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INTRODUCCION

La Matematica Discreta, no obstante que tuvo su origen ya hace muchos afios (en 1700) ,
sigue siendo una de las ramas de la matematica superior con mayor variacion de autor a
autor en cuanto a conceptos y simbologia usados, lo cual es muy preocupante porque la
presentacion de la materia en el salon de clases entonces se vuelve dependiente del profesor
que la exponga ( o del libro que use para auxiliarse en sus clases). El resultado de esta falta
de uniformidad en el uso de simbologia y conceptos hace que los alumnos que presentan
examenes extraordinarios, por ejemplo, hechos por un profesor o grupos de profesores
distintos al que le imparti6 la materia ,se confundan y en consecuencia reprueben la
asignatura, quizas no por falta de conocimientos, sino por esta variedad de simbolos y
conceptos que existen dentro de esta disciplina.

Con el objetivo de apoyar a los alumnos en su autoaprendizaje, asi como en sus tareas, y
ademas con la finalidad de uniformizar la simbologia, los conceptos y los temas abordados
en la materia de Matematicas Discretas en el TESOEM, presentamos estos apuntes, los
cuales fueron posibilitados en parte con el apoyo econdémico de el tiempo de academia,
destinado con tal fin por la Direccion del Instituto Tecnoldgico de Estudios Superiores Del
Estado de México.

Estos apuntes, son el resultado de los cursos que el autor ha impartido en este instituto y en
otras escuelas de educacién superior sobre el tema , de modo que para su elaboracién se
ha auxiliado con sus anotaciones , consultas bibliograficas y en ejercicios y discusiones que
ha hecho con los alumnos durante los mismos.

Agradezco antes que a nadie a mi esposa Sandra Villaverde su colaboracion en la dificil
tarea de la captura de este trabajo, asi como su constante motivacion y su paciencia al estar
trabajando en este proyecto. Agradezco también el interés de las autoridades del TESOEM
en que se lleve a cabo este tipo de actividades, pensando en apoyar a nuestros alumnos en
su preparacion y en ofrecerles una educacion de mayor calidad. También agradezco a los
alumnos sus criticas, sugerencias y participacion durante las clases.

Mat. Jorge Garcia Nieva.
México,D.F;Mayo del 2005.



UNIDAD |

LOGICA MATEMATICA

Objetivos:

Al finalizar la unidad, el alumno :

[] Solucionara problemas relacionados con la l6gica matematica.

[] Identificara los diferentes tipos de proposiciones compuestas que existen.

[] Identificard la tabla de verdad asociada a cada tipo de proposicion.

[] Comprenderd el método de demostracion mediante las leyes de la logica y la
relacion de este método con las tablas de verdad.

[] Entenderéa el concepto de demostracion por induccion.



INTRODUCCION

En esta unidad trataremos conceptos basicos de Logica Matematica, los cuales resultan de
gran importancia para aquellos especialistas que trabajen con computadoras; por ejemplo,
los operadores l6gicos los utiliza el programador para imponer condiciones en la ejecucion
de rutinas en sus programas y también resultan de gran relevancia en el disefio de los
circuitos (compuertas logicas) de los instrumentos electronicos, entre otras aplicaciones.

En este capitulo, interesa también que el estudiante de ingenieria en sistemas sea
introducido al concepto de demostracion formal con la finalidad de que desarrolle el
pensamiento estructurado o axiomatico, lo cual tiene enorme importancia para este tipo de
profesionistas ya que la mayor parte de su trabajo lo llevan a cabo interconectando en
forma logica una gran cantidad de datos, hechos y procedimientos. De hecho, la Logica
Matemética es el modo exacto de hablar en la Ciencia.*

1.1  PROPOSICIONES

Una proposicion es una oracion afirmativa que se puede calificar de verdadera o falsa.

En base a las proposiciones se forman las teorias cientificas; debido a ello, es muy
importante determinar las condiciones y la forma bajo las cuales se debe calificar de cierta
o falsa una afirmacion hecha en la Ciencia. *

EJEMPLO 1.1
1.-El agua hierve a 100° a una altura de 100 metros sobre el nivel del mar.

2.-El agua es un elemento que se forma con 2 &tomos de de Hidrégeno y 1 de Oxigeno.
3.-La gasolina es inflamable.

Estos ejemplos son proposiciones que se les puede calificar directamente como verdaderas
o falsas; a este tipo de proposiciones se les llama simples , atomicas o primitivas, debido a
que no hay manera de descomponerlas en algo mas sencillo.

Denotaremos a las proposiciones simples con letras mindsculas como son p,q,r,s.t,...
Las oraciones siguientes :

(@)jAh, carambal!
(b)¢ Te gusta el helado de chocolate?

No son proposiciones, porgque no afirman , sino que exclaman o preguntan. Otro ejemplo de
una oracion que no es una proposicion es:

Las sefioras son generalmente gordas.

L El primer estudio sistematico del razonamiento Iégico se encuentra en la obra del fil6sofo griego Aristoteles
((384-322 A.C), quien presentd una serie de principios para el razonamiento deductivo; es sin embargo al
matematico aleman G.W. Leibniz ((1646-1716) quien es considerado el primero en intentar desarrollar a la
I6gica simbdlica como un lenguaje cientifico universal en su obra De Arte Combinatoria ( 1666).
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Esta no es una proposicion, no obstante que esta disfrazada como si lo fuera, debido a que
no tiene el mismo sentido para todos la palabra “gorda”.

EJERCICIO 1.1

Dar cinco ejemplos de proposiciones simples

Dar cinco ejemplos de oraciones que no sean proposiciones; es decir que no se les pueda
calificar de verdaderas o falsas.

A partir de proposiciones simples, las

proposiciones compuestas o0 moleculares.

podemos obtener otras mas complejas:

1.2  TIPOS DE PROPOSICIONES.

Son oraciones que se forman con dos o mas proposiciones simples. Para formarlas, a las
proposiciones simples se les enlaza mediante los CONECTIVOS LOGICOS, como son:

CONECTIVO NOMBRE FORMA DE LEERLO
CONJUNCION pAQ pYyq

DISYUNCION pvq Pbq

INCLUSIVA

NEGACION —p No p

CONDICIONAL pP—>q p implica g
BICONDICIONAL | P<>qQ p siysolosiq
DISYUNCION pvq ylo

EXCLUSIVA

Para calificar de verdaderas o falsas cualquiera de estas proposiciones debemos seguir las
tablas siguientes:

Conjuncioén | Disyuncién | Implicacion | Bicondicional | Disyuncion | Negacion
inclusiva 0 0 doble | exclusiva
condicional | implicacion
P|g|pAq pPva p—( p<>( pvq —P
V|V]|V V v v F F
VIF|F V F F Vv F
FIVI]F V v F v V
FIF|F F Vv Vv F V

Dichas tablas constituyen formalmente la definicion de los conectivos 16gicos.
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Nota: Se puede demostrar que la tabla de verdad de una proposicién compuesta que

contenga n  proposiciones simples debe tener exactamente 2" renglones. Esto debe
tomarse en cuenta al momento de construir la tabla de verdad de dicha proposicion
compuesta.

1.3 TERMINO DE ENLACE DOMINANTE

En una proposicion compuesta la precedencia de las operaciones se marcan con la ayuda de
paréntesis; por ejemploen —[p A (—q)] — [(—r) v q], se esta indicando que lo primero que
se debe ejecutar es —q, enseguida ya se podra ejecutar todo lo que estd dentro del
corchete; y una vez ejecutado esto, se puede efectuar la negacion —. Hasta ese momento
se ha efectuado toda la operacion compuesta a la izquierda del operador — . Enseguida se
efectla la operacion a la derecha de dicho operador . Es en este sentido que — es el
término de enlace dominante, porque es el operador que se ejecuta al final de una
operacion. Para distinguirlo, debe seguir las siguientes reglas:

(1)Si aparecen solamente operadores A u operadores v, entonces cualquiera de ellos
puede ser considerado como el término de enlace dominante.
Por ejemplo , en (pvgvra(pvtv—=g)A(pv—=tvr), sele puede entender como

(pvagvia[(pvtv—=g)Aa(pv—=tvr)]
(2)Un operador — puede ir a la derecha de cualquier otro operador sin necesidad de usar

paréntesis; comoen pv —tvr obien en —(pv—q)— —p

(3)En cualquier otro caso que no sean (1) y (2) se debe utilizar paréntesis para indicar la
precedencia de los operadores.

Teniendo en cuanta las reglas anteriores; se le llama Término de Enlace Dominante
al operador que ejecutaria al Gltimo en una operacion Idgica dada.

EJEMPLO 1.2

Hacer la tabla de verdad para cada una de las siguientes composiciones compuestas;
indicando en cada caso el término de enlace dominante.

1- (pv@)a(=r). Debe tener 2° =8 filas, porque hay tres letras. Término de enlace
dominante: A.

<
o
J
=
—~~
o
<
o)
SN
>
—_
d
=
SN

<< LK ILKILKIK| ©

TNTNn<IK<|I<K<|<|©
nini<|<|n|ni<|<|o
Tni<|ni<|n|<|n|<| =
<M K<|MiK<|mi<|m
Tni<|M<|m|i<|m
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2.-—(pv—q)——p . Debe tener 2% = 4filas. Término de enlace dominante: —

P |Q |7 |(pv=a)| ~pv—a)| P | Apv—a)>—p
V V F V F F V

V F V V F F V

F \ F F \ \ \

F F V V F V V
3.-(=pva)A—(pvr).Debe tener 2° filas. Término de enlace dominante: A
p [Q |r =P | =Pva | pVr | (pvr)| (wpva)a—(pvr)
V V V F V F V \

V V F F V V F F

V F V F F F V F

V F F F F V F F

F V V V V V F F

F V F V V F V V

F F V V V V F F

F F F V V F V V

EJERCICIOS 1.2. Construya una tabal de verdad para cada una de las siguientes
proposiciones compuestas; p, g y r denotan proposiciones simples o primitivas.

(@ —(pv—q)—>-p O(p—>DAr(@—>n]>(p—>r) ©g«>(=pv—0Q)
d) [pA(p—>d]—q

1.4  TAUTOLOGIAS Y CONTRADICCIONES.

TAUTOLOGIA:

Una proposicion compuesta es una tautologia si bajo cualquier asignacion de valores de
verdad para sus proposiciones componentes siempre resulta verdadera. Denotaremos a una
tautologia con el simbolo T,.

CONTRADICCION:

Una contradiccion es una proposicion compuesta que resulta falsa bajo cualquier
asignacion de valores de verdad para sus proposiciones simples. Denotaremos a una

contradiccion con el simbolo F, .

Entenderemos a estos simbolos como los vectores siguientes
T,=(V.V\V.) y F =(FFF,.)

