentacion de las rutinas dependen del estandar que utilice cada desarrollador. Sobre
eso se debe consultar cualquier libro de programacioén en C.

1.4.3. Implementacion de la Genericidad

Cuando se va a hacer la implementacion de un TAD genérico, parametrizado por algun tipo de dato, existen
varias opciones:

e Utilizar un lenguaje como C++ que maneja clases paramétricas. Es la solucién ideal.

e El esquema mas sencillo es definir el tipo de dato mediante un typedef, de manera que el TAD quede
planteado en términos generales y solo en el momento de usarlo se define el tipo especifico que se quiere
manejar. Es una aproximacion muy restrictiva, puesto que unicamente permite utilizar una vez en un
programa un TAD.

e Seguir el esquema anterior, pero aprovechar el mecanismo de macros de C, de tal forma que sea posible
generar un TAD distinto para cada tipo de dato que se quiera manejar.

e En lugar de manipular objetos de un TAD es posible manejar sus apuntadores. La idea es definir una
contenedora que contenga apuntadores a void, de tal forma que, en Ultimas, pueda apuntar a objetos de
cualquier TAD. Este enfoque es muy practico, pero el cédigo resultante es oscuro.

1.4.4. Probador Interactivo de un TAD

Durante el proceso de desarrollo y pruebas del software, es conveniente probar por separado cada uno de los
TAD. Por eso, es necesario desarrollar un programa de prueba que presente un menu con todas las
operaciones posibles, y a través del cual el programador pueda validar su implementacion. Este programa
debe quedar como un anexo del software, de tal forma que en la etapa de mantenimiento se cuente con él
como una herramienta.

Ejemplo 1.29:
Programa de prueba para el TAD Conjunto:

#include "conj.h"

void main( void )
{ intcom, elem, i;
Conjunto conj;
conj = crear( 1, 100 );
while( 1)
{  /* Presenta el menu de opciones */
printf( "0. Salir\n" );
printf( "1. Adicionar un elemento\n" );
printf( "2. Eliminar un elemento\n" );
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scanf( "%d", &com );
switch( com )
{ case0: /* Salida del programa */
return;
case I:  /* Operacion de insercion */
printf( "Elemento: " );
scanf( "%d", &elem );
insertar( conj, elem );
break;
case 2:  /* Operacion de supresion */
printf( "Elemento: " );
scanf( "%d", &elem );
eliminar( conj, elem );
break;
H

/* Presenta por pantalla el conjunto */
printf( "\n{ " );
for( i = inferior( conj ); i <= superior( conj ); i++)
if( esta( conj, 1))
printf( "%d ", 1);
printf( "}\n" );
H

J
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CAPITULO 2
ESTRUCTURAS LINEALES: LISTAS

Este capitulo trata el tema de listas, estructuras de datos de uso muy comun en los programas que manejan
agrupamientos de elementos. Presenta también una forma de administrar la nocién de orden al interior de las
listas, para poder, asi, manejar secuencias ordenadas de valores. Por Ultimo, ilustra la forma de implementar
otros TAD sobre el TAD Lista, con el fin de ganar un mayor nivel de independencia.

2.1. Definiciones y Conceptos Basicos

Se define una lista como una secuencia de cero o mas elementos de un mismo tipo. El formalismo escogido
para representar este tipo de objeto abstracto es:

<e1,€e2,....,en>

Cada ej modela un elemento del agrupamiento. Asi, e1 es el primero de la lista, en es el altimo y la lista
formada por los elementos < €2, e3, ..., en > corresponde al resto de la lista inicial. La longitud de una lista
se define como el niumero de elementos que la componen. Si la lista no tiene ningun elemento la lista se
encuentra vacia y su longitud es 0. Esta estructura sin elementos se representa mediante la notacion < >, y
se considera, simplemente, como un caso particular de una lista con cero elementos.

La posicién de un elemento dentro de una lista es el lugar ocupado por dicho elemento dentro de la
secuencia de valores que componen la estructura. Es posible referirse sin riesgo de ambigliedad al elemento
que ocupa la i-ésima posicién dentro de la lista, y hacerlo explicito en la representacion mediante la notacion:
1 2 i n
<el,e2,..,€i .., en>

Esta indica que e; es el elemento que se encuentra en la posicion i de la lista y que dicha lista consta de n

elementos. Esta extension del formalismo sélo se utiliza cuando se quiere hacer referencia a la relacion entre
un elemento y su posiciéon. Para efectos practicos, una posicién es un entero positivo, menor o igual al
numero total de elementos de una lista.

El sucesor de un elemento dentro de una lista es aquél que ocupa la siguiente posicién. Por esta razon, el
unico elemento de una lista que no tiene sucesor es el ultimo. De la misma manera, cada elemento de una
lista, con excepcion del primero, tiene un antecesor, correspondiente al elemento que ocupa la posicion
anterior.

Un proceso muy importante en las estructuras contenedoras de datos es su recorrido. Este consiste en pasar
exactamente una vez sobre cada uno de sus elementos, ya sea para encontrar algun elemento en particular o
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para establecer alguna caracteristica de la estructura (el nimero de elementos, por ejemplo). En las
estructuras lineales este proceso suele hacerse moviéndose en orden de posicion.

Ejemplo 2.1:
Para la lista representada mediante el objeto abstracto < 1, 3, 5,7, 11, 13, 17, 19 >, se tiene que:

o 1 eselprimerelemento, 19 es el Ultimoylalista<3, 5,7, 11,13, 17, 19 > es el resto
e Lalongitud de la listaes 8

e La posicion del elemento 13 es 6

o Elsucesorde 11 es13yelsucesorde 5es?7

o Elantecesorde 19 es 17

J

A continuacion se dan algunas definiciones importantes sobre listas, las cuales se ilustran en el ejemplo 2.2.
Otras definiciones se presentan como parte de los ejercicios propuestos.

o Dos listas Istl y Ist2 son iguales si ambas estructuras tienen el mismo numero de componentes v,
ademas, sus elementos son iguales uno a uno. En particular, dos listas vacias son iguales.

e Dos listas Istl y Ist2 son semejantes si tienen los mismos elementos aunque estén en diferente orden. Si
existe un elemento repetido en Istl, debe aparecer el mismo numero de veces en Ist2.

e Una lista Ist2 es una sublista de una lista Istl si todos los elementos de Ist2 se encuentran en Istl,
consecutivos y en el mismo orden (también se puede decir que Ist2 ocurre en Istl). En particular, una lista
vacia ocurre en cualquier otra lista, y una lista es sublista de si misma.

e Una lista Ist2 esta contenida en una lista Istl, si todos los elementos de Ist2 estan en Istl, aunque sea en
diferente orden. Esta es una nocién de contenencia parecida a la de conjuntos.

e Una lista Ist es ordenada si los elementos contenidos respetan una relaciéon de orden < definida sobre
ellos, de acuerdo con la posicién que ocupan (i.e. ej < ex V i < k). Esto es equivalente a afirmar que la lista

Ist=<eq,e2,...,ep>esordenada, siej<ej4q Vi|1<i<n.

Ejemplo 2.2:

Para las listas representadas mediante los siguientes objetos abstractos:
Ist1=<1,3,5,7,9> Ist4 =<5,6,7>
Ist2=<1,2,3,4,5,6,7,8,9> Ist5 =<6,5,7>
Ist3=<5,6,7>

Se cumple que:
o Ist3 esigual a Ist4
e Ist3 es semejante a Ist4 y a Ist5

o Istl, Ist2, Ist3 y Ist4 son listas ordenadas, con la relacion de orden < definida sobre los numeros
naturales.

e Ist3 es sublista de 1st2
e Istl esta contenida en Ist2
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2.2. EI TAD Lista

Existen muchos disefios posibles de un TAD para manejar los objetos abstractos descritos en la seccion
anterior. Como parte de los ejercicios se sugieren otros conjuntos de operaciones diferentes al presentado en
esta parte. Aqui, se aprovecha la oportunidad para ilustrar la manera de administrar la nocién de estado en un
TAD contenedor. Este disefio va a permitir un uso muy eficiente de las listas en los diferentes problemas en
que se usen.

Se define la ventana de una lista como el lugar de la secuencia sobre el cual se van a realizar las
operaciones que se apliquen al objeto abstracto. De cierta manera, se puede ver como el unico punto de la
lista visible al usuario. Esto implica que el TAD, ademas de las operaciones usuales, debe tener operaciones
para mover la ventana, de tal manera que se pueda colocar sobre cualquier elemento de la lista y afectarlo de
la manera deseada. El formalismo extendido es el siguiente:

|

1 2 n
<el, e2, , ..., €N >

En él se hace explicito que la ventana se encuentra sobre un elemento dado de la lista (el i-ésimo). Un caso
particular es la lista vacia, en la cual la ventana se encuentra indefinida, ya que no puede estar situada sobre
ningun elemento. Este estado posible del objeto abstracto se representa asi:

<>[]

Otra situacion posible de la ventana es que no esté situada sobre ningun elemento, aunque la lista no esté
vacia. También en este caso se dice que la ventana esta indefinida y se denota de la siguiente manera:

1 2 i n
<el,e2,..,ei,..,en> |:|

La definicion del TAD Lista se presenta a continuacion, siguiendo el esquema de especificacion expuesto en
el capitulo anterior, y dejando todo el manejo de error como responsabilidad del usuario:

TAD Lista[ TipoL ]

1 2 n
<etl,e2,..[e],..en>

{inv: n>0, ej pertenece a TipoL }

Constructoras:

. inicLista: — Lista
Modificadoras:

. anxLista: Lista x TipoL — Lista
. insLista: Lista x TipoL — Lista
. elimLista: Lista — Lista
. primLista: Lista — Lista
. ultLista: Lista — Lista
. sigLista: Lista — Lista
. posLista: Lista x int — Lista
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Analizadoras:

. infoLista: Lista — TipoL
. longLista: Lista — int
. finLista: Lista — int

Lista inicLista( void )
/* Crea y retorna una lista vacia */

{ post: inicLista = < >}

void anxLista( Lista Ist, TipoL elem )
/* Agrega un elemento después de la ventana */

{pre:Ist=LST,Ist=<>0vIst=<x4, .., ,...,xn>}
{post:(LST=<>D,Ist:<>)v(LST:<x1,..., ,...,xn>,lst:<x1,...,xi, ,...,xn>)}

void insLista( Lista Ist, TipoL elem )
/* Agrega un elemento antes de la ventana */

{pre:Ist=LST,Ist=<>0vIst=<xq, .., ,...,xn>}

{post:(LST:<>D,Ist:<>)v(LST:<x1,..., .,xn>,lst:<x1,...,xi_1,,xi,...,xn>)}

void elimLista( Lista Ist )

/* Elimina el elemento que se encuentra en la ventana */

{pre:Ist=LST =<xq, ..., , T

{post:(LST:< > Ist=<>0)v (LST =<xq, > Ist=<Xq, ..., Xp1 >0 ) v
(LST = <xq, s X >y ISt = <X, X501, v Xp > )}

void primLista( Lista Ist )
/* Coloca la ventana sobre el primer elemento de la lista */

{pre:Ist=LST}
{post:(LST:<>D,Ist:<>D)v(LST:<x1,...,xn>,lst:< , e Xn > )}

void ultLista( Lista Ist )
/* Coloca la ventana sobre el tltimo elemento de la lista */

{pre:Ist=LST}
{post: (LST=<>l],Ist=<>) v (LST=<Xq, ..., Xn >, Ist:<x1,...,>)}
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void siglLista( Lista Ist )
/* Avanza la ventana una posicion */

{pre:Ist = LST = < xq, ...,,...,xn>}
{ post: (LST = <xq, xn >, Ist = < xq, ...,xi, s Xp > )V
(LST = <xq, > Ist=<xq, ..., xp>0)}

void posLista( Lista Ist, int pos )
/* Coloca la ventana sobre el pos-ésimo elemento de la lista */

{post:(pos<1vpos>n,lst:<x1,...,xn>D)v(Ist:<x1,...,,...,xn>)}

TipoL infoLista( Lista Ist )
/* Retorna el elemento de la ventana */

{ pre: Ist = < xq, s Xp >}
{ post: infoLista = xj }

int longLista( Lista Ist )
/* Retorna el nUmero de elementos de la lista */

{ post: longLista =n}

int finLista( Lista Ist )
/* Informa si la ventana esta indefinida */

{ post: (Ist=<xq, ..., xy >0, finLista = TRUE ) v (Ist = < x1, ..., Xp >, finLista = FALSE ) }

2.3. Ejemplos de Utilizacién del TAD

En esta seccidon se muestran algunos ejemplos sencillos de como utilizar las operaciones del TAD Lista, para

desarrollar algoritmos que resuelvan problemas sobre este tipo de estructuras.

Ejemplo 2.3:

Imprimir el contenido de una lista de enteros. La complejidad de esta rutina es O( n ), donde n es la longitud

de la lista.
/* post: se han impreso todos los elementos de la lista */

void imprimirLista( Lista Ist )
{ for( primLista( Ist ); !finLista( Ist ); sigLista( Ist ) )

printf( "%d ", infoLista( Ist ) ); /* En el caso general, en lugar del printf debe ir la llamada */

} /* de la rutina que imprime un elemento de tipo TipoL */
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J

Al comienzo del ciclo, la rutina sitia la ventana de la lista sobre el primer elemento y, luego, la va
colocando secuencialmente sobre cada uno de los demas elementos, hasta que la ventana queda
indefinida. Cada vez que un elemento queda en la ventana, se manda imprimir. El invariante del ciclo es:

{ inv: se han impreso los elementos anteriores a la ventana }

Esta es la estructura tipica de todas las rutinas que deben recorrer secuencialmente una lista.

Ejemplo 2.4:

Hacer una copia de una lista. La complejidad de esta rutina es O( n ), donde n es la longitud de la lista.

J

/* post: copiarLista es una copia de /st */

Lista copiarLista( Lista Ist )
{ Listaresp = inicLista( );
for( primLista( Ist ); !finLista( Ist ); sigLista( Ist ) )
anxLista( resp, infoLista( Ist) );
return resp;

}

La rutina recorre secuencialmente la lista Ist, y, por cada elemento que encuentra, llama la operacion de
anexar sobre la lista de respuesta. El invariante del ciclo asegura que cuando la ventana de la lista Ist se
encuentre situada sobre el elemento x;, en la lista de respuesta resp habra una copia de los elementos x4...

Xj.1. Ademas, afirma que la ventana estara sobre el ultimo elemento de la lista de respuesta:

{ iI’lV: 15t:<x1""’7"'5 Xn >: I‘CSp:<X1,,_., > }

Ejemplo 2.5:

Concatenar dos listas Istl y Ist2, dejando el resultado en la primera de ellas. La complejidad de esta rutina es

O(

J

m ), donde m es la longitud de la segunda lista.

/* pre: Istl =<X1, ..., Xpn >, Ist2 =LST2 =<y1, ..., ym > */
/* post: Istl =<Xx1, ..., Xp, Y1, ---» Ym >, Ist2 = LST2 */

void concatLista( Lista Ist1, Lista Ist2 )
{ ultLista( Istl );
for( primLista( Ist2 ); !finLista( Ist2 ); sigLista( Ist2 ) )
anxLista( Istl, infoLista( Ist2 ) );
H

Antes de comenzar el recorrido de la lista Ist2, la rutina coloca la ventana de la lista Istl sobre su ultimo
elemento, de tal forma que sea posible agregarle los elementos de Ist2 a medida que se avanza sobre ella.
El invariante asegura que cuando la ventana de la segunda lista se encuentre sobre el elemento y;, todos

los anteriores elementos (y1, ..., ¥j.1) Ya habran sido agregados adecuadamente a Istl.

{inv: Istl =<X1,..., Xn, Y1, ..., > Ist2 =<y, ..., e Ym >}

© Todos los derechos reservados — Jorge Villalobos



Capitulo 2 - Estructuras Lineales: Listas 91

Ejemplo 2.6:

Invertir una lista, destruyendo la lista original. La complejidad de esta rutina es O( n ), donde n es la longitud
de la lista.

/* pre: Ist = < X1,...,Xpn > ¥/

/* post: invLista = < xp, ..., X] >, Ist=<>[*/

Lista invLista( Lista Ist )
{ Listaresp = inicLista( );
for( primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
insLista( resp, infoLista( Ist) );
return resp;

}

Esta rutina es muy parecida a la de copiar una lista, con la diferencia de que, en lugar de anexar los
elementos al final, los va insertando antes del primero. El invariante afirma que en el momento en el cual el
elemento x; se encuentre en la primera posicion de la lista, todos los anteriores elementos (x1, ..., Xj.1) ya

se habran colocado en sentido inverso en la lista de respuesta.

{inv: lst:<,...,xn>,resp:< y s X1}
bl

Ejemplo 2.7:

Localizar el elemento elem en la lista Ist. Si hay varias ocurrencias del elemento, deja la ventana en la primera
de ellas. La complejidad de esta rutina es O( n ), donde n es la longitud de Ia lista.

/* pre: Ist = <Xx1, ..., Xp > */
/* post: (Ist=<x1 ,..., s .. Xn >, Xj = elem, xg !=elem, Vk <i) v (Ist=<xq, ..., x, >, xj 1=elem, Vi) */
void buscarLista( Lista Ist, TipoL elem )

{ for( primLista( Ist); !finLista( Ist ) && infoLista( Ist) != elem; sigLista( Ist) );
H

El ciclo de la rutina hace un recorrido completo de la lista, y termina cuando aparece el elemento que se
esta buscando, o cuando la lista se termina. El invariante es el siguiente:

{inv: Ist = <x1, ..., , ..., Xp >, Xk !=elem, Vk <i}

J

Ejemplo 2.8:

Eliminar todas las ocurrencias de un elemento en una lista. La complejidad de esta rutina es O( n ), donde n
es la longitud de la lista.
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/* post: se han eliminado todas las ocurrencias de elem en Ist */

void elimTodosLista( Lista Ist, TipoL elem )
{ primLista( Ist);
while( !finLista( Ist) )
if ( infoLista(Ist) == elem )
elimLista( Ist );
else
sigLista( Ist );
H

La rutina recorre la lista con un ciclo que avanza, algunas veces, eliminando el elemento de la ventana, y
otras, colocandola sobre su sucesor, segun se trate del elemento que se quiere eliminar o de otro. El
invariante del ciclo es:

{ inv: se han eliminado las ocurrencias de elem anteriores a la ventana }

J

Ejemplo 2.9:

Decidir si dos listas son iguales. La complejidad de esta rutina es O( n ), donde n es el mayor valor entre las
longitudes de las listas. La razon de esto es que, en el peor de los casos, las listas tienen la misma longitud, y
debe recorrerlas hasta el final para informar que son iguales. Dicho valor se puede acotar siempre con la
mayor de las longitudes de las listas.

/* post: igualesListas = ( Is¢] es igual a Isz2 ) */

int igualesListas( Lista Ist1, Lista 1st2 )
{ if (longLista( Istl ) !=longLista( Ist2 ))
return FALSE;
else
{ primLista( Istl );
primLista( Ist2 );
while( !finLista( Istl ) && infoLista( Istl ) == infoLista( Ist2 ) )
{ sigLista( Istl );
sigLista( Ist2 );
}

return finLista( Istl );

}

El caso en el cual las dos listas tienen diferente longitud se trata como una situaciéon aparte, evitando que
la rutina haga comparaciones inutiles entre los elementos. El ciclo avanza hasta que termina la primera
lista (como son de la misma longitud, se podria utilizar también como condicién de salida la finalizaciéon de
la lista Ist2), o hasta que encuentra un elemento en la posicién i de las dos listas, que sea diferente. El
invariante asegura que cuando la ventana de cada una de las listas esté sobre su i-ésimo elemento, todos
los elementos hasta este punto habran sido iguales uno a uno.

{inv: Istl =<x1, ...,,...,xn>, Ist2 =<y1, ..., e VN> Xk =Yk, 1 £k <i}
J
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Ejemplo 2.10:

En este ejemplo se presenta otra solucién al problema de decidir si dos listas Istl y Ist2 son iguales. La
complejidad de esta rutina depende basicamente de la complejidad de la operacién posLista, que en la
mayoria de implementaciones va a ser O( n ), donde n es el numero de elementos de la lista. Esto hace que

la complejidad de la rutina completa varie entre O( n )y O( n2 ), segun la implementacion escogida. Por esa
razén, se considera mejor la solucion presentada en el ejemplo anterior, cuya eficiencia es independiente de
la implementacion.

J

/* post: igualesListas = (Istl es igual a Ist2 ) */

int igualesListas( Lista Ist1, Lista 1st2 )
{ inti;
if ( longLista( Istl ) !=longLista( Ist2 ) )
return FALSE;
else
{ for(i=1;1i<=longLista( Istl ); it++)
{  posLista(Istl,i);
posLista( Ist2,1);
if (infoLista( Ist] ) != infoLista( Ist2 ) )
return FALSE;

§
return TRUE;

}

La estructura de la rutina es similar a la utilizada en el ejemplo anterior, pero se utiliza un mecanismo
diferente para avanzar la ventana sobre los elementos de las listas. Mientras en este caso se localiza
haciendo una llamada a la operacion posLista, antes, se hacia un barrido secuencial utilizando la operacion
sigLista. El invariante es idéntico al del ejemplo anterior.

inv:lst1:<x1,...,,...,xn>,lst2:< 1,..., e ¥Yn > Xk =Yk, 1 £k <i
y y y

Ejemplo 2.11:

Indicar si una lista se encuentra ordenada. La complejidad de esta rutina es O( n ), donde n es la longitud de
la lista.

/* pre: Ist = < X1,..., Xp > */

/* post: ordenadaLista = ( x j < Xj+1 ) */

int ordenadaLista( Lista Ist )
{ TipoL anterior;
if (longLista( Ist) ==0) return TRUE;
else
{  primLista( Ist);
for( anterior = infoLista( Ist ), sigLista( Ist ); !finLista( Ist ) && infoLista( Ist ) >= anterior; sigLista( Ist ) )
anterior = infoLista( Ist );
return finLista( Ist );
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La rutina se basa en la idea de que cada elemento de la lista debe ser mayor que su antecesor. Asi, es
suficiente con recorrer la lista y llevar en una variable auxiliar el elemento anterior al de la ventana. Si en
algun caso dicho elemento es mayor que el actual, la lista no es ordenada. El avance del ciclo se hace
actualizando el valor de la variable temporal que lleva el anterior y moviendo la ventana. El invariante del
ciclo es el siguiente:

{inv: Ist=<x1,...,.=,..., xy >, Ist es ordenada hasta xj.1, anterior = xj-1 }

J

2.4. Otras Operaciones Interesantes

El TAD definido anteriormente se puede enriquecer con operaciones de manejo de persistencia y destruccion,
de acuerdo con la siguiente especificacion:

TAD Lista[ TipoL ]

Destructora:
. destruirLista: Lista

Persistencia:
. cargarLista: FILE * — Lista
° salvarLista: Lista x FILE *

void destruirLista( Lista Ist )
/* Destruye el objeto abstracto, retornando toda la memoria ocupada por éste */

{ post: la lista Ist no tiene memoria reservada }

Lista cargarLista( FILE *fp )
/* Construye una lista a partir de la informacion de un archivo */

{ pre: el archivo esta abierto y es estructuralmente correcto, de acuerdo con el esquema de persistencia }
{ post: se ha construido la lista que corresponde a la imagen de la informacion del archivo }

void salvarLista( Lista Ist, FILE *fp )
/* Salva la lista en un archivo */

{ pre: el archivo esta abierto }
{ post: se ha hecho persistir la lista en el archivo, la ventana de la lista esta indefinida }

Ejemplo 2.12:

Traer de memoria secundaria una lista, modificar su contenido eliminando todas las ocurrencias de un valor
dado y hacer persistir de nuevo la lista resultante. La complejidad es O( n ), donde n es la longitud de la lista.
Se debe tener en cuenta que la constante asociada con la funcién cota es muy alta, dado el elevado costo en
tiempo que tiene el acceso a la informacion en memoria secundaria.

/* pre: el archivo nombre existe y corresponde a una lista que ha persistido en memoria secundaria */
/* post: en el archivo nombre ha persistido la lista inicial, sin ninguna ocurrencia del valor val*/
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void actualizarLista( char nombre][ |, TipoL val )
{ FILE *fp = fopen( nombre, "r" );

Lista Ist = cargarLista( fp );

fclose( fp );

elimTodosLista( Ist, val );

fp = fopen( nombre, "w"

salvarLista( lst, fp );

fclose( fp );

destruirLista( Ist );

}

Para cada uno de los objetos abstractos temporales que se utilicen en cualquier funcién, es necesario
llamar la respectiva operaciéon de destruccién, de tal forma que se recupere la memoria que se reservo
para su almacenamiento. Si no se hace esto, se estara desperdiciando espacio en memoria por cada
llamada de la funcién. Esto sucede porque los objetos abstractos se localizan siempre en memoria
dinamica, y ésta no se recupera automaticamente al terminar la rutina que la reservé.

J

Ejemplo 2.13:

Las operaciones de persistencia reciben como parametro un archivo abierto, para permitir que mas de un
objeto abstracto se pueda salvar bajo el mismo nombre. Es valido, por ejemplo, o que se muestra en las
siguientes rutinas:

void salvarListas( char nombre[ ], Lista 11, Lista 12, Lista 13 )
{ FILE *fp = fopen( nombre, "w" );

salvarLista( 11, fp );

salvarLista( 12, fp );

salvarLista( 13, fp );

fclose( fp );

}

void cargarListas( char nombre[ ], Lista *11, Lista *12, Lista *13 )
{ FILE *fp = fopen( nombre, "r" );

*11 = cargarLista( fp );

*]2 = cargarLista( fp );

*]3 = cargarLista( fp );

fclose( fp );
H

La operacion que lee una lista de un archivo toma unicamente la informacion asociada con la lista (segun
el esquema de persistencia del TAD), y deja el archivo listo para que el siguiente objeto abstracto alli
almacenado se pueda recuperar.

J

Adicional a estas tres nuevas funciones del TAD, es conveniente agregar una operacion que permita guardar
en una variable auxiliar la ventana de una lista, de manera que sea posible restaurarla de manera eficiente,
sin necesidad de utilizar la operacion posLista, la cual puede tener una complejidad lineal en algunas
implementaciones. Esta variable auxiliar pertenece a un tipo interno del TAD llamado Ventana. La siguiente es
la especificacion de la pareja de operaciones que permite guardar y recuperar la ventana de una lista. En el
ejemplo 2.14 se ilustra el uso de esta nueva facilidad.
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Analizadora:
. ventanalista: Lista — Ventana

Modificadora:
. situarLista: Lista x Ventana — Lista

Ventana ventanalLista( Lista Ist )
/* Retorna una marca sobre la ventana actual de la lista */

{pre:lst=<xq, ..., ,...,xn>}

ventanalLista

{ post: Ist = < xq, ..., s Xp >}

Ventana situarLista( Lista Ist, Ventana vent )
/* Coloca la ventana de una lista sobre la marca dada */

vent

v

{pre: Ist = < xq, .., Xk, , ..., Xn >, vent €s una marca sobre una ventana de la lista Ist, no se han
hecho modificaciones sobre la lista desde el momento en que se tomd la marca }

vent

{ post: Ist = < xq, ..., s Xiy e s Xp >}

Ejemplo 2.14:
Indicar si una lista es sublista de otra. La primera soluciéon que se plantea utiliza la operacion posLista para

volver a situarse sobre la primera estructura. Tiene una complejidad de O( n?2 ) (en cualquier implementacion
sobre apuntadores), donde n es la longitud de la primera lista. La razén de esto es que la complejidad exacta
de la rutina es O( n * max( n, m) ), pero n > m (para que entre al ciclo aunque sea una vez). Luego se puede

afirmar que en el peor de los casos es O( n2 ).

/*pre: 1l =<X1,...,Xpn >, 12=<y1,....,ym > */
/* post: indica si 12 es una sublista de 11 */

int ocurreLista( Lista 11, Lista 12 )
{ inti;
for(i=1;1<=longLista( 11 ) - longLista( 12 ) + 1; i++)
{ posLista(11,1);
for( primLista( 12 ); !finLista( 12 ) && infoLista( 11 ) == infoLista( 12 ); sigLista( 11 ), sigLista( 12 ) );
if( finLista(12))
return TRUE;

i
return FALSE;

}

La segunda solucién utiliza el mecanismo de dejar una marca sobre la ventana de la primera lista, de
manera que pueda volver a situarse sobre ella en complejidad constante. La funcién es O( n * m ) para
cualquier implementacion.
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/* pre: Istl = <X1,..., Xp >, Ist2 =<<y1,...,ym > */
/* post: indica si Ist2 es una sublista de Ist1 */

int ocurreLista( Lista 11, Lista 12 )

{

}
J

int i;
Ventana v;
for( primLista(ll ), i=1; i <= longLista( 11 ) - longLista( 12 ) + 1; i++, sigLista( 11 ))
{  v=ventanaLista( 11 );
for( primLista( 12 ); !finLista( 12 ) && infoLista( 11 ) == infoLista( 12 ); sigLista( 11 ), sigLista( 12 ) );
if( finLista( 12 ))
return TRUE;
situarLista( 11, v );
H
return FALSE;

Ejercicios Propuestos

Especifique formalmente (precondicién y postcondiciéon) y desarrolle una rutina en C para resolver los
siguientes problemas. Calcule la complejidad de la solucion, suponiendo que todas las operaciones del TAD
Lista son O(1).

21.

2.2,

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

void adicLista( Lista Ist, TipoL elem )
/* Adiciona el elemento elem al final de Ist */

void sustLista( Lista Ist, TipoL elem )
/* Sustituye el contenido actual de la ventana por el valor elem */

int estalista( Lista Ist, TipoL elem )
/* Indica si el elemento elem aparece en la lista */

void imprimirLista( Lista Ist )
/* Imprime los elementos de la lista, utilizando la operacién posLista para avanzar */

void antLista( Lista Ist )
/* Coloca la ventana en la posicion anterior a la actual */

int posVentanalLista( Lista Ist )
/* Retorna la posicion de la ventana en Ist */

void simplificarLista( Lista Ist )
/* Deja en Ist una sola ocurrencia de cada uno de los elementos presentes */

int numDiferentes( Lista Ist )
/* Retorna el niumero total de elementos diferentes en Ist */

int numOcurre( Lista Ist, TipoL elem )
/* Calcula el numero de veces que aparece elem en Ist */

TipoL maxOcurre( Lista Ist )
/* Retorna el elemento que aparece un mayor nimero de veces en la lista no vacia Ist */

int ultOcurre( Lista Ist, TipoL elem )
/* Retorna la posicion de la ultima aparicion de elem. Si no ocurre, retorna 0 */
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2.12.

2.13.

2.14,

2.15.

2.16.

2.17.

2.18.

2.19.

2.20.

2.21.

2.22.

2.23.

Disefio y Manejo de Estructuras de Datos en C

int medioOcurre( Lista Ist, TipoL elem )

/* Retorna la posicion de la aparicion media del valor elem, la cual cumple que existen tantas
ocurrencias del elemento antes que él (incluyéndolo, si hay un nimero par de apariciones) que después
de él. Por ejemplo, para la lista de valores enteros < 1, 4, 2, 5, 2, 6, 2, 1, 6, 2, 6 >, la posicion de la
aparicion media del valor 2 es 5, la posicion de la aparicion media del valor 6 es 9, y la del valor 5 es 4.
Si no ocurre, retorna 0 */

void podarLista( Lista Ist )

/* Deja en lIst una sola ocurrencia de cada uno de los elementos presentes, garantizando que sea la
aparicion media del elemento la que permanezca. Por ejemplo, después de podar la lista de valores
enteros <1,4,2,5,2,6,2,1,6, 2,6 >, seobtienelalista<1,4,52,6> *

int localizarLista( Lista Ist, TipoL elem, inti )
/* Retorna la posicién de la i-ésima ocurrencia del valor elem en la lista Ist. Si hay menos de i
ocurrencias, retorna el valor 0 */

void partirLista( Lista Ist, Lista Ist1, Lista Ist2, TipoL elem )
/* Deja en Istl todos los elementos de Ist menores que elem, y en Ist2 los mayores a dicho elemento.
Suponga que las listas Istl y Ist2 llegan inicializadas y vacias a la rutina */

TipoL medianalLista( Lista Ist )

/* La mediana de una lista se define como el elemento de dicha secuencia tal que la mitad de los
elementos son menores que él y la otra mitad mayores o iguales. Suponiendo que la lista Ist es no
vacia, no ordenada y sin elementos repetidos, esta funcién calcula su mediana */

Lista binario( int num )
/* Retorna la lista de ceros y unos correspondiente a la representacion binaria del entero positivo num.
Por ejemplo, si num = 215, binario=<11010111>%/

int esPalindrome( Lista Ist )
/* Una lista de caracteres es un palindrome si es igual leerla de izquierda a derecha que de derecha a
izquierda. Por ejemplo, son palindromes:
<ANITALAVALATINA>
<DABALEARROZALAZORRAELABAD>
Esta funcidn indica si la lista Ist es un palindrome */

int semejantesListas( Lista Ist1, Lista Ist2 )
/* Informa si las listas Istl y Ist2 son semejantes */

TipoL mayorElemento( Lista Ist )
/* Retorna el elemento de la lista Ist cuyo valor es maximo, suponiendo la existencia de una relacion de
orden < definida entre los elementos de la lista. La lista Ist no es vacia */

void rotarLista( Lista Ist, int n )

/* Esta rutina rota n posiciones los elementos de la lista Ist. Rotar una posicion significa pasar el primer
elemento de la lista a la ultima posicion y desplazar todos los demas elementos una posicion hacia la
izquierda. n puede ser mayor que la longitud de la lista. n es mayor o igual a cero */

int igualOcurre( Lista Ist )
/* Indica si todos los elementos de la lista aparecen igual numero de veces */

int mayorLista( Lista Ist1, Lista Ist2 )

/* Informa si la lista Ist] es mayor que la lista Ist2, utilizando el siguiente criterio para decidir si una lista
es mayor que otra:

Sealstl =<a1q,a,...,an>ylst2=<b1, bo, ..., bm >, se dice que Istl es mayor que Ist2 si:

1.(aj=bj1<i<m)y(n>m) 02 3j<nj<m|(aj=bj1<i<j)y(aj>bj)*/
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2.24. [F) int contieneLista( Lista Ist1, Lista Ist2 )
/* informa si la lista Ist2 esta contenida en la lista Istl */

2.25. intinsertarlLista( Lista Ist1, Lista Ist2, int pos )
/* Inserta la lista 1st2 en la lista Istl de manera que el primer elemento de Ist2 quede en la posicidn pos
de Istl */

2.26. void eliminarLista( Lista Ist, int p1, int p2 )
/* Elimina de Ist los elementos comprendidos entre la posicién pl y la posicién p2 inclusive */

2.27. void elimOcurrelLista( Lista Ist1, Lista Ist2 )
/* Elimina todas las ocurrencias de la lista Ist2 en la lista Ist1 */

2.28. void ordenarLista( Lista Ist )
/* Ordena ascendentemente la lista Ist */

2.29. intintLista( Lista Ist)
/* 1st es una lista de digitos. intLista es el entero que se puede crear a partir de esa lista. Por ejemplo, si
Ist=<4,2,1,4 >, intLista = 4214 */

2.30. void diferenciaLista( Lista Ist1, Lista Ist2 )
/* Elimina de la lista Istl todos los elementos que aparecen en la lista Ist2 */

2.31. void sumarLista( Lista Ist1, Lista Ist2 )
/* 1stl y Ist2 son listas de digitos que representan un nimero entero. Esta rutina suma a Istl la lista Ist2.
Por ejemplo, si Ist1 =<4, 2, 1,4 >y Ist2 = < 3, 4 >, después de la llamada a la funcién sumarLista el
valor de Istl es < 4,2,4,8>"*/

2.32. void restarLista( Lista Ist1, Lista Ist2 )
/* 1stl y Ist2 son listas de digitos que representan un nimero entero. Esta rutina resta de Istl la lista Ist2.
Por ejemplo, silst1 =<4,2, 1,4 >ylst2 = < 3, 4 >, después de la llamada a la funcién restarLista el
valor de Istl es <4, 1,8,0>"*/

2.5. Esquema de Persistencia

Hacer persistir una lista, no es una labor muy complicada. Basicamente, se debe almacenar en memoria
secundaria el numero de elementos que la componen vy la informacién asociada con cada uno de ellos. Las
operaciones de persistencia deben suponer que cada uno de los elementos de la lista tiene una operacion
asociada para leer y escribir en el disco (leerTipo y salvarTipo). Si se trata de un tipo simple, es posible utilizar
las rutinas fscanf'y fprintf directamente.

Un posible esquema de persistencia para una lista se puede expresar graficamente de la siguiente manera:

n
<x1, .., xn> x1

Xn

Las rutinas que implementan estas dos operaciones, expresadas en términos de las operaciones del TAD,
son las siguientes:
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Lista cargarLista( FILE *fp )
{ Lista Ist = inicLista( );

TipoL elem;
int longit;
fscanf( fp, "%d", &longit ); /* Lee el nimero de elementos */
for( ; longit > 0; longit-- )
{ elem = leerTipo( fp ); /* Lee cada elemento de la lista */
anxLista( Ist, elem ); /* Adiciona el nuevo elemento al final de la lista */
H
return Ist;
H
void salvarLista( Lista Ist, FILE *fp )
{ fprintf( fp, "%d\n", longLista( Ist ) ); /* Escribe en el archivo el nimero de elementos */
for( primLista( Ist ); !finLista( Ist ); sigLista( Ist ) )
salvarTipo( infoLista( Ist ), fp ); /* Escribe el siguiente elemento en el archivo */
H

2.6. Algunas Implementaciones del TAD Lista

En esta parte se presentan varias implementaciones posibles para el TAD Lista, entre las cuales estan: listas
doblemente encadenadas, vectores, listas encadenadas con centinela y listas encadenadas con encabezado.
Como parte de los ejercicios se proponen otras representaciones internas.

2.6.1. Estructura Doblemente Encadenada

En esta representacion, la lista tiene un nodo con apuntadores al primer elemento, al ultimo y al elemento de
la ventana. Los nodos, por su parte, se encuentran doblemente encadenados entre si, para permitir que las

modificadoras se puedan implementar con algoritmos O( 1 ). El esquema de representacion se puede resumir
en los siguientes tres casos:

La lista vacia ( Ist = < >[1 ) se representa internamente como un apuntador a un registro, tal como se
muestra en la figura:

Ist j
longitud 0
primero —
ventana T
ultimo =
e Enelcaso general, la lista Ist =< x4, , ... » Xp > utiliza las siguientes estructuras de datos:
Ist _l
longitud n
primero
ventana
ultimo ..

I ! )
....... PR [ e [T aumg®
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e Sila ventana esta indefinida ( Ist =< x4, ... , x4 > ), se coloca el valor NULL en el respectivo campo del

encabezado.
longitud n
primero

ventana | *—

ultimo L

Las estructuras de datos se declaran de la siguiente manera, definiendo una lista como un apuntador a su
nodo de encabezado:

typedef struct ListaNodo
{ TipoL info; /* Elemento de la lista */

struct ListaNodo *ant, *sig; /* Encadenamientos hacia adelante y hacia atras */
} *pListaNodo;

typedef struct

{ pListaNodo primero, /* Primer elemento de la lista */
ultimo, /* Ultimo elemento de la lista */
ventana, /* Elemento en la ventana de la lista */

int longitud;
} TLista, *Lista;

typedef pListaNodo Ventana; /* Marca para almacenar la ventana de la lista */

Algunas de las rutinas que implementan las operaciones del TAD se dan a continuacién, con una pequefna
explicacion de su funcionamiento. El resto de operaciones aparecen desarrolladas en el disquete de apoyo.

Para crear una lista vacia basta con pedir a la memoria dinamica el nodo de encabezado, y llenarlo de
acuerdo con el primer caso del esquema de representacion:

Lista inicLista( void )
{ Listaresp;
resp = ( Lista )malloc( sizeof( TLista ) );
resp->primero = resp->ultimo = resp->ventana = NULL,;
resp->longitud = 0;
return resp;

}

La rutina que agrega un elemento después de la ventana debe considerar 3 casos: la lista es vacia, la
ventana esta sobre el Ultimo elemento o se debe adicionar un nodo intermedio.

void anxLista( Lista Ist, TipoL elem )

{ pListaNodo nuevo = ( pListaNodo )malloc( sizeof( struct ListaNodo ) );
nuevo->info = elem;
nuevo->ant = nuevo->sig = NULL;
if (Ist->longitud ==0)
Ist->primero = Ist->ultimo = nuevo;
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else if ( Ist->ventana == Ist->ultimo )

{ Ist->ventana->sig = Ist->ultimo = nuevo;
nuevo->ant = Ist->ventana,;

H

else

{  nuevo->ant = Ist->ventana;
nuevo->sig = Ist->ventana->sig;
Ist->ventana->sig->ant = nuevo;
Ist->ventana->sig = nuevo;

}

Ist->ventana = nuevo;

Ist->longitud++;

Esta rutina elimina el elemento que se encuentra en la ventana. Aprovechando el doble encadenamiento de
los nodos, es posible hacer esta operacion en O( 1).

void elimLista( Lista Ist )
{ pListaNodo aux;
if ( Ist->ventana == Ist->primero )
{  if (Ist->ultimo == Ist->primero )
Ist->ultimo = NULL;
Ist->primero = Ist->primero->sig;
free( Ist->ventana );
Ist->ventana = Ist->primero;

else
{ if (Ist->ultimo == Ist->ventana )
Ist->ultimo = Ist->ultimo->ant;
Ist->ventana->ant->sig = Ist->ventana->sig;
if ( Ist->ventana->sig ! = NULL )
Ist->ventana->sig->ant = Ist->ventana->ant;
aux = Ist->ventana;
Ist->ventana = Ist->ventana->sig;
free( aux );
i
Ist->longitud--;

}

La operacion de destruccion debe retornar toda la memoria asociada con la lista. Esto es, tanto los nodos de
los elementos, como el nodo del encabezado.

void destruirLista( Lista Ist )
{ pListaNodo p, q;
for( p = Ist->primero; p != NULL; )

{ aq=p;
p = p->sig;
free( q);

}

free( Ist);
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Algunas de las operaciones de manejo de la ventana se implementan de la siguiente manera:

void posLista( Lista Ist, int pos )
{ inti;
for( Ist->ventana = Ist->primero, i = 1; i < pos; i++)
Ist->ventana = Ist->ventana->sig;

}

void situarLista( Lista Ist, Ventana vent )
{ Ist->ventana = vent;

}

Ventana ventanaLista( Lista Ist )
{ return Ist->ventana;

}

2.6.2. Vectores

En esta representacion, los elementos de la lista se sitian consecutivamente en un vector. Maneja ademas
dos campos adicionales que indican la longitud actual y la posicion de la ventana. El esquema de

representacion se resume en los siguientes puntos:

e Lalista vacia ( Ist = < >[1) se representa internamente como:

Ist »|  longitud

Lo |

ventana

[o ]

0

MAX-1

e Lalistalst=<xq,.., ,-..» X > Utiliza las siguientes estructuras de datos:

x1 |0
Ist » | longitud
n xi|i-1
ventana xn n-1
MAX-1
e Lalista con ventana indefinida ( Ist =< x4, ..., X >1 ) se define con el valor 0 en el campo respectivo.
x1 |0
Ist » | longitud
n xi|i-1
ventana xn n-1
MAX-1

MAX es una constante que define una restriccion de implementacién, puesto que nunca se va a poder
manejar una lista con un mayor numero de elementos. Este es uno de los puntos mas débiles de esta manera
de representar listas. Las estructuras de datos, para esta implementacion, se declaran de la siguiente forma:
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typedef struct
{ TipoL info[ MAX ]; /* Vector para almacenar los elementos de la lista */
int longitud, /* Numero de elementos de la lista */
ventana; /* Posicion de la ventana en la lista (1..longitud) */

} TLista, *Lista;

typedef int Ventana; /* Marca para almacenar la ventana de la lista */
Algunas de las rutinas que implementan las operaciones del TAD se presentan a continuacion.
e Agregar un elemento después de la ventana:

void anxLista( Lista Ist, TipoL elem )
{ inti;
if ( Ist->longitud! =0 )
for (1= Ist->longitud-1; i > Ist->ventana-1; i-- )
Ist->info[ i+1 ] = Ist->info[ i ];
Ist->info[ Ist->ventana | = elem;
Ist->ventanat+;
Ist->longitud++;

o Eliminar el elemento de la lista que se encuentra en la ventana:

void elimLista( Lista Ist )
{ inti;
for (1= Ist->ventana - 1; i < Ist->longitud; i++)
Ist->info[ i ] = Ist->info[ i+1 ];
Ist->longitud--;
if ( Ist->ventana > Ist->longitud )
Ist->ventana = 0;

H
e Avanzar la ventana una posicion:

void siglLista( Lista Ist )
{ if (Ist->ventana == Ist->longitud )
Ist->ventana = 0;
else
Ist->ventana++;

e Colocar la ventana en la primera posicion de la lista:
void primLista( Lista Ist )

{ lIst->ventana = ( Ist->longitud==0)?0:1;

}
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e Destruir la lista:

void destruirLista( Lista Ist )
{ free(lst);
H

e Administrar la ventana:

void posLista( Lista Ist, int pos )
{ Ist->ventana = pos;

}

void situarLista( Lista Ist, Ventana vent )
{ Ist->ventana = vent;

}

Ventana ventanaLista( Lista Ist )
{ return Ist->ventana;

}

2.6.3. Encadenamiento Sencillo con Centinela

Con esta representacion se hace un ahorro considerable de memoria, respecto a la primera implementacion
planteada, ya que no requiere un doble encadenamiento entre los nodos. Al igual que en ese caso, se maneja
un registro de encabezado como parte de la estructura de datos. El centinela es un nodo que se agrega al
final de toda la secuencia de elementos; no tiene informaciéon valida, pero permite realizar todas las
modificadoras en O(1) sin necesidad del encadenamiento hacia atras, como se vera mas adelante. El
esquema de representacion se resume en los siguientes casos:

e Lalista vacia ( Ist = <> 1) se representa internamente como:

Ist j

longitud 0
primero | * | v

ventana b

:

e Lalistalst=<x4, ..., ..., x, > utiliza las siguientes estructuras de datos:

Ist _l

longitud | n

primero

ventana

v

!
3 — e

e La lista con ventana indefinida ( Ist =< x4, ..., x4 > ) se representa con el valor NULL en ese campo del
encabezado.
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ISt_l

longitud | n

primero

ventana | *—]

-

Y

L} b

Las estructuras de datos se declaran asi:

typedef struct ListaNodo

{ TipoL info; /*Informacién de cada elemento de la lista */
struct ListaNodo *sig; /* Encadenamiento de los nodos */

} *pListaNodo;

typedef struct
{ pListaNodo primero, /* Apuntador al primer nodo de la lista */
ventana, /* Apuntador al nodo que se encuentra en la ventana */
int longitud; /* Numero de elementos de la lista */
} TLista, *Lista;
typedef pListaNodo Ventana; /* Marca para almacenar la ventana de la lista */

Algunas de las rutinas que implementan las operaciones del TAD son las siguientes.
e Crear una lista vacia:

Lista inicLista( void )
{ Listaresp;
pListaNodo centinela;
resp = ( Lista )malloc( sizeof( TLista ) );
centinela = ( pListaNodo )malloc( sizeof( struct ListaNodo ) );
centinela->sig = NULL;
resp->longitud = 0;
resp->primero = centinela;
resp->ventana = NULL,;
return resp;

e Insertar un elemento en la lista: Ante la dificultad de alterar el campo de encadenamiento del antecesor de
la ventana, para que incluya el nuevo nodo, se coloca en la ventana la informacion del nuevo elemento y
se agrega después de éste un nodo con el valor que aparecia inicialmente en la ventana. El proceso se
ilustra con la siguiente secuencia de graficas:

Ist _l
longitud | n
primero _’I:l

ventana

! !
L} — e

Paso 1: se pide el nuevo nodo
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Ist _l
longitud | n )
primero _’

ventana

v

!
IR N i W vy BN

Paso 2: se coloca en el nuevo nodo el elemento de la ventana

III

Ist _l

longitud | n

primero
ventana
' J !
IR I oy B N g BN

Paso 3: se encadena el nuevo nodo después de la ventana

III

Ist _l
longitud | n+1 —»
primero |

ventana
v
S

Paso 4: se coloca el nuevo elemento en el nodo viejo y se mueve la ventana

IIJ_

void insLista( Lista Ist, TipoL elem )
{ pListaNodo p = Ist->ventana;

if( Ist->longitud !'=0)

{  TipoL temp = Ist->ventana->info;
Ist->ventana->info = elem;
anxLista( Ist, temp );
Ist->ventana = p;

else
anxLista( Ist, elem );

o Eliminar un elemento de la lista: Para esta rutina se presenta el mismo problema que existe en el caso
anterior. La solucion es colocar la informacion del sucesor sobre la ventana, y después eliminar el
sucesor, un proceso sencillo de reencadenamiento. Para poder hacer esta operacion en O( 1), es que se
coloca el centinela como parte de las estructuras de datos, ya que evita que se presente un caso especial
con el ultimo elemento, para el cual el proceso descrito anteriormente no seria aplicable ante la ausencia
de un sucesor. El proceso se ilustra con la siguiente secuencia de graficas:

Ist _l

longitud | n

primero

ventana

1
Iy S vy I gy Wy B

Situacion inicial
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Ist j

longitud | n

primero | &

ventana

l
IR SN ey WK proegs BN gy BN

Paso 1: se coloca la informacién del sucesor en el nodo que se quiere eliminar

IIJ—

Ist _l

longitud | n-1

primero | e

ventana

S g B

IIJ_

Paso 2: se elimina el sucesor

void elimLista( Lista Ist )
{ pListaNodo aux;
Ist->ventana->info = Ist->ventana->sig->info;
aux = Ist->ventana->sig;
Ist->ventana->sig = aux->sig;
free( aux );
if ( Ist->ventana->sig == NULL )
Ist->ventana = NULL;
Ist->longitud--;

e Destruir la lista:
void destruirLista( Lista Ist )

{ pListaNodo p, q;
for( p = Ist->primero; p = NULL; )

{ aq=p;
p = p->sig;
free( q);

}

free( Ist );

}

e Administrar la ventana:

void posLista( Lista Ist, int pos )
{ inti;
for( Ist->ventana = Ist->primero, i = 1; i <pos; it++)
Ist->ventana = Ist->ventana->sig;

}

void situarLista( Lista Ist, Ventana vent )
{ Ist->ventana = vent;

}
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Ventana ventanaLista( Lista Ist )
{ return Ist->ventana;

}

2.6.4. Encadenamiento Sencillo con Encabezado

Esta manera de representar una lista resuelve el problema de insercion (explicado en la seccién anterior)
llevando el apuntador de la ventana una posicién retrasada con respecto al elemento que quiere indicar. Con
el objeto de que el primer elemento no se convierta en un caso particular, se coloca un nodo adicional sin
informacion valida al comienzo de la lista. Este esquema de representacion se resume en los siguientes
casos:

e Lalista vacia ( Ist = < >[1) se representa internamente como:

Ist j

longitud 0
primero [ ¢ v

ventana b

:

e Lalistalst=<x4, ..., ..., x, > utiliza las siguientes estructuras de datos:
IstT
longitud | n
primero | e
ventana | ¢

! I

e Lalista con ventana indefinida (Ist = < x4, ..., x5 >0 ) se representa con el valor NULL en dicho campo
del encabezado.
|St1

longitud| n
primero| e
ventana | *

Las estructuras de datos se declaran asi:

typedef struct ListaNodo

{ TipoL info; /* Informacién de cada elemento de la lista */
struct ListaNodo *sig; /* Encadenamiento de los nodos */

} *pListaNodo;

typedef struct
{ pListaNodo primero, /* Apuntador al primer nodo de la lista */
ventana; /* Apuntador al nodo que se encuentra en la ventana */
int longitud; /* Numero de elementos de la lista */

} TLista, *Lista;
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typedef pListaNodo Ventana; /* Marca para almacenar la ventana de la lista */

Las rutinas para implementar las operaciones del TAD bajo esta representacion se proponen como ejercicio al
lector.

2.6.5. Representacion a Nivel de Bits

Cuando los elementos de la lista corresponden a valores légicos (verdadero y falso), es posible utilizar una
representacion compacta de la informacién, de tal manera que cada elemento utilice un solo bit en las
estructuras de datos. La idea es usar un vector de enteros, en el cual, en cada posicién, se almacenen
sizeof(int)* 8 valores. Esto permite optimizar el espacio sin perder eficiencia en el acceso. Por ejemplo, en un
computador que represente un valor entero con 2 bytes, es posible almacenar 16 elementos en cada casilla
del vector, como se muestra en el ejemplo 2.15.

Para su implementacion, las operaciones del TAD deben utilizar las facilidades de manejo de bits que ofrece
el lenguaje C.

Ejemplo 2.15:
Utilizando unas estructuras de datos parecidas a las definidas en la implementacion de vectores (§2.6.2), se

tiene que la lista de valores booleanos Ist=<1,0,1,1,0,0, 0, 0, 0, @ ,0,1,0,0,1,1,1,1,0,0,0,1 > se
representa como:

Ist —p . 0: elementos x1 ... x16

s longitud W\ 1: elementos x17 ... x32
N |
ventana 10110000 [00010011 |
lerbyte | 2do byte

11000100 | 00000000 |
1er byte I 2do byte

Note como una lista de 22 elementos utiliza Unicamente dos enteros (4 byfes) para su representacion,
logrando asi un ahorro importante en memoria.

J

El esquema de representacion, la declaracion de las estructuras de datos y la implementacion de las
operaciones se dejan como ejercicio al lector.

2.6.6. Representacion Compacta de Elementos Repetidos

Para representar una lista, en la cual aparecen secuencias de valores repetidos, se pueden disefiar unas
estructuras de datos compactas, que tengan en cada nodo el valor y el numero de repeticiones consecutivas.
En el siguiente ejemplo se ilustra la idea. El ahorro en espacio puede ser considerable, pero a costa de una
mayor dificultad de los algoritmos que implementan las operaciones del TAD.

Ejemplo 2.16:

Lalistalst=<1,1,1,1,5,5,5, 3, 3, , 3, 3, 3, 2, 4, 4 > se representa internamente mediante la siguiente
estructura doblemente encadenada, que tiene, en cada nodo, el nimero de ocurrencias consecutivas de cada
valor:
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Ist T

longitud 16

primero .

pventana .

ventana | 10

Ultimo i *

J

El esquema de representacion, la declaracion de las estructuras de datos y la implementacion de las
operaciones se dejan como ejercicio al lector.

2.6.7. Multirrepresentacion

En los casos en los cuales es dificil predecir las caracteristicas de la informacion que se quiere almacenar en
una lista (numero de elementos, dispersion de los datos, rango de valores, etc.), y es indispensable minimizar
el espacio ocupado en memoria, es posible disefar las estructuras de datos de tal manera que el mismo
objeto abstracto decida -en cada caso y durante la ejecucion- cémo hacer la representacion. Por ejemplo, se
puede intentar hacer una representacion compacta, como la sugerida en la seccion anterior, pero si el objeto
detecta que esta desperdiciando espacio puede cambiar a una representacion que ocupe menos memoria,
como podria ser una estructura sencillamente encadenada con centinela.

La ventaja de este enfoque es que cada objeto abstracto se acomoda al problema en el cual trabaja: cada
lista decide como almacenar su informacion, segun su estado especifico. El problema es que se deben
implementar todas las operaciones del TAD para cada estructura de datos posible.

Las estructuras de datos deben tener en su encabezado un indicador del tipo de representacion que se esta
usando, y dos operaciones para hacer la traduccién entre las dos.

2.6.8. Tabla Comparativa

La siguiente tabla contiene la complejidad de cada una de las operaciones del TAD, sobre las cuatro primeras
estructuras de datos planteadas:

1 2 3 4
inicLista O(1)] O(1)]| O(1) | O(1)
anxLista O(1) [ O(N) [ O(1)]| O(1)
insLista O(1) | O(N)| O(1) | O(1)
elimLista O(1) | O(N)| O(1) | O(1)
sigLista O(1) [ O(1)[O(1)]|O(1)
primLista O(1) | O(1)] O(1)| O(1)
ultLista O(1) ] O(1) | O(N) | O(N)
posLista O(N) [ O(1) | O(N) [ O(N)
situarLista O(1) | O(1)| O(1) | O(1)
infoLista O(1)] O(1)] O(1) | O(1)
longLista O(1) [ O(1)[O(1)]|O(1)
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finLista O(1)] O(1)]| O(1) | O(1)
ventanaLista | O(1) | O(1) | O(1) | O(1)
destruirLista O(N) [ O(1) | O(N) | O(N)
( ( (
( ( (

cargarLista (0]

salvarLista (0]

Una comparacién completa de las representaciones internas para una lista se sugiere mas adelante como
ejercicio.

Ejercicios Propuestos

Implemente las siguientes rutinas sobre las estructuras de datos de las primeras cuatro representaciones
vistas. Calcule la complejidad de sus algoritmos.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

int posVentanalLista( Lista Ist )
/* Retorna la posicion de la ventana en Ist */

void antLista( Lista Ist )
/* Coloca la ventana en la posicion anterior a la actual */

int estalista( Lista Ist, TipoL elem )
/* Indica si el elemento elem se encuentra en la lista Ist */

void adicLista( Lista Ist, TipoL elem )

/* Adiciona al final de la lista Ist el elemento elem */
void impLista( Lista Ist )

/* Imprime los elementos de la lista Ist */

void eliminarLista( Lista Ist, int pos )
/* Elimina de la lista Ist el pos-ésimo elemento */

Los siguientes ejercicios proponen la implementacion del TAD Lista sobre otras estructuras de datos. Calcule
la complejidad de los algoritmos que desarrolle.

2.39.

2.40.

2.41.

242,

2.43.

Para la representacion de encadenamiento sencillo con encabezado, implemente todas las
operaciones del TAD. Utilice el probador interactivo del TAD para validar la implementacién.

Para la representacion a nivel de bits, especifique formalmente el esquema de representacion, haga
la declaracion de las estructuras de datos e implemente las operaciones del TAD. Utilice el probador
interactivo del TAD para validar la implementacion.

Para la representacion compacta de elementos repetidos, especifique formalmente el esquema
de representacion, haga la declaracion de las estructuras de datos e implemente las operaciones del
TAD. Utilice el probador interactivo del TAD para validar la implementacion.

Implemente una multirrepresentacion para el TAD Lista, utilizando la representacion compacta
de elementos repetidos y la representaciéon con encadenamiento sencillo y encabezado. Defina las
caracteristicas bajo las cuales comienza a ser mas eficiente un almacenamiento que otro. Implemente
una rutina de uso local, que haga la traducciéon de una representacién a otra. Utilice el probador
interactivo del TAD para validar la implementacion.

Una lista se puede representar internamente como una secuencia de parejas [posicion, elemento],
con un encabezado que indica el numero de elementos presentes.
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La lista vacia ( Ist = < >[1) se representa como:

Ist j

longitud 0

primero

ventana

La lista Ist =< 6,,7,9 >, por ejemplo, puede utilizar las siguientes estructuras de datos:

Ist j

longitud 4

primero

ventana

v
Ll =l =l [ [l

La ventana indefinida se representa con el apuntador respectivo en NULL. Fijese que las parejas no

van ordenadas por ningun concepto. Especifique formalmente el esquema de representacion, haga la

declaracion de las estructuras de datos e implemente las operaciones del TAD. Utilice el probador
interactivo del TAD para validar la implementacion.

244, En lenguajes que no manejan apuntadores, es posible simular su comportamiento mediante el
encadenamiento de vectores. Para esto, cada elemento del vector mantiene el indice en el cual se

encuentra su sucesor. Por ejemplo, una posible representacién de la lista Ist = <8,,7,5> seria:

Ist N 718
primero

4|0

ventana 8]2

© ® N ® O B w N 2 O

Un problema de esta representacion es la administracion del espacio libre: los elementos no ocupan
posiciones consecutivas y puede haber registros libres intercalados con registros ocupados. Una
solucién al problema de saber dénde existe espacio libre dentro del vector, es encadenar todas las
casillas no utilizadas. En ese caso se manejan dos listas sobre la misma estructura, una con los
registros libres y otra con la secuencia que se esta representando. Esto implica que una lista vacia se
representa con todos los nodos libres encadenados, como se sugiere a continuacion:

Ist > vector
primero

ventana

I
N
Olo|N|o(o ]|~ w|N]| =
© ® N O s W N = O

T
N

Cuando se requiere un nuevo registro, se toma de la lista de casillas libres. Al liberar espacio, se lleva a
cabo el proceso contrario, agregandolo a dicha lista.
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2.46.

2.47.

2.48.
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Con esta solucion, la lista <8,,7,5> se puede representar con la siguientes estructuras de datos:

Ist__, vector [7]8 | 0
primero 3|1

4]0} 2

ventana 2 z

82 s

7]e

libre 9|7

-119

Como no se maneja doble encadenamiento ni centinela, la mayoria de operaciones son O(N), donde N
es la longitud de la lista. Especifique formalmente el esquema de representacion, haga la declaraciéon
de las estructuras de datos e implemente las operaciones del TAD. Utilice el probador interactivo del
TAD para validar la implementacion.

Mejore el disefio de las estructuras de datos del ejercicio anterior, para que disminuya la complejidad
de las operaciones del TAD. Especifique el esquema de representacion y explique la razén por la cual
es mas eficiente que el anterior disefio.

Una manera de evitar el desplazamiento de informacién en la implementacién con vectores, es
manejar 2 arreglos: uno con cursores, que indica el orden de los elementos dentro de la lista, y el otro
con la informacion en si. Esto quiere decir que el movimiento de elementos para insertar o eliminar
informacion se reduce al desplazamiento de algunos cursores, sin necesidad de mover fisicamente los
elementos. Disefie unas estructuras de datos para utilizar esta idea e implemente todas las operaciones
sobre ellas. Utilice el probador interactivo del TAD para validar el desarrollo.

Para representar una lista, en la cual muchos de los valores contenidos son cero, es posible utilizar
la misma idea de las matrices dispersas y unicamente representar de manera explicita los valores
distintos de dicho valor. Se maneja, entonces, una secuencia encadenada con las posiciones y los
valores de los elementos de la lista cuyo contenido es distinto de cero, ordenada de menor a mayor por
posicion. Por ejemplo, para la lista:

Ist=<00001[°] 00887700 0>

Se tiene la siguiente representacion interna:

Ist T

longitud 12
primero -
pventana| *
ventana 5

v

E

v
o

En caso de que la ventana esté sobre un elemento no representado de manera explicita, se coloca su
posicién en el campo ventana y el apuntador pventana en NULL. Si la ventana esta indefinida, al campo
ventana se le asigna 0. Especifique formalmente el esquema de representacion, haga la declaracion de
las estructuras de datos e implemente las operaciones del TAD. Utilice el probador interactivo del TAD
para validar la implementacion.

Una manera eficiente de representar listas de tamafio considerable es mediante una secuencia
encadenada de nodos con un directorio asociado, el cual tiene una entrada cada cierto numero de
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elementos de la lista. Por ejemplo, una lista de mas de 300 elementos y menos de 400 se puede
representar con una estructura parecida a la del dibujo:

L[] +~""T' S 7 O S R
[ N g O T

Tiene la ventaja de que permite dar "saltos" mas largos al moverse sobre los elementos de la
secuencia. Especifique formalmente el esquema de representacion, haga la declaracion de las
estructuras de datos e implemente las operaciones del TAD. Utilice el probador interactivo del TAD para
validar la implementacion.

2.49. Modifique las estructuras de datos utilizadas en la implementacién con encadenamiento sencillo y
centinela, para que la operacion ultLista se pueda hacer en tiempo constante. ;Qué operaciones del
TAD aumentan de complejidad? 4 Es posible hacerlas todas en O(1)?

2.7. EI TAD Lista Ordenada

De acuerdo con la definicion presentada en la primera seccion de este capitulo, una lista < eq,..., e, > es
ordenada si cumple que €; < €j;q, Vi | 1 <i<n.Como una lista ordenada se puede ver como un objeto
abstracto mas especializado que una lista, se puede disefiar un TAD para su administracion. Como primera
medida, se escoge un nuevo formalismo para referirse a las listas ordenadas.

e Lalista ordenada vacia se representa como c o.

e Lalista ordenada con n elementos se representa como c ef1, ..., en O.

El TAD disefado tiene las siguiente especificacion:

TAD ListOrd[ TipoLO ]

ceq,..,en>d
{inviej<ejq, Vi | 1 <i<n}

Constructoras:

inicListOrd: — ListOrd
Modificadoras:

insListOrd: ListOrd x TipoLO — ListOrd
elimListOrd: ListOrd x TipoLO — ListOrd
Analizadoras:

infoListOrd: ListOrd x int — TipoLO
longListOrd: ListOrd — int
estaListOrd ListOrd x TipoLO — int
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ListOrd inicListOrd( void )
/* Crea una lista ordenada vacia */

{ post: inicListOrd = c >}

void insListOrd( ListOrd Ist, TipoLO elem )
/* Inserta un elemento a la lista ordenada */

{ pre: Vi, ej 1= elem }
{post:Ist=ceq, ..., €j, elem, ej+1, ...,en >}

void elimListOrd( ListOrd Ist, TipoLO elem )
/* Elimina un elemento de la lista ordenada */

{pre: i |ej=elem}
{post: Ist=ceq, .., €j-1, €j+1, .. €n D}

TipoLO infoListOrd( ListOrd Ist, int pos )
/* Retorna el pos-ésimo elemento de la lista ordenada */

{pre:1<pos<n}
{ post: infoListOrd = epos}

int longListOrd( ListOrd Ist )
/* Retorna la longitud de la lista ordenada */

{ post: longListOrd = n }

int estaListOrd( ListOrd Ist, TipoLO elem )

/* Informa si un elemento se encuentra en la lista ordenada */

{ post: estaListOrd = Ji |(ej=elem )}

2.8. Implementacién del TAD Lista Ordenada

2.8.1. 5 Sobre el TAD Lista

En esta seccion se ilustra la manera de utilizar un objeto abstracto del TAD Lista como estructura de datos. El

esquema de representacion se resume en los siguientes puntos:

o Lalista ordenada vacia ¢ o, se representa internamente con la lista vacia < >.

e Lalista ordenada con n elementos c eq,...,e, O se representa con la lista < eq,...,ep >.