EJEMPLO 1.3

1.- Verificar que es tautologia la proposicion siguiente
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(p—>0q)e>(-pva)

Solucién:

P |aga |[P=0d]| =P | (-pvq)|(p>q)e(=pva)
V V V F V V

V_|F |F F_|F Y

F V V V V V

F F V V V V

En efecto es una tautologia, porque se obtuvo sélo verdadero al final de la tabla.
2.- Verificar que la proposicion —[(—p A —q) — —(p v q)] es una contradiccion.

Solucion:

pla| =P | 79| (wpa—a) (pva) —(pva] (~pAr=a)—>—(pva) | —[(=pr-a)—> (pva)

VIVIF |F [F V_[F Y F
VIF[F |V [F vV _[F Y F
Flviv |F |F v _|F Y r
FIFlv v |V F |V Y F

Es una contradiccion porque se obtuvo sélo falso al final de la tabla.

3.- Ver si la proposicion [(p - g)a(q—r)]—(p—r) es tautologia, contradiccion o
ninguna de las dos.

(p>a)rl@>r)]>(p—>r)

—~~

©
s
-

~

plajr|{(p—a)|@=>r)(p>a)rlg—>r)

NN<I<IMmnK<| i<
<< m<im<
< I K< MK IKLIKIM<
< KT K mmmi<
< I KKK MK
< K K K KKK

< I KKK MK

nmmn<|I< K<<

Este ejercicio corresponde a una tautologia .
PROPOSICIONES LOGICAMENTE EQUIVALENTES.

Dos proposiciones p y g son logicamente equivalentes si ambas tienen la misma tabla
de verdad , o biensi p<«>q es una tautologia. Esta situacion la denotamos con el

simbolo p=q.
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EJEMPLO 1.3
1.- Verificar que p — qes logicamente equivalente con —p v q; es decir

[(p—>d)e(=pva)]=T,.

p |Q | P>d]—p |—pvq
Vv |V |V F |V
V |F |F F |F
F |V |V V|V
F |F |V V|V

2.-Verificar si l6gicamente equivalentes
peay (p>a)ala—p)

Solucion:

p |a [Ped[P=2a[a->P [ (psg)algo p)
vV |V |V \Y \Y \Y

\% F |F F \Y F

F V |F \Y F F

F F |V \Y \Y \Y

Si son légicamente equivalentes, porque coinciden la tercera y la Gltima columnas.
CONTRAPOSITIVAS, RECIPROCAS E INVERSAS.

Considere la implicacion p — q ,entonces:

A la proposicion —gq — —p se le Ilama contrapositivade p — q.
A la proposicion g — p se le llama reciprocade p —q.
A —p — —q selellamainversadel p —q

Nota: En Matematicas y Filosofia a p se le llama “antecedente” y a q se le llama
“consecuente”.

EJEMPLOS. Obtener la reciproca, las inversa y la contrapositiva de las siguientes
proposiciones:

1.- p: Juan va al lago de Téxcoco.
g: Maria comprara los boletos para el cine.
a) Obtener p —q.
Si Juan va al lago de Téxcoco Maria comprara los boletos para el cine.

b) Contrapositiva.
Si Maria no compra los boletos para el cine, entonces Juan no ird al lago de Téxcoco.

c) Reciproca.
Si Maria compra los boletos para el cine , entonces Juan iré al lago de Texcoco.

d)Inversa.
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Si Juan no va al Lago de Texcoco, entonces Maria no comprara los boletos para el
cine.

2.- p: Estudio.
g: Apruebo.
(a)Contrapositiva: Si no apruebo , entonces no estudio.
(b)Inversa : Si no estudio ,entonces no apruebo.

c) Reciproca: Si apruebo ,entonces estudio.

A la contrapositiva de una implicacion se le utiliza en Matematicas ( y en general en
la Ciencia) para hacer demostraciones llamadas “por contradiccion”: si al
consecuente se le supone falso, entonces necesariamente segun esta regla, el
antecedente deberia también resultar falso, si no es asi, se obtendria la veracidad de
p — q . Este es un tema que abordaremos posteriormente en esta misma unidad.

EJERCICIO 1.3. Demostrar que p — q es légicamente equivalente con —q — —p,
usando una tabla de verdad.

1.5. LAS LEYES DE LA LOGICA Y LAS REGLAS DE INFERENCIA

En base a los conceptos de equivalencia ldgica , tautologia y contradiccion , podemos
formular las siguientes reglas del pensamiento I6gico, conocidas como Leyes de la Ldgica.
En si, representan un sistema axiomatico que nos permite generar a lo que se llama el
Algebra de Proposiciones, de modo que cualquier propiedad operativa que tengan las
proposiciones es consecuencia de estas propiedades basicas, asi como cualquier propiedad
operativa ulterior que tengan los numeros reales es consecuencia de las propiedades de
campo, de orden y de completez que poseen.?

Al ejemplificar el uso de estas reglas ldgicas, de paso trataremos el tema de las
demostraciones.

LEYES DE LA LOGICA.

Para cualesquiera proposiciones primitivas p, q y r, cualquier tautologia To y cualquier
contradiccion F se cumplen las siguientes leyes o propiedades de las operaciones con

proposiciones:
1.- Ley de la doble negacion.
—|—|p = q

2 .-Leyes De Morgan

—(pPAQ)=—pv—q
—(pva)=—pA—q

2 Estas reglas aparecieron en los trabajos de los matematicos ingleses George Boole(1815-1864) y Augustus
De Morgan (1806-1871) en sus respectivas obras The Mathematical Analisis of Logic ,Being an Essays
Towards a Calculus of Deductive Reasoning y Formal Logic ; or the Calculus of Inference ,Necessary
and Probable.
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3.- Leyes Conmutativas.
pvag=qvp
PAg=QqAp

4.- Leyes Asociativas

pvagvr=pvi(gvr)=(pvag)vr
prdar=pa(gar)=(pag)ar

5.-Leyes Distributivas

pv(gar)=(pva)a(pvr)
pAa(gvr)=(pag)v(par)

6.- Leyes Idempotentes
pvp=p
PAP=D

7.- Leyes del Neutro

pvFo=p
pATo=p

8 .-Leyes Inversas

pv—p=To
pA—p=Fo

9.- Leyes de Dominacion

pvTo=To
pAFo=Fo

10 .-Leyes de Absorcion

pv(parg=p)
pA(pva)=p

EJEMPLO 1.4. Usando las leyes de la l6gica demostrar lo siguiente:
a) (pvag)a—(-prg)=p
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solucion:
PROPOSICION RAZON
(pva)a—(=pAraq) DADA
=(pvg)a(=—pv—q) LEY DE MORGAN
=(pva)a(pr—q) DOBLE NEGACION
=pv(gr—q) LEY DISTRIBUTIVA
= pv Fo LEY INVERSA

= NEUTRO

2.- Demostrar que —[-[(pv g)ar]v—q]=qnar
solucion:

PROPOSICION RAZON
—-[(pva)Aar]v—qa] DADA ORG

_ ; ) rIn——gq LEY DE MORGAN
Z{qu ))AAFH v@nr)={(pva)ariaoma DOBLE NEGACION
=1pPvd LEY DISTRIBUTIVA
=[[(rrp)lv(rra)rq LEY DISTRIBUTIVA
=g (rap)v [qA(r/\q)] LEY CONMUTATIVA
=g r)A p]v(qAar) LEY ASOCIATIVA
—qn LEY DE ABSORCION

3.- Demostrar que pvgv(-pA—gar)=pvavr

pqu[( (pva)ar)|= LEY DE MORGAN, LEY ASOCIATIVA.
sv[-sar]= LEY DE CERRADURA con s=pvq

(sv=s)A(svr)= LEY DISTRIBUTIVA.

Toa(svr)= LEY DE INVERSAS.

svr=pvqgvr LEY DEL NEUTRO Y DE SUSTITUCION.
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4.-Demostrar que [(ﬁp v—p)—=>(PAgA r)] =pv(

PROPOSI CIONES RAZON

(=pv—=p)—>(pArgAar)= DADA

(—p) > [(pAg)ar]= LEY INDEMPOTENTE.
(—=p)v[(pAg)ar]= LEY ASOCIATIVA.

(p)v I:p/\ qar)]= DOBLE NEGACION
[(pvs)a(pvr)]= LEY DISTRIBUTIVA O CERRADURA.
[pv(p Aq)] (pvr) LEY DE SUSTITUCION.

5-p—>(aar)=[(p—=>a)a(p—r)
ANTES: RECORDAR QUE p—>q=—-pvq (son logicamente equivalentes)

PROPOSICIONES RAZON

p—(qQar)= DADA

—pv(gar)= LEY SUSTITUCION
[(—pva)a(=pvr)=(p—>q)a(p—r)] LEY DISTRIBUTIVA.
(p>a)a(p—r)

6.- Demostrar que [(pvq)—r]=[(p > r)a(q—r)]

PROPOSICIONES RAZON
[(pva)vr] DADA

(-pA—=q)vr LEY DE MORGAN.
(—pva)a(=gvr LEY DISTRIBUTIVA.

[ —

(p—>r)alg—>r) LEY DE SUSTITUCION

REGLAS DE INFERENCIA Y LA VALIDEZ O INVALIDEZ DE UN
ARGUMENTO:

Generalmente, al demostrar que una proposicién compuesta es equivalente a otra 0 que un
argumento dado es valido 0 es falso (falacia),nos podemos valer de tres herramientas: las
tablas de verdad, las Leyes de la Logica y ademas de las Reglas de Inferencia , las cuales
pueden ser expresadas en realidad en forma de implicacion logica de la manera mostrada

en la siguiente tabla:
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REGLA DE | IMPLICACION LOGICA RELACIONADA NOMBRE DE LA
INFERENCIA REGLA
p [p,\(p_>q)]_>q Regla de
p—(q separacion.
o.q
Ley de silogismo.
2) p—>4 [(p>an)(a—>r)]>(p—>rT)
q—or
Lpor
3) P4 [(p—a)rA—q]——p Modus Tollens.
9
—p
4 p PAG— PAQ Regla de la
9 conjuncion.
L PAq
5 pvq Reglas del
_ vOo)A—d ] —> silogismo
_z [(pPva)r—a]—q disyuntivo.
Regla de
6) P2 R (=p—>F)—>p contradiccion.
P
Regla de
PAQ (pAg)—>p simplificacion
)= conjuntiva.
Regla de
g)—P P PV amplificacion
S Pvq disyuntiva.
9 pnaq Regla de
p>(q—r) [(p/\q)/\[p—>(q—>r)]]—>r demostracion
- o r condicional.
10)p—>r
Regla de

[(por)a(a—>r)]>[(pva)—>r]

demaostracion por
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g-or

~(pvg)or

11)p—>q
r—s
pvr
S qvs

12)p—q
r—s
—|qV—|S

Soapyvar

[(poa)a(r>s)a(pvr)]—>(qvs)

[(P=a)A(r—>s)A(=av—s)]—>(-pv-r)

casos.