Las unicas declaraciones de estructuras de datos necesarias para esta implementacion son:

typedef TLista TListaOrd;
typedef Lista ListOrd;
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Ahora, basta con escribir las operaciones del nuevo TAD, en términos de las operaciones del TAD de base,
como se muestra a continuacion:

e Crear una lista ordenada vacia:

ListOrd inicListOrd( void )
{ return inicLista( );

}

e Insertar un elemento en una lista ordenada:

void insListOrd( ListOrd Ist, TipoLO elem )
{ primLista( Ist);
while ( !finLista( Ist ) && infoLista( Ist) < elem )
sigLista( Ist );
if ( !finLista( Ist ) )
insLista( Ist, elem );
else
{  ultLista( Ist);
anxLista( Ist, elem );
H
H

e Eliminar un elemento de una lista ordenada:

void elimListOrd( ListOrd Ist, TipoLO elem )
{ primLista( Ist);
while ( infoLista( Ist ) !=elem )
sigLista( Ist );
elimLista( Ist );

}

e Decidir si un elemento se encuentra en una lista ordenada:

int estalListOrd( ListOrd Ist, TipoLO elem )
{ primLista( Ist);
while ( !finLista( Ist ) && infoLista( Ist ) !=elem )
sigLista( Ist );
return !finLista( Ist );

}

o Retornar la longitud de una lista ordenada:

int longListOrd( ListOrd Ist )
{ return longLista( Ist );

}

e Retornar el pos-ésimo elemento de una lista ordenada:

int infoListOrd( ListOrd Ist, int pos )
{ posLista( Ist, pos );
return infoLista( Ist );

}
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2.8.2. Estructura Sencillamente Encadenada

Una de las representaciones mas elementales para una lista ordenada es una estructura sencillamente
encadenada con apuntadores. El esquema de representacion se resume en los siguientes puntos:

e Lalista ordenada vacia ¢ o, se representa como:

Ist _l
longitud
primero ml
e Lalista ordenada con n elementos c x4,..., X, © se representa como:

Ist _l

longitud

primero —> _>

Las declaraciones de estructuras de datos necesarias para esta implementacion son:

typedef struct ListaNodOr
{ TipoLO info; /* Elemento de la lista */

struct ListaNodOr *sig; /* Encadenamientos hacia adelante */
} *pListaNodOr;

typedef struct

{ pListaNodOr primero; /* Primer elemento de la lista */
int longitud;

}+ TListOrd, *ListOrd,

La implementacion de algunas de las operaciones del TAD ListOrd sobre una lista sencillamente encadenada
se presentan a continuacién. Las demas se pueden consultar en el disquete de apoyo:

e Crear una lista ordenada vacia:

ListOrd inicListOrd( void )

{ ListOrd Is = ( ListOrd )malloc( sizeof( TListOrd ) );
Is->longitud = 0;
Is->primero = NULL,;
return Is;

e |nsertar un elemento en una lista ordenada:

void insListOrd( ListOrd Is, TipoLO elem )
{ pListaNodOr p = ( pListaNodOr )malloc( sizeof( struct ListaNodOr ) );
pListaNodOr q;
p->info = elem;
p->sig = NULL,;
if( Is->primero == NULL )
Is->primero = p;

© Todos los derechos reservados — Jorge Villalobos



Capitulo 2 - Estructuras Lineales: Listas 119

else if( elem < Is->primero->info )

}

{ p->sig = Is->primero;
Is->primero = p;

}

else

{ for( q = Is->primero; q->sig != NULL && elem > q->sig->info; q = q->sig );
p->sig = q->sig;
q->sig =p;

}

Is->longitud++;

e Eliminar un elemento de una lista ordenada:

void elimListOrd( ListOrd Is, TipoLO elem )

{

}

pListaNodOr p, q;

if( Is->primero->info == elem )

{ p=Ils->primero;
Is->primero = Is->primero->sig;
free(p);

else

{  for( p = ls->primero; p->sig->info != elem; p = p->sig );
q = p->sig->sig;
free( p->sig );
p->sig=gq;

i

Is->longitud--;

Ejercicios Propuestos

Especifique formalmente (precondicién y postcondiciéon) y desarrolle un algoritmo sobre cada una de las
representaciones vistas, para resolver los siguientes problemas de listas ordenadas. Calcule la complejidad
de su solucién.

2.50.

2.51.

2,52,

2.53.

2.54.

ListOrd mezclarListOrd( ListOrd Ist1, ListOrd Ist2 )
/* Crea y retorna una lista ordenada con todos los elementos de Istl y Ist2 */

ListOrd interListOrd( ListOrd Ist1, ListOrd Ist2 )
/* Crea y retorna una lista ordenada con la interseccion de Istl y Ist2 */

ListOrd unionListOrd( ListOrd Ist1, ListOrd Ist2 )
/* Crea y retorna una lista ordenada con la unién de Istl y Ist2, dejando una sola ocurrencia de cada
elemento */

ListOrd diferListOrd( ListOrd Ist1, ListOrd Ist2 )
/* Crea y retorna una lista ordenada con todos los elementos de Istl que no estan en Ist2 */

ListOrd subListOrd( ListOrd Ist, TipoLO elem )
/* Crea y retorna una lista ordenada con todos los elementos de Ist mayores que elem */
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Desarrolle las implementaciones del TAD ListOrd sugeridas en los siguientes ejercicios:

2.55.

2.56.

2.57.

2.58.

Implemente el TAD ListOrd sobre una representacion de vectores. Calcule la complejidad de cada
operacion. Utilice el probador interactivo para validar el desarrollo.

Implemente el TAD ListOrd utilizando como representacion interna una estructura doblemente
encadenada. Calcule la complejidad de cada operacion. Utilice el probador interactivo para validar el
desarrollo.

Implemente el TAD ListOrd sobre una estructura sencillamente encadenada con centinela. Calcule
la complejidad de cada operacion. Utilice el probador interactivo para validar el desarrollo.

Haga una tabla completa para comparar la complejidad de las operaciones del TAD ListOrd. Decida
cual de todas las opciones es la mas conveniente:

1: TAD ListOrd sobre TAD Lista (doble encadenamiento)
2: TAD ListOrd sobre TAD Lista (vector)
3: TAD ListOrd sobre TAD Lista (encadenamiento sencillo y centinela)
4: TAD ListOrd sobre TAD Lista (encadenamiento sencillo y encabezado)
5: TAD ListOrd con lista doblemente encadenada
6: TAD ListOrd con un vector
7: TAD ListOrd una lista sencillamente encadenada con centinela
1 2 3 4 5 6 7
inicListOrd
insListOrd
elimListOrd
estalListOrd
longListOrd
infoListOrd

Haga también una tabla en la que considere las restricciones de implementacion, el espacio ocupado y
la dificultad de los algoritmos.

A continuacién, se presentan algunos ejercicios en los cuales se pide implementar un TAD especifico,
representando internamente cada objeto abstracto con elementos del TAD Lista.

2.59. Un polinomio sobre una variable entera se puede ver como una lista de términos, en donde cada

uno consta de un coeficiente y un exponente.
P(x)=Tg+Tq+...+T, Ti=¢ X

Un polinomio se puede representar como una lista de coeficientes, donde el valor del exponente va
implicito por su posicion dentro de la lista. Por ejemplo, el polinomio:

P(x)=12x° +3x3-x + 6

Se representa con la lista < 6, -1, 0, 3, 0, 12 > donde los términos no presentes se representan con
coeficiente 0.

Del TAD Polinomio son interesantes las siguientes operaciones:

evalPolinomio: Polinomio X int — int

sumarPolinomio: Polinomio X Polinomio — Polinomio
multiplicarPolinomio: Polinomio X Polinomio — Polinomio
derivarPolinomio: Polinomio — Polinomio
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2.60.

2.61.

2.62.

2.63.

2.64.

2.65.

2.66.

2.67.

a. Defina formalmente las operaciones presentadas del TAD Polinomio.

b. Implemente las operaciones del TAD Polinomio utilizando como representacion interna listas.

Otra manera de representar polinomios como listas es utilizando, para cada término, una pareja de
la forma (coeficiente, exponente), y, asi, colocar explicitamente el valor del exponente de cada
elemento. En este caso, el polinomio:

P(x)=12x2+3x3-x+6

se representa con la lista< (12,5),(3,3),(-1,1), (6, 0) >, en la cual no necesariamente existe un
orden determinado entre sus componentes. Utilizando esta nueva representacién resuelva el mismo
punto anterior.

Implemente el TAD String (cadena de caracteres de longitud variable) sobre el TAD Lista. Defina y
especifique inicialmente las operaciones; luego, la manera de representar un String como una lista vy,
por ultimo, escriba un algoritmo que implemente cada operacion.

Un diccionario es una estructura ordenada, en la cual cada palabra tiene asociada una lista no vacia
de significados. Especifique el TAD Diccionario € impleméntelo sobre listas.

Para manejar grandes numeros (enteros positivos con cualquier cantidad de digitos) en un
programa, resulta muy conveniente poder contar con la definicion de este TAD. Piense, por ejemplo, en
el problema de calcular 50! que debe tener alrededor de 40 digitos, o de obtener el resultado de 5090,
Especifique el TAD superEntero e impleméntelo sobre listas.

Para manejar valores de gran precision, es posible definir el TAD superReal. Los elementos serian
de la forma:

num =|e1e2 ... en|.[d1 d2 ... dk

parte entera  parte decimal

Especifique el TAD e impleméntelo sobre listas.

Se puede ver un texto como una lista de lineas, y una linea como una secuencia de caracteres de
longitud variable (String). Aprovechando el TAD String definido en un ejercicio anterior, desarrolle el
TAD Texto para manejar este tipo de informacion. Para desarrollarlo, puede basarse en los comandos
de un editor de textos, los cuales dan una idea de las operaciones necesarias para poderlos manipular
adecuadamente.

Un manejador de memoria dinamica debe mantener internamente una lista con las posiciones no
utilizadas de la memoria. Esta lista se encuentra compuesta por parejas de la forma [direccion, nUmero
de bytes], e indican el punto de la memoria donde existe un espacio libre y su tamafio en bytes (esta
lista esta ordenada por tamafo). Desarrolle operaciones como malloc y free para manejar esta
estructura

Un poligono es una secuencia de puntos en un mismo plano del espacio. Cada uno de estos puntos se

denomina un vértice:
Y A

N I NS - )
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2.69.
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Para el poligono anterior, la secuencia de puntos es: <(1,1), (3,1), (4,3), (6,4), (6,5), (4,5), (3,6), (1,6) >.
Teniendo una lista como representacion interna, desarrolle las siguientes rutinas:

a. Calcular y retornar el min-max del poligono. El min-max se define como el minimo rectangulo que
incluye el poligono. Para el ejemplo, el min-max es el poligono <(1,1), (6,1), (6,6), (1,6) >.

b. Trasladar todo el poligono en el espacio un (deltaX, deltaY).

c. Dibujar el poligono. Suponga la existencia de una funcién dibujeLinea que dibuja una recta dados dos
puntos del espacio.

Se puede representar internamente una matriz como una lista de registros, donde cada uno de ellos
tiene el numero de la fila, el numero de la columna y el valor del elemento que se encuentra presente
en esa posicion. Los elementos no representados explicitamente en las estructuras de datos tienen un
valor 0.

1. 2 3 4
1 4101710
219]1]0]07]0
3 121 0 [ 1 0
4 0] 0]0]2

Por ejemplo, la matriz del dibujo se representa con la lista:
<(1,1,4), (1,3,7), (2,1,9), (3,1,12), (3,3,1), (4,4,2) >

Del TAD Matriz interesa implementar las operaciones inicMatriz, asigneMatriz, infoMatriz y sumeMatriz.

El metro es uno de los sistemas de transporte mas utilizado en las grandes ciudades. Esta
conformado por un conjunto de lineas y cada linea por una secuencia de estaciones.

Linea-1 Linea-3

Germania
(Uniandes)

Guacamayas

Santiago Pérez

; Av. 19
Linea-2

Calle 134

Calle 140

SENA
Unicentro Est. Sabana

Cra. 30

La Unién
Calle 100
Cra. 15

Linea-4

Suba El Espectador

Niza Bosa
Cafam

Fontibén Timiza
a. Disefie e implemente el TAD Linea

b. Disefie e implemente el TAD Metro, basandose en el TAD Linea

c. Desarrolle una rutina que, dado un Metro y dos estaciones, retorne una lista con el trayecto que debe
seguir un usuario para ir de una a la otra. Suponga que no existe ningun ciclo al interior del Metro.
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2.70.

2.71.

2.72.

El inventario de un almacén se puede ver como una secuencia de tripletas de la forma [nombre-
producto, cantidad, precio]. Disefie e implemente el TAD Almacén, que permite manejar su inventario,
utilizando como representacion interna el TAD Lista.

Una biblioteca tiene un conjunto de libros, cada uno de los cuales tiene un titulo, una editorial,
uno o varios autores (apellido y nombre) y uno o varios descriptores. Maneja, ademas, 2 ficheros: uno
ordenado por apellido de los autores y otro ordenado por descriptor, los cuales se deben mantener
constantemente actualizados.

Disefie e implemente los TAD FicheroAutor, FicheroTema y Bodega, y, sobre estos, el TAD Biblioteca.
Utilice apuntadores como representacion interna de todos los TAD. Las estructuras de datos completas
deben ser de la siguiente manera:

biblioteca ——> | 2utor | bodega | temas \
tema- 1

sig

4

apellido- 1 titulo «
nombre- 1 editorial
libro _‘—>|:|:| —— autores

| | [ | |
temas > i 1

sig |

sig |

»> tema- 2

........ [T ]—

sig

Cada TAD debe manejar su parte de las estructuras de datos. Por ejemplo, la operacion de adicionar
un libro a la biblioteca se hace adicionando un libro a la bodega vy, luego, autor por autor y tema por
tema, utilizando las respectivas operaciones de los TAD Fichero.

En muchas ocasiones es interesante mantener la secuencia de elementos de una lista ordenada
por mas de un concepto. Por ejemplo, es conveniente poder recorrer la lista de un curso en orden
alfabético, en orden de carnet o en orden de nota, con algoritmos O( n ).

Sobre estas estructuras se quiere desarrollar 7 operaciones:

a. insertar un nuevo estudiante (nombre, carnet, nota)
b. eliminar un estudiante (carnet)

c. listar el curso por orden alfabético

d. listar el curso por orden de carnet

e. listar el curso ascendentemente por nota

f. dar la nota de un estudiante dado su nombre

g. dar la nota de un estudiante dado su carnet

Formalice la definicion del TAD ListaCurso e impleméntelo sobre las estructuras de datos que se
sugieren a continuacion. Compare las 3 implementaciones propuestas.

1. Listas replicadas: 3 listas de registros (nombre, carnet, nota) cada una ordenada por un concepto.

2. Listas multiencadenadas: estructura con triple sucesor, uno por cada orden.
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——» nombre

| nombre| carnet | nota | sigNombre | sigCarnet | sigNota ’ &g;gf:te

siguiente

carnet

3. Listas invertidas: estructura doblemente encadenada de registros (nombre, carnet, nota) ordenada
por nombre y dos listas de apuntadores hacia la estructura principal, ordenadas por carnet y nota
respectivamente.
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CAPITULO 3
ESTRUCTURAS LINEALES: PILAS Y COLAS

En este capitulo se presentan unas estructuras lineales de datos, de comportamiento y uso mas restringidos
que las listas, pero de amplio uso en procesos de simulacion, entre las que se encuentran las pilas, las colas,
las colas de prioridad, las bicolas y las rondas.

3.1. Pilas: Definiciones y Conceptos Basicos

Una pila (stack) es una secuencia de cero o mas elementos de un mismo tipo, que solamente puede crecer y
decrecer por uno de sus extremos (fig. 3.1). Se puede ver como un caso particular de una lista, en el cual la
ventana se mantiene estatica en la primera posicion y las operaciones posibles se restringen, permitiendo el
acceso a la estructura unicamente por ese punto.

Eliminar Adicionar

Fig. 3.1- Operaciones sobre una pila

La pilas se denominan también estructuras LIFO (Last-In-First-Out), porque su caracteristica principal es que
el ultimo elemento en llegar es el primero en salir. Son muy utilizadas en programacion, para evaluar
expresiones, reconocer lenguajes, recorrer arboles y simular procesos recursivos. En todo momento, el unico
elemento visible de la estructura es el ultimo que se colocd. Se define el tope de la pila como el punto donde
se encuentra dicho elemento, y el fondo, como el punto donde se encuentra el primer elemento incluido en la
estructura (fig. 3.2).

T
ope

Fondo
—

Fig. 3.2- Tope y fondo de una pila

El formalismo escogido para referirse al objeto abstracto pila se muestra a continuacion. Alli se da un nombre
a cada uno de los elementos que hacen parte de la estructura, y se marca claramente el tope y el fondo:

ele2..en |
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Si la pila no tiene ningun elemento se dice que se encuentra vacia y no tiene sentido referirse a su tope ni a
su fondo. Una pila vacia se representa con el simbolo @. Por ultimo, se define la longitud de una pila como el
numero de elementos que la conforman.

3.2. EI TAD Pila

La administracion de una pila se puede hacer con muy pocas operaciones: una constructora (permite crear
pilas vacias), dos modificadoras (para agregar y eliminar elementos) y dos analizadoras (retornar el elemento
del tope, e informar si la pila esta vacia). Se incluye, ademas, una destructora para retornar el espacio
ocupado por la pila. Por simplicidad, no se contemplan operaciones de persistencia.

TAD Pila[ TipoP ]

ele2..en |

{inv: TRUE}

Constructoras:
° inicPila: — Pila
Modificadoras:

. adicPila: Pila x TipoP — Pila
. elimPila: Pila — Pila

Analizadoras:

. infoPila: Pila — TipoP
° vaciaPila: Pila — int
Destructora:

° destruirPila: Pila

Pila inicPila( void )
/* Crea una pila vacia */

{ post: inicPila = & }

void adicPila( Pila pil, TipoP elem )
/* Coloca sobre el tope de la pila el elemento elem */

{ post: pil = €lemele2 .. en |}

void elimPila( Pila pil )
/* Elimina el elemento que se encuentra en el tope de la pila */

{ pre: pil=&1€2 ...en |,n>0}

{ post: pil = &2... en |}
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TipoP infoPila( Pila pil )
/* Retorna el elemento que se encuentra en el tope de la pila */

{pre:n>0}
{ post: infoPila = e }

int vaciaPila( Pila pil )
/* Informa si la pila es vacia */

{ post: vaciaPila = ( pil= &) }

void destruirPila( Pila pil )
/* Destruye la pila retornando toda la memoria ocupada */

{ post: pil ha sido destruida }

3.3. Ejemplos de Utilizacion del TAD Pila

En esta seccion se presentan algunos ejemplos de solucion de problemas utilizando el TAD Pila. Los usos
mas importantes se veran en capitulos posteriores, en particular, como soporte al recorrido de estructuras de
datos recursivas.

Ejemplo 3.1:

Invertir una lista utilizando una pila. La complejidad de esta rutina es O( n ), donde n es el numero de
componentes de la lista.

/* pre: Ist = <Xx1, ..., x\y > */
/* post: Ist = < xy, ..., X3 > */

void invLista( Lista Ist )
{ Pila pil = inicPila( );
for( primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
adicPila( pil, infoLista( Ist) );
for( ; !vaciaPila( pil ); elimPila( pil ) )
anxLista( Ist, infoPila( pil ) );
destruirPila( pil );
H

El primer ciclo hace un recorrido de la lista y va pasando los elementos a una pila, con el siguiente
invariante:

{invq:lst=< ooy XN >, DIl = xk-1 ... x1 |}

Al final de dicho proceso, en el tope se encuentra el ultimo elemento y en el fondo el primero, de tal
manera que si se sacan uno a uno los elementos de la pila y se van colocando de nuevo en la lista se
obtiene, al final, la secuencia inicial invertida, como ilustra el invariante del segundo ciclo:

{invy: st = < xp, >, pil = m}
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Ejemplo 3.2:

Copiar una pila. Esta rutina deberia ser una operacion del TAD, puesto que su implementacion sobre las
operaciones existentes es un poco dispendiosa, aunque perfectamente posible. La complejidad de esta
funcién es O( n ), donde n es la longitud de la pila.

/* pre: pil = PIL = x1 ... xN | %)
/¥ post: copiarPila _x1...xN |’ pil —PIL */

Pila copiarPila( Pila pil )
{ Pilaresp = inicPila( );
Lista Ist;
for( Ist = inicLista( ); !vaciaPila( pil ); elimPila( pil ) )
insLista( Ist, infoPila( pil ) );
for( primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
{ adicPila( pil, infoLista( Ist) );
adicPila( resp, infoLista( Ist ) );

}

destruirLista( Ist );
return resp;

}

El primer ciclo, pasa a la lista temporal Ist todos los elementos de la pila pil, dejandolos en el orden inverso,
tal como aparece en la siguiente asercion:

{Al:lst=<x, ..., X >, pil= }

El invariante de este ciclo es:
{invl: lst:< s X >, pilsz+1 ... XN |}

El segundo ciclo, recorre la lista agregando sus elementos a dos pilas: la pila original pil, puesto que se
debe reconstruir, y la pila de respuesta resp. El invariante de este proceso es:

Cinv: tse= <P s pit = X N gy ot N ]

J

Ejemplo 3.3:

Invertir el contenido de una pila. La complejidad de esta rutina es O( n ), donde n es el numero de elementos
de la estructura.

/* pre: pil = m */

xN ... x1 |>x</

/* post: pil =
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void invPila( Pila pil )
{ Pila aux = copiarPila( pil );
destruirPila( pil );
for( pil = inicPila( ); !vaciaPila( aux ); elimPila( aux ) )
adicPila( pil, infoPila( aux ) );
destruirPila( aux );

}

El invariante del ciclo asegura que cuando se hayan sacado de la pila auxiliar los elementos x4 a xi, éstos
ya estaran situados en la pila original en orden inverso:

{inv: aux = Xk*1 ... xN Ipﬂ:xk...x1 |}

J

Ejemplo 3.4:

Decidir si dos pilas son iguales sin destruir su contenido. Esta rutina también deberia hacer parte de las
operaciones del TAD Pila. Su implementaciéon resulta poco natural, pero se utiliza en este ejemplo para
ilustrar el uso de las operaciones.

/#* pre: pill = X1 .. XN | pil2 =Y1... yYM | «/
/* post: igualesPilas = (N=M A x; =y, VK< N */

int igualesPilas( Pila pill, Pila pil2 )
{ Pila auxl = copiarPila( pill );
Pila aux2 = copiarPila( pil2 );
while( !vaciaPila( aux1 ) && !vaciaPila( aux2 ) )
{ if (infoPila( aux1 ) !=infoPila( aux2))
{  destruirPila( auxl );
destruirPila( aux2 );
return FALSE;

elimPila( aux1 );
elimPila( aux2 );

§

if ( vaciaPila( aux1 ) && vaciaPila( aux2 ) )
return TRUE;

else

{  destruirPila( aux1 );
destruirPila( aux2 );
return FALSE;

i

i

La rutina trabaja sobre una copia de las pilas, las cuales debe ir destruyendo a medida que verifica que
son iguales. En el momento en el cual encuentra dos elementos que no corresponden, abandona la rutina
después de destruir el resto de las pilas de trabajo. El invariante afirma que cuando en el tope de cada una
de las pilas esté el k-ésimo elemento, todos los que estaban antes han sido iguales uno a uno.

{inv: aux1 = @, aux2 :m, X] =Y oo Xg] = Ykl S
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Ejemplo 3.5:

Evaluar una expresion aritmética en notacion postfija. En esta notacion, se colocan los operadores después
de los dos operandos. Tiene la ventaja de no ser ambigua, algo que no ocurre con la notacién que se utiliza
comunmente para expresiones aritméticas (notacion infija). Por ejemplo, si se tiene la expresion infija:

3+5%10

El resultado de su evaluacion puede ser 80 6 53, dependiendo del orden en el cual los operadores tomen
sus operandos:

(3+5)*10=280
3+(5*10)=53
En postfijo, cada una de estas interpretaciones posibles tiene una unica expresion:
3 5+ 10 * (es80)
3 5 10 * + (es53)

En este ejemplo, se va a suponer que la entrada que se va a procesar es una lista de cadenas de
caracteres y que los Unicos operadores presentes son +, -, *, /. Para el caso ilustrado anteriormente, la lista
que representa la expresion es < "3" "5" "+" "10" ™" >,

El método de solucion consiste en ir guardando en una pila de enteros los operandos, y, en el momento de
encontrar un operador, aplicarlo sobre los dos valores que se encuentren mas arriba de la pila,
reemplazandolos por dicho resultado. Por ejemplo, para la expresion postfija:

< ||12||’ ||4||’ ll_ll, u5u’ l|3l|7 ll+ll’ LIS

El proceso de evaluacion es el siguiente:

Expresion Elemento Pila
por procesar

<"2", "4" " et 3t e, M > 12 %)
A e T 4 E

< g ngn e ] 4 12
< "B", "3, M, > 5 E

< "3 R 3 58

< "> + 358
| 58]
< > E

El siguiente algoritmo realiza el proceso de evaluacién descrito anteriormente.

/* pre: exp = <eq, ..., €, >, representa una expresion vélida en notacion postfija, ) es de tipo (char *) */
/* post: eval es la evaluacion de la expresion */
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int eval( Lista exp )
{ char *elem,;
int opl, op2;
Pila pil = inicPila( ); /* Pila de enteros para la evaluacion */
for( primLista( exp ); !finLista( exp ); sigLista( exp ) )
{  elem = infoLista( exp );
if (isdigit( elem[ 0] ))
adicPila( pil, atoi( elem ) ); /* Agrega el valor después de convertirlo */
else
{  opl =infoPila( pil ); /* Toma los dos operandos de la pila */
elimPila( pil );
op2 = infoPila( pil );
elimPila( pil );
switch (elem[ 0 ])
{ case '+' :adicPila( pil, op2 + opl );
break;
case '-' : adicPila( pil, op2 - opl );
break;
case "*' :adicPila( pil, op2 * opl );
break;
case '/': adicPila( pil, op2 / opl );
break;

}

return infoPila( pil );

}

Esta funcidn utiliza las rutinas isdigit y atoi de la libreria estandar ctype de C, para determinar si un caracter
es un digito, y para convertir una cadena de caracteres en un entero.

J

Ejercicios Propuestos

Especifique formalmente y desarrolle las siguientes rutinas:
3.1. void impPila( Pila pil )
/* Imprime el contenido de una pila, sin cambiar su contenido */

3.2. void fondoPila( Pila pil, TipoP elem )
/* Coloca en el fondo de la pila el elemento elem */

3.3. intlongPila( Pila pil )
/* Calcula el numero de elementos de la pila, sin modificar su contenido */

3.4. int sumePila( Pila pil )
/* Suma todos los elementos de la pila y retorna el resultado */

3.5. void elimTodosPila( Pila pil, Tipo elem )
/* Elimina de la pila todas las ocurrencias del elemento elem */

3.6. int palindromePila( Pila pil )
/* Indica si el contenido de la pila es un palindrome */
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3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.
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void intercambioPila( Pila pil )
/* Intercambia los valores del tope y el fondo de la pila */

void duplicaPila( Pila pil )
/* Duplica el contenido de la pila, dejando el doble de elementos */

int sintaxisExp( Lista exp )
/* Informa si una expresién en notacion postfija esta bien construida */

void convertir1( Lista infija, Lista postfija )
/* Pasa una expresion aritmética de notacion infija (con todos los paréntesis) a notacion postfija */

void convertir2( Lista postfija, Lista infija )
/* Pasa una expresion aritmética de notacion postfija a notacion infija (con todos los paréntesis) */

Implemente un algoritmo para evaluar una expresion en notacion infija, sin convertirla a notacion
postfija. Utilice dos pilas, una para operandos y otra para operadores.

Modifique el algoritmo de conversién de notacién de infija a postfija (propuesto en el ejercicio 3.10),
suponiendo que la expresion no trae paréntesis completos, pero sabiendo que la prioridad de los
operadores esta dada de mayor a menor por el siguiente orden: *, /, +, -.

Se define el lenguaje L como el conjunto de palabras obtenidas al aplicar las siguientes reglas
sintacticas:
< palabra > ::= < letra >
| "(" < palabra > < palabra >")"
<letra>:=A|B|..|Z

Segun lo anterior, una palabra del lenguaje L puede ser, o una letra o una construccién entre paréntesis
compuesta por otras dos palabras del lenguaje. Por ejemplo, las siguientes palabras pertenecen al
lenguaje:

A

(AB)

((AB)(CD))

((AB)((CD)(EF)))

Desarrolle un algoritmo que, dada una lista de caracteres, indique si la secuencia pertenece o no al
lenguaje.

3.4. Implementacion del TAD Pila

En esta seccién se presentan tres implementaciones -muy sencillas- para el Tipo Abstracto Pila.

3.41. & Listas

En esta implementacion se utiliza un objeto abstracto del TAD Lista para representar una pila. El esquema de
representacion es el siguiente:

e Lapilapil = @I se representa con la lista < e4, ey ... eN >.

e La pila vacia (pil = &) se representa internamente como una lista sin elementos (pil = < >).

La declaracion de las estructuras de datos es:
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typedef TipoP TipoL;
typedef Lista Pila;

Ahora, es suficiente con expresar las operaciones del TAD Pila en términos de las operaciones del TAD Lista,
como se hace a continuacion:

Pila inicPila( void )
{ return inicLista( );

}

void adicPila( Pila pil, TipoP elem )
{ primLista( pil );
insLista( pil, elem );

}

void elimPila( Pila pil )

{ primLista( pil );
elimLista( pil );

H

TipoP infoPila( Pila pil )
{ primLista( pil );
return infoLista( pil );

}

int vaciaPila( Pila pil )
{ return longLista( pil ) == 0;
H

void destruirPila( Pila pil )
{ destruirLista( pil );
H

3.4.2. Vectores

Un vector es una buena manera de representar una pila, si se conoce con anterioridad el nUmero maximo de
elementos que va a contener. Sélo se necesita algin medio para marcar el tope de la pila, puesto que los
elementos se colocan en casillas consecutivas a partir de la primera. El esquema de representacion es el
siguiente:

e La pilapil = @I se representa con la estructura:

Pil_y[ tope info
| n 0 en
n-1 el
MAX-1
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e La pila vacia pil = & se representa con un cero en el campo que indica la posicién del tope:

Pil__y [ tope info
[o] o
MAX-1

Las estructuras de datos se declaran de la siguiente manera:

typedef struct
{ int tope;

TipoP info[ MAX ;
} TPila, *Pila;

Las funciones que implementan las operaciones del TAD Pila bajo esta representacion, son:

Pila inicPila( void )

{ Pila pil = ( Pila )malloc( sizeof( TPila ) );
pil->tope = 0;
return pil;

}

void adicPila( Pila pil, TipoP elem )
{ pil->info[ pil->tope++ ] = elem;

}

void elimPila( Pila pil )
{ pil->tope--;
H

TipoP infoPila( Pila pil )
{ return pil->info[ pil->tope - 1 |;

}

int vaciaPila( Pila pil )
{ return pil->tope == 0,

}

void destruirPila( Pila pil )
{ free(pil);
H

3.4.3. Estructura Sencillamente Encadenada

En esta representacion se utilizan listas sencillamente encadenadas para almacenar la informaciéon de una
pila, con el siguiente esquema:

e La pilapil = el e2..en |ge representa mediante una lista encadenada, con un nodo de encabezado:
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e Una pila vacia pil = & tiene unicamente el nodo de encabezado:

[T

Las declaraciones de las estructuras de datos son de la siguiente forma:

typedef struct TNodoPila
{ TipoP info;

struct TNodoPila *sig;
} TPila, *Pila;

Las rutinas que implementan las operaciones del TAD Pila bajo esta representacion son las siguientes:

Pila inicPila( void )

{ Pila pil = ( Pila )malloc( sizeof( TPila ) );
pil->sig = NULL,;
return pil;

}

void adicPila( Pila pil, TipoP elem )

{ Pilap=(Pila)malloc( sizeof( TPila ) );
p->info = elem;
p->sig = pil->sig;
pil->sig = p;

H

void elimPila( Pila pil )

{ Pilap = pil->sig;
pil->sig = pil->sig->sig;
free( p );

H

TipoP infoPila( Pila pil )
{ return pil->sig->info;

}

int vaciaPila( Pila pil )
{ return pil->sig == NULL;

H
void destruirPila( Pila pil )
{ Pilap,q;
for( p =pil; p!=NULL; )
Uoa=p
p = p->sig;
free(q);
H
H
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Ejercicios Propuestos:

3.15. Haga una comparacion detallada de las tres implementaciones del TAD Pila presentadas
anteriormente.

3.16. ;Por qué es necesario tener un encabezado en la implementacion de apuntadores? Dé un ejemplo.

3.17. Implemente sobre las tres representaciones vistas una rutina que coloque un elemento en el fondo de
la pila. Calcule la complejidad de la operacion.

3.18. Implemente sobre las tres representaciones vistas una rutina que haga una copia de una pila. Calcule
la complejidad de la operacion.

3.19. Implemente sobre las tres representaciones vistas una rutina que informe si dos pilas son iguales.
Calcule la complejidad de la operacion.

3.20. Implemente sobre las tres representaciones vistas un esquema de persistencia parecido al que se
utilizé en el capitulo de listas.

3.5. Colas: Definiciones y Conceptos Basicos

Una cola (queue) es una estructura lineal, en la cual los elementos sélo pueden ser adicionados por uno de
sus extremos y eliminados o consultados por el otro. El ejemplo tipico de una cola es la fila de espera que se
hace mientras se espera atencién en alguna parte. Al llegar un nuevo elemento se coloca al final (después del
ultimo) y espera a que atiendan y salgan de la fila todos los que llegaron antes. No existe manera de llegar a
un puesto diferente del ultimo, ni esperar ser atendido y salir de la fila mientras se esté en un puesto distinto
del primero.

salida entrada

T «—

Fig. 3.3 - Operaciones sobre una cola

Las colas se utilizan mucho en los procesos de simulacion, en los cuales se quiere determinar el
comportamiento de un sistema que presta servicio a un conjunto de usuarios, quienes esperan mientras les
toca el turno de ser atendidos. Como ejemplos de estos sistemas se pueden nombrar los bancos, los
aeropuertos (los aviones hacen cola para despegar y aterrizar) y los procesos dentro de un computador. Las
colas también se utilizan en muchos algoritmos de recorrido de arboles y grafos.

Este tipo de estructuras lineales se conoce en la literatura como estructuras FIFO (First-In-First-Out),
indicando con su nombre el mecanismo basico utilizado para incluir y eliminar un elemento: el primero en
llegar es el primero en salir. El unico elemento visible en una cola es el primero y mientras éste no haya
salido, no es posible tener acceso al siguiente.

El formalismo escogido para expresar el estado de un objeto abstracto Cola es:

X1 X2 ... Xn (_

La cola sin elementos se representa con el simbolo &.

Por ultimo, se define la longitud de una cola como el nimero de elementos que la conforman. Si la longitud
es cero (no tiene ningun elemento), se dice que la cola esta vacia.
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3.6. EI TAD Cola

137

TAD Cola[ TipoC ]

X1 X2 ... Xn (_
{inv: TRUE }
Constructoras:
. inicCola: — Cola
Modificadoras:
. adicCola: Cola x TipoC — Cola
. elimCola: Cola — Cola
Analizadoras:
. infoCola: Cola — TipoC
. vaciaCola: Cola — int
Destructora:
. destruirCola: Cola

Cola inicCola( void )
/* Crea una cola vacia */

{ post: inicCola= & }

void adicCola( Cola col, TipoC elem )
/* Agrega el elemento elem al final de la cola */

— X1 x2 ... xn elem

{ post: col <~}

void elimCola( Cola col )
/* Elimina el primer elemento de la cola */

{pre:n>0}

— X2 ...Xn

{ post: col <~}

TipoC infoCola( Cola col )
/* Retorna el primer elemento de la cola */

{pre:n>0}
{ post: infoCola = x1 }

int vaciaCola( Cola col )
/* Informa si la cola esta vacia */

{ post: vaciaCola=(col=J)}
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void destruirCola( Cola col )
/* Destruye la cola retornando toda la memoria ocupada */

{ post: la cola ha sido destruida }

3.7. Ejemplos de Utilizacién del TAD Cola

Ejemplo 3.6:

Hacer y retornar una copia de una cola. Esta operacién deberia colocarse como parte del TAD. La
complejidad de esta rutina es O( n ), donde n es la longitud de la cola.

/* pre: col = COL =X1X2... Xn_(

/* post: col = COL, copiarCola = XI1x2..xn (%

Cola copiarCola( Cola col )
{ Colaresp = inicCola( );
Lista Ist;
for( Ist = inicLista( ); !vaciaCola( col ); elimCola( col ) )
anxLista( Ist, infoCola( col ) );
for( primLista( Ist ); !finLista( Ist ); sigLista( Ist ) )
{ adicCola( col,infoLista( Ist) );
adicCola( resp,infoLista( Ist ) );
H
destruirLista( Ist );
return resp;

}

La rutina utiliza dos ciclos. El primero, para pasar todos los elementos de la cola a una lista temporal. El
otro, para hacer dos copias de la lista.

J

Ejemplo 3.7:

Calcular la longitud de una cola. La complejidad de esta rutina es O( n ), donde n es el numero de elementos.

/* pre: col =xI1x2...xn . %

/* post: longCola =n */

int longCola( Cola col )
{ Cola aux = copiarCola( col );
int longitud;
for( longitud = 0; !vaciaCola( aux ); elimCola( aux ) )
longitud++;
destruirCola( aux );
return longitud,
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La rutina se limita a hacer una copia de la cola, y destruirla a medida que va contando sus elementos. El
invariante del ciclo afirma, que cuando se hayan sacado k elementos de la cola auxiliar, la variable longitud
valdra k:

{inv: aux = XK. XD ¢ ongitud = k-1 }

J

Ejemplo 3.8:

Concatenar dos colas, dejando el resultado en la primera de ellas. La complejidad de esta rutina es O( n ),
donde n es la longitud de la segunda cola.

{ pre: coll = X1X2..xn . cop=coL2=Yly2..ym «—

{post:coll = X1X2..xny1y2..ym . co12=COL2}

void concatColas( Cola coll, Cola col2 )
{ Cola aux;
for( aux = copiarCola( col2 ); !vaciaCola( aux ); elimCola( aux ) )
adicCola( coll, infoCola( aux ) );
destruirCola( aux );

}

El invariante asegura que cuando se hayan eliminado los k-1 primeros elementos de la cola auxiliar, éstos
se habran agregado al final de la cola coll:

{inv: coll = X1x2..xny1y2.. yk-1 . ux=yKk..ym )

J

Ejercicios Propuestos

3.21. void invCola( Cola col )
/* Invierte los elementos de la cola */

3.22. int existeElemento( Cola col, TipoC elem )
/* Informa si el elemento elem se encuentra presente en la cola col */

3.23. intigualesColas( Cola col1, Cola col2 )
/* Informa si las colas coll y col2 tienen los mismos elementos, en el mismo orden */

3.24. void colarElemento( Cola col, TipoC elem, int pos )
/* Agrega el elemento elem en la posicion pos de la cola, desplazando todos los elementos siguientes
una posicion hacia el final */

3.25. void sacarElemento( Cola col, TipoC elem )
/* Saca el elemento elem de la cola col */

3.26. void partirCola( Cola col, Cola col1, Cola col2, TipoC elem )
/* Deja en la cola coll todos los elementos de col menores que elem y en la cola col2 los mayores a
dicho elemento */

3.27. void primeroCola( Cola col, TipoC elem )
/* Coloca el elemento elem de primero en la cola */
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3.8. Implementacion del TAD Cola

En esta parte se presentan tres maneras distintas de implementar el TAD Cola. La primera con una lista, la
segunda, utilizando una estructura de datos llamada vector circular y la tercera, mediante apuntadores.

3.8.1. & Listas

En esta primera implementacién se representa una cola con un objeto abstracto del TAD Lista, con el
esquema que se sugiere a continuacion:

—Xx1x2..xn

e Lacolacol < se representa con la lista de n elementos col = < x1 x2 ... xn >,

e Lacola vacia col = &, se representa con una lista sin elementos col = < >.
Las estructuras de datos se declaran como:

typedef TipoC TipoL;
typedef Lista Cola;

Las operaciones del TAD se implementan con las siguientes rutinas:

Cola inicCola( void )
{ return inicLista( );

}

void adicCola( Cola col, TipoC elem )
{ ultLista( col );
anxLista( col, elem );

}

void elimCola( Cola col )
{ primLista( col );
elimLista( col );

}

TipoC infoCola( Cola col )
{ primLista( col );
return infoLista( col );

}

int vaciaCola( Cola col )
{ return longLista( col ) == 0;

}

void destruirCola( Cola col )
{ destruirLista( col );

}
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3.8.2. Vectores Circulares

Si se representa una cola con un vector, las rutinas que implementan las operaciones del TAD tienen la
siguiente complejidad:

inicCola o(1)
adicCola o(1)
elimCola O(N)
infoCola o(1)
vaciaCola O(1)

La ineficiencia en la operacion que elimina un elemento ( elimCola - O( n ) ) se debe a la necesidad de
desplazar todos los elementos de la estructura, para ocupar el lugar liberado después de sacar el primero.
Una posibilidad para evitar este movimiento es marcar los lugares dentro del arreglo donde comienza y
termina la cola. Para esto se pueden colocar dos campos extra indicando las casillas en las cuales se
encuentran los elementos primero y ultimo, de tal forma que sdélo el espacio comprendido entre estas dos
marcas se halle ocupado por los elementos de la cola, como se muestra en la figura 3.4.

<—— primero

<+—— ultimo

MAX-1

Fig. 3.4 - Marcas en un vector para simular una cola

Asi, eliminar un elemento equivale a mover la marca de comienzo de la cola una posicion, sin necesidad de
hacer ningun desplazamiento, lo cual es O( 1 ). El problema de esta solucién es el espacio desperdiciado,
puesto que las casillas del vector, anteriores a la marca de comienzo, nunca serian reutilizadas. Mas aun, se
puede dar el caso de no poder adicionar un elemento a la cola por no haber sitio al final (altimo = MAX-1), a
pesar de tener las primeras posiciones del arreglo desocupadas (primero > 0). Para obviar estos
inconvenientes es posible ver el vector como una estructura circular, en la cual, después de utilizar la ultima
casilla del vector, se pueden reutilizar todas las que se encuentran libres al comienzo, como se sugiere en la

figura 3.5.
0o 1

MAX-1

tltimo —»

/

primero

Fig. 3.5 - Estructura de un vector circular

En esta implementacion, todas las casillas después de la marca de ultimo y antes de la marca de primero, se
encuentran libres y listas para ser utilizadas. El esquema de representacion se resume en los siguientes
puntos:

o Lacolacol=X1X2..XN . g6 representa internamente con el vector circular:
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primero |7_A|

e La cola vacia col = & se representa con valores especiales en las marcas de primero Yy ultimo:

col

primero

e Una cola completamente llena tiene siempre la marca de primero una casilla después de la marca de
ultimo. Esto es, ( (ultimo + 1) % MAX ) = primero, donde % representa el operador médulo:

col 0 1

primemﬁ &ummo

En esta forma de implementar el TAD Cola se tiene el inconveniente de que se debe definir desde un
comienzo el numero maximo de elementos que puede contener la estructura. Esta es la principal restriccion
de esta forma de representacion. Las estructuras de datos para vectores circulares se declaran asi:

typedef struct

{ TipoC info[ MAX ] /* Vector circular */
int primero; /* Posicion del primer elemento */
int ultimo; /* Posicion del ultimo elemento */

} TCola, *Cola;

Las operaciones del TAD se implementan con las siguientes rutinas:

© Todos los derechos reservados — Jorge Villalobos



Capitulo 3 - Estructuras Lineales: Pilas y Colas 143

Cola inicCola( void )

{ Cola col = ( Cola )malloc( sizeof( TCola ) );
col->primero = col->ultimo = -1;
return col;

}

void adicCola( Cola col, TipoC elem )
{ if (col->primero ==-1)
{  col->info[ 0 ] = elem;
col->primero = col->ultimo = 0;
H
else
{  col->ultimo = ( col->ultimo + 1) % MAX;
col->info[ col->ultimo ] = elem;
H
H

void elimCola( Cola col )
{ if ( col->primero == col->ultimo )
col->primero = col->ultimo = -1;
else
col->primero = ( col->primero + 1 ) % MAX;

}

TipoC infoCola( Cola col )
{ return col->info[ col->primero J;

H
int vaciaCola( Cola col )

{ return col->primero == -1 && col->ultimo ==-1;

}

void destruirCola( Cola col )
{ free( col);
H

3.8.3. Estructura Sencillamente Encadenada

En esta implementacion, se va a representar una cola como un registro con dos campos de tipo apuntador:
uno al primer elemento de una estructura simplemente encadenada vy, otro, al ultimo de ellos. El esquema de
representacion se define en los siguientes puntos:

e Lacolacol=X1X2..XN . ge representa internamente como:

col . 'J__‘
-l - o

e Una cola vacia col =&, se representa con un registro con sus dos campos en NULL:
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col T -
1

—

La declaracion de las estructuras de datos para esta implementacion es de la siguiente forma:

typedef struct TNodoCola
{ TipoC info;

struct TNodoCola *sig;
} *pNodoCola;

typedef struct
{ pNodoCola primero, ultimo;
} TCola, *Cola;

Las operaciones del TAD se implementan con rutinas de complejidad constantes, tal como se muestra a
continuacion:

Cola inicCola( void )

{ Cola col = ( Cola )malloc( sizeof( TCola ) );
col->primero = col->ultimo = NULL;
return col;

}

void adicCola( Cola col, TipoC elem )
{ pNodoCola p = ( pNodoCola )malloc( sizeof( struct TNodoCola ) );
p->info = elem;
p->sig = NULL,;
if( col->primero == NULL )
col->primero = col->ultimo = p;
else
{  col->ultimo->sig = p;
col->ultimo = p;
H
H

void elimCola( Cola col )
{ pNodoCola p;
if( col->primero->sig == NULL )
{  free( col->primero );
col->primero = col->ultimo = NULL,;
H
else
{  p = col->primero;
col->primero = p->sig;
free(p );
H
H

TipoC infoCola( Cola col )
{ return col->primero->info;

}
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int vaciaCola( Cola col )
{ return col->primero == NULL;

}

void destruirCola( Cola col )
{ pNodoColap, q;
for( p = col->primero; p != NULL; p = p->sig, free( q ) )
q=p;
free( col );

Ejercicios Propuestos

3.28. Haga una comparacion de las tres implementaciones del TAD Cola presentadas anteriormente.

3.29. Implemente el TAD Cola con una estructura circular simplemente encadenada. Calcule la
complejidad de las operaciones.

3.30. Implemente el TAD Cola sobre el TAD Pila. Calcule la complejidad de las operaciones.

3.31. Desarrolle sobre las tres representaciones vistas una rutina que coloque un elemento como primero de
la cola. Calcule la complejidad de la operacion.

3.32. Desarrolle sobre las tres representaciones vistas una rutina que cuente el numero de ocurrencias de un
elemento en la cola. Calcule la complejidad de la operacion.

3.33. Desarrolle sobre las tres representaciones vistas una rutina que elimine un elemento dado de la cola.
Calcule la complejidad de la operacion.

3.34. Desarrolle sobre las tres representaciones vistas una rutina que avance k posiciones en la cola un
elemento dado. Calcule la complejidad de la operacion.

3.35. Desarrolle sobre las tres representaciones vistas una rutina que calcule la posicion de un elemento en
la cola. Calcule la complejidad de la operacion.

3.9. EL TAD Cola de Prioridad

Cuando un conjunto de procesos dentro de un computador hacen cola para utilizar algin recurso, no todos
tienen la misma prioridad. Existen algunos mas importantes que otros, que requieren ser atendidos con mayor
prontitud. En ese caso, al entrar un nuevo elemento a la cola, debe saltarse todos aquellos cuya prioridad sea
menor y se encuentren en la fila. Para sacar un elemento, lo mismo que para consultarlo, se toma el primero
de la secuencia (el mas antiguo de mayor prioridad). En el resto de operaciones, una cola de prioridades se
comporta como una cola corriente.

En este tipo de estructuras, cada componente incluye un valor que representa su prioridad. Por esto, se
extiende de la siguiente manera el formalismo propuesto en la seccion anterior:

[ Xq1«pq] [ Xo«po] .... [ Xn«ppl <

En éste, cada x; representa un elemento y cada p;j su respectiva prioridad. De acuerdo con la definicion de
este tipo de colas, se debe cumplir necesariamente que p;j > pk cuando i < k. La cola de prioridades vacia se
representa con el simbolo &
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Para la cola de prioridades colP = [ A«9] [ B«5] [ C«3] [ D«1] «, si llega el elemento E con prioridad 6, se

obtiene la secuencia:

colP = [ A«9] [ E«B] [ B«5] [ C«3] [ D«1] «

Si llega el mismo elemento pero con prioridad 5, debe quedar antes que todos los elementos de menor
prioridad, pero después de los que se encuentren presentes y tengan una prioridad mayor o igual:

colP = [ A«9] [ B«5] [ E«5] [ C«3] [ D«1] «

En cualquier caso, el siguiente elemento que va a ser atendido en la cola es el elemento A.

J

La especificacion del TAD Cola de Prioridades es:

TAD ColaP][ TipoCP ]

[ X1«pq] [ Xo«po] .... [ Xn«ppl <
{inv: pjzpk,Vi<k}
Constructoras:
. inicColaP: — ColaP
Modificadoras:
. adicColaP: ColaP x TipoCP x int — ColaP
. elimColaP: ColaP — ColaP
Analizadoras:
. infoColaP: ColaP — TipoCP
. vaciaColaP: ColaP — int
Destructora:
. destruirColaP: ColaP

ColaP inicColaP( void )
/* Crea una cola de prioridades vacia */

{ post: inicColaP = & }

void adicColaP( ColaP col, TipoCP elem, int pri )

/* Agrega el elemento elem con prioridad pri a la cola de prioridades */

{ post: col = [ xq«pq] [ xo«p2] ...[ Xk«pk] [ elem«pri] ... [ Xpn«pPpl <=, Pk = Pri > Pk+1 }

void elimColaP( ColaP col )
/* Elimina el primer elemento de la cola de prioridades */

{ post: col = [ xo«p2] ... [ Xp«ppl < }

© Todos los derechos reservados — Jorge Villalobos




Capitulo 3 - Estructuras Lineales: Pilas y Colas 147

TipoCP infoColaP( ColaP col )
/* Retorna el primer elemento de la cola de prioridades */

{pre: n>0}
{ post: infoColaP = x1}

int vaciaColaP( ColaP col )
(* Informa si la cola de prioridades es vacia *)

{ post: vaciaColaP = (col=Q )}

void destruirColaP( ColaP col )
/* Destruye la cola de prioridades retornando toda la memoria ocupada */

{ post: la cola de prioridades ha sido destruida }

3.10. & Implementacion del TAD Cola de Prioridades

Suponiendo que las prioridades que maneja la cola son valores enteros entre 0 y 9, se puede representar una
cola de prioridades mediante un vector con 10 colas, cada una con los elementos de una misma prioridad. Por
ejemplo, la cola de prioridades:

colP=[A«9][B«4][E«4][C«2][D«0]«
estara representada internamente mediante el vector de 10 posiciones:

9 8 7 6 5 4 3 2 1

A« |O %] %] %] BE« |O C« |OU D«

La cola de prioridades vacia es un vector de diez colas sin elementos:

9 8 7 6 5 4 3 2 1 0
%) %) %) %) %) %) %) %) %) %)

Con esta manera de representar una cola de prioridades se ilustra la forma de manejar agrupamientos de
objetos abstractos para modelar un elemento de un TAD. Las estructuras de datos para esta implementacion
se declaran asi:

typedef TipoCP TipoC;

typedef struct
{ int maxP; /* Méaxima prioridad presente en la cola */
Cola info[ 10 ]; /* Vector de 10 colas */

} TColaP, *ColaP;
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Las rutinas para implementar las operaciones del TAD son:

ColaP inicColaP( void )
{ inti;
ColaP col = ( ColaP )malloc( sizeof( TColaP ) );
for(i=0;1<10; i++)
col->info[ i ] = inicCola( );
col->maxP = -1;
return col;

}

void adicColaP( ColaP col, TipoCP elem, int pri )
{ adicCola( col->info[ pri ], elem );
if( pri > col->maxP )
col->maxP = pri;

}

void elimColaP( ColaP col )
{ elimCola( col->info[ col->maxP ] );
for( ; col->maxP !=-1 && vaciaCola( col->info[ col->maxP ] ); col->maxP--);

}

TipoCP infoColaP( ColaP col )
{ return infoCola( col->info[ col->maxP ] );

}

int vaciaColaP( ColaP col )
{ return col->maxP ==-1;

}

void destruirColaP( ColaP col )
{ inti;
for(i=0;1<10; i++)
destruirCola( col->info[ i ] );
free( col );

}

Ejercicios Propuestos

3.36. Suponiendo que la prioridad de los elementos viene dada por un valor entero no negativo, una cola
de prioridades se puede implementar como una lista de colas, ordenada por prioridad. Por ejemplo, la
cola de prioridades:

colP =[A«100][B«100][E«30 ][ C«30][D«30 ]«

Se representaria internamente con la lista de parejas [ prioridad, cola ]:
colP=<[100,A B«], [30,E C D« ]>

Una cola de prioridades vacia estaria representada con una lista vacia. Defina claramente el esquema
de representacion e implemente las operaciones del TAD.

3.37. Suponiendo que la prioridad de los elementos viene dada por un valor entero no negativo, disefie
unas estructuras de datos basadas en apuntadores (multilistas) e implemente sobre ellas el TAD ColaP.
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3.38.

3.39.

3.40.
3.41.

En las colas de prioridad, para evitar que algunos elementos de baja prioridad se queden sin atencién
es posible definir una politica de servicio, en la cual, por cada elemento de una prioridad mayor que
sale, se aumenta en 1 la prioridad de todos los elementos de menor importancia. Utilizando las
estructuras de datos explicadas en la seccién anterior, implemente la operacion elimCola.

Una cola de prioridades se puede representar como una lista de parejas de la forma [ prioridad,
elemento ]. Por ejemplo, la cola de prioridades:

colP =[A«100][B«100][E«30][C«30][D«30] «
se puede representar con la lista de parejas:
colP=<[A,100],[B,100],[E,30],[C,30],[D,30]>
Defina claramente el esquema de representacion e implemente las operaciones del TAD.
Disefie unas estructuras de datos basadas en vectores e implemente sobre ellas el TAD ColaP.
En los bancos, el sistema de atencién a los clientes se basa en una estructura lineal (una cola),

atendida a la vez por N cajeros. Esta estructura se denomina una Cola-MP (multipunto), y remplaza las
N tradicionales colas que se hacian al frente de cada punto de atencion.

o lee® «— o(le & —
p—— °

o leoe® — o| [® |ole

ol | oo — ol le (@O

3 Colas para 3 cajeros 1 Cola-MP atendida po 3 cajeros

Al llegar un cliente a una Cola-MP, debe situarse detras de todas las personas que ya se encuentran en
fila, y esperar hasta que un cajero esté libre para que lo atienda. Cada cliente se identifica por un
nombre y un nimero dado de transacciones, todas las cuales deben ser efectuadas por el cajero antes
de atender a otro cliente. Todas las transacciones toman el mismo tiempo, y un cajero nunca descansa.
Eso quiere decir que mientras un cajero atiende k clientes con una transaccién, otro cajero puede
atender un cliente con k transacciones. Los cajeros siempre estan sincronizados, de manera que
comienzan a atender una transaccién de los clientes al mismo tiempo.

Son 6 las operaciones principales para administrar este tipo de estructuras: (1) crear una Cola-MP
vacia con N cajeros, (2) agregar una persona de nombre nn y k transacciones a la Cola-MP, (3) atender
una transaccion por parte de todos los cajeros y actualizar el estado de la Cola-MP, (4) informar si la
cola esta vacia, (5) informar el nombre de la persona que esta siendo atendida por el cajero i, (6)
informar el nUmero de cajeros del banco.

a-) Seleccione un formalismo para expresar el objeto abstracto
b-) Escriba el invariante del TAD
c-) Especifique las 6 operaciones del TAD

d-) Utilice el TAD para resolver el siguiente problema: Una persona de nombre nn, que se encuentra
haciendo cola, quiere saber en cuanto tiempo va a salir del banco. Suponga que cada transaccién toma
1 minuto. La operacion modifica la cola durante el proceso.

e-) Haga un disefio de estructuras de datos, de manera que las 6 operaciones del TAD sean lo mas
eficientes posibles. Especifique claramente el esquema de representacion. Implemente cada operacion
y calcule la complejidad.
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3.11. EI TAD Ronda

Una ronda es un objeto abstracto que se puede representar mediante el siguiente formalismo:

— »xk
N

En ella, los elementos se encuentran organizados de manera circular y uno de ellos, denominado punto de
entrada, es un elemento especial sobre el cual se aplican las operaciones. Una ronda vacia se representa
con el simbolo — &, y su punto de entrada es indefinido ( L ).

Para agregar un elemento a una ronda, existe la operacion adicRonda cuyo efecto es el siguiente:

- T TN xe T
[' X1 (‘ X1
— » Xk ——>clem
NN N

Existe también la operacion elimineRonda, con el efecto inverso:

. .\ ] .. \4
Xk-1 X1 Xk-1 X1
—» Xk

— Xk+1

Xk+1A/Xn \ o /Xn

Para hacer girar una ronda, se tiene la operacion rotarRonda, con el siguiente efecto:

( X1 ( X1
—» Xk — Xk+1
Xk+1/Xn \. ./Xn

Se cuenta ademas con dos analizadoras: una, para tomar el elemento que se encuentra en el punto de

entrada (infoRonda), y otra, para establecer si una ronda esta vacia (vaciaRonda). En los ejercicios que se
proponen a continuacion se trabaja sobre estas estructuras.
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Ejercicios Propuestos

3.42. Haga una definicion formal del TAD Ronda[ TipoR ]. Disefie diferentes estructuras de datos y
comparelas, teniendo en cuenta la complejidad de los algoritmos que implementan las operaciones.
Finalmente, implemente el TAD Ronda sobre las mejores estructuras de datos encontradas.

3.43. El problema de Josefo.

Cuenta el historiador Flavio Josefo, que a principios de la era cristiana hubo un movimiento de rebelién
judia contra la dominacion de Roma. Los alzados fueron sitiados en una fortaleza inexpugnable. Estos
hombres resistieron hasta que, faltos de comida, prefirieron matarse colectivamente antes que
entregarse al enemigo. Para matarse, se dispusieron en circulo, y, a partir del jefe, contaban en
redondo hasta N, y éste era asesinado por su vecino. Este procedimiento se repitiéo hasta que quedd un
solo hombre. Este se debia suicidar, sin embargo prefirid entregarse a los romanos. De esa forma se
conocié la historia.

a-) Desarrolle un algoritmo para resolver el problema de Josefo, en términos del TAD Ronda, el cual
consiste en conocer el nombre del ultimo soldado.

b-) Suponga que todas las operaciones del TAD Ronda son O(1). Calcule la complejidad de su
algoritmo.

3.44. intlongRonda( Ronda ron )
/* Calcula el numero de elementos presentes en la ronda ron, suponiendo que no hay elementos
repetidos */

3.45. void menorRonda( Ronda ron, TipoR elem )
/* Elimina de la ronda todos los elementos menores o iguales a elem. Supone que no hay elementos
repetidos */

3.46. void invRonda( Ronda ron )
/* Invierte una ronda sin elementos repetidos, utilizando una pila como estructura auxiliar */

3.47. Ronda copiarRonda( Ronda ron )
/* Hace una copia de una ronda sin elementos repetidos */

3.48. Implemente el TAD Ronda sobre el TAD Lista. Calcule la complejidad de cada operacion.

3.49. Implemente el TAD Ronda sobre una estructura circular sencillamente encadenada. Calcule la
complejidad de cada operacion.

3.50. Implemente el TAD Ronda sobre una estructura circular doblemente encadenada. Calcule la

complejidad de cada operacion.

3.12. EI TAD Bicola

Una bicola es una estructura lineal en la cual los elementos s6lo pueden ser adicionados, consultados vy
eliminados por cualquiera de sus dos extremos.

salida salida

SIS

entrada entrada

Fig. 3.6 - Operaciones sobre una bicola

El disefio, especificacion e implementacion de este nuevo TAD se propone como ejercicio.
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Ejercicios Propuestos

3.51.

3.52.
3.53.
3.54.

3.55.

3.56.

Disefie y especifique formalmente el TAD Bicola. Piense en la posibilidad de tener una ventana sobre el
extremo en el que se van a realizar las operaciones.

- Implemente el TAD Bicola, disefiado en el punto anterior, sobre el TAD Lista.

Implemente el TAD Bicola sobre una estructura doblemente encadenada.

Implemente el TAD Bicola, permitiendo la entrada de elementos por un solo lugar, pero con la
posibilidad de eliminar por cualquier extremo.

Una tabla de frecuencias es una estructura lineal, que permite asociar con un rango de valores
enteros positivos (menores que un valor dado) un nimero de ocurrencias. Por ejemplo, si se quiere
mostrar la distribucién de edades de los estudiantes de la Universidad, es posible utilizar una grafica
como la siguiente, que representa una tabla de frecuencias. Alli se tiene, por ejemplo, que son 100 los
estudiantes matriculados que tienen 14 o mas afios, y menos de 16 ( 14 <edad < 16 ).

900

Numero de
700 estudiantes

14-16 16-18 18-20 20-22 22-24  24-26  26-28 28-30
Edad
Una caracteristica de una tabla de frecuencias es su periodo, el cual indica el tamafio de cada rango. Para el
ejemplo anterior, el periodo es 2. También es necesario fijar un valor de referencia, con respecto al cual se
calculan los rangos. Para el ejemplo anterior puede ser cualquier nimero par menor o igual a 14. Un ejemplo de
una tabla de frecuencias con el mismo periodo del anterior, pero con diferente valor de referencia (por ejemplo 1),
es el siguiente:

850 Ntmero de
700 estudiantes

1517 1719 19-21 21-23 23-25 2527 27-29  29-31
Edad

a-) Disefie y especifique el TAD TablaFrecuencia

b-) Disefie y especifique un esquema de representacion para el TAD TablaFrecuencia. Construya una tabla con la
complejidad de las operaciones. Justifique su disefio utilizando argumentos como eficiencia, completitud, etc.

c-) Disefie y especifique un esquema de persistencia para el TAD TablaFrecuencia

d-) Implemente y pruebe el TAD TablaFrecuencia

Una bolsa es una estructura lineal, que permite almacenar multiples ocurrencias de elementos de
un dominio especifico.

a-) Seleccione un formalismo para representar los objetos abstractos.

b-) Disefie y especifique el TAD Bolsa
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c-) Disefie y especifique un esquema de representacion para el TAD Bolsa. Construya una tabla con la
complejidad de las operaciones. Justifique su disefio utilizando argumentos como eficiencia, completitud, etc.

d-) Disefie y especifique un esquema de persistencia para el TAD Bolsa

e-) Implemente y pruebe el TAD Bolsa
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CAPITULO 4

ESTRUCTURAS RECURSIVAS:
ARBOLES BINARIOS

En este capitulo se presentan las estructuras de datos recursivas llamadas arboles binarios, utilizadas para
representar relaciones de jerarquia entre elementos de un conjunto. Este tipo de organizacion se utiliza
mucho para representar informacion ordenada, para mostrar relaciones estructurales entre elementos de un
conjunto y, en general, para modelar situaciones que se puedan expresar en términos de jerarquias. Se
estudian en particular los arboles ordenados, los arboles balanceados y los arboles de sintaxis.

4.1. Definiciones y Conceptos Basicos

Un arbol binario es una estructura recursiva, compuesta por un elemento, denominado la raiz, y por dos
arboles binarios asociados, denominados subarbol derecho y subarbol izquierdo. El hecho de definir la
estructura de datos en términos de si misma es lo que hace que se denomine recursiva. El formalismo grafico
escogido para representar un arbol aparece en la figura 4.1. En él, se hace explicito que los dos subarboles
tienen la misma composicién estructural del arbol completo. El caso mas sencillo de &rbol binario es un arbol
vacio, el cual no tiene elementos ni subarboles asociados. El simbolo escogido para representarlo es A.

subarbol subarbol
izquierdo derecho

Fig. 4.1 - Formalismo para expresar un arbol binario
Otro formalismo posible para representar arboles binarios, cuando se quieren hacer explicitos todos los

componentes de la estructura, utiliza un nombre para cada uno de los elementos del arbol y lineas para las
relaciones de composiciéon, como se muestra en la figura 4.2.

el
e2 e3 e2 e3
ed e5 eb e7 e4 e5 eb e’
Fig. 4.2. - (a) Arbol binario (b) Subarbol izquierdo (c) Subarbol derecho
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Un elemento e2 es hijo de un elemento el, si e2 es la raiz de uno de los subarboles asociados con el. En ese
mismo caso, se dice que el es el padre de ¢2. Un elemento ¢2 es hermano de un elemento e3 si ambos
tienen el mismo padre.

Un elemento de un arbol binario es una hoja si sus dos subarboles asociados son vacios. En la figura 4.2, los
elementos e4, e5, e¢6 y e7 son hojas. El formalismo grafico para expresar que un arbol estd compuesto
solamente por una hoja aparece en la figura 4.3. Todo elemento de un arbol que no es una hoja se denomina
un elemento no terminal o interior.

/A

Fig. 4.3. Formalismo para un arbol compuesto por una hoja

Ejemplo 4.1:
Para el arbol de la siguiente figura:
20
10 7N 25
/7 N\
5 12

Se tiene que:

e La raiz es 20 y los dos subarboles asociados son:

10

5/ \12 A

e Los elementos 5, 12 y 25 son hojas

¢ Los nodos interiores son 20 y 10.

e El padre de 5 es 10. El padre de 25 es 20. Los hijos de 10 son 5y 12.
e Los elementos 5 y 12 son hermanos.

J

Un camino entre dos elementos el y e2 de un arbol binario es una secuencia <xq, Xp,..., X, >, que cumple que

el primer elemento es ¢l, el ultimo es e2, y cada elemento es padre de su sucesor. No siempre existe un
camino entre dos elementos de un arbol, pero si existe, éste es uUnico. La raiz de un arbol se caracteriza
porque tiene un camino a cualquier elemento del arbol. La longitud de un camino <x4, Xp,..., X, > e€s n-1, 0

sea, el numero de veces que se debe aplicar la relaciéon padre—hijo durante el recorrido. Siempre existe un
camino de longitud 0 que lleva de un elemento r a si mismo y corresponde a la secuencia < r >. Por ultimo, se
tiene que un camino que parte de la raiz y termina en una hoja se conoce como una rama.

Ejemplo 4.2:
Para el arbol que se muestra en la siguiente figura:
a
RN
b c
/SN /
d e f
AR
g h

Se cumple que:
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e Lalongitud del camino < a, b, e > es 2. La longitud del camino <a > es 0.

e No existe un camino entred y c.

e Elunicocaminoquellevadecahes<c,f h>.

e Elcamino<a,c,f, g > es unarama.

o Desde la raiz existe un camino que lleva hasta cualquier otro elemento de la estructura.

J

Un elemento el es ancestro de un elemento ¢2, si existe un camino entre el y e2. En ese mismo caso, se dice
que e2 es descendiente de ¢l. El nivel de un elemento dentro de un arbol binario se define como la longitud
del camino que parte de la raiz y llega hasta él. De esta forma, el nivel de la raiz es 0 y el de cualquier
elemento es uno mas que el de su padre. El nivel determina qué tan lejos de la raiz se encuentra un
elemento. El ancestro comin mas proximo de dos elementos el y €2 es un elemento e3, que cumple que es
ancestro de ambos y se encuentra a mayor nivel que cualquier otro ancestro que compartan.

La altura de un arbol es la longitud del camino mas largo que parte de la raiz mas 1. La altura de un arbol
vacio se define como 0. El peso de un arbol es el nimero de elementos que contiene. Recursivamente se
puede definir como la suma de los pesos de sus subarboles mas 1. De acuerdo con la definicidn, el peso de
un arbol vacio es 0.

Ejemplo 4.3:
Para el siguiente arbol:
el —— nivel0
VAN _
e2 e3 —— nivel1
VERN
e4 e5 —— nivel 2
/N :
6 o7 —— nivel 3

Se tiene que:

. La altura es 4.

e Elpesoes?7.

e el es ancestro de todos los elementos del arbol.
e e7 es descendiente de e2.

e El ancestro comun mas proximo de e4 y e7 es e2.
. El ancestro comun mas proximo de e6 y el es el.

J

Un arbol binario es completo, si todo elemento no terminal tiene asociados exactamente dos subarboles no
vacios. Eso equivale a decir que todo elemento de un arbol completo tiene los dos subarboles o no tiene
ninguno. En la figura 4.4. aparece un ejemplo.

a
a
RN
X RN . b c
/N /S /N /N
d e f g
d e f
AN RN
i h [
Fig. 4.4 -(a) arbol binario no completo. (b) arbol binario completo
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Un arbol binario esta lleno si es completo y, ademas, todas las hojas estan en el mismo nivel. Un arbol binario
esta casi lleno si esta lleno hasta el penultimo nivel y todas las hojas del siguiente nivel estan tan a la
izquierda como es posible. De acuerdo con la definicion dada anteriormente, un arbol lleno es un caso
particular de un arbol casi lleno. Estos dos conceptos se ilustran en la figura 4.5.

N PN
ANEVAN ANEVAN
25\ 12 14\ 9 25\ 12 14 9
5 30 2 7 17 43 28 5 30 2
(a) Arbol binario lleno (y casi lleno) (b) Arbol binario casi lleno

10
/ \ 10
15 20 / \
/\ /\ /15 B
25 12 14 9 25
Fig. 4.5 - (c) Arbol binario lleno (y casi lleno) (d) Arbol binario casi lleno
Dos arboles binarios son iguales si ambos son vacios, o si sus raices son iguales, lo mismo que sus

respectivos subarboles izquierdo y derecho. Dos arboles binarios son isomorfos si tienen la misma
estructura, pero no necesariamente los mismos elementos. En la figura 4.6 aparece un ejemplo de dos

arboles isomorfos.
/a\ /f\
/b\ c g h
d e a b
Fig. 4.6 - Arboles binarios isomorfos

Dos arboles binarios son semejantes si contienen los mismos elementos, aunque no sean isomorfos. En ese
caso, se dice que tienen el mismo contenido, pero no la misma estructura (figura 4.7).

/N A
7\ SN

Fig. 4.7 - Arboles binarios semejantes

Un arbol binario al ocurre en otro arbol binario a2, si al y a2 son iguales, o si al ocurre en alguno de los
subarboles de a2. El caso general y un ejemplo de la nocién de ocurrencia aparece en la figura 4.8.

f
VRN
g h
7N/ N\
a e i j a
7\ RN
b c b c
Fig. 4.8 - (a) Caso general (b) arbol binario (c) arbol binario que ocurre en (b)
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4.2. TAD Arbin: Analizadoras para Arboles Binarios

En esta seccion se presenta un conjunto de operaciones analizadoras para el manejo de los arboles binarios.
Esto permite mostrar la algoritmica que es comun a este tipo de arboles. Las modificadoras y analizadoras
particulares de cada clase especifica de arbol (i.e. arboles ordenados, arboles de sintaxis, etc.) se presentan

en la seccion respectiva.

TAD Arbin[ TipoA ]

/e\

JATAY

{inv: a1y a2 son disyuntos }

|Ana|izadoras:

o izqArbin: Arbin — Arbin
o derArbin: Arbin — Arbin
|o raizArbin: Arbin — TipoA
|o vacioArbin: Arbin — int

| Arbin izgArbin( Arbin a )
|/ Retorna el subarbol izquierdo */

|{pre:a!:A}

‘{ post: izgArbin = }

| Arbin derArbin( Arbin a )
|/ Retorna el subarbol derecho */

|{pre:a!:A}

‘{ post: derArbin = }

|TipoA raizArbin( Arbin a )
|/* Retorna la raiz */

|

|{ pre:al=A}

|{ post: raizArbin = e }

| int vacioArbin( Arbin a )
|/* Informa si un arbol binario es vacio */

|{ post: vacioArbin=(a=A)}
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4.3. Ejemplos de Utilizacién del TAD Arbin

En esta parte se muestran algunos ejemplos sencillos de utilizacién de las operaciones del TAD Arbin, como
una manera de ilustrar la algoritmica basica de manejo de este tipo de estructuras. En una seccion posterior
se tratan otras técnicas mas avanzadas de solucion recursiva de problemas.

Ejemplo 4.4:

Calcular el peso de un arbol binario. La rutina tiene una salida de la recursion, que corresponde al caso trivial
de un arbol sin elementos ( peso = 0 ), y un avance, que calcula el peso de cada uno de los subarboles y le
suma 1 para incluir en la cuenta el elemento de la raiz.

/* post: pesoArbin = nimero de elementos en el arbol binario a */

int pesoArbin( Arbin a )
{ if( vacioArbin(a))
return 0;
else
return 1 + pesoArbin( izqArbin( a ) ) + pesoArbin( derArbin( a ) );
H

La complejidad de la rutina se puede calcular haciendo la expansién de la siguiente ecuacién de
recurrencia, donde nl es el numero de elementos del subarbol izquierdo, n2 el numero de elementos del
subarbol derecho y n el peso total del arbol:

1, n=0
T(n)=
1+ T(nl)+T(n2), n>0

Pero, si se tiene en cuenta que (n1 +n2 ) =n - 1, se puede reescribir la ecuacion de la siguiente manera:

1, n=0
T(n) =
1+T(n—-1), n>0

De ahi se obtiene que la complejidad resultante para esta rutina es O( n ), segun se demostré en el
capitulo 0.

J

Ejemplo 4.5:

Informar si un elemento se encuentra presente en un arbol binario. La rutina tiene dos salidas de la recursion
y un avance:

e si el arbol es vacio debe retornar FALSE
¢ siel elemento es igual a la raiz, retorna TRUE

e en cualquier otro caso debe tratar de determinar si el elemento se encuentra en alguno de sus
subarboles asociados.

/* post: estaArbin = (elem € a ) */
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int estaArbin( Arbin a, TipoA elem )
{ if( vacioArbin(a))
return FALSE;
else if( elem == raizArbin( a ) )
return TRUE;
else
return estaArbin( izqArbin( a ),elem ) || estaArbin( derArbin( a ),elem );

}

161

Siguiendo el mismo planteamiento del ejemplo anterior, se obtiene que la complejidad de la rutina es O( n

), donde n es el peso del arbol.

J

Ejemplo 4.6:

Calcular el numero de hojas de un arbol. La complejidad de esta rutina es O( n ), donde n es el peso del arbol.
La funcidn tiene dos salidas (el arbol es vacio o el arbol es una hoja) y un avance (sumar las hojas de los dos

subarboles asociados).
/* post: numHojas = numero de hojas del arbol a */

int numHojas( Arbin a )
{ if( vacioArbin(a))
return 0;
else if( vacioArbin( izqArbin( a ) ) && vacioArbin( derArbin(a)))
return 1;
else
return numHojas( izqArbin( a ) ) + numHojas( derArbin( a ) );
H
J

Ejemplo 4.7:

Calcular el numero de veces que aparece un elemento en un arbol binario. La complejidad de esta rutina es
O('n), donde n es el peso del arbol. Tiene una salida de la recursion (el arbol es vacio) y dos avances, segun

si el elemento de la raiz es igual al valor buscado o diferente.
/* post: ocurre = numero de apariciones del elemento elem en el arbol a */

int ocurre( Arbin a, TipoA elem )
{ 1if( vacioArbin(a))
return 0;
else if( raizArbin( a ) == elem )
return 1 + ocurre( izqArbin( a ), elem ) + ocurre( derArbin( a ), elem );
else
return ocurre( izqArbin( a ), elem ) + ocurre( derArbin( a ), elem );
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Ejemplo 4.8:

Decidir si existe un camino entre dos elementos el y e2 de un arbol binario. La complejidad de la rutina de
este ejemplo es O( n ), donde n es el peso del arbol. Tiene dos salidas de la recursion -una O( 1) y la otra O(
n )- y un avance que es O( n) (la misma ecuacion de recurrencia de los ejemplos anteriores).

/* camino = existe un camino en el arbol a que parte de el y termina en e2 */

int camino( Arbin a, TipoA el, TipoA e2)
{ if( vacioArbin(a))
return FALSE;
else if( el ==raizArbin(a))
return estaArbin( a, 2 );
else
return camino( izqArbin( a ), el, €2 ) || camino( derArbin( a ), el, €2 );
H
J

Ejemplo 4.9:

Calcular el numero de elementos que tiene un arbol binario en un nivel dado. La complejidad de esta rutina es
O('n), donde n es el peso del arbol, puesto que en el peor de los casos el nivel pedido corresponde a la altura
del arbol. El avance consiste en sumar los elementos del nivel num - 1 de cada uno de los subarboles
asociados, ya que esos son los elementos del nivel num del arbol completo.

/* pre: num > 0 */
/* post: contNivel = nimero de elementos en el nivel num del arbol a */

int contNivel( Arbin a, int num )
{ 1if( vacioArbin(a))
return 0;
else if( num ==10)
return 1;
else
return contNivel( izqArbin( a ), num - 1 ) + contNivel( derArbin( a ), num - 1 );
H
J

Ejemplo 4.10:

Informar si dos arboles binarios sin elementos repetidos son semejantes. Este problema implica dos rutinas: la
primera funcién verifica que los dos arboles tengan el mismo peso, y que todos los elementos del primer arbol
estén en el segundo.

/* pre: al y a2 no tienen elementos repetidos */
/* post: semejantes = al y a2 son semejantes */

int semejantes( Arbin al, Arbin a2 )
{ return pesoArbin( al ) == pesoArbin( a2 ) && incluidoArbin( al, a2 );
H

La segunda funcion verifica, para cada elemento de al, si éste se encuentra en a2.
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/* incluidoArbin = todo elemento de al esta en a2 */

int incluidoArbin( Arbin al, Arbin a2 )
{ if( vacioArbin(al))
return TRUE;
else
return estaArbin( a2, raizArbin( al ) ) &&
incluidoArbin( izqArbin( al ), a2 ) &&
incluidoArbin( derArbin( al ), a2 );
H

La complejidad de la funciéon incluidoArbin es O( n * m ), donde n es el peso de al y m es el peso de a2.
Esto se obtiene de la expansion de la siguiente ecuaciéon de recurrencia:
1, n=0

TincluidoArbin(n, m) =
1 + Testaarbin(m) + Tincluidoarsin(n-1), n>0

Esto hace que la complejidad de la rutina semejantes sea O( n * m ), puesto que:

0] = max( O

semejantes ~

J

pesoArbin( n )’ C)pesoArbin( m )= OincluidoArbin( n*m ) ) =0 ( n*m )

Ejercicios Propuestos:

4.1. Para el siguiente arbol binario:

a
/
b
/7 N\
(o d
7\
e f

a-) ;Cuales son hojas?

b-) ¢ Cual es la altura?

c-) ;Cuantas y cuales son sus ramas?

d-) ¢ Cual es el ancestro comun mas proximo entre fy d?

e-) ;Cuantos y cuales son los hermanos de c?

f-) ¢ Cuantos y cuales subarboles tiene asociados el elemento a?
g-) ¢, Cual es su peso?

4.2. Dibuje dos arboles isomorfos y semejantes, que no sean iguales

4.3. Determine los siguientes valores para un arbol binario:
a-) Numero minimo y maximo de elementos en un arbol completo de N niveles.
b-) Nimero minimo de niveles en un arbol de peso P.
c-) Numero maximo de hojas en un arbol con N niveles.
d-) Numero minimo y maximo de elementos presentes en el nivel N de
un arbol completo de altura H.
e-) Numero de elementos en un arbol lleno de N niveles.
f-) Nimero minimo de elementos de un arbol casi lleno de N niveles.
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Especifique y desarrolle las siguientes rutinas utilizando las operaciones del TAD Arbin. Calcule la
complejidad de cada una de ellas, resolviendo la ecuacion de recurrencia respectiva.

44.

4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

4.12.

4.13.

414,

4.15.

4.16.

4.17.

int alturaArbin( Arbin a )
/* Calcula la altura de un arbol binario */

int igualesArbin( Arbin a1, Arbin a2 )
/* Indica si dos arboles binarios son iguales */

int isomorfosArbin( Arbin a1, Arbin a2 )
/* Informa si los arboles binarios al y a2 son isomorfos */

int semejantesArbin( Arbin a1, Arbin a2 )

/* Informa si los arboles binarios al y a2 son semejantes, aunque existan elementos repetidos. Esto es,
si un elemento aparece k veces en uno de los arboles, debe aparecer el mismo numero de veces en el
segundo */

int completoArbin( Arbin a )

/* Indica si un arbol binario es completo */

int llenoArbin( Arbin a )
/* Informa si un arbol binario esta lleno */

int casiLlenoArbin( Arbin a )
/* Indica si un arbol binario esta casi lleno */

int estableArbin( Arbin a )
/* Un arbol de valores enteros es estable si para todo elemento de la estructura su padre es mayor.
Esta funcidn indica si un arbol es estable */

Lista primosArbin( Arbin a, TipoA elem )
/* Retorna una lista con los primos del elemento elem dentro del arbol. Por primos se entienden los
hijos del hermano del padre */

Lista busqueCaminoArbin( Arbin a, TipoA elem )
/* Retorna la lista de elementos del arbol correspondiente al camino que lleva desde la raiz del arbol
hasta el elemento elem. Si el camino no existe retorna una lista vacia */

int ocurreArbin( Arbin a1, Arbin a2 )
/* Indica si el arbol a2 ocurre en el arbol al */

TipoA ancestroLista( Arbin a, Lista Ist )
/* Retorna el ancestro comin mas préoximo de los elementos presentes en la lista Ist, los cuales estan
en el arbol a */

int esMenorArbin( Arbin a1, Arbin a2 )

/* Indica si el arbol binario al es menor que el arbol binario a2. Un arbol al es menor que otro a2, si
todos los elementos de al son menores que todos los elementos de a2 */

Lista rutaMinimaArbin( Arbin a, TipoA e1, TipoA e2)

[* Se define la ruta minima entre dos elementos cualesquiera el y €2 de un arbol binario sin elementos
repetidos, como la secuencia de elementos < x4, X9, ..., Xy > que cumple las siguientes condiciones:

e x1=el,x,=6e2
e Xj s padre de Xj;1, O Xj+1 €s padre de x;

* no existen elementos repetidos en la secuencia
Dicha ruta existe entre todo par de elementos de un arbol binario, y es unica. Esta funcién retorna una
lista de elementos con la ruta minima entre dos elementos dados */
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4.18.

4.19.

4.20.

4.21.

4.22.

void impRutasMinimas( Arbin a, TipoA elem )

/* Imprime las rutas minimas (ver ejercicio anterior) desde el elemento elem hasta todos los demas
componentes del mismo nivel */

Lista mVecinos( Arbin a, TipoA elem, int m )

/* Retorna los vecinos del elemento elem que se encuentran a una distancia m de él. Por vecino se
entiende un elemento del mismo nivel y por distancia el numero de elementos que los separa. Por
ejemplo, en la siguiente figura aparecen los 3-vecinos del elemento marcado:

s

SR AN
Suponga que no hay elementos repetidos en el arbol */

Lista listaNivelArbin( Arbin a, intn)
/* Retorna la lista con todos los elementos del nivel n del arbol binario */

Lista primosNLejanos( Arbin a, int n, TipoA elem )

/* Se definen los primos n-lejanos de un elemento de un arbol binario como aquellos elementos del
mismo nivel cuyo ancestro comun mas préximo se encuentra exactamente n niveles por encima de
ellos. Con esta definicion, se puede afirmar que un hermano es un primo 1-lejano. Otro ejemplo es el
del dibujo, que muestra los primos 4-lejanos del elemento marcado:

g

/%05 o {O\o
Desarrolle una funcion que dado un arbol binario sin elementos repetidos, un elemento presente en el
arbol y un valor n, retorne una lista con todos los primos n-lejanos del elemento */

int esMovilArbin( Arbin a )

/* Se define el contenido de un arbol binario como la suma de los valores de todos sus elementos
(suponiendo que son enteros). Se dice que un arbol binario es un movil si la diferencia de contenido de
los dos subarboles no difiere en mas de uno, y éstos a su vez son méviles. En especial, un arbol vacio
es movil y tiene contenido 0. Esta funcién indica si un arbol binario es un moévil */

4.4. Recorrido de Arboles Binarios

La operacion de recorrer un arbol binario se puede hacer de diversas maneras. El orden en el que se visitan
los elementos puede variar, puesto que lo Unico que debe garantizar la operacion es que pase exactamente
una vez por cada uno de los elementos del arbol. Las cuatro maneras mas comunes de hacer este recorrido
se denominan: preorden, inorden, postorden y niveles, y se definen de la siguiente manera:

e preorden: visite la raiz, recorra en preorden el subarbol izquierdo y, finalmente, recorra en preorden el
subarbol derecho.
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e inorden: recorra en inorden el subarbol izquierdo, luego visite el elemento de la raiz y, por ultimo, recorra
en inorden el subarbol derecho.

e postorden: recorra el subarbol izquierdo y el subarbol derecho en postorden y, luego, visite el elemento
de la raiz.

e niveles: visite la raiz del arbol, los elementos de nivel 1 de izquierda a derecha, seguidos por los
elementos de nivel 2, y asi sucesivamente hasta terminar de visitar todos los elementos.

Ejemplo 4.11:
Para el arbol que se muestra en la siguiente figura:
a
VRN
b c
7\ AN
d e h
VRN
f g
Los recorridos principales son:
e preorden: a-b-d-e-f-g-c-h
e inorden: d-b-f-e-g-a-c-h

e postorden: d-f-g-e-b-h-c-a

e niveles: a-b-c-d-e-h-f-g

J

Los algoritmos recursivos para hacer los 3 primeros recorridos surgen de manera natural de su definicion, tal
como se muestra a continuacion. La rutina visitar es la encargada de hacer la operacion respectiva (i.e.
imprimir) sobre cada elemento:

void preordenArbin( Arbin a )
{ if( !vacioArbin(a))
{  visitar( raizArbin(a ) );
preordenArbin( izqArbin( a ) );
preordenArbin( derArbin( a ) );

}

void inordenArbin( Arbin a )
{ if( !vacioArbin(a))
{ inordenArbin( izqArbin( a ) );
visitar( raizArbin( a ) );
inordenArbin( derArbin( a ) );

}

void postordenArbin( Arbin a )
{ if( !vacioArbin(a))
{  postordenArbin( izqArbin( a ) );
postordenArbin( derArbin( a ) );
visitar( raizArbin( a ) );
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Cada uno de estos algoritmos es O( n ), donde n es el peso del arbol, puesto que tienen que pasar una vez
sobre cada elemento del arbol.

441. Algoritmo de Recorrido por Niveles

Dado que este recorrido no tiene un planteamiento recursivo, la rutina mas sencilla que lo implementa es
iterativa. Para esto, es necesario contar con alguna estructura auxiliar de datos que permita mantener la
informacion relacionada con cada uno de los niveles, a medida que se avanza. En este caso, la estructura
apropiada es una cola, que se maneja de la siguiente manera:

En un momento dado (inicialmente, por ejemplo), se encuentran en la cola todos los subarboles cuya raiz esta
en el nivel k (denominados los k-arboles). De esta cola se sacan uno por uno, se visita su raiz y se incluyen al
final de la misma cola sus subarboles asociados. Al final de esto, cuando hayan sido sacados todos los k-
arboles, en la cola estaran ordenados de izquierda a derecha todos los k+1-arboles, y se habran visitado los
elementos del nivel k. El proceso termina cuando la cola queda vacia.

Ejemplo 4.12:
Para el arbol:
a
VRN
b c
VRN AN
d e h
VRN
f g

El proceso que sigue el algoritmo de recorrido por niveles se muestra en la siguiente tabla:

| Cola | Accidn |
a El arbol completo esta en la primera
/. posicion de la cola. Se saca el arbol
b c de la cola, se visita el elemento "a",
RN AN «— y se agregan a la cola los dos
d e h subarboles
7\
f g
Se saca el primer arbol de la cola,
b c se visita el elemento "b", y se
/7 \ N\ agregan a la cola sus dos
d e h +— subarboles
VRN
f 9
Se saca el primer arbol de la cola,
c A e se visita el elemento "c" y se
AN /S N\ +— agregan sus subarboles
h f g

Se saca el primer arbol de la cola,

A e A se visita el elemento "d".
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Se saca el primer arbol de la cola,

e ﬁ se visita el elemento "e", y se
/ AN “— agregan sus subarboles
fog

Se visitan los elementos "h", "' y

A A /_\ «— "g", y termina el algoritmo al quedar

la cola vacia

J

El algoritmo para realizar este recorrido es de complejidad O( n ) (n es el peso del arbol), si todas las
operaciones del TAD Cola son O( 1).

void nivelesArbin( Arbin a )
{ Colacol;
Arbin arb;
if( 'vacioArbin(a))
{  col=inicCola( );
adicCola( col, a);
while( !vaciaCola( col ) )
{ arb=infoCola( col );
elimCola( col );
if( 'vacioArbin( arb ) )
{  visitar( raizArbin( arb ) );
adicCola( col, izqArbin( arb ) );
adicCola( col, derArbin( arb ) );

4.4.2. & Algoritmo Iterativo de Recorrido de Arboles

En este tipo de estructuras recursivas, aunque la solucion iterativa suele ser mas eficiente, el algoritmo que la
implementa es tipicamente mas complicado, y requiere estructuras de datos adicionales. En este caso, se
necesita una pila, que le permita a la rutina volver a subir en la estructura, después de visitar los niveles mas
alejados de la raiz.

En esta pila, se guardan los arboles binarios por los cuales se ha bajado tratando de recorrer su subarbol
izquierdo. Una vez se ha llegado a una hoja, se recupera y elimina el ultimo arbol incluido en la pila, se visita
Su raiz y se comienza a bajar por el subarbol derecho.

Ejemplo 4.13:
Para el arbol:

b/a\c
OI/ \

El proceso que sigue la rutina se resume como:
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Arbol de trabajo Pila Accion
a Va a comenzar el proceso. La pila se encuentra vacia, y el
b/ \c arbol de trabajo es el arbol inicial. Baja por el subarbol
/ \ | I izquierdo, y guarda en la pila el arbol completo
d e
b a Baja por el subarbol izquierdo, y guarda el arbol de trabajo
/ \ b/ \C en la pila
d e /' \
d e
b Visita el elemento "d", y, para subir, saca el primer arbol de
/' \ la pila, visita su raiz ("b"), y coloca como arbol de trabajo el
A d e subérbol derecho.
a
RN
b ®
/\
d e
a Visita el elemento "e", y, para subir, saca el primer arbol de
/_\ b/ \C la pila, visita su raiz ("a"), y coloca como arbol de trabajo el
/\ subarbol derecho. La pila queda vacia.
d e
Visita el elemento "c", y, al encontrar la pila vacia, termina el
,_\ proceso

J

La rutina que hace el recorrido iterativo de un arbol binario se presenta a continuacion. Si se supone que
todas las operaciones del TAD Pila son O( 1), se puede afirmar que la complejidad de esta rutina es O( n ),
donde n es el peso del arbol.

void inordenltera( Arbin a )
{ Pilapil;
Arbin arb;
if( 'vacioArbin(a))
{ arb=izqArbin(a);
pil = inicPila( );
adicPila( pil, a );
while( !vacioArbin( arb ) || 'vaciaPila( pil ) )
if( 'vacioArbin( arb ) )
{ adicPila( pil, arb );
arb = izqArbin( arb );

H

else

{  arb=infoPila( pil );
elimPila( pil );
visitar( raizArbin( arb ) );
arb = derArbin( arb );

H
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4.4.3. Reconstruccion de un Arbol a partir de sus Recorridos

Si un arbol binario no tiene elementos repetidos, es posible reconstruirlo a partir de la informacion que se
obtiene de dos de sus recorridos (inorden y postorden o inorden y preorden). El proceso de reconstruccion del
arbol binario, a partir de la secuencia de los elementos que va visitando en sus recorridos, se ilustra en el
siguiente ejemplo. La implementacion de la rutina que lo hace se muestra en una seccion posterior,
directamente sobre las estructuras de datos que representan el arbol.

Ejemplo 4.14:

Suponga que se quiere reconstruir el arbol binario sin elementos repetidos, cuyos recorridos en inorden y
preorden vienen dados por las secuencias:

preorden: h-a-b-f-g-c-m-n-d

inorden: f-b-g-a-c-h-n-m-d

Paso 1: Encontrar la raiz y subdividir los recorridos. La raiz siempre es el primer elemento del preorden.
Al localizar dicho elemento en el inorden, se obtienen los recorridos para los dos subarboles que
se le deben asociar como izquierdo y derecho.

preorden: N @-b-f-g-c-m-n-d

PN

inorden : f-b-g-a-c n-m-d

Paso 2: Sabiendo el peso de cada uno de los subarboles (5 el izquierdo y 3 el derecho), es posible
calcular el recorrido en preorden de cada uno de ellos.

preorden : h a-b-f-g-¢ m-n-d

N

inorden: f-b-g-a-c n-m-d

|Paso 3: Repetir el paso 1 con cada uno de los subarboles encontrados.

preorden : h 'ab-f-g-c mn-d
h
/ \
d m
RN /N
inorden: f-b-g ¢ n d
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Paso 4: Repetir el paso 2 con cada uno de los subarboles encontrados.

preorden : habf-gecmn d

m

h
a/\
RN /N
n d

inorden: f-b-g ¢

Paso 5: Repetir el mismo proceso descrito en los pasos 1y 2, con el Unico subarbol que falta.

h
/ \
a
AN /m\
b c n d
/7
inorden: f 9

J

Ejercicios Propuestos:

4.23. Para el siguiente arbol binario, dé sus 4 recorridos principales:
+
/N
A NIVAN
* cd +
7\ RN
a b e f
4.24. Para el siguiente arbol binario, dé sus 4 recorridos principales:
a
b/ AN
N
d e
8 N
f g h
/N
|

/
k

C

J

4.25. Reconstruya el arbol binario con los siguientes recorridos:

preorden: 10 -20-30-50-60-40-70-80-90
inorden: 50-30-60-20-80-70-90-40-10

4.26. Reconstruya el arbol binario con los siguientes recorridos:

postorden: 60 - 30 - 80 -70-40-20-50-90-10
inorden: 30 -60-20-80-70-40-10-90-50

© Todos los derechos reservados — Jorge Villalobos



172

Disefio y Manejo de Estructuras de Datos en C

Utilizando las operaciones del TAD Arbin, implemente las siguientes operaciones y calcule su complejidad:

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.

void postordenArbin( Arbin a )
/* Hace un recorrido iterativo en postorden de un arbol binario */

void escribeRamas( Arbin a )
/* Imprime por pantalla todas las ramas del arbol a */

int ramaMinima( Arbin a )

/* Suponiendo que los elementos del arbol a son enteros, se define el costo de un camino como la
suma de los componentes de dicha secuencia. Esta funcion retorna el costo de la rama mas barata del
arbol */

void niveles2Arbin( Arbin a )

/* Hace un recorrido por niveles de un arbol binario, pero en orden inverso. Esto es, recorre los

elementos de abajo hacia arriba, y de izquierda a derecha. Comienza en la hoja que se encuentra mas
a la izquierda del arbol y termina en la raiz */

void gRecorrido( Arbin a)

/* Se define la anchura de un nivel de un arbol binario como el nimero de elementos presentes en
dicho nivel. La gordura de un arbol binario corresponde al valor maximo de las anchuras de sus
niveles. Un g+Recorrido (o recorrido por subarboles mas gordos), de un arbol binario a, se define
recursivamente de la siguiente manera:

e visitar la raiz de a,

e recorrer en g+ el subarbol mas gordo de a,

e recorrer en g+ el otro subarbol de a.

Esta rutina realiza un g+ recorrido del arbol binario a */

void impArbin( Arbin a )
/* Imprime por pantalla un arbol binario, permitiendo apreciar su estructura */

4.5. Algoritmica de Manejo de Arboles

En esta seccién se ilustra, a través de ejemplos, la gran gama de posibilidades que tiene un programador
para resolver un problema que incluya arboles. Se ven desde soluciones iterativas, eficientes pero
complicadas, hasta técnicas avanzadas de acumulacion de parametros para planteamientos recursivos. En
cada ejemplo aparecen 3 0 4 soluciones del mismo problema, con sus evidentes ventajas y desventajas, para
que el lector se dé una idea de las opciones con que cuenta.

Ejemplo 4.15:

Calcular el nivel en el que aparece un elemento dado en un arbol binario sin elementos repetidos. Si el
elemento no esta presente, la rutina retorna el valor -1.

Solucién No. 1: Planteamiento recursivo en el cual el algoritmo verifica la existencia del elemento en uno
de los subarboles antes de hacer el avance de la recursion ("descenso controlado"). Es casi siempre la

solucién mas sencilla, pero la menos eficiente ( tipicamente es O( n2 ), puesto que establecer en cual de
los dos subarboles se encuentra un elemento es O(n ) ).

/* pre: a no tiene elementos repetidos */
/* post: nivelArbinl = nivel en el que aparece el elemento elem en el arbol a, o -1 si no aparece */
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int nivelArbinl( Arbin a, TipoA elem )
{ if( vacioArbin(a))
return -1;
else if( raizArbin( a ) == elem )
return 0;
else if( estaArbin( izqArbin( a ), elem ) )
return nivelArbinl( izqArbin( a ), elem ) + 1;
else if( estaArbin( derArbin( a ), elem ) )
return nivelArbinl( derArbin( a ), elem ) + 1;
else
return -1;

}

Soluciéon No. 2: Planteamiento recursivo en el cual el algoritmo hace el avance de la recursién sobre el
subarbol izquierdo, y, sélo si la rutina informa que no tuvo éxito, intenta avanzar sobre el otro subarbol
("subir informacion en la recursién"). En este caso se utiliza el valor especial -1 para indicar que no
encontré el elemento y no pudo calcular el nivel en el que se encuentra. La complejidad de la rutina es O(
n ), puesto que, en el peor de los casos, hace una pasada sobre cada elemento de la estructura.

/* pre: a no tiene elementos repetidos */
/* post: nivelArbin2 = nivel en el que aparece el elemento elem en el arbol a, o -1 si no aparece */

int nivel Arbin2( Arbin a, TipoA elem )
{ inttemp;
if( vacioArbin(a))
return -1;
else if( raizArbin( a ) == elem )
return 0;
else if( ( temp = nivelArbin2( izqArbin( a ), elem ) ) !=-1)
return temp + 1;
else if( ( temp = nivelArbin2( derArbin( a ), elem ) ) !=-1)
return temp + 1;
else
return -1;

}

Soluciéon No. 3: Planteamiento recursivo en el cual el algoritmo va acumulando informacién en un
parametro adicional, y la va enviando hacia los niveles inferiores de la recursion, los cuales se encargan de
dar la respuesta ("acumulacién de parametros"). Esta técnica se implementa a través de dos rutinas: la
primera se encarga de crear el espacio del parametro adicional, y de darle un valor inicial. La segunda va
actualizando el valor de dicho parametro a medida que avanza la recursién. La complejidad de este
planteamiento puede ser lineal o cuadratica, seguin se haga un descenso controlado o se suba informacion
en la recursiodn. A continuacion se presentan las dos opciones:

/* pre: a no tiene elementos repetidos */
/* post: nivelArbin3 = nivel en el que aparece el elemento elem en el arbol a, o -1 si no aparece */

int nivel Arbin3( Arbin a, TipoA elem )

{ return ( !estaArbin( a, elem ) ) ? -1 : nivelAux( a, elem, 0 );

}

Solucién de la rutina nivelAux utilizando descenso controlado ( O ( n2 )):
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/* pre: a no tiene elementos repetidos, elem esta en a, niv = nivel de la raiz de a en el arbol completo */
/* post: nivelAux = nivel en el que aparece el elemento elem en el arbol completo */

int nivelAux( Arbin a, TipoA elem, int niv )
{ if( raizArbin(a)==-elem)
return niv;
else if( estaArbin( izqArbin( a ), elem ) )
return nivelAux( izqArbin( a ), elem, niv + 1 );
else
return nivelAux( derArbin( a ), elem, niv + 1 );

}

Solucién de la rutina nivelAux subiendo informacion en la recursién. Aqui no se puede exigir en la
precondicidon que el elemento esté en el arbol, puesto que la funcion va a intentar bajar por cada subarbol
sin antes verificar que alli se encuentre el elemento (O(n ) ):

/* pre: a no tiene elementos repetidos, niv = nivel de la raiz de a en el arbol completo */
/* post: nivelAux = nivel en el que aparece el elemento elem en el arbol completo, o -1 si no aparece */

int nivelAux( Arbin a, TipoA elem, int niv )
{ inttemp;
if( vacioArbin(a))
return -1;
else if( raizArbin( a ) == elem )
return niv;
else if( ( temp = nivelAux( izqArbin( a ), elem, niv+ 1)) !1=-1)
return temp;
else if( ( temp = nivelAux( derArbin( a ), elem, niv+1))!=-1)
return temp;
else
return -1;

}

Soluciéon No. 4: Planteamiento iterativo de complejidad O( n2 ). El algoritmo necesita una pila como
estructura auxiliar de datos para poder establecer si un elemento esta presente en un arbol. Con esta
rutina, se va controlando el descenso por la estructura, hasta encontrar el elemento buscado. Existe una
solucioén iterativa de complejidad O( n ), que no se presenta en este ejemplo.

/* pre: a no tiene elementos repetidos */
/* post: nivelArbin4 = nivel en el que aparece el elemento elem en el arbol a, o -1 si no aparece */

int nivel Arbin4( Arbin a, TipoA elem )
{ intniv;
if( lestaltera( a, elem ) )
return -1;
else
{  for(niv=0; !vacioArbin( a ) && raizArbin( a ) != elem; niv++)
a = (estaltera( izqArbin( a ), elem ) ) ? izqArbin( a ) : derArbin( a );
return ( !vacioArbin(a)) ? niv : -1;
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La rutina iterativa que establece si un elemento se encuentra en un arbol binario, hace un recorrido en
preorden del arbol utilizando una pila, y tan pronto localiza el elemento destruye la pila y retorna la
respuesta.

/* post: estaltera = elem esta en a */

int estaltera( Arbin a, TipoA elem )
{ Pila pil = inicPila( );
while( !vacioArbin( a ) || !vaciaPila( pil ) )
{ if( !vacioArbin(a))
{ if( raizArbin(a)==-eclem)
{  destruirPila( pil );
return TRUE;
H
adicPila( pil, derArbin( a ) );
a=izqArbin( a);
§
else
{ a=infoPila( pil );
elimPila( pil );
§
H
destruirPila( pil );
return FALSE;
H
J

Ejemplo 4.16:

Encontrar el padre de un elemento en un arbol sin elementos repetidos, suponiendo que este elemento se
encuentra presente en la estructura de datos y es distinto de la raiz.

Solucioén No. 1: Planteamiento recursivo con descenso controlado. Complejidad O( n2 )-

/* pre: a no tiene elementos repetidos, elem esta en a, elem es diferente de la raiz de a */
/* post: padreArbinl = padre de elem en a */

TipoA padreArbinl( Arbin a, TipoA elem )
{ if( !vacioArbin( izqArbin( a ) ) && raizArbin( izqArbin( a ) ) == elem ||
!vacioArbin( derArbin( a ) ) && raizArbin( derArbin( a ) ) ==elem )
return raizArbin( a );
else if( estaArbin( izqArbin( a ), elem ) )
return padreArbinl( izqArbin( a ), elem );
else
return padreArbinl( derArbin( a ), elem );

}

Solucién No. 2: Planteamiento recursivo subiendo informacion durante el avance. Puesto que el elemento
que se quiere encontrar es de TipoA, y no es posible definir para cualquier tipo de dato un valor distinguido
que indique la falla del proceso, se utiliza un parametro por referencia para subir la informacién del padre,
y funcionalmente se informa si se encontro la solucién. Para definir el espacio de este nuevo parametro se
utiliza una funcion auxiliar. La complejidad es O( n ).
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/* pre: a no tiene elementos repetidos, elem esta en a, elem es diferente de la raiz de a */
/* post: padreArbin2 = padre de elem en a */

TipoA padreArbin2( Arbin a, TipoA elem )

{ TipoA aux;
padreAux2( a, elem, &aux );
return aux;

H

/* pre: a no tiene elementos repetidos, elem es diferente de la raiz de a */
/* post: padreArbin = se encontro el padre de elem, *padre = padre de elem */

int padreAux2( Arbin a, TipoA elem, TipoA *padre )
{ if( vacioArbin(a))
return FALSE;
else if( ( !vacioArbin( izqArbin( a ) ) && raizArbin( izqArbin(a ) ) ==elem ) ||
( !'vacioArbin( derArbin( a ) ) && raizArbin( derArbin(a) ) ==elem))
{  *padre = raizArbin( a );
return TRUE;
H
else if( padreAux2( izqArbin( a ), elem, padre ) )
return TRUE;
else
return padreAux2( derArbin( a ), elem, padre );

}

Solucién No. 3: Acumulacion de parametros con descenso controlado. Complejidad O( n2 ).

/* pre: a no tiene elementos repetidos, elem esta en a, elem es diferente de la raiz de a */
/* post: padreArbin3 = padre de elem en a */

TipoA padreArbin3( Arbin a, TipoA elem )
{ return padreAux3( a, elem, raizArbin( a ) );

}

/* pre: a no tiene elementos repetidos, elem esta en a, padre es el elemento padre de la raiz actual */
/* post: padreAux3 = padre de elem en el arbol completo */

TipoA padreAux3( Arbin a, TipoA elem, TipoA padre )
{ if( raizArbin(a)==-elem)
return padre;
else if( estaArbin( izqArbin( a ), elem ) )
return padreAux3( izqArbin( a ), elem, raizArbin( a ) );
else
return padreAux3( derArbin( a ), elem, raizArbin(a ) );

}

Soluciéon No. 4: Planteamiento iterativo, en el cual se recorre el arbol en preorden, y se pregunta, para
cada componente, si uno de sus hijos es el elemento buscado. Complejidad O( n ).

/* pre: a no tiene elementos repetidos, elem esta en a, elem es diferente de la raiz de a */
/* post: padreArbin4 = padre de elem en a */
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TipoA padreArbin4( Arbin a, TipoA elem )
{ Pila pil = inicPila( );
while( !vacioArbin( a ) || !vaciaPila( pil ) )
{ if( !vacioArbin(a))
{ if( (!vacioArbin( izqArbin( a ) ) && raizArbin( izqArbin(a ) ) ==-elem ) ||
(!vacioArbin( derArbin( a ) ) && raizArbin( derArbin(a) ) ==-elem))
{  destruirPila( pil );
return raizArbin( a );
H
adicPila( pil, derArbin( a ) );
a =1izqArbin( a);

H

else

{ a=infoPila( pil );
elimPila( pil );

H

}
J

Ejemplo 4.17:

Se define la posiciéon de un elemento en un arbol binario como el orden en el cual se visita dicho elemento en
un recorrido en inorden. De esta forma, el elemento de mas a la izquierda del arbol ocupa la primera
posicion, y el elemento de mas a la derecha, la ultima. Por ejemplo, para el arbol de la figura, la posicion del
elemento 40 es 2 y la posicién del elemento 50 es 7:

N

20 5

Se va a desarrollar una rutina que, dados dos elementos presentes en un arbol binario, indique la
diferencia de posicion que hay entre ellos. Por ejemplo, para los valores 40 y 50, en el arbol de la figura
anterior, la respuesta debe ser 5. Se supone que el arbol no tiene elementos repetidos.

Soluciéon No. 1: Planteamiento recursivo basado en dos rutinas: una para calcular la posicion de un
elemento en un arbol binario (posArbin) y otra para restar las posiciones de los valores dados
(difPosArbinl). La complejidad de esta solucion es O(n ).

/* pre: a no tiene elementos repetidos, el y €2 estan en a */
/* post: difPosArbinl = diferencia de posicion entre el y e2 */

int difPosArbinl( Arbin a, TipoA el, TipoA e2)
{ intpl=0,p2=0;

posArbin( a, el, &pl );

posArbin( a, €2, &p2 );

return abs( pl - p2);

© Todos los derechos reservados — Jorge Villalobos



178 Disefio y Manejo de Estructuras de Datos en C

La segunda funcién tiene la misma estructura de un recorrido recursivo en inorden, pero en lugar de visitar
cada elemento, pregunta si es igual al valor buscado. En un parametro adicional va llevando la posicién
actual, y funcionalmente informa si ha encontrado o no el elemento. En este caso se utiliza una misma
variable por referencia para hacer la acumulaciéon de parametros y para retornar la respuesta.

/* pre: a no tiene elementos repetidos, *pos es la Gltima posicion visitada en el arbol completo */

/* post: ( !posArbin, e no esta en a, *pos es la tltima posicion visitada en el arbol completo ) v
( posArbin = TRUE, e esté en a, *pos es la posicion del elemento e en el arbol completo, */

int posArbin( Arbin a, TipoA e, int *pos )
{ if( vacioArbin(a))
return FALSE;
else
{ if( posArbin( izqArbin( a ), e, pos))
return TRUE;
(*pos )++;
if( raizArbin(a)==¢)
return TRUE;
else
return posArbin( derArbin( a ), e, pos );

Solucion No. 2: En este segundo planteamiento se intenta realizar el mismo proceso de la solucion
anterior, pero sin necesidad de hacer dos recorridos sobre el arbol. Esto mantiene la complejidad igual,
pero disminuye el valor de la constante asociada. La acumulacion de parametros se hace sobre una
variable por referencia, y la respuesta se retorna en dos variables distintas.

/* pre: a no tiene elementos repetidos, el y €2 estan en a */
/* post: difPosArbin2 = diferencia de posicion entre el y e2 */

int difPosArbin2( Arbin a, TipoA el, TipoA e2)

{ intactual =0, posl =-1, pos2 =-1;
auxArbin2( a, el, 2, &actual, &posl, &pos2 );
return abs( posl - pos2 );

/* pre: ano tiene elementos repetidos, *actual es la tltima posicion visitada en el arbol,
si ya se ha encontrado el elemento el en el recorrido, su posicion esta en *posl,
si ya se ha encontrado el elemento e2 en el recorrido, su posicion estd en *pos2 */

/* post: (!lauxArbin2, falta encontrar uno de los elementos, *actual es la ultima posicion visitada en el arbol,
si ya se ha encontrado el elemento el en el recorrido, su posicion esta en *posl,

si ya se ha encontrado el elemento e2 en el recorrido, su posicion esta en *pos2 ) v

(auxArbin2 = TRUE, *pos]1 es la posicion de el, *pos2 es la posicion de e2 ) */
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int auxArbin2( Arbin a, TipoA el, TipoA e2, int *actual, int *pos1, int *pos2 )
{ if( vacioArbin(a))
return FALSE;
else
{  if( auxArbin2( izqArbin( a ), el, e2, actual, posl, pos2))
return TRUE;
( *actual )++;
if( raizArbin(a ) ==el)
*posl = *actual;
if( raizArbin(a ) ==¢2)
*pos2 = *actual;
if( *posl !=-1 && *pos2 I=-1)
return TRUE;
else
return auxArbin2( derArbin( a ), el, e2, actual, posl, pos2 );

}

Solucién No. 3: Planteamiento iterativo que hace un recorrido en inorden y calcula en una sola pasada la
diferencia de posicion de los dos elementos. Complejidad O( n ).

/* pre: a no tiene elementos repetidos, el y €2 estan en a */
/* post: difPosArbin3 = diferencia de posicion entre el y e2 */

int difPosArbin3( Arbin a, TipoA el, TipoA €2 )
{ Pilapil
int actual = 0, posl =-1, pos2 = -1;
adicPila( pil = inicPila( ), a );
a=1izqArbin( a);
while ( !vacioArbin( a ) || !vaciaPila( pil ) )
if( !vacioArbin(a))
{ adicPila( pil, a );
a=izqArbin( a);
}
else
{ a=infoPila( pil );
elimPila( pil );
actual++;
if( raizArbin(a)==¢el )
posl = actual,;
if( raizArbin(a ) ==¢2)
pos2 = actual,;
if( posl !=-1 && pos2 '=-1)
break;
a =derArbin( a );
}
destruirPila( pil );
return abs( pos1 - pos2);
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Ejercicios Propuestos:

4.33.

4.34.

4.35.

4.36.

4.37.

4.38.

4.39.

4.40.

4.41.

442,

4.43.

4.44,

4.45.

4.46.

TipoA posElemArbin1( Arbin a, int pos )
/* Utilizando la técnica de acumulacion de parametros, esta funcidén retorna el elemento que se
encuentra en la posicion pos del arbol binario a */

TipoA posElemArbin2( Arbin a, int pos )
/* Utilizando un planteamiento iterativo, esta funcion retorna el elemento que se encuentra en la
posicion pos del arbol binario a */

Lista ramaMinima( Arbin a )

/* Suponiendo que los elementos del arbol a son enteros, se define el costo de un camino como la
suma de los componentes de dicha secuencia. Esta funcion retorna la rama mas barata del arbol */

Lista caminoArbin1( Arbin a, TipoA elem )

/* Utilizando la técnica de acumulacion de parametros, esta funcion retorna el camino que lleva de la
raiz al elemento elem. Suponga que el arbol no tiene elementos repetidos */

Lista caminoArbin2( Arbin a, TipoA elem )
/* Utilizando un planteamiento iterativo, esta funcion retorna el camino que lleva de la raiz al elemento
elem. Suponga que el arbol no tiene elementos repetidos */

TipoA mayorNivelArbin1( Arbin a, int niv )

/* Utilizando la técnica de acumulacion de parametros, esta funcion calcula y retorna el mayor elemento
que se encuentra en el nivel niv */

TipoA mayorNivelArbin2( Arbin a, int niv )

/* Utilizando un planteamiento iterativo, esta funcion calcula y retorna el mayor elemento que se
encuentra en el nivel niv */

TipoA mayorElemArbin1( Arbin a )
/* Utilizando un recorrido recursivo en inorden, esta funcion retorna el mayor elemento del arbol a */

TipoA mayorElemArbin2( Arbin a )
/* Utilizando un recorrido iterativo en inorden, esta funcion retorna el mayor elemento del arbol a */

Lista inordenArbin( Arbin a )
/* Utilizando un recorrido recursivo y la técnica de acumulacién de parametros, esta funcioén retorna una
lista con el recorrido en inorden del arbol binario a */

Lista primosArbin( Arbin a, TipoA elem )

/* Utilizando la técnica de acumulacion de parametros, esta funcion retorna una lista con los primos del
elemento elem dentro del arbol. Por primos se entienden los hijos del hermano del padre */

Lista listaNivelArbin1( Arbin a, intn )

/* Utilizando la técnica de acumulacion de parametros, esta funcion retorna la lista con todos los
elementos del nivel n del arbol binario a */

Lista listaNivelArbin2( Arbin a, intn )

/* Utilizando un planteamiento iterativo basado en un recorrido por niveles, esta funcion retorna la lista
con todos los elementos del nivel n del arbol binario a */

TipoA siglnordenArbin1( Arbin a, TipoA elem )

/* Utilizando la técnica de acumulacion de parametros, esta funcidén retorna el elemento que se
encuentra después de elem en el recorrido en inorden del arbol a. Suponga que el arbol no tiene
elementos repetidos */
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4.47. TipoA siglnordenArbin2( Arbin a, TipoA elem )

/* Utilizando un planteamiento iterativo, esta funcién retorna el elemento que se encuentra después de
elem en el recorrido en inorden del arbol a. Suponga que el arbol no tiene elementos repetidos */

4.48. TipoA antlnordenArbin1( Arbin a, TipoA elem )

/* Utilizando la técnica de acumulacion de parametros, esta funcidn retorna el elemento que se
encuentra antes de elem en el recorrido en inorden del arbol a. Suponga que el arbol no tiene elementos
repetidos */

4.49. TipoA antlnordenArbin2( Arbin a, TipoA elem )
/* Utilizando un planteamiento iterativo, esta funcién retorna el elemento que se encuentra antes de
elem en el recorrido en inorden del arbol a. Suponga que el arbol no tiene elementos repetidos */

4.50. int numElemArbin( Arbin a, TipoA elem )

/* Utilizando un recorrido recursivo en inorden, esta funcion calcula el nimero de veces que aparece el
elemento elem en el arbol a */

4.6. Implementacion de Arboles Binarios

En esta seccion se estudian algunas de las posibles estructuras de datos para manejar arboles binarios. Se
presenta, en cada caso, un ejemplo de la manera de representar un arbol y un algoritmo que utilice dichas
estructuras de datos. Para la implementacion de las operaciones del TAD Arbin, es suficiente con la primera
representacion planteada (§4.6.1), pero para algunas modificadoras especificas, necesarias en cierto tipo de
problemas, es necesario contar con estructuras de datos mas complejas, como las que se muestran en las
secciones siguientes.

4.6.1. Arboles Sencillamente Encadenados

Esta primera implementacion es la mas sencilla de todas las que se van a presentar en este capitulo, y una
de las mas usadas. La idea es representar un arbol binario a través de nodos encadenados, copiando la
estructura del arbol con el siguiente esquema:

[\

e Elarbola= AVA se representa con un apuntador a un nodo, el cual tiene un elemento (la raiz) y dos
apuntadores a sus subarboles, como muestra la siguiente figura:

a

|

izq e dsr

o
apuntador al apuntador al
subarbol a1 subarbol a2

o El arbol vacio, a = A, se representa con un apuntador a NULL:

[l

o Elarbola-= A, se representa con la siguiente estructura:
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Lrlee

Ejemplo 4.18:

Para el arbol binario de la figura, las estructuras de datos que lo representan, con el esquema planteado
anteriormente, son:

arb

a
arb = b/ AN .
RN /EE@‘ EDX
d e T4}
7\
g XX XX

Como se puede apreciar en el ejemplo, esta manera de representar internamente un arbol binario resulta
muy natural.

J

La declaracion de las estructuras de datos es la siguiente:

typedef struct NodoArbin
{ TipoA info;

struct NodoArbin *izq, *der;
} TArbin, *Arbin;

Las rutinas que implementan las operaciones del TAD Arbin resultan triviales bajo esta representacion:

Arbin izqArbin( Arbin a )
{ return a->izq;

}

Arbin derArbin( Arbin a )
{ return a->der;

}

TipoA raizArbin( Arbin a )
{ return a->info;

}

int vacioArbin( Arbin a )
{ returna==NULL;
H

Ejemplo 4.19:

Reconstruir un arbol binario sin elementos repetidos, a partir de sus recorridos en inorden y preorden,
suponiendo que el arbol esta representado internamente con encadenamientos sencillos de apuntadores. El
proceso que se sigue es el ilustrado en el ejemplo 4.14.
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J

/* pre: lalista in es el recorrido en inorden del arbol a, la lista pre es el recorrido en preorden del arbol a,
a no tiene elementos repetidos */
/* post: reconstruirArbin = a */

Arbin reconstruirArbin( Lista in, Lista pre )
{ return auxArbin( in, 1, longLista( in ), pre, 1 );

}

La rutina reconstruirArbin utiliza una rutina auxiliar (auxArbin) en la cual va descomponiendo recursivamente
las listas de los recorridos, a medida que va armando y encadenando los subarboles correspondientes.
Utiliza 3 parametros adicionales.

/* pre: ano tiene elementos repetidos, la lista in, en el rango d1..h1, es el recorrido en inorden del arbol a,
la lista pre, comenzando en la posicion d2, es el recorrido en preorden del arbol a */
/* post: auxArbin = a */

Arbin auxArbin( Lista in, int d1, int h1, Lista pre, int d2 )
{ TipoA elem;
int pos;
Arbin a;
if( longLista( pre ) ==0 || hl <dl)
return NULL;
else
{  posLista( pre, d2 );
elem = infoLista( pre );
if(hl ==d1)
{ a=(Arbin )malloc( sizeof( TArbin ) );
a->info = elem;
a->izq = a->der = NULL;

else
{  pos =localizarLista( in, elem, d1 );

a = (Arbin )malloc( sizeof( TArbin ) );

a->info = elem;

a->izq = auxArbin( in, d1, pos - 1, pre, d2 + 1);

a->der = auxArbin( in, pos + 1, hl, pre, d2 + (pos-dl )+ 1);
H

return a;

}

La rutina anterior utiliza una funcién auxiliar de manejo de listas, que localiza un elemento en una lista a
partir de una posicion dada:

/* pre: Ist no tiene elementos repetidos, elem estd en Ist después de la posicion desde */
/* post: localizarLista = posicion de elem en la lista Ist */

int localizarLista(Lista Ist, TipoL elem, int desde )
{ for( posLista( Ist, desde ); !finLista( Ist ) && infoLista( Ist ) != elem; sigLista( Ist ), desde++ );
return desde;

}
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4.6.2. Arboles con Encadenamiento al Padre

Una variante de la implementacion anterior, usada también con bastante frecuencia, consiste en que cada
elemento del arbol mantiene un apuntador a su padre. Esto permite ascender con facilidad por la estructura
jerarquica en busca de los antecesores, simplificando la expresion de algunos algoritmos. Para las
operaciones analizadoras del TAD Arbin vistas hasta ahora, resulta totalmente transparente este nuevo
campo, pero para algunas operaciones de recorrido y busqueda, este campo permite la construccion de
algoritmos mas sencillos y eficientes, tal como se ilustra mas adelante.

El esquema de representacion se puede definir a través de los siguientes puntos:

[\

e Elarbola= AVA se representa con un apuntador a un nodo, el cual tiene un elemento (la raiz), dos
apuntadores a sus subarboles, y un apuntador al padre del elemento ¢, tal como muestra la siguiente
figura. Si el elemento e es la raiz del arbol completo, el apuntador al padre toma el valor NULL.

a apuntador al
padre

L 29 | @ [padre| %]

apuntador al apuntador al
subarbol a1 subarbol a2

o El arbol vacio, a = A, se representa con un apuntador a NULL:

1
o Elarbola-= A, se representa con la siguiente estructura:
a apuntador al
padre

L32[ e | patre| %" |

I

Ejemplo 4.20:
Para el arbol binario de la figura, las estructuras de datos que lo representan con el esquema planteado
anteriormente son:

arb

HENNN

a

arb = b/ \c 2 [b] «Ta]
OI/\ N = f/m Xk X
e f g
/

h

J

La declaracion de las estructuras de datos es la siguiente:
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typedef struct NodoArbin
{ TipoA info;

struct NodoArbin *izq, *der, *padre;
} TArbin, *Arbin;

Ejemplo 4.21:

Retornar el camino que lleva desde la raiz de un arbol hasta un elemento dado. Supone que el arbol no tiene
elementos repetidos. Si no encuentra el elemento retorna una lista vacia.

Aprovecha el hecho de poder ascender por el arbol, para esperar hasta encontrar el elemento y, ahi si,
comenzar a construir el camino moviéndose por el encadenamiento del padre, hasta llegar a la raiz del
arbol completo.

/* pre: a no tiene elementos repetidos */
/* post: ( caminoArbin = <>, si no existe camino de la raiz de a hasta elem ) v
( caminoArbin = camino de la raiz de a hasta elem ) */

Lista caminoArbin( Arbin a, TipoA elem )
{ Listalst;
ifl(a==NULL)
return inicLista( );
else if( a->info == elem )
{  for(Ist=inicLista( ); a!=NULL; a =a->padre )
insLista( Ist, a->info );

return Ist;

H

else if( longLista( Ist = caminoArbin( a->izq, elem ) ) !=0)
return Ist;

else if( longLista( Ist = caminoArbin( a->der, elem ) ) !=0)
return Ist;

else

return inicLista( );

}
J

4.6.3. Arboles Enhebrados por la Derecha

En las representaciones mostradas en las secciones anteriores, es considerable la cantidad de memoria que
se desaprovecha al interior de los nodos para indicar que un subarbol asociado esta vacio. La idea de esta
implementacion es aprovechar este espacio para mantener un encadenamiento adicional, que permita a
algunas operaciones del TAD moverse con mayor facilidad al interior del arbol.

En los arboles enhebrados por la derecha, todas las hojas y los nodos sin subarbol derecho tienen un
apuntador hacia su sucesor en el arbol en su recorrido en inorden. Para distinguir si el apuntador va a un hijo,
0 a su sucesor en inorden, se requiere un campo adicional en cada nodo, que indique este hecho. Este
encadenamiento extra, por ejemplo, va a permitir realizar el recorrido en inorden con un algoritmo iterativo sin
necesidad de utilizar una pila como estructura auxiliar.

El esquema de representacion se puede definir a través de los siguientes puntos:
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e Elarbola-= AVA se representa con un apuntador a un nodo, el cual tiene un elemento (la raiz), dos
apuntadores a subarboles y un campo que informa si el segundo apuntador tiene el subarbol derecho o el
sucesor en inorden, tal como muestra la siguiente figura.

a

[ 29| e | nio | %]

apuntador al apuntador al subarbol a2 (hijo = 1),
subarbol a1 o al sucesor en inorden si a2 es vacio (hijo=0)

o El arbol vacio, a = A, se representa con un apuntador a NULL:

[l

o Elarbola-= A, se representa con la siguiente estructura:

a

[Galef o [%]

sucesor en inorden

Siguiendo la misma idea anterior, existen arboles enhebrados por la izquierda y arboles completamente
enhebrados, segun la forma como se utlicen los campos libres de los nodos para mantener
encadenamientos adicionales.

Ejemplo 4.22:

Para el arbol binario de la figura, las estructuras de datos que lo representan, con el esquema de arbol
enhebrado por la derecha son:

arb

v
BEERN

arb = / a\ 2[5] I«
b c
/N /N EILIE

d e f g

/

h

XLfml¢]  [»]o[m[X

Fijese en la necesidad del campo adicional en cada nodo y de la marca respectiva, para distinguir si el
segundo apuntador esta siendo utilizado para indicar el sucesor en inorden o el subarbol derecho.

J

La declaracion de las estructuras de datos es la siguiente:
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typedef struct NodoArbin
{ TipoA info;
int hijo; /* TRUE: el campo der apunta al subarbol derecho */
/* FALSE: el campo der apunta al sucesor en inorden */
struct NodoArbin *izq, *der;
} TArbin, *Arbin;

La uUnica analizadora basica del TAD Arbin que sufre cambio (con respecto a la primera representacion vista)
es la que retorna el subarbol derecho de un arbol binario, la cual debe verificar que el encadenamiento que va
a utilizar apunte efectivamente al subarbol derecho.

Arbin derArbin( Arbin a)
{ return ( a->hijo ) ? a->der : NULL;
H

Ejemplo 4.23:
Recorrer en inorden un arbol binario enhebrado por la derecha, retornando la lista respectiva.

/* pre: a estd enhebrado por la derecha */
/* post: inordenArbin = recorrido en inorden del arbol a */

Lista inordenArbin( Arbin a )
{ Lista Ist = inicLista( );
while( a '=NULL )
{ if( a->izq !=NULL)
a=a->izq;
else
{ anxLista( Ist, a->info );
if( a->hijo || a->der == NULL )
a = a->der;
else
{ a=a->der;
anxLista( Ist, a->info );
a = a->der;

}
}
return Ist;
}
bl

4.6.4. Cursores

En esta manera de representar un arbol binario se remplazan los apuntadores, que se manejan al interior de
cada nodo, por indices en un vector. Este esquema de representacion se utiliza con frecuencia para manejar
estructuras arborescentes en memoria secundaria (§4.7.1). El mecanismo de encadenamiento es el mismo,
pero los campos de cada nodo, que referencian los subarboles asociados, son enteros e indican su posicién
absoluta dentro del vector. El arbol vacio se representa con el indice -1. En caso de almacenar la informacion
en memoria secundaria, los indices se refieren al numero del registro en un archivo de acceso directo.
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El esquema de representacion se puede definir a través de los siguientes puntos:

[\

e El arbol a = AVA se representa con un apuntador a un nodo, el cual tiene la direccién del vector en
memoria dinamica con el arbol completo, y el indice en el cual se encuentra el elemento ¢, tal como se
muestra en la siguiente figura.

a
— . > 0
K 1
ad e ~l K
posicién de a1 - T posicion de a2
MAX-1

o El arbol vacio, a = A, se representa como:

[l

e Elarbola-= A utiliza las siguientes estructuras de datos:

a
o[ - > 0

MAX-1

En este esquema de representacion, es necesario manejar una marca especial que indique si una casilla del
vector esta siendo ocupada por el arbol, o si ésta se encuentra libre.

Ejemplo 4.24:

Para el arbol binario de la figura, las estructuras de datos que lo representan, con el esquema de cursores
son:

arb_, * > 1 e -1 0
2 -1 f 1|1
arb = a 5 a 3 |2
/ \ 1 C 4 3
b c 9 g 4 |a
7 0
N /N ° ;
d e f g -1 d K
/ 8
h -1 h -1 |o

J

La declaracion de las estructuras de datos es la siguiente:

struct NodoArbin
{ TipoA info;
int izq, der;

3
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typedef struct
{ struct NodoArbin *vector; /* Vector de MAX nodos en memoria dindmica */
int arbol; /* Posicion de la raiz en el vector */

} TArbin, *Arbin;
Las rutinas que implementan las operaciones del TAD Arbin son:

Arbin izqArbin( Arbin a )
{ if( a-=>vector[ a->arbol J.izq ==-1)
return NULL;
else
{  Arbin aux = ( Arbin )malloc( sizeof( TArbin ) );
aux->vector = a->vector;
aux->arbol = a->vector[ a->arbol ].izq;
return aux;

Arbin derArbin( Arbin a)
{ if( a->vector[ a->arbol J.der ==-1)
return NULL;
else
{  Arbin aux = ( Arbin )malloc( sizeof( TArbin ) );
aux->vector = a->vector;
aux->arbol = a->vector[ a->arbol ].der;
return aux;

TipoA raizArbin( Arbin a )
{ return a->vector[ a->arbol ].info;

}

int vacioArbin( Arbin a )
{ returna==NULL;
H

Ejemplo 4.25:

Agregar una operacion al TAD Arbin que permita encontrar el padre de un elemento dado, en un arbol sin
valores repetidos, suponiendo que este elemento se encuentra presente en la estructura de datos y es distinto
de la raiz.

Puesto que se tiene acceso a las estructuras de datos, basta con hacer un recorrido por el vector, tratando
de localizar un elemento que tenga un subarbol situado en la posicién del elemento elem.

/* pre: a no tiene elementos repetidos, elem esta en a, elem es diferente de la raiz de a */
/* post: padreArbin = padre de elem en a */
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TipoA padreArbin( Arbin a, TipoA elem )

{ inti k;
for( k = 0; a->vector[ k ].info != elem; k++);
for(i=0; a->vector[ i ].izq != k && a->vector[ i ].der |=k; i++);
return a->vector][ i ].info;

}
J

4.6.5. Representaciéon Secuencial

Para representar internamente un arbol binario, es posible utilizar como estructura de soporte una lista (o
cualquier otra estructura lineal), con el siguiente esquema de representacion:

o El arbol a = A se representa con la lista vacia a = < >.

o Elarbola-= A se representa con lalistaa =<e >.

/2\
e Elarbola= AVA se representa con la lista a = < x4, ..., X, >, donde:

(1) Si el arbol a tiene altura k, n < 2K - 1.

(2) x; es un elemento del arbol a o la marca especial ®. Dado que ® debe ser un elemento valido del tipo
TipoA, ® debe seleccionarse del dominio de valores de dicho tipo.

(3) Cada elemento del arbol se situa en la lista en la posicion que dicho elemento ocuparia en el recorrido
por niveles del arbol binario lleno de altura igual a la del arbol a (ver ejemplo 4.26).

(4) Todas las posiciones no ocupadas de la lista se completan con la marca ®.

B)xp1=®
Ejemplo 4.26:
Suponga que se quiere hacer una representacion secuencial del siguiente arbol:
a
arb = b/ N\ c
/N
d e
ZN
f g

Teniendo en cuenta que, cuando se hace el recorrido por niveles en un arbol binario lleno de altura 4, se
visitan los elementos en el siguiente orden :

2/1\3
SN\
AN

9 10 11 12 13 14 15
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Las posiciones en que deben colocarse los elementos del arbol arb en la lista que lo representa son:

a=1,b=2,¢c=3,d=4,e=5,f=8,g=9

Obteniendo la lista:
arb=<a,b,c,d e, ®®,fg>
9y

Un hecho importante en esta representacion es que si un elemento se encuentra en la posicién pos de la lista,
su hijo izquierdo esta en la posicion ( pos * 2 ) y su hijo derecho en la posicion ( pos * 2 ) + 1. De la misma
manera, su padre se encuentra en la posicion [ pos /2 ].

Ejemplo 4.27:

Otros ejemplos de representacion secuencial se pueden apreciar en los siguientes arboles:

(@

® 0
(c) @ (k)
ONENG % 9
& ©® O @{ >‘D <abic®jkdg®®®3®l0efh®F®IIIXdmMnpqg>

(d) @
(e)/ @ <c,d, g, e f>

Note que no es necesario colocar en la lista todos los elementos del ultimo nivel, sino Unicamente hasta el
ultimo elemento presente.

J

La declaracién de las estructuras de datos para esta representacion es:

typedef TipoA TipoL;
typedef Lista Arbin;

Las rutinas que implementan las operaciones del TAD Arbin se dan a continuacion:

e La rutina que calcula el subarbol izquierdo se divide en dos partes. La primera, crea la lista con el
subarbol, y, la segunda, elimina del final de la lista todas las marcas. Para construir la lista, la rutina se
situa en la segunda posicion, y, comenzando desde alli, lleva a cabo el siguiente proceso: pasar a la lista
de respuesta 1 elemento y avanzar 1 posicion, pasar a la lista de respuesta 2 elementos y avanzar 2
posiciones, pasar a la lista de respuesta 4 elementos y avanzar 4 posiciones, etc. Utiliza el procedimiento
auxiliar avanzarLista que se muestra mas adelante.
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Arbin izqArbin( Arbin a )
{ inti, paso=1;
Arbin al = inicLista( );
if( longLista(a)>=2)
{  for( posLista( a, 2 ); !finLista( a ); avanzarLista( a, paso ), paso *=2)
for(i=1; finLista( a ) && i <= paso; i++, sigLista(a ) )
anxLista( al, infoLista( a ) );
while( longLista( al ) =0 && infoLista( al ) == MARCA )
{ elimLista( al );
ultLista( al );
§
H

return al;

e La rutina avanzarLista es un procedimiento auxiliar que permite mover la ventana hacia adelante un
numero dado de posiciones:

void avanzarLista( Lista Ist, int num )
{ for(; finLista( Ist ) && num-- > 0; sigLista( Ist ) );
H

e La operacién que calcula el subarbol derecho tiene una estructura parecida a la explicada para la rutina
izqArbin, pero el proceso de construccion del arbol es: se situa en la posicion 3, toma 1 elemento y
avanza 2 pasos, toma 2 elementos y avanza 4 pasos, efc.

Arbin derArbin( Arbin a)
{ inti, paso=1;
Arbin al = inicLista( );
if( longLista(a)>=3)
{  for( posLista( a, 3 ); !finLista( a ); avanzarLista( a, paso * 2 ), paso *=2)
for(i=1; finLista( a ) && i <= paso; i++, sigLista(a ) )
anxLista( al, infoLista( a ) );
while( longLista( al ) =0 && infoLista( al ) == MARCA )
{ elimLista( al );
ultLista( al );
§
H

return al;

}

e La raiz del arbol se encuentra en la primera posicién de la lista. Puesto que la precondicion de la
operacion garantiza que el arbol no es vacio, no se debe hacer ninguna validacion.

TipoA raizArbin( Arbin a )
{ primLista(a);
return infoLista( a );

}

e EIl arbol estda vacio si la lista que lo representa estd vacia, segun se defini6 en el esquema de
representacion.
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int vacioArbin( Arbin a )
{ return longLista( a )==0;

}

Ejemplo 4.28:

Agregar al TAD Arbin una operacion que haga un recorrido en inorden de un arbol representado con una
estructura lineal.

/* post: se ha recorrido en inorden el arbol binario a */

void inordenArbin( Arbin a )
{ inorden2(a,1);
H

/* pre: pos es la posicion en la lista a del subarbol que se va a comenzar a recorrer */
/* post: se ha recorrido en inorden el subarbol que comienza en la posicién pos */

void inorden2( Arbin a, int pos )
{ Ventanav;

if( pos <= longLista( a))

{ posLista( a, pos );

if( infoLista( a ) = MARCA )

{  v=ventanaLista( a );
inorden2( a, pos * 2 );
situarLista( a, v );
printf("%d ",infoLista( a ) );
inorden2( a, (pos *2 )+ 1);

}
J

4.7. Destruccion y Persistencia de Arboles Binarios

Para la persistencia de arboles binarios, se agregan dos operaciones al TAD Arbin. Una para leer un arbol de
un archivo (cargarArbin) y otra para salvarlo (salvarArbin).

En esta seccion se estudian dos esquemas diferentes de persistencia, basados en las representaciones de
cursores (§4.6.4) y listas (§4.6.5).

Persistencia:
. cargarArbin: FILE * — Arbin
° salvarArbin: Arbin x FILE *

Arbin cargarArbin( FILE *fp )
/* Construye un arbol binario a partir de la informacién de un archivo */

{ pre: el archivo esta abierto y es estructuralmente correcto }
{ post: se ha construido el arbol que corresponde a la imagen de la informacién del archivo }
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void salvarArbin( Arbin a, FILE *fp )
/* Salva el arbol en un archivo */

{ pre: el archivo esta abierto }
{ post: se ha hecho persistir el arbol en el archivo }

4.71. Persistencia con Cursores

Este esquema de persistencia utiliza un archivo de acceso directo, con registros de 3 campos: uno con la
informacion del elemento, y los otros dos con la posicién absoluta en el archivo de los subarboles izquierdo y
derecho. La raiz del arbol completo se encuentra en el primer registro del archivo. El archivo tiene tantos
registros como elementos tiene el arbol, de tal manera que un arbol vacio se representa con un archivo vacio.
El esquema de persistencia se puede resumir en el siguiente dibujo:

/A = e
. s — L.

posicién de a1 B posicion de a2

en el archivo en el archivo
(pesodea)-1

A [1 ] e J-1]o

A (archivo vacio)

Entre las diversas posibilidades que existen para implementar las dos operaciones de persistencia, se decidio
agregar un campo a cada nodo del arbol, en el cual se incluye la posicion en el archivo de dicho elemento.
Por esta razon, la rutina hace dos pasadas sobre el arbol: en la primera asigna una posicién en el archivo a
cada nodo, y, en la segunda, salva los elementos siguiendo el esquema de persistencia antes planteado.