Regla del dilema
constructivo.

Regla del dilema
destructivo.

Diremos que un argumento es valido si la conclusion del mismo se desprende I6gicamente
de las premisas dadas para obtenerlo. Esta situacion se denota simbolicamente por

PP P Q

Formalmente esto significa que g es una consecuencia de las premisas p,, p,,... P, Si
siendo dichas premisas verdaderas, q también lo es, en caso contrario la argumentacion es

una falacia.

Los siguientes ejemplos nos muestran la forma de aplicar las reglas enumeradas junto con
otros resultados como las leyes de la logica para probar la validez o invalidez de un

argumento:

EJEMPLO 1.5

1.- Demostrar la validez del argumento.

p—>r

—pP—q
q—s

Soar—>s

PASOS

1) por
2)—r — —p
3)-p—>q
4) pvq
5)g—>s
6)..—r —>s

RAZONES

Premisa.

Paso(1)y p>r=-r—>—p.
Premisa.

Paso (2) y (3) y la ley del silogismo.
Premisa.

Paso (4) y (5) y la ley del silogismo

Una segunda forma de justificar el argumento es la siguiente.




PASOS

Dp—or
2)q— S
3) -p—>q
4) pvq

5 rvs

6) ...—r —>s
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RAZONES.

Premisa
Premisa
Premisa

Paso (3) y(—p—>d)=(——pvaq)=(pvQq)
Paso (1),(2) y (4) y la regla del dilema constructivo
Paso (5) y(rvs)=(——rvs)=(-r —s), donde

usamos la ley de la doble negacion en la primera
equivalencia l6gica

2.- Establezca la validez del argumento.

pP—>qQ
q—(ras)
—|r\/(—|tvu)
pAat

PASOS

1) p—q

2) q—>(ras)
3) g —>(ras)
4) pat

5 p

6) ras

Hr

8) —|rV(—|t\/U)

9) —=r /\(—|t\/U)

10) t
11) r At
12..u

RAZONES.

Premisa
Premisa

Pasos (1) y (2) y la ley del silogismo

Premisa

Paso (4) y la regla de la simplificacién conjuntiva
Paso (5) y (3) y Modus Ponens

Paso(6) y la regla de la simplificacién conjuntiva
Premisa

Paso (8), y la propiedad asociativa de v y las leyes De

Morgan

Paso (4) y la ley de la simplificacion conjuntiva
Pasos (7) y (10) y la regla de la conjuncion.

Pasos (9) y (11) y la regla del silogismo disyuntivo

3) Este ejercicio nos muestra que el siguiente argumento es valido.
Si alguno de los muchachos de nuestro grupo de amigos no pudiera aprobar todas
sus materias o el salén de fiestas no se contratara a tiempo a tiempo, entonces la fiesta
de graduacion tendria que cancelarse y Lupita se enojaria. Si la fiesta de graduacion
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se cancelara, habria que devolver el dinero. No se devolvio el dinero. Por lo tanto,
todos los chicos aprobaron sus materias.

Primero convertiremos el argumento dado en una forma simbolica mediante la
siguiente asignacion de proposiciones.

p : Todos los chicos aprobaron sus materias

q : Se contratd un salon a tiempo.

r : La fiesta de graduacién se cancelo.
s : Lupita estaba enojada.
t :Hubo que devolver el dinero.

El argumento anterior se escribe como

(-pv—q)—>(ras)
r—ot

—t

" p

Ahora establezcamos la validez de este argumento como sigue:

PASOS RAZONES

1)rot Premisa

2) —t Premisa

3) —r Paso (1),(2) y Modus Tollens

4) —rvs Paso (3) y la regla de amplificacion disyuntiva

5) —=(rvs) Paso (4) y la leyes De Morgan

6) (—pv—a)—>(rAs) Premisa

7) =(—pv—0q) Paso (6), (5) y Modus Tollens

8) paq Paso (7) , Leyes de De Morgan y la Ley de la
doble negacion

9)..p Paso (8) y la regla de simplificacion conjuntiva

4) En este caso utilizaremos el Método de Demostracion por Contradiccion.
Consideremos el argumento:

—p<q
q—>r
" p
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Para establecer la validez de este argumento, hemos supuesto la negacion —p de la
conclusion p como otra premisa. El objetivo ahora es usar las cuatro premisas para obtener
una contradiccion F,. He aqui una forma de obtenerla.

PASOS RAZONES

1) -peq Premisa

2) (—p—>ad)A(q—>—p) Paso (1)y (-p«<q) < [(ﬁp —q)A(q— ﬁp)]
3) =p—qQ Paso (2) y la regla de la simplificacién conjuntiva
4) p—>q Premisa

5 —por Paso (3), (4) y la ley del silogismo

6) —p Premisa que hemos propuesto

Hr Paso (5),(6) y Modus Ponens

8) —r Premisa

ADra ﬁr(<:> FO) Paso (7), (8) y la regla de conjuncién

10) . p Pasos (6), (9) y el método de demostracion por

contradiccion.

Nota. (Implicacion l6gica). sipy g son proposiciones arbitrarias talque p—q
es una tautologia , entonces decimos que p implica l6gicamente a qy escribimos
pP=q.

Por ejemplo: Si analizamos lo que ocurrié en el ejercicio anterior, tenemos que

[(-pea)r(g>r)aA—r —p] F,.

Esto quiere decir que el valor de verdad de [(ﬁp > ga(gor)aara ﬁp] sea 0. Como
—p <> Qq,q—r y r son las premisas dadas, cada una de estas proposiciones tiene el valor
de verdad 1. En consecuencia, para que

[(=p<>a)A(a—>r)A—rA—p] tenga el valor de verdad 0, la proposicion —p debe

tener el valor de verdad 0. Por lo tanto p tienen el valor de verdad 1 y la conclusion p del
argumento es verdadera.

3.- Consideremos las proposiciones primitivas p,q,r,s yt, y el argumento.

p

pvq
q—(r—s)
t—>r

So=S — —t
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Para mostrar que este argumento no es valido, necesitamos una asignacion de valores de
verdad para cada una de las proposiciones p,q,r,s yt, de modo que la conclusion

—s — —t sea falsa (tenga el valor de verdad 0) mientras que las cuatro premisas sean
verdaderas (tengan el valor de verdad 1). El Gnico caso en que la conclusion —s — —t es
falsa se presenta cuando —s es verdad y —t es falsa. Esto implica que el valor de verdad de
s esOyel valor de verdad de t es 1.

Como p es una de las premisas, su valor de verdad debe de ser 1.Para que la premisa
pv g tenga el valor de 1,qpuede ser verdad (1) o falsa (0). Consideremos la premisa

t — r, donde sabemos que t es verdadera. Si t — r debe ser verdadera , entonces r debe
ser verdadera (tener el valor de verdad 1). Ahora bien, si r es verdadera (1) y s es falsa

(0), tenemos que r — s es falsa (0) y el valor de verdad de la premisa q — (r — s) sera 1
Unicamente cuando q sea falsa (0).

En consecuencia, con la asignacion de los valores de verdad:

p:1 gq:0 r:1 s:0 t:1,
las cuatro premisas

P pvq q—(r—s) tor
tienen el valor de verdad 1, mientras que la conclusion

—S — —it
tienen el valor de verdad 0. En este caso hemos mostrado que el argumento dado no es
valido.

Las asignaciones de valores de verdad de p:1,g:0,r:1 s:0 yt:1 muestran un caso que

desaprueba algo que podria haberse considerado como un argumento véalido. Debemos
observar que, para mostrar que una implicacién de la forma

(P,AP, APsA..AP,)—Qq representa un argumento valido, necesitamos considerar
todos los casos en que la premisas p,, p,....p,sean verdaderas [Cada uno de estos casos es

una asignacion de valores de verdad para las proposiciones primitivas( que conforman las
premisas en que p,, p,, P;-...p, son verdaderas). Para lograr esto (analizar todos los casos

sin escribir las tablas de verdad), hemos utilizados las reglas de inferencia junto con la leyes
de la logica y otras equivalencias I6gicas. Para analizar todos los casos necesarios, no
podemos recurrir a un solo ejemplo (o caso) especifico como medio para establecerla
validez del argumento (para todos los casos posibles). Sin embargo, cuando queremos
mostrar que una implicacion (de la forma anterior) no es una tautologia, todo lo que
debemos hacer es encontrar un caso para el que la implicacion sea falsa; es decir, un caso
en el que todas las premisas sean verdaderas pero que la conclusién sea falsa. Este caso
proporciona un contraejemplo para el argumento y muestra que no es valido.
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EJERCICIO 1.5

1.- Los siguientes tres argumentos son validos. Establezca la validez de cada uno por el
método de una tabla de verdad. En cada caso, determinar las filas de la tabla que son
cruciales para evaluar la validez del argumento y las que puedan dejarse de lado.

a) [pa(poa)ar]=[(pva)—>r]

b) [[(pAq)—> r]AﬁqA(peﬁr)] —(=pv—q)

c) [[pv(qu)]/\ﬁq]a(pvr)
2.- Use tablas de verdad para verificar que cada una de las siguientes proposiciones es una
implicacion légica.

a) [(p>a)a(a—>r)]>(por)

b) [(pP—>0a)A—q]—>—p

o) [(pva)a—a]—qg

d) [(p—>r)a(a—>n)]->[(pva)—r]
3.-Verifique que cada una de las siguientes proposiciones es una implicacién ldgica,

mostrando que es imposible que la conclusion tenga el valor de verdad 0 mientras la
hipotesis tenga el valor de verdad 1.

a)(pArg)—>p
b)p—(pva)
O[(pva)a—p]—>g
d[(p—>a)a(r—>s)a(pvr)]->(qvs)
e)[(P>a)A(r—>s)A(=gv—=s)]—>(-pv-r)
4.-Para cada uno de los siguientes pares de proposiciones, use el Modus Ponens o el Tollens

para completar la linea en blanco con un argumento valido.

a) Si Juana tiene problemas para arrancar su aprobar sus materias, entonces su mama
la enviara a unos cursos de regularizacion.
Juana tiene problemas para aprobar sus materias.

b) S i Pedro resolvié el ultimo problema del examen correctamente, entonces aprobd
el semestre.
Pedro no resolvié el Gltimo problema correctamente

c) Si este es un ciclo repeat-until , entonces el cuerpo de este ciclo se ejecutara al
menos una vez.
.. El cuerpo del ciclo se ejecuta al menos una vez.
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5.- Para las proposiciones primitivas p,qyr, sean
P la proposicion [ pA(p =) A(sv ) a(r—>—q)]>(svt)y

P, la proposicion [ pA(qvr)|v—=[pv(qvr)]
Use las reglas de inferencia para mostrar que gAr=qvr.
¢Es ciertoque P = R, ?