Para la implementacion de apuntadores (§4.6.1), las estructuras de datos se modifican de la siguiente
manera:

typedef struct NodoArbin

{ TipoA info;
int posArch; /* posicidn en el archivo en la cual debe persistir el elemento info */
struct NodoArbin *izq,*der;

} TArbin,*Arbin;

También es necesario declarar el tipo de registro que se va a almacenar en el archivo:

struct regArbin
{ TipoA info; /* elemento del arbol */
int izq,der; /* posicion en el archivo de los dos subarboles */

3

La rutina que lee un arbol de un archivo verifica que éste no se encuentre vacio, y, luego, hace un recorrido
en preorden reconstruyendo el arbol. Puesto que la precondicién garantiza que la estructura del archivo es
correcta, la funcién no hace ningun tipo de validacion con respecto a la informacioén alli almacenada.
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Arbin cargarArbin( FILE *fp )
{ return auxCargar( fp, 1);

}

Arbin auxCargar( FILE *fp, int posArch )
{ struct regArbin reg;
Arbin a = ( Arbin )malloc( sizeof( TArbin ) );
fseek( fp, ( posArch - 1) * sizeof( struct regArbin ), SEEK SET );
if( fread(&reg,sizeof(struct regArbin),1,fp) ==0)
return NULL;
a->info = reg.info;
a->izq = (reg.izq == -1 ) ? NULL : auxCargar( fp, reg.izq );
a->der = (reg.der == -1 ) ? NULL: auxCargar( fp, reg.der );
return a;

}

Para salvar el arbol se utilizan dos rutinas auxiliares, encargadas de llenar el campo de posicion en el archivo
(marcarArbin) y de escribir la informaciéon a medida que se hace un recorrido en preorden (auxSalvar):

void salvarArbin( Arbin a, FILE *fp )
{ int posArch=1;
marcarArbin( a, &posArch );
auxSalvar( a, fp );

}

void marcarArbin( Arbin a, int *actual )
{ if(a!=NULL)
{  a->posArch = ( *actual )++;
marcarArbin( a->izq, actual );
marcarArbin( a->der, actual );

}

void auxSalvar( Arbin a, FILE *fp )
{ struct regArbin reg;

if(a!=NULL)

{ reg.izq=(a->izq==NULL ) ? -1 : a->izq->posArch;
reg.der = (a->der == NULL ) ? -1 : a->der->posArch;
reg.info = a->info;
fwrite( &reg, sizeof( struct regArbin ), 1, fp );
auxSalvar( a->izq, fp );
auxSalvar( a->der, fp );

4.7.2. Persistencia con Representacion Secuencial

En este esquema de persistencia se utiliza un archivo de texto, en el cual se coloca en cada posicidn (linea) el
elemento que en la representacién secuencial de arboles debe ocupar dicho espacio. Las rutinas se basan en
un recorrido por niveles de los arboles. En la primera linea del archivo aparece el numero de elementos que
se salvaron en el archivo.
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Arbin cargarArbin( FILE *fp )
{ Colacol;
Arbin resp, a, al, a2;
int 1, alt, numElem, elem;
fscanf( fp, "%d", &alt );
if( (numElem = pow( 2,alt)-1)==0)
return NULL;
fscanf( fp, "%d", &elem );
resp = crearNodo( elem );
adicCola( col = inicCola( ), resp );
for(i=1;i<numElem;i+=2)
{ a=infoCola( col);

elimCola( col );

if (a!=NULL)

{  fscanf( fp, "%d", &elem );
a->izq = al = crearNodo( elem );
adicCola( col, al );
fscanf( fp, "%d", &elem );
a->der = a2 = crearNodo( elem );
adicCola( col, a2 );

else
{  fscanf( fp, "%d", &elem );
fscanf( fp, "%d", &elem );
adicCola( col, NULL );
adicCola( col, NULL );
§
i

destruirCola( col );
return resp;

}

La rutina crearNodo tiene la responsabilidad de crear un nuevo nodo en memoria dinamica e inicializar su
campo de informacion con el parametro que se le pase.

Arbin crearNodo( TipoA elem )
{ Arbina=NULL;
if( elem != MARCA )
{ a=(Arbin )malloc( sizeof( TArbin ) );
a->info = elem;
a->izq = a->der = NULL;
H

return a;

}

El proceso de salvar un arbol en un archivo se basa en un recorrido por niveles de la estructura. Se crea una
lista con todos los elementos de cada nivel, pero se debe tener cuidado de completar las posiciones no
ocupadas con la MARCA preestablecida. Al final de cada nivel, si existe algin elemento alli, se escriben los
elementos en el archivo. En caso contrario se termina el proceso.
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void salvarArbin( Arbin a, FILE *fp )
{ Lista Ist = inicLista( );
Cola col;
int numElem = 1, 1 = 0, nivelVacio = TRUE,;
fprintf( fp, "%d\n", alturaArbin( a ) );
if (a!=NULL)
{ adicCola( col =inicCola( ) ,a);
while( !vaciaCola( col ) )
{ a=infoCola( col);

elimCola( col );

if (a!=NULL)

{  nivelVacio = FALSE;
anxLista( Ist, a->info );
adicCola( col, a->izq );
adicCola( col, a->der );

else
{ anxLista( Ist, MARCA );
adicCola( col, NULL ),
adicCola( col, NULL ),
}
if( ++i == numElem )
{  if( nivelVacio )
{  destruirCola( col );
destruirLista( Ist );
return;
}
for( primLista( Ist ); !finLista( Ist ); sigLista( Ist ) )
fprintf( fp, "%d ", infoLista( Ist) );
fprintf( fp, "\n" );
destruirLista( Ist );
Ist = inicLista( );
nivelVacio = TRUE;
numElem *= 2;
1=0;

4.7.3. Destructora del TAD Arbin

Para facilitar el proceso de destruccion de un arbol binario, se agrega al TAD Arbin una operacion destructora,
encargada de devolver el espacio ocupado en memoria dinamica por las estructuras de datos. Esta operacion
es diferente para cada representacion interna.

Destructora:
° destruirArbin: Arbin
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void destruirArbin( Arbin a )
/* Destruye un arbol binario, retornando toda la memoria ocupada en su representacion */

{ post: se ha devuelto toda la memoria ocupada en la representacion del arbol a. a es indefinido }

Para las representaciones de apuntadores (arboles sencillamente encadenados, arboles con encadenamiento
al padre y arboles enhebrados por la derecha), la operacion destructora se implementa con la siguiente rutina
recursiva:

void destruirArbin( Arbin a )
{ if(a!=NULL)
{  destruirArbin( a->izq );
destruirArbin( a->der );
free( a);

Ejercicios Propuestos:

Utilizando la representacion de arboles sencillamente encadenados desarrolle las siguiente rutinas:

4.51. Arbin reflejarArbin( Arbin a )
/* Dado un arbol binario a, este procedimiento retorna su reflejo. Esto es, para cada elemento del arbol,
intercambia sus subarboles asociados */

4.52. void reemplazarArbin( Arbin a, TipoA elem1, TipoA elem2 )
/* Reemplaza en el arbol a todas las ocurrencias del elemento elem!1 por el elemento elem2 */

4.53. Arbin podar1Arbin( Arbin a)
/* Elimina del arbol a todas sus hojas */

4.54. Arbin podar2Arbin( Arbin a, int niv )
/* Elimina del arbol a todos los elementos que se encuentran en un nivel superior o igual a niv */

4.55. Arbin eliminarArbin( Arbin a, TipoA elem )

[* Elimina del arbol binario a el elemento elem, de tal manera que el arbol resultante conserve el mismo
inorden, salvo por el elemento retirado */

4.56. Arbin insHeap( Arbin a, TipoA elem )

/* Un heap es un arbol binario casi lleno, en el cual se cumple que todo elemento es mayor que sus
hijos y los subarboles asociados son a su vez heaps. Un ejemplo de un heap es el siguiente:

40 10
30 205

La insercidon de un elemento en un heap se hace colocandolo en la siguiente posicion libre (para que
siga siendo casi lleno), y, después, subiéndolo por la jerarquia hasta encontrar el punto adecuado

segun su valor. Por ejemplo, si al heap anterior se le agrega el elemento 48, el proceso que se sigue
es:
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//\\ %/ﬂ\y
/ \0 / \ / \ / \

I/ AYAY
/ﬂ\\ w/ﬂ\%

SN N e AN
AYA JAVAN

20 5 20 5

Esta funcidon agrega un elemento a un heap */

Utilizando la representacion de arboles con encadenamiento al padre desarrolle las siguiente rutinas:

4.57. void encadenarPadre( Arbin a )
/* Suponiendo que el campo padre de cada nodo del arbol se encuentra en NULL, esta funcion hace el
encadenamiento respectivo */

4.58. TipoA ancestroComun( Arbin a, TipoA elem1, TipoA elem2 )
/* Busca y retorna el ancestro comun mas préximo de los elementos eleml y elem2, aprovechando el
encadenamiento al padre. Suponga que no hay elemento repetidos */

4.59. Arbin podar2( Arbin a, int niv)
/* Elimina del arbol a todos los elementos que se encuentran en un nivel superior o igual a niv */

4.60. int nivelArbin( Arbin a, TipoA elem )
/* Retorna el nivel en el que se encuentra el elemento eclem en el arbol a, aprovechando el
encadenamiento que cada nodo tiene a su padre */

4.61. Arbin reconstruyeArbin( Lista postorden, Lista inorden )
/* Dados los recorridos en postorden e inorden de un arbol binario sin elementos repetidos, esta funcion
reconstruye y devuelve el arbol que los generé */

Utilizando la representacion de arboles enhebrados por la derecha desarrolle las siguientes rutinas:

4.62. Arbin eliminarArbin( Arbin a, TipoA elem )
[* Elimina del arbol binario a el elemento elem, de tal manera que el arbol resultante conserve el mismo
inorden, salvo por el elemento retirado */

4.63. void enhebrarDerecha( Arbin a )
/* Suponiendo que el campo que hace el enhebramiento por la derecha en cada nodo se encuentra en
NULL, este procedimiento hace dicho encadenamiento */

4.64. void enhebrarHojasDerecha( Arbin a )
/* Suponiendo que el campo que hace el enhebramiento por la derecha en cada nodo se encuentra en
NULL, esta rutina lo aprovecha para encadenar las hojas del arbol de izquierda a derecha */
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Utilizando la representacion de cursores desarrolle las siguientes rutinas:

4.65.

4.66.

Arbin podarHojas( Arbin a, TipoA elem )
/* Elimina del arbol binario a todas las hojas cuyo valor es igual a elem */

void niveles( Arbin a )
/* Recorre por niveles el arbol binario a */

Utilizando la representacion secuencial de un arbol binario, desarrolle las siguientes rutinas:

4.67.

4.68.

4.69.

4.70.

4.71.

4.72.

int esHoja( Arbin a, int pos )
/* Determina si el elemento que se encuentra en la posicidon pos es una hoja */

int estaArbin( Arbin a, TipoA elem )

[* Determina si el valor elem se encuentra en el arbol binario a. La funcién debe ser O( n ), donde n es
el peso del arbol */

Arbin podar2( Arbin a, int niv )
/* Elimina del arbol a todos los elementos que se encuentran en un nivel superior o igual a niv */

void nivelesArbin( Arbin a )
/* Hace el recorrido por niveles del arbol a */

Arbin consArbin( TipoA elem, Arbin a1, Arbin a2 )
/* Retorna un arbol cuya raiz es elem, subarbol izquierdo es al y subarbol derecho es a2. No modifica
los parametros de entrada */

Con el fin de "ahorrar espacio” en la representacion de arboles binarios, alguien decidié que en lugar de
que el padre tenga apuntadores a los hijos, sean los hijos quienes guarden un apuntador al padre. Para
resolver el problema de localizar las hojas del arbol (nada apunta a ellas, pues no tienen hijos), decidio
encadenar las hojas una con otra, de izquierda a derecha. Bajo esta representacion, el arbol binario:

A
arb = /\
B C
VANV
D E F G
/7 \
H |
Se representa como:
X[alX
EEDX P[cIX
N N
arb—»l"IDH—»I\IEI\I‘/'I/I'\FN I‘/I‘GI><]
[T 4

De acuerdo con este esquema de representacion, un arbol binario esta definido por un apuntador a la
primera hoja, de tal manera que, a partir de este elemento, sea posible tener acceso a los demas
componentes del arbol.

Las estructuras de datos de esta representacion son las siguientes:
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typedef struct Nodo
{  TipoA info;

struct Nodo *padre, *sigHoja;
} TArbin, *Arbin;

Dado que los nodos de esta representacion tienen la misma estructura interna (un campo de tipo TipoA
y dos de tipo apuntador), desarrolle un algoritmo para pasar un arbol de esta representacién a la
representacion estandar con apuntadores. El algoritmo debe reutilizar los nodos de la representacion
inicial, y retornar un apuntador a la raiz.

4.8. EL TAD Arbol Binario Ordenado

Una de las aplicaciones mas frecuentes de arboles binarios es el almacenamiento de informacién de manera
ordenada, mejorando la eficiencia de acceso a la informacién con respecto a las estructuras lineales. La idea
es colocar todos los elementos menores que la raiz en el subarbol izquierdo, y todos los elementos mayores
en el derecho, de manera que, cada vez que la operacién de busqueda pasa por un elemento del arbol,
descarta todos los valores que se encuentran en uno de los dos subarboles asociados. Si se repite
recursivamente este esquema para cada subarbol, se obtiene una estructura de datos llamada arbol binario
ordenado.

Formalmente, se dice que un arbol binario es ordenado si todos los elementos del subarbol izquierdo son
menores que la raiz, todos los del derecho mayores que la raiz y los dos subarboles asociados son, a su vez,
arboles binarios ordenados.

Una propiedad interesante de este tipo de arbol binario es que, en el recorrido en inorden, se visitan siempre
los elementos en orden ascendente de valor.

Ejemplo 4.29:
El siguiente es un ejemplo de un arbol binario ordenado:
20
/7 N\
12 30
VRN
8 15
/N
14 18

El recorrido en inorden de este arbol es < 8 12 14 15 18 20 30 >, que corresponde a una secuencia
ordenada ascendentemente.

J

Ejemplo 4.30:

Verificar si un arbol binario es ordenado. La primera soluciéon que se presenta en este ejemplo es de

complejidad O( n2 ), Yy se basa en la definicion recursiva de arbol binario ordenado. La segunda manera, es
hacer un recorrido en inorden y verificar que los elementos se visiten en orden ascendente (O (n)).

Solucién No. 1 - Utiliza dos funciones auxiliares que retornan el mayor y el menor elemento de un arbol
binario ordenado.
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/* post: ordenadoArbinl = el arbol a es ordenado */

int ordenadoArbinl( Arbin a)
{ if( vacioArbin( a) || ( vacioArbin( izqArbin( a ) ) && vacioArbin( derArbin(a))))
return TRUE;
else
return ordenadoArbinl( izqArbin( a) ) &&
ordenadoArbinl( derArbin(a) ) &&
( vacioArbin( izqArbin( a ) ) || mayorArbin( izqArbin( a ) ) <raizArbin(a) ) &&
( vacioArbin( derArbin( a ) ) || menorArbin( derArbin( a ) ) > raizArbin( a ) );
H

/* pre: a es ordenado */
/* post: mayorArbin = mayor elemento de a */

int mayorArbin( Arbin a )
{ return ( vacioArbin( derArbin(a))) ? raizArbin( a ) : mayorArbin( derArbin( a ) );
H

/* pre: a es ordenado */
/* post: menorArbin = menor elemento de a */

int menorArbin( Arbin a )
{ return ( vacioArbin( izqArbin( a) ) ) ? raizArbin( a ) : menorArbin( izqArbin( a ) );
H

Solucién No. 2 - Hace un recorrido en inorden, y va llevando en un parametro adicional por referencia el
ultimo valor visitado del arbol.

/* post: ordenadoArbin2 = el arbol a es ordenado */

int ordenadoArbin2( Arbin a )
{ intaux = VACIO;
return esOrdenado( a, &aux );

}

/* pre: *ant es el Gltimo elemento del arbol completo que se ha visitado en el inorden */
/* post: esOrdenado = el arbol a es ordenado, *ant es el tltimo elemento del arbol que se ha visitado en el inorden */

int esOrdenado( Arbin a, int *ant )
{ 1if( vacioArbin(a))
return TRUE;
else if( esOrdenado( izqArbin( a ), ant ) )
if( *ant 1= VACIO && *ant > raizArbin( a ) )
return FALSE;
else
{ *ant = raizArbin( a );
return esOrdenado( derArbin( a ), ant );

§
else return FALSE;
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El TAD que maneja arboles binarios ordenados (TAD ArbinOr) utiliza como formalismo para su objeto
abstracto el mismo que utiliza el TAD Arbin. La Unica diferencia se encuentra en el invariante, que agrega
condiciones especiales para este nuevo objeto. Fuera de las operaciones analizadoras, que ya vienen con el
TAD Arbin, este nuevo TAD agrega una constructora, dos modificadoras y una analizadora.

TAD ArbinOr[ TipoAO ]

/\

2

{inv: al y a2 son disyuntos, todos los elementos de al son menores que e,
todos los elementos de a2 son mayores que e, al y a2 son ordenados }

Constructora:
. inicArbinOr: — ArbinOr

Modificadoras:
e insArbinOr: ArbinOr x TipoAO — ArbinOr
e elimArbinOr: ArbinOr x TipoAO — ArbinOr

Analizadora:
e estaArbinOr: ArbinOr x TipoAO — int

ArbinOr inicArbinOr( void )
/* Crea un arbol binario ordenado vacio */

{ post: inicArbinOr =@ }

ArbinOr insArbinOr( ArbinOr a, TipoAO elem )
/* Agrega un elemento a un arbol binario ordenado */

{pre:elem g a,a=A}
{ post: insArbinOr = AU { elem } }

ArbinOr elimArbinOr( ArbinOr a, TipoAO elem )
/* Elimina un elemento de un arbol binario ordenado */

{pre: elem € a, a = A}
{ post: elimArbinOr = A -{elem}}

int estaArbinOr( ArbinOr a, TipoAO elem )
/* Informa si un elemento se encuentra en un arbol binario ordenado */

{ post: estaArbinOr=(elem e a)}

Se presenta a continuacion la implementacion de estas tres operaciones, sobre el esquema de representacion
de arboles sencillamente encadenados, como una manera de ilustrar el proceso que se debe seguir.
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4.8.1. Proceso de Busqueda

La operacion de busqueda aprovecha la estructura de un arbol binario ordenado, bajando unicamente por los
subarboles en los cuales existe la posibilidad de encontrar el elemento. En el peor de los casos, el algoritmo
es O( n), donde n es el peso del arbol, ya que su maxima altura puede ser n (un arbol degenerado) como se
muestra en la figura 4.9. En el caso promedio, el algoritmo es O( logy n ), donde n es el peso del arbol, ya que

todos los valores son igualmente probables en la secuencia de insercion.

Fig. 4.9 - Arbol binario degenerado ( peso = altura )

Cuando se trabaja sobre arboles ordenados, casi siempre resulta igual de sencilla la solucién iterativa a la
solucion recursiva, puesto que no es necesario el uso de una pila para moverse por la estructura. La rutina
recursiva que informa si un elemento esta en un arbol ordenado es:

int estaArbinOr( ArbinOr a, TipoAO elem )
{ if( a==NULL )
return FALSE;
else if( a->info ==elem )
return TRUE;
else if( a->info > elem )
return estaArbinOr( a->izq, elem );
else

return estaArbinOr( a->der, elem );

La rutina iterativa para realizar esa misma operacion es:
int estaArbinOr( ArbinOr a, TipoAO elem )
{ while( a!=NULL && a->info !=elem )

a=(elem < a->info ) ? a->izq : a->der;
return a != NULL;

4.8.2. Proceso de Insercién

El proceso para agregar un elemento a un arbol binario ordenado tiene la misma estructura del proceso de
busqueda. La idea es seguir la misma manera de bajar por el arbol, y, en el momento de llegar al punto en el
cual se reconoce que el elemento no esta presente (no se puede bajar mas), agregar alli el elemento.
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Ejemplo 4.31:
Si se tiene el arbol que se muestra en la figura:
20
/7 \
12 30
N
8 15
/N
14 18

Los arboles que se obtienen al insertarle la secuencia de valores 40, 19 y 13 son los que se presentan a
continuacion. Es importante anotar que siempre existe un punto en el arbol donde se puede agregar un
nuevo elemento, de manera que sea una hoja. Esto facilita el proceso de insercién, puesto que agregar en
un lugar interior podria significar cambios estructurales del arbol:

2 12 \30 12/ \30
12/ \30 /7 \ N /7 \
/ \ \ 8 15 40 8 15 40
8 /15\ 40 14/\18\ 14 18,
14 18 19 13 19

J

A continuacion se presentan las implementaciones recursiva e iterativa de la operacion de insercion, las
cuales son O( n ), en el peor de los casos, y O( logs n ), en el caso promedio, donde n es el peso del arbol.

ArbinOr insArbinOr( ArbinOr a, TipoAO elem )
{ if(a==NULL)
{ a=(ArbinOr )malloc( sizeof( TArbinOr ) );
a->info = elem;
a->izq = a->der = NULL;
H
else if( a->info > elem )
a->izq = insArbinOr( a->izq, elem );
else
a->der = insArbinOr( a->der, elem );
return a;

}

ArbinOr insArbinOr( ArbinOr a, TipoAO elem )
{ ArbinOr resp = a, aux = ( ArbinOr )malloc( sizeof( TArbinOr ) );
aux->info = elem;
aux->izq = aux->der = NULL;
iflta==NULL)
return aux;
while( ( elem < a->info && a->izq != NULL) || ( elem > a->info && a->der !|=NULL ) )
a=(elem < a->info ) ? a->izq : a->der;
if( elem < a->info )
a->izq = aux;
else
a->der = aux;
return resp;
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4.8.3. Proceso de Eliminacion

El proceso para eliminar un elemento de un arbol binario es mas complicado que los dos anteriores, porque al
suprimir un valor se debe alterar la estructura del arbol. Existen varias maneras de hacerlo, las cuales se
ilustran a continuacion, mostrando el caso general y un ejemplo.

Opcion 1: Para eliminar el elemento de la raiz, se puede colocar el subarbol izquierdo a la izquierda del
menor elemento del subarbol derecho:

SN

Por ejemplo, al eliminar el elemento 20 se tiene:

30
/\
20 25 35
/ N\ /
NN N
5 15 25 35 > 5 15

Opcion 2: Para eliminar el elemento de la raiz, se puede colocar el subarbol derecho a la derecha del menor
elemento del subarbol izquierdo:

R

Por ejemplo, al eliminar el elemento 20 se tiene:

7\
20 5 15
7\
10 30 30
VNV
5 15 25 35 > 25 35

Opcion 3: Para eliminar el elemento de la raiz, se puede reemplazar dicho elemento por el menor elemento
del subarbol derecho:
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Por ejemplo, al eliminar el elemento 20 se tiene:

20
VRN RN
10 30 10 30

/N /N VRN AN

5 15 25 35 - » 5 15 35

Opcion 4: Para eliminar el elemento de la raiz, se puede reemplazar el elemento por el mayor elemento del
subarbol izquierdo:

AN AN

Por ejemplo, al eliminar el elemento 20 se tiene:

20 15
/7 N\ /7 N\
10 30 10 30
/N /N / /N
5 15 25 35 > 5 25 35

El algoritmo para implementar la supresion de un elemento utilizando la cuarta opcién, considera tres grandes
casos: el elemento es la raiz, el elemento esta en el subarbol izquierdo o el elemento esta en el subarbol
derecho. En el primer caso aplica la soluciéon planteada anteriormente, utilizando una funcién que retorna el
mayor elemento de un arbol binario. Los otros dos casos hacen avanzar la recursién, por el subérbol
respectivo.

Cuando el elemento que se quiere eliminar es la raiz, considera tres casos: es una hoja (la elimina sin ningun
problema), el arbol no tiene subarbol izquierdo (coloca el subarbol derecho en lugar de todo el arbol), o tiene
ambos subarboles (busca el mayor elemento del subarbol izquierdo, lo coloca en la raiz, y hace una llamada
recursiva para suprimirlo de dicho subarbol).

El algoritmo recursivo es el siguiente:

ArbinOr elimArbinOr( ArbinOr a, TipoAO elem )
{ ArbinOr p;
TipoAO mayor;
if( a->info ==-elem )
{ if( a->izq==NULL && a->der == NULL )

{ free(a);
return NULL;
§
else if( a->izq ==NULL )
{ p=a->der;
free( a);
return p;
§
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}

else

{  mayor = mayorElemento( a->izq );
a->info = mayor;
a->izq = elimArbinOr( a->izq,mayor );

}

else if( a->info>elem )

a->izq = elimArbinOr( a->izq,elem );

a->der = elimArbinOr( a->der,elem );

return a;

La solucion iterativa viene dada por el siguiente cédigo en C:

ArbinOr elimArbinOr(ArbinOr a, TipoAO elem)
{ ArbinOr padrel = NULL, padre2, al = a, a2;

while( al !=NULL )

while( al->info != elem )
{ padrel =al;
al = (elem <al->info ) ? al->izq : al->der;
§
if( al->izq == NULL && al->der == NULL )
{ if( padrel ==NULL )
a=NULL;
else if( padrel->izq==al )
padrel->izq = NULL,;
else
padrel->der = NULL;
break;
§
else if( al->izq ==NULL )
{  /* solo tiene hijo derecho */
if( padrel == NULL )
a = a->der;
else if( padrel->izq==al )
padrel->izq = al->der;
else
padrel->der = al->der;
break;
§
else if( al->der == NULL )
{  /* solo tiene hijo izquierdo */
if( padrel == NULL )
a = a->izq;
else if( padrel->izq==al )
padrel->izq = al->izq;
else
padrel->der = al->izq;
break;

Disefio y Manejo de Estructuras de Datos en C
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else
{  /* tiene ambos hijos */
for( a2=al->der, padre2=al; a2->izq != NULL; padre2 = a2, a2=a2->izq );
al->info = a2->info;
elem = a2->info;
padrel = padre2;
al = a2;

free( al );
return a;

Ejercicios Propuestos:

4.73.

4.74.

4.75.

4.76.

4.77.

4.78.

ArbinOr elimArbinOr( ArbinOr a, TipoAO elem )
/* Elimina el elemento elem del arbol binario ordenado a, utilizando la opcién No. 1 explicada en la
seccion anterior */

TipoA casiArbinOr( Arbin a )

/* Se define un arbol casi ordenado como un arbol binario en el cual todos los elementos cumplen las
condiciones de orden del arbol, salvo uno. Esta funcién detecta dicho elemento y lo retorna. La
complejidad de la rutina es O( n ), donde n es el peso del arbol */

ArbinOr unirArbinOr( ArbinOr a1, ArbinOr a2 )
/* Une al arbol binario ordenado al el arbol binario ordenado a2 (unién de conjuntos) */

ArbinOr interArbinOr( ArbinOr a1, ArbinOr a2 )
/* Elimina de al los elementos que no se encuentran en a2 */

int subArbinOr( ArbinOr a1, ArbinOr a2 )
/* Indica si todos los elementos de a2 estan en al */

Un Generador de Referencias Cruzadas es un programa que trabaja sobre un texto y produce
una lista alfabética con las palabras alli contenidas, indicando, para cada palabra, los renglones en los
que aparece y el numero total de apariciones.

Para esto se debe manejar internamente un directorio de palabras encontradas y una lista para cada
una de ellas, en la cual aparezcan los numeros de los renglones donde se encuentra presente la
palabra.

Se puede definir el TAD Directorio con las siguientes operaciones, con el fin de dar soporte al generador
de referencias:

TAD Directorio

e inicDir: — Directorio
e adicPalDir: Directorio x String X int — Directorio
e elimPalDir: Directorio x String — Directorio
e renglonesDir Directorio x String — Lista[ int ]
e listarDir: Directorio — Lista[ String ]

a-) Especifique formalmente el TAD Directorio € impleméntelo sobre arboles binarios ordenados vy listas.
b-) Escriba un Generador de Referencias Cruzadas utilizando el TAD Directorio desarrollado en el punto
anterior.
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Implemente el TAD ArbinOr utilizando una estructura con encadenamiento al padre.

0

4.79.

0

4.80. Implemente el TAD ArbinOr utilizando una estructura de arbol enhebrado por la derecha.

0

4.81. Implemente el TAD ArbinOr utilizando cursores como representacion interna.

0

4.82. Implemente el TAD ArbinOr utilizando una representacion secuencial.

0

4.83. Implemente el TAD ArbinOr utilizando arboles completamente enhebrados.

0

Implemente el TAD ArbinOr utilizando arboles encadenados por niveles. En este caso, en
cada nodo de las estructuras de datos se mantiene un apuntador al siguiente elemento en el recorrido
por niveles.

4.84.

4.9. Arboles Binarios Ordenados Balanceados

Un problema con el TAD ArbinOr es que no es suficiente con mantener el arbol ordenado para garantizar
eficiencia en el acceso a la informacién, puesto que en el peor de los casos la complejidad de las operaciones
sigue siendo O( n ), aunque en el caso promedio sea O( logon ). Una posible solucion es exigir que los dos
subarboles asociados con cada elemento tengan aproximadamente el mismo numero de componentes,
garantizando de esta manera que se descarta la mitad de los elementos de la estructura, en cada paso de la
busqueda. Los arboles con dicha caracteristica se denominan balanceados, y garantizan que la operacion de
busqueda de un elemento tiene complejidad O( logon ), en el peor de los casos, a costa de algoritmos mas

complicados para implementar las modificadoras, puesto que deben alterar en cada insercién y supresion la
estructura del arbol, para garantizar la condicion de balanceo.

Existen basicamente dos tipos de arboles binarios balanceados: los arboles AVL (o balanceados por altura) y
los arboles perfectamente balanceados (o balanceados por peso). Adelson - Velskii y Landis introdujeron en
1962 el concepto de arbol balanceado por altura, y de alli su nombre de arboles AVL. En este tipo de arboles,
las alturas de los dos subarboles asociados con cada elemento no pueden diferir en mas de 1, y los dos
subarboles deben ser también AVL (figura 4.10). Por definicién, un arbol binario vacio es AVL.

e avl( a ) ssi abs( altura( izqArbin( a ) ) - altura( derArbin(a ) ) ) <1 A avl( izgArbin(a ) ) A avl( derArbin(a))

20 20
/7 N\ /7 N\
15 30 15 30
7N /N 7N /N
5 18 25 35 5 18 25 35
/N N /N N
16 19 2 816 19 32 38

Fig. 4.10 - Ejemplos de arboles AVL

En los arboles perfectamente balanceados, la nocién de equilibrio viene dada por el peso de los subarboles:
el numero de elementos en cada uno de los subarboles asociados no puede diferir en mas de uno, y los dos
subarboles asociados deben ser también perfectamente balanceados (figura 4.11). Por definicion, un arbol
binario vacio es perfectamente balanceado.

e bal( a ) ssi abs( peso( izqArbin( a ) ) - peso( derArbin(a ) ) ) <1 A bal( izgArbin(a ) ) A bal( derArbin(a))
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AN
16 30
/N N\
14 19 25 35
YAAVZARWAN

5 17 22 32
Fig. 4.11 - Ejemplos de arboles perfectamente balanceados
De acuerdo con las definiciones dadas, todo arbol balanceado por peso es en especial AVL, pero no todo

arbol AVL es balanceado por peso. En este capitulo Unicamente se trata la algoritmica de los arboles AVL. Se
recomienda consultar la bibliografia para ver las rutinas que implementan las modificadoras de un arbol

perfectamente balanceado.

4.9.1. 3 EITAD AVL

En el TAD AVL solo existen una constructora (crear un arbol AVL vacio) y dos modificadoras (insertar y
eliminar un elemento), que garanticen las condiciones de balanceo que debe cumplir el arbol. La analizadora
de busqueda es igual a la de arboles binarios ordenados.

/

AN
18 30
/N N\
14 19 25 35
/
22

211

TAD AVL[ TipoAVL |

{inv: al y a2 son disyuntos, todos los elementos de al son menores que e,

todos los elementos de a2 son mayores que ¢, al y a2 son ordenados,

| altura (a1 )-altura(a2)|<1,alya2sonAVL}

Constructora:
° inicAVL:
Modificadoras:

° insAVL:
° elimAVL:

AVL x TipoAVL
AVL x TipoAVL

— AVL

— AVL
— AVL

AVL inicAVL ( void )
/* Crea un arbol AVL vacio */

{ post: inicAVL = & }

AVL insAVL ( AVL a, TipoAVL elem )
/* Adiciona un elemento a un arbol AVL */

{pre;:a=A,elem¢ a}
{ post: insAVL =AU {elem }}
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|AVL elimAVL ( AVL a, TipoAVL elem )

| /* Elimina un elemento de un arbol AVL */
|

|{pre:a:A, eleme a}

|{ post: elimAVL =A-{elem}}

4.9.2. Estructuras de Datos

La implementacién de las operaciones del TAD AVL se ilustra utilizando el esquema de representacion de
arboles sencillamente encadenados, extendido con un campo en cada nodo (balan) para incluir un indicador
del estado de balanceo, que corresponde a la diferencia de altura de sus subarboles ( izq - der ). Este nuevo
campo es utilizado por las modificadoras para dirigir la estrategia de rebalanceo de un arbol. Las
convenciones graficas son las siguientes:

. balan =0 ( <> ): ambos subarboles tienen la misma altura

. balan=-1 ( — ): el subarbol derecho excede en 1 la altura del izquierdo
. balan = 1 ( < ): el subarbol izquierdo excede en 1 la altura del derecho
Ejemplo 4.32:

El siguiente arbol AVL tendria en sus estructuras de datos los factores de balance que se muestran en el
dibujo:

20 (-1) —

AN

<~ 10°(1) 30 (-1) —
<50) o250 350«

& 32(0) 37(0) <
J

La declaracion de las estructuras de datos es:

typedef struct NodoAVL

{ TipoAVL info;
struct NodoAVL *izq, *der;
int balan;

} TAVL, *AVL,;

Las constantes para representar los factores de desbalanceo en los algoritmos son:
#define [ZQ 1

#define BAL 0
#define DER -1
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4.9.3. Algoritmo de Insercion

El proceso para insertar un nuevo elemento en un arbol AVL se divide en dos etapas: primero, se agrega el
elemento como en un arbol binario ordenado cualquiera y, luego, se restaura el balanceo del arbol mediante
ajustes de la estructura que se denominan rotaciones. Los casos de desbalanceo de un arbol y las
rotaciones respectivas para balancearlo se presentan a continuacioén, puesto que son el fundamento de la
estructura del algoritmo de insercién.

Caso 1: No se danod el balanceo al insertar el elemento

Proceso: No se debe rebalancear. Sélo se debe actualizar el indicador de balanceo en los elementos
afectados

Ejemplo: Resultado de insertar el elemento 17

10 —
10 o 95/ \15_>
7\
< 5 15 < - » 17«

Caso 2: El arbol inicial es de la forma mostrada en la figura, y se inserta el nuevo elemento en el subarbol
derecho.

X

—— insercion en este arbol

Proceso: Rebalancear el arbol con una rotacion a la izquierda, de la siguiente manera:

<0 &

Ejemplo: Resultado de insertar el elemento 17

10 5/ \15 (-1) m
RN N 15 (0)

5 15 12 16 (0)10 16
7N\ N / N\ AN
12 16 17 5 12 17
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Rutina para la rotacion a la izquierda (no recalcula el factor de balance):

|

|

| AVL rotelzq( AVL a)

| { AVL temp = a->der;
| a->der = temp->izq;
| temp->izq = a;

| return temp;

|

Caso 3: El arbol inicial es de la forma mostrada en la figura, y se inserta el nuevo elemento en el subarbol
izquierdo. Es un caso simétrico al anterior.

~ AN

insercion en este arbol ——,

| Proceso: Rebalancear el arbol con una rotacion a la derecha, de la siguiente manera:

oA s

LA A

|Ejemplo: Resultado de insertar el elemento 4

10 (2)
N
10 (1) 5 15 q 5(0)
7\ 7N\ | 7\
5 15 2 6 2 10(0)
/N \ NN
2 6 - > 4 ____, 48 15

Rutina para la rotacion a la derecha (no recalcula el factor de balance):

|

|

| AVL roteDer( AVL a)

| { AVL temp = a->izq;
| a->izq = temp->der;
| temp->der = a;

| return temp;

|
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Caso 4:

Proceso:

A\

El arbol inicial es de la forma mostrada en la figura, y se inserta el nuevo elemento en un subarbol

g
K N

insercion en este arbol —

Rebalancear el arbol con una doble rotacién derecha-izquierda (subarbol derecho una rotacién a la
derecha, y, luego, el arbol completo una rotacion a la izquierda). Pueden darse dos casos distintos,
con respecto al subarbol del subarbol interno que se desbalancea, pero ambos se resuelven con la
misma estrategia de rotacion, de la siguiente manera:

Q”AH %H @A

@AH%H@@A

Ejemplo:

10

7/ \ /Q\ N

5 15 16 1
/ N\ AN / \ RN
12 3

Resultado de insertar el elemento 13

10 (-2) 10

/7 N\ /7 N\

5 15 (1) 5 (| 12 12(0)
AN

(-1) 12 15 (1)1

16 —» 13 — 13 16 5 9 1

Rutina para la doble rotacion derecha-izquierda (no recalcula el factor de balance):

AVL roteDerlzq( AVL a)

{
i

a->der = roteDer( a->der );
return rotelzq( a );
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Caso 5: El arbol inicial es de la forma mostrada en la figura, y se inserta el nuevo elemento en un subarbol
interno. Es un caso simétrico al anterior:

—— insercién en este arbol

Proceso: Rebalancear el arbol con una doble rotacién izquierda-derecha (subarbol izquierdo una rotacion a
la izquierda, y, luego, el arbol completo una rotaciéon a la derecha). Pueden darse dos casos
distintos, con respecto al subarbol del subarbol interno que se desbalancea, pero ambos se
resuelven con la misma estrategia de rotacién, de la siguiente manera:

<«

”gﬁﬂ@@ Bk
Yy L Y

| Elemplo: rebalanceo del arbol al insertar el 8

10 (2) 10
/7 \ /m]\
10 (1) 5 15 6 15 60
5/ \15 2/\[\\ / \ (M 5/ \10 (0)
/N N / VAR

> 8§ —p 2 —Pp 2 15

Rutina para la doble rotacion izquierda-derecha (no recalcula el factor de balance):

| static AVL rotelzqDer( AVL a)
| {  a->izq =rotelzq( a->izq );
| return roteDer( a );
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Ejemplo 4.33:

217

Mostrar el proceso de creacion de un arbol AVL al insertar la siguiente secuencia de numeros: 50 - 30 -20 - 60

-70-55-57 - 58. Los pasos se dan a continuacion:

1. Insertar el 50 - Caso 1

2. Insertar el 30 - Caso 1

50
/
30
3. Insertar el 20 - Caso 3 (rotacién derecha)
50 30
e RN
/ 20 50
20
4. Insertar el 60 - Caso 1 5. Insertar el 70 - Caso 2 (rotacion izquierda del
subarbol derecho, minimo subarbol desbalanceado)
30 30
RN P
20 50 50\
AN 60
60 N\
70
6. Insertar el 55 - Caso 4 (rotacién derecha izquierda)
30 30 \
\ 20 60
20 60
7\
VRN 50 70
50 70
55
7. Insertar el 57 - Caso 1
50 50
7N\ RN
30 60 30 60
/ 7\ VRN
20 55 70 20 55 70
AN
57
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8. Insertar el 58 - Caso 4 (rotaciéon derecha-izquierda
del minimo subarbol desbalanceado)
50 50
30/ \eo /30/ \60
s N
20 o \ 70 20 57 70
7\
\57\ 55 58
58

J

La rutina completa, para balancear el subarbol derecho de un arbol AVL (el balanceo del izquierdo es
equivalente), establece a cual de los dos casos posibles de desbalanceo corresponde (2 6 4 ) y llama la
rutina respectiva, actualizando luego los indicadores que lo requieran.

/* pre: se ha insertado un elemento en el subarbol derecho de a y se ha desbalanceado */
/* post: retorna un arbol AVL con todos los elementos de a */

AVL balanceaDer ( AVL a)
{ if( a->der->balan == DER )
{ /*Caso2*/
a->balan = a->der->balan = BAL;
a=rotelzq(a);

else
{ /*Caso4*/

switch( a->der->izq->balan )

{ case IZQ: a->balan = BAL;
a->der->balan = DER,;
break;

case BAL: a->balan = a->der->balan = BAL;
break;

case DER:  a->balan =1ZQ;
a->der->balan = BAL;
break;

§

a->der->izq->balan = BAL;

a =roteDerlzq( a);

}

return a;

}

La operacion de insercion en un arbol AVL se basa en varias rutinas, las cuales se presentan a continuacion,
y utilizan los algoritmos de rebalanceo descritos en cada caso. La primera rutina (insAVL) corresponde a la
operacion de insercion en un arbol AVL; crea el nodo que se va a adicionar y abre espacio para el manejo de
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un parametro adicional, que se va a manejar durante todo el proceso de insercién, para informar si su altura
aumento después de alguna modificacion estructural del arbol.

AVL insAVL( AVL a, TipoAVL elem )
{ AVL p =(AVL )malloc( sizeof( TAVL ) );
int masAlto;
p->izq = p->der = NULL;
p->info = elem;
p->balan = BAL;
return insertar( a, p, &masAlto );

La rutina insertar recibe un arbol AVL y un nodo con el elemento que se quiere agregar, y retorna
funcionalmente un arbol AVL con el nuevo nodo agregado a la estructura inicial. Informa, en un parametro por
referencia, si la altura del arbol resultante es mayor que la altura del arbol inicial. La rutina considera tres
casos principales:

e el arbol es vacio: retorna el nodo apuntado por p

e el nuevo elemento es menor que la raiz: inserta el nodo apuntado por p en el subarbol izquierdo, vy, si la
altura del arbol aumenta, lo rebalancea segun el factor de balance de la raiz

e el nuevo elemento es mayor que la raiz: inserta el nodo apuntado por p en el subarbol derecho, vy, si la
altura del arbol aumenta, lo rebalancea segun el factor de balance de la raiz

/* pre: p->info ¢ a,a=A */
/* post: insertar = A U p, *masAlto = altura( a ) > altura( A ) */

AVL insertar( AVL a, Nodo AVL *p, int *masAlto )
{ if(a==NULL)
{ *masAlto = TRUE,;
a=p;
H
else if( a->info > p->info )
{  a->izq = insertar( a->izq, p, masAlto );
if( *masAlto )
switch( a->balan )
{ case IZQ: *masAlto = FALSE,;
a = balancealzq( a );
break;
case BAL: a->balan = [ZQ;
break;
case DER: *masAlto = FALSE,;
a->balan = BAL;
break;
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{  a->der = insertar( a->der, p, masAlto );

if( *masAlto )
switch( a->balan )

{ case IZQ: *masAlto = FALSE,;

a->balan = BAL;

break;

case BAL: a->balan = DER,;

break;

case DER: *masAlto = FALSE,;
a = balanceaDer( a );

}

return a;

4.9.4. Algoritmo de Eliminacién

El proceso que se sigue para eliminar un elemento de un arbol AVL se basa en los mismos esquemas de

rotacion mostrados en la seccién anterior, como se puede apreciar en el siguiente ejemplo.

Ejemplo 4.34:

En cada uno de los siguientes tres casos se muestra el arbol original, el arbol después de eliminar el elemento

40 (sin actualizar los factores de balanceo) y el arbol después de aplicar una rotacion izquierda.

Arbol antes de eliminar el 40

Arbol sin actualizar los factores de

Rotacion izquierda

/\

40 55

/\/\

57 65

/\ /\

57 65

desbalance
50 (-1) 60(0)
/\ O\ RN
30 60(-1) 50(0) 70
\40 55/ \ 55/ \70 30/\ /\
55 65 75
/\ /N
65 75
50 50(-1) 60 (1)
v \ RN yd \
30 60(0) 50(-1)

O\ /\
/\
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50 50 (-1) 55 (0)
N N /.
30 60 30 60 (1) 50 (0) 60 (-1)
N\ VA NN
40 55 70 (1) 55 70 30 52 70
4 J
52 52

J

El algoritmo que implementa la operacion de eliminacion de un elemento (elimAVL) utiliza un conjunto de
rutinas auxiliares, similares a las que utiliza el algoritmo de insercién, y las cuales se presentan a
continuacion. Se utiliza durante el proceso un parametro auxiliar por referencia (menosAlto), que indica si el
arbol ha perdido un nivel al haber sido retirado el elemento pedido.

AVL elimAVL( AVL a, TipoAVL elem )
{ int menosAlto;
return eliminar( a, elem, &menosAlto );

}

La funcion eliminar sigue el mismo proceso descrito en una seccion anterior para suprimir un elemento de un
arbol binario ordenado: se busca una hoja del arbol que pueda remplazar la raiz, y, luego, se elimina dicha
hoja de la estructura. La rutina debe incluir cédigo para considerar los casos de desbalanceo a los que se
puede llegar después de suprimir dicho elemento.

AVL eliminar(AVL a, TipoAVL elem, int *menosAlto)
{ AVLp;

if( a->info ==elem )

{ if(a->izq==NULL && a->der == NULL )

{ free(a);
*menosAlto = TRUE;
return NULL;
§
else if( a->izq == NULL )
{ p=a->der;
free( a);
*menosAlto = TRUE;
return p;
§
else

{  a->izq = eliminar( a->izq, a->info = mayorArbinOr( a->izq ), menosAlto );
if( *menosAlto )
a = balanDer( a, menosAlto );
H
H
else if( a->info>elem )
{  a->izq = eliminar(a->izq, elem, menosAlto );
if( *menosAlto )
a = balanDer( a, menosAlto );

else
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{  a->der = eliminar( a->der, elem, menosAlto );
if( *menosAlto )
a = balanlzq( a, menosAlto );

}

return a;

}

Las funciones balanDer y balanlzq tienen una estructura similar, y se encargan de reestablecer el balanceo de
un arbol al cual se le ha eliminado un elemento de uno de los subarboles, y, por esta razén, el otro subarbol
esta generando un desbalanceo. Al entrar a la rutina, el parametro *menosAlto es TRUE. A continuacion se
presenta una de estas rutinas.

AVL balanlzq( AVL a, int *menosAlto )
{ switch( a->balan )
{ case 1ZQ: if( a->izq->balan != DER )
{ a=roteDer(a);
if( a->balan == BAL )
{ a->balan=DER,
a->der->balan = 1ZQ;
*menosAlto = FALSE;
}
else
a->balan = a->der->balan = BAL;

else

{ a=rotelzqDer( a);
a->der->balan = ( a->balan ==1ZQ ) ? DER : BAL;
a->izq->balan = ( a->balan == DER ) ? [ZQ : BAL;
a->balan = BAL;

§

break;

case BAL: a->balan = 1ZQ;
*menosAlto = FALSE,;

break;
case DER: a->balan = BAL;
break;
i
return a;

Ejercicios Propuestos:

4.85. Muestre el proceso de creacion de un arbol AVL para la siguiente secuencia de elementos: identifique
el caso de desbalanceo al cual se llega después de cada insercion y aplique la solucién
correspondiente:

a-)10-8-5-20-30-25
b-)25-20-30-22-12-27-32-28-26-29
c)5-10-15-20-25-30-35-40-45

d-) 100-90-80-70-60-50-40-30-20-10
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4.86. Muestre graficamente el proceso que se sigue para eliminar los elementos del arbol AVL dado a
continuacion, en el siguiente orden: 60 - 40 - 50 - 70 - 55 - 52 - 30.

50

30/ \60
\40 55/\70

/

52
4.87. Desarrolle una rutina para determinar si un arbol binario ordenado es AVL.
4.88. Desarrolle una rutina para determinar si un arbol binario ordenado es perfectamente balanceado.

4.89. Desarrolle una rutina que dado un arbol AVL con el factor de desbalanceo no inicializado llene ese
campo en todos los nodos. La solucion debe ser tal, que no se calcule 2 veces la altura de ninguno de
sus subarboles, porque eso lo haria muy ineficiente. ; Cémo guardar las alturas que va calculando?

4.90. Desarrolle una funciéon que, dada una lista ordenada de elementos, construya un arbol perfectamente
balanceado con todos esos valores. Fijese que la solucién no es unica.

4.10. [ EI TAD Arbol de Sintaxis

Otra utilizacion comun de los arboles binarios es la representacion de relaciones de composicion. Un ejemplo
de esto son los arboles de sintaxis, cuyo propdsito es representar expresiones matematicas. Por ejemplo, si
se tiene la expresion ( ( A+10 ) * 15 ) - ( B / 10 ), ésta puede ser representada, sin necesidad de los
paréntesis, con un arbol como el mostrado en la figura 4.12, donde la relacion padre—hijo viene establecida
por la relacion operador— operando, que es recursiva.

/_\/
/N N\
+ 15 B 10

A 10

Fig. 4.12 - Arbol de sintaxis

4.10.1. Expresiones Aritméticas en Infijo

Toda expresion aritmética esta constituida por operadores y operandos, y representa la manera de obtener un
resultado, a partir del valor de sus componentes. Cada operador tiene asociados dos operandos, con los
cuales debe trabajar para obtener un valor, que posiblemente sera utilizado por otro operador para llegar a un
resultado. Los operadores binarios considerados en esta parte son cuatro: suma (+), resta (-), multiplicacién
(*) y divisién (/). Los operandos, por su parte, pueden ser constantes o variables. Las constantes, para efectos
practicos, son secuencias de digitos, mientras que las variables son cadenas de letras.

La estructura de una expresion en notacion infija se puede resumir con la siguiente gramatica (recursiva), que
especifica que ésta puede estar formada por una variable, una constante, o dos expresiones entre paréntesis
con un operador binario entre ellas. Los paréntesis son indispensables para evitar ambigledades.
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< expresién > = < variable > |
< constante > |

( < expresion > < operador > < expresion > )

El valor de una expresion depende del valor de sus componentes. Si todos los elementos son constantes,
tiene un unico valor, pero si hay variables, el valor depende del contenido de cada una de ellas. Los
siguientes son ejemplos de expresiones aritméticas validas en notacion infija:

o A

46

*(A+B)

*((A+B)-(C*5))

4.10.2. Arboles de Sintaxis

Un arbol de sintaxis es un arbol binario completo, en el cual los nodos interiores son operadores y las hojas,
operandos, y representa, sin ambigiedad, una expresion aritmética.

Ejemplo 4.35:

A continuacion se presenta el arbol de sintaxis correspondiente a algunas expresiones aritméticas en notacion
infija:

A (A+B) ((A+B)-(C*5)) (((A-B)-C)-D)

A | O\ N\ N
A/\BC/\S /\
A/\B

J

4.10.3. La Tabla de Simbolos

Para manejar los valores asociados con las variables de una expresién se utiliza una estructura de datos
denominada tabla de simbolos. Esta estructura estda compuesta por parejas de la forma [ variable, valor ], en
las cuales se mantiene -en todo momento- el ultimo valor asignado a cada variable de un programa (su valor
actual). Para tener un rapido acceso a la informacion, esta tabla se puede representar internamente como un
arbol binario ordenado, de acuerdo con el nombre de la variable. Un ejemplo de una tabla de simbolos,
estructurada como un arbol binario se muestra en la figura 4.13.
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"ultimo"
Fig. 4.13 - Tabla de simbolos

Para administrar una tabla de simbolos, el TAD TabSim cuenta con tres operaciones: una constructora
(inicTabSim), una modificadora (asigneTabSim) y una analizadora (valorTabSim). Su implementacién se propone
como ejercicio al lector.

e inicTabSim: — TabSim
e asigneTabSim: TabSim x char * x int — TabSim
e valorTabSim: TabSim x char * — int

TabSim inicTabSim( void )
/* Crea una tabla de simbolos vacia */

{ post: inicTabsim = A}

TabSim asigneTabSim( TabSim TS, char * nom, int val )
/* Asigna el valor val a la variable de nombre nom */

{pre:ts =TS}
{post: ([nom, v ] e TS, asigneTabsim=(TS-[nom,v])+[nom,val])v
([nom, v] ¢ TS, asigneTabsim =TS + [ nom, val] )}

int valorTabSim( TabSim TS, char * nom )
/* Retorna el valor asociado con la variable de nombre nom */

{pre:[nom,v] e TS}
{ post: valorTabSim = v }

4.10.4. [3) EI TAD Arsin

El TAD que maneja arboles de sintaxis tiene dos operaciones basicas. La primera operacion (expresionArsin)
construye un arbol a partir de una expresion aritmética en notacién infija, que recibe como una lista de
cadenas de caracteres. La segunda operacion (evalArsin) hace la evaluacion de un arbol de sintaxis, dada una
tabla de simbolos de donde puede tomar los valores de las variables.

e expresionArsin: Lista[ char * ] — Arsin
e evalArsin: Arsin x TabSim — int

Arsin expresionArsin( Lista exp )
/* Crea un arbol de sintaxis a partir de una expresion en infijo representada en una lista de cadenas */

{ pre: exp es una expresion aritmética infija bien construida }
{ post: expresionArsin es el arbol de sintaxis de exp }
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int evalArsin( Arsin as, TabSim TS )
/* Retorna el resultado de evaluar el arbol de sintaxis con los valores de la tabla de simbolos */

{ pre: TS es una tabla de simbolos con todas las variables del arbol de sintaxis }
{ post: evalArsin es el resultado de evaluar la expresion }

Las estructuras de datos seleccionadas para representar el arbol de sintaxis se declaran como aparece a
continuacion. El campo tipo, de cada nodo, almacena un cédigo para indicar la clase de elemento que
contiene: 0 —» suma ( + ), 1 — resta ( - ), 2 — multiplicacién ( * ), 3 — division ( /), 4 — constante (valor en el
campo ival), 5 — variable (nombre de la variable en el campo pval).

typedef struct NodoArsin

{ inttipo; /* Clase de elemento que contiene */
union
{ intnum; /* Valor numerico */
char *nom,; /* Nombre de la variable */
} val;

struct NodoArsin *izq,*der;  /* Subarboles de sintaxis que representan los operandos */
} TArsin,*Arsin;

La funcién que implementa la operacion de evaluacién de un arbol de sintaxis corresponde a una rutina
recursiva, que exige la evaluacién de los operandos antes de aplicar el operador.

int evalArsin( Arsin as, Tabsim ts )
{ switch( as->tipo )

{ case0: return evalArsin( as->izq, ts ) + evalArsin( as->der, ts );
case 1:  return evalArsin( as->izq, ts ) - evalArsin( as->der, ts );
case 2:  return evalArsin( as->izq, ts ) * evalArsin( as->der, ts );
case 3:  return evalArsin( as->izq, ts ) / evalArsin( as->der, ts );
case 4:  return as->val.num;
case 5:  return valorTabsim( ts, as->val.nom );

H

return 0;

}

La implementacion de la constructora requiere una rutina de apoyo (posOperador), que retorna la posicion del
operador principal, en la lista que representa la expresion. Con este valor, es posible hacer las llamadas
recursivas correspondientes, para que construya los subarboles de sintaxis asociados. Se utiliza otra rutina
(arbolSintaxis), con un parametro adicional, para llevar la posicion dentro de la lista donde comienza la
expresion que se esta considerando. En la llamada inicial dicho valor debe ser 1.

Arsin expresionArsin( Lista exp )
{ return arbolSintaxis( exp, 1);

}

La especificacion recursiva de la rutina arbolSintaxis es la siguiente:

linic linic

{pre: exp=< .Svariable> exp = < ..<constante>

linic

exp=<.. (" <el>.. <op> <e2>")"..>}

>V
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arbolSintaxis arbolSintaxis

{ post: caso 1: X 5 | <variable>[ ] casol: |><|4|<Constante>|><|

arbolSintaxis

|l e
' N

caso3: expresionArsin( <al1>) expresionArsin( <a2> ) }

static Arsin arbolSintaxis( Lista exp, int inic )
{ intpos;
Arsin as;
posLista( exp, inic );
if( infoLista( exp)[ 0] !="(")
{ /*casos1062%*
as = ( Arsin )malloc( sizeof( TArsin ) );
as->izq = as->der = NULL,;
if( isdigit( infoLista( exp )[0])) /* Caso 2 */
{ as->tipo=4;
as->val.num = atoi( infoLista( exp ) );
H
else
{ as->tipo=25;
as->val.nom = (char *)malloc( strlen( infoLista( exp ) )+ 1); /* Caso 1 */
strepy( as->val.nom, infoLista( exp ) );

else

{ /*Caso3*
posLista( exp, pos = posOperador( exp, inic ) );
as = ( Arsin )malloc( sizeof( TArsin ) );
switch( infoLista( exp )[ 0 ])
{ case '+': as->tipo = 0;

break;
case'-": as->tipo =1,
break;
case '*": as->tipo = 2;
break;
case'/": as->tipo = 3;
break;
§
linic linicﬂ lpos lposﬂ
as->izq = arbolSintaxis( exp, inic+1); /*exp=<.."(" ,<el>  <op>  <e2>
as->der = arbolSintaxis( exp, pos+1 );
H
return as;
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Para localizar el operador principal se va contando la diferencia entre el nUmero de paréntesis abiertos y
cerrados, y, solo cuando esta diferencia sea 1, se puede tomar el operador principal. La precondicién de la
rutina asegura que en la posicion inic de la lista aparece un paréntesis abierto.

int posOperador( Lista exp, int inic )

{

int numParentesis;

posLista( exp, ++inic );

if( infoLista( exp )[ 0 ]=="(")

{  for( numParentesis = 2, sigLista( exp ), inic++; numParentesis != 1; sigLista( exp ), inict++ )
if( infoLista( exp )[ 0 ]=="(")

numParentesis++;
else if( infoLista( exp )[ 0 ] ==")")
numParentesis--;
return inic;
H
else

return inic + 1;

Ejercicios Propuestos:

4.91.

4,92,

4.93.
4,94,

4.95.

4.96.

Un polinomio puede ser representado internamente como un arbol de sintaxis. Por ejemplo, el
polinomio P( x ) = 12x4 - 5x2 + 6, puede tener la siguiente representacion, donde el operador **
corresponde a la exponenciacion:
+
6

oy
WA

AN,

Implemente el TAD Polinomio utilizando el esquema de representacion sugerido.

Desarrolle una funcién para determinar si una expresion aritmética en notacién infija se encuentra bien
construida.

Escriba una rutina para crear un arbol de sintaxis de una expresion aritmética en notacion postfija.

Desarrolle un algoritmo para simplificar una expresion representada mediante su arbol de sintaxis. Por
simplificar se entiende calcular los valores constantes de la expresion ( por ejemplo, remplazar (4 +5)
por 9), eliminar los términos para los cuales ya se conoce respuesta ( por ejemplo, remplazar ((A +B)
*0)por0,0((A+B)+0)por(A+B)), realizar simplificaciones aritméticas simbdlicas (por ejemplo,
remplazar ((A+B)-(A+B-C))porC), etc.

Escriba un programa que reciba por pantalla asignaciones de la forma x = < expresion >, evalle la
expresion y deje el resultado en la tabla de simbolos. También debe aceptar el comando print( x ), que
imprime por pantalla el valor de la variable x.

Cuando se representa una expresion aritmética mediante su arbol de sintaxis, muchas veces se
desperdicia espacio en la memoria en el momento de su implementacion, puesto que si hay
subexpresiones comunes, se utiliza espacio para representar cada una de sus ocurrencias. En ese
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A B
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\*

O
7/ N\
A B
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CAPITULO 5

ESTRUCTURAS RECURSIVAS:
ARBOLES N-ARIOS

En este capitulo se estudian las estructuras recursivas de datos denominadas arboles n-arios, que
corresponden a una generalizacion del concepto de arbol binario. La diferencia radica en que esta nueva
estructura puede manejar multiples subarboles asociados con cada elemento, y no solamente 2, como en el
caso de los arboles binarios. Este tipo de estructura se utiliza para modelar jerarquias con una relacién 1 a N
entre un grupo de elementos. En particular, se estudian los arboles 2-3, cuadtrees, tries, arboles AND-OR 'y
arboles de juego.

5.1. Motivacion

Considere el caso de una fabrica, en la cual se quiere hacer el modelaje de un automévil en términos de sus
componentes: cada pieza debe estar relacionada con todos los elementos que la constituyen, como se
sugiere en la figura 5.1. Fijese que es insuficiente un arbol binario para manejar este tipo de estructuras, ya
que el numero de hijos no se puede restringir a dos.

Automovil

/\

Carroceria Chasis Motor
Sistema Sistema Sistema
Eléctrico Calizuldo Refrigeracion Combustion
Bobina Alternador

Fig. 5.1 Modelaje de la relacion pieza - componente

Otro ejemplo interesante de uso de un arbol n-ario puede ser un arbol de juego. Cada elemento de la
estructura corresponde a un estado posible del tablero y la relacién padre — hijo modela la situacion estado;
— estadoj;q de la partida, como se ilustra en la figura 5.2. para el caso del juego de triqui. Alli se tiene que la

raiz del arbol es el tablero vacio (sin ninguna jugada), y que sus hijos son todas las posibles configuraciones a
las cuales se puede llegar mediante una jugada de las X. (9 en total). Estos, a su vez, van a tener 8 hijos cada
uno, que corresponden a los tableros que se obtienen con todas las respuestas posibles del jugador
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adversario (las O). Las hojas de dicho arbol son los tableros en los cuales el juego ha terminado, ya sea por el
triunfo de alguno de los participantes, o por un empate ante la ausencia de nuevas jugadas posibles.

] T

/0/ T~
- R
/0/ \0

X X XIX

0|x

Fig. 5.2 - Arbol de juego para el triqui

5.2. Definiciones y Conceptos Basicos

Un arbol n-ario es una estructura recursiva, en la cual cada elemento tiene un nimero cualquiera de arboles
n-arios asociados. En la figura 5.3 se muestra el formalismo grafico escogido para representar este objeto
abstracto. En él se hace explicita la raiz, y cada uno de los n subarboles que tiene asociados. Un arbol vacio
se representa con el simbolo A.

al ai an

Fig. 5.3 - Formalismo para arboles n-arios

En general, los conceptos estudiados en el capitulo anterior, relacionados con arboles binarios, se pueden
extender sin ningun problema a arboles n-arios. Tal es el caso de las definiciones de padre, hijo, hermano,
nivel, altura, peso, camino, etc. Sélo vale la pena hacer algunas precisiones en el caso de los recorridos,
sobre todo en lo que respecta al inorden, puesto que no es claro en qué punto del proceso se debe visitar la
raiz.

Por definicidn, si un arbol n-ario a tiene la siguiente estructura:

al ai an

Los recorridos principales son:

e inorden( a ) = inorden( aq ), e, inorden( as ), ..., inorden( a,, )
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e preorden( a ) = e, preorden( aq ), ..., preorden( ap, )

e postorden( a ) = postorden( aq ), ...., postorden( ap, ), e

Fuera de los conceptos extendidos a partir de los arboles binarios, se tienen dos nuevas definiciones para los
arboles n-arios:

o El orden de un elemento de un arbol n-ario es el numero de subarboles que éste tiene asociados. En
particular, una hoja es un elemento de orden 0.

e Elorden de un arbol n-ario es el maximo orden de sus elementos. Eso hace que un arbol binario sea un
arbol n-ario de orden 2.

Algunos conceptos de arboles binarios no se pueden extender directamente a arboles n-arios, dado que el
numero maximo de subarboles asociados con cada elemento es indeterminado. Tal es el caso de las
definiciones de arbol binario lleno, casi lleno y completo, en las cuales se debe restringir la nocion respectiva
a un orden dado en el arbol n-ario. Por ejemplo, se puede hablar de un arbol 4-ario lleno, pero no de un arbol
n-ario lleno.

Ejemplo 5.1:
Para el arbol n-ario de la figura:
a
b/ c \ d
SN N
e f 9 h i
AN
J kK I ' m

e el orden del arbol es 4

e el orden del elemento aes 3
epreorden=a, b, c, e, f, d,g,j, k, I,m, h,i
einorden=b, a, e, c,f,j, g,k I,m,d, h,i

e postorden =b, e, f, c,j, k,I,m, g, h,i,d, a
e niveles=a, b,c,d, e, f,g, h,i,j kI, m

e altura=4

e peso =13

¢ los hijos de g son los elementos j, k, I, m

¢ el ancestro comun mas proximode ky hes d

J

5.3. EI TAD ArbolN: Analizadoras

Siguiendo la misma idea que se utilizd para el TAD Arbin, el TAD ArboIN soélo incluye un conjunto de
analizadoras comunes a todas las clases posibles de arboles n-arios. Las modificadoras vienen asociadas
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con el tipo exacto de arbol sobre el cual se esté trabajando (arboles ordenados, arboles de juego,

Disefio y Manejo de Estructuras de Datos en C

organigramas, arboles de composicion, arboles de sintaxis, etc.).

La diferencia basica en las operaciones de los TAD Arbin y ArboIN es que en lugar de dos operaciones
analizadoras para retornar el subarbol izquierdo y el subarbol derecho (utilizadas en el TAD Arbin), se va a
definir una uUnica operacién que retorna la lista de todos los subarboles asociados con un elemento. Por esta
de arboles n-arios deben utilizar las operaciones del TAD Lista para

razon, los algoritmos de manejo

desplazarse sobre los hijos de cada uno de sus componentes.

TAD ArboIN[ TipoAN ]

at ai an

{inv: aq,...., ap son disyuntos }

Constructoras:
e inicArbolN:

Analizadoras:

e subArbolN: ArboIN
e raizArbolN: ArboIN
e vacioArbolN: ArboIN

— ArboIN

— Lista[ ArboIN ]
— TipoAN
— int

ArbolN inicArboIN( void )
/* Crea un arbol n-ario vacio */

{ post: inicArboIN = A }

Lista[ ArbolIN ] subArboIN( ArboIN a

)

/* Retorna la lista de subarboles asociados */

{ pre: a no es vacio }

{ post: subArboIN = ( a4, ...,ap ), aj es el i-ésimo subarbol de a }

TipoAN raizArboIN( ArboIN a )
/* Retorna la raiz del arbol */

{ pre: a no es vacio }
{ post: raizArboIN = e }

int vacioArboIN( ArboIN a )
/* Informa si el arbol es vacio */

{ post: vacioArboIN=(a=A)}

5.4. Ejemplos de Utilizacion
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Los algoritmos para manejar arboles n-arios tienen una estructura similar a la utilizada para resolver el mismo
problema sobre un arbol binario. La diferencia radica en que, en lugar de tener sélo dos avances viables en la
recursion (subarbol izquierdo y subarbol derecho), va a tener n avances posibles, lo cual obliga a utilizar un
ciclo para iterar sobre cada uno de ellos.

Los casos tipicos de busqueda, recorrido y verificacion de alguna caracteristica de un arbol n-ario se ilustran a
continuacion mediante ejemplos.

Ejemplo 5.2

Establecer si un elemento dado se encuentra presente en un arbol n-ario. Puesto que no existe ninguna
relacion de orden entre los elementos de la estructura, se debe buscar recursivamente en cada uno de los
subarboles presentes. Esto hace que la complejidad de la operacion sea O( n ), donde n es el peso del arbol.

/* post: estaArbolN = elem esté presente en el arbol a */

int estaArbolN( ArbolN a, TipoAN elem )
{ Listalst;
if( vacioArboIN(a))
return FALSE;
else if( raizArboIN(a ) == elem )
return TRUE;
else
{ Ist=subArboIN(a);
for( primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
if( estaArboIN( infoLista( Ist ), elem ) )
{  destruirLista( Ist );
return TRUE;

H
return FALSE;

}

Las dos salidas de la recursion corresponden a los mismos casos triviales considerados en el algoritmo
equivalente en arboles binarios: el arbol es vacio o el elemento es igual a la raiz. La diferencia radica en la
manera como avanza la recursion, puesto que debe intentar bajar por cada uno de los subarboles
asociados, buscando el elemento pedido. Tan pronto localiza el elemento en uno de los subarboles,
termina el proceso. El invariante de este ciclo de avance de la recursién es el siguiente:

{inv: at ai an N\ elem!=e,lst=<aq, .., , ..y8@p >, elem no estaenay, ..., aj.1 }

Alli se afirma que cuando la ventana de la lista esté sobre el i-ésimo subarbol, el elemento buscado no
sera la raiz, ni habra aparecido en los arboles anteriores.
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Ejemplo 5.3:

Calcular la altura de un arbol n-ario dado. Se debe hacer una llamada recursiva para calcular la altura de cada
uno de los subarboles asociados, y retornar -finalmente- la mayor de ellas mas 1. La complejidad del
algoritmo es O( n ), donde n es el peso del arbol.