6.- Justifique cada uno de los pasos necesarios para mostrar que el siguiente argumento es
valido.

[p/\(q/\r)]vﬁ[pv(q/\r)]

PASOS RAZONES
Dp

2)p—q

3)q

4)r ——q

5)q——r

6) —r

7)svr

8)s

9)..svt

7.- Dar las razones para los pasos que verifican el siguiente argumento.

(—pva)—r
r—(svt)
—SA—=U

—U — —t

P

PASOS RAZONES
1)—s A—u

2)—Uu

3)—|U — —t

4) —t

5)—s

6)—|S/\—|t
r—(svt)
8)—|(5Vt) —
9) (—|S A\ —|t) — T
10) —r
11)(—pva) —>r



12)—|I’ —> —|(—|p vV q)
13)—r - (pA—q)
14) p A —(Q

15).. p

8.- a) De las razones para los pasos que justifican el argumento

[(Poa)a(-rvs)a(pvr)]—>(-a—s)

PASOS RAZONES

1)—(—aq —s)
2)—q A—S
3) s
4)—rvs
5)—r
6)-p—q
7)—q

8)—p
Apvr

10)r

11)—r A=r
12)..—q —> s

b) Realice una demostracion directa del resultado de la parte (a).

9.- Establezca la validez de los siguientes argumentos.

A[(pr-a)ar]—[(par)va]

b)[p/\(p—>q)A(—.qu):|—>r
c)p—q dp—g

—|q I’—)—|q

—r r
~=(pvr) so=p
flpaq g9p—->(g—>r)

p—>(raq) pvs
r—(svt) t—>q

—S —S

e)p—>(q—or)

h)pvq
—|p\/l’

el

27
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11.- Muestre con un contraejemplo que ninguno de los siguientes argumentos es valido, es
decir, dé una asignacion de valores de verdad a las proposiciones primitivas p,q,r,ys de

modo que todas las premisas sean verdaderas (tengan el valor de 1) y que la conclusién sea
falsa (tenga el valor de verdad de 0).

a)[(p/\ﬁq)/\[p—>(q—>r)ﬂ—>ﬁr
b) [[(p/\q)—w]/\(—.qu)]—) p

c)p© q d) p
q—o>r p—>r
rv—s p—(qv-r)
=S —( = Vv =S
RS oS

12.- Escriba cada uno de los siguientes argumentos en forma simbdlica. Establezca después
la validez del argumento o dé un contraejemplo para mostrar que no es valido.

Si Felipe obtiene el puesto de supervisor y trabaja mucho, entonces obtendra un aumento.
Si obtiene el aumento, entonces comprard una casa . EI no ha adquirido una casa. Por lo
tanto, Felipe no ha obtenido el puesto de supervisor o no ha trabajado mucho.

DEMOSTRACIONES POR INDUCCION MATEMATICA.

En el siglo XV1II , el matematico italiano Giuseppe Peano(1858-1932)° ide6 la induccién
matematica para argumentar la validez de las férmulas o procedimientos con un nimero de
pasos infinito numerable, es decir, con un nimero de pasos contable o equivalente al
conjunto de los nimeros naturales. La importancia de este tema para el ingeniero en
sistemas es que a menudo dentro de esta area se debe analizar el nimero de operaciones
gue hace un programa para llevar a cabo una tarea ,y dicho analisis se hace en base a
formulas cuya validez debe probarse y es cuando se recurre al método de prueba por
induccion.

Dicho principio se desprende del principio del buen orden, el cual indica:

Principio del Buen Orden: Cualquier subconjunto no vacio de 0" contiene un elemento
minimo ( Es en este sentido que a veces se dice que [ * es bien ordenado).

Principio de Induccion Matematica. Sea S(n)una proposicion matematica abierta (o

un conjunto de tales proposiciones abiertas) , en la que aparece una o varias veces la
variable n, que representa un entero positivo.

Si S(2)es verdadera; y

% En realidad, el mismo Giuseppe Peano atribuy6 la invencién del método al matematico Richard Dedekind
(1831-1916). Se cree que el veneciano Francesco Maurocylus fue el introductor en 1575 de la idea en
Europa, y asi lo atestigua una cita del importante matematico francés Blaise Pascal (en 1653), al demostrar
resultados de andlisis combinatorio como C(n,k) =C(n,k+1)*(k+1)/n—k),0<k <n-1.El

término “induccion matematica” fue acufiado por el matematico inglés Augustus De Morgan, quien
describio el proceso en 1838.
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Siempre que S(k)sea verdadera (para algun k el" particular , pero elegido al azar)
entonces S(k +1) sera verdadera;

Entonces S(n) seré verdadera paratodo nell".

Demostracion. Sea S(n) una proposicion abierta con las condiciones (a) y (b),

ysea F={tell”|S(t)es falsa}. Se desea mostrar que F =O; asi que para
obtener na contradiccion suponemos que F = . Entonces, por el principio del
buen orden , F tiene un elemento minimo s.Como S(1) es verdadera, s=1, de
modo que necesariamente s>1, y en consecuencia ,s—-1lelJ”. Como
s—1¢ F ,tenemos que S(s—1) es verdadera. Asi , por la condicion (b) ,se sigue
que S((s-1)+1)=S(s) es verdadera , lo que contradice que seF. La
contradiccion surge de la hipotesis de que F #. Porlotanto F =O.

EJEMPLO1.6.Demostrar que para cualquier.
nel”™, Yi=1+2+3+..+n=(n)(n+1)/2

i=1
Demostracion: Esta claro que S(1) =1=(1)(1+1)/2. Por lo tanto S(1) es verdadera.
Esta es nuestra base de induccion. En segundo lugar , dado k ], supongamos
que es verdad que S(k):1+2+3+..k=k(k+1)/2 y demostremos que esto
“obliga” a que S(k +1)es verdadera. En efecto:
1+2+3+..k+(k+1) =k(k+1)/2+(k+1), puesto que S(k) es supuesta verdadera.

Simplificando nuestra suma, llegamos a que:
1+2+3+..k+(k+)=(k+D)k+2/2.

Lo cual establece la veracidad del paso inductivo, y por tanto, valiéndonos del
Principio de Induccién , concluimos la veracidad de nuestra formula.

2.-Segun los ejemplos:
14=3+3+8

1 53+3+3+3+3
16=8+8

Hacemos la conjetura de que todo numero natural n ,con n>14, se puede escribir como
una suma de treses y ochos.

Demostracion:

Como el 14,15 y 16 se pueden escribir en la forma descrita, ello establece nuestra base de
induccion. Supongamos que la proposicion es véalida para k >16, con k €[] .Entonces
tenemos que probar que para k +1 la propuesta es también valida. Obsérvese para esto que
k+1=(k—-2)+3, pero como 14<k-2<k, entonces k—2 es un nimero que puede
escribirse como una suma de treses y ochos, de aqui concluimos que k +1 también puede

ser escrito de esa manera.; de esta forma, por el Principio de Induccion, llegamos a la
conclusion de que nuestra afirmacion es valida.



EJERCICIOS 1.7. Demostrar por induccién matematica lo siguiente:

Q)17 +2° +3 +. +(2n—1)2 =(n)(2n+1)/3
b )ZI(H-l)

n+1

n>—n

(c)Sinel™, conn>10,demostrar que Nn—2< B

30
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UNIDAD I
RELACIONES

Objetivos:

Al finalizar la unidad, el alumno:

[] Comprendera el concepto de producto cartesiano y aprendera a calcularlo

[] Entenderéa el concepto de relacién

[] Manejara la simbologia propia de las relacién

[] Identificara los diferentes tipos de relaciones que hay , segun sus propiedades

[] Entendera el concepto de relacion de equivalencia y su relacién con la particion de
un conjunto en subclases.

En esta unidad desarrollaremos el concepto de relacion ,el cual es esencial en el andlisis del
concepto de funcién, de particion y del concepto de grafo, temas que se estudiaran mas
adelante. Ademas, el concepto de relacion juega un papel importante en varias teorias como
la de probabilidades, estadistica y analisis combinatorio, materias que son importantes en la
formacion de un ingeniero en sistemas computacionales.

Iniciaremos estudiando el concepto de producto cartesiano, el cual es la base para definir
una relacion.
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PRODUCTO CARTESIANO.

El producto cartesiano entre dos conjuntos A y B se denota AxB, y formalmente se
define como sigue:

AxB={(a,b)|]ae AybeB}

Nota: Observe que el orden es importante; es decir, no es lo mismo AxB que BxA.
Puede demostrarse que si el conjunto A consta de m elementos , y el conjunto B de n
elementos, entonces su producto cartesiano Ax B contendra mxn elementos ( parejas
ordenadas). Esto es importante de sefialar y tomar en cuenta porque nos proporciona una
guia al momento de calcular un producto cartesiano, al indicarnos si hemos enumerado
exactamente el niUmero de elementos que debe tener un producto entre dos conjuntos dados

EJEMPLO 2.1

1.- Obtener A x B, si
A={123}

B= {a p}

Solucion: El producto Ax B debe contener 3*2=6 elementos. En efecto, haciendo una
enumeracion directa: A x B = {(1, p), (1,9), (2,p) ,(2,9), (3,p), (3,0)}.

2.-Obtener AxB siA={a, s} y B={1,2,3,4,5,6},obtener AxB y BxA.
.Solucién:

Deben haber 2*6=12 elementos en cada uno de los productos. En efecto:
AxB={(l), (a2), (83), (a4), (a5), (a6) ,(s,1), (5,2), (5,3), (5,4), (5,5), (5,6)}
BxA={(1,), (1,5), (2,a), (2,5) (3,2), (3,9), (4,8), (4,9), (5,8), (5,5), (6,2), (6,5)}

3.- SiB={2,5,7}, obtener B*> y B®.

Solucioén:

B’=Bx B ={(2,2), (2,5, (2,7), (52), (5)5), (5.7), (7,2), (7,5) (7,7)}

B=BxBxB= {(222),(225),(227),(252),(25,5),
(2,5,7(2,7,2), 2, 7,5), (2,7, 7) (5,2, 2), (5, 2, 5), (5, 2, 7, (5, 5, 2),
(5,5,2), (55,7), (57 2),5,7,5), 577 (7,2 2),(7,2,5), (7,2, 7)

(7,5,2),(7,5,5),(7,57),(7,7,2),(7,7,5), (7,7, 7)}

PROPIEDADES DEL PRODUCTO CARTESIANO.