/* post: alturaArbolN = altura del arbol a */

int alturaArboIN( ArbolN a )
{ Listalst;
int mayor, temp;
if( vacioArboIN(a))
return 0;
else
{  Ist=subArboIN(a);
for( mayor = 0, primLista( Ist ); !finLista( Ist ); elimLista( Ist) )
if( ( temp = alturaArbolN( infoLista( Ist ) ) ) > mayor )
mayor = temp;
return mayor + 1;

}

La salida de la recursion corresponde al caso en el cual el arbol es vacio. Para avanzar se debe hacer una
llamada recursiva sobre cada uno de los subarboles asociados y acumular la altura del mas alto de ellos.
El invariante de este ciclo es:

{inv: at ai an \ Ist=<aq, ..., , ..., @p >, Mayor = mayor altura de aq, ..., aj.1 }

Alli se asegura que cuando la ventana de la lista esté sobre el i-ésimo subérbol, en la variable mayor se
encontrara acumulada la mayor altura de los primeros i-1 subarboles.

J

Ejemplo 5.4:

Recorrer en inorden un arbol n-ario dado. La estructura del algoritmo recursivo surge de la definicion misma
del recorrido. Su complejidad es O( n ), donde n es el peso del arbol.

La rutina supone la existencia del procedimiento visitar, que procesa (imprime, en el caso mas simple)
cada uno de los elementos del arbol.

/* post: se ha recorrido en inorden el arbol a */
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void inordenArboIN( ArbolN a )
{ Listalst;
if( 'vacioArboIN(a))
{ Ist=subArboIN(a);
if( longLista( Ist)==0)
visitar( raizArboIN(a ) );
else
{  primLista( Ist);
inordenArbolN( infoLista( Ist ) );
visitar( raizArboIN(a ) );
for( sigLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
inordenArbolIN( infoLista( Ist ) );

H
H

El invariante del ciclo de avance de la recursion afirma que cuando la ventana de la lista Ist se encuentre
sobre el i-ésimo subarbol, ya se habran recorrido en inorden los arboles a4, ..., aj.1, y también la raiz, en

caso de que i sea mayor que 1.

{inv: at ai an \ Ist=<aq, ..., , ..., @p >, se ha recorrido aq, e, a2, ..., aj_1 }

J

Ejemplo 5.5:

Recorrer por niveles un arbol n-ario dado. Al igual que en el recorrido por niveles de un arbol binario, se
necesita una cola como estructura auxiliar, para ir incluyendo en ella los subarboles de izquierda a derecha.
La complejidad de la rutina es O( n ), donde n es el peso del arbol, si las operaciones del TAD Cola son O( 1).
Supone la existencia de la rutina visitar, encargada de procesar cada elemento del arbol.

void nivelesArboIN( ArbolN a )
{ Listalst;
Cola col;
ArbolN al;
if( 'vacioArboIN(a))
{  col=inicCola();
adicCola( col, a);
while( !vaciaCola( col ) )
{ al =infoCola( col );
elimCola( col );
visitar( raizArboIN(a ) );
Ist = subArboIN( al );
for( primLista( Ist ); !finLista( Ist ); elimLista( Ist) )
adicCola( col, infoLista( Ist ) );
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El invariante del ciclo garantiza que cuando se hayan visitado por niveles los primeros k elementos del
arbol, en la cola se van a encontrar todos los subarboles asociados con dichos elementos (los cuales no
han sido recorridos todavia), ordenados por niveles:

{inv: se han recorrido por niveles los elementos eq, ..., &,

col =2l @M . todos los elementos no visitados se encuentran en aq, ..., am,

los arboles aq, ..., ay, son disyuntos,

los siguientes elementos del recorrido por niveles son raizArboIN( a4 ), ..., raizArboIN( ap, ) }

J

Ejemplo 5.6:

Contar el numero de hojas de un arbol n-ario dado. La complejidad del algoritmo es O( n ), donde n es el peso
del arbol. La estructura del algoritmo es similar a la utilizada para calcular la altura.

int hojasArboIN( ArboIN a )
{ Listalst;
int acum,;
if( vacioArboIN(a))
return 0;
else if( longLista( Ist = subArboIN(a))==0)
return 1;
else
{  for(acum = 0, primLista( Ist ); !finLista( Ist ); elimLista( Ist))
acum += hojasArboIN( infoLista( Ist ) );
return acum;

{inv: at ai an \ Ist=<aq, ..., , ..., @ >, acum = numero de hojas de aq, ..., aj.1 }

J

Ejemplo 5.7:

Calcular el nivel de un elemento en un arbol n-ario sin valores repetidos. La complejidad de la rutina es O( n ),
donde n es el peso del arbol. En este ejemplo se ilustra el uso de la técnica de acumulacién de parametros,
para el caso de arboles n-arios:

/* pre: a no tiene elementos repetidos */
/* post: nivel ArboIN = nivel del elemento elem en el arbol a v nivelArboIN = -1 si el elemento no esta presente */

int nivel ArboIN( ArbolN a, TipoAN elem )
{ return nivel2ArboIN( a, elem, 0 );

}
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J

/* pre: a no tiene elementos repetidos, nivel es el nivel del arbol a en el problema global */
/* post: (nivel2ArboIN = -1, elem no esta en el arbol a ) v ( nivel2ArbolN = nivel de elem en el arbol a ) */

int nivel2ArboIN( ArboIN a, TipoAN elem, int nivel )
{ Listalst;
int temp;
if( vacioArboIN(a))
return -1;
else if( raizArboIN(a ) == elem )
return nivel;
else
{  Ist=subArboIN(a);
for( primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
if( (temp = nivel2ArboIN( infoLista( Ist ), elem, nivel + 1)) I=-1)
{  destruirLista( Ist );
return temp;
H
return -1;
H
H

La primera rutina abre el espacio para la acumulacion del parametro nivel, y lo inicializa en 0. La segunda
rutina baja por cada subarbol, indicando cada vez que avanza en la recursion que se encuentra un nivel
mas abajo en el arbol global. Si no lo encuentra, retorna -1. Si lo encuentra, informa el nivel que ha
acumulado durante el descenso.

{inv: al ai an \ Ist=<aq, ..., , ..., @p >, el nivel del elemento ¢ es nivel, e != elem,

elem no esta en los subarboles aq, ..., aj.1 }

Ejercicios Propuestos

5.1.

5.2.

5.3.

5.4.

5.5.

int igualesN( ArboIN a1, ArboIN a2 )
/* Indica si dos arboles n-arios son iguales */

int isomorfosN( ArboIN a1, ArboIN a2 )
/* Informa si los arboles n-arios al y a2 son isomorfos */

int estableN( ArbolIN a )
/* Un arbol de valores enteros es estable si para todo elemento su padre es mayor. Esta funcion indica
si un arbol n-ario es estable */

Lista primosN( ArboIN a, TipoAN elem )
/* Retorna una lista con los primos del elemento elem dentro del arbol n-ario a. Por primos se refiere a
todos los hijos de los hermanos del padre */

Lista busqueCaminoN( ArbolIN a, TipoAN elem )

/* Retorna una lista de elementos del arbol n-ario a correspondiente al camino que lleva desde la raiz
del arbol hasta el elemento elem. Si el camino no existe retorna una lista vacia. Utiliza la técnica de
acumulacion de parametros */
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5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

5.14.

5.15.

5.16.

5.17.
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int ocurreN( ArboIN a1, ArboIN a2 )
/* Indica si el arbol n-ario a2 ocurre en el arbol n-ario al */

TipoAN ancestroListaN( ArbolN a, Lista Ist )
/* Retorna el ancestro comin mas préoximo de los elementos presentes en la lista Ist, los cuales estan
presentes en el arbol a */

Lista ramaN( ArboIN a )
/* Retorna la rama mas larga del arbol n-ario a */

int esMenorN( ArboIN a1, ArboIN a2 )
/* Indica si el arbol n-ario al es menor que el arbol n-ario a2. Un arbol al es menor que otro a2, si todos
los elementos de al son menores que todos los elementos de a2 */

void postordenArboIN( ArbolN a )
/* Hace un recorrido iterativo en postorden de un arbol n-ario */

Lista rutaMinimaN( ArboIN a, TipoAN e1, TipoAN e2 )
[* Se define la ruta minima entre dos elementos cualesquiera el y €2 de un arbol n-ario sin elementos
repetidos, como la secuencia de elementos < x4, X9, ..., Xy > que cumple las siguientes condiciones:

exq=el,xy=¢e2
e X; es padre de Xj+1, O Xj3q €s padre de Xx;

¢ no existen elementos repetidos en la secuencia
Dicha ruta existe entre todo par de elementos de un arbol n-ario, y es Unica. Esta funcién retorna una
lista de elementos con la ruta minima entre dos elementos dados */

Lista mVecinosN( ArbolN a, TipoAN elem, int m )

/* Retorna los vecinos del elemento elem que se encuentran a una distancia menor que m de él. Por
vecino se entiende un elemento del mismo nivel y por distancia el niumero de elementos que los
separa. Por ejemplo, en el arbol de la figura aparecen los 3-vecinos del elemento marcado:

Cg
Suponga que no hay elementos repetidos en el arbol */

Lista listaNivelN( ArboIN a, intn )
/* Retorna una lista con todos los elementos del nivel n del arbol n-ario a */

int ramaMinimaN( ArboIN a )

/* Suponiendo que los elementos del arbol n-ario a son enteros, se define el costo de un camino como
la suma de los componentes de dicha secuencia. Esta funcion retorna el costo de la rama mas barata
del arbol */

int llenoN( ArbolIN a, int ord )
/* Informa si el arbol n-ario a es lleno para un orden ord */

int casiLlenoN( ArboIN a, int ord )
/* Informa si el arbol n-ario a es casi lleno para un orden ord */

int completoN( ArbolIN a, int ord )
/* Informa si el arbol n-ario a es completo para un orden ord */
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5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

5.25.

Lista descendientesN( ArboIN a, TipoAN elem )
/* Retorna una lista con todos los descendientes del elemento elem en el arbol a */

int piramideN( ArboIN a )
/* Un arbol n-ario es una piramide si todo elemento cumple que es igual a la suma de sus hijos. Esta
funcién informa si el arbol n-ario a es una piramide */

int ordenN( ArboIN a )
/* Retorna el orden del arbol n-ario a */

int gorduraN( ArboIN a )

/* Se define la anchura de un nivel de un arbol n-ario como el nimero de elementos presentes en dicho
nivel. La gordura de un arbol n-ario corresponde al valor maximo de las anchuras de sus niveles. Esta
rutina calcula la gordura del arbol n-ario a */

int ordenadoArboIN( ArboIN a )
/* Se define un arbol n-ario ordenado como aquél en el cual su recorrido en inorden es una secuencia
ordenada ascendentemente. Esta funcién indica si un arbol n-ario es ordenado */

int masProfundo( ArboIN a, TipoAN elem )
/* Retorna el nivel de la ocurrencia mas profunda del elemento elem en el arbol a, suponiendo que en el
arbol puede haber elementos repetidos. Si el elemento elem no aparece en el arbol retorna -1 */

TipoAN masOcurre( ArboIN a )
/* Retorna el elemento que mas veces aparece en el arbol n-ario a, suponiendo que no es vacio */

Considere la siguiente gramatica, la cual define expresiones aritméticas con cualquier numero de
operandos:

<constante> |
<variable> |
<operador> ( <expresion> <expresion> ... <expresion> )

<expresion> ::

<constante>:= 0|1]2]3|4|5]|6]|7]8]9
<variable> = A|B|C|..|X|Y|zZ]|
<operador> ::= + -]

La forma de interpretar una expresion, se ilustra con los siguientes ejemplos:

expresion arbol n-ario de sintaxis interpretacién

O
(AB1 A-B)-1
( : ® ‘ © ( )

+(BC72) ﬁ o B+C+7+2
® © @

*(B-(AB1)72) - B*((A-B)-1)*7*2

® O @O
®»® & O
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a-) Desarrolle una operacion que verifique que una expresiéon que viene dada como una lista de
caracteres corresponde a la gramatica. Por ejemplo, la primera expresion del ejemplo anterior vendria
expresada mediante la siguiente lista:

< I_l, l(l, lAl, IBI’ l1l, l)l >
b-) Desarrolle una operacién que construya un arbol n-ario de sintaxis a partir de una lista de caracteres
con una expresion valida.

c-) Suponiendo que existe una tabla de simbolos, en la cual aparece un valor asociado con cada
variable, desarrolle una funcién que evalte un arbol n-ario que representa una expresion valida.

5.5. Implementacion del TAD ArbolN

De todas las estructuras de datos posibles para representar internamente un arbol n-ario, se muestran en esta
parte cinco de las mas difundidas. El problema de la representacion se limita a la forma de simular un nimero
variable de subarboles: si dicho valor es fijo y conocido (v.g. un arbol 4-ario), se pueden utilizar muchas de las
representaciones planteadas en el capitulo anterior, con minimos ajustes.

5.5.1. Vector de Apuntadores

Esta representacion corresponde a una generalizacion de la implementacion de apuntadores para arboles
binarios. Puesto que se desconoce a priori el numero de subarboles que va a tener cada elemento de la
estructura, se debe reservar para cada uno de ellos un vector de apuntadores de un tamafio dado M y
almacenar en cada posicion la direccion de uno de sus subarboles. Si el orden del elemento es menor que el
espacio reservado, se debe colocar el valor NULL en las casillas sobrantes. El esquema de representacién se
puede resumir en los siguientes casos:

o El arbol n-ario vacio a = A se representa con un apuntador a NULL:

I

e El arbol n-ario a = /a1 ai an_\ se representa con un apuntador a un nodo, que contiene la raiz
y un vector de apuntadores a sus subarboles, como se muestra en la siguiente figura:

4 0 n-1 M-1
el | (4] [4] ||
a1l ai an

e El arbol n-ario a = A se representa con la siguiente estructura:

a 0 M-1
el [T T[]

El valor M es una constante de la implementacién. Las casillas del vector entre las posiciones n y M-1
apuntan a NULL, para indicar que no tiene mas subarboles asociados. Esta implementacion tiene la
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restriccion de manejar un numero maximo fijo de subarboles, con las consiguientes consecuencias de falta de
flexibilidad y espacio en memoria desaprovechado. Se usa, sobre todo, cuando el orden de los elementos del
arbol es fijo o aproximadamente conocido. Tiene la ventaja de que los algoritmos que implementan las
operaciones son sencillos.

Ejemplo 5.8:
Para el arbol de la figura:

TN
NN

Las estructuras de datos para M = 5 son:

Para esta representacion, la declaracion de las estructuras de datos en C es:
#define M 5

typedef struct NodoArboIN
{ TipoAN info; /* Raiz del arbol n-ario */

struct NodoArbolIN *hijos[ M ]; /* Vector de apuntadores a los subarboles */
}+ TArbolN, *ArbolN;

Las rutinas que implementan las operaciones del TAD son:

e Para crear un arbol n-ario vacio basta con retornar el valor NULL, de acuerdo con el primer caso del
esquema de representacion:

ArbolN inicArboIN( void )
{ return NULL,;
H

e La operacién que retorna una lista con los subarboles debe recorrer el vector de apuntadores e irlos
agregando a la lista de respuesta. Termina cuando ha recorrido todo el vector o cuando encuentra un
subarbol vacio:
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Lista subArboIN( ArbolN a)
{ inti;
Lista Ist = inicLista( );
for(i=0;1<M && a->hijos[ i ] I=NULL; i++)
anxLista( Ist, a->hijos[ 1] );
return Ist;

}

e Las otras dos operaciones del TAD tienen el siguiente cédigo:

TipoAN raizArboIN( ArbolN a )
{ return a->info;

}

int vacioArboIN( ArbolN a )
{ returna==NULL;
H

5.5.2. Hijo Izquierdo - Hermano Derecho

En esta implementacion, cada elemento del arbol guarda Unicamente informacién de su hijo izquierdo y de su
hermano derecho. De esta forma, es posible tener acceso a toda la estructura. El esquema de representacion
se resume en los siguientes puntos:

o El arbol n-ario vacio a = A se representa con un apuntador a NULL:

I

e El arbol n-ario a = /21 ai an_\ se representa con un apuntador a un nodo que contiene la raiz
y apuntadores a su hijo izquierdo y a su hermano derecho, como se muestra en la siguiente figura:

NEne

al y

ai an
T3 - —[O3—~ - —[0
o El arbol n-ario a = - se representa con la siguiente estructura:

s ]
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Ejemplo 5.9:
Para el arbol de la figura:

a
PEARN
b C/\\d / e
I\
CNO
Las estructuras de datos que lo representan bajo el esquema hijo izquierdo - hermano derecho son:

ane
] [+l T[]

v A

[Tl T]  [LI—[TTa—[

J

Este esquema de representacion es muy flexible, puesto que no restringe el nimero de subarboles que puede
tener asociados un elemento. Las estructuras de datos se declaran asi en C:

typedef struct NodoArboIN

{ TipoAN info; /* Raiz del arbol */
struct NodoArbolN *hijo; /* Encadenamiento al hijo izquierdo */
struct NodoArbolN *hermano; /* Encadenamiento al hermano derecho */

} TArbolIN, *ArbolN;

e La rutina que crea un arbol n-ario vacio debe retornar un apuntador a NULL, de acuerdo con el esquema
de representacion planteado:

ArbolN inicArboIN( void )
{ return NULL,;

}

e La operacion que retorna una lista con los subarboles asociados debe bajar por el apuntador del hijo
izquierdo, y hacer un recorrido siguiendo el encadenamiento del hermano derecho. Cada elemento
encontrado se va adicionando a la lista de respuesta:

Lista subArboIN( ArbolN a )
{ ArbolN pa;
Lista Ist = inicLista( );
for( pa = a ->hijo; pa != NULL; pa = pa->hermano )
anxLista( Ist, pa );
return Ist;

}

e Las otras dos operaciones del TAD tienen una implementacién sencilla, como se presenta a continuacion:
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TipoAN raizArboIN( ArbolN a )
{ return a->info;

}

int vacioArboIN( ArbolN a )
{ returna==NULL;
H

5.5.3. Vectores Dinamicos

Las principales desventajas de la implementacién de vectores de apuntadores (§5.5.1) son su rigidez y la gran
cantidad de espacio que se desaprovecha. Si el arbol no es muy dinamico, es decir, si no esta sometido a
constantes alteraciones, es posible asociar con cada elemento del arbol un vector de longitud variable, con el
espacio indispensable para mantener los apuntadores a sus hijos. De esta forma, utilizando la funcién realloc
(de ANSI C), se puede ir reacomodando el espacio necesario en memoria. Sélo se requiere un campo
adicional en cada nodo para almacenar su orden, como se muestra en el siguiente esquema de
representacion:

o El arbol n-ario vacio a = A se representa con un apuntador a NULL:

I

e El arbol n-ario a = /a1 ai an_\ se representa con un apuntador a un nodo, que contiene la raiz
y un vector de apuntadores a sus subarboles (de tamario igual al nimero de subarboles asociados), como

se muestra en la siguiente figura:
0 n-1
e[ ][4, | :
al ai an

e El arbol n-ario a = A se representa con la siguiente estructura:

“—[efo[ ]

Ejemplo 5.10:
Para el arbol de la figura:

TN
N

Las estructuras de datos que lo representan son:

N
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—

lolo] |

N

J

Le[2[ e[, [s] [eo]] [e]3[-4=L-T;
4 | N

Llof | [o]o]

v \
[hfo[ ] [ifo] | [ifo] ]

Las estructuras de datos se declaran asi:

typedef struct NodoArboIN
{ TipoAN info;

int orden;

struct NodoArboIN **hijos;
} TArbolIN, *ArbolN;

/* Raiz del arbol n-ario */
/* Orden del elemento */
/* Vector dindmico de apuntadores a los subarboles */

Las rutinas que implementan las operaciones del TAD ArbolN son muy similares a las de vectores de

apuntadores:

ArbolN inicArboIN( void )
{ return NULL,;

}

Lista subArboIN( ArbolN a )

{ inti;
Lista Ist = inicLista( );
for(i=0;1i<a->orden; i++)

anxLista( Ist, a->hijos[ 1] );

return Ist;

}

TipoAN raizArboIN( ArbolN a )
{ return a->info;

}

int vacioArboIN( ArbolN a )
{ returna==NULL;
H

5.5.4. Lista de Hijos

Una implementacion muy sencilla para arboles n-arios consiste en asociar con cada elemento del arbol la lista
de sus subarboles, utilizando para ello un objeto abstracto del TAD Lista[ ArboIN ]. El esquema de

representacion es el siguiente:

o El arbol n-ario vacio a = A se representa con un apuntador a NULL:

I
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e El arbol n-ario a = /a1 ai an_\ se representa con un apuntador a un nodo, que contiene la raiz
y un objeto del TAD Lista con los apuntadores a sus subarboles, como se muestra en la siguiente figura:

a,le <p o g >
I
a1l ai an

e El arbol n-ario a = A se representa con la siguiente estructura:

e <> |

Esta representacion garantiza una mayor independencia entre la implementacion del arbol y la forma de
almacenar y manejar los subarboles asociados con cada elemento.

La declaracién de las estructuras de datos para esta representacion es la siguiente:

typedef struct NodoArboIN *TipoL; /* Tipo de los elementos de la lista */
typedef struct NodoArboIN
{ TipoAN info; /* Raiz del arbol n-ario */

Lista hijos; /* Lista de apuntadores a los subarboles */

} TArbolIN, *ArbolN;

La implementacion de las operaciones del TAD se hace con las rutinas que se dan a continuacion:

ArbolN inicArboIN( void )
{ return NULL,;

}

Lista subArboIN( ArbolN a )
{ Lista Ist = inicLista( );
for( primLista( a->hijos); !finLista( a->hijos ); sigLista( a->hijos ) )
anxLista( Ist, infoLista( a->hijos ) );
return Ist;

}

TipoAN raizArboIN( ArbolN a )
{ return a->info;

}

int vacioArboIN( ArbolN a )
{ returna==NULL;
H
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5.5.5. Representaciones Implicitas

No todas las representaciones de un arbol deben ser explicitas, en el sentido de que hay casos en los cuales
los hijos pueden ser calculados a partir de la informacion del padre, sin necesidad de tenerlos almacenados
en estructuras de datos. Este es el caso, por ejemplo, del juego de triqui, en el cual se puede implementar la
operacion subArbolN partiendo Unicamente del estado del tablero de juego en un momento dado (ver ejemplo
5.10).

Estas representaciones implicitas dependen del problema exacto que se quiere resolver, y no es posible
hacer una generalizacién. Eso implica que, en cada caso, se debe hacer un estudio y un disefio nuevo para el
esquema de representacion, teniendo en cuenta las relaciones implicitas entre los elementos de la estructura
jerarquica. En el siguiente ejemplo se ilustra el proceso para el caso del juego de triqui.

Ejemplo 5.11:

Suponga que se quiere representar el arbol de juego para el triqui, el cual tiene la estructura mostrada en la
figura 5.2. La primera opcion es utilizar cualquiera de los esquemas de representacion estudiados en las
secciones anteriores y situar explicitamente en las estructuras de datos las relaciones jerarquicas entre los
tableros.

Otra opcidn es disefiar una representacion implicita, que aproveche las reglas del juego para que dado un
tablero, sea capaz de calcular sus hijos sin necesidad de tenerlos previamente en las estructuras de datos
del arbol. Esto es, en lugar de crear una estructura con encadenamientos entre padre e hijos, es posible
pensar en representar el arbol con una matriz de 3 x 3, que mantenga unicamente el estado del tablero en
un momento dado. Los subarboles asociados van implicitos con el tablero, puesto que las reglas del juego
permiten calcularlos sin necesidad de tenerlos todo el tiempo en memoria. Considere las siguientes
declaraciones de estructuras de datos:

#define X 1
#define O -1
#define VACIO 0

typedef struct
{ inttablero[3][3]; /* Tablero de juego del triqui */
} TArbolIN, *ArbolN;

Alli se representa un arbol n-ario con una matriz de enteros de 3 x 3, en donde una casilla vacia se
representa con un 0, una X con un 1y una O con un -1, como se muestra en el siguiente dibujo:

0[O0 1
OofX of(-1]1
) 11010

Para este arbol (una matriz de 3 x 3), la operacion subArboIN es capaz de retornar la siguiente lista de
arboles n-arios, sin necesidad de mantener ninguna otra estructura de datos auxiliar, s6lo suponiendo que
juegan las X:
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subArbolIN =

La rutina que crea el arbol de juego completo tiene el siguiente cadigo:

ArbolN crearArbolN( void )
{ inti k;
ArboIN a = (ArboIN ) malloc (sizeof( TArboIN ) );
for(i=0;1<3;i++)
for(k=0; k <3; k++)
a->tablero[ i ][ k ] = VACIO;
return a;

}

La operacién que retorna la lista de los subarboles asociados debe identificar todos los estados posibles
del juego al colocar una nueva X, aplicando las reglas del triqui, y crear los tableros respectivos:

Lista subArboIN( ArbolN a )
{ inti k;
ArbolN aux;
Lista Ist = inicLista( );
for(1=0;1<3;i++)
for(k=0; k <3; k++)
if( a->tablero[ i ][ k ] == VACIO )
{  aux = crearArboIN();
*aux = *a;
aux->tablero[ 1 ][ k ] =X
anxLista( Ist, aux );

}

return Ist;

}

En los ejercicios propuestos se sigue trabajando sobre esta misma idea, lo mismo que en la seccion de
arboles de juego.

J

5.6. EI TAD ArbolN: Algunas Modificadoras y Destructoras

En general, las operaciones modificadoras de un tipo abstracto para el manejo de arboles dependen de la
clase especifica de arbol que se quiera administrar, tal como se hizo en el capitulo anterior para arboles
binarios. En esta parte se presentan e implementan una constructora, dos modificadoras basicas y una
destructora, como una manera de ilustrar la forma de aumentar la funcionalidad del TAD dependiendo de la
semantica especifica del arbol. Estas nuevas operaciones van a permitir crear una hoja, asociar y desasociar
un subarbol de un elemento y destruir un arbol.
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Constructora:

¢ hojaArbolN: TipoAN — ArboIN
Modificadoras:

e adicSubArbolN: ArboIN X ArboIN — ArboIN
e elimSubArbolN: ArboIN X int — ArboIN
Destructora:

e destruirArbolN: ArboIN

ArbolN hojaArboIN( TipoAN e )
/* Crea una hoja con raiz igual al elemento e */

{ post: hojaArboIN = A }

void adicSubArboIN( ArbolN a, ArbolN sa )
/* Agrega el arbol sa como ultimo subarbol de a */

{pre;amlsa&}

{ post: a = al an sa }

void elimSubArboIN( ArbolN a, inti)
/* Desasocia (pero no destruye) el i-ésimo subarbol de a */

{pre:a= /2l ai an \ 1<i<n}

{post:a= al ai-1| | ai+1 an }
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void destruirArboIN( ArbolIN a )
/* Destruye un arbol n-ario, retornando toda la memoria ocupada en su representacion */

{ post: se ha devuelto toda la memoria ocupada en la representacion del arbol a. a es indefinido }

5.6.1. Implementacion sobre Vector de Apuntadores

e Constructora: crea una hoja con raiz e. La rutina pide memoria, almacena la raiz e inicializa todas las
casillas del vector de apuntadores en NULL. La complejidad es O( M ), donde M es el tamafio del vector
de apuntadores. En este caso M es constante pero mayor o igual que el maximo orden posible del arbol.

ArbolN hojaArboIN( TipoAN ¢ )
{ inti;
ArboIN a = ( ArbolN )malloc( sizeof( TArboIN ) );
a->info = ¢;
for(i=0;i<M;it++)
a->hijos[ 1 ] = NULL;
return a;

}

¢ Modificadora: agrega un subarbol. La rutina coloca el nuevo subarbol en la siguiente posicion libre del
vector de apuntadores. Puesto que el manejo de error es responsabilidad del cliente, no verifica la validez
de la nueva posicidon. La complejidad es O( M ), donde M es el tamafio del vector de apuntadores.

void adicSubArboIN( ArbolN a, ArbolN sa )
{ inti;
for(i=0; a->hijos[ i ] = NULL; i++);
a->hijos[ i ] = sa;

}

e Modificadora: elimina el i-ésimo subarbol. La rutina desplaza los subarboles ( i+1... n ) una posiciéon a la
izquierda en el vector de apuntadores, para ocupar la posicion liberada por el i-ésimo subarbol. La
complejidad es O( n ), donde n es el orden de la raiz del arbol a.

void elimSubArbolIN( ArbolN a, int i)
{ intk;
for( k =i-1; k <M-1 && a->hijos[ k ] |=NULL; k++)
a->hijos[ k ] =a->hijos[ k + 1 ];
a->hijos[ k ] = NULL;
H

e Destructora. La rutina se llama recursivamente para cada uno de los subarboles asociados, y, finalmente,
retorna la memoria ocupada por la raiz. La complejidad es O( n ), donde n es el peso del arbol.
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void destruirArboIN( ArbolN a )
{ inti;
if(a!=NULL)
{ for(i=0;1<M && a->hijos[ i ] !=NULL; i++)
destruirArboIN( a->hijos[ i ] );
free( a);

5.6.2. Implementacion sobre Apuntadores

e Constructora: crea una hoja con raiz e. La rutina pide memoria, almacena la raiz e inicializa los campos de
hijo y hermano en NULL. La complejidad es O( 1).

ArbolN hojaArboIN( TipoAN ¢ )
{ ArboIN a = ( ArboIN )malloc( sizeof( TArboIN ) );

a->info = ¢;
a->hijo = a->hermano = NULL;
return a;

}

e Modificadora: agrega un subarbol. La rutina recorre la lista de hijos utilizando el encadenamiento del
hermano derecho, localiza el ultimo de ellos y agrega alli el nuevo nodo. La complejidad es O( n ), donde
n es el orden de la raiz del arbol a.

void adicSubArboIN( ArboIN a, ArbolN sa )

{ ArbolN pa;
if( a->hijo==NULL )
a->hijo = sa;
else

{  for( pa=a->hijo; pa->hermano != NULL; pa = pa->hermano );
pa->hermano = sa;
H

}

e Modificadora: elimina el i-ésimo subarbol. La rutina localiza el i-ésimo subarbol utilizando el
encadenamiento de los hermanos y lo saca de la secuencia. La complejidad es O( n ), donde n es el
orden de la raiz del arbol a.

© Todos los derechos reservados — Jorge Villalobos



254 Disefio y Manejo de Estructuras de Datos en C

void elimSubArboIN( ArbolN a, int i)
{ ArbolN pa, qa;
ifli==1)
{ qa=a->hijo;
a->hijo = a->hijo->hermano;
H
else
{  for( pa=a->hijo;i>2;i--, pa = pa->hermano );
ga = pa->hermano;
pa->hermano = pa->hermano->hermano;

}
free( qa );

e Destructora. La rutina se llama recursivamente para cada uno de los subarboles asociados, y, finalmente,
retorna la memoria ocupada por la raiz. La complejidad es O( n ), donde n es el peso del arbol.

void destruirArboIN( ArbolN a )

{ ArbolN pa;
if(a!=NULL)
{  for( pa=a->hijo; pa != NULL; pa = pa->hermano )
destruirArbolIN( pa );
free( a);
H
H

5.6.3. Implementacion sobre Vectores Dinamicos

e Constructora: crea una hoja con raiz e. La rutina pide memoria, almacena la raiz e inicializa el vector
dinamico en vacio, informando que el orden del elemento es 0. La complejidad es O( 1 ).

ArbolN hojaArboIN( TipoAN ¢ )
{ ArboIN a = (ArboIN )malloc( sizeof( TArboIN ) );
a->info = ¢;
a->orden = 0;
a->hijos = NULL;
return a;

e Modificadora: agrega un subarbol. La rutina aumenta el tamafio del vector dinamico, actualiza el orden del
nodo y almacena en esta nueva posicion el subarbol. La complejidad es O( n ), donde n es el orden de la

raiz del arbol a, puesto que la operacion realloc debe copiar, en el peor de los casos, cada uno de los
subarboles a una nueva zona de memoria.

void adicSubArboIN( ArbolN a, ArbolN sa )

{ a->hijos = ( struct NodoArboIN ** ) realloc ( a->hijos, ( ++( a->orden ) ) * sizeof( struct NodoArboIN * ) );
a->hijos[ a->orden - 1 | = sa;

}
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e Modificadora: elimina el i-ésimo subarbol. La rutina compacta el vector para ocupar la casilla liberada por
el i-ésimo subarbol y luego ajusta el espacio ocupado por el vector dinamico, disminuyendo el numero de
posiciones en 1. La complejidad es O( n ), donde n es el orden de la raiz del arbol a

void elimSubArboIN( ArbolN a, int i)
{ intk;
for( k =i-1; k <a->orden - I; k++)
a->hijos[ k ] =a->hijos[ k + 1 ];
a->hijos = (struct NodoArbolIN **) realloc ( a->hijos, ( --( a->orden ) ) * sizeof( struct NodoArboIN * ) );
H

e Destructora. La rutina se llama recursivamente para cada uno de los subarboles asociados, y, finalmente,
retorna la memoria ocupada por el vector dinamico y por la raiz. La complejidad es O( n ), donde n es el
peso del arbol.

void destruirArboIN( ArboIN a )
{ inti;
if(a!=NULL)
{ for(i=0;1i<a->orden; it+)
destruirArboIN( a->hijos[ i ] );
free( a->hijos );
free( a);

5.6.4. Implementacién sobre Lista de Hijos

e Constructora: crea una hoja con raiz e. La rutina pide memoria, almacena la raiz y crea una lista vacia de
subarboles. La complejidad de la rutina viene dada por la complejidad de la operacion inicLista.

ArbolN hojaArboIN( TipoAN ¢ )
{ ArboIN a = ( ArboIN )malloc( sizeof( TArboIN ) );

a->info = ¢;
a->hijos = inicLista( );
return a;

}

e Modificadora: agrega un subarbol. La rutina sitta la ventana de la lista de hijos sobre la tltima posicion y
anexa en ese punto el nuevo subarbol. La complejidad de la rutina depende de la complejidad de las
operaciones ultLista y anxLista.

void adicSubArboIN( ArbolN a, ArbolN sa )
{ ultLista( a->hijos );
anxLista( a->hijos, sa );

}

e Modificadora: elimina el i-ésimo subarbol. La rutina sitta la ventana de la lista sobre el i-ésimo subarbol y
procede a eliminarlo valiéndose de la respectiva operacién del TAD Lista. La complejidad de este
procedimiento depende de la complejidad de las operaciones posLista y elimLista.
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void elimSubArboIN( ArbolN a, int i)

{
H

posLista( a->hijos, 1 );
elimLista( a->hijos );

e Destructora. La rutina se llama recursivamente para cada uno de los subarboles asociados, y, finalmente,
retorna la memoria ocupada por la lista de subarboles y por la raiz. La complejidad es O( n ), donde n es
el peso del arbol.

void destruirArboIN( ArbolN a )

{

if(al=NULL )
{  for( primLista( a->hijos ); !finLista( a->hijos ); sigLista( a->hijos ) )
destruirArbolN( infoLista( a->hijos ) );
destruirLista( a->hijos );
free( a);

Ejercicios Propuestos

Para cada una de las 4 representaciones vistas anteriormente, desarrolle las siguientes rutinas, de manera
que trabajen directamente sobre las estructuras de datos. Calcule la complejidad de su solucion:

5.26.

5.27.

5.28.

5.29.

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

void reemplazarArbolN( ArbolN a, TipoAN elem1, TipoAN elem2 )
/* Reemplaza en el arbol a todas las ocurrencias del elemento elem!1 por el elemento elem2 */

int nivelArboIN( ArboIN a, TipoAN elem )
/* Retorna el nivel en el que aparece el elemento elem en el arbol n-ario a. Supone que el arbol no tiene
elementos repetidos. Si el elemento no aparece retorna -1 */

ArboIN podar1ArboIN( ArboIN a )
/* Elimina del arbol a todas sus hojas */

int alturaArboIN( ArboIN a )
/* Calcula la altura del arbol n-ario a */

ArboIN podar2ArbolIN( ArbolN a, int niv )
/* Elimina del arbol a todos los elementos que se encuentran en un nivel superior o igual a niv */

int hojasArboIN( ArbolN a )
/* Cuenta el numero de hojas del arbol n-ario a */

ArbolN eliminarArboIN( ArboIN a, TipoAN elem )
/* Elimina del arbol n-ario a el elemento elem, de tal manera que el arbol resultante conserve el mismo
inorden, salvo por el elemento retirado */

int estaArboIN( ArboIN a, TipoAN elem )
/* Informa si el elemento elem se encuentra presente en el arbol n-ario a */

void inordenArboIN( ArbolN a )
/* Hace un recorrido iterativo en inorden, utilizando como estructura auxiliar una pila */

Lista busqueCaminoN( ArbolIN a, TipoAN elem )
/* Retorna una lista de elementos del arbol n-ario a correspondiente al camino que lleva desde la raiz
del arbol hasta el elemento elem. Si el camino no existe retorna una lista vacia */
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5.36.

5.37.

5.38.

5.39.

5.40.

void insSubArboIN( ArbolN a, ArbolN sa, inti)
/* Agrega el arbol sa como i-ésimo subarbol de a. Supone que a tiene por lo menos i subarboles
asociados */

Disefie un esquema de persistencia para arboles n-arios. Implemente una operacién que lea un
arbol n-ario de un archivo (cargarArboIN) y otra que lo haga persistir (salvarArboIN). Pruebe sus rutinas
con cada una de las representaciones planteadas en la seccion anterior.

Disefie un esquema de representacién secuencial para arboles n-arios. Implemente todas las
operaciones del TAD ArboIN (constructoras, analizadoras modificadoras y destructora) sobre la
representacion propuesta. Calcule la complejidad de cada rutina y haga una comparacion con las
representaciones estudiadas en la seccién anterior.

Para la representacion implicita sugerida en el ejemplo 5.11 (arbol de juego de triqui), desarrolle una
rutina que determine en cuantas jugadas se encuentra la primera posicion ganadora del juego,
suponiendo que en ese momento tienen el turno las X.

Para la representacion implicita sugerida en el ejemplo 5.11 (arbol de juego de triqui), desarrolle una
rutina que determine cual de los dos jugadores tiene mayor opcién de triunfo. Esto es, quién tiene un
mayor numero de posiciones ganadoras como descendientes de la situacion actual.

5.7. EI TAD Arbol1-2-3: Un Arbol Triario Ordenado

Un arbol 1-2-3 es un arbol n-ario ordenado de orden 3, que en cada nodo tiene 1 6 2 elementosy 1,2 6 3
subarboles asociados. En la figura 5.4 aparece un ejemplo de uno de esos arboles.

50 [ 75

|20 30 60 80 | 90
52 | 58 7 | 85 | 86 ’

Fig. 5.4 - Arbol 1-2-3

Los arboles 1-2-3 satisfacen las siguientes condiciones:

¢ No hay elementos repetidos en la estructura.

o EIl elemento de la izquierda de cada nodo, llamado raiz izquierda, es menor que el elemento de su
derecha (raiz derecha).

o El primer subarbol es un arbol 1-2-3 que contiene elementos menores que la raiz izquierda.

o El segundo subarbol es un arbol 1-2-3 que contiene los elementos mayores que la raiz izquierda pero
menores que la raiz derecha.

o Eltercer subarbol es un arbol 1-2-3 que contiene los elementos mayores que la raiz derecha.

o Laraiz derecha puede estar vacia, caso en el cual los subarboles segundo y tercero son vacios.

Esta estructura se utiliza para almacenar conjuntos de elementos, para los cuales tiene sentido una relacion
de orden, permitiendo, por la manera como reparte los elementos, un acceso eficiente a la informacion. Los
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arboles 1-2-3 se introducen en este libro, como una herramienta pedagdgica para facilitar la presentacion de
los arboles 2-3, en la siguiente seccion.

La especificacion del TAD es la siguiente:

TAD Arbol123[ Tipo123 ]

al a2 a3

{inv: a1, a2y a3 son arboles 1-2-3,
((M<r2,(ecal=e<rl),(eca2=rl<e<r2),(eca3d=e>r2))v

(r2=VACIO,(eeal=>e<rl1),a2=a3=A))}

Constructoras:
e inicArbol123: — Arbol123
Modificadoras:
¢ insArbol123: Arbol123 x Tipo123 — Arbol123
¢ elimArbol123: Arbol123 x Tipo123 — Arbol123

Analizadoras:
o estaArbol123: Arbol123 x Tipo123 — int

Arbol123 inicArbol123( void )
/* Crea un arbol 1-2-3 vacio */

{ post: inicArbol123 = A }

Arbol123 insArbol123( Arbol123 a, Tipo123 elem )
/* Agrega el elemento elem al arbol 1-2-3 */

{pre:elem g a,a=A}
{ post: insArbol123 = A + elem }

Arbol123 elimArbol123( Arbol123 a, Tipo123 elem )
/* Elimina el elemento elem del arbol 1-2-3 */

{pre:elemea,a=A}
{ post: elimArbol123 = A - elem }

int estaArbol123( Arbol123 a, Tipo123 elem )
/* Informa si el elemento elem esta en el arbol 1-2-3 */

{ post: estaArbol123 = (elem € a) }
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Ejemplo 5.12:

Este ejemplo ilustra el proceso de insercion de un elemento dado en un arbol 1-2-3, mostrando los estados
intermedios alcanzados por el arbol cuando se inserta la siguiente secuencia de elementos:

50-25-40-15-20-10-23-17

Paso No. 1: insertar 50 Paso No. 2: insertar 25
(o] ]
Paso No. 3: insertar 40 Paso No. 4: insertar 15

5 25 | 50
(s ] (e[

Paso No. 5: insertar 20 Paso No. 6: insertar 10

25 | 50 25 | 50
(o] ] (o] ]

25

2] [¥]
L) Te]

40

Paso No. 7: insertar 23 Paso No. 8: insertar 17

on@on oo@ion
/
G RO ) 0 GO

Para eliminar un elemento de un arbol 1-2-3, se sigue un proceso equivalente al utilizado en arboles binarios,
viendo un arbol 1-2-3 como dos arboles binarios paralelos, y eliminando el elemento del lado respectivo. Por
ejemplo, para el arbol siguiente:

J
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£15 20 [40 ] [70 901
/'
Lol J Lol (=] ] [eo o] [os]oe]

Si se quiere eliminar el elemento 25, siguiendo la técnica de remplazo por el mayor elemento del subarbol
izquierdo (vista en el capitulo anterior), se obtiene el arbol:

15’3] [40 ] [70 901
1) ) (==) (=]=]

Para este nuevo arbol, si se elimina el elemento 15, se llega a la siguiente estructura:

[40 ] [70 901
N o] =]

Repitiendo el mismo proceso para el elemento 10, se llega al siguiente arbol 1-2-3, en el cual se debe
mover el valor 20 de la raiz derecha a la raiz izquierda, para seguir manteniendo las propiedades de este

tipo de arboles:
20 &J 70 m
E [so 85][95|98]

La representacion mas sencilla para los arboles 1-2-3 utiliza la siguiente declaracion de estructuras de datos:

__

[10 20

J

typedef struct NodoArbol123
{ intraizl, raiz2; /* Elementos almacenados en el nodo */

struct NodoArbol123 *hijol, *hijo2, *hijo3; /* Apuntadores a los posibles 3 subarboles asociados */
} TArbol123, *Arbol123;
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Sobre dicha representacion, la implementacion de la operacion de busqueda se hace con la siguiente rutina:

int estaArbol123( Arbol123 a, Tipo123 elem )
{ if(a==NULL)
return FALSE;
else if( a->raizl == elem || a->raiz2 == elem )
return TRUE;
else if( elem < a->raizl )
return estaArbol123( a->hijol, elem );
else if( a->raiz2 == VACIO)
return FALSE;
else if ( elem < a->raiz2 )
return estaArbol123( a->hijo2, elem );
else
return estaArbol123( a->hijo3, elem );

}

La implementacion de las demas operaciones del TAD Arboll123 se propone mas adelante como ejercicio,
tanto sobre la representacion antes planteada, como sobre otras representaciones interesantes.

Ejercicios Propuestos:

Utilizando la representacion de apuntadores planteada en la seccién anterior, desarrolle y pruebe las
siguientes rutinas:

5.41. Arbol123 insArbol123( Arbol123 a, Tipo123 elem )
/* Agrega el elemento elem al arbol 1-2-3 */

5.42. Arbol123 elimArbol123( Arbol123 a, Tipo123 elem )
/* Elimina el elemento elem del arbol 1-2-3 */

5.43. void nivelesArbol123( Arbol123 a )
/* Presenta por niveles el arbol 1-2-3 en la pantalla */

5.44. int esArbol123( Arbol123 a )
/* Verifica que el arbol a cumpla todas las condiciones de un arbol 1-2-3 */

5.45. void inordenArbol123( Arbol123 a )

/* El recorrido en inorden de un arbol 1-2-3 visita los elementos de la estructura en orden ascendente.
Esta rutina presenta por pantalla el recorrido en inorden de un arbol 1-2-3 */

Utilizando un esquema hijo_izquierdo - hermano derecho como representacion interna del TAD Arbol123 ,
desarrolle los siguientes ejercicios y pruebe las rutinas resultantes:

5.46. Especifique formalmente el esquema de representacion y escriba la declaracion de las estructuras de
datos en C.

5.47. Arbol123 insArbol123( Arbol123 a, Tipo123 elem )
/* Agrega el elemento elem al arbol 1-2-3 */

5.48. Arbol123 elimArbol123( Arbol123 a, Tipo123 elem )
/* Elimina el elemento elem del arbol 1-2-3 */
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5.49. int estaArbol123( Arbol123 a, Tipo123 elem )
/* Informa si el elemento elem esta en el arbol 1-2-3 */

5.50. void nivelesArbol123( Arbol123 a )
/* Presenta por niveles el arbol 1-2-3 en la pantalla */

5.51. int esArbol123( Arbol123 a )
/* Verifica que el arbol a cumpla todas las condiciones de un arbol 1-2-3 */

5.52. void inordenArbol123( Arbol123 a )

/* El recorrido en inorden de un arbol 1-2-3 visita los elementos de la estructura en orden ascendente.
Esta rutina presenta por pantalla el recorrido en inorden de un arbol 1-2-3 */

Suponiendo que se escoge para el TAD Arbol123 una representacion secuencial similar a la presentada en el
capitulo anterior para arboles binarios, desarrolle los siguientes ejercicios:

5.53. Especifique formalmente el esquema de representacion y escriba la declaracidon de las estructuras de
datos en C.

5.54. Arbol123 insArbol123( Arbol123 a, Tipo123 elem )
/* Agrega el elemento elem al arbol 1-2-3 */

5.55. Arbol123 elimArbol123( Arbol123 a, Tipo123 elem )
/* Elimina el elemento elem del arbol 1-2-3 */

5.56. int estaArbol123( Arbol123 a, Tipo123 elem )
/* Informa si el elemento elem esta en el arbol 1-2-3 */

5.57. void nivelesArbol123( Arbol123 a )
/* Presenta por niveles el arbol 1-2-3 en la pantalla */

5.58. int esArbol123( Arbol123 a)
/* Verifica que el arbol a cumpla todas las condiciones de un arbol 1-2-3 */

5.59. void inordenArbol123( Arbol123 a )

/* El recorrido en inorden de un arbol 1-2-3 visita los elementos de la estructura en orden ascendente.
Esta rutina presenta por pantalla el recorrido en inorden de un arbol 1-2-3 */

5.8. El TAD Arbol2-3: Un Arbol Triario Ordenado Balanceado

Una situacion parecida a la que ocurre con los arboles binarios ordenados se tiene con los arboles 1-2-3:
aunque en el caso promedio el acceso a la informacion es de complejidad logaritmica, en el peor de los casos
sigue siendo lineal. Un arbol 2-3 resuelve este problema manteniendo balanceados sus subarboles, a costa
de mayor dificultad de los algoritmos que implementan las operaciones de actualizacion.

Estos arboles fueron introducidos por R. Bayer y E. McCreight en 1972, con el principal objetivo de mejorar el

tiempo de acceso en estructuras de datos manejadas en memoria secundaria, en las cuales el numero de
consultas a un registro influye de manera determinante en el tiempo de respuesta de la operacion.

5.8.1. Definiciones y Conceptos Basicos

Un arbol 2-3 es un arbol triario, con una estructura similar a la de un arbol 1-2-3, que cumple con las
siguientes condiciones adicionales para garantizar su adecuado balanceo:
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e Todas las hojas se encuentran en el mismo nivel

e Todos los nodos internos tienen por lo menos 2 subarboles asociados no vacios, aunque la raiz derecha
esté vacia

Ejemplo 5.14:

El siguiente es un arbol 2-3 con los mismos elementos que contiene el arbol 1-2-3 del ejemplo 5.12, pero
cumpliendo las condiciones de balanceo antes enunciadas:

=]

[10 15]120 23]140|50’

Si a este arbol se le inserta el elemento 22, debe alcanzar un nuevo estado de equilibrio, repartiendo sus
elementos de manera que se conserven las propiedades de balanceo. Podria llegar, por ejemplo, a alguno
de los siguientes estados validos para un arbol 2-3, dependiendo del algoritmo de insercion:

23 23

; o [ ]e )
Lo [ ][0 ]2] (=] 2] | Lol )l Jlz[ J{z] Jleo] ]

Esto implica que las modificadoras del TAD deben tener en cuenta la situacion completa del arbol para
poder decidir el punto en el cual se agrega el nuevo valor, dificultando los algoritmos que llevan a cabo los
procesos de actualizacion.

J

Un arbol B es un arbol n-ario ordenado y balanceado, que corresponde a una generalizacién de la estructura
de un arbol 2-3. En este tipo de arboles, cada nodo tiene k elementos y k+1 subarboles B asociados, como se
muestra en la figura 5.5. En particular, un arbol 2-3 es un arbol B de orden 3.

Un arbol B de orden k cumple las siguientes condiciones:
o Todas las hojas se encuentran en el mismo nivel

e Todos los nodos internos, excepto la raiz, tienen por lo menos ( k + 1 ) / 2 subarboles asociados no
vacios

e El numero de elementos de un nodo interno es uno menos que el numero de subarboles asociados
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99
96
95
93
91
89
0] 86
85 84
81
79
75
68
63
61
() 55
| 51
70 60] 50
30 41 43
39
35
32
29
27
25
(22]
23 20
10 15]
12)
9
B
1)

Fig. 5.5. - Ejemplo de un arbol B de orden 4

© Todos los derechos reservados — Jorge Villalobos



Capitulo 5 - Estructuras Recursivas: Arboles n-arios

5.8.2. Especificacion del TAD

265

TAD Arbol23[ Tipo23 |

al

a2

a3

{inv: todas las hojas del arbol se encuentran en el mismo nivel,

al, a2 y a3 son arboles 2-3,
r1 <r2vr2=VACIO,

(es una hoja v

(a1!=A,a2!=A,a3=A,r2=VACIO, (ecal=>e<rl),(eca2=rl<e))v
(a1!=A,a2!'=A,a3=A,r2!1=VACIO, (ecal = e<rl),(ecea2=rl<e<r2))v
(

all=A,a2!=A,a3!=A, r2!=VACIO,

(eeal=e<rl),(eca2=>rl<e<r2),(ecal3=e>r2)))}

Constructoras:

e inicArbol23:

Modificadoras:

¢ insArbol23: Arbol23 x Tipo23
¢ elimArbol23: Arbol23 x Tipo23

Analizadoras:
o estaArbol23: Arbol23 x Tipo23

— Arbol23

— Arbol23
— Arbol23

— int

Arbol23 inicArbol23( void )
/* Crea un arbol 2-3 vacio */

{ post: inicArbol23 = A }

Arbol23 insArbol23( Arbol23 a, Tipo23 elem )
[* Agrega el elemento elem al arbol 2-3 */

{pre:elem g a,a=A}
{ post: insArbol23 = A + elem }

Arbol23 elimArbol23( Arbol23 a, Tipo23 elem )
/* Elimina el elemento elem del arbol 2-3 */

{pre:elemea,a=A}
{ post: elimArbol23 = A - elem }
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int estaArbol23( Arbol23 a, Tipo23 elem )
/* Informa si el elemento elem esta en el arbol 2-3 */

{ post: estaArbol23 = (elem e a )}

5.8.3. Estructuras de Datos

Existen muchas estructuras de datos posibles para implementar un arbol 2-3. Para ilustrar los algoritmos de
actualizacion de este tipo de arbol se va a trabajar con una representacién de apuntadores, basada en el
siguiente esquema de representacion:

a=A Ja_
] r2
q= a— / r1 T r2| &
¥ ! A
al
at a2 a3 a2 a3
La declaracién de estas estructuras de datos se hace de la siguiente manera:
typedef struct NodoArbol23
{ Tipo23 raizl, raiz2; /* Elementos almacenados en el nodo */
struct NodoArbol23 *hijol, *hijo2, *hijo3; /* Apuntadores a los posibles 3 subarboles asociados */

+ TArbol23, *Arbol23;

5.8.4. Algoritmo de Insercidén

Contrario a lo que sucede con los arboles binarios ordenados y con los arboles 1-2-3, la estructura de un arbol
2-3 exige que el crecimiento no se haga a nivel de las hojas (aunque la insercion se sigue haciendo en las
hojas), sino a nivel de la raiz, ya que todas las hojas se deben mantener siempre en el mismo nivel.

El proceso global de insercion comienza por localizar la hoja en la cual se debe agregar el elemento. En ese
punto se pueden presentar varios casos:

e Caso 1: Existe espacio en el nodo. Se coloca alli adecuadamente el elemento y la estructura del arbol no
se altera.

Situacion inicial Situacion final

‘ r1 ‘ r1 elem\
, 1 <elem

B [oen] ]
, 11 >elem

e Caso 2: El nodo esta lleno. Este se debe partir en dos nodos del mismo nivel, repartiendo los tres
elementos (dos elementos del nodo y el nuevo elemento) de la siguiente manera:
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Situacion inicial

Situacion intermedia

r1 r2 r1 elem
, elem >r2 , sube r2
r1 r2 elem r2
,elem<r1 , suber1
M| r2 r1 r2
,rM<elem<r2 , Sube elem

Luego, el elemento que no fue incluido en los dos nodos nuevos, se sube en la estructura y se inserta en
su padre. El proceso se repite hacia arriba, ya que al partir en dos el nodo se esta generando un nuevo
subarbol que puede generar que los ancestros se tengan que partir a su vez para poderlo incluir, tal como
se muestra en el siguiente ejemplo.

Ejemplo 5.15:

Considere la siguiente secuencia de inserciones en un arbol 2-3:

Insertar el elemento 30: se crea una
hoja y se coloca el elemento como raiz
izquierda

Insertar el elemento 2: corresponde al
caso 1. Se mueve a la derecha la raiz
izquierda para dar cabida al nuevo
elemento.

/Eﬂ

RE

—
N
o

(S

Insertar el elemento 15: corresponde al
caso 2. Encuentra una hoja llena. La
parte en dos nodos e inserta en el
padre el elemento que se encuentre en
la mitad de los tres ( 2 < 15 < 30 ).
Como el padre es vacio, se crea un
nuevo nivel, se coloca el elemento
como la raiz izquierda del nodo, y se le
asocian los dos nodos que se acaban
de partir.

/Eﬂ

2] ]

Insertar el elemento 63: corresponde al
caso 1

30
} -

(2] J{=] J{=]

Insertar el elemento 65: corresponde al
caso 2. Se parte la hoja y sube al padre
el elemento de la mitad (63). Al insertar
dicho valor en el padre se trata como el
caso 1, porque en el nodo hay espacio.
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Insertar el elemento 1: corresponde al
caso 1.

Insertar el elemento 0: corresponde al
caso 2. Se parte la hoja [ 1, 2 ], se
colocan alli los elementos 0 y 2, y sube
el valor 1 a su padre. Como el nodo del
padre [ 15, 63 ] esta lleno también se
debe partir, dejando en ese nivel los
elementos 1y 63, y subiendo el 15.

Insertar el elemento 14: corresponde al
caso 1.

Insertar el elemento 27: corresponde al
caso 1.

Insertar el elemento 8: corresponde al
caso 2. Se parte el nodo [ 2, 14 ] y sube
el 8. Alli encuentra espacio y se coloca
como raiz derecha.

Insertar el elemento 9: corresponde al
caso 1.

© Todos los derechos reservados — Jorge Villalobos




Capitulo 5 - Estructuras Recursivas: Arboles n-arios

269

o

Insertar el elemento 81: corresponde al
caso 1.

Insertar el elemento 79: corresponde al
caso 2. Se parte el nodo [ 65, 81 ]y
sube el elemento 79.

15 | 63

79

o] Je ] JleleJla] J{eo] ]

)

N
M_]

Insertar el elemento 60: corresponde al
caso 2. Se parte el nodo [ 27, 30 ], se
incluye el 60 y sube el elemento 30.
Como su padre esta lleno se parte en
los nodos [ 30 ]y [ 79 ], y sube el
elemento 63. Este elemento se situa en
la raiz derecha del arbol, donde hay
espacio libre.

J

Las rutinas que implementan la operacién de insercidon en un arbol 2-3 se presentan a continuacion:

e La operacion de insercién en un arbol 2-3 considera dos casos: si el arbol inicial es vacio, crea un nodo
nuevo y coloca en su raiz izquierda el nuevo elemento. Si no es vacio, llama la rutina auxiliar insertar, la
cual agrega el elemento y le informa si debe aumentar un nivel hacia arriba el arbol. En este ultimo caso,
en los parametros por referencia derecho e izquierdo llegan los dos subarboles que se acaban de partir, y

en el pardmetro elem, el elemento que viene subiendo.
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Arbol23 insArbol23( Arbol23 a, Tipo23 elem )
{ Arbol23 derecho = NULL, izquierdo = NULL, nuevo;
if(a==NULL)
{ a=(Arbol23 )malloc( sizeof ( TArbol23));
a->raizl = elem;
a->raiz2 = VACIO;
a->hijol = a->hijo2 = a->hijo3 = NULL;
return a;
H
else if( insertar( a, &elem, &derecho, &izquierdo ) )
{  nuevo = ( Arbol23 )malloc( sizeof ( TArbol23));
nuevo->raizl = elem;
nuevo->raiz2 = VACIO;
nuevo->hijol = izquierdo;
nuevo->hijo2 = derecho;
nuevo->hijo3 = NULL,;
return nuevo;

else
return a;

e La rutina insertar lleva todo el control de la insercién. Es recursiva y considera cuatro casos: (1) el arbol es
una hoja, (2) el elemento se debe adicionar en el primer subarbol, (3) el elemento se debe adicionar en el
segundo subarbol, (4) el elemento se debe adicionar en el tercer subarbol. En cualquiera de los tres
ultimos casos debe verificar si el proceso de insercion trae en ascenso un elemento, situacion en la cual
debe hacer las modificaciones estructurales necesarias para continuar adecuadamente el proceso,
llamando la rutina indicada:

/* pre: aes el arbol 2-3 original, *elem es el elemento que se va a insertar, *elem ¢ a */
/* post: (insertar = TRUE, se debe subir el elemento *elem, *arbolDer y *arbollzq son los nodos partidos ) v
(insertar = FALSE, a incluye el elemento *elem */

static int insertar( Arbol23 a, Tipo23 *elem, Arbol23 *arbolDer, Arbol23 *arbollzq )
{ if( a->hijol == NULL)
return insHoja( a, elem, arbolDer, arbollzq );
else if( *elem < a->raizl )
return insertar( a->hijo1, elem, arbolDer, arbollzq ) ? subirInfol( a, elem, arbolDer, arbollzq ) : FALSE;
else if( a->raiz2 == VACIO || *elem < a->raiz2 )
return insertar( a->hijo2, elem, arbolDer, arbollzq ) ? subirInfo2( a, elem, arbolDer, arbollzq ) : FALSE;
else
return insertar( a->hijo3, elem, arbolDer, arbollzq ) ? subirInfo3( a, elem, arbolDer, arbollzq ) : FALSE;

e La rutina que inserta un elemento en una hoja considera los dos casos planteados antes en la teoria: si
hay espacio para el elemento, reacomoda la informacién del nodo. Si no hay espacio, parte el nodo y
comunica hacia arriba los dos arboles que se obtienen de dicho proceso, lo mismo que el elemento que
debe subir al padre.

© Todos los derechos reservados — Jorge Villalobos



Capitulo 5 - Estructuras Recursivas: Arboles n-arios 271

/* pre: aesuna hoja, *elem ¢ a */
/* post: (insHoja = TRUE, se debe subir el elemento *elem, *arbolDer y *arbollzq son los nodos partidos ) v
(insHoja = FALSE, a incluye el elemento *elem */

static int insHoja( Arbol23 a, Tipo23 *elem, Arbol23 *arbolDer, Arbol23 *arbollzq )
{ Arbol23 nuevo;
if( a->raiz2 == VACIO ) /* caso 1: hay espacio en el nodo */
{ if( *elem < a->raizl )
{ a->raiz2 = a->raizl;
a->raizl = *elem;

}
else
a->raiz2 = *elem;
return FALSE;
}
else /*caso 2: no hay espacio en el nodo y se debe partir */

{ nuevo= (Arbol23 )malloc( sizeof ( TArbol23));
nuevo->hijol = nuevo->hijo2 = nuevo->hijo3 = NULL;
nuevo->raiz2 = VACIO;
if( *elem < a->raizl ) /* sube la raiz 1 */
{ nuevo->raizl = *elem;

*elem = a->raizl;
a->raizl = a->raiz2;
a->raiz2 = VACIO;

else if( *elem < a->raiz2 ) /* sube el elemento nuevo */
{ nuevo->raizl = a->raizl;

a->raizl = a->raiz2;

a->raiz2 = VACIO;

else /* sube la raiz 2 */
{ nuevo->raizl = a->raizl;
a->raizl = *elem;
*elem = a->raiz2;
a->raiz2 = VACIO;
}
*arbollzq = nuevo;
*arbolDer = a;
return TRUE;

}

e Las tres rutinas siguientes se encargan de realizar las transformaciones necesarias en el arbol cuando
sube un elemento, teniendo en cuenta cuadl fue el subarbol afectado en el proceso:
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/* pre: aes el arbol original, se insert6 un elemento en el subarbol 1,
se partiod dicho subarbol en *arbolDer y *arbollzq, viene subiendo el elemento *elem */

a— r1 T r2 N
I N
/I\az a3

*arbolDer = AD

*arbollzq = Al
*elem=E

/* post: (subirlnfol = TRUE, se debe subir el elemento *elem, *arbolDer y *arbollzq son los nodos partidos ) v

*arbollzq T *arbolDer
*elem =r1
/' E T / r2 T
d v 4 !
Al AD az a3

( subirInfol = FALSE, a ya incluye el elemento *elem */

a —» E

r1
P

D a2

Al

static int subirInfol( Arbol23 a, Tipo23 *elem, Arbol23 *arbolDer, Arbol23 *arbollzq )
{ inttemp;
Arbol23 nuevo;
if( a->raiz2 == VACIO ) /* hay campo en ese nodo: reorganizar */
{ a->raiz2 = a->raizl;
a->hijo3 = a->hijo2;
a->raizl = *elem;
a->hijol = *arbollzq;
a->hijo2 = *arbolDer;
return FALSE;

else /* no hay campo en el nodo: partir y subir */
{ nuevo= (Arbol23 )malloc( sizeof ( TArbol23));
nuevo->hijo3 = NULL,;
nuevo->raiz2 = VACIO;
nuevo->raizl = a->raiz2;
nuevo->hijol = a->hijo2;
nuevo->hijo2 = a->hijo3;
temp = *elem,;
*elem = a->raizl;
a->raizl = temp;
a->raiz2 = VACIO; a->hijol = *arbollzq;
a->hijo2 = *arbolDer; a->hijo3 =NULL,;
*arbollzq = a;
*arbolDer = nuevo;
return TRUE;

|/* pre: aes el arbol original, se insertd un elemento en el subarbol 2,
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se partio dicho subarbol en *arbolDer y *arbollzq, viene subiendo el elemento *elem */

a— r1 r2 LN
al / T \ a3
*arbollzq = Al *arbolDer = AD

*elem = E

/* post: (subirlnfo2 = TRUE, se debe subir el elemento *elem, *arbolDer y *arbollzq son los nodos partidos ) v

*arbollzq T *arbolDer
*elem =E
/0 r1 T /0 r2 T
4 } d }
al Al AD a3

( subirInfo2 = FALSE, a ya incluye el elemento *elem */

al

static int subirInfo2( Arbol23 a, Tipo23 *elem, Arbol23 *arbolDer, Arbol23 *arbollzq )
{ Arbol23 nuevo;
if( a->raiz2 == VACIO ) /* hay campo en ese nodo: reorganizar */
{ a->raiz2 = *elem;
a->hijo2 = *arbollzq;
a->hijo3 = *arbolDer;
return FALSE;

else /* no hay campo en el nodo: partir y subir */
{ nuevo= (Arbol23 )malloc( sizeof ( TArbol23));

nuevo->hijo3 = NULL,;

nuevo->raiz2 = VACIO;

nuevo->raizl = a->raiz2;

nuevo->hijol = *arbolDer;

nuevo->hijo2 = a->hijo3;

a->hijo2 = *arbollzq;

a->hijo3 =NULL,;

a->raiz2 = VACIO;

*arbollzq = a;

*arbolDer = nuevo;

return TRUE;
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/* pre: aes el arbol original, se insert6 un elemento en el subarbol 3,
se partiod dicho subarbol en *arbolDer y *arbollzq, viene subiendo el elemento *elem */

a—— r1 T r2
al a2 / x \
*arbollzq = Al *arbolDer = AD
*elem =E

/* post: subirlnfo3 = TRUE, se debe subir el elemento *elem, *arbolDer y *arbollzq son los nodos partidos */

*arbollzq T *arbolDer
*elem =r2
/0 r1 T /0 E T
~ v ¥ v
al a2 Al AD

static int subirInfo3( Arbol23 a, Tipo23 *elem, Arbol23 *arbolDer, Arbol23 *arbollzq )
{ Arbol23 nuevo;

nuevo = ( Arbol23 )malloc( sizeof ( TArbol23 ) );

nuevo->hijo3 = NULL;

nuevo->raiz2 = VACIO;

/* No hay campo en el nodo: tiene que seguir subiendo */

nuevo->raizl = *elem;

nuevo->hijol = *arbollzq;

nuevo->hijo2 = *arbolDer;

*elem = a->raiz2;

a->raiz2 = VACIO;

a->hijo3 = NULL;

*arbollzq = a;

*arbolDer = nuevo;

return TRUE;

5.8.5. Algoritmo de Eliminacion

El proceso de supresion de un elemento de un arbol 2-3 considera dos grandes casos, los cuales terminan
siempre en el mismo proceso:

Caso 1: El elemento que se quiere eliminar estd en una hoja. Alli se pueden presentar las siguientes
situaciones, con la respectiva solucion:

Caso Situacion inicial Solucion

’ | |
(e (1T LT
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J /:_1 /:_1

L Il e
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| [ v

clem| [ | { | [ v
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] L1 O]

[elem

L Il ] o] ] I

Sélo en las situaciones F y L el arbol pierde un nivel, caso en el cual se debe replicar recursivamente la
politica de préstamo entre hermanos, pero teniendo cuidado de mover adecuadamente los subarboles
correspondientes, tal como se muestra en el ejemplo 5.16.

Caso 2: El elemento que se quiere eliminar no esta en una hoja. En ese caso, se busca un valor que se
encuentre en una hoja y que pueda remplazar el valor en cuestion (siguiendo un proceso
equivalente al utilizado en arboles binarios ordenados, en el cual se localiza el menor valor del
subarbol derecho), y luego se utiliza la solucion planteada para el caso 1.
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Situacion inicial

Eliminar v2 de una hoja (Caso 1)

Situacion intermedia:

Q ﬁj

/Z.T

[e

LI (e

(=

JLL (e

Ejemplo 5.16:

Considere el siguiente proceso para eliminar el elemento 63 del arbol 2-3 de la figura:

15 | 63

[ 1|8 30 79
Lo [ JET Jlelw ]zl Lol oo el ]
(1) Se busca un valor en una hoja que
15 | 65 pueda ocupar el espacio que va a
liberar el 63. Se escoge para esto el
elemento 65 (caso 2-R), y se replantea
[ 1|8 30 79 el problema para eliminar este valor.

(2) El tercer subarbol entra en el caso
1-F, en el cual se pierde un nivel. Se
llega al siguiente caso intermedio,
porque el arbol debe decrecer por la
raiz.
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F 65 (3) El arbol completo llega al caso 1-P,
1 en el cual el segundo subarbol no tiene
raiz derecha para prestarsela al tercer
[1 s " j subarbol. Se debe aplicar la soluciéon
planteada para ese caso, pero teniendo
F en cuenta que el elemento no es una
hoja, ue también deben moverse los
[ ° | ][ 2 | ][ i H 27| H * | ][ i | o ] sujbér)tgc?Ies asociados.

(4) El proceso termina porque el arbol
ya es estructuralmente correcto.

J

Ejemplo 5.17:
Considere la siguiente secuencia de eliminaciones del arbol 2-3 de la figura:

(1) Eliminar el valor 9. Corresponde al
caso 1-N. La solucion no modifica la
estructura del arbol.

[

(2) Eliminar el valor 1. Corresponde al
caso 2-Q. Se remplaza por el valor 2 y
se elimina este nuevo valor.

(3) Al tratar de eliminar el valor 2 de
una hoja, se llega al caso 1-K, cuya
solucion deja el arbol balanceado.

Ll Je el el el o]
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15
2 30 | 65

(4) Eliminar el valor 14.

(5) Eliminar el elemento 0. El primer
subarbol pierde un nivel, y toma la raiz
izquierda del hermano para compensar
el nivel perdido. Al pasar la raiz
izquierda al padre, debe reacomodar
todos los subarboles.

—_—
N
©
___
—
N
~
L
—
o)
S

(6) Eliminar los elementos 81 y 8.

T

(7) Eliminar el elemento 60.

(8) El segundo subarbol pierde un nivel,
y no puede tomar ningun otro elemento
del arbol para compensarlo. Se llega a
la siguiente situacién intermedia:

(9) El arbol completo perdié un nivel
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La rutina que elimina un elemento de un arbol 2-3 llama una funcion auxiliar (eliminar), la cual suprime el
elemento pedido e informa si el arbol completo debe perder un nivel. En este ultimo caso, como el arbol
resultante viene como primer subarbol, elimina el nodo de la raiz y deja como respuesta dicho subarbol.

/* pre: a= A, elem estd en a */
/* post: a= A - elem */

Arbol23 elimArbol23( Arbol23 a, Tipo23 elem )
{ Arbol23 p;
if( eliminar( a, elem ) )
{ p=g
a=a->hijol;
free(p);
H

return a;

}

La funcién eliminar lleva todo el control del proceso de supresion de un valor. Primero considera el caso en el
cual el elemento ya ha sido localizado (en una hoja o en un nodo interior), y luego plantea diferentes avances
de la recursién segun el valor del elemento. Utiliza 3 rutinas auxiliares (restaurarl, restaurar2, restaurar3) para
alterar la estructura, de tal forma que se restauren las caracteristicas del arbol, teniendo en cuenta el subarbol
sobre el cual se ha hecho la operacién. También se vale de una funcidn auxiliar (menor) para obtener el menor
elemento de un arbol 2-3.

Al final, la funcién retorna TRUE si el arbol perdié un nivel, y FALSE en caso contrario.
/* pre: a= A, elem estd en a */

/* post: (eliminar = TRUE, a = A - elem, el arbol perdio el nivel de la raiz ) v
( eliminar = FALSE, a = A - elem, el arbol no perdi6 ningtn nivel ) */
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int eliminar( Arbol23 a, Tipo23 elem )
{ Tipo23 temp;
if( a->raizl ==elem )

{ if( a-=>hijol ==NULL) /* es una hoja */
{ if(a->raiz2 == VACIO)
return TRUE;
else

a->raizl = a->raiz2;
a->raiz2 = VACIO;
return FALSE;
H
else
{  temp = menor( a->hijo2 );
a->raizl = temp;
return eliminar( a->hijo2, temp ) ? restaurar2( a ) : FALSE;

H
H
else if( a->raiz2 == elem )
{ if( a-=>hijol ==NULL) /* es una hoja */
{ a->raiz2 = VACIO;
return FALSE;
H
else

{  temp = menor( a->hijo3 );
a->raiz2 = temp;
return eliminar( a->hijo3, temp ) ? restaurar3( a ) : FALSE,;

}

else if( elem < a->raizl )

return eliminar( a->hijol, elem ) ? restaurarl( a ) : FALSE;
else if( a->raiz2 == VACIO || elem < a->raiz2 )

return eliminar( a->hijo2, elem ) ? restaurar2( a ) : FALSE;
else

return eliminar( a->hijo3, elem ) ? restaurar3( a ) : FALSE;

}

La funcién que calcula el menor elemento de un arbol 2-3 se plantea de manera iterativa, avanzando siempre
sobre el primer subarbol hasta que éste sea vacio:

/* pre: a no es vacio */
/* post: menor = menor elemento del arbol a */

Tipo23 menor( Arbol23 a)
{ while( a->hijol '=NULL )
a=a->hijol;
return a->raizl;

}

La rutina restaurarl toma la raiz izquierda del segundo subarbol para intentar suplir el vacio que tiene en su
raiz izquierda. Si éste tiene raiz derecha, reacomoda este valor y los subarboles asociados. Si no tiene raiz
derecha, hace una llamada a la funcién restaurar2, para que resuelva el problema de colocar un elemento en la
raiz izquierda del segundo subarbol.
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/* pre: a = A, el primer subarbol de a perdio el nivel de la raiz */

Disefio y Manejo de Estructuras de Datos en C

/* post: ( restaurar = TRUE, a y A tienen los mismos elementos, el arbol a perdié el nivel de la raiz ) v
( restaurar = FALSE, a y A tienen los mismos elementos, el arbol a tiene todos los niveles completos ) */

int restaurar1( Arbol23 a )

{

}

a->hijol->raizl = a->raizl;

a->raizl = a->hijo2->raizl;

a->hijo1->hijo2 = a->hijo2->hijol;

a->hijo2->hijol = a->hijo2->hijo2;
a->hijo2->hijo2 = NULL;

if( a->hijo2->raiz2 = VACIO)

{  a->hijo2->raizl = a->hijo2->raiz2;
a->hijo2->raiz2 = VACIO;
a->hijo2->hijo2 = a->hijo2->hijo3;
a->hijo2->hijo3 = NULL,;
return FALSE;

H

return restaurar2( a );

La rutina restaurar2 intenta llenar el espacio de la raiz izquierda del segundo subarbol tomando un valor de
alguno de sus hermanos. Si no puede reacomoda la informacion y pierde un nivel:

/* pre: a = A, el segundo subarbol de a perdi6 el nivel de la raiz */

/* post: ( restaurar = TRUE, a y A tienen los mismos elementos, el arbol a perdié el nivel de la raiz ) v
( restaurar = FALSE, a y A tienen los mismos elementos, el arbol a tiene todos los niveles completos ) */

int restaurar2( Arbol23 a )

{

if( a->raiz2 != VACIO)

{ a->hijo2->raizl = a->raiz2;
a->hijo2->hijo2 = a->hijo3->hijo1;
a->raiz2 = a->hijo3->raizl;
a->hijo3->hijol = a->hijo3->hijo2;
if( a->hijo3->raiz2 |= VACIO)

{  a->hijo3->raizl = a->hijo3->raiz2;

a->hijo3->raiz2 = VACIO;

a->hijo3->hijo2 = a->hijo3->hijo3;

a->hijo3->hijo3 = NULL;
return FALSE;
§

return restaurar3( a );

H

else if( a->hijol->raiz2 != VACIO )

{ a->hijo2->raizl = a->raizl;
a->raizl = a->hijol->raiz2;
a->hijol->raiz2 = VACIO;
a->hijo2->hijo2 = a->hijo2->hijo1;
a->hijo2->hijol = a->hijol->hijo3;
a->hijol->hijo3 = NULL,;
return FALSE;
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else
{ a->hijol->raiz2 = a->raizl;
a->hijol->hijo3 = a->hijo2->hijo1;
free( a->hijo2 );
return TRUE;
H
H

La rutina restaurar3 realiza el proceso equivalente sobre el tercer subarbol:

/* pre: a = A, el tercer subarbol de a perdio el nivel de la raiz */
/* post: ( restaurar = TRUE, a y A tienen los mismos elementos, el arbol a perdié el nivel de la raiz ) v
( restaurar = FALSE, a y A tienen los mismos elementos, el arbol a tiene todos los niveles completos ) */

int restaurar3( Arbol23 a )

{ if( a-=>hijo2->raiz2 != VACIO )
a->hijo3->raizl = a->raiz2;
a->raiz2 = a->hijo2->raiz2;
a->hijo2->raiz2 = VACIO;
a->hijo3->hijo2 = a->hijo3->hijo1;
a->hijo3->hijol = a->hijo2->hijo3;
a->hijo2->hijo3 = NULL,;

else

{  a->hijo2->raiz2 = a->raiz2;
a->hijo2->hijo3 = a->hijo3->hijo1;
a->raiz2 = VACIO;
free( a->hijo3 );
a->hijo3 = NULL;

H

return FALSE;

Ejercicios Propuestos

5.60. Muestre los estados intermedios que alcanza un arbol 2-3 al insertar la siguiente secuencia de valores:
10-20-30-40-50-60-70-80-90-100-110-120-130-140-150-160-170-180 - 190 - 200

5.61. Muestre los estados intermedios que alcanza un arbol 2-3 al insertar la siguiente secuencia de valores:
75-90-23-12-1-56-32-45-19-43-7-14-86

5.62. Muestre los estados intermedios que alcanza un arbol 2-3 al insertar la siguiente secuencia de valores:
65-75-85-15-25-35-45-55-95-100-11-22-33-44-56-67-78-89

5.63. Muestre los estados intermedios que alcanza un arbol 2-3 al insertar la siguiente secuencia de valores:
11-56-67-33-65-44-89-75-45-55-95-78-22-85-15-25-35-100

5.64. Para el arbol 2-3 de la figura, muestre los estados intermedios al eliminar la siguiente secuencia de
valores:

15-63-14-79-27-29-0-1-81
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15 | 63
[2 8 30 79

[0|1][5|7][9 14][27|29][60|61][65|70]81 99

5.65. Para el arbol 2-3 de la figura, muestre los estados intermedios al eliminar la siguiente secuencia de

5.66.
5.67.

5.68.

5.69.

5.70.
5.71.

5.72.

5.73.

5.74.

5.75.

valores:

0-5-9-27-60-65-81-91-2-8-30-79-90-15-63

F‘es
LZ 8 30 79?1
N PR
oL Gl el e Jles] el J L] ]

¢, Cual es el nimero minimo y maximo de elementos que puede contener un arbol 2-3 con k niveles?

¢, Cual es el nUmero minimo y maximo de elementos que puede contener un arbol B de orden n con k
niveles?

Calcule la complejidad de cada una de las operaciones del TAD Arbol23, considerando el peor de los
casos.

int esArbol23( Arbol23 a )
/* Informa si un arbol 2-3 es estructuralmente correcto */

Disefie unas estructuras de datos adecuadas para implementar el TAD ArbolB. Justifique su disefio.
Utilizando el resultado del ejercicio anterior, implemente la operacién de busqueda en un arbol B.

Utilizando el resultado del ejercicio 5.70, implemente la operacion de insercion en un arbol B,
generalizando el algoritmo presentado en la seccién anterior.

Utilizando el resultado del ejercicio 5.70, implemente la operacién de eliminacion de un arbol B,
generalizando el algoritmo presentado en la seccién anterior.

Un arbol B* es un arbol B, en el cual todos los nodos (excepto posiblemente la raiz) tienen
por lo menos 2n/3 elementos, donde n es el orden del arbol. Esto obliga a que el algoritmo de insercion
postergue la decisién de partir un nodo en dos, hasta cuando haya dos nodos contiguos completamente
llenos. En caso contrario, los elementos de un nodo se desplazan horizontalmente para abrir el espacio
necesario para acomodar el nuevo valor. Desarrolle el algoritmo de insercion para este tipo de arboles,
utilizando la representacién obtenida en el ejercicio 5.70.

Enuncie las ventajas y las desventajas de los arboles B* frente a los arboles B.

5.9. EI TAD Trie: Conjunto de Palabras

Un trie es una estructura recursiva utilizada para representar de una manera compacta y eficiente un conjunto
de palabras. Un trie es un arbol n-ario, en el cual cada elemento es un caracter y cada rama una palabra del
conjunto, como se muestra en la figura 5.6.
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/N
VARV
A A
2N NN

Fig. 5.6 - Ejemplo de un trie

En esta estructura todos lo prefijos comunes de las palabras comparten su representacion. En el ejemplo de
la figura 5.6, aparece representado el conjunto { "CAMA", "CASA", "CASO", "RIO", "ROMA", "ROMOQ",
"ROSA" }, donde cada palabra comparte los prefijos comunes con las demas. En un trie es necesario agregar
un caracter especial para los casos en los cuales un prefijo de una palabra, es una palabra en si misma. Para
agregar las palabras "CASAS" y "ROSAL" al trie de la figura 5.6, sin perder las palabras "CASA' y "ROSA"
que son un prefijo de las nuevas, se debe incluir una marca especial para indicar que ambas ramas siguen
siendo validas, como se muestra en la figura 5.7.

/N

R4 /N
/\//\

//\ /\\
/\ /\

Fig 5.7 - Ejemplo de un trie

Para la administracion de un trie, el TAD cuenta con 4 operaciones basicas: una constructora, dos
modificadoras (adicionar y eliminar) y una analizadora (buscar), con la siguiente especificacion:

TAD Trie

{inv: todos los elementos son caracteres,

C1 < "'<Ci< <Cn,
aq, ao, ..., ap son tries,

solo las hojas pueden ser el caracter ™',

la raiz de toda la estructura es el caracter ' '}
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Constructoras:
° inicTrie: — Trie

Modificadoras:

. insTrie: Trie X char * — Trie
. elimTrie: Trie X char * — Trie
Analizadoras:

. estaTrie: Trie X char * — int

Trie inicTrie( void )
/* Crea un trie vacio */

{ post: inicTrie = A }

void insTrie( Trie t, char *elem )
/* Inserta una palabra al trie */

{pre:elem ¢ t,t=T, strlen(elem ) >0}
{post:t=T + elem }

void elimTrie( Trie t, char *elem )
/* Elimina una palabra del trie */

{pre:elemet, t=T}
{post:t=T -elem}

int estaTrie( Trie t, char *elem )
/* Informa si una palabra se encuentra en el trie */

{ post: estaTrie = (elem e t)}

Para ilustrar la algoritmica de este tipo de estructuras, se escoge la representacién hijo izquierdo - hermano
derecho, con las siguientes declaraciones:

typedef struct NodoTRIE

{ char info; /* Raiz del arbol */
struct NodoTRIE *hijo; /* Encadenamiento al hijo izquierdo */
struct NodoTRIE *hermano; /* Encadenamiento al hermano derecho */

} TTrie, *Trie;
La rutina que se presenta a continuacién implementa la operacion de busqueda en un frie. Es una rutina con

un planteamiento iterativo sencillo, que aprovecha las facilidades de aritmética sobre apuntadores que da C,
para disminuir el tamano de la palabra buscada a medida que se van encontrando los caracteres iniciales.
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int estaTrie( Trie t, char *elem )

{

for( t=t->hijo; t = NULL && strlen( elem ) != 0; elem++, t = t->hijo )
{  for(; t'=NULL && t->info < elem[ 0 ]; t = t->hermano );
if( t==NULL || t->info > elem[ 0 ] )
return FALSE;

H
return (t == NULL && strlen( elem ) == 0 ) || t->info =="*',

Ejercicios Propuestos

5.76.

5.77.

5.78.

5.79.

5.80.

5.81.

5.82.

5.83.

5.84.

5.85.

5.86.

5.87.

5.88.

5.89.

5.90.

Implemente y pruebe la operacidon que crea un trie vacio (inicTrie), utilizando como representacion
interna el esquema hijo izquierdo - hermano derecho.

Implemente y pruebe la operacién que inserta una palabra en un frie (insTrie), utilizando como

representacion interna el esquema hijo izquierdo - hermano derecho.

Implemente y pruebe la operacidon que elimina una palabra de un frie (elimTrie), utilizando como

representacion interna el esquema hijo izquierdo - hermano derecho.

Implemente y pruebe una operacién que verifique que un frie es estructuralmente correcto (esTrie),
utilizando como representacion interna el esquema hijo izquierdo - hermano derecho.

Implemente y pruebe la operacion que crea un trie vacio (inicTrie), utilizando como representacion
interna un vector fijo de 27 posiciones, cada uno representando la respectiva letra.

Implemente y pruebe la operacién que inserta una palabra en un frie (insTrie), utilizando como

representacion interna un vector fijo de 27 posiciones, cada uno representando la respectiva letra.

Implemente y pruebe la operacién que elimina una palabra de un trie (elimTrie), utilizando como
representacion interna un vector fijo de 27 posiciones, cada uno representado la respectiva letra.

Implemente y pruebe la operacién que busca una palabra en un frie (estaTrie), utilizando como
representacion interna un vector fijo de 27 posiciones, cada uno representando la respectiva letra.

Implemente y pruebe una operacién que verifique que un frie es estructuralmente correcto (esTrie),
utilizando como representacion interna un vector fijo de 27 posiciones, cada uno representado la
respectiva letra.

Implemente y pruebe la operacidon que crea un trie vacio (inicTrie), utilizando como representacion
interna un vector dinamico.

Implemente y pruebe la operacién que inserta una palabra en un frie (insTrie), utilizando como

representacion interna un vector dinamico.
Implemente y pruebe la operaciéon que elimina una palabra de un frie (elimTrie), utilizando como
representacion interna un vector dinamico.
Implemente y pruebe la operacién que busca una palabra en un frie (estaTrie), utilizando como
representacion interna un vector dinamico.

Implemente y pruebe una operacién que verifique que un frie es estructuralmente correcto (esTrie),
utilizando como representacion interna un vector dinamico.

Disefie e implemente un esquema de persistencia para un frie.
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5.10. El TAD Cuadtree: Representacion de Imagenes

Un cuadtree es una estructura arborescente utilizada con frecuencia para representar imagenes obtenidas de
una camara. Una imagen digitalizada en blanco y negro es un espacio rectangular compuesto de N x N
pixels (donde N es una potencia de 2), cada uno representando un punto (blanco o negro) de la imagen. La
representacion usual de una imagen es una matriz de N x N, con ceros y unos mostrando los pixels blancos y
negros, como se sugiere en la figura 5.8 para una imagen de 8 x 8.

0|0jofofo]0]of0
1[1[1]1]0f0]J0]0O
1]11]1]1[0oJojofO
1]1]0{0f0]0]0 (O
ofjojofof1y1]1|1
0]0j0j011 111111
oj11110111111 11
Of[1]1]0[1]1]1]1

Fig. 5.8 - Representacion de una imagen con una matriz

Un cuadtree es un arbol 4-ario que permite representar de manera compacta una imagen, que en otro caso
podria ocupar grandes cantidades de memoria. Un cuadiree tiene tres tipos de elementos: blancos, negros y
grises, que representan un grupo de pixels de la imagen segun el esquema recursivo de representacion
planteado en la figura 5.9.

. 0
—

"m0

Fig. 5.9 - Tipos de nodos en un cuadtree

Esto es, la raiz del cuadtree representa la imagen completa: si la imagen es toda negra, el cuadtree tiene un
solo elemento con valor NEGRO. Si la imagen es completamente blanca, tiene un solo elemento con valor
BLANCO. En cualquier otro caso, la imagen se representa con un nodo GRIS, y se le asocian 4 subarboles,
cada uno representando uno de los cuadrantes resultantes al dividir la imagen en 4 cuadros iguales (esto es
posible gracias a que N es una potencia de 2). Al continuar este proceso recursivamente se obtiene la
representacion completa de la imagen por medio de una estructura arborescente compacta.

Ejemplo 5.18:
Considere la siguiente imagen de 8 x 8 pixels:
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La raiz del cuadtree que la representa debe ser un nodo gris, para indicar que no todos los pixels de la
imagen son del mismo color. Luego, se parte la imagen en 4 cuadrantes y se aplica recursivamente el
mismo proceso, asociando los cuadtrees resultantes como subarboles:

= &

Hasta llegar al siguiente arbol 4-ario, que representa la imagen completa:

_—/X
D AN

Slew lee €8O Sebe 60

El TAD Cuadtree tiene definidas cuatro operaciones basicas que permiten encender (colocar en blanco),
apagar (colocar en negro), inicializar y preguntar por el valor de cualquier pixel de una imagen. Por

simplicidad, el TAD presentado solo manipula imagenes de 512 x 512, pero seria perfectamente posible
parametrizar dicho valor.

J

TAD Cuadtree

al a2

a3 a4

{inv: (e=BLANCO=aq=agp=ag=ag=A)
(e=NEGRO=aq=agp=ag=ag=A)
(e =GRIS = aq# A, ag# A, ag# A, ag# A, los hijos no son todos BLANCOS, ni todos NEGROS ) }
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Constructoras:
e inicCuadtree: — Cuadtree

Analizadoras:
e valorPixel: Cuadtree X int X int — int

Modificadoras:
e blancoPixel: Cuadtree x int X int — Cuadtree
e negroPixel: Cuadtree x int X int — Cuadtree

Cuadtree inicCuadtree( void )
/* Crea un cuadtree completamente blanco */

{ post: inicCuadtree = }

Cuadtree blancoPixel( Cuadtree c, int fil, int col )
/* Coloca en blanco el pixel de coordenadas [ fil, col ] */

{pre: 0 <fil<511,0<col <511}
{ post: blancoPixel[ fil, col ] = BLANCO, los demas pixels conservan su valor }

Cuadtree negroPixel( Cuadtree c, int fil, int col )
/* Coloca en negro el pixel de coordenadas] fil, col ] */

{pre: 0 <fil<511,0<col< 511}
{ post: negroPixell fil, col ] = NEGRO, los demas pixels conservan su valor }

int valorPixel( Cuadtree c, int fil, int col )
/* Retorna el valor del pixel de coordenadas [ fil, col ] */

{pre: 0 <fil<511,0<col <511}
{ post: ( valorPixel = 0, c[ fil, col ] = NEGRO ) v ( valorPixel = 1, c[ fil, col ] = BLANCO ) }

Para la implementacion del TAD se van a utilizar las siguientes estructuras de datos:
#define BLANCO 1
#define NEGRO 0
#define GRIS -1

typedef struct NodoCuadtree

{ intinfo; /* BLANCO, NEGRO o GRIS */
int infx, infy; /* Coordenada inferior del cuadrante */
int supx, supy; /* Coordenada superior del cuadrante */

struct NodoCuadtree *hijos[ 4 ];
} TCuadtree, *Cuadtree;

En la figura 5.10 aparece un ejemplo de la manera como serian las estructuras de datos:
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0 255 | 256 511
0
255
256
511
GRIS 0 0
L1/ 451151
GRIS 0 0 GRIS 0 |256 GRIS 256 0 GRIS |256 |256
255] 255 255] 511 511|255 511|511

74 T R S

Fig. 5.10 - Estructuras de datos para un cuadtree

Se presenta a continuacién la implementacion de dos de las operaciones del TAD Cuadtree sobre las
estructuras de datos antes sugeridas:

e La operacion analizadora valorPixel considera dos casos: si la raiz tiene un color diferente a GRIS
(BLANCO o NEGRO), el pixel tiene dicho valor. En caso contrario, localiza el cuadrante que contiene el
pixel y desciende recursivamente por alli:

int valorPixel( Cuadtree c, int fil, int col )

{ intnc;
if( c->info != GRIS)
return c->info; /¥* NEGRO o BLANCO */
else

{ nc = cuadrante( c, fil, col );
return valorPixel( c->hijos[ nc - 1 ], fil, col );

e La funcidn cuadrante es una rutina de utilidad, que retorna el cuadrante en el cual se encuentra el pixel [ fil,
col ] dentro del cuadtree c. Para esto divide en dos el rango de valores en la coordenada x y el rango de

valores en la coordenada y, y determina en cual de los cuatro cuadrantes esta el pixel buscado, como se
muestra en la figura 5.11.
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infy supy

infx

<+—- (infx+supx ) /2

supx

(infy+supy ) /2

Fig. 5.11- Divisién en 4 cuadrantes de un cuadtree

int cuadrante( Cuadtree c, int fil, int col )
{ if(fil<=(c->infx +c->supx)/2) /* cuadrante 1 6 2 */
return ( col <= (c->infy + c->supy )/2) ? 1: 2;
else
return ( col <= ( c->infy + c->supy )/2)? 3: 4;

e La rutina que coloca un pixel en blanco, considera tres casos: si la raiz es GRIS, localiza el cuadrante en
el que se encuentra el pixel y hace una llamada recursiva sobre dicho subarbol. Si la dimension del
cuadtree es 1 X 1 (solo tiene un pixel), lo coloca en BLANCO. Si la raiz del cuadtree es de color NEGRO,
la cambia por gris, crea los 4 subarboles correspondientes de color NEGRO, y finalmente hace una
llamada recursiva sobre el subarbol que contiene el pixel. La rutina crear se encarga de construir un nodo
de color NEGRO, con las coordenadas dadas en los parametros.

Cuadtree blancoPixel( Cuadtree c, int fil, int col )
{ intnc, mx, my;
if( c->info == GRIS )
{ nc = cuadrante( ¢, fil, col );
c->hijos[ nc-1 | = blancoPixel( c->hijos[ nc-1 ], fil, col );
if( c->hijos[ 0 ]->info == BLANCO && c->hijos[ 1 ]->info == BLANCO &&
c->hijos[ 2 ]->info == BLANCO && c->hijos[ 3 ]->info == BLANCO )
{  c->info = BLANCO;
free( c->hijos[ 0 ] ); free( c->hijos[ 1 ] ); free( c->hijos[ 2 ] ); free( c->hijos[ 3 ]);
c->hijos[ 0 ] = c->hijos[ 1 ] = c->hijos[ 2 ] = c->hijos[ 3 ] = NULL,;
H
H
else if( c->infx == c->supx )
c->info = BLANCO;
else if( c->info == NEGRO )
{  c->info = GRIS;
mx =( c->infx + c->supx ) / 2;
my =( ¢c->infy + c->supy) / 2;
c->hijos[ 0 ] = crear( c->infx, c->infy, mx, my );
c->hijos[ 1 ] = crear( c->infx, my+1, mx, c->supy );
c->hijos[ 2 ] = crear( mx+1, ¢c->infy, c->supx, my );
c->hijos[ 3 ] = crear( mx+1, my+1, c->supx, c->supy );
nc = cuadrante( ¢, fil, col );
c->hijos[ nc-1 | = blancoPixel( c->hijos[ nc-1 ], fil, col );
H

return c;
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Ejercicios Propuestos

5.91.

5.92.
5.93.

5.94.

5.95.

Dibuje el cuadtree correspondiente a la siguiente imagen de 16 x 16 pixels:

Implemente la operacion del TAD Cuadtree que inicializa una imagen en BLANCO (inicCuadtree).

Implemente la operacion del TAD Cuadtree que coloca un pixel de una imagen en NEGRO (negroPixel).

Adicione al TAD Cuadtree una operacion que coloque en color NEGRO una zona de la imagen,
determinada por 2 coordenadas ( [ minx, miny ], [ maxx, maxy ] ). Utilice directamente las estructuras de
datos. La complejidad de la operacion debe ser lo minima posible (v.g. no utilice la operacion negroPixel
para colocar en NEGRO cada pixel de la zona en cuestion).

Adicione al TAD Cuadtree una operaciéon que coloque en color BLANCO una zona de la imagen,
determinada por 2 coordenadas ( [ minx, miny ], [ maxx, maxy ] ). Utilice directamente las estructuras de
datos. La complejidad de la operacion debe ser lo minima posible (v.g. no utilice la operacion
blancoPixel para colocar en BLANCO cada pixel de la zona en cuestion).

5.11. EI TAD Arbol AND-OR

Un arbol AND-OR es un arbol n-ario, utilizado para representar conocimiento sobre grupos de tareas que se
deben ejecutar para lograr algun objetivo. En la figura 5.12 aparece un ejemplo de un arbol AND-OR, que
explica la manera de hacer la tarea T1. Un arbol AND-OR tiene dos tipos de nodos: los nodos AND vy los
nodos OR. Por ejemplo, para el arbol de la figura 5.12, se tiene que para lograr T1, se deben realizar las
tareas T2, T3, T4 (un nodo AND). Por su parte, para hacer la tarea T2, es suficiente con terminar T5 o T6 (un
nodo OR). Las tareas T4, T5, T9, etc., que no estdn compuestas por subtareas, se conocen como tareas
atémicas.

T1

fnl\ ﬁ\; )
T9 110 T11 T12

Fig. 5.12 - Ejemplo de arbol AND-OR
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Una tarea atdmica puede estar en dos estados: ejecutada o sin ejecutar. Por su parte, el estado de una tarea
no atdmica depende del estado de sus hijos: si es un nodo AND, esta ejecutada si todos sus hijos estan
ejecutados. Un nodo OR esta ejecutado si por lo menos uno de sus hijos ha sido realizado. Si se sefiala con
una marca el hecho de haber sido ejecutado, algunos estados posibles para un arbol AND-OR aparecen en la
figura 5.13.

T2 T2

T1 T1

T T

/-\ P\ ) ./-\ /‘3\ M
” /ﬁ{ T8 TS /ﬁ{ T8

T9 T10 T11 T12 T9 T10 T11 T12

Fig. 5.13 - Arboles AND-OR con algunas tareas ejecutadas

En un arbol AND-OR cada tarea tiene un identificador, que es Unico al interior de la estructura, el cual, para
efectos practicos, se puede considerar una cadena de caracteres.

Ejercicios Propuestos

5.96. Disefie y especifique el TAD ArbolAO.

5.97. Disefie unas estructuras de datos para el TAD ArbolAO, especificado en el ejercicio anterior, y muestre
claramente el esquema de representacion propuesto.

5.98. Implemente y pruebe las operaciones del TAD ArbolAO sobre las estructuras de datos disefiadas
en el ejercicio anterior.

Sobre las estructuras de datos disefiadas en el ejercicio 5.97, implemente las siguientes rutinas:

5.99. int contarAtomicas( ArbolAO a )
/* Calcula y retorna el nimero de tareas atémicas que aparecen como ejecutadas */

5.100.void hacerAtomica( ArbolAO a, char *nomTarea )
/* Coloca como realizada la tarea atébmica de nombre nomTarea y actualiza todo el arbol. Supone que
una tarea con ese nombre existe y que no esta ejecutada */

5.101.void deshacerAtomica( ArbolAO a, char *nomTarea )
/* Coloca como no realizada la tarea atdmica de nombre nomTarea y actualiza todo el arbol. Supone que
una tarea con ese nombre existe y que esta ejecutada */

5.102.int minimoAtomico( ArbolAO a )
/* Calcula y retorna el nimero minimo de tareas atémicas que se deben hacer desde la situacién actual
para tener terminada la tarea global . */

5.103.Disefe unas estructuras de datos para el TAD ArbolAO, de tal manera que si las operaciones criticas
son las presentadas en los cuatro ejercicios anteriores, su implementacion sea lo mas eficiente posible.
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5.12. Arboles de Juego

Otra aplicacion de arboles n-arios es la representacion de posibles movimientos para un juego, de tal manera
que el algoritmo que se encarga de seleccionar una jugada se reduzca a buscar sobre dicha estructura un
movimiento que maximice las posibilidades de ganar. La idea se ilustra en esta seccidn con el juego de triqui.

La raiz del arbol es el estado actual de la partida. Sus hijos son los estados que se pueden alcanzar en el
juego, haciendo un movimiento. Los hijos de los hijos son los estados a los que se puede llegar después de
hecha la jugada del contrincante. En la figura 5.14 se muestra un posible arbol de juego.

X|0]| x
0
X |0 x x|0]| x X[ 0| x x| 0] x x| 0] x
X0 0]x 0 0 0
X X X
X[ 0] x X|0]x x| 0| x X[ 0| x
0|0 0|0 0 0
X X X0 X 0
X| 0| x X| 0] x X0 x
0/0]x 0|0 0[0
X x| x X X

Fig. 5.14 - Arbol de juego para triqui

Para evaluar un movimiento de un jugador, se pueden examinar varias jugadas hacia adelante y ver qué tan
buenas son las diferentes posiciones resultantes. Se define la profundidad de analisis como el numero de
movimientos futuros que van a ser considerados en la evolucion de una jugada. Entre mayor profundidad se
utilice, mas certeza se tiene sobre la calidad de la jugada, pero mas tiempo y memoria se requiere. Muchos
juegos de ajedrez asocian el nivel de juego (principiante o experto) con la profundidad de analisis, y por eso
hace mejores jugadas, pero les toma una mayor cantidad de tiempo.

Para seleccionar la mejor jugada, se debe intentar maximizar el valor de la jugada propia y minimizar el valor
de la jugada del oponente. Esto es, hacer la mejor jugada posible, garantizando que la mejor respuesta del
contrincante lo lleve a la peor situacién posible.

Esto obliga a establecer una medida de calidad de una jugada, en términos del estado del tablero al cual se
llega. El nivel de profundidad de analisis establece qué tan precisa es esta medida de calidad, puesto que
considera una mayor o menor cantidad de informacion. El proceso de evaluacién parte de la asignacion de
una calificacion a cada hoja del arbol (el ultimo nivel explorado). Este valor se calcula utilizando unicamente el
estado del tablero en ese punto. Existen muchas formas de hacer esta evaluacion, quedando en ella
consignada una estrategia de juego.

Una forma posible de hacer esta evaluacién para el juego de triqui es sumar el nimero de filas, columnas y
diagonales que permanecen abiertas para un jugador, y restar de alli el nUmero de éstas que permanecen
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abiertas a su oponente (el valor 9 indica triunfo y el valor -9 indica derrota). Entre mayor sea dicho valor, mejor
es llegar a ese estado del juego. En la figura 5.15 aparece ilustrada esta funcion de evaluacién para una hoja.

jugador: oponente: calificacion:
X|0| x filas: 1 filas: 2
0 columnas: 2 columnas: 1 3-3=0
diagonales: 0 diagonales: 0
X|0| x filas: 1 filas: 2
0 columnas: 1 columnas: 1 4-3=1
diagonales: 2 diagonales: 0
X|0]0 filas: 2 filas: 1
X columnas: 1 columnas: 1 4-2=2
diagonales: 1 diagonales: 0
X filas: 1 filas: 1
0 0 columnas: 1 columnas: 1 2-3=-1
X
diagonales: 0 diagonales: 1

Fig. 5.15- Funcion de evaluacion para las hojas

Con esta informacion en las hojas, se debe realizar un proceso para subir ese conocimiento hacia la raiz, de
manera que le pueda dar una medida de su calidad, basado en la calificacion de sus hijos. La manera de
subir esta informacion se ilustra en la figura 5.16.

@ X 8 X ~_jugador
/ X
X[ 0] x X|[0]x X[ 0] X X[ 0| x
010 0lo 0 0 Eogonente
X X 0l x x| 0

@ ® © ©

Nivel de profundidad 1: Al nivel superior se sube el valor que lleva al jugador a una peor posicion. Esto es, le da
como valor a ese tablero la peor posicion a la que pueda llevarlo el oponente con su mejor respuesta
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Nivel de profundidad 2: Al nivel 1 del arbol sube el mayor valor posible de todos los hijos. Esto es, el valor de
ese tablero es igual a la mejor respuesta que el jugador pueda dar a su oponente. Al nivel 0 sigue subiendo el
minimo de todos sus hijos, puesto que se supone que el contrario intentara hacer su mejor jugada. Fijese que la
calificacion del tablero aumenta, con respecto al nivel de profundidad 1, puesto que se hace un estudio de las

mejores respuestas que se le pueden dar al contrincante cuando hace su mejor jugada.

Fig. 5.16- Funcion de evaluacion para un arbol con nivel de andlisis 1

Ejercicios Propuestos

5.104.Utilizando las ideas dadas en la seccion anterior disefie el TAD ArbolTriqui para el juego de triqui.

5.105.Para el TAD ArbolTriqui disefie las mejores estructuras de datos posibles y defina claramente el

esquema de representacion

5106.2 OO® Implemente las operaciones del TAD ArbolTriqui sobre las estructuras de datos disefiadas en

el ejercicio anterior.

5.107.2 O Desarrolle un programa que juegue triqui, basado en el TAD ArbolTriqui.
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CAPITULO 6

ESTRUCTURAS NO LINEALES:
GRAFOS DIRIGIDOS

En este capitulo se presentan unas estructuras de datos mas generales que los arboles, que permiten
modelar relaciones no necesariamente jerarquicas entre elementos de un conjunto. Los grafos se utilizan para
representar mapas de rutas, organizacion de procesos, espacios de busqueda para juegos, circuitos légicos,
etc.

6.1. Motivacion
En 1736, los habitantes de la ciudad de Koenigsberg plantearon a Euler el problema de determinar una
manera de recorrer exactamente una vez cada uno de los siete puentes que atraviesan la ciudad, terminando

en el mismo punto de partida. Los puentes se encuentran dispuestos sobre el rio Pregal como se muestra en
la figura 6.1.

p1\ pZI y VB
7 A By,

Fig. 6.1 - Problema de los puentes de Koenigsberg
Euler demostré que no era posible encontrar dicha ruta, debido al hecho de que a cada sector llega un

ndmero impar de puentes, y modeld el problema utilizando un grafo, en el cual los cuatro elementos del
conjunto corresponden a las orillas, y, las relaciones, a los puentes, tal como se sugiere en la figura 6.2.
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el
P1 P3
P2
P4
e2 e3
P7 P6
P5
ed

Fig. 6.2 - Modelaje del problema de los puentes de Koenigsberg a través de un grafo

Desde esa época, muchos problemas se plantean y resuelven utilizando un grafo como la estructura de
modelaje. El caso tipico es el de un camién repartidor, que debe visitar diferentes puntos de la ciudad para
dejar su producto. Alli, la ciudad se representa con un grafo como el de la figura 6.3., y el algoritmo que busca
la solucidon se mueve sobre sus componentes y relaciones, teniendo en cuenta el tiempo que toma ir de un
lugar a otro.

5min 10min Bmin >
3min ( > > —
5min
7min
9min 2min

12min 1min

I3min

Fig. 6.3 - Problema del camién repartidor en una ciudad
En este capitulo se presenta el TAD Grafo, se estudia la algoritmica para resolver diversos problemas

mediante la manipulacion de este objeto abstracto, y, por ultimo, se muestran algunas de las estructuras de
datos mas utilizadas para representar internamente un grafo dirigido.

6.2. Definiciones y Conceptos Basicos

Un grafo dirigido es una estructura compuesta por un conjunto de elementos, denominados los vértices, y
por un conjunto de relaciones entre dichos elementos, denominados los arcos. El formalismo escogido para
representar un grafo es una pareja ordenada de conjuntos:

G=(V,A)

donde V es el conjunto de vértices y A el conjunto de arcos. Para efectos practicos se dice que vq, ..., Vp son
los elementos de V.

V={vq,..,Vq}
Un arco, por su parte, es una tripleta de la forma ( vj, vk, Gjk ), la cual establece una relacion entre los vértices

Vj Y vk de V, un sentido de la relaciéon ( v —» vk ), y un valor o peso asociado ( cjk ). Graficamente, una
tripleta se suele representar de la siguiente forma:

vi — K gk
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De esta forma, se puede definir el conjunto de arcos como:

A={(xy,¢c) | X, y € V, x>y, x ey estan relacionados con un valor ¢ }

Se dice que vy es sucesor de vj, si (Vj, vk, ¢ ) € A para algun c. En este mismo caso se dice que v; es
predecesor de vi. Una representacion grafica de estos conceptos se da en la figura 6.4.

yi x1
k1 c1
y2 k 1 X2
: y ecn
ym xn
Fig. 6.4 - Sucesores y predecesores del vértice v

Cada vértice v; del grafo tiene asociados dos valores: uno, corresponde a un identificador que lo distingue

como elemento Unico de V, vy, el otro, es alguna informacién asociada con el elemento. Como parte de la
notacion se utiliza vj para hablar indistintamente del vértice y de su identificador, e info( v; ) para referirse a la

informacion asociada con el vértice v;.

En un grafo dirigido existe la restriccion de que no puede haber mas de un arco entre cualquier par de
vértices, en cada uno de los sentidos. En la figura 6.5 se ilustra un caso valido y otro invalido.

Vi e VK vi vk
cki cki
(a) Situacion valida (b ) Situacion invalida

Fig. 6.5 - Dos arcos entre dos vértices

El orden de un grafo corresponde al nimero de sus elementos, es decir, a la cardinalidad del conjunto de
vértices. Cuando un grafo es de orden cero, el grafo es vacio y se representa mediante la pareja (, ). Un
vértice de un grafo es una fuente si no tiene ningun predecesor. En ese caso, no existe en el conjunto de
arcos ninguna tripleta cuyo segundo elemento sea dicho vértice. Un vértice de un grafo es un sumidero, si no
tiene ningun sucesor en el grafo. Formalmente se tiene que:

e fuente(v)ssi(w,v,c) e A, Vw,c

e sumidero( v)ssi(v,w,c) ¢ A,V w,c

Ejemplo 6.1:

Suponga que se quiere modelar una red de distribucién de agua entre N ciudades de una region. Cada ciudad
tiene un nombre, una capacidad maxima de almacenamiento y un estado actual. Cada tubo tiene una
capacidad de transporte por minuto. El grafo G que modela esta situacion es:

e V={vq,..vN | vjesunaciudad }

e A={(xy,c) | hay un tubo entre x e y, con capacidad de transporte por minuto ¢ }

e info(v;) = [ nombre;, capacidad;, actualj ]

Un ejemplo grafico de uno de estos grafos es el siguiente:
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v1 v2
ciudad1 50 ciudad3
100.000 —® 2000
80.000 2.000
5
5 10 10
5
ciudad5 3 ciudad?2 ciudad4
3000 —» 5000 500
v5 2.000 1000 g 200 v3

Para dicho grafo se tiene la siguiente informacion asociada:

e V={vq,Vvp,V3, Vg, V5}

e A={(vq,v2,50),(vp,v3,5),(Vv3,V,5),(vg,Vv2, 10),(Vvg,Vq,10),(v5,v4,3),(Vvq,v5 5)}
e info(vq)=["ciudad1", 100.000, 80.000 ]

e info( vy )= "ciudad3", 2.000, 2.000 ]

= [ "ciudad4", 500, 200 ]

= [ "ciudad2", 5.000, 1.000 ]

e info( vg ) = [ "ciudad5", 3.000, 2.000 ]

)
e info(v3)
e info(vy)
)
e Elorden del grafo es 5 y no tiene fuentes ni sumideros

e Los sucesores de vq son vo y vg, y Su Unico predecesor es vy.

J

Un camino, entre un vértice vq y un vértice vo de un grafo G, es una secuencia de vertices < X1, ..., X5 >, con
las siguientes caracteristicas:

e x;eV,1<i<n
® X1TVEXpTV2

®  Xj—>Xj+], 1 <i<n-1

Esto es, comienza en el vértice vq ( origen ), termina en el vértice v ( destino ), y de cada elemento de la
secuencia sale un arco hacia el siguiente. Se dice, entonces, que el camino pasa por los vértices xo, ..., Xp_1
y que su longitud es n-1. De acuerdo con esta definicién, siempre existe un camino de longitud 0 que parte

de cualquier vértice y termina en él mismo. Del mismo modo, pueden existir caminos infinitos, que repiten un
ciclo indefinidamente.

Un camino es simple si todos los vértices por los cuales pasa son diferentes entre si y diferentes del origen y
del destino. Debe ser claro que un camino simple puede comenzar y terminar en el mismo vértice, pero no
puede pasar dos veces por un mismo nodo.

o simple( <Xy, ..,X,>)ssi (XX, i#zk, 1<i<n-1,1<k<n-1)A(Xj#X), 12k, 2<i<n,2<k<n)
Es importante resaltar la diferencia que existe entre el camino < v, v > de longitud 1, que parte y termina en el
vértice v, y el camino < v > de longitud 0, sobre ese mismo elemento. Para que exista el primero, debe haber

en el conjunto de arcos una tripleta ( v, v, ¢ ), para algun valor de ¢, mientras que el segundo existe para
cualquier vértice. En la figura 6.6. se muestra un vértice con ambos caminos.
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C

P

Fig. 6.6 - Vértice con caminos <v,v>y<v>

Se define el costo de una camino C, como la suma de los valores asociados con los arcos que lo componen.
Solo cuando todos los arcos tienen como valor asociado 1, el costo y la longitud de un camino coinciden.

e costo (<xI, .., xn > ‘xl o yx2 .. ot >xn ) = cl+c2+...+cn—1

o longitud (<x1, .., xn > ‘xl 2 — ixn) = n-1

Un ciclo simple es un camino simple, de longitud mayor o igual a 1, que comienza y termina en el mismo
vértice. En general, se define un ciclo como un camino de longitud diferente de 0, cuyo origen y destino son
iguales. Se dice que un grafo es aciclico si no contiene ciclos.

Ejemplo 6.2:
Para el grafo de la figura:
v6 v1 v2
5 3
—> \2A
4 v3
| 1/ D 1
- » /
6
v5 v4

Se tienen los siguientes ejemplos de caminos:

camino costo longitud
e Caminos no simples <V{, Vg, V1, V5, V4, V3 > 24 5
<v3,Vv3,v3> 2 2
e Caminos simples <vz> 0 0
<vj,v3> 1 1
<\V9, Vg, V4, V3 > 20 3
e Ciclos simples <V1, Vg V1 > 9 2
< Vg, V{, Vg, Vg, Vo > 15 4
e Ciclos no simples <vgz, V3, V3> 2 2
< Vg, V1, Vg, V1, V5, V4, Vo > 24 6
e Camino mas corto de v1 a v3 <V{, V5, Vg, V3> 15 3
e Camino mas barato de v1 a v3 <V1, Vg, Vg, V2, V3 > 14 4
e Camino simple mas largo <Vg, V1, V5, V4, V2, V3 > 18 5
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Se define un camino hamiltoniano como un camino que pasa exactamente una vez por cada uno de los
vértices de un grafo. Este camino no siempre existe, y tampoco es unico. De la misma forma, se define un
ciclo hamiltoniano como un ciclo que pasa exactamente una vez por cada uno de los vértices de un grafo.

e  hamilton( <xq,..,X,>)ssiorden( g)=nAX;# X}, i Zk AX; = X417, 1 £i<n-1

e cicloHamilton( <Xy, ..., X, > ) ssi hamilton( <xq, ..., X,_1 > ) AX] =Xy

Se define un camino de euler (o camino euleriano) como un camino que pasa exactamente una vez por cada
uno de los arcos de un grafo. Asi mismo, se define un ciclo de euler (o ciclo euleriano) como un ciclo que
pasa exactamente una vez por cada uno de los arcos de un grafo.

e euler(<xqy,..,Xy>)ssi card(A)=n-1 Ax; > X471, [ €i<n-1Asi(v,w,c) e A=3!i | X{=V,Xj+] =W

e cicloEuler( <xj, ..., X, >) ssi euler( <Xy, ..., Xy >) AX] =X,

Ejemplo 6.3:
Para el grafo de la figura:

-—
v4 l T v5
—
Se tienen los siguientes resultados:
e camino de euler: <Vs5, V3, V9, Vg, V4, V3, V4, VD, Vq >
e camino hamiltoniano: <\Vg, V3, V1, V9, V4 >
e ciclo hamiltoniano: <Vq,V9, Vg5, Vg, V3, V{1 >

J

Dos vértices v, w de un grafo G son adyacentes si existe en el grafo por lo menos un arco entre los dos, sin
importar el sentido. Una cadena es una secuencia < x4, ..., X, > de veértices de V, tal que cualesquiera dos

veértices consecutivos son adyacentes. Para el ejemplo anterior una cadena posible es < vq, vp, V3, Vg4, V5 >.

e adyacente(v,w)ssivowvw-—ovVv

e cadena( <Xy, ..., X, > ) ssi adyacente( X;, Xj+1 ), 1 £1<n-1

Un grafo G es completo si dos vértices diferentes cualesquiera del conjunto V son adyacentes. En la figura
6.7 aparece un ejemplo de un grafo dirigido completo.

vi

AN
l T

v4 v5
—

V.

Fig. 6.7 - Grafo completo
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Un grafo es conexo si para cualquier par de vértices v, w del conjunto V, existe una cadena que los une. Un
grafo es fuertemente conexo si para cualquier par de vértices v, w del conjunto V, existe un camino que vaya
de v a w. En la figura 6.8 aparecen algunos ejemplos.

v1

v2 / \ v3

o N
- l I

v4 _— v5 v4 v5
«—— «——
Fig. 6.8 - (a ) Grafo no conexo b ) Grafo fuertemente conexo

Un grafo es planar si es posible dibujarlo en un plano sin que se crucen los arcos. Un problema tipico en
grafos planares es el de las 3 casas y los 3 servicios. Se trata de establecer si es posible llevar las tuberias de
agua, gas y electricidad, sobre un mismo plano, a 3 casas vecinas. El problema se reduce a determinar si el
grafo que representa la situacion es planar. Cada casa y cada servicio estan representados por un vértice y
cada tuberia por un arco. En este caso, se pueden dibujar sin cruces 8 de los arcos, como se muestra en la
figura 6.9, pero estda demostrado que es imposible colocar los 9.

& & &
I/./I

GAS /-\?UA ELECTRICIDAD

Fig. 6.9 - Problema de las 3 casas y los 3 servicios

Dos grafos G1 y G2 son isoformos si tienen la misma estructura, aunque tengan diferentes contenidos y/o
identificadores en los vértices. En la figura 6.10 se muestra un ejemplo de grafos isoformos.

v1 v2
v3 v2
l v3 vi x va
v4 — —
Fig. 6.10 - Grafos isomorfos
e isomorfos( gl, g2 ) ssi g1=(V, A1), 2=(Vy,Ay) A

f1.fy | f1: V| Vo, biyectiva, f: A| Ay, biyectiva |

v,w Vi, si(v,w) Ap H((v,w))=(fi(v), fi(w)) Ay
6.3. EI TAD Grafo

El TAD Grafo que se presenta en esta seccion sélo esta parametrizado por el tipo de informaciéon que se
almacena en los vértices, puesto que se decidid, por simplicidad en el planteamiento, que los identificadores
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de los vértices fueran valores enteros consecutivos entre 1 y el orden del grafo, y que el costo de un arco
fuera un valor entero no negativo. Otra posibilidad habria sido adicionar como parametros del TAD los tipos
Vértice y Costo, de tal forma que no quedaran restringidos al tipo entero, como sucede en este caso.
Aprovechando esta simplificacion, algunas de las operaciones del TAD retornan el valor -1 para sefialar casos
especiales.

TAD Grafo[ TipoG ]

(V,A) > V={vq, ... vph A={(v,w,c)}

{inv: V(v,w,c)eA=v,w VAV—>wconcostoc>0,

si(v,w,c1)eAn(v,w,c2)e A=>cl=c2 }

Constructoras:
. inicGrafo: — Grafo
Modificadoras:
o insVertice: Grafo X TipoG — Grafo
. insArco: Grafo X int X int X int — Grafo
. elimArco: Grafo X int X int — Grafo

Analizadoras:

o costoArco: Grafo X int X int — int

o sucesores: Grafo X int — Lista[ int ]
. infoVertice: Grafo X int — TipoG

o ordenGrafo: Grafo — int
Destructora:

. destruirGrafo: Grafo

Persistencia:
. cargarGrafo: FILE * — Grafo
. salvarGrafo: Grafo X FILE *

Grafo inicGrafo( void )
/* Crea y retorna un grafo vacio */

{ post: inicGrafo = (, )}

void insVertice( Grafo g, TipoG elem )
/* Agrega un vértice al grafo con la informacién elem asociada */

{precg=({vqy,....vp 1L A)}
{post:g=({Vvq, ...V, V41 } A ), info( vp41 ) = elem }

void insArco( Grafo g, int x1, int x2, intc)
/* Agrega al grafo el arco x1 x2 con costo ¢ */

{pre:V={vq, ..., vp} X1 =vj, X2 = v, =3k | (x1,x2,k)e A,c>20}
{post.g=(V,AU (x1,x2,c)}

|void elimArco( Grafo g, int x1, int x2)
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/* Elimina del grafo el arco x1 x2 */

{pre: (x1,x2,c) A}
{post:g=(V,A-(x1,x2,¢c))}

int costoArco( Grafo g, int x1, int x2 )
/* Retorna el costo del arco x1 x2 si éste existe. En caso contrario retorna -1 */

{post: ((x1,x2,c) A, costoArco=c) (—3c | (x1,x2,c) e A, costoArco=-1)}

Lista sucesores( Grafo g, intv)
/* Retorna una lista con los identificadores de los vértices sucesores de v */

{pre:v V}
{ post: sucesores = < xq, ..., Xk > |V Xj}

TipoG infoVertice( Grafo g, int v )
/* Retorna la informacién asociada con el vértice v */

{pre:v V}
{ post: infoVertice = info( v )}

int ordenGrafo( Grafo g )
/* Retorna el numero de vértices del grafo */

{ post: ordenGrafo = n }

void destruirGrafo( Grafo g )
/* Destruye el objeto abstracto, retornando toda la memoria ocupada por éste */

{ post: el grafo g no tiene memoria reservada }

Grafo cargarGrafo( FILE *fp )
/* Construye un grafo a partir de la informacién de un archivo */

{ pre: el archivo esta abierto y es estructuralmente correcto, de acuerdo con el esquema de persistencia }
{ post: se ha construido el grafo que corresponde a la imagen de la informacién del archivo }

void salvarGrafo( Grafo g, FILE *fp )
/* Salva el grafo en un archivo */

{ pre: el archivo esta abierto }
{ post: se ha hecho persistir el grafo en el archivo, la ventana de la lista esta indefinida }

Con las operaciones especificadas anteriormente, es posible desarrollar cualquier algoritmo de manejo de
grafos. Se omitié intencionalmente la operacién que elimina un vértice del grafo, por simplicidad en el
planteamiento y posterior implementacion del TAD.
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La razon por la cual se va a extender el conjunto de operaciones del TAD es que muchos de los algoritmos de
manejo de grafos se implementan recursivamente, de una forma muy natural, y surge, en ese caso, un
problema de control de la recursién, debido a que los ciclos de un grafo pueden generar llamadas recursivas
infinitas. Por ejemplo, si se busca un camino entre dos puntos, es necesario recordar de alguna manera los
puntos por los cuales ya ha pasado el proceso de busqueda, para evitar hacer de nuevo una llamada
recursiva desde ese vértice. A la accion de colocar una sefial en un vértice, para indicar que ya se ha visitado,
se le denomina marcar.

Aunque no es indispensable que el TAD Grafo maneje las marcas, se van a adicionar en este caso las
operaciones modificadoras y analizadoras necesarias, de manera que los algoritmos que trabajan sobre
grafos se puedan implementar de una forma mas clara. La otra aproximacién posible es manejar alguna
estructura de datos auxiliar donde se van colocando los vértices marcados.

El formalismo extendido para incluir la nocién de vértice marcado agrega un nuevo conjunto de vértices
llamado V', subconjunto de V, que incluye todos los vértices con marca:

G=(V,A V"), V' V,v V'siv esta marcado

Graficamente se va a denotar una marca con el vértice sombreado, como se muestra en la figura 6.11.

v1 v2

W

v4

Fig. 6.11 - Formalismo para indicar vértices marcados

Las operaciones que se agregan al TAD Grafo para manejar las marcas son las siguientes:

{inv: V'cV}
Modificadoras:
. marcarVertice: Grafo X int — Grafo
. desmarcarVertice: Grafo X int — Grafo
. desmarcarGrafo: Grafo — Grafo

Analizadoras:
. marcadoVertice: Grafo X int — int

void marcarVertice( Grafo g, int v )
/* Marca el vértice v */

{pre:v V,V'=V'ni }
{post: V'=V'ji + v}
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void desmarcarVertice( Grafo g, int v )
/* Desmarca el vértice v */

{pre:v V', V' =V'i,i}
{post: V'=V'iji-v}

void desmarcarGrafo( Grafo g )
/* Desmarca todos los vértices del grafo */

{post: V' =}

int marcadoVertice( Grafo g, intv)
/* Informa si el vértice v estd marcado */

{pre:v V}
{ post: marcadoVertice = (v V') }

6.4. Caminos en un Grafo

En esta seccién se hace una presentacion incremental del problema de buscar caminos en un grafo dirigido,
utilizando un planteamiento recursivo. Se comienza por el problema de determinar si hay un camino entre dos
puntos de un grafo aciclico y se llega hasta el problema de calcular el camino de costo minimo entre dos
vértices. La presentacion se hace por medio de ejemplos, en los cuales se muestra el planteamiento de la

solucion y se explica el algoritmo.

& Ejemplo 6.4:

Determinar si existe un camino entre dos vértices vl y v2 de un grafo aciclico. Puesto que el grafo no tiene
ciclos, el algoritmo de solucién puede trabajar sobre el grafo como si fuera un arbol n-ario, porque no hay

riesgo de quedarse haciendo llamadas recursivas.

/*pre: g=(V,A, V'), gesaciclico, vl, v2 V */
/* post: hayCaminol = existe un camino que va de vl a v2 */

int hayCamino1( Grafo g, int vl, int v2 )
{ Lista suc;
if (vl ==v2 || costoArco( g, vl,v2)!=-1)
return TRUE;
else
{  suc=sucesores(g, Vvl );

for ( primLista( suc ); !finLista( suc ); elimLista( suc ) )

if ( hayCamino1( g, infoLista( suc ), v2))
{  destruirLista( suc );
return TRUE;

H
return FALSE;
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La primera salida de la recursion corresponde al caso en el cual el vértice de origen vl y el vértice de
destino v2 coinciden, puesto que por definicion alli existe un camino de longitud 0. El segundo caso de
salida es cuando existe un arco que los conecta ( vl — v2 ). En el ciclo se intenta encontrar un camino que
parta de alguno de los sucesores de vl y termine en v2. Termina si encuentra dicho camino, o si se ha
intentado con todos los sucesores y no ha encontrado una respuesta. El planteamiento recursivo en este
caso es muy simple y se puede resumir de la siguiente manera:

e  hayCaminol(vl,v2)ssi(vl=v2)v (vl >Vv2)v(IweV | v1 — W A hayCaminol(w, v2))

@)
No existe un camino a v2 que

‘ comience por estos vértices
Xi-
v1 Q v2
{inv: Q }

|
i suc = < x1, ...,[xi]..., xn >
|

Xn

O

Considerando que el grafo del problema es aciclico (lejos del peor de los casos de un grafo), se puede
afirmar que la complejidad de esta rutina es O( n ), donde n es el orden del grafo, puesto que en ningun
caso va a pasar mas de una vez por cada uno de los vértices, independiente del niumero de arcos que los
relacionen.

J

& Ejemplo 6.5:
En este ejemplo se elimina la restriccion de que el grafo sea aciclico. La estructura del algoritmo utilizado en

el ejemplo anterior se conserva, pero se deben agregar las marcas respectivas en los vértices por los cuales
se va pasando, para evitar que se hagan llamadas recursivas infinitas al entrar en un ciclo del grafo.

/*pre: g=(V,A, V'), vl,v2 V, V'tiene los vértices a partir de los cuales se ha hecho una llamada recursiva */
/* post: hayCamino2 = existe un camino de vl a v2 */

int hayCamino2( Grafo g, int v1, int v2 )
{ Lista suc;
if (vl ==v2|| costoArco( g, vl,v2)!=-1)
return TRUE;
else
{  marcarVertice( g, vl );
suc = sucesores( g, vl );
for ( primLista( suc ); !finLista( suc ); elimLista( suc ) )
if ( !marcadoVertice( g, infoLista( suc ) ) && hayCamino2( g, infoLista( suc ), v2))
{  destruirLista( suc );
return TRUE;

H
return FALSE;
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La unica diferencia con el algoritmo del ejemplo anterior, es que antes de hacer las llamadas recursivas
buscando un camino desde los sucesores de vl hasta v2, verifica que éstos no estén marcados. Ademas,
marca vl para evitar que un camino desde un sucesor intente utilizarlo como parte de la solucion. El
invariante del ciclo es el siguiente:

"(1 No existe un camino a v2 que comience por estos

vértices, y que no pase por vértices ya marcados
Xi-1
o :
{inv: O }
xn suc = <x1 ...[xi]... xn >

Dado que el mecanismo de marca de vértices que se utiliza en la rutina evita que se haga mas de una
llamada recursiva desde cualquier punto, se puede concluir que su complejidad es O( n ), donde n es el
orden del grafo.

J

J .

& Ejemplo 6.6:

Calcular y retornar el costo del camino minimo entre dos vértices vl y v2 de un grafo dirigido, teniendo en
cuenta que el grafo puede tener ciclos. Si el camino no existe debe retornar -1. El algoritmo conserva las
lineas generales del ejemplo anterior, pero debe buscar todos los caminos posibles entre los dos vértices
antes de retornar un valor.

/Fpre:g=(V,A, V'), vl,v2 V, V'tiene los marcados */
/* post: ( hayCamino3 = costo del camino minimo de vl a v2 ) || ( hayCamino3 = -1 si no existe camino ) */

int hayCamino3( Grafo g, int v1, int v2 )
{ int temp, menor;
Lista suc;
if (vl==v2)
return 0;
else
{  suc=sucesores(g, Vvl );
marcarVertice( g, vl );
for ( primLista( suc ), menor = -1; !finLista( suc ); elimLista( suc ) )
if ( !marcadoVertice( g, infoLista( suc ) ) && ( temp = hayCamino3( g, infoLista( suc ), v2))!=-1)
if( menor ==-1)
menor = temp + costoArco( g, v1, infoLista( suc ) );
else
menor = min( menor, temp + costoArco( g, v1, infoLista( suc ) ) );
desmarcarVertice( g, v1 );
return menor;
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La unica salida de la recursion corresponde al caso en el cual los vértices vl y v2 son iguales. El otro caso
trivial de los ejemplos anteriores se debe descartar, porque la existencia de un arco entre vl y v2 no
garantiza que éste sea el camino mas corto que los une. En el avance de la recursién se debe manejar
una variable temporal que vaya llevando el menor camino hasta el punto que se ha analizado de la lista de
sucesores, como se muestra en el invariante:

x1 . . .
O menor = costo del camino mas barato de v1 a v2 que comienza
por estos vértices y no pasa por nodos marcados

N v1 O vo
{inv: Q }

Xn suc=<x1[.ki..xn>

Dos modificaciones se deben resaltar con respecto a los ejemplos anteriores: la primera, que es necesario
encontrar el costo de todos los caminos de vl a v2 para poder seleccionar el menor. Esto obliga a hacer
una llamada recursiva desde cada sucesor no marcado, y, segun el costo que retorne cada llamada,
seleccionar el mejor.

El segundo cambio consiste en la necesidad de desmarcar el nodo vl antes de abandonar la funcién. En
los casos anteriores, esto no era necesario puesto que sélo se queria determinar la existencia de un
camino. Ahora, es indispensable desmarcarlos porque se puede dar el caso de que el camino buscado
pase por el nodo v1 pero viniendo de otra llamada recursiva. Por ejemplo, considere el grafo de la figura, y
suponga que se esta buscando un camino de v1 a v4:

O
5 \
v va
= O
2 %
v3
El primer camino que el algoritmo encuentra es < v1, v2, v4 > con costo 12, dejando marcados vl y v2,
como se muestra en la siguiente figura:

@
5 \
vi vd
e (O
v3
En el momento de buscar los caminos desde vl que comiencen por el vértice v3, solo va a encontrar el
camino < v1, v3, v4 > con costo 14, ignorando el camino de costo minimo < v1, v3, v2, v4 > porque v2

estaba marcado. Esto hace que sea necesario desmarcar los nodos en todos los algoritmos que deban
identificar todos los posibles caminos entre dos puntos.
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La complejidad de esta rutina es O( n2 ), en el peor de los casos, donde n es el orden del grafo. La razén
de esto, es que el hecho de desmarcar el vértice de partida al salir de la rutina, permite que se hagan

hasta n-1 llamadas recursivas desde dicho punto.

J

& Ejemplo 6.7:

Calcular y retornar el camino de costo minimo entre los vértices vl y v2 de un grafo, teniendo en cuenta que el
grafo puede tener ciclos. Al algoritmo del ejemplo anterior solo se le debe agregar un mecanismo que le
permita almacenar los caminos que va encontrando. Por razones de eficiencia, se agrega un parametro por

referencia, en el cual la funcién deja el costo del camino retornado.

/Fpre:g=(V,A, V'), vl,v2 V, V'tiene los marcados */

/* post: (hayCamino4 = <vl, ..., v2 > camino de costo minimo de vl a v2, *costo = costo( <vl, ... ,v2>)) v

(hayCamino4 = <>, *costo = -1, no hay camino de vl a v2 ) */

Lista hayCamino4 ( Grafo g, int v1, int v2, int *costo )

{

int menor;
Lista suc, respl, resp2 = inicLista();
if (vl==v2)
{ *costo = 0;
insLista( resp2, vl );
return resp2;
H
else
{  suc=sucesores(g, Vvl );
marcarVertice( g, vl );
for ( menor = -1, primLista( suc ); !finLista( suc ); elimLista( suc ) )
if ( !marcadoVertice( g, infoLista( suc ) ))
{  respl = hayCamino4 ( g, infoLista( suc ), v2, costo );
if ( *costo I=-1)
{ *costo += costoArco( g, v1, infoLista( suc ) );
if ( menor == -1 || *costo < menor )
{  menor = *costo;
destruirLista( resp2 );
resp2 =respl;
}
else
destruirLista( resp1 );
H
H
desmarcarVertice( g, v1 );
*costo = menor;
if( *costo !1=-1)
{  primLista( resp2 );
insLista( resp2, vl );
§
return resp2;
H

© Todos los derechos reservados — Jorge Villalobos



314 Disefio y Manejo de Estructuras de Datos en C

En la salida de la recursion se retorna un camino de longitud 0, puesto que el origen y el destino coinciden.
En el avance, se pide el camino de costo minimo que parte de cada uno de los sucesores de vl, y, en
resp2, se va llevando el mejor camino encontrado hasta ese momento.

x1 menor = costo del camino mas barato de v1 a v2 que comienza
O por estos vértices y no pasa por nodos marcados

Xi-1 resp2 = <xKk, ...,v2>1<=k<i, Vo
v1 O <v1, xk, ..., v2 > es el camino mas barato de O }

inv: . -
{ v1 a v2 que comienza por estos vértices

xn suc = <x1 ...[xi]... xn >

Al terminar el ciclo se debe desmarcar el vértice vl e insertarlo en la lista de respuesta (si ésta no es
vacia), ya que es el primero por el cual va a pasar el camino resultado.

Por las mismas razones expuestas en el ejemplo anterior, la complejidad de esta rutina es O( n2 ), en el
peor de los casos, donde n es el orden del grafo.

J

Ejercicios Propuestos:

Para cada uno de los siguientes ejercicios desarrolle la rutina pedida, y calcule su complejidad.

6.1. int hayCiclo( Grafo g, intv)
/* Indica si existe algun ciclo que parta del vértice v */

6.2. Lista mayorCamino( Grafo g )
/* Retorna en una lista la secuencia de vértices del camino simple mas largo del Grafo g, o sea, aquél
que pasa por un mayor numero de elementos */

6.3. void imprimeCaminos( Grafo g, int v1, int v2)
/* Imprime todos los caminos simples entre los vértices vl y v2 del Grafo g, de menor a mayor de
acuerdo con su costo */

6.4. Lista frontera1( Grafo g, int vert, int longit )
/* Retorna una lista con todos los vértices del grafo a partir de los cuales existe un camino simple de
longitud longit que termina en el vértice vert */

6.5. Lista cicloMasLargo( Grafo g)
/* Retorna el ciclo mas largo que hay en el Grafo g */

6.6. E& void caminoHamilton( Grafo g, int v )
/* Imprime, si existe, un camino hamiltoniano que arranque del vértice v */

6.7. void imprimeCiclos( Grafo g )
/* Imprime todos los ciclos simples del Grafo g */

6.8. void cicloEuler( Grafo g )
/* Imprime, si existe, un ciclo euleriano */
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6.9. void cicloHamilton( Grafo g )
/* Imprime, si existe, un ciclo hamiltoniano */

6.10. void caminoEuler( Grafo g )
/* Imprime, si existe, un camino euleriano */

6.11. Lista frontera2( Grafo g, int vert, int longit )
/* Retorna una lista con todos los vértices del grafo a los cuales existe un camino simple de longitud
menor o igual a longit que parte del vértice vert */

6.12. int existeMayor( Grafo g, int v1, int v2, int longit )
/* Informa si existe un camino que lleve de v1 a v2 con una longitud mayor que longit */

6.13. int numCaminos( Grafo g, int v1, intv2)
/* Retorna el nimero de caminos simples diferentes que hay entre vl y v2 */

6.14. Un problema tipico de grafos es la simulacion de movimiento sobre su estructura. Suponga que
en un grafo hay dos fichas, cada una ocupando un vértice. En un movimiento cada una de las fichas
debe avanzar una posicion utilizando un arco. El objetivo del juego es llegar a una posicion final dada,
con la restriccion de que en ningdn momento las dos fichas pueden ocupar el mismo vértice.
Suponiendo que comienza jugando la ficha 1, desarrolle una funcién que determine el ganador del
juego.