Para cualesquiera subconjuntos A, B y C de un conjunto universal U,
se cumplen las siguientes propiedades:



1.-Ax(BNC)=(AxB)n(AxC)
2.—Ax(BUC)=(AxB)U(AxC)
3.-(AnB)xC=(AxC)n(BxC)
4.—-(AUB)xC=(AxC)u(BxC)

EJEMPLO 2.2

1.- Si A={1,2y , B={ab,c} y C={@,*c,d}, comprobar
Ax(BuUC)=(AxB)U(AxC)

Solucion:

Por unlado: BUC ={a,b.c, @,*,d}

Ax(BuC)={(1a),db),@c) T @).(17)(1d).(24a)(2b)(2c).,(2,@),2%),
(2,d)}

Desarrollando por el lado izquierdo:

Ax B ={(1,3),(1,b),(1,c),(2,a),(2,c)}
AxC={(1,@),(1,%),(1,),(1,d),2,@).(2,%),(2,c).(2,d)}

(AxB)u (Ax)={(1,a),(1,b),(1,c),(2,2),(1,@),(1,*),(1,0),(1,d).,(2,@),(2,*).(2,0),

(2,d)}. Se puede ver que ambos conjuntos coinciden.

EJERCICIO 2.1. Obtener lo que se pide en cada caso:

(@)Sean M ={aguila,sol}, D ={1,2,3,4,5,6}. Obtenga el producto M x D.
(b)Si A={1,2,3}, B={2,4}, C ={3,4,5}. Hallar AxBxC.
(c)Sean A={a,b}, B={2,3}, y C={3,4}.Hallar:i) Ax(BuC),

(i) (AxB)U(AxC) (iii) Ax(BnC)

2.2 RELACIONES.
A un subconjunto del producto cartesiano A x B se le Ilama relacion de A en B.
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que

En general si A es un conjunto con n elementos y B un conjunto con m elementos,
entonces el nimero de relaciones de A a B es igual a2™, incluyendo a la relacién vacia

.
EJEMPLO 2.3
Obtener cinco relaciones de Aen B, si
A={m,n I}
B ={1, 0}
Solucion:

Paso 1.
Hay 2° = 64 relaciones de Aen B
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Obtener A x B = {(m,1), (m,0), (n.1), (n,0), (1,1), (1,0)}

Paso 2.

Del producto anterior obtendremos las cinco relaciones pedidas.
R, = {(m1)}

R,={(n1),(n.1)}

R;={(m,0), (n,1),(1,1), (m,1)}

R,={(n1), (n,0)}, {(n.2), (1.1)}, {(n,1),(1,0)}

R,= & etc.

EJEMPLO 2.4

1.- a) Obtener cuantas relaciones pueden establecerse entre el conjunto
A={01234}B={ax,pB.7)
Solucion:

n(A)=5
m(B)=3

Asi que hay 2" relaciones de A en B.
b) Dar tres ejemplos de relaciones no vacias de A en B.

Solucion:

Como primer paso, calculamos el producto cartesiano de ambos conjuntos en el orden
requerido:

AxB={01234}x{a, pB, 7}

{0.2),0.8).0,7),(La) @A), Ly) (2 a) (2 4) (27),
B ) B A)By)@Aa) (B.) 4 r)}

De aqui, se obtienen tres relaciones no vacias de A en B:

R,={(2 a )},
R,={(2, 5 ), (1 a), (1, A)} R;={(@3,5 ), (4 B)}

c) Obtener tres relaciones de tamario 5.

Solucion:

R, ={(0.a ), (LA ) (L 7). (25) G »)}
R, ={0, ), 2,a ), (4 7) (4 5) (4 a)}
Ry ={(0.7). (L& ), B, ), (4 7). (2, 5)}
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RELACION BINARIA.

Considere a un conjunto vacio A, se le llama relacion binaria a todo subconjunto de A x
A.

Es necesario indicar el significado de los siguientes simbolos:

Suponga que R es una relacion binaria, definida sobre el producto cartesiano A X A, y que
(a, b) € R , entonces a esta situacion la denotamos con el simbolo a%ib, que significa :” a
esta relacionada con b, mediante R ”. En caso contrario, es decir si a no esta relacionada
con b mediante R, escribimos aRb.

La notacion anterior cobra importancia en los siguientes ejemplos:

Definimos la relacion R sobre el conjunto [ como a®b, o (a, b)e R, si a < b. Este
subconjunto de [1x[] es la relacién ordinaria “ menor o igual que “ sobre el conjunto [ , y
también puede definirse sobre [ o] , pero no sobre [J . Con esta definicion de R, por

ejemplo esta claro que 2R 3, porque 2<3; sin embargo 5 K 8, porque 5 £ 8. En tal sentido
decimos que (2,3) e R, pero que (5,3) £ R.

La relacion siguiente es una relacion importante en muchos ambitos, por ejemplo, nos
permite definir a una “funcion localizadora”, como veremos en el tema de funciones. Sea
nel”. Para x,y el larelacion modulo n R, esta definida como xRy, si X-y es un
maltiplo de n. Por ejemplo, si n =7, encontramos que 9%R2, -3R11 (14,0)c R ,pero
3K 7 (es decir, 3 no esta relacionado con 7).

EJEMPLO 2.5

1.-Si A ={a, b, c} ,obtener 3 relaciones binarias no vacias de A.
Solucioén:

Primero obtenemos el producto cartesiano A x A:

AxA= A{a,b, c}xA{a b, c}

={(a a), (a b), (a c), (b, a), (b, b), (b, ¢), (c, a), (c, b), (c, ¢)}
R, = {(a a), (a b)}

R, ={(a a), (a, b), (a )}

R; ={(a a), (& ), (a c), (b, a)}

2.- Con A=[0", considérese la relacion binaria R en el conjunto A como
{(x,y)| x< y}. A esta relacion se le [lama “menor 6 igual” para los enteros positivos. En

esta relacion estan por ejemplo las parejas ordenadas (6,6), (8,11); pero (6,4)¢ R.

3.- Sea R el subconjunto de 0 x[J donde R ={(m,n)|n=3m}. Esta relacion indica que

dos enteros n 'y m estan relacionados si n es el triple de m.Asi, por ejemplo dentro de
esta relacion se encuentran (1,3), (4,12), (-2,-6)
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EJERCICIO 2.2 Obtener lo que se pide en cada caso:
1.-Si A={p, q, r} dar dos ejemplos de relaciones binarias no vacias de A.
2.- ¢ Cuéntas relaciones binarias tiene el conjunto A={L,2,3,4,5,6}?

3.-Sea A un conjunto con 3 elementos. Si existen 4096 relaciones de A en B, ;Cuantos
elementos contiene el conjunto B?.

4.- Indicar siaRb, para
R={(1.3),(2,5), (2,7}
(@1R5
(b)2R5
5- Si R ={(0,1).(3,2), (7,5)},es verdadero o falso que:
3 M5

e 1RO

3.-Si R = {(a, b)| a-b es un numero entero positivo}, donde R R es un subconjunto de
0 x0.

@¢ (7,4)eR?, (b) ¢((-2,-8)eR?

TIPOS DE RELACIONES

Dada una relacion R, puede o no tener la caracteristica de ser reflexiva, simétrica y
transitiva, entre otras . Hacer esta distincion es importante, porque de el hecho que tengan
estas propiedades depende de que puedan introducir o no una particion o un orden parcial
dentro de un conjunto, lo cual es muy significativo en la ciencia de la computacion para
poder clasificar datos.

RELACION REFLEXIVA:

R una relaciéon sobre un conjunto A es una relacion reflexiva, si para todo xeA, implica
que XRX.

RELACION SIMETRICA:

La relacion R sobre el conjunto A es simétrica, si dados X,y € Ay (Xx,y) € R, implica
que (y, X) € R.

RELACION TRANSITIVA:

R es una relacidn transitiva sobre un conjunto A si dados x, y, z e A y ademas se cumple
que: XRy y yRz, implica que xRz .

EJEMPLO 2.6
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1-Si A={1234}, R, ={(2,1), (1,2), (4,3), (3,4)}. Puede verse que R, no es reflexiva ,
porque por ejemplo (2,2) no es parte de R,. También R, es simétrica ; pero no es
transitiva, porque (2,1) y (1,2) son parte de R, pero (2,2) no.

2.- Considere R ={(a, b)|a,be 0 ya>b} .Es unarelacion transitiva porque si X, Yy, Z son
numeros reales y ademas x>y x>z, entonces X>z. También es simétrica y reflexiva. A
esta relacion se le llama “mayor 06 igual”.

3.- Si A ={1,2,3,4} entonces R,={(1,1),(2,3), (3,4), (2,4) } es una relacion transitiva.

Claramente no es simétrica, porque por ejemplo (3,2) no es parte de esta relacion, siendo
que (2,3) si lo es; ademés tampoco es reflexiva, porque (2,2), por ejemplo, no forma parte
de dicha relacion.

EJERCICIO 2.4.

1.-Si A = conjunto que consta de

A ={1,2,3}

® ={(1,2), (21), (1.3), B}
(@)¢ R es simétrica?

(b)¢ Es reflexiva?

© ¢ Es transitiva?

2.-Si A={1,2,3,4}, dar un ejemplo de una relacion R sobre A que sea:

(a) Reflexiva y simétrica, pero no transitiva.
(b)Reflexiva y transitiva, pero no simétrica
© Simétrica y transitiva, pero no reflexiva.

3.- Considere la relacion R sobre el conjunto [ ", definida como
R ={(a,b)|— esun ndmero entero}. Indicar si dicha relacion es reflexiva, simetrica o
a

transitiva.

4.- R es una relacion definida sobre [1 , dada por R ={(a,b)|a+b esun nimero par}.;Es
esta relacion reflexiva, simetrica o transitiva?.

RELACION DE EQUIVALENCIA.

Se le llama relacién de equivalencia aquella que tenga las propiedad simétrica, reflexiva 'y
transitiva ( las tres juntas)

EJEMPLO 2.7

1.-SiA={123}

R={(11),(2,2).(33), (3.2)}

R es reflexiva, simétrica y transitiva (¢por qué?). Por lo tanto, dicha relacion es una
relacion de equivalencia.
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2.- Si A ={1,2,3}, entonces
R,={(1,1), (2,2), (3.3)},
R,={(1.1), (2.2), (2.3), (3,2), (3,3)},

R,={(1.1), (1.3), (2,2), (3.1), B.3)} ¥
R,={(1.1), (1.2), (1.3), (2,2), (2,2), (2,3), (3,1).(3.2), (3.3)}
son relaciones de equivalencia sobre A ¢Por qué ?.