6.15. Una ciudad se puede modelar como un conjunto de calles y carreras (ver figura), y suponer

que en cada uno de sus cruces hay un buzén.
A

calle 4 |—

calle 3 |—

calle 2 |—

calle 1 —

\ 4

K1 K2 K3 K4

La direccion de un buzén viene dada por el nimero de la calle y la carrera. La oficina de correos esta
situada en la direccion ( 0, 0 ). Desarrolle un algoritmo para organizar la distribucion de la
correspondencia, teniendo en cuenta las siguientes caracteristicas del problema:

¢ El cartero comienza la jornada con N cartas, cada una de las cuales tiene una direccion de destino.
e El tiempo que gasta un cartero en ir de un buzdn a otro (consecutivos) es de 1 minuto, mas 1 segundo
por cada carta que transporte, porque su peso lo hace moverse mas despacio.

Modele el problema utilizando un grafo, y desarrolle una rutina que retorne la ruta que implique menor
tiempo total de reparticién.

6.5. Recorrido de Grafos

Muchos de los algoritmos que manejan grafos se basan en la idea de recorrerlos de una manera especifica,
con el fin de determinar alguna caracteristica o encontrar alguna informacion especial. Recorrer un grafo
consiste en pasar exactamente una vez por cada uno de los vértices de la estructura. Existen varias maneras
de realizar este proceso, dependiendo del objetivo que se tenga en mente.
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6.5.1. Recorrido Plano sobre el Conjunto de Vértices

La forma mas sencilla de recorrer un grafo es visitar sus vértices haciendo un barrido secuencial de los
elementos del conjunto V. De acuerdo con la simplificacién hecha al TAD, este conjunto esta constituido por
los valores 1...n, donde n es el orden del grafo. De esta forma es posible localizar todos los vértices que
cumplan alguna propiedad, pero sin tener en cuenta la topologia del grafo (ignorando los arcos).

& Ejemplo 6.8:
Retornar una lista con todos los sumideros de un grafo dirigido.

Lista sumideros( Grafo g )
{ inti, numVert = ordenGrafo( g );
Lista Ist, resp = inicLista( );
for (i=1;1<=numVert; i++)
{  if (longLista( Ist = sucesores( g,1))==0)
anxLista( resp, 1 );
destruirLista( Ist );

}

return resp;

}

La rutina se reduce a evaluar la propiedad deseada en cada vértice del grafo, y agregarlo a la lista de
respuesta si la cumple. Este tipo de recorrido es de complejidad O( n ), donde n es el orden del grafo, si la
propiedad que se quiere establecer en el vértice no tiene una complejidad mayor.

J

6.5.2. Recorrido en Profundidad

Otros problemas sobre grafos implican un recorrido sistematico basado en las relaciones de los elementos del
grafo. En ese caso el avance no se hace sobre el orden de los vértices, sino siguiendo la relacion definida por
los arcos. Existen dos formas principales de hacer este recorrido, las cuales se ilustran en esta seccion y en la
siguiente. La primera forma se denomina recorrido en profundidad y es equivalente a un recorrido en
preorden de un arbol n-ario, verificando en todo momento que el algoritmo no se quede en ciclos. La segunda
manera de recorrer un grafo es por niveles, similar al proceso correspondiente en un arbol.

El algoritmo de recorrido en profundidad de un grafo consta de dos rutinas: la primera hace un recorrido en
profundidad a partir de un vértice dado, marcando los puntos por los cuales va pasando. La segunda rutina
busca vértices sin marcar y lanza el proceso antes mencionado, terminando cuando todos los vértices hayan
sido visitados. El proceso se ilustra en el siguiente ejemplo:

& Ejemplo 6.9:
Considere el grafo dirigido de la figura, y suponga que se va a hacer un recorrido en profundidad partiendo del
vértice 1.
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El primer paso es visitar el vértice 1, marcar dicho
vértice, localizar sus sucesores, y hacer una
llamada recursiva sobre cada uno de ellos,
verificando que no estén marcados.

Recorrido: 1

-

ol

Se debe hacer un recorrido en profundidad
partiendo del vértice 7 (el Unico sucesor de 1), para
lo cual se repite el mismo proceso del paso
anterior.

Recorrido: 1, 7

-

i

~

N
N

Se debe hacer el recorrido en profundidad a partir
del vértice 5, y, al terminar, comenzar el mismo
proceso a partir del vértice 6.

Recorrido: 1,7, 5

Pendiente recorrido desde: 6

-

K
N

:

Se repite recursivamente el proceso para los
vértices 2 y 6 (sucesores de 5)

Recorrido: 1, 7, 5, 2

Pendiente recorrido desde: 6, 6

-

K
N

:

Se recorre en profundidad el grafo a partir del
vértice 3 (sucesor de 2)

Recorrido: 1,7,5, 2, 3

Pendiente recorrido desde: 6, 6

-

N

~

Se repite recursivamente el proceso para los
vértices 4 y 6 (sucesores de 3)

Recorrido: 1,7, 5,2, 3,4

Pendiente recorrido desde: 6, 6, 6

-

% X

~

Puesto que el vértice 4 no tiene sucesores, se hace
el recorrido en profundidad desde el elemento 6 (el
ultimo que quedd pendiente en el proceso)

Recorrido: 1,7, 5,2, 3,4,6

Pendiente recorrido desde: 6, 6
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-

X

w

N

~

Ya que todos los recorridos pendientes comienzan
en vértices marcados (el 6), se da por terminado el
proceso.

Debe ser claro que el orden de visita de los elementos, en el recorrido en profundidad, depende del vértice
inicial escogido y del orden en el cual la respectiva operacion del TAD retorne los sucesores de un
elemento. Por ejemplo, el recorrido en profundidad del grafo anterior, partiendo del vértice 3, se puede

resumir en la siguiente secuencia de figuras:

N

i

Recorrido: 3

i

X
\

Recorrido: 3, 6

Pendiente recorrido desde: 4

A

Recorrido: 3, 6, 4

i

IN

Puesto que no hay sucesores, ni recorridos
pendientes, se escoge cualquier vértice no
marcado y se continua desde alli el proceso.

Recorrido: 3, 6, 4, 5

X
N

f‘z

Recorrido: 3, 6, 4, 5, 1

Pendiente recorrido desde: 2

K
f

?

Recorrido: 3,6,4,5,1, 7

Pendiente recorrido desde: 2
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3
'\‘<@—’/T Recorrido: 3,6, 4,5,1,7, 2
5

J

Las rutinas que llevan a cabo el proceso antes descrito son las siguientes:

/[*pre:g=(V,A, V'), veV*
/* post: se ha hecho un recorrido en profundidad a partir del vértice v */

void profundidadGrafo( Grafo g, int v )
{ inti, numVert = ordenGrafo( g );
desmarcarGrafo( g );
profundidadVertice( g, v );
for(i=1;1<=numVert; i++)
if ( !'marcadoVertice( g, 1))
profundidadVertice( g, 1 );

}

/*pre:g=(V,A, V'), veV, V' tiene los vértices ya recorridos */
/* post: se ha hecho un recorrido en profundidad a partir del vértice v de los vértices alcanzables desde
dicho punto y se han marcado a medida que se van visitando */

void profundidadVertice( Grafo g, int v )
{ Lista Ist=sucesores( g, v);
visitar( g, v );
marcarVertice( g, v );
for ( primLista(lst); !finLista(lst); elimLista(lst) )
if ( !'marcadoVertice( g, infoLista( Ist) ) )
profundidadVertice( g, infoLista( Ist) );

H
Es importante anotar en este punto que todos los algoritmos de busqueda de caminos que se presentaron en

una seccion anterior, se basan en un recorrido por profundidad a partir de un nodo, hasta encontrar el vértice
de destino.

6.5.3. Recorrido por Niveles
El algoritmo de recorrido por niveles de un grafo se basa también en dos rutinas, con la misma idea del

recorrido en profundidad. Desde el punto de vista estructural, es semejante a un recorrido por niveles de un
arbol n-ario. Se utiliza como estructura auxiliar una lista en lugar de una cola, para luego poder generalizar
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este tipo de recorridos (Ver "Recorridos Heuristicos"). La lista de elementos preparados para ser recorridos se
denomina el frente de exploracién. El siguiente ejemplo ilustra el proceso:

& Ejemplo 6.10:

Considere el grafo dirigido de la figura, y suponga que se va a hacer un recorrido por niveles partiendo del

vértice 1.

I
N

El primer paso es visitar el vértice 1, marcar dicho
vértice, localizar sus sucesores, e incluirlos al final
del frente de exploracion.

Recorrido: 1

Frente de exploracion: 7

-

N

i

Se toma el primer elemento del frente de
exploracion (7) y se procesa como se hizo en el
paso anterior.

Recorrido: 1, 7

Frente de exploracion: 5, 6

N

~

I

Recorrido: 1,7, 5

Frente de exploracion: 6, 2, 6

-

N

Recorrido: 1,7, 5, 6

Frente de exploracion: 2, 6, 4

-

it
\]

E

Recorrido: 1,7, 5, 6, 2

Frente de exploracion: 6, 4, 3

-

K
r

E

Recorrido: 1,7, 5,6, 2,4

Frente de exploracion: 3
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Recorrido: 1,7,5,6, 2,4, 3

Frente de exploracion:

I>l

,//»

T
T

:I

I

o

J

Las rutinas que implementan el recorrido por niveles de un grafo vienen dadas por el siguiente cédigo:

/[*pre:g=(V,A, V'), veV*
/* post: se ha hecho un recorrido por niveles a partir del vértice v */

void nivelesGrafo( Grafo g, int v )

{ inti, numVert = ordenGrafo( g );
desmarcarGrafo( g );
nivelesVertice( g, v );
for (i=1;1<=numVert; i++)

if ( !'marcadoVertice( g, 1))
nivelesVertice( g, 1);

}

/*pre:g=(V,A, V'), veV, V' tiene los vértices ya recorridos */
/* post: se ha hecho un recorrido por niveles a partir del vértice v de los vértices alcanzables desde
dicho punto y se han marcado a medida que se van visitando */

void nivelesVertice( Grafo g, int v )
{ intx;
Lista Ist, frente = inicLista( );
anxLista( frente, v );
while( longLista( frente ) !=0)
{  primLista( frente );
x = infoLista( frente );
elimLista( frente );
if( marcadoVertice( g, X))
continue;
visitar( g, X );
marcarVertice( g, X );
Ist = sucesores( g, X );
for (ultLista( frente ), primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
if ( !marcadoVertice( g, infoLista( Ist) ) )
anxLista( frente, infoLista( Ist ) );
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Ejercicios Propuestos:

Los siguientes ejercicios se resuelven utilizando las ideas planteadas en la seccioén anterior sobre recorrido de
grafos. Algunos de los algoritmos no son triviales y requieren idear una estrategia clara y efectiva para
abordar el problema, antes de comenzar a escribir las rutinas.

6.16.

6.17.

6.18.

6.19.

6.20.

6.21.

6.22.

6.23.

6.24.

6.25.

6.26.

6.27.

Lista predecesores( Grafo g, intv)
/* Retorna la lista de predecesores del vértice v. Esta rutina deberia ser una operacion analizadora del
TAD Grafo */

Lista fuentesGrafo( Grafo g )
/* Retorna la lista de todas las fuentes del grafo */

int conexoGrafo( Grafo g )
/* Indica si el grafo g es conexo */

int completoGrafo( Grafo g )
/* Indica si el grafo g es completo */

Lista raizGrafo( Grafo g )

/* Cuando a partir de un vértice de un grafo dirigido es posible encontrar un camino a todos los demas
vértices, dicho vértice se denomina una raiz del grafo. Esta funcion retorna una lista de vértices con las
raices del grafo g */

int arboIN( Grafo g )

/* Un arbol n-ario se puede ver como un caso particular de un grafo dirigido, que cumple ciertas
propiedades con respecto al nimero de arcos que llegan a cada uno de los elementos. Esta funcién
informa si el grafo g tiene la estructura de un arbol n-ario */

int excentricidadGrafo( Grafo g, vértice v )

/* Dado el vértice v de un grafo g, se define la excentricidad de dicho vértice como:
excentricidad( v ) = max( longitud( hayCamino3(g,v,w))),Vw V

Esta funcidn retorna la excentricidad de un vértice */

int centroGrafo( Grafo g )
/* El centro de un grafo es el vértice cuya excentricidad es minima. Intuitivamente, se puede ver como
el vértice mas cercano de su vértice mas lejano. Esta funcion retorna el centro del grafo g */

int isomorfosGrafo( Grafo g1, Grafo g2 )
/* Informa si los grafos gl y g2 son isomorfos */

int numArcosGrafo( Grafo g )
/* Retorna el niumero de arcos en el grafo g */

int fuertementeConexo( Grafo g )
/* Informa si el grafo g es fuertemente conexo */

Problema de Flujo en Redes

Un sistema de alcantarillado se puede modelar como un grafo dirigido, en el cual cada nodo es un
tanque y cada arco es un tubo que lleva agua de un tanque a otro. Existen nodos especiales
denominados desaglies, cuya capacidad es infinita, y otros que no tienen predecesores que se llaman
fuentes:
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6.28.

20
2000
50
—> 500
25 200
40
40
15
15
L
[:::] 20
100 5000

Cada tanque tiene un nombre y una capacidad maxima de almacenamiento, la cual no se puede
sobrepasar en ningin momento. De la misma forma, cada tubo tiene un diametro diferente, el cual le
permite transportar una cierta cantidad de agua en una unidad de tiempo (i.e. un minuto). No existe
ningun tipo de valvula en la red, de manera que en cada unidad de tiempo sale de cada tanque la
capacidad de cada tubo. Si no hay suficiente agua en el tanque para satisfacer la capacidad de cada
tubo, se envia por cada uno de ellos una cantidad proporcional a su capacidad. Por ejemplo:

flujo: 5
capacidad: 10

capacidad: 200
"La Florida" ] flujo: 10

capacidad: 20

»

actual: 15

a-) Suponiendo la llegada de una cierta cantidad de agua por unidad de tiempo a una fuente dada del
grafo, escriba una funcién que indique si se genera en algun momento de la siguiente hora un problema
de desbordamiento en algun tanque. (Ayuda: haga una simulacién del flujo y verifique en cada minuto si
hay un problema de desbordamiento. Utilice dos grafos durante la simulacién de flujo: uno para el
estado de la red en el tiempo T, y otro para el estado en el tiempo T + 1)

b-) Para limpiar los tubos de la red, periédicamente se envia por ellos una sonda que arrastra hasta los
desagues todos los residuos que se van acumulando. Una sonda entra por una fuente y sigue cualquier
camino que se le indique hasta llegar a un desagiie. Una sonda no puede pasar dos veces por el
mismo tubo en un proceso de limpieza, porque desgasta el material del cual esta hecho el tubo. Escriba
una funcién que indique si es posible limpiar todos los tubos de una red con una sonda, con la
restriccion impuesta anteriormente.

Dado un grafo g = (V, A), se define un arbol parcial de recubrimiento con raiz v (v € V), como el
grafo aciclico que incluye todos los vértices de g alcanzables desde v, y suficientes arcos de g para
garantizar que existe un unico camino desde v hasta cualquier otro vértice del arbol parcial de
recubrimiento. Por ejemplo, para el grafo:

O
I

Dos posibles arboles parciales de recubrimiento con raiz 4 serian:
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6.29.

6.30.

6.31.

6.32.

6.33.
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Escriba una funcién que retorne un arbol parcial de recubrimiento para una raiz dada.

Juegos de Guerra

Un general tiene un mapa con las ciudades donde se encuentran sus tropas y los trenes que le
permiten llevarlas de un punto a otro. Cuenta ademas con la informacion del numero total de soldados
en cada ciudad y el numero maximo de soldados que se pueden transportar en un dia sobre cada una
de las lineas del tren. El quiere determinar cuantos dias necesita para concentrar todos sus soldados
en una ciudad dada.

void elimCiclos( Grafo g )
/* Elimina todos los ciclos, suprimiendo la minima cantidad posible de arcos */

int numeroCromatico( Grafo g )

/* El nimero cromatico de un grafo es el nUmero minimo de colores con los cuales se pueden colorear
los vértices del grafo, sin que dos vértices adyacentes tengan el mismo color. Esta funcién retorna el
numero cromatico del grafo g */

Grafo invertirGrafo( Grafo g )
/* Retorna un grafo con los mismos vértices de g, pero con el sentido contrario para cada uno de los
arcos presentes */

Problema de Transporte

Una empresa de transporte esta interesada en desarrollar software de apoyo a la toma de decisiones,
para establecer la mejor manera de llevar mercancia de una ciudad a otra, segun ciertos criterios de
optimizacion.

Entre dos ciudades del pais puede haber hasta tres medios diferentes de transporte de mercancia,
cada uno con un costo asociado por kilo: camion, tren y avion, como se muestra en la siguiente figura:

avion( $2000)
tren( $1000 ) >
Bogota Cali
, camion($750)

Esto implica que por cada kilo que se quiera mover de Bogota a Cali, se debe pagar $2.000 en avion y
$1.000 en tren. Y para hacer el movimiento contrario en camién (la Unica forma de hacerlo) se debe
pagar $750 por kilo. Adicional a este costo de transporte, existe un costo que corresponde al valor de
cambiar la mercancia de un medio de transporte a otro, después de llegar a una ciudad. Estos costos
son diferentes para cada ciudad, porque dependen de las facilidades que ofrezcan en las terminales de
transporte y la distancia a la cual se encuentren los aeropuertos. Es un costo fijo y no depende del peso
del material transportado. No en todas las ciudades se puede hacer el cambio de medio de transporte,
pero, si esto es posible, cuesta lo mismo en ambos sentidos.

avién( $2000) Cali

tren( $1000) @

4 camién($750)
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El ejemplo anterior se interpreta de la siguiente manera: si llega mercancia por avién a Bogota
(cualquier cantidad), cuesta $450 pasarla a tren y $150 a un camién. En Cali, por ejemplo, la empresa
no hace el cambio de aviéon a camidn, por convenios con el sindicato.

Escriba una rutina que, dadas dos ciudades, encuentre la ruta de costo minimo para mover N Kg. de
mercancia. El costo de esta ruta debe incluir el valor de los medios de transporte y los costos de
cambiar de medio en las ciudades.

6.34. Deteccion de Conglomerados Financieros
Desarrolle un pequefio sistema de control, que ayude a una entidad administrativa del estado a detectar
los conglomerados financieros. En este caso, el grafo que modela la informacién tiene dos tipos de
vértices: personas naturales y personas juridicas (compafiias), identificadas mediante su nombre.

Existen varios tipos de relaciones (arcos) entre los vértices:

e Entre dos personas naturales: consanguinidad o afinidad (se conectan con arcos entre ellas)

e Entre dos personas naturales: testaferrato, que la primera persona pl sea testaferro de la segunda
persona p2 (se conectan mediante un arco de p2 a pl).

o Entre una persona natural y una compania: participacion accionaria de la persona en la compania
(se conectan mediante un arco de la persona a la compafiia indicando el niumero de acciones
poseidas por esta persona en esa compania).

o Entre dos companias: participacion accionaria de la primera compaifiia cl en la segunda compafiia
c2 (se conectan mediante un arco de cl a c2 indicando el numero de acciones poseidas por cl en
c2).

Resuelva los siguientes ejercicios:

a-) Dada una compaifiia, informar por pantalla quienes son sus duefios, en orden de participacion
accionaria.

b-) Dada una persona o una compaiiia, informar por pantalla todas las compaiias de las cuales es
dueia, es decir, posee directamente el 50% o mas de las acciones en circulacion.

c-) Dada una persona o una compafiia, informar por pantalla cual es su conglomerado financiero, es
decir todas las companiias de las cuales es directa o indirectamente duefa (de las cuales domina el
50% o mas de las acciones en circulacion. Este dominio se calcula como la suma de las acciones
que posee directamente mas las acciones que poseen las personas con las que tiene alguna
relacion de consanguinidad, afinidad o testaferrato, mas las acciones de las compafias de su
conglomerado).

6.5.4. (5 Recorridos Heuristicos

Los recorridos estudiados hasta este punto se denominan desinformados, puesto que no tienen en cuenta
ninguna caracteristica del mundo en el cual ocurre el problema, para hacer mas "inteligente" el proceso de
avance en la busqueda de una solucién. Sencillamente, garantizan que si la solucién existe en el grafo, el
proceso de recorrido debe pasar sobre ella en algun momento, y sera capaz de identificarla como tal.

La idea de los recorridos heuristicos es darle al algoritmo de busqueda una medida de qué tan cerca se
encuentra de la solucion, de tal forma que le dé prioridad en la exploracién a los vértices que tengan mas
posibilidades de llevar a la respuesta. Esto puede disminuir notablemente el tiempo de ejecucién, y hacer
viable la representacion de problemas complejos a través de grafos, aun cuando el espacio de busqueda sea
muy grande e incluso infinito. Este tipo de busqueda se utiliza como una técnica de inteligencia artificial en
juegos, planificacion para robética, deduccidon automatica de teoremas, etc.

En un recorrido heuristico, el frente de busqueda se encuentra ordenado de acuerdo con una funcion h( v ),
que tiene un menor valor a medida que los vértices se encuentran mas cerca de la respuesta. Esta funcion se
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denomina una heuristica, y su estructura depende del problema mismo sobre el cual se esté trabajando, tal
como se ilustra en el siguiente ejemplo.

Ejemplo 6.11:

Dados un tablero de 3 x 3 y unas fichas numeradas de 1 a 8 situadas sobre él, se quiere encontrar una
secuencia de jugadas para pasar de una posicion inicial dada, a una posicion final, en la cual las fichas estén
ordenadas. El movimiento de una ficha sélo se puede hacer a la posicion vacia del tablero, si ésta se
encuentra a su lado:

2(18(3 1123
1164 —®» [4]|5]|6
7 5 718

Posicion inicial Posicion final

Este planteamiento da lugar a un grafo de estados del tablero, como el sugerido en la figura que se
presenta mas adelante, en el cual, cada vértice es un estado de juego, y sus sucesores son los estados a
los cuales se puede llegar mediante un movimiento. El problema se resuelve buscando un camino que
lleve del nodo actual al nodo final, para lo cual se puede utilizar cualquiera de los recorridos antes
estudiados.

2|83 2|83 2|83
«— |1|6|4|«— |1]|6|4]|—> |1]| |a| —
7105 7|1 |5 7|65
2|83
10164
7|5
2|8 2|83 2|83
“«—|1|6|3| «— [1]6 —> 1| |e| —
7|54 7|54 7|54

Una heuristica posible h( v ) es sumar el nimero de movimientos que le falta a cada ficha del tablero, en el
mejor de los casos, para llegar a la respuesta, como se ilustra en la siguiente figura:
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ficha | movimientos ficha | movimientos
1 1 1 4
2 1 2 1
6|14]|5

2lsls 3 0 3 1
4 2 7123 = 4 2

1 6|4 = 5 2 5 2
6 1 8 1 6 3

’ 5 7 0 7 y
8 2 8 1
total: 9 total: 15

Si ambos nodos estuvieran a punto de ser visitados, el algoritmo escogeria el primero de ellos, porque,
segun la heuristica, éste se puede encontrar mas cerca de la posicién buscada. En particular, de los tres
sucesores de la posicion inicial del ejemplo, el algoritmo escogeria el siguiente movimiento:

Debe ser claro que si se selecciona mal una heuristica, en lugar de mejorar el desempeno de la busqueda
puede entorpecerla.

J

El algoritmo para hacer un recorrido heuristico de un grafo dirigido es una variante del recorrido por niveles,
en el cual se inserta en el frente de exploracion de acuerdo con una funcién h( v ), dandole prioridad en el
recorrido a algunos elementos sobre otros.

/*pre:g=(V,A, V'), veV,esta definida una funcion h( v ) */
/* post: se ha hecho un recorrido heuristico a partir del vértice v */

void heuristicaGrafo( Grafo g, int v )
{ inti, numVert = ordenGrafo( g );
desmarcarGrafo( g );
heuristicaVertice( g, v );
for (i=1;1<=numVert; i++)
if ( !'marcadoVertice( g, 1))
heuristicaVertice( g, 1);
printf("\n");
H

/*pre: g=(V,A, V'), veV,V tiene los vértices ya recorridos, esta definida una funcién h( v ) */
/* post: se ha hecho un recorrido heuristico a partir del vértice v de los vértices alcanzables desde
dicho punto y se han marcado a medida que se van visitando */
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void heuristicaVertice( Grafo g, int v )
{ intx;
Lista Ist, frente = inicLista( );
anxLista( frente, v );
while( longLista( frente ) !=0)
{  primLista( frente );
x = infoLista( frente );
elimLista( frente );
if( marcadoVertice( g, X))
continue;
visitar( g, X );
marcarVertice( g, X );
Ist = sucesores( g, X );
for ( primLista( Ist ); !finLista( Ist ); elimLista( Ist ) )
if ( !marcadoVertice( g, infoLista( Ist) ) )
insHeuristica( frente, g, infoLista( Ist ) );

}

/* pre: frente es una lista ordenada de acuerdo con la funciéon h( x ), v ¢ frente, frente = F */
/* post: frente = F + v, frente es una lista ordenada de acuerdo con la funcién h( x ) */

void insHeuristica( Lista frente, Grafo g, int v )
{ if( longLista( frente ) ==10)
insLista( frente, v );
else
{  for( primLista( frente ); !finLista( frente ); sigLista( frente ) )
if( h( infoVertice( g, v ) ) < h( infoVertice( g, infoLista( frente ) ) ) )
{ insLista( frente, v );
return;

ultLista( frente );
anxLista( frente, v );

}

El algoritmo de recorrido heuristico antes planteado se puede modificar, para que en el orden del frente de
exploracion se tenga en cuenta también el costo que ha tenido llegar hasta cada uno de los elementos que alli
se encuentran. Esto es, ordenar el frente de acuerdo con una funcién f( v )= g( v ) + h( v ), donde g( v)
representa el costo acumulado de la busqueda hasta la posicion actual. Esta variante se denomina algoritmo
A*, y, bajo ciertas condiciones de la funcion heuristica, garantiza en un proceso de busqueda de un elemento
en un grafo que encuentra la solucién 6ptima.

Ejercicios Propuestos

6.35. Implemente una rutina heuristica que retorne la lista de jugadas para pasar de una posicion inicial a
una posicion final en el juego planteado en la seccion anterior. Disefie otras heuristicas y compare el
desempefio del programa.

6.36. Implemente el algoritmo A* para el juego planteado en la seccion anterior, de manera que retorne la
mejor solucion (lista de jugadas) para pasar de la posicion inicial a la posicion final. La mejor solucion,
en este caso, es la de menor longitud.
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6.37.

6.38.

6.39.

6.40.

Escriba una rutina que resuelva el problema de las torres de Hanoi utilizando busqueda
heuristica sobre grafos. Comparela con la solucién recursiva pura.

Considere el siguiente problema: "Un granjero con su lobo, cabra y un saco de trigo llegan al
borde de un rio que desean cruzar. Tienen un bote en el cual sélo hay capacidad para otro elemento
diferente del granjero, quien obviamente debe remar. Este sabe que si en algin momento deja solo el
lobo con la cabra, el lobo se la come. De la misma manera, sabe que si deja la cabra con el trigo, ésta
lo consume. ;Cémo puede el granjero pasar al otro lado del rio sin perder ninguna de sus valiosas
posesiones?"

a-) Haga un planteamiento del problema utilizando un grafo dirigido

b-) Resuelva el problema utilizando un recorrido en profundidad del grafo. Calcule el tiempo que toma
la busqueda y la calidad de la solucion.

c-) Resuelva el problema utilizando un recorrido por niveles del grafo. Calcule el tiempo que toma la
busqueda y la calidad de la solucién.

d-) Resuelva el problema utilizando un recorrido heuristico del grafo. Calcule el tiempo que toma la
busqueda y la calidad de la solucion. Disefie diferentes heuristicas y compare los resultados.

Considere el siguiente problema: "Para atravesar un rio, un grupo de N misioneros y N
canibales tienen una lancha para N personas, que debe manejar uno de los misioneros. Si en cualquier
momento en la lancha o en cualquier orilla quedan mas canibales que misioneros los devoran. ;Cémo
pasar todos al otro lado del rio, sin que haya un festin de misioneros?"

a-) Haga un planteamiento del problema utilizando un grafo dirigido

b-) Resuelva el problema utilizando un recorrido en profundidad del grafo. Calcule el tiempo que toma
la busqueda y la calidad de la solucién. Evalue la manera como se comporta la solucion a medida que
el valor de N crece.

c-) Resuelva el problema utilizando un recorrido por niveles del grafo. Calcule el tiempo que toma la
busqueda y la calidad de la solucién. Evalue la manera como se comporta la solucién a medida que el
valor de N crece.

d-) Resuelva el problema utilizando un recorrido heuristico del grafo. Calcule el tiempo que toma la
busqueda y la calidad de la solucién. Disefie diferentes heuristicas y compare los resultados. Evalle la
manera como se comporta la solucién a medida que el valor de N crece.

Desarrolle un programa que juegue picas y famas, utilizando busqueda heuristica sobre
grafos.

6.6. Mas Definiciones sobre Grafos

Un grafo sg es subgrafo de un grafo g, si incluye un subconjunto de sus vértices y todos los arcos que los
relacionan en g. Por ejemplo, si un grafo representa las ciudades y las carreteras de un pais, un subgrafo
seria el grafo de las carreteras de un departamento. En la figura 6.12 aparecen tres ejemplos de subgrafos de
un grafo dado.
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v v2 vi vi v2 v2

v3 l/ l v3 l l / / l
—> <+ —_—p +—

va V5 va v4 v4 v5

Grafo inicial Subgrafo 1 Subgrafo 2 Subgrafo 3

Fig. 6.12 - Subgrafos de un grafo
o subgrafo( g, sg)ssi g=(V,A),sg=(Vgg Agg),
Vsgc V.
‘v’x,ersg,si(x,y,c) e A=>(x,y,c)€ ASg
Un grafo gp es un subgrafo parcial de un grafo g, si se encuentra formado a partir de un subconjunto de

arcos de g y el conjunto de vértices correspondiente. En la figura 6.13 aparecen tres ejemplos de subgrafos
parciales de un grafo:

v1 v2 v2 v1 v2 v1 v2
P B O B )
Ty «—
v4 v5 v5 v4 v5 v4 v5
Grafo inicial Subgrafo parcial 1 Subgrafo parcial 2 Subgrafo parcial 3

Fig. 6.13 - Subgrafos parciales de un grafo

e subgrafoP(g,gp)ssi g=(V,A), gp=(Vp,Ap),
Apc A,
V(X,y,c)e Ap=>xe Vp,ye Vp

La diferencia entre un subgrafo y un subgrafo parcial, es que en el primero se parte de un subconjunto de
vértices, y se construye el conjunto de arcos con todas las relaciones presentes entre los vértices
seleccionados. Por su parte, en un subgrafo parcial, se parte de un conjunto de arcos y el conjunto de vértices
se construye con todos los vértices referenciados en los arcos escogidos. Continuando con el ejemplo del
mapa de ciudades y carreteras, un subgrafo parcial seria aquél que incluye soélo las carreteras principales de
un pais, y por ende, las ciudades por las cuales pasan.

De acuerdo con las dos definiciones dadas, se puede concluir que todo subgrafo es también un subgrafo
parcial.

e subgrafo( gl, g2 ) = subgrafoP( gl, g2)
Si un grafo g es no conexo, puede dividirse en subgrafos de tal forma que cada uno de ellos sea conexo.

Estos subgrafos se denominan componentes conexos de g. En la figura 6.14 aparecen algunos
componentes conexos de un grafo no conexo.
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v2

v4

331

v4

v__—"
T

\ / v7
V7 v T vi T l T
v8 y v3 v8 v6 «— v5
v6 v5
Grafo Componente conexo 1 Componente conexo 2 Componente conexo 3

Fig. 6.14 - Componentes conexos de un grafo

Un arbol de recubrimiento para un grafo g es un subgrafo parcial de g, que estructuralmente cumple la
condicion de ser un arbol n-ario y ademas contiene todos los vértices del grafo original. Este tipo de arboles
no siempre existe para un grafo y tampoco es unico. La raiz del arbol de recubrimiento es el vértice del cual
comienza el arbol. Se define el peso de un arbol de recubrimiento como la suma de los pesos de los arcos
incluidos en él. Un arbol de recubrimiento para una raiz dada es minimo, si tiene el peso minimo de todos los
que existen. Este arbol tampoco tiene que ser unico. Un arbol de recubrimiento con n vértices, debe tener n-1
arcos. En la figura 6.15 aparecen algunos ejemplos de arboles de recubrimiento para un grafo.

v2 v3
v2 v3 4
4, 5
e ~ e
3 4
v 31 l 6 v4 v / ’
—>
‘k — / 5 3 5 raiz v1
v6 v5 v v peso 19
v2 V3 v2 v3
4
> 7
vi l 6 v4 v1 Sl / /v vé
4
VG\ / —
3
v6 v5 raiz :v6 v6 v5 raiz :v1
peso : 25 peso: 17

Fig. 6.15 - Arboles de recubrimiento de un grafo

La clausura transitiva de un grafo g, es un grafo con el mismo conjunto de vértices y un arco de un vértice a
otro si existe un camino que los una. El costo de los arcos corresponde al costo del camino mas barato que
los une. En la figura 6.16 aparece un ejemplo de la clausura transitiva de un grafo.

v2 —»3 v3

V2—3>v3

AAN
A
Y/

v6

Fig. 6.16 - Clausura transitiva de un grafo
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Ejercicios Propuestos

Resuelva los siguientes ejercicios y calcule la complejidad de su solucion. Intente encontrar la rutina mas
eficiente posible para cada problema.

6.41. int subGrafo( Grafo g, Grafo sg )
/* Informa si sg es un subgrafo de g */

6.42. int subGrafoP( Grafo g, Grafo gp )
/* Informa si gp es un subgrafo parcial de g */

6.43. int componentesConexos( Grafo g )
/* Calcula el numero de componentes conexos del grafo g */

6.44. Grafo arbolRecubrimiento( Grafo g, intv )
/* Retorna un arbol de recubrimiento para el grafo g con raiz v. Si no existe retorna un grafo vacio */

6.45. Grafo arbolRecubrimientoMinino( Grafo g, int v )
/* Retorna un arbol de recubrimiento minimo para el grafo g con raiz v. Si no existe retorna un grafo
vacio */

6.46. Lista conjuntoCorte( Grafo g )
/* Se define un conjunto de corte de un grafo g como el conjunto minimal de arcos, tal que si se
suprimen, el grafo deja de ser conexo. Esta funcion retorna una lista de arcos (parejas de vértices) que
corresponde a un conjunto de corte del grafo g */

6.47. Lista nucleoGrafo( Grafo g )
/* Se denomina un nucleo de un grafo al subconjunto minimal de vértices de g, tal que existe un camino
hasta todos los vértices de g que comienza en un vértice del nucleo */

6.48. Grafo clausuraTransitiva( Grafo g )
/* Crea la clausura transitiva del grafo g */

6.49. Demuestre formalmente que todo subgrafo es también un subgrafo parcial.

6.7. El Algoritmo de Dijkstra

Los métodos de busqueda de caminos han tenido, hasta esta seccién, un planteamiento puramente recursivo,
basado en un recorrido en profundidad del grafo. Esto hace que resulten ineficientes para resolver ciertos
problemas. Dijkstra propuso un algoritmo iterativo, de complejidad cuadratica, para encontrar los caminos de
costo minimo que parten de un vértice dado y terminan en cada uno de los demas vértices del grafo. Este
mismo problema resuelto con el algoritmo recursivo de busqueda de caminos planteado en una seccion

anterior seria O( n3 )-

La misma idea de este algoritmo se puede aplicar para resolver muchos otros problemas sobre grafos, y por
esta razon es importante su estudio.

La presentacion del algoritmo de Dijkstra se hace en dos etapas. La primera etapa trata el problema de

determinar el costo del camino minimo que parte de un vértice y termina en cada uno de los demas elementos
del grafo. La segunda etapa almacena ademas la secuencia de vértices que conforman dicho camino.

6.7.1. Costo de los Caminos Minimos

La especificacion de este primer problema es la siguiente:
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int *dijkstra( Grafo g, int v )

/*pre:g=(V,A),ve V,card(V)=N*
0 1 N-1

/* post: dijkstra = I | I | I , dijkstra [ i ] = costo del camino minimo de v al vértice i+1 */

Ejemplo 6.12:
Para el grafo de la figura, al aplicar el algoritmo de Dijkstra para determinar el costo de los caminos minimos
que parten del vértice 1 y van a todos los demas vértices, la rutina debe retornar el vector que se da a
continuacion:

:.VC?Z\“*A

difkstra( g, 1 = [0_[10[16]19[13]26] 21

Este vector contiene en la posicién k el costo del camino minimo que lleva del vértice 1 al vértice k+1. Por
ejemplo, el costo del camino minimo que lleva del vértice 1 al vértice 7 es 21, y se encuentra en la posicion
6 del vector.

J

Se define un camino especial entre el vértice vl y el vértice v2 de un grafo g, como una secuencia de
veértices de V, < x1q ... X, >, que cumple:

¢ <X{..Xpy>esuncamino simplede vl av2 (x;= v{,xp= vp)
®  X{,.., Xp-1 € V' (sOlo incluye vértices marcados, exceptuando posiblemente a xp)

¢ No existe ningun otro camino en g de vy a v, que, pasando solo por vértices marcados, tenga un costo
menor que el costo de < xq ... Xy >

& Ejemplo 6.13:

Este ejemplo ilustra y explica todos los pasos del algoritmo de Dijkstra. Considere el grafo de la figura, y
suponga que se quiere determinar el costo del camino minimo que lleva del vértice 1 a cada uno de los

demas vértices del grafo:
‘w 18
()—os
2
3 3 20
IO

N
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1. Marcar el vértice de origen y calcular el costo de todos los caminos especiales. Si no existe el camino
especial a algun vértice se coloca -1 (vacio en el dibujo):

Grafo Caminos especiales Costos

(:)‘VCZ?\K: @‘yQ)\m‘@ 0 1 2 3 4 5 6
2 0 |10]18

®
® ® @

@

2. Seleccionar el vértice no marcado con costo de camino especial minimo (vértice 2 con costo 10),
marcarlo y recalcular todos los caminos especiales de la siguiente manera: para cada vértice no marcado
se debe decidir si resulta mejor el camino antes calculado o si es preferible utilizar el camino especial
hasta el vértice que se acaba de marcar, y luego utilizar el arco que los une. Por ejemplo, para el vértice 3
es mejor utilizar el camino especial que lleva al vértice 2 y luego utilizar el arco que los une (costo 16), que
seguir el camino especial antes calculado (costo 18).

Grafo Caminos especiales Costos

10, 18 ‘yC]>
@‘/C—:;>>\‘ 01 2 3 4 5 6
2

3. Repetir el proceso mientras haya vértices no marcados. Se escoge el vértice 5.

Grafo Caminos especiales Costos

10 18 AyC]>
:A/C?\ 01 2 3 4 5 6
2
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4. Repetir el proceso mientras haya vértices no marcados. Se escoge el vértice 3.

335

Grafo Caminos especiales Costos
10 18 10
:A/C? o~ :/C? 1.2 3 4 5 6
2 10(16[19(13 36|23
ot
g
5. Repetir el proceso mientras haya vértices no marcados. Se escoge el vértice 4.
Grafo Caminos especiales Costos
10 18 10
:A/C? o~ :A/C? 1.2 3 4 5 6
2 10(16[19(13 36|21
3 3 |20
|l ©®©
6. Repetir el proceso mientras haya vértices no marcados. Se escoge el vértice 7.
Grafo Caminos especiales Costos
10 18 10
:A/C? o~ :A/C? 1.2 3 4 5 6
2 ,}3) 10(16[19(13 |26]21

3

3
O
5

J

La implementacion del algoritmo de Dijkstra es la siguiente:

/¥pre:g=(V,A),ve V,card(V)=N*
0 1 N-1

/* post: dijkstra = I | I
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int *dijkstra( Grafo g, int v )
{ intc, i, numElem = ordenGrafo( g );
int *costo = calloc( numElem, sizeof( int ) );
desmarcarGrafo( g ) ;
for(i=0; i <numElem ; i++)
costo [ i ] =costoArco( g, v,i+1);
marcarVertice( g, v );
costo[v-1]=0;
while( ( v = siguienteVertice( g, costo, numElem ) ) !=-1)
{  marcarVertice( g, v);
for(i=0; i <numkElem ; i++)
if( !marcadoVertice( g,i+ 1) && (¢ =costoArco( g, v,i+1))!=-1)
if(costo[1]==-1)
costo[i]=costo[Vv-1]+c;
else
costo [i]=min(costo[i],costo[v-1]+c);
H

return costo;

}

El algoritmo termina cuando todos los vértices estdn marcados, o cuando hasta ninguno de los no marcados
hay un camino desde el vértice inicial. La rutina que retorna el siguiente vértice que se debe incluir en el
conjunto de marcados es la siguiente:

/*pre:g=(V,A),costo[i]>-1,costo[i]>0siit]l € V' */
/* post: (' siguienteVertice=v € V, v ¢ V', costo [ v-1 | # 1, costo [ v-1 ] es minimo entre todos los v posibles ) v
( siguienteVertice = -1, si no existe un v que cumpla las condiciones anteriores ) */

int siguienteVertice( Grafo g, int costo[ ], int numElem )
{ int1i, menor=-1;
for(i=0;1i<numElem ; i++)
if( 'marcadoVertice( g,i+ 1) && costo[i]!=-1)

if( menor == -1 || costo[ menor | > costo[ 1] )
menor = i;
return ( menor ==-1) ? -1 : menor + 1;

6.7.2. Caminos Minimos

Una sencilla variante de este algoritmo permite calcular el camino de costo minimo que parte de un nodo y
lleva a cada uno de los demas nodos del grafo. El resultado de este algoritmo se puede utilizar para construir
el arbol de recubrimiento minimo con raiz v. La especificacion de este segundo problema es la siguiente:

typedef struct
{ int costo;

int anterior;
} Pareja;
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Pareja *dijkstra( Grafo g, int v )

/*pre:g=(V,A),ve V,card(V)=N*
0 1 N-1

costo

/* post: dijkstra = anterior

dijkstra[ i ].costo = costo del camino minimo de v al vértice i+1
dijkstra[ i ].anterior = anterior elemento en el camino minimo que lleva al vértice i+1*/

Ejemplo 6.14:
Para el grafo de la figura, al aplicar el algoritmo de Dijkstra para determinar los caminos minimos que parten
del vértice 1 y van a todos los demas vértices, la rutina debe retornar el vector que se da a continuacion:

yQ)

(i) 6ﬁ>

18
2
3 120 2
(o) 0 [10|16[19]13 |26|21

dijkstra(g, 1) =
@/ lkstra(g. 1) 1]2]3]2]7]4
1 2 3 4 5 6 7 <— vértice

Este vector contiene en la posicion k el costo del camino minimo que lleva del vértice 1 al vértice k+1, y el
vértice anterior al k+1 en el camino minimo que llega hasta ese punto. Los caminos minimos resultantes de
interpretar dicho vector son:

3 4 5 6 <«—— posicion

camino(1,1)=<1>,costo=0 camino(1,5)=<1,2,5>, costo =13
camino(1,2)=<1,2>, costo =10 camino(1,6)=<1,2,3,4,7,6 >, costo = 26
camino(1,3)=<1,2,3>, costo=16 camino(1,7)=<1,2,3,4,7 >, costo = 21

camino(1,4)=<1,2,3,4 >, costo =19

J

Ejercicios Propuestos
6.50. Para el grafo de la figura, calcule los caminos minimos a partir del vértice 4, utilizando el algoritmo de

Dijkstra:
‘w 18
(o
2
3 3 |20
O

N
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6.51.

6.52.

6.53.

6.54.

6.55.

6.56.
6.57.

6.58.

Disefio y Manejo de Estructuras de Datos en C

Para el grafo de la figura, calcule los caminos minimos a partir del vértice 3, utilizando el algoritmo de

Dijkstra:
2

O

Para el grafo de la figura, calcule los caminos minimos a partir del vértice 6, utilizando el algoritmo de

Dijkstra:
12 e
N 9

(2——(3)

=

Implemente la modificacion en el algoritmo de Dijkstra, planteada en la seccién anterior, para que

retorne los caminos minimos.

Desarrolle una rutina que imprima por pantalla los caminos minimos desde un vértice a todos los
demas, utilizando como entrada la salida del ejercicio anterior. Esto es, un procedimiento que tome un
vector de parejas [ costo, anterior ] y despliegue el camino a cada uno de los vértices del grafo.

Modifique el algoritmo de Dijkstra para que retorne el arbol minimo de recubrimiento de un grafo g,
con raiz v.

Modifique el algoritmo de Dijkstra para que retorne la clausura transitiva de un grafo.

Desarrolle una rutina basada en el algoritmo de Dijkstra que retorne el camino de costo minimo que
lleva de un vértice a otro.

El objetivo de este ejercicio es desarrollar un programa que le permita a una agencia de viajes
planear las excursiones de sus clientes. Para esto, cuenta con informacion de todos los vuelos que
existen en el mundo.
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Bogota )+

@ admandu

Dada una ciudad de origen y una lista de ciudades que desea visitar el cliente, retorna un plan de viaje
con el minimo numero de ciudades. Para el dibujo del ejemplo anterior, si la ciudad de origen es Bogota
y las ciudades que quiere visitar el cliente son Kadmandu y Moscu, un plan de viaje seria: Bogota,
Caracas, Paris, Budapest, Kadmandu, Budapest, Praga, Moscu, Roma, Caracas, Bogota. Fijese que el
plan no es Unico. También seria posible seguir la siguiente ruta: Bogota, Lima, Brasilia, Santiago,
Kadmandu, Budapest, Praga, Moscl, Roma, Caracas, Bogota. Ambas rutas incluyen 11 ciudades.
Puede suponer que en la lista de ciudades no existen repetidas.

6.59. Se define un p-grafo como un grafo dirigido conexo sin ciclos, en el cual si se suprime cualquier arco,
el grafo deja de ser conexo. Desarrolle una rutina que informe si un grafo dado es un p-grafo.

6.60. Lista ordenTopologico( Grafo g )
/* Un ordenamiento topolégico de un grafo g = (V, A) es una lista < xq, ..., Xy > que contiene los

vértices de V, en un orden tal que si (v, w, ¢ ) € A, entonces v se encuentra en esa lista antes que w.
Esta funcién calcula el ordenamiento topolégico de un grafo, suponiendo que es aciclico, condicion
suficiente para que exista el ordenamiento. */

6.8. Implementacion del TAD Grafo

Existen muchas formas distintas de implementar el TAD Grafo. En esta seccidn se presentan varias de ellas,
consideradas como clasicas, y se ilustra, mediante ejemplos, el disefio de otras estructuras de datos, para
casos en los cuales las caracteristicas mismas del problema lo exigen.

6.8.1. (@ Matrices de Adyacencias

Esta es una de las representaciones mas comunes para un grafo. Se define una matriz de adyacencias
como una matriz de N x N, donde N es el orden del grafo, en la cual se tiene en la posicién [ i-1, j-1 ] el costo
del arco que existe entre los vértices i y j del grafo. Si éste no existe, se coloca una marca especial para
indicarlo. En este caso se va a utilizar el valor -1. Con una matriz de este tipo se representa el conjunto de
arcos con el siguiente esquema:

e (v,w,c) e Assiarcos[ v-1][ w-1]=c¢
o (v,w,c) ¢ A ssiarcos[ v-1][ w-1]=-1
Para incluir en las estructuras de datos toda la informacién asociada con los vértices, se maneja también un

vector de N posiciones, en el cual, en la posicidn i-1 aparece el contenido del vértice i, y una indicacion de si
se encuentra o no marcado.

e info( 1) =T ssi vertices[ i-1]. info=T
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e i e V'ssi vertices| i-1]. marca = 1

e i¢ V'ssivertices| i-1]. marca =0

Lo unico que falta en las estructuras de datos, es una manera de manejar un ndmero variable de vértices en
el grafo. Con este fin, se utiliza un campo adicional para indicar el numero de vértices presentes.

e orden( g ) = N ssi numElem =N

Ejemplo 6.15:
Para el grafo de la figura:

v1 v3

Las estructuras de datos que lo representan, suponiendo que el tamafio maximo de la matriz de
adyacencias es MAX, son:

; MAX-1
) > vertices: _Info_marca arcos: 0 1 2 3 4 5
ol Ao of-1]5(-1]4[-
numElem 1| B |0 1(8]6]7]3

3[p|o 3| ]-1]-1]1
41 E | o al-|-]-1]-1]-
5 5

MAX-1 MAX-1

J

Las estructuras de datos para esta representacion se declaran de la siguiente manera:

typedef struct

{ TipoG info; /* Informacién asociada con un vértice */
int marca; /* Marca del vértice */

} Vertice;

typedef struct

{ int **arcos; /* Matriz de cualquier tamafo, pedida en ejecucion */
Vertice *vertices;  /* Vector de vértices de cualquier tamafio, pedido en ejecucion */
int numElem; /* Numero de vértices */

} TGrafo, *Grafo;

Las operaciones del TAD Grafo se implementan con las rutinas que se presentan a continuacion:
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La rutina de inicializacién debe reservar el espacio en memoria dinamica para el objeto abstracto,
incluyendo una matriz de MAX x MAX enteros (inicializado en -1) y un vector para la informacién de los
vértices. La complejidad de la operaciéon es O( MAX ), puesto que depende de esta constante de la
implementacién:

Grafo inicGrafo( void )
{ inti, k;
Grafo g = ( Grafo )malloc( sizeof( TGrafo ) );
g->arcos = ((int ** )calloc( MAX, sizeof( int * ) );
for(i=0;1<MAX;it++)
{ g->arcos[i]=(int * )calloc( MAX, sizeof( int) ) ;
for( k = 0; k < MAX; k++)
g->arcos[ 1 ][ k]=-1;
H
g->vertices = ( Vertice * )calloc( MAX, sizeof( Vertice ) );
g->numElem = 0;
return g;

Para insertar un nuevo vértice, la rutina toma la siguiente posicion libre del vector vértices, y coloca alli la
informacion. Sobre la matriz no es necesario hacer ninguna modificacion, puesto que la operacién de
inicializacion garantiza que la fila y la columna correspondientes a este nuevo vértice tienen el valor -1.
Esta rutinaes O( 1).

void insVertice( Grafo g, TipoG elem )

{ g->vertices[ g->numElem ]. info = elem;
g->vertices[ g->numElem ]. marca = 0;
g->numElem++;

}

Las operaciones de insertar y eliminar un arco se implementan con rutinas elementales, de complejidad
constante, como se muestra a continuacion:

void insArco( Grafo g, int v, int w, int ¢ )
{ g->arcos[ v-1 ][ w-1]=c;

}

void elimArco( Grafo g, int v, int w )
{ g->arcos[ v-1 ][ w-1]=-1;

}

La operacién que calcula el costo de un arco debe tomar el valor correspondiente de la matriz y retornarlo.
La complejidad es O( 1).

int costoArco( Grafo g, int v, int w )
{ return g->arcos[ v-1 ][ w-11];

}

La lista de sucesores de un vértice se obtiene recorriendo la fila correspondiente en la matriz de
adyacencias. Cada arco con valor diferente a -1 indica un sucesor. La complejidad de la rutina es O( n ),
donde n es el orden del grafo.
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Lista sucesores( Grafo g, int v )
{ inti;
Lista Ist = inicLista( );
for(i=0;1i<g->numElem ; i++)
if( g->arcos[ v-1 J[1] !=-1)
anxLista( Ist, i+1 );
return Ist;

}

e Algunas de las demas operaciones del TAD Grafo se implementan de manera trivial sobre matrices de
adyacencias, tal como se muestra a continuacién. Todas son O( 1 ), con excepcion de la operacion que
desmarca todos los vértices del grafo, que tiene complejidad O( n ), donde n es el orden del grafo.

TipoG infoVertice( Grafo g, int v )
{ return g->vertices[ v-1 ].info;

}

int ordenGrafo( Grafo g )
{ return g->numElem;

}

void marcarVertice( Grafo g, int v )
{ g->vertices[ v-1 ].marca = 1,

}

void desmarcarVertice( Grafo g, int v )
{ g->vertices[ v-1 ].marca = 0;

}

void desmarcarGrafo( Grafo g )
{ inti;
for(i=0;1i<g->numElem ; i++)
g->vertices[ 1 ].marca = 0;

}

int marcadoVertice( Grafo g, int v )
{ return g->vertices[ v-1].marca;

}

e La operacion de destruccion de un grafo, debe comenzar por retornar cada una de las filas de la matriz
dinamica, y, luego, devolver los vectores y nodos pedidos en la inicializacion. La complejidad de la rutina
es O( MAX), donde MAX es una constante de la implementacion.

void destruirGrafo( Grafo g )
{ inti;
for(i=0;1<MAX;it++)
free( g->arcos[i]);
free( g->arcos );
free( g-> vertices );

free( g );
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o El esquema de persistencia seleccionado para esta implementacién consiste en un archivo de texto, que
almacena los elementos del grafo en el siguiente orden:

orden del grafo
informacioén vértice-1

informacion vértice-n

arco-1 » origen destino costo
arco-m
marca de final ————» 1 1 -1

Las rutinas que cargan y salvan un grafo de un archivo con la estructura antes mencionada son:

Grafo cargarGrafo( FILE *fp )
{ int numVertices, v1, v2, costo;
Grafo g = inicGrafo();
fscanf( fp, "%d", &numVertices );
for( ; numVertices > 0; numVertices-- )
{  fscanf( fp, "%d", &v1);
insVertice( g, v1);

}
fscanf( fp, "%d %d %d", &vl, &v2, &costo );
while( vl 1=-1)
{ insArco( g, vl, v2, costo );

fscanf( fp, "%d %d %d", &vl, &v2, &costo );
}
return g;

}

void salvarGrafo( Grafo g, FILE *fp )
{ inti k;
fprintf( fp, "%d\n", g->numElem );
for(i=0;1i<g->numElem; i++)
fprintf( fp, "%d\n", infoVertice( g, i+1 ) );
for(i=0; i< g->numElem; i++)
for( k = 0; k < g->numFElem; k++)
if( g-=>arcos[1][k]!=-1)
fprintf( fp, "%d %d %d\n", i+1, k+1, g->arcos[ i ][ k ] );
fprintf( fp, "-1 -1 -1\n" );
H

Esta implementacion tiene la ventaja de que las operaciones de acceso a la informacién son de complejidad
constante, haciéndolas independientes del tamafio del grafo. El inconveniente de su uso radica en el espacio
ocupado, que es O( MAX ), donde MAX es el maximo nimero de vértices que puede manejar el grafo. Esto

hace que las necesidades de memoria crezcan con el cuadrado del orden del grafo ( n < MAX ), lo cual la
convierte en una implementacién costosa.
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6.8.2. & Listas de Sucesores

El objetivo de esta implementacion es obtener una representacion de un grafo con complejidad en memoria
proporcional al nimero de arcos. Esto va a repercutir necesariamente en la eficiencia de algunas de las
operaciones. La idea es tener un vector de vértices que incluya, ademas de toda la informacién, una lista con
los arcos (parejas de la forma [sucesor, costo] ). El esquema de representacion es el siguiente:

e info( i) =K ssi vertices[ i - 1 J.info=K

e i e V'ssivertices[ i- 1 ].marca= 1

e i ¢ V'ssivertices[i- 1 ].marca=0

e (v,w,c)ssi[w,c] e vertices[ v - 1 ].sucesores

e orden( g ) = n ssi numElem =n

Ejemplo 6.16:
Para el grafo de la figura:

v1 -« v3

Las estructuras de datos que lo representan son:

9 info marca sucesores
—>
0 [A| 0 |<I[25][44]>
numeElem 4 (g | o |<[18],[26] [37] [4.3], [52] >
2 [clo|<sa>
3 [D|o|<I51]>
4 [E|O0 [<>
MAX-1

J

En esta implementacion de grafos hay un pequefio problema: es necesario manejar en las estructuras de
datos una lista de parejas ( Lista [ vértice, costo ] ) y, en la implementacion de la operacidn sucesores, una lista
de vértices ( Lista[ vértice ] ). Esto obliga a que se manejen dos copias de la implementacion del TAD Lista, y
se deba modificar una de ellas para que pueda almacenar parejas de elementos. Con minimas modificaciones
del codigo se crea el TAD ListaP, que maneja elementos de tipo TipoLP, y en el cual los nhombres de las
operaciones se modifican agregando una P al final, con el fin de distinguirlas de las operaciones equivalentes
en el TAD Lista. Teniendo en cuanta esto, las estructuras de datos se declaran de la siguiente manera:
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typedef struct

{ int vertice; /* Vértice sucesor */
int costo; /* Costo del arco */

} TipoLP;

typedef struct

{ TipoG info; /* Informacion asociada con el vértice */
int marca; /* Marca */
ListaP sucesores; /* Lista de parejas [ sucesor, costo | */

} Vertice;

typedef struct

{ Vertice *vertices; /* Vector de tamafio dinamico de vértices */
int numElem; /* Orden del grafo */

} TGrafo, *Grafo;

Las rutinas que implementan las operaciones del TAD Grafo sobre listas de sucesores son las siguentes.

Grafo inicGrafo( void )

{

}

Grafo g = ( Grafo )malloc( sizeof( TGrafo ) );

g->vertices = ( Vertice * ) calloc( MAX, sizeof( Vertice ) );
g->numElem = 0;

return g;

void insVertice( Grafo g, TipoG elem )

{

}

g->vertices[ g->numElem ].info = elem;

g->vertices[ g->numElem ].marca = 0;

g->vertices[ g->numElem ].sucesores = inicListaP( );
g->numElem++;

void insArco( Grafo g, int v, int w, int ¢ )

{

}

TipoLP a;
a.vertice = w;
a.costo = c;

primListaP( g->vertices[ v-1 ].sucesores );
insListaP( g->vertices[ v-1 ].sucesores, a ) ;

void elimArco( Grafo g, int v, int w )

{

}

ListaP Ist = g->vertices[ v-1 ].sucesores;
for( primListaP( Ist ); !finListaP( Ist ); sigListaP( st ) )
if( infoListaP( Ist ).vertice == w )
{  elimListaP( Ist);
break;
§

void marcarVertice( Grafo g, int v )

{
H

g->vertices[ v - 1 ].marca = TRUE;
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void desmarcarVertice( Grafo g, int v )
{ g->vertices[ v - 1 ].marca = FALSE;

}

void desmarcarGrafo( Grafo g )
{ inti;
for(i=0; i< g->numElem; i++)
g->vertices[ i |.marca = FALSE;

}

int costoArco( Grafo g, int v, int w )
{ ListaP Ist=g->vertices [ v - 1 ].sucesores;
for( primListaP( Ist ); !finListaP( Ist ); sigListaP( st ) )
if( infoListaP( Ist ).vertice == w )
return infoListaP( Ist ).costo;
return -1;

}

Lista sucesores( Grafo g, int v )
{ Listaresp = inicLista( );
ListaP Ist = g->vertices[ v-1 ].sucesores;
for( primListaP( Ist ); !finListaP( Ist ); sigListaP( Ist ) )
anxLista( resp, infoListaP( Ist ).vertice );
return resp;

}

TipoG infoVertice( Grafo g, int v )
{ return g->vertices[ v - 1 ].info;

}

int ordenGrafo( Grafo g )
{ return g->numElem;

}

int marcadoVertice( Grafo g, int v )
{ return g->vertices[ v - 1 ].marca;

}

void destruirGrafo( Grafo g )
{ inti
for(i=0;1<g->numElem; i++)
destruirListaP( g->vertices|[ i ].sucesores );
free( g->vertices );
free( g );
}

Para la implementacion de las operaciones de persistencia, se utiliza la misma estructura del archivo de texto
planteada en la representacion de matrices de adyacencias, y que se resume en la siguiente figura:
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orden del grafo
informacion vértice-1

informacion vértice-n

arco-1 » origen destino costo
arco-m
marca de final — 4—» 1 1 -1

Grafo cargarGrafo( FILE *fp )
{ int numVertices, v1, v2, costo;
Grafo g = inicGrafo();
fscanf( fp, "%d", &numVertices );
for( ; numVertices > 0; numVertices-- )
{  fscanf( fp, "%d", &v1);
insVertice( g, v1);

fscanf( fp, "%d %d %d", &vl, &v2, &costo );
while( vl 1=-1)
{ insArco( g, vl, v2, costo );

fscanf( fp, "%d %d %d", &vl, &v2, &costo );

H

return g;
H
void salvarGrafo( Grafo g, FILE *fp )
{ inti;

ListaP Ist;

fprintf( fp, "%d\n", g->numElem );
for(i=0; i< g->numElem; i++)

fprintf( fp, "%d\n", g->vertices][ i ].info );
for(i=0; i< g->numElem; i++)
{  lIst=g->vertices[ i ].sucesores;

for( primListaP( Ist ); !finListaP( Ist ); sigListaP( Ist))

fprintf( fp, "%d %d %d\n", i+1, infoListaP( Ist ).vertice, infoListaP( Ist ).costo );
}
fprintf( fp, "-1 -1 -1\n");
H

La siguiente tabla resume la complejidad de las operaciones del TAD Grafo, para la representacion de listas
de sucesores, donde n es el orden del grafo y m el nUmero de arcos:

inicGrafo O(1)
insVertice O(1)

insArco O(1)
elimArco O(n)
costoArco O(n)
sucesores O(n)
infoVertice O(1)
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ordenGrafo O(1)
marcarVertice O(1)
desmarcarVertice O(1)
desmarcarGrafo O(n)
marcadoVertice Oo(1)
destruirGrafo O(n)
cargarGrafo O(max(n, m))
salvarGrafo O(max(n, m))

La ventaja de esta representacion es que utiliza unicamente el espacio de memoria indispensable para
representar el grafo. Esto es, el espacio depende Unicamente del numero de arcos presentes y no del nUmero
total de arcos posibles, como en la implementacion anterior. La desventaja es que, para determinar si existe
un arco entre dos vértices dados, se requiere un proceso de complejidad O( n ) en el peor de los casos
(donde n es el orden del grafo), pues esta es la maxima longitud posible de una lista de sucesores.

6.8.3. Listas Encadenadas de Adyacencias

Dos inconvenientes se presentan en las representaciones anteriores. El primero, es que se debe manejar y
reservar una cantidad fija de memoria para representar el grafo (MAX posiciones) y, aunque puede mejorarse
la implementacion para que sea posible aumentar o disminuir este espacio en ejecucion, esto resulta de todos
modos un proceso lento. El segundo problema es el costo que tiene calcular, para la segunda representacion
vista, la lista de predecesores de un vértice. Esta operacion es muy importante en algunos procesos y en ese
caso resulta de complejidad cuadratica.

La estructura que se propone se ilustra mediante el siguiente ejemplo. La formalizacién del esquema de
representacion, la declaracién de las estructuras de datos y la implementacién de las operaciones se
proponen mas adelante como ejercicio.

Ejemplo 6.17:
Para el grafo de la figura:

v4® 10 ©v2

20
(W)
v1 v3

Las estructuras de datos que lo representan son:
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[[20]p]¢—[10]p}«—p[4]F]

A A

\ 4
N
N
I
[N
g

[ [T[-—>{y]e0]-F—>}20] ]

Yy

[[60]

l
w
4
A

J

6.8.4. Listas de Arcos

Otra manera de representar internamente un grafo dirigido es mediante 3 listas: la primera con los vértices y
sus contenidos, la segunda con los vértices marcados y la tercera con los arcos.

e vértices =< [ vy, infoq], ..., [ vy, info, ] >
e marcados = < Vj, Vi, .oy >

e arcos = <[V, Vi, ki I oo [ Vps Vps Cpr 1>

La formalizacién del esquema de representaciéon, la declaracion de las estructuras de datos y la
implementacion de las operaciones se proponen mas adelante como ejercicio.

6.8.5. Estructuras de Datos Implicitas

En algunos casos, la representacion del grafo puede hacerse de manera implicita, si el problema tiene
completamente definida su estructura. Suponga por ejemplo que el mundo en el cual ocurre un problema es
un espacio bidimensional cerrado de 5 x 5, donde cada vértice esta definido por sus coordenadas ( x, y ), tal
como aparece en la figura 6.17.

N W A~

Fig. 6.17 - Espacio bidimensional discretizado

Aunque es perfectamente posible utilizar una representacion como las vistas anteriormente, que da la
estructura del grafo mostrada en el figura 6.18, también se pueden disefiar unas estructuras de datos
especiales, mucho mas compactas, que aprovechen la uniformidad topoldgica del grafo. Algunas operaciones
del TAD como agregar o eliminar un arco pierden sentido, porque el grafo tiene una estructura predefinida y
estatica.
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<—k)<—@)

Fig. 6.18 - Grafo asociado con un espacio bidimensional discretizado de 5 x 5

En las estructuras de datos s6lo se deben manejar explicitamente los vértices marcados. Las coordenadas de
un vértice (su informaciéon asociada) y los arcos van implicitos en el nimero asignado al vértice (su
identificador). La declaracion de las estructuras de datos es la siguiente:

typedef struct
{ int marcado[ 25 |;
} TGrafo, *Grafo ;

Algunas de las rutinas que implementan las operaciones del TAD Grafo se presentan a continuacion:

Grafo inicGrafo( void )
{ inti;
Grafo g = ( Grafo )malloc( sizeof( TGrafo ) );
for(i=0;1<25;i++)
g->marcado[1]=0

return g;

H

int costoArco( Grafo g, int v, int w )

{ intxl=((v-1)/5)+1; /* coordenada en x de v */
intyl=((v-1)%5)+1; /* coordenada en 'y de v */
ntx2=((w-1)/5)+1; /* coordenada en x de w */
inty2=((w-1)%5)+1; /* coordenada en 'y de w */

if((x1-1=x2&&yl==y2)]|
(x1+1=x2&&yl==y2)|
(xl=x2&&yl-1==y2)||
(xl=x2&&yl+1==y2))
return 1;
else
return -1;
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Lista sucesores( Grafo g, int v )

{

intx=((v-1)/5)+1; /* coordenada en x de v */
inty=((v-1)%5)+1; /* coordenada en y de v */
Lista resp = inicLista( );
if(x-1>=1)anxLista( resp, ((x-2)*5)+y);
if(y-1>=1)anxLista(resp, ((x-1)*5)+(y-1));

if(x + 1 <=5)anxLista(resp, ((x)*5)+y);

if(y+ 1 <=5)anxLista(resp, ((x-1)*5)+(y+1));
return resp;

void marcarVertice( Grafo g, int v )

{
H

g->marcado[v-1]=1;

Ejercicios Propuestos

6.61.

6.62.

6.63.

6.64.

6.65.

Implemente y pruebe la operacion que retorna una lista con los predecesores de un vértice en un
grafo, sobre matrices de adyacencias.

Implemente y pruebe la operacion que retorna una lista con los predecesores de un vértice en un
grafo, sobre listas de sucesores.

Implemente todas las operaciones del TAD Grafo sobre listas de adyacencias. Calcule la
complejidad de cada una de ellas. Haga una comparacion con las dos primeras representaciones
propuestas.

Implemente todas las operaciones del TAD Grafo sobre listas de arcos. Calcule la complejidad de
cada una de ellas. Haga una comparacion con las dos primeras representaciones propuestas.