PARTICIONES Y CLASES DE EQUIVALENCIA

Una relacion de equivalencia induce una particion dentro del conjunto sobre el cual esta
definida; es decir, lo divide en subconjuntos mutuamente disjuntos a los cuales llamaremos
clases de equivalencia.

Formalmente definimos:

Particion: De un conjunto A es una division de A en n subconjuntos A, A,,..A , tales
que:

() AnA =9, coni= j.Paratodo 1<i<n y 1<j<n.

n
i JAa=A
i=1
A los conjuntos A se les llama células o celdas. De modo que la definicion de particion

significa simplemente que esta es una descomposicion de un conjunto en celdas , tales que
todo elemento del conjunto esté en exactamente una de las celdas.

Tenemos al conocido teorema siguiente:

Teorema: Sea A un conjunto no vacio ysea R una relacion entre elementos de A que es
reflexiva, simétrica y transitiva, entonces R produce una particién natural de A, en donde

a={xeS|xRa}

es la celda que contiene a todos los elementos x que son equivalentes a a.

Cada celda a en la particion natural es una clase de equivalencia.

EJEMPLO 2.8.
1.-Dar tres ejemplos de particiones del conjunto A=4{1,2,3,4}.

Solucion:

¢ ={{a,b,c,d}}
#, ={{a}.{b,c,d}}
#; ={{a,b},{c,d}}
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Todas ellas son particiones en donde todo elemento estd en exactamente uno de los
conjuntos, y la unién de los conjuntos de cada clase es exactamente igual a A.

2.- Denotamos por ejemplo con el simbolo 2/3 a todos los nimeros racionales o
fraccionarios que equivalen en decimal a dicho ndmero; es decir:2/3

={2/3, —2/—3,4/6,6/9,—6/9....}={§—2| nell y n=0}. Este ejemplo muestra que los

nameros fraccionarios o racionales pueden partirse en clases, cada una de las cuales
contiene a todos aquellos elementos que son numeéricamente iguales a un nimero racional
dado.

3.- Definamos una relacion R en el conjunto [ mediante nNRm si y solosi nm>0. ¢Es
R una relacion de equivalencia?. Debemos verificar las tres caracteristicas de una relacion
de equivalencia:

(1) Reflexividad: Si a (], entonces afia, debido a que a® > 0.

(2)Simetria: Si a,bel] y ademads a%Rb, entonces es claro que bRa, porque
ba=ab>0.

(3) Transitividad: No lo es , porque por ejemplo (-3)(0)>0 y (0)(5)>0, pero (-
3)(5)<0.

De este modo dicha relacién no es una relacion de equivalencia.

4.- Por ultimo, tratemos el importante caso de las congruencias modulo n. Para h,k (],
definimos h congruente con k maodulo n, lo cual se escribe h=k(mod n),si h—k es

divisible entre n; es decir , que h-k=ns, para alguna sell. Por ejemplo
17 =33(mod 8), puesto que 17-33=8(-2). Las clases de equivalencia para la congruencia

modulo n son las clases residuales médulo n. Cada una de estas clases residuales
contiene un ndmero infinito de elementos . Por ejemplo, la clase residual para la
congruencia mddulo 8 que contiene al 17 y al 33 es:

{..,—47,-39,-31,-23,-15,-7,1,9,17, 25,33,41,49,...} .

Esta clase residual contiene cada octavo numero , comenzando con 1. De hecho, hay siete
clases residuales mas en la particion dada por la congruencia modulo 8..

EJERCICIOS 2.5

1.-Determinese si la relacién dada es una relacion de equivalencia en el conjunto y

describase la particion que surge de cada relacion de equivalencia.

a) n®Rmdellsinm>0

b) xRy si [x|=]y]

C) n®m en 07 siy m tienen el mismo numero de digitos en la notacion usual de base
diez.

d xRyenRsix>y

e) XRyenRsix-yK3

f) n®men [ sinym tienen el mismo digito final en la notacion usual de base diez.
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g) n®men 17 si n—m esdivisible entre 2.

h) Sea n un entero en 0" muéstrese que la congruencia mddulo n es una relacién de
equivalencia en [1 *. Describanse las clases de residuales para n=1, 2, 3.

i) El siguiente es un formato falso. Encuéntrese el error. “ El criterio de reflexividad es
redundante en las condiciones para una relacion de equivalencia, ya que de

allb y bl a (simetria) deducimos all a por transitividad.

2.- Encuéntrese el niumero de relaciones de equivalencia posibles en un conjunto S S a
partir del nimero de sus elementos (Sugerencia: ayudarse del hecho de que una relacién de
equivalencia introduce una particion natural en un conjunto dado).

a) 1elemento
b) 2 elemento
c) 3elementos
d) 4 elementos
e) 5 elementos
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UNIDAD Il
FUNCIONES

En esta unidad , el alumno:

]

oo od

Entendera el concepto de funcion y las diferentes formas en las cuales puede
describirse a una funcién.

Identificara y aprendera a usar la simbologia propia de las funciones.

Entendera las partes que describen o identifican a una funcion, como son el
dominio, el codominio y el rango.

Aprenderé a clasificar a las funciones en inyectivas, suprayectivas y biyectivas.
Entendera las condiciones en las cuales una funcion es invertible.

Aprendera a calcular la inversa de una funcién.
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En este capitulo estudiaremos a las funciones, las cuales en realidad son un tipo especial de
relacion, cuya definicion tiene una larga historia que comenzo en el siglo XVIII, con los
trabajos matematicos de Euler, y cuya definicion fue aclarada y extendida en el siglo
pasado por matematicos como Cantor, Fourier , Dirichlet y Cauchy. El concepto de funcion
aparece en ramas como la Fisica, la Teoria de Probabilidades, Economia, etc.; es uno de
los conceptos mas usados. Y lo es porque nos permite modelar fendmenos de respuesta
unica; es decir acontecimientos que cada vez que ocurren lo hacen arrojando exactamente
un resultado.

3.1. CONCEPTO DE FUNCION.

Para los conjuntos A ,B, una funcién, o aplicacion , fde Aen B, que se denota con
f:A— B, es una relacion de A en B en la que cada elemento de a aparece

exactamente una vez como la primera componente de un par ordenado en una relacién.*

Esta forma de definir a una funcion es sumamente fructifera , porque nos permite hablar
de funciones actuando sobre conjuntos no numéricos. También es comun definir a una
funcién como una relacion de un conjunto A a un conjunto B de modo que a cada
elemento ae A, dicha relacion le asigna exactamente un elemento beB.
Simbolizamos esta situacion como f(a) =b o bien (a,b)e f . Al nimero b se le llama
la imagen de a bajo f (al elemento a se le llama preimagen de b) y a la funcion f se le
Ilama regla de correspondencia.

De modo que para describir a una funcién ,se necesitan tres elementos:

(1) El conjunto A, al cual llamaremos dominio de la funcion
(i) El conjunto B, al que Ilamaremos codominio
(ili)  Laregla de correspondencia dada por f.

EJEMPLO 3.1. Considere A={1,2,3} y B={w,x,y,z} . Sean

@f:A->By f={(%x),(22),(3y)}. Estaes unafuncion definidade A a B.

(b)f:A—>B y f={(1x),(3,2)}. Esta regla de asignacion no es una funcion, porque la
definicion indica que a cada elemento de A (el dominio), dicha regla le debe asignar
exactamente un elemento en el conjunto B (el codominio) y en este caso al niUmero 2
no se le asigna ningun elementoen B.

(c)f:A—>B con f={(Lw),(2,x),(3,¥),(3,2)}. En este caso f tampoco es una funcion,
debido a que al nimero 3 le asigna dos valores distintos y y z. La definicion de
funcion dice que a cada elemento del dominio se le debe asignar exactamente un
elemento en el codominio.

df:A—>B conf={Lw),(2,w),(3,w)}. En este caso f es una funcion, porque la
regla de correspondencia f le asigna exactamente un elemento a cada numero que
aparece en el conjunto dominio A, no importa que sea el mismo.

* Esta definicion de funcién la dio por primera vez el matematico aleméan Peter Gustav Lejeune Dirichlet

( 1805-1859) en 1837. Como se ve en la definicion de funcion dada por este matematico ,no es necesaria una
férmula que relacione a las cantidades dependientes de las independientes, como a menudo se podria creer,
sobre todo por los cursos de calculo diferencial e integral.
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Para la funcion f : A— B, A es el dominio ( lo denotaremos D,)y B es el codominio
de f ( lo denotaremos Codf ). El subconjunto de B formado por aquellos elementos
que aparecen como segundas componentes de los pares ordenados de f se le conoce
como la imagen de f y se le denota también como f(A) ya que es el conjunto de
imagenes (de los elementos de A) mediante f .°

FORMAS DESCRIPTIVAS DE UNA FUNCION. Las funciones aparecen en muchas
formas en la préctica, como por ejemplo en forma de tablas ( una némina es una funcion
que asigna a cada empleado un solo salario). Nos es familiar la forma gréafica de una
funcién, o los diagramas sagitales , y por supuesto, en forma de formula.

[ q
Precio por unidad Cantidad ofredida
(en dblares) por semana
500 11
s00 14
700 17
800 20

Forma grafica Forma sagital Forma tabular

FUNCIONES EN COMPUTACION

En la Computacion aparecen repetidamente varios tipos de funciones ;por ejemplo, en los
lenguajes de programacion , se hallan implementadas una gran cantidad de funciones, como
las siguientes:

a) Funcion parte entera o funcion suelo. Esta funcion se simboliza como
f:0 >0 con f=[x]| yestadadapor

f =[x |= el mayor entero menor o igual que x

Por ejemplo: f(3.7)=3;, f(4)=4;, f(-5)=-5 f(-3.8)=-3.Esta funcion en el
lenguaje C™", se implementa mediante el molde int. En BASIC , se implanta mediante
INT.

b) La funcién trunc (de truncar) aparece en Pascal, por ejemplo , y su accion sobre un
namero real elimina su parte fraccionaria .Por ejemplo, trunc(3.78)=3; trunc(5)=5;
trunc(-6.13)=-6.

¢) Funciones localizadoras. Al guardar una matriz en una tabla unidimensional ,
varios lenguajes de programacion lo hacen por filas , con el método de la fila

% En los cursos de calculo diferencial e integral también se le llama “rango o recorrido de f "
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principal . En este caso, si A= (a es una matriz nxn, la primera fila de A,

i,j)nxn
se guarda en los lugares 1,2,3,...,n de la tabla si comenzamos con &, en el lugar 1.

a, a, e a, ay ay, o a5, as T q; a,,

1 2 n n+l n+2 ... 2n 2n+1 ... i-)n+j

El elemento a,, se encuentra entonces en la posicion n-+1, mientras que el a,, ocupa la
posicion 2n+4 en la tabla. A fin de determinar el lugar de cualquier elemento a; de A en
donde 1<i,j<n, se define la funcion de acceso f de los elementos de A en las

posiciones 1, 2, 3...n°> de la tabla. Una formula para la funcion de acceso es
f(a;)=({-1n+ j. Aeste tipo de funciones se les llama funciones localizadoras y existen

varias formas de obtenerlas.
3.2 OPERACIONES ENTRE FUNCIONES.