Autématas de Estados Finitos

Un autémata de estados finitos es una cuadrupla ( Q, P, F, g; ), donde:
¢ Q es un conjunto de estados: { q4,...,qyN }. Para efectos practicos, se puede ver como el conjunto de
enteros {1,2,...,N}.

e P es un conjunto de tripletas: { (q, r, ¢ )| q es un estado, r es un estado, c es un caracter }. Cada una
de las tripletas de denomina una transicion, y se denota como q —C 5 . El caracter asociado con

cada transicion se llama su etiqueta, y corresponde a una letra: 'a' ... 'z'.

's'

()

3

A diferencia de un grafo dirigido, entre dos estados de un autémata puede haber mas de una transicion
en cualquiera de los dos sentidos. Ademas, pueden existir dos transiciones que salgan del mismo
estado y tengan la misma etiqueta.

¢ F es un subconjunto de Q. Los elementos de F se denominan estados finales del autémata, y se

marcan de la siguiente manera:
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* gj es un elemento de Q que se denomina estado inicial, y se marca como:

El siguiente es un ejemplo de un autémata de estados finitos:

b

Para trabajar con este tipo de objeto abstracto, se define el TAD Automata con el siguiente formalismo:

TAD Autémata
(Q,P,F,q;) Q=1{qp-aN }
P={(q,r,¢c)}

a-) Escriba el invariante del TAD Automata

Para la administracion de un autémata, el TAD cuenta con las siguientes operaciones analizadoras:

sucesoresEstado Automata x char x int — Lista[ int |
primerEstado Automata — int
esEstadoFinal Automata x int — int

Lista sucesoresEstado( Automata a, char c, int e )
/* Retorna una lista con los estados sucesores de e mediante transiciones etiquetadas con el caracter ¢ */

{pre:e € Q}
{ post: sucesoresEstado = ( x1, ..., X, ) | € <, Xj }

int primerEstado( Autémata a )
/* Retorna el estado inicial de a */

{ post: primerEstado = q; }

int esEstadoFinal( Autémata a, int e )
/* Informa si e es un estado final */

{pre:e € Q}
{ post: esEstadoFinal = (e € F) }

b-) Utilizando las tres operaciones analizadoras del TAD, desarrolle la siguiente funcién:
Dada una cadena de caracteres S = "cqcs...c,,", se dice que S lleva a un automata de un estado xg a

otro estado xp, si existen estados x1 .... x,_1 tales que xiL) Xj+1. Por ejemplo, para el automata

de la figura anterior, la cadena "abbbbbb" lleva del estado inicial a un estado final. Escriba una funcion
que recibe una cadena de caracteres y retorna verdadero si lleva el automata del estado inicial a un
estado final.
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c-) Disefie unas estructuras de datos para el TAD Automata, que sean lo mas eficientes posible en
tiempo y espacio. Especifique el esquema de representacion.

d-) Implemente las tres operaciones del TAD antes mencionadas sobre las estructuras de datos del
punto anterior. Calcule la complejidad de su solucion, y justifique su disefio.
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CAPITULO 7

ESTRUCTURAS DE ACCESO DIRECTO:
TABLAS DE HASHING

En este capitulo se presentan unas estructuras de datos que responden muy eficientemente a las
operaciones de busqueda en un conjunto de datos, aunque no tienen un adecuado desempefio para otro tipo
de operaciones. Esta estructura se conoce como una tabla de hashing.

7.1. Motivacion

Suponga que se quiere almacenar en una estructura de datos un conjunto de elementos cuyas llaves de
acceso son valores entre 0 y 9.999. La representacion mas simple y eficiente se hace a través de un vector,
en el cual aparece, en la posicion k, el elemento con llave de acceso k. Esto permite un acceso a la
informacion en O( 1 ) cuando se da su llave.

Piense ahora en el mismo problema, pero donde los 10.000 elementos que se quieren almacenar tienen
llaves de acceso con valores entre 0 y 99.999.999. Este es el caso de una empresa con N empleados con
acceso por su numero de cédula. Con las estructuras estudiadas hasta este momento es imposible tener
acceso a un elemento de dicha estructura, dada su llave, en menos de O( logk N ).

El objetivo de una estructura de acceso directo es retomar la idea del vector y definir una manera rapida de
proyectar el valor de una llave en una posicidon del vector, de manera que se tenga un acceso muy eficiente
de la informacidén, aunque otras operaciones como recorridos, etc. resulten ineficientes.

La idea de las tablas de hashing surgié a mediados de los afos 50, en IBM, como un esquema de
representacion de informacion en memoria secundaria para hacer consultas rapidas. Knuth [KNU73]
menciona los aportes de P. Luhn (IBM-1953), A. Dumey (1956), A. Ershov (Rusia-1958) y R. Morris (1968),
como la base del desarrollo de este tipo de estructuras de datos. El término hashing fue popularizado por R.
Morris, y se ha convertido, desde mediados de los afios 60, en un nombre estandar para este tipo de
estructuras de acceso directo. La traduccion al espanol de dicho término no es evidente, puesto que surgio de
la jerga informatica del momento, tratando de explicar con el verbo to hash (cortar, picar) la accién de partir la
llave y sacar de alli la informacién que permita localizar el elemento asociado.
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7.2. Definiciones y Conceptos Basicos

Una tabla de hashing es una estructura de datos de acceso directo, en la cual cada elemento tiene asociada
una llave por medio de la cual se consulta. El formalismo escogido para expresar el objeto abstracto es el
siguiente:

< llaveq—elemy, llaveo—elemo, ..., llave,—elemp >

Una tabla sin elementos se denomina vacia, y se expresa mediante el simbolo ®, para no utilizar el mismo
formalismo usado en el capitulo 2 para las listas vacias. El nUmero de elementos presentes en la tabla se
denomina su tamano.

Una llave es una cadena de caracteres alfanuméricos, con un significado especial en el mundo en el cual
ocurre el problema. Las llaves son unicas al interior de la tabla y son el Unico medio para tener acceso a la
informacion asociada. El conjunto de todas las llaves posibles se denomina el espacio de llaves de la tabla.
Al interior de una tabla de hashing no existe una nocién de orden, en el sentido de que no se puede hacer un
recorrido secuencial de la informacién, no hay un sucesor ni un predecesor de un elemento, no hay un
primero ni un ultimo. No es posible ejecutar operaciones como traer la siguiente llave, o determinar cuantos
elementos hay en un rango de llaves. El Unico acceso posible es por la llave y la gran cualidad de una tabla
de hashing es la eficiencia con la cual es capaz de hacer acceso directo a la informacién bajo esa condicion.

El espacio fisico de representacion de la informacion se conoce como el area primaria de la tabla. Alli se
colocan los elementos de la estructura con una cierta disposicion, de manera que las operaciones de
busqueda sean capaces de llegar rapidamente al elemento que se quiere localizar. Esta area tiene un tamafio
fijo, denominado la capacidad de la tabla y se denota por M. En el formalismo, este valor se hace explicito de
la siguiente manera:

< llaveq—elemq, llaveo—elemso, ..., llave,—elem, > [ M
1 1 2 2 n n

La capacidad de la tabla es una decision de disefio, que se debe determinar basados en el numero esperado
de elementos que debe almacenar. La direccién de un elemento en el area primaria es la posicion que éste
ocupa, y corresponde a un valor entre 0 y M-1. El factor de carga de una tabla de hashing se define como el
tamano de la tabla sobre su capacidad, y es una medida de lo saturada que ésta se encuentra.

Una funcién de hashing es una funcion h que proyecta un valor del espacio de llaves a una direccion del
area primaria, como se sugiere en la figura 7.1. Esta funcidon es la base del esquema de acceso a la
informacion.

llv h(liv)
informacion

area primaria

espacio de llaves

Fig. 7.1 - Funcion de hashing

Resulta conveniente utilizar una tabla de hashing cuando el espacio de llaves es mucho mayor que el area
primaria, y las llaves que se deben almacenar en la estructura tienen una distribucion altamente no uniforme.
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Ejemplo 7.1:

El codigo que se le asigna a un estudiante de la Universidad esta formado por la inicial del nombre, la inicial
del apellido y el numero de carnet, cuyos digitos corresponden al afio de entrada, el semestre y un
consecutivo de 4 digitos. El espacio de llaves en este caso tiene un tamafio de 1.458.000.000 cddigos
potenciales diferentes, calculado de la siguiente manera:

27 (inicial nombre ) * 27 ( inicial apellido ) * 100 ( afio ) * 2 ( semestre )* 10.000 ( consecutivo )

En la Facultad de Ingenieria hay aproximadamente 3.000 estudiantes, cuyos codigos estan distribuidos de
manera no uniforme sobre dicho espacio de llaves. El area primaria deberia tener una capacidad superior
a 3.000, y la funcién de hashing deberia ser tal, que al cédigo de un estudiante le asociara una direccion
en el area primaria, donde estaria localizada su informacioén.

Una posible funcién de hashing, para este caso, seria sumar todos los digitos del carnet, y multiplicar dicho
resultado por el codigo ASCII de las iniciales. Luego, a este valor se le aplicaria la funcion moédulo M. Esta
funcién siempre retorna un valor entre 0 y 2.999 (para M=3.000), direcciones validas del area primaria. Por
ejemplo:

e h("VD9113984") =86 * 68 * 35 = 204.680 % 3000 = 680

e h("CM9113578") = 67 * 77 * 34 = 175.406 % 3000 = 1406
J

Una funcion de hashing no preserva el orden, de manera que si llave4 < llavey no necesariamente se cumple
que h( llaveq ) < h( llavey ). Esto implica que en el area primaria la informacion va a quedar en un orden
indeterminado con respecto al orden de las llaves.

Cuando dos llaves distintas son proyectadas sobre la misma direccion del area primaria, se habla de una
colision. La eficiencia de una tabla de hashing radica basicamente en su estrategia para resolver estos
conflictos. Existen varias formas de hacer que si dos llaves llegan a una misma direccion, se puedan
almacenar los dos elementos asociados en la estructura, tal como se presenta en la seccion de
implementacién del TAD. El planteamiento mas sencillo es asociar una lista de elementos con cada direccion
del area primaria.

e colision( lvq, livp ) ssillvy # llvo A h(llvy ) =h(llvy )

El desempefio de una tabla de hashing comienza a disminuir a medida que aumenta el factor de carga,
puesto que crece el numero de colisiones, y se debe recurrir a las estructuras auxiliares de datos sobre las
cuales se hace una busqueda mas lenta (de orden lineal en estructuras lineales y de orden logaritmico en
estructuras arborescentes). Por esta razon el area primaria se debe definir desde un comienzo con una
capacidad extra aproximada del 20%, para asegurar un buen desempefio cuando el factor de carga aumenta.

& Ejemplo 7.2:

En la grafica se puede apreciar la manera como aumenta el numero de colisiones a medida que el factor de
carga crece. Esto repercute directamente en el tiempo de acceso a la informacion. Para obtener estos
resultados se construyé un generador aleatorio de llaves, se utilizd como funcién de hashing la presentada en
el ejemplo 7.1, y se trabajé sobre la segunda implementacion propuesta para este tipo de estructuras
(distribucién en area primaria):

© Todos los derechos reservados — Jorge Villalobos



358 Disefio y Manejo de Estructuras de Datos en C

5000
Capacidad de la tabla=11.111
4000

3000

2000

Numero de colisiones

1000

300
1800
3300
7800
9300

4800
6300
10800

Numero de llaves

Note como el numero de colisiones aumenta de manera aproximadamente lineal, permitiendo el acceso a
la informacién a una velocidad razonable (en promedio, una de cada 3 llaves tiene colisién), como se
muestra en la siguiente tabla:

# llaves # total # colisiones
insertadas colisiones por llave insertada
1000 160 0.16
2000 481 0.32
3000 813 0.33
4000 1143 0.33
5000 1462 0.32
6000 1800 0.34
7000 2121 0.32
8000 2448 0.33
9000 2777 0.33
10000 3094 0.32
11000 3422 0.33

J

Otros dos elementos son decisivos en el comportamiento de la tabla: la funcién de hashing h y su capacidad
M. La funcién no puede ser demasiado compleja, puesto que esto incide en el tiempo de ejecucion, pero debe
distribuir adecuadamente las llaves. No se espera que evite completamente las colisiones, pero si debe evitar
los excesos. Para seleccionar el valor de M, es conveniente escoger un numero primo. En la practica se ha
observado que es suficiente con seleccionar M de manera que no tenga divisores primos menores que 20
[KNU73].

Las tablas de hashing se utilizan sobre todo en memoria secundaria, donde el numero de accesos a la
estructura de datos resulta un factor critico, haciendo que se descarten estructuras de datos como arboles
AVL, en las cuales una busqueda puede implicar multiples accesos al disco.

Una tabla de hashing es una estructura con bajo desempefio en procesamiento secuencial de un rango de
llaves, en recorridos ordenados por llave y en busquedas con llaves incompletas. En esos casos es necesario
utilizar varias estructuras de datos simultaneas, para responder eficientemente a todas las operaciones, como
se propone mas adelante en los ejercicios.
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7.3. EI TAD TablaH

TAD TablaH[ TipoH ]

< llaveq—elemy, llaveo—elemo, ..., llave,—elem, > [ M ]

{inv: llave;=llaveg ssii=k }

Constructoras:

. inicTablaH: int — TablaH
Modificadoras:

. insTablaH: TablaH X char * X TipoH — TablaH
. elimTablaH: TablaH X char * — TablaH
Analizadoras:

. infoTablaH: TablaH X char * — TipoH
° estaTablaH: TablaH X char * — int

Persistencia:

. cargarTablaH: FILE * — TablaH
° salvarTablaH: TablaH X FILE *

Destructora:

° destruirTablaH: TablaH

TablaH inicTablaH( int cap )
/* Crea y retorna una tabla vacia con capacidad cap */

{ post: inicTablaH = ® [cap] }

void insTablaH( TablaH t, char *llv, TipoH elem )
/* Inserta en la tabla el elemento elem con llave asociada Ilv */

{pre:llv ¢ t}
{ post: t = < llaveq—elem1, llavepo—elemo, ..., llavey—elemp, llv>elem > [M ]}

void elimTablaH( TablaH t, char *llv )
/* Elimina de la tabla el elemento con llave asociada llv */

{ pre: t = < llaveq—elemq, llavego—elemo, ..., llavey—elemy > [ M ], llv = llave; }
{ post: t = < llavej—>elemy, ..., llave;_{—elem;_4, llavej.q—elemj; 4, ..., llavey—elem, >[M ]}

TipoH infoTablaH( TablaH t, char *llv )
/* Retorna el elemento asociado con la llave 1lv */

{ pre: t = < llaveq—elemq, llaveo—elemo, ..., llavey—elemy > [M], llv = llave; }
{ post: infoTablaH = elem; }
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int estaTablaH( TablaH t, char *llv)
/* Informa si un elemento con llave llv aparece en la tabla */

{ post: estaTablaH = (llve t)}

TablaH cargarTablaH( FILE *fp )
/* Construye una tabla a partir de la informacion de un archivo */

{ pre: el archivo esta abierto y es estructuralmente correcto, de acuerdo con el esquema de persistencia }
{ post: se ha construido la tabla que corresponde a la imagen de la informacién del archivo }

void salvarTablaH( TablaH t, FILE *fp )
/* Salva la tabla en un archivo */

{ pre: el archivo esta abierto }
{ post: se ha hecho persistir la tabla en el archivo de acuerdo con el esquema de persistencia }

void destruirTablaH( TablaH t )
/* Destruye el objeto abstracto, retornando toda la memoria ocupada por éste */

{ post: la tabla t no tiene memoria reservada }

7.4. Implementacion del TAD TablaH

En esta parte se presentan varias maneras diferentes de resolver los problemas de implementacién de una
tabla de hashing. Soluciones a los problemas de eliminar un elemento de manera eficiente, resolver un
conflicto, buscar una llave, etc., se ilustran a través de tres estructuras de datos distintas.

7.41. 5 Listas de Clases de Equivalencia

Una funcion de hashing puede ser vista como una relacion de equivalencia, la cual divide el espacio de llaves
en clases de equivalencia: llvl R llv2 ssi h( llvl ) = h( llv2 ). En esta representaciéon, cada una de las
posiciones del area primaria esta constituida por una lista de parejas [ llave, elemento ], ordenada
ascendentemente por llave, con los elementos que pertenecen a la clase de equivalencia respectiva. Cuando
se presenta una colisién, ésta se resuelve incluyendo el nuevo elemento en la lista.

El esquema de representacion es el siguiente:

e La tabla vaciat = ® [ M ] se representa con un apuntador a una estructura que tiene un vector de M
posiciones, en cada uno de los cuales hay una lista ordenada vacia:

t

—P> M clases
| M 0| <>
1| <>
<>
M-1| <>
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e Latablat = < llaveq—elemq, llaveo—elemsy, ..., llave,—elemy > [ M | se representa con un apuntador a

una estructura que tiene un vector de M posiciones, en cada una de los cuales hay una lista ordenada de
parejas con todos los elementos que pertenecen a la clase de equivalencia respectiva:

t —p M clases

[M] o

©

< [ livi,infoi ], [ llvk, infok ] >

M-1

Dos elementos info;, infoy de la tabla se encuentran en la posicion p del vector, de la manera como se
muestra en la figura, si se cumple que h( llvj ) = h( llvg ) A llvj < llv.

Ejemplo 7.3:
Para la tabla:

t = < "casa"—info1, "agua"—info2, "miel"—info3, "rio"—info4, "faro"—info5, "loro"—info6 > [ 8 ]

Dada alguna funcién de hashing, las estructuras de datos que la representan son:

t > M clases

< ["miel", info3] >
<>

0 | <['agua", info2], ['faro", info5] >
1 <>
2 | <['casa", info1], ["'rio", info4] >
3 | <["loro", info6] >
4| <>
5| <>
6
7

J

La declaracién de las estructuras de datos para esta primera implementacion de tablas de hashing es:

typedef struct Pareja
{ char *llave; /* Llave de acceso */
TipoH info; /* Informacion asociada con la llave */
} TipoLO;
typedef struct
{ intM; /* Capacidad de la tabla */
ListOrd *clases; /* Vector dinamico de listas ordenadas de parejas */

} TTablaH, *TablaH;
e La rutina de inicializacion de una tabla de hashing pide memoria para ella y para el area primaria, de

acuerdo con el parametro que envia el usuario. Luego, hace un ciclo para inicializar las listas de clases de
equivalencia en vacio.
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TablaH inicTablaH( int cap )

{ inti;
TablaH t = ( TablaH )malloc( sizeof( TTablaH ) );
t->M = cap;

t->clases = ( ListOrd * )calloc( cap, sizeof( ListOrd ) );
for(i=0;1<t>M;i++)

t->clases|[ i ] = inicListOrd( );
return t;

}

e En esta representacién, para insertar un elemento en la tabla, se localiza primero la direccion que le
corresponde a la llave en el area primaria de acuerdo con la funcién de hashing. Luego, se agrega a la
respectiva lista ordenada de clases de equivalencia un nodo con la pareja [ llave, elemento ].

void insTablaH( TablaH t, char *1lv, TipoH elem )
{ struct Pareja nodo;
nodo.llave = ( char * )malloc( strlen( llv )+ 1);
strepy( nodo.llave, 11v );
nodo.info = elem;
insListOrd( t->clases[ h( t, 1lv ) ], nodo );
H

o Eliminar un elemento se reduce a suprimir, de la lista de equivalencia respectiva, el elemento que tiene
asociada la llave.

void elimTablaH( TablaH t, char *1lv )
{ elimListOrd( t->clases[ h( t, 1lv) ], 1lv);
H

e Para localizar un elemento en la tabla, se toma su llave y, en la direccion del area primaria que se obtiene
con la funcién de hashing, se hace una busqueda secuencial sobre la lista ordenada que alli se encuentra
almacenada. Una vez encuentra la pareja [ llave, informacion ], la rutina retorna el elemento asociado.

TipoH infoTablaH( TablaH t, char *1lv )
{ inti;
int pos =h(t, llv);
for(i=1;1<=longListOrd( t->clases[ pos ] ); i++)
if( stremp( infoListOrd( t->clases[ pos ], 1 ).llave, llv)==0)
break;
return infoListOrd( t->clases[ pos ], 1 ).info;

}

e Para decidir si una llave se encuentra presente en una tabla, se sigue un proceso parecido al anterior:

int estaTablaH( TablaH t, char *1lv )
{ inti;
int pos =h(t, llv);
for(i=1;1<=longListOrd( t->clases[ pos ] ); i++)
if( stremp( infoListOrd( t->clases[ pos ], 1 ).llave, llv)==10)
return TRUE;
return FALSE;
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o La destructora recorre primero el area primaria destruyendo las listas de parejas y retorna, luego, toda la
memoria reservada:

void destruirTablaH( TablaH t )
{ inti;
for(i=0;1<t>M;i++)
destruirListOrd( t->clases[ i ] );
free( t->clases );
free(t);
H

o Para las operaciones de persistencia se disefia el siguiente esquema, el cual utiliza un archivo de texto en
el que aparecen secuencialmente las parejas [ llave, informacién], con una marca especial al final para
indicar el final del contenido valido:

M

< llaveq—elemy, llaveo—elemo, ..., llave,—>elem, > [ M ] llave1 elem1
llave2 elem2

llaven elemn

CELERES ()

Las dos rutinas que cargan y salvan una tabla de hashing son:

TablaH cargarTablaH( FILE *fp )
{ charllave[ 12 ];
TablaH t;
int valor, cap;
fscanf( fp, "%d", &cap );
t=inicTablaH( cap );
fscanf( fp, "%s %d", llave, &valor );
while( llave[ 0 ] I="*")
{  insTablaH( t, llave, valor ),
fscanf( fp, "%s %d", llave, &valor );

H
return t;
H
void salvarTablaH( TablaH t, FILE *fp )
{ inti;
fprintf( fp, "%d\n", t->M );
for(i=0;1<t>M;i++)
salvarListOrd( t->clases[ i ], fp );
fprintf( fp, "*¥****** O\n");
H
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7.4.2. 5] Distribuciéon en Area Primaria

En esta implementacion las colisiones se resuelven utilizando algun espacio libre en la misma area primaria,
sin necesidad de manejar una estructura adicional. Existen diversas variantes que se nombran mas adelante,
pero, para efectos de la presentacion, se escoge el sistema mas simple.

El esquema de representacion es el siguiente:
e La tabla vaciat = ® [ M ] se representa con un apuntador a una estructura que tiene un vector de M

posiciones, en cada uno de los cuales hay un elemento de la tabla. Para indicar una posicién vacia se
coloca el campo llave en NULL.

tabla
t—> M llave __info

M 0 | NULL

1 [NULL
NULL

M-1 [ NuLL

e Latablat=<llaveq—>elemq, llaveo—elems, ..., llaven—>elemn > [ M ], se representa con un apuntador a

una estructura que tiene un vector de M posiciones. Para insertar un elemento para el cual no existe
conflicto, se coloca la llave y la informacién asociada en la posicion del vector definida por la funcion de
hashing.

Si en la tabla t se encuentra la llave llv; y al tratar de agregar la llave llv) aparece una colisién con la
primera (i.e. h( llvj ) = h( llvk) ), la informacion de la segunda llave se coloca en la siguiente posicion libre
del area primaria, recorriéndola secuencialmente posicion por posicion.

Ejemplo 7.4:
Para la tabla:

t = < "casa"—info1, "agua"—info2, "miel"—info3, "rio"—info4, "faro"—info5, "loro"—info6 > [ 8 ]

Dada la misma funcién de hashing del ejemplo anterior, las estructuras de datos que representan la tabla
son:

tabla

M llave info
t— 0 [ "agua" | info2
1 | "faro" info5
2 | "casa" | info1
3 | "loro" info6
4| "rio" info4

5| NULL
6 | "miel" info3

7 | NULL

J

La declaracion de las estructuras de datos es:
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typedef struct
{ intM; /* Capacidad de la tabla */
struct Pareja
{ char *llave;  /* Llave de acceso a la informacion */
TipoH info;  /* Elemento que se guarda en la tabla */
} *tabla; /* Vector dinamico con parejas llave-informacion */
} TTablaH, *TablaH;

e Para crear una tabla vacia se pide la memoria correspondiente al area primaria, que corresponde a un
vector de parejas [ llave - informacion ]. Luego, se coloca el valor NULL en el campo llave de cada casilla,
para indicar que se encuentra vacia.

TablaH inicTablaH( int cap )

{ inti;
TablaH t = ( TablaH )malloc( sizeof( TTablaH ) );
t->M = cap;

t->tabla = ( struct Pareja * )calloc( cap, sizeof{( struct Pareja ) );
for(i=0;1<t>M; i++)

t->tabla[ i ].llave = NULL,;
return t;

e La rutina que agrega un elemento a la tabla sigue los siguientes pasos: primero, establece el punto en el
cual deberia encontrarse el elemento en el area primaria. Si esta posicion se encuentra libre coloca alli la
llave y el elemento asociado. Si encuentra un conflicto, hace una busqueda secuencial a partir de ese
punto, hasta que encuentra un lugar libre, en el cual puede situar el nuevo elemento. Esta rutina ve el
area primaria como un vector circular.

void insTablaH( TablaH t,char *1lv,TipoH elem )
{ intpos;
for( pos =h( t, llv); t->tabla[ pos ].llave != NULL; pos=(pos==t->M-1)?0:pos+1);
t->tabla[ pos ].llave = ( char * )malloc( strlen( 1lv )+ 1);
strepy( t->tabla[ pos ].llave, 1lv );
t->tabla[ pos ].info = elem;

}

e Para eliminar un elemento, se hace una busqueda igual a la que se requiere en una consulta, y al
encontrar la posicién en la cual se encuentra el elemento, se marca esa casilla como vacia, colocando la
llave en NULL.

void elimTablaH( TablaH t,char *Ilv )

{ intpos;
for( pos = h( t, 1lv); stremp( t->tabla[ pos ].llave, llv ) !=0; pos =(pos ==t->M -1)?0:pos+1);
free( t->tabla[ pos ].llave );
t->tabla[ pos ].llave = NULL;

}

e La rutina que busca un elemento en la tabla sigue los siguientes pasos: primero, establece el punto en el
cual deberia encontrarse el elemento en el area primaria. Luego, si no se encuentra alli, hace una
busqueda secuencial desde esa posicion hasta que lo encuentra. Si llega al final del area primaria,
comienza de nuevo la busqueda desde la direcciéon 0. Cuando localiza la llave, retorna la informacion que
tiene asociada.
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TipoH infoTablaH( TablaH t,char *1lv )

{ intpos;
for( pos = h( t, 1lv); stremp( t->tabla[ pos ].llave, llv) = 0; pos =(pos==t->M-1)?0:pos+1);
return( t->tabla[ pos ].info );

}

e La operaciéon que informa si una llave se encuentra presente en una tabla utiliza un proceso parecido al
anterior, pero verificando que no se haya quedado en un ciclo durante la busqueda. Esta rutina tiene una
complejidad de O( M ), en el peor de los casos (la llave no esta presente en la tabla), lo cual la hace muy
ineficiente.

int estaTablaH( TablaH t, char *1lv )
{ int primero;
int pos =h(t, llv);
if( stremp( t->tabla[ pos ].llave, llv) == 0)
return TRUE;
else
{  for( primero = pos++; strcmp( t->tabla[ pos ].llave, 1lv) != 0 && primero != pos;
pos=(pos=t->M-1)?0:pos+1);
return primero != pos;
H
H

o Para destruir la tabla se recorre el area primaria, retornando la memoria ocupada por las llaves. Luego, se
devuelve el resto de la memoria ocupada:

void destruirTablaH( TablaH t )
{ inti;
for(i=0;1<t>M;i++)
if( t->tabla[ i ].1lave !=NULL )
free( t->tabla[ i ].llave );
free( t->tabla );
free(t);
H

e Para el mismo esquema de persistencia planteado en la implementacién anterior, las rutinas que salvan y
cargan una tabla son:

TablaH cargarTablaH( FILE *fp )

{ charllave[ 12 ];
TablaH t;
int valor, cap;
fscanf( fp, "%d", &cap );
t=inicTablaH( cap );
fscanf( fp, "%s %d", llave, &valor );
while( llave[ 0 ] I="*")
{  insTablaH( t, llave, valor );

fscanf( fp, "%s %d", llave, &valor );

}

return t;
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void salvarTablaH( TablaH t, FILE *fp )
{ inti;
fprintf( fp, "%d\n", t->M );
for(i=0;1i<t>M;i++)
if( t->tabla[ i ].1lave !=NULL )
fprintf( fp, "%s %d\n", t->tabla[ i ].llave, t->tabla[ i ].info );
fprintf( fp, "*¥****** O\n");

7.4.3. (5 Bloques con Area de Desbordamiento

Esta representacion sigue una idea utilizada en el manejo de estructuras de datos dinamicas en memoria
secundaria. Esta consiste en reservar un espacio fijo asociado con cada direccion del area primaria, para
colocar alli un numero limitado de elementos que colisionan. Si en algin momento este espacio resulta
insuficiente, se habla de un desbordamiento del bloque. Para resolverlo, se utiliza un bloque del mismo
tamafo y se encadena con el bloque original. Al interior de los bloques los elementos no tienen un orden
especifico.

El esquema de representacion es el siguiente:

e Latablavaciat=® [M], con bloques de tamafio K, se representa con un apuntador a una estructura que
tiene un vector de M posiciones, en cada uno de los cuales hay un bloque de K elementos de la tabla.
Para indicar una posicién vacia se coloca el campo llave del elemento en NULL. El indicador de area de
desbordamiento de cada posicion se inicializa también en NULL.

tabla .
t— M llaveO_info0 llavek-1_infok-1 Sig
[M] ofnu NULL
1 | NULL NULL
NULL NULL
M-1 | NULL NULL
e La tabla t = < llaveq—elemy, llaveys—elems, ..., llave,—elemn > [ M ], con bloques de tamario K, se

representa con un apuntador a una estructura que tiene un vector de M bloques de K posiciones cada
uno. Para insertar un elemento para el cual no existe conflicto, se coloca la llave y la informacién asociada
en la primera posicién del bloque respectivo.

En caso de aparecer un conflicto, se resuelve colocando el nuevo elemento y su llave en una posicion
libre del bloque sefialado por la funciéon de hashing. Si el bloque se encuentra lleno, se crea un nuevo
bloque de K elementos y se encadena con el bloque original.

Ejemplo 7.5:
Para la tabla:

t = < "casa"—info1, "agua"—info2, "miel"—info3, "rio"—info4, "faro"—info5, "loro"—info6 > [ 5]

Suponiendo alguna funcién de hashing dada, las estructuras de datos que la representan, con bloques de
tamafo K = 2 son:
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o tabla
llave[0] info[0] llave[1]  info[1] sig
t —»
0| "loro" info6 "miel" | info3
1 [ NULL NULL
" " ) e ow ; P »ln " -
2 | "agua info2 faro info5 |® »|"casa info1 | NULL| N
3| "rio" info4 NULL
4 | NULL NULL

J

Cuando K es igual a 1, se trata de una lista sencillamente encadenada, implementacién parecida a la primera
presentada en este capitulo (listas de clases de equivalencia).

La declaracion de las estructuras de datos es:

struct Pareja
{ char *llave; /* Llave de acceso a la informacion */
TipoH info; /* Informacion asociada con la llave */

¥

struct Bloque
{ struct Parejaelem[ K ]; /* Vector de K parejas [ llave - informacion | */

struct Bloque *sig; /* Encadenamiento al siguiente bloque */
15
typedef struct
{ intM; /* Capacidad de la tabla */

struct Bloque *tabla; /* Vector dindmico para el area primaria */

} TTablaH, *TablaH;

e La rutina que inicializa la tabla debe colocar en NULL el campo llave de cada una de las K entradas de
los bloques:

TablaH inicTablaH( int cap )
{ inti,j;
TablaH t = ( TablaH )malloc( sizeof( TTablaH ) );
t->M = cap;
t->tabla = ( struct Bloque * )calloc( cap, sizeof( struct Bloque ) );
for(i=0;1<t>M;i++)
[ for(j=0;j<K;j++)
t->tabla[ i ].elem[ j ].llave = NULL;
t->tabla[ i ].sig = NULL;
H

return t;

e Parainsertar un elemento en la tabla se deben seguir los siguientes pasos: (1) calcular la direccion que le
corresponde en el area primaria, (2) buscar una entrada libre en el bloque principal, o en un bloque de la
zona de desbordamiento asociada con la direccion calculada, (3) colocar en ese espacio la llave y el
elemento asociado. En el paso 2 se debe tener en cuenta el caso en el cual se debe crear un nuevo
bloque en la zona de desbordamiento.
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void insTablaH( TablaH t, char *1lv, TipoH elem )
{ inti;
struct Bloque *pb, *pa = NULL;
for( pb = &t->tabla[ h( t, 1lv ) ]; pb != NULL; pa = pb, pb = pb->sig )
for(i=0;1<K;it++)
if( pb->elem[ i ].llave == NULL )
{ pb->elem[ i ].llave = ( char * )malloc( strlen( 1lv ) + 1 );
strepy( pb->elem| i ].llave, 1lv );
pb->elem] i ].info = elem;

return;
H
pb = ( struct Bloque * )calloc( K, sizeof( struct Bloque ) );
pa->sig = pb;

pb->sig = NULL;
pb->elem[ 0 ].llave = ( char * )malloc( strlen( 1lv ) + 1 );
strepy( pb->elem[ 0 ].1lave, 1lv );
pb->elem][ 0 ].info = elem;
for(i=1;i<K;it++)
pb->elem] i ].llave = NULL;
H

o Para eliminar un elemento se debe localizar su posicion en la tabla, siguiendo el mismo esquema de una
consulta. Luego, es suficiente con marcar esa entrada como vacia. No vale la pena destruir bloques que
ya no se utilicen en la zona de desbordamiento, ni colocar las entradas realmente ocupadas al comienzo
de los bloques, a menos que exista un problema critico de espacio.

void elimTablaH( TablaH t, char *1lv )
{ inti;
struct Bloque *pb;
for( pb = &t->tabla[ h( t, llv ) ]; 1; pb = pb->sig )
for(i=0;1<K;it++)
if( stremp( pb->elem[ i ].llave, llv)==10)
{  free( pb->elem][ i ].llave );
pb->elem] i ].llave = NULL;
return;

}

e La busqueda se limita a localizar la direccidén que le corresponde al elemento en la tabla, a partir de su
llave, y luego hacer un recorrido secuencial al interior de cada bloque hasta localizar la informacién
buscada.

TipoH infoTablaH( TablaH t, char *1lv )
{ inti;
struct Bloque *pb;
for( pb = &t->tabla[ h( t, llv ) ]; 1; pb = pb->sig )
for(i=0;1<K;i++)
if( stremp( pb->elem[ i ].llave, llv)==0)
return pb->elem[ i ].info;
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e El proceso que establece si una llave se encuentra presente en una tabla, localiza la entrada en el area
primaria utilizando la funcién de hashing, y, luego, hace una busqueda secuencial al interior del bloque y
al interior de cada uno de los bloques que se encuentran encadenados a dicha entrada.

int estaTablaH( TablaH t, char *1lv )
{ inti;

struct Bloque *pb;

for( pb = &t->tabla[ h( t, 1lv ) ]; pb != NULL; pb = pb->sig )

for(i=0;1<K;i++)
if( stremp( pb->elem[ i ].llave, llv)==0)
return TRUE;
return FALSE;

}

e Para destruir una tabla, primero, se debe entrar por cada direccion del area primaria y liberar los bloques
encadenados. Luego, se libera el vector de bloques del area primaria, y, por ultimo, el registro que
representa la tabla completa.

void destruirTablaH( TablaH t )
{ inti,j, primero;
struct Bloque *pb;
for(i=0;1<t>M;i++)
for( primero = TRUE, pb = &t->tabla[ i ]; pb != NULL; pb = pb->sig )
[ for(j=0;j <K;j++)
if( pb->elem[ j ].llave != NULL )
free( pb->elem[ j ].llave );
if( !primero )

free( pb);
else
primero = FALSE;
§
free( t->tabla );
free(t);

}

e Las operaciones de salvar y cargar una tabla utilizan el esquema de persistencia definido en las
implementaciones anteriores.

TablaH cargarTablaH( FILE *fp )

{ charllave[ 12 ];
TablaH t;
int valor, cap;
fscanf( fp, "%d", &cap );
t=inicTablaH( cap );
fscanf( fp, "%s %d", llave, &valor );
while( llave[ 0 ] I="*")
{  insTablaH( t, llave, valor );

fscanf( fp, "%s %d", llave, &valor );

}

return t;
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void salvarTablaH( TablaH t, FILE *fp )

{

int1i, j;
struct Bloque *pb;
fprintf( fp, "%d\n", t->M );
for(j=0;j <t->M; j++)
for( pb = &t->tabla][ j ]; pb != NULL; pb = pb->sig )
for(1=0;1<K;it++)
if( pb->elem[ i ].llave !=NULL )
fprintf( fp, "%s %d\n", pb->elem| i ].llave, pb->elem[ i ].info );
fprintf( fp, "*¥****** O\n"),

Ejercicios Propuestos

71.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

7.9.

Implemente el TAD TablaH utilizando una lista sencillamente encadenada con apuntadores para
manejar las colisiones. Utilice el probador interactivo para validar las rutinas desarrolladas.

Implemente el TAD TablaH utilizando un arbol binario ordenado para manejar las colisiones. Utilice
el probador interactivo para validar las rutinas desarrolladas.

Una variante de la segunda implementacion mostrada para tablas de hashing es avanzar en pasos
mayores que 1, para localizar una posicién libre en caso de colisién. Implemente el TAD TablaH con un
paso igual a una constante P mayor que 1. Estudie las ventajas de esta implementacién. Utilice el
probador interactivo para validar las rutinas desarrolladas.

Una variante de la segunda implementacion mostrada para tablas de hashing es utilizar doble
hashing para determinar el paso de avance en la busqueda de una posicion libre. La idea es tener una
segunda funcién paso( llave), que indica para cada llave el nimero de espacios que debe avanzar.
Implemente el TAD TablaH con esta variante. Estudie las ventajas de esta implementacion. Utilice el
probador interactivo para validar las rutinas desarrolladas.

Implemente sobre la primera representacion planteada para tablas de hashing una rutina que
imprima ordenadamente las llaves presentes. Calcule la complejidad. Modifique el probador interactivo
del TAD para validar esta rutina.

Implemente sobre la segunda representacion planteada para tablas de hashing una rutina que
imprima ordenadamente las llaves presentes. Calcule la complejidad. Modifique el probador interactivo
del TAD para validar esta rutina.

Implemente sobre la tercera representacion planteada para tablas de hashing una rutina que
imprima ordenadamente las llaves presentes. Calcule la complejidad. Modifique el probador interactivo
del TAD para validar esta rutina.

Modifique el esquema con el que se elimina un elemento en la segunda representacion planteada
para tablas de hashing, de manera que si existe otra llave en conflicto con la llave que se va a eliminar,
pase a ocupar el espacio que se libera. De esta forma, se simplifica la rutina que indica si un elemento
se encuentra presente en la tabla, porque al encontrar la primera posicién vacia se sabe que ya no
puede aparecer.

Modifique el esquema con el que se elimina un elemento en la tercera representacion planteada
para tablas de hashing, de manera que libere los bloques que ya no se utilizan en la zona de
desbordamiento. Debe ademas garantizar que las posiciones ocupadas se encuentran a la izquierda de
cada bloque. De esta forma, se simplifica la rutina que indica si un elemento se encuentra presente en
la tabla, porque al encontrar la primera posicidon vacia se sabe que ya no puede aparecer.
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7.10.

7.11.

712,

7.13.

7.14.

7.15.

7.16.

717.

7.18.
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Desarrolle una rutina sobre las 3 representaciones de tablas de hashing vistas en la seccidn
anterior, que calcule y retorne el numero de colisiones presentes. Esto puede dar una medida de la
calidad de la funcién utilizada.

Desarrolle una rutina sobre las 3 representaciones de tablas de hashing vistas en la seccidn
anterior, que aumente la capacidad de una tabla en un porcentaje dado. Fijese que debe recalcular las
direcciones en el area primaria de cada llave. Modifique el probador interactivo del TAD para validar
esta rutina.

Una variante a la tercera representacion de tablas de hashing consiste en reservar desde un
principio un numero fijo de bloques al final del area primaria para manejar alli la zona de
desbordamiento. Esta aproximacion es muy utilizada cuando la tabla se debe manejar en memoria
secundaria. Especifique el esquema de representacion, e implemente cada una de las operaciones del
TAD. Utilice el probador interactivo para validar las rutinas desarrolladas.

Una variante a la tercera representacién de tablas de hashing, que puede ahorrar espacio en

memoria, consiste en manejar en el area primaria unicamente apuntadores a bloques, los cuales son
pedidos por necesidad. El siguiente ejemplo ilustra la idea.

t M
0
1| e "casa" | info1 [ NULL | X
2
3
4 [ e1» "agua" | info2 | "faro" | info5 [X]

Implemente el TAD TablaH sobre la representacion propuesta. Utilice el probador interactivo para
validar las rutinas desarrolladas.

Disefie un esquema de persistencia para una tabla de hashing, basado en archivos de acceso

directo, e implemente las rutinas que cargan y salvan una tabla utilizando la primera representacién
vista. Utilice el probador interactivo para validar las rutinas desarrolladas.

Disefie un esquema de persistencia para una tabla de hashing, basado en archivos de acceso

directo, e implemente las rutinas que cargan y salvan una tabla utilizando la segunda representacion
vista. Utilice el probador interactivo para validar las rutinas desarrolladas.

Disefie un esquema de persistencia para una tabla de hashing, basado en archivos de acceso

directo, e implemente las rutinas que cargan y salvan una tabla utilizando la tercera representacién
vista. Utilice el probador interactivo para validar las rutinas desarrolladas.

Disefie unas estructuras de datos para el TAD TablaH, de manera que sea posible reorganizar
periédicamente las llaves, con el fin de que aquéllas que se consultan mas frecuentemente queden en
las primeras posiciones, al aplicar el respectivo mecanismo de solucion de conflictos. Implemente sobre
dichas estructuras de datos las operaciones del TAD y valide su funcionamiento con el probador
interactivo.

Disefie unas estructuras de datos para el TAD TablaH, en las cuales el mecanismo de solucién de
conflictos sea semejante al de distribucion en area primaria, pero que utilice un campo adicional, de tipo
apuntador, para encadenar los elementos con el mismo valor de la funcién de hashing.

7.5. Funciones de Hashing

Aunque para una tabla de hashing resulta fundamental la funciéon que la soporta, no es conveniente perder
demasiado tiempo en estudios tedricos para escogerla. Es mejor utilizar una funcién que distribuya
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razonablemente las llaves y no tratar de encontrar un éptimo. Es mas importante hacer un manejo eficiente de
las colisiones, que de todas formas se van a presentar.

En la mayoria de los casos, la funcidon de hashing se puede dividir en dos etapas: la primera, proyecta una
llave sobre un espacio intermedio de dimensidén superior a la que tiene el area primaria, y, la segunda,
convierte un valor de dicho espacio en una direccion valida. Para esta Ultima etapa estan las funciones de
division y de truncamiento.

7.5.1. Funciones de Division

La funcidn tipica es la funcion maédulo M, que retorna siempre un valor entero entre 0 y M-1. Esta funcién se
encuentra definida como H( x ) = x % M, y convierte cualquier valor numérico en una direccion valida del area
primaria. En el ejemplo 7.1 se utiliza una funcion de este tipo. En el siguiente ejemplo aparecen algunas otras
funciones de division.

Ejemplo 7.6:
Sobre el valor 38.998.787, se pueden utilizar las siguientes funciones de division, suponiendo que la
capacidad de la tabla es 4.096.

e  Funcién modulo M; 38.998.787 % 4.096 = 771

o Dividir el numero en dos cadenas del mismo numero de digitos y sumarlas, repitiendo el proceso hasta
obtener una direccion valida. Para el ejemplo, el resultado es:

38.998.787 — 3.899 + 8.787 = 12.686
12.686 — 126 + 86 = 212
J

7.5.2. Funciones de Truncamiento

Una funcién de truncamiento toma un valor numérico, y, a partir de diferentes alteraciones de dicho valor,
consistentes en la supresion de algunos de sus elementos (digitos o bits), lo modifica hasta convertirlo en una
direccion valida. En el siguiente ejemplo se presentan algunas funciones de truncamiento.

Ejemplo 7.7:
Sobre el valor 38.998.787.665, se pueden utilizar las siguientes funciones de truncamiento, suponiendo que la
capacidad de la tabla es 4.096.

e Eliminar alternativamente el primero y el ultimo digitos, hasta obtener una direccion vélida. Para el
valor del ejemplo, el resultado es 878.

e Truncar suficientes digitos en el medio de la cadena numérica, hasta obtener un valor menor que la

capacidad de la tabla. Para el ejemplo, el resultado es 3865.

J

7.5.3. Funciones sobre un Espacio Intermedio
Las funciones de proyeccion sobre un espacio intermedio pertenecen a una gama muy amplia de funciones,

cuyo fin es pasar de un espacio alfanumérico a un espacio puramente numérico o simplemente lograr una
mejor distribucidon de las llaves. En la bibliografia aparecen referenciadas gran cantidad de estas funciones,
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con reportes de su desempefio para cierto tipo especifico de tareas. A continuacién se presentan, a manera
de ejemplo, algunas de estas funciones.

Ejemplo 7.8:
Sobre el valor 38.998, se pueden utilizar las siguientes funciones de proyeccion sobre un espacio intermedio,
y sobre el resultado obtenido, utilizar una funcién de division o de truncamiento.

e Lallave se multiplica por si misma. El resultado es 1.520.844.004.

e Se multiplica cada uno de los digitos de la llave, incluido el valor ASCII de los caracteres no
numeéricos. El resultado es 15.552.

e Se toma la llave como si se encontrara en otra base (v.g. 11), y se convierte a base 10. El resultado es
(38.998)11 = 8 + 9*11 + 9*112 + 8*113 + 3*114 = 55.767.

e Se suman cada par de digitos adyacentes médulo 10. El resultado es 188.

e Unir las cifras que representan los caracteres ASCII de la llave, si éstos son alfabéticos. Para la llave
"CASA" el resultado de la funcion es 67.658.465.

9y
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Anexo A:
Tabla ASCII
0 NULL 20 40 ( 60 <
1 21 41 ) 61 =
2 22 42 * 62 >
3 23 43 + 63 ?
4 24 44 , 64 @
5 25 45 - 65 A
6 26 46 . 66 B
7 BELL 27 ESC 47 / 67 C
8 backspace 28 48 0 68 D
9 29 49 1 69 E
10 30 50 2 70 F
11 31 51 3 71 G
12 32 espacio 52 4 72 H
13 return 33 ! 53 5 73 I
14 34 " 54 6 74 J
15 35 # 55 7 75 K
16 36 $ 56 8 76 L
17 37 % 57 9 77 M
18 38 & 58 : 78 N
19 39 ' 59 ; 79 0]
80 P 92 \ 104 h 116 t
81 Q 93 ] 105 i 117 u
82 R 94 A 106 i 118 v
83 S 95 _ 107 k 119 w
84 T 96 : 108 I 120 X
85 U 97 a 109 m 121 y
86 Vv 98 b 110 n 122 z
87 w 99 c 111 o 123 {
88 X 100 d 112 p 124 |
89 Y 101 e 113 q 124 }
90 VA 102 f 114 r 126 ~
91 [ 103 g 115 s 127 DEL
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Anexo B:
Contenido y Uso del Disquete de Apoyo

1. Instalacion

En el disquete que acompana el libro se puede encontrar una copia de todos los ejemplos y ejercicios,
marcados como implementados, a lo largo de los diferentes capitulos. Dicho disquete viene en formato de
backup de Windows™, y debe utilizarse dicho programa para restaurar su contenido en un disco duro (ocupa
2.5 MBytes aproximadamente). Si no conoce bien su funcionamiento, se le recomienda consultar un manual
de Windows™ 3.1, o de una version posterior. Luego de restaurar los archivos mencionados anteriormente,
es necesario compilar de nuevo cada uno de los ejemplos y ejercicios. Para facilitar este proceso, se incluyen
los projects de compilacién para Turbo C++ 3.1™ los cuales deben ser ajustados segun la instalacion que se
tenga del compilador. Si no se cuenta con dicho compilador, es necesario crear el makefile correspondiente,
asegurandose que se incluyen las implementaciones adecuadas de los TAD que se referencian en cada caso.

En el disquete de apoyo también vienen incluidas las implementaciones de los diferentes TAD del libro, lo
mismo que una soluciéon completa del caso estudiado en el Anexo C. En estos dos casos se incluyen de una
vez los archivos ejecutables (archivos .EXE).

2. Estructura de Directorios

La siguiente es la estructura de directorios en la cual se encuentran distribuidos los archivos mencionados en
la seccion anterior:

ESTDATOS ANX-C <«4—— AnexoC

EJEMPLOS =—g— CAP-0 <4—— Ejemplos & Ejercicios
— CAP-1

TADS
— CAP-2
— CAP-3
— CAP-4
Tipos Abstractos = CAP-5
— CAP-6

— CAP-7

(1) Los archivos del anexo C se encuentran en el directorio ANX-C.

(2) Los ejemplos y ejercicios resueltos se encuentran en el directorio EJEMPLOS. Alli aparece un directorio
por cada capitulo, y, en su interior, un subdirectorio distinto por cada ejemplo (archivos EJEXX) o
ejercicio (archivos PROBXX).

Siguiendo esta convencioén, el ejemplo 9 del capitulo 2 se encuentra en el subdirectorio EJEQ9 del
directorio CAP-2, mientras el ejercicio 9 del mismo capitulo, se encuentra en el subdirectorio PROB09
del mismo directorio CAP-2, como se ilustra en la siguiente figura:
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EJEMPLOS === CAP-0
—— CAP-1
= CAP-2
— CAP-3
— CAP+4
—— CAP-5
— CAP-6
— CAP-7

EJEO1
— EJEO2

= EJEO09 —E
— EJE23

— PROBO03

377

EJEW.C <— Ejemplo 2.9
EJE09.PRJ

- PROB09 —E PROB09.C ~—— Ejercicio 2.9

PROBO09.PRJ

(3) Cada una de las implementaciones de los TAD del libro aparece en un subdirectorio distinto del
directorio TADS. El nombre de dicho subdirectorio corresponde al nombre del TAD, seguido de un
indice, en los casos en los cuales exista mas de una implementacion.

La siguiente figura resume los subdirectorios de los TADS:

TADS =

3. Otro Software de Apoyo

— ARBINX

ARBOL123
ARBOL23

ARSIN
AVL

COLAPRI
CUADTREE

<«— 5 implementaciones

— ARBINORx <«—— 2 implementaciones

— ARBINPXx «—— 2 implementaciones

—— ARBOLNx <«—— 4 implementaciones

= COLAx <«—— 3 implementaciones

GRAFOx <+— 3 implementaciones

HASHx <—— 3 implementaciones

LISTAx <+—— 3 implementaciones

LISTORDX «—— 2 implementaciones

PILAX <+—— 3 implementaciones

TRIE

Adicional a las implementaciones antes mencionadas, existe un conjunto de herramientas computacionales
de apoyo al curso, las cuales denominamos el Laboratorio de Estructuras de Datos (LED). Dicho
laboratorio se ejecuta sobre Windows™ 3.11 o sobre Windows™ 95, y permite al estudiante armar nuevos
ejemplos y visualizar graficamente su comportamiento. Este laboratorio consta de los siguientes moédulos:

(1) Browser de ejemplos y ejercicios del libro. Permite al estudiante viajar de manera cémoda y
transparente por los directorios que contienen los ejemplos, ejercicios e implementaciones de los TAD,
etc., dandole facilidades de ejecucion, compilacién, edicion y busqueda. Incluye la solucion de otros
ejercicios propuestos del libro y la implementaciéon completa de nuevos TAD.
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Capitulo 4 - Estructuras Recursivas : Arboles Binarios

En este capitulo se presentan las estructuras de datos recursivas llamadas arboles binarios, utilizadas para representar [+
relaciones de jerarquia entre elementos de un conjunto. Este tipo de organizacion se utiliza mucho para representar _]
informacidn ordenada, para mostrar relaciones estructurales entre elementos de un conjunto y, en general, para modelar _
situaciones gque se puedan expresar en términos de jerarquias. Se estudian en particular los arboles ordenados, los 1
Ejemplos: lEieTcios:[ _
rh Ejemplo 4.4 Ejercicio 4.10
4.1. Definiciones y Conceptos Basicos Ejemplo 4.5 Ejercicio 4.16
4.2. TAD Arhin: Analizadoras para Arboles Binarios Ejemplo 4.6 Ejercicio 4.29
4.3. Ejemplos de Utilizacidn del TAD Arbin Ejemplo 4.7 Ejercicio 4.32
4.4. Recorrido de Arboles Binarios Ejemplo 4.8 Ejercicio 4.74
4.4.1. Algoritmo de Recorrido por Niveles Ejemplo 4.9 _
4.4.2. Algoritmo Iterativo de Recorrido de Arboles Ejemplo 4.10
4.4.3. Reconstruccidn de un Arbol a partir de sus Recoridos
4.5. Algoritmica de Manejo de Arboles E d | _
4.6. Implementacidn de Arboles Binarios -
4.6.1. Arboles Sencillamente Encadenados Ejemplo 4.4: 5 - L+
4.6.2. Arboles con Encadenamiento al Padre Calcular el peso de un arhol binario L] _
4.6.3. Arboles Enhebrados por la Derecha
4.6.4. Cursores
4.6.5. Representacion Secuencial
4.7. Destruccidn y Persistencia de Arboles Binarios 3]
4.7.1. Persistencia con Cursores
4.7.2. Persistencia con Representacidn Secuencial
4.7.3. Destructora del TAD Arbin & g . ”
4.8. EL TAD Arbol Binario Ordenado + EXIT

Enunciado del ejemplo

= Ejemplos & Ejercicios -v. 1.0 na
Capitulos Ejecutar Regresar Salir Ayuda
iseno y Manejo de Estructuras de Datos en C
Capitulo 4 - Ejemplo 4.7
#ifndef __ ARBIN_H b
#define _ ARBIN_H ejel7.c +
i
~% "DISENO ¥ MANEJO DE ESTRUCTURAS DE DATOS EN C" - V. 1.0 B _
7% J. Villalobos — Universidad de los Andes (Sept.-1995) Iista1ﬁ
/% istal |
/% TAD Arbin [Tipoh] listal.c _
s% TAD Arbin - Implementacion #1 (Apuntadores) colas.h hd
i
/% Enunciado: _
/% *%% ESTRUCTURAS DE DATOS % S
y Ejemplo 4.7: i
Calcular el nimero de
typedef struct .HodoArbin Veces gue aparece un
{ TipoA info; . . elemento en un arbol
struct NodoArbin *izq, *der; hinario
} ThArbin,*irbin; _
e
% *%x OPERACIONES & COMPLEJIDAD xxx _
i
+
/% Analizadoras */
#define izgArbin{ _a ) (_a)->izg /%0 (1) % % _
#define derArbin{ _a ) (_a)—>der 7% 0 (1) »
#define raizArbin{ _a ) ({_a)->info /% 0 (1) * ' _
:I_I I. EXIT
‘ Seleccione este hoton para ejecutar el ejemplo / ejercicio ...
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(2) Entrenador grafico de arboles. Permite al estudiante trabajar de manera grafica e interactiva con arboles
binarios ordenados, arboles AVL y arboles 2-3, facilitandole asi la comprensién de toda la algoritmica de
manipulacién de dichas estructuras. De esta forma, por ejemplo, el estudiante puede seguir paso a paso
las rotaciones de los arboles AVL, o visualizar las diferentes soluciones a las que se llega, siguiendo las
estrategias de supresion de elementos para arboles binarios ordenados, sugeridas en el capitulo 4.

A través de esta herramienta, el estudiante puede ver en accion los algoritmos del libro, con la opcién de
ejecucioén paso a paso, facilitando en buena medida la comprensién de los mismos.

(3) Manejador grafico de grafos. Permite al estudiante disefiar interactivamente los grafos dirigidos sobre
los cuales quiere ver funcionando la algoritmica presentada en el libro. Esto permite animar el algoritmo
de Dijkstra, la busqueda de caminos minimos, los recorridos de grafos, la busqueda de caminos
hamiltonianos, etc.

Grafos Dirigidos - v. 1.0 - [C\LED-GRAREJE2.GRF]
Escala Ventana Ayuda

=| Archivo Edicion
‘taboratorio de Estructuras de Datos

" omm o= ==

:l_l I-p
[ Modificado Orden: El ” Veértice: El HNombre: Sucesores: El ” Costo: |:| Destino: I:l

También se pueden utilizar otras herramientas computacionales de apoyo al aprendizaje de programacion en
C (Laboratorio de Programaciéon Basica), que incluye modulos de interpretacion grafica de manejo de
estructuras encadenadas, recursién simple, ordenamiento en memoria principal y manejo de archivos.
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Anexo C:
Estudio de un Caso

Este anexo muestra una solucién basada en tipos abstractos de datos, para un problema real. Se presenta la
estructura global del software, la descripcion de cada TAD vy, en el disquete de apoyo, la implementacion
completa de la solucién, con una explicacion guiada de su desarrollo.

C.1. Enunciado del Problema

Se quiere desarrollar un sistema informatico para la administracion de la bodega de una biblioteca. Alli se
encuentran almacenados libros, de los cuales es importante registrar su titulo, sus autores, su referencia
bibliografica (3 caracteres alfabéticos, seguidos de un guién y 4 digitos), su posicioén en la bodega (nimero de
estante, niumero de anaquel, posiciéon en el anaquel) y su numero de paginas. Para efectos del problema, se
supone que el titulo es unico, lo mismo que la referencia bibliografica. Esto implica que hay un Unico ejemplar
de cada libro en la bodega.

En la biblioteca hay N estantes, cada uno de los cuales tiene 5 anaqueles y en cada anaquel hay espacio
para 4 libros. Los estantes, los anaqueles y las posiciones se numeran desde 1. Cuando llega un libro nuevo,
el sistema lo asigna automaticamente al primer lugar libre del primer estante con espacio.

Las consultas de los usuarios de la bodega se hacen por referencia bibliografica (el encargado busca asi los
libros) o por autor (el usuario debe tener a su disposicion un fichero de autores, en donde aparezca, para
cada autor, la lista de libros que ha escrito).

El sistema debe permitir ademas las siguientes opciones:

(1) Agregar un libro a la biblioteca
(2
3

(4) Presentar por pantalla el indice de autores (ordenado ascendentemente)

Eliminar un libro de la biblioteca
Presentar por pantalla el estado de la bodega

)
)
)
)

C.2. Descripcion de los Tipos Abstractos de Datos

En esta parte se muestra una breve descripcion de cada uno de los tipos abstractos que intervienen en la
solucion del problema, se establece un formalismo, y se presenta una lista de las operaciones para su
administracion. En el disquete de apoyo se puede estudiar a fondo la solucién planteada.
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C.2.1. TAD Biblioteca

TAD Biblioteca

fichero1: FicheroLibro —» contenedora de libros
Biblioteca fichero2: FicheroAutor —» contenedora de fichas de autor

bodega: Bodega — estructura fisica de la bodega

{iinv: todos los libros del ficherol tienen asociada una posicion valida de la bodega,
no hay dos libros del ficherol que ocupen la misma posicion en la bodega,
unicamente para los autores de los libros del ficherol hay una entrada en el fichero2,
todas las posiciones de la bodega que no tienen asociado un libro del ficherol estdn marcadas como vacias,
no hay dos libros del ficherol que tengan el mismo titulo, ni la misma referencia bibliografica,

en el fichero2 hay una Unica entrada para cada autor }

Constructoras:
. inicBiblio: — Biblioteca

Modificadoras:
. insLibroBiblio: Biblioteca x Libro — Biblioteca
. elimLibroBiblio: Biblioteca x char * — Biblioteca

Analizadoras:

° consultarBiblio: Biblioteca x char * — Libro

. librosAutorBiblio: Biblioteca x Autor — ListRef
. impBodegaBiblio: Biblioteca -
Destructora:

. destruirBiblio: Biblioteca —

Persistencia:
. cargarBiblio: FILE * — Biblioteca
° salvarBiblio: Biblioteca x FILE * —

Depuracion:
. impBiblio: Biblioteca -

Esquema de persistencia:

Una biblioteca persiste en un archivo de texto, en el cual se salva la informacion de la bodega (ver esquema
de persistencia de la bodega), seguida de la informacién de la tabla de hashing. Se toma la decisién de no
hacer persistir el arbol 2-3 y, en lugar de ello, reconstruirlo cada vez que arranca la ejecucion del software, a
partir de la informacion de la tabla de libros.

fichero1: FicheroLibro
, . bodega
Biblioteca fichero2: FicheroAutor

bodega: Bodega fichero1
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C.2.2. TAD FicheroLibro = TAD TablaH[ Libro ]

Para modelar el fichero de libros, se escoge una tabla se hashing con acceso por referencia bibliografica,
implementada con distribucidn en area primaria. Se toma para esto la especificacion del TAD TablaH (Cap. 7)
y se parametriza con el TAD Libro.

Dado que la llave de acceso es de la forma AAA-DDDD, donde A es una letra y D un digito, se decide utilizar
como funcién de hashing la siguiente:

h( "A1A2A3-D1D2D3D4" )= (( A1 * A2 * A3 )+ D1 + D2 + D3 + D4 ) moédulo M
Esquema de persistencia:

Se utiliza un esquema parecido al planteado en el capitulo 7 para tablas de hashing, pero utilizando el fin de
archivo (EOF) como marca de final de la tabla.

M

< llave—elemy, llavep—elem,, ..., llave,—~elemy > [M] :FEI‘O;
10ro

libron

Cada libro, por su parte, persiste de acuerdo con el esquema definido para dicho TAD.

C.2.3. TAD FicheroAutor = TAD Arbol23[ FichAutor ]

Para modelar el fichero de autores, se escoge un arbol 2-3 con acceso por apellido y nombre del autor. Se
toma para esto la especificacion del TAD Arbol23 (Cap. 5) y se parametriza con el TAD FichAutor, que
representa la nocién de ficha de un autor.

Se agregan dos operaciones al TAD, las cuales se encargan de imprimirlo y de destruirlo, respectivamente:

Analizadora:

. impArbol23: Arbol23 -
Destructora:
° destruirArbol23: Arbol23 —

Asi mismo, se modifican las operaciones de insercion y supresion, de la siguiente forma:

e Al insertar una nueva ficha de autor, se verifica primero si el mismo autor tiene ya una ficha activa en el
arbol, caso en el cual Unicamente se agrega la nueva referencia bibliografica a la ficha ya existente.

e Solo se elimina una ficha, cuando la referencia bibliografica que se quiere suprimir es la Unica que tiene
asociada el autor. En otro caso, so6lo se elimina la referencia respectiva, y el arbol no sufre ninguna
modificacion estructural.
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C.2.4. TAD Bodega

La estructura y estado de la bodega de la biblioteca se modela con una matriz de enteros de 3 dimensiones
(estantes, anaqueles y posiciones), que indica, en cada posicion, si ese lugar se encuentra ocupado.

TAD Bodega

[e1, ... eN] — N estantes
ei=[aj, ..., aj5] — 5 anaqueles por estante
aik = [ Pik1:--» Pik4 ] — 4 posiciones por anaquel
{invi  Pikr=1VvPjkr=01}
Constructoras:
. inicBodega: — Bodega
Modificadoras:
. asignarBodega: Bodega x Posicion — Bodega
. liberarBodega: Bodega x Posicion — Bodega
Analizadoras:
. posLibreBodega: Bodega — Posicion
Destructora:
. destruirBodega: Bodega -
Persistencia:
. cargarBodega: FILE * — Bodega
. salvarBodega: Bodega x FILE * -

Esquema de persistencia:

El estado de la bodega se almacena de tal manera, que cada linea del archivo representa un estante, con
todos sus anaqueles y posiciones consecutivos. Puesto que el numero de estantes puede variar en el
problema, se coloca dicho valor en la primera linea del archivo:

N
[eq,...eN] p111 p112 p113 p114  p121 p122 ...
ej=[ajq, .., aj5] p211 p212 p213 p214 p221 p222 ...

ajk = [ Pik1:--- Pik4 ]
pN11pN12pN13 pN14  pN21pN22 ...
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C.2.5. TAD Libro
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TAD Libro
titulo: char *
refBib: char * — referencia bibligrafica
Libro numPag: int —> numero de paginas

autores: ListAutor

posicion: Posicion

— autores del libro

— posicidn en la bodega

{iinv: titulo != NULL, refBib != NULL, numPag >0 }

Constructoras:
° inicLibro: char * X char * X int — Libro
Modificadoras:
. insAutorLibro: Libro x Autor — Libro
. elimAutorLibro: Libro x Autor — Libro
. asignarPosLibro: Libro x Posicién — Libro
Analizadoras:
. refLibro: Libro —> char *
° posLibro: Libro — Posicion
° autoreslLibro: Libro — ListAutor
. esRefLibro: Libro x char * — int
J esAutorLibro: Libro x char * — int
° impLibro: Libro —
Destructora:
. destruirLibro: Libro —
Persistencia:
. cargarLibro: FILE * — Libro
. salvarLibro: Libro x FILE * —
Esquema de persistencia:
— titulo: char *
refBib: char * titulo
Libro numPag: int refBib numPag posicion

autores: ListAutor autores

— posicidn: Posicion

C.2.6. TAD ListAutor = TAD Lista[ Autor ]

Para modelar los autores de un libro se escoge un objeto abstracto contenedor del TAD Lista. Se toma para
esto la especificacion de dicho TAD (Cap. 2) y se parametriza con el TAD Autor.
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Se utiliza la implementacion de listas con doble encadenamiento. Para esto se modifica el nombre del TAD
(Lista — ListAutor) y se agrega un sufijo a de cada una de sus operaciones, para evitar conflicto con otras
utilizaciones del mismo TAD en otras partes de la solucién.

Para la persistencia se utiliza el esquema planteado en el capitulo 2.

C.2.7. TAD FichAutor

Representa una ficha del fichero de autor. En ella se asocia, con un autor, la lista de las referencias
bibliograficas de sus libros.

TAD FichAutor

[ autor, <refyq, ..., refy > ]

{in. ' N>0}

Constructoras:

. inicFichAutor: Autor x char * — FichAutor
Modificadoras:

° adicRefFichAutor: FichAutor x char * — FichAutor
. elimRefFichAutor: FichAutor x char * — FichAutor

Analizadoras:

° autorFichAutor: FichAutor — Autor

. refFichAutor: FichAutor — ListRef
. impFichAutor: FichAutor -
Destructora:

° destruirFichAutor: FichAutor —

C.2.8. TAD Posicidon

Modela la nocion de localizacién de un libro en la bodega. Una posicién esta compuesta por un numero de
estante, un numero de anaquel y un consecutivo en dicho anaquel.

TAD Posicion

[ nEstante, nAnaquel, nPosicion ]

{inv: 1<nEstante, 1 <nAnaquel <5, 1 <nPosicién <4 }

Constructoras:
. inicPos: int X int X int — Posicion

Analizadoras:

. estantePos: Posicién — int
. anaquelPos: Posicion — int
. posicionPos: Posicion — int
. impPos: Posicion -
Destructora:

. destruirPos: Posicién -

Persistencia:
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FILE * — Posicion
Posicion x FILE * N

. cargarPos:
. salvarPos:

Esquema de persistencia:

nEstante, nAnaquel, nPosicion L
[ a ] nEstante nAnaquel nPosicion

C.2.9. TAD Autor

Representa al autor de un libro. La Unica informacion relevante para el modelaje de este objeto abstracto es
su apellido y su nombre.

TAD Autor

[ apellido, nombre ]
Constructoras:
. inicAutor: char * x char * — Autor
Analizadoras:
. apellidoAutor: Autor — char *
° nombreAutor: Autor —> char *
° esAutor: Autor x Autor — int
° menorAutor: Autor x Autor — int
. impAutor: Autor -
Destructora:
° destruirAutor: Autor —
Persistencia:
. cargarAutor: FILE * — Autor
° salvarAutor: Autorx FILE * —

Esquema de persistencia:

apellido, nombre
[ap ] apellido nombre

C.2.10. TAD ListRef = TAD Lista[ char * ]

Para modelar la lista de referencias bibliograficas asociadas con un autor, se escoge un elemento del TAD
Lista, parametrizado con el tipo char *. Se sigue un proceso semejante al utilizado para las listas de autores.
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C.2.11. Interfaz del Sistema

Se utiliza una interfaz alfanumérica sencilla, que hace llamadas a las operaciones de los TAD antes
planteados, para obedecer los comandos del usuario.
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