Se pueden realizar varias operaciones entre dos funciones f y g dadas. En seguida

definimos la suma, la resta, la multiplicacion, la division y la composicién de dos
funciones.

Sean f y g dos funciones definidas comosiguef :A—B y ¢g:C — D , entonces:

a) SUMA y RESTA: Definimos la suma (resta) de f y g como aquella funcién
cuyo dominio es igual al conjunto AN C y cuya regla de correspondencia f g es

f+g={(ab)[b="f(a)xg(a)}

b) MULTIPLICACION. Definimos la multiplicacion f y g como aquella funcion
cuyo dominio es igual al conjunto AN C y cuya regla de correspondencia f *g es

f*g={(ab)|b=1f(a)*g(a)}

c) DIVISION: . Definimos la division f y g como aquella funcién cuyo dominio es
igual al conjunto(AnC)—-{acC|g(a) =0} y cuya regla de correspondencia f/g

es:
f/g={(ab)|b="f(a)/g(a)}

d) COMPOSICION: Definimos la composicion go f de las funciones f y g como
aquella funcion cuyo dominio es igual al conjunto {acA| f(a) e C} y cuya regla de
correspondencia es:

go f ={(ab)[b=g(f(a)}
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EJEMPLO 3.2. Si

f ={(2,3),(4,-1),(3,5),(7,4),(6,8)}; 9={(25).(-2,3).(30),(7,2),(13,4)}
Obtener: f+g, f-g, f*g, f/lg , fog y gof.
Solucion: El dominio de f, esigual a D, ={2,4,3,7,6} y el dominio de g es igual a
D, ={2,-2,3,7,13}. El dominiode f+g , f-g y f*g, esel mismoy es igual al

conjunto {2,3,7}, de modo que dichas operaciones s6lo estan definidas en ese conjunto.
Las reglas de correspondencia, son:

f+9={2,3+5),(3,5+0),(7,4+2)}={(2,8),(3,5),(7,6)}
f-9={(2,3-5),35-0),(7,4-2)}={(2,-2),(3,5),(7,2)}
f*g={(2,3*5),(3,5*0),(7,4*2)}={(2,15),(3,0),(7,8)}

Por otro lado, el dominio de la composicion de estas funciones f o g, viene dado por el
conjunto D, ={aeD,| g(a)eD; }={-2,7,13}. Por lo tanto, en esos numeros tiene
sentido hablar de tal composicion; la regla de correspondencia resulta
fog={(-2,5),(7,3),(13,-1)}.

De manera similar se puede ver que D, ={2} yque portanto go f ={(2,0)}.

2.-En este ejemplo, obtendremos los resultados de operar dos funciones dadas como una
formula. Sean f :[-8,21 >0 y g:[-2,5] -0, con reglas de correspondencia dadas

por las formulas f(x)=2x+3 y g(x)=x°. Obtenga
f+g9,f-g,f/g,fog y gof.

EJEMPLO 3.3. (a) Obtenga el rango de la funcién f :[2,10] >0, cuya regla de
correspondencia viene dada por f(x) = x*.

Solucion . Si 2<x <10, entonces es claro que 4 < x> <100. De este modo, el rango o

recorrido de esta funcion sobre el dominio dado es el conjunto
Rango f ={xell | 4<x<100}, es decir, son todos los enteros entre 4 y 100.

(b)Obtenga el rango de la funciéon f :{1,2,3} - {1,2,3,4,5}, con regla de correspondencia
f ={(@73),(2,4),(3,5}. Solucién: Rangof ={3,4,5}.

El dominio de la suma , de la resta y de la multiplicacién es exactamente el mismo, segun la
definicion. Todo lo que tenemos que hacer para obtenerlo es intersectar los dominios , para
obtener [-2,2]. Las reglas de correspondencia en cada

(f +g)(x) = (2x+3) + X° caso, son:

(fog)(x) = f(g(x)=2(x*)+3
(g £)() = g(f(x) = (2x+3)’
(f —g)(X)=(2x+3) - x>
(f*9)(x) =(2x+3)+Xx°
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Observe que la composicion de dos funciones (go f)(x) = g(f(x)) es una operacion en
donde primero se aplica la funcion f sobre un elemento valido x, y enseguida la otra
funcién g retoma el resultado y lo transforma en otro valor; a esta situacion la denotamos
asi (go f)(x)=g(f(x)),yen lapractica significa que sustituya dentro de la variable de la
funcién g alafuncion f .

EJERCICIO 3.1.
1) Indicar si las relaciones siguientes son funciones o no:

(@ {(22),(-15),(0,0),(6,2)}
(b){(-3,1),(-3,0),(4,2),(7,5)}
(©){(-52),12),(3,2),(52),(7,2)}
(d){(0,N2), (1/2,3/2),(1/3,~2/5),(L/ 4,3)}

2)Obtenga el dominio de las funciones

(1) f(x):3X+1 (i) g(x)=+v3x+1 (i) f ={(3,1),(2,-8),(7,2),(0,-1)}

ox-1
3) Calcular f(4), f(-3), f(3.5),si f(x)= gij
4) Si
(a) f ={(2,1),(5,0),(4,8),(6,5),(9,3)}

9 =1{(2.8),(7,-2),(4,0),(6,4).(5.6),(3,2)}
f={13).(2.4),(3,5),(4,6)}

(b)
g - {(O! _3)! (3! 2)’ (4’1)}

Obtenga f +g,f—g,f*g,f/g,g/f,fog y gof.

4.- Suponga que f:(—w,4]—>0 yg:(-1,0)—1[, con reglas de correspondencia
f(x)=3x-2 y g(x)=3-2x°. Obtenga
f+g,f-g,f*g,f/lg,g/f,fog y gof.
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3.3. FUNCIONES INYECTIVAS, SUPRAYECTIVAS Y BIYECTIVAS.

Existen ciertas clases de funciones que por la manera en que transforman un conjunto
en otro, adquieren una importancia muy especial en varios contextos.
Funcion Inyectiva o Unoa Uno: Si f:A— B, ycadasi f(a)= f(b), solamente

si a=Db,entonces se dice que f es una funcion inyectiva. En otras palabras, una
funcidn sera inyectiva si a no hay en su dominio dos elementos a los cuales les asigne
el mismo elemento en el codominio.

Por ejemplo:

(@ f ={(1,4),(3,1),(2,8),(-5,4)}, es una funcion inyectiva.

(b) f ={(1,3),(3,2),(2,3)}, o es inyectiva, porque al 1y al 2 les ha sido el nimero 3
© Si f:0 >0 con f(x)=x* entonces f no es inyectiva, porque
f(2) = f(-2), por ejemplo.

(d)Sin erhbargo f :[0,00) >, si es una funcidn inyectiva, puesto que no hay
dentro del dominio de esta funcion dos elementos que reciban el mismo valor.

Funcion Suprayectiva: : Si f:A— B, y para cada elemento y en el
codominio, existe un elemento x en el dominio tal que y = f(x), entonces se

dice que la funcion f es suprayectiva. ( 0 simplemente sobre). Es decir, una funcion
es suprayectiva si “mapea” a su dominio de manera que no queden elementos de
su codominio sin preimagen, no importando que sea la misma.

Por ejemplo:
(@) La funcion SiA={,2,3} y B={a,b,c} y f:A>B con
f ={(3,a),(2,c),(L,b)}es un ejemplo de funcidn suprayectiva.
(b) La funcion f:A— B, con A={1,2,3,4,5y B={a,b,c}, cuya regla de
correspondenciaes f ={(1,a),(2,b),(3,c),(4,a),(5,b)}, es suprayectiva.
(c) La funcion f :0 —[0,00) con f(x)=x*,es una funcion suprayectiva: también la
funcién f(x) = ij es una funcion sobre, porque esté definidacomo f :[J —»[ .

Funcion Biyectiva: Es una funcion que es al mismo tiempo inyectiva y suprayectiva.

Es claro que una funcion sera biyectiva si su dominio y codominio tienen la misma
cantidad de elementos; de hecho, a estas funciones se les utiliza para definir conceptos
como isomorfismo, numerable,etc., porque en ciertos contextos los conjuntos con el mismo
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namero de elementos se les podria considerar como semejantes o equivalentes en algun
sentido o para ciertos usos.

Por ejemplo:

(@) La funcion f:[0 — 0 cuya regla es f(x)=x’ es biyectiva, porque a cada
namero real le asigna exactamente otro numero real diferente al que haya asignado
a otro elemento distinto de su dominio; y por otra parte no existe ningin nimero
dentro de su codominio que no tenga una preimagen.

(b) Por las mismas razones que en (1) , la funcion f(x)=sen(x), con
f :[0,27] - [-L1], es una funcion biyectiva; sin embargo no lo seria si la
hubieramos definido como f :[1 —[-1,1]. ¢Por que?.

(c) La funcion suelo f(x) = \_xJ , N0 es biyectiva. ¢Por qué?.

3.4  FUNCION INVERSA

Sediceque f:A— B esuna funcion invertible si existe una funcion que denotaremos
como f* talque f':B—>A y (f*of)(x)=f"(f(x))=x, para cada elemento x
enel dominiode f;

y ademas
(f o f H(X)="f (f*(y) =y, paracadaelemento y en B.

Nota:Se puede demostrar que una funcion es invertible ( que tiene inversa) si y sélo si es
biyectiva.

EJEMPLO 3.4

1) Laimportancia de que una funcion sea invertible, es que representa la posibilidad de
revertir el proceso al cual esté ligada o describa; asi, por ejemplo, las funciones
CHR y ORD del lenguaje Pascal son inversas una de la otra, y por tanto permiten
pasar del codigo binario ASCII a la representacion comun de un simbolo, mediante
CHR; y viceversa, mediante ORD se puede pasar a un simbolo comun definido en
ese lenguaje a su representacion binaria.

2) Todos sabemos de la importancia de las funciones trigonométricas en varias areas
de la ciencia y la tecnologia; la funcion inversa de f(x)=senx es

f (x) = arcsenx, que da respuesta a la pregunta de bajo qué angulo , la funcion
seno toma determinado valor.
3) Es relativamente simple determinar la inversa de una funcion de una variable. Por

2X+;, con f:0 —{-2/3}—0 —{1}. Esta funcion es

ejemplo, considere f(x) =

biyectiva. Su formula inversa se determina como sigue:
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2y -1
21-y)

. Esta ultima férmula es la inversa de la funcién

. Intercambiando x

Haga vy :%. Enseguida se despeja X, quedando x=

por vy, se obtiene la formula y =

2(1-x)
dada.

EJERCICIO 3.3. Contestar los siguientes problemas:

1) Indicar si las funciones que se ven en la grafica son inyectivas, suprayectivas o
biyectivas.

2. Indicar si existe la inversa de la funcion .Si no, indicar por qué no.
a) f ={(2,3),(5,2),(4,)}con Domf ={2,5,4} y Codf ={1,2,3,5}

(b)La funcion S iA={,2,3}yyB={a,b,c}y f:A— B con f={(3a),(2c),(1b)}esun
ejemplo de funcion.
(d) La funcion f:A— B, con A={1,2,3,4,5} y B={a,b,c}, cuya regla de
correspondenciaes f ={(1,a),(2,b),(3,c),(4,a),(5b)}.
(e) Lafuncion f :0 —[0,00) con f(x)= x>
(f) Lafuncién f(x)=|x]| definidacomo f:0 —10.

3.-Determine la inversa de la funcion.

f)=2—X con Domf=0—{2/3+ y Codf =0 —{-1/2}.
3+2X
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UNIDAD IV
TEORIA DE GRAFOS

En esta unidad, el alumno:

[] Conocera la terminologia basica de la teoria de Grafos.

[] Aprendera a representar a un grafo mediante su matriz de incidencia o mediante su
matriz de adyacencia.

[] Aplicara en problemas practicos los conceptos de caminos y circuitos eulerianos y
hamiltonianos.

[] Aplicara en problemas préacticos el concepto de grafo ponderado

[] Resolvera ejemplos asociados con el concepto el concepto de grafos isomorfos.
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La Teoria de Grafos nacié en 1736, con el problema de los puentes de Kdnigsberg
planteado y resuelto por Leonhard Euler. En la actualidad esta disciplina se aplica en la
resolucion de problemas en la Computacién (Estructura de Datos, Topologia de Redes),
Investigacion de Operaciones (Teoria de redes), Electronica (en el area de digitalizacion de
imagenes e informacion), en la Teoria de Cdédigos, Fisica y Economia.

4.1 GRAFOS

Ejemplos cotidianos en donde se utilicen grafos:

a) Disefio de tuberias.
b) Disefio de carretera.
c) Rutas de avion.

d) Un recorrido a través de un museo.
e) La ruta que sigue un vendedor.
f) Un arbol de toma de decisiones.

Comenzamos el estudio de la teoria de los grafos con la exposicion de la terminologia

basica:

GRAFOS: Un grafo es una estructura que estd formada por los dos conjuntos finitos

siguientes:

1.- Un conjunto no vacio V de vértices o nodos, y

2.- Un conjunto E de aristas, donde cada arista une a dos vértices o a un mismo vértice.

EJEMPLO 4.1 La figura siguiente es un grafo:

Los nodos estan
representados por puntos:
VR

Las aristas son las lineas
que unen a los vértices:
€,6,,6,,8,,6;,6.

Para trabajar con la teoria
de grafos, es necesario
familiarizarse con los
términos siguientes.

LAZO: Cuando un vértice esta unido consigo mismo. En la figura anterior, son lazos las

aristas e, y e,.
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RAMAS O ARISTAS PARALELAS: Son aquellas que unen al mismo par de vértices.
En la figura, son aristas paralelas e, y e,.

VERTICE AISLADO: Vértice que no esta unido a otro o asi mismo.

GRAFO SIMPLE: Es aquel que no tiene aristas paralelas ni lazos.

VALENCIA O GRADO DE UN VERTICE: Sea G ungrafo y v un vértice de G. El
grado de v, denotado por grad(v) es el niUmero de aristas que salen de v. Una arista

que sea un lazo se cuenta dos veces. Por ejemplo, en la figura que nos esta sirviendo de
ejemplo, observamos que :

grad(v,) =5
grad(v,)=2
grad(v,) =5

GRAFOS BIPARTITOS Y GRAFOS COMPLETOS. Sea V un conjunto de n vértices
El grafo completo sobre V de orden n, que se denota K, es un grafo no dirigido sin
lazos tal que para todos a,b €V, a =b, existe una arista {a,b}. Es decir, un grafo simple

es completo si y sélo si todos sus Vvértices distintos estan conectados entre si por
exactamente una arista. Por ejemplo

1y ol vy
™ I —T.
8= TJ- o’-:—-—_x.____,ol

vy 4 Uy oy
Grafo completo K, Grafo completo K,

Se le llama Grafo bipartito si se le puede dividir en dos conjuntos ajenos V, y V,, de
modo que cada arista de dicho grafo conecte a dos vértices, uno que esté en V, y el otro
enV,. Si cada vértice de V, esta unido con los vértices de V,, se tiene un grafo bipartito
completo. En el caso de que V, tenga m vértices y V, contenga n vértices, entonces
usaremos el simbolo K| .

Por ejemplo, en las figuras siguientes se muestran los grafos bipartitos K,, vy

K ;.Obsérvese como se advierten dos conjuntos de vertices V,={a,b} y V, ={c,d,e} para

el primer caso. Cabe aclarar que en este caso ambos ejemplos son grafos bipartitos
completos; pero quitando las aristas {b,e} y {b,d}, del primer grafo, seguiria siendo un
grafo bipartito, aunque ya no seria grafo bipartito completo.
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d
b
e
Grafo bipartito completo K, , Grafo bipartito completo K,
EJERCICIO 4.1

1)Dado el grafo de la figura

[
U2 '3
® &
El 94
O
a®
v | €y L

a) Escribir el conjunto de aristas.
b) Hallar los vértices.

c) Hallar los vértices aislados.

d) Hallar los lazos.

e) Hallar las aristas paralelas

2.- Dibujar un grafo simple con cuatro vértices y seis aristas si es que es posible.

3.-Se puede argumentar de una manera sencilla la veracidad del siguiente resultado: Sea G
un grafo con vértices v,,v,...,v,. Entonces la suma de los grados de todos los veértices G es

igual a dos veces el niUmero de aristas en G, es decir,
Zgrad (vi):2* ( nimero de aristas en G).Segun este resultado, ¢Se puede dibujar un
grafo G con tres veértices v,,v,,v, donde

a) grad(v,)=1
grad (v, )=2
grad (v;)=27?
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SOLUCION.
No, ya que grad(v,)+ grad(v,)+ grad(v;)=1+2+2=5 que es un nimero impar.
Entonces, por el teorema anterior, ese grafo no existe.
b) grad(v,)=2
grad(v,)=1
grad (v;) =3

©

i Intente hacer un grafo con las caracteristicas del inciso (a)!. También intente hacer un
grafo con las caracteristicas del inciso (b).

2.- Dibujar el grafo completo K,

3.- Haga el dibujo del grafo bipartito K, ,. También haga el dibujo del grafo bipartito
completo K, ,.

4.2. REPRESENTACION MATRICIAL DE GRAFOS.

Si G es un grafo no dirigido de n vértices y k aristas, usamos las siguientes matrices
para representar G.

Sea V ={v,v,,..,v,}.Definimos a la matriz de adyacencia A=(a;)
a; =1si {v,v;}eE y a; =0 enotro caso.

donde

nxn

Si E={e,e,,...e}, la matriz de incidencia | eslamatriz nxk (b;),, talque
b; =1 si b; =1 si v, esunvérticeenlaaristae; y b, =0 enotro caso.

EJEMPLO 4.2.

(@) Encuentre las matrices de adyacencia e incidencia asociadas con el
grafo de la figura.




55

Solucioén:
La matriz A de adyacencia es

A v, v, v, Vs
v, O 1 1 0 1
v, 10 1 1 1
vy 11 1 1 1
v, O 1 1 0 1
vv 11 1 1 1
La matriz de incidencia es | viene dada por :
el e2 e3 e4 e5 eG e7 e8 e9 elO ell
vy 1.1 1. 0 0 0 0 0 0O O O
v, 0 0 1.1 1 1 0 0 0 0 O
vy 1. 0 0 0 1. 0 0 1 0 1 1
v, 0 0O 0 0 01 0 1 1 0 O
v. 0 1 0 2. 0 0 2 0 1 1 O

o

Sean x y y Vértices, no necesariamente distintos, de un grafo no dirigido. Un camino
de x a y endicho grafo es una sucesion alternada finita y sin lazos de vértices y aristas
del grafo . que comienza en el vértice x y termina en el vértice y.

La longitud de un camino es igual al nimero de aristas que hay en el camino.

Se puede demostrar que la potencia n de la matriz de adyacencia A", es una matriz cuya
entrada a; proporciona el numero de caminos de longitud n que van del vértice i al

vertice j.
Por ejemplo, en nuestro caso A?, es
3 3

wWwolhw

2
3
3

WwWwN W

2
4
4
2

w o b

3 4 5 3 5

La cual indica ,por ejemplo, que hay 4 caminos de longitud 2 entre el vértice
vV, y Vv,.Enefecto, dichos caminos son : v2v1lv3, v2v4v3; v2v3v3; v2v5v3.

Ademas en la matriz de adyacencia , la suma de cada columna, en el caso de que no haya
lazos en el vértice correspondiente a la columna, es igual al grado de dicho vértice; en el
caso de que haya lazos,

grad (v) ={(suma de la columna para v)-1]+ 2( numero de lazos en v).
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Por ultimo, la suma de cada columna de 1, la matriz de incidencia, es igual a 1 para un
lazo y 2 para una arista que no sea un lazo. ;Puede decir por qué?.

EJERCICIOS 4.2.

1.- Obtenga las matrices de adyacencia A y de incidencia | para el grafo que se ve en la
figura :

]
e

(b)Obtenga A* y diga cuantos y cudles son los caminos de longitud 2 del vértice
V, YV,

A grosso modo , un grafo es conexo si entre dos de sus vértices existe al menos una
sucesion de vértices y aristas que los conectan. En la préctica estos grafos son muy
importantes, por ejemplo, una red de computadoras es una grafica conexa.

4.2 GRAFOS CONEXOS.

Sea G = (V, E), un grafo no dirigido. Decimos que G es conexo si existe un camino
(trayectoria) simple entre cualesquiera dos vértices distintos de G. Un grafo que no
es conexo es disconexo.

En la practica estos grafos son muy importantes, por ejemplo, una red de
computadoras o una red de distribucion de gas o petroleo, o bien una red de carreteras
son una grafica conexa.

Continuando con nuestro tema de los caminos ( trayectorias) entre los vértices de un
grafo, nos conviene analizar las siguientes definiciones, a fin aplicarlas en el estudio
de las graficas conexas:
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TRAYECTORIA: Sean uy v dos veértices de un grafo G. Como ya fue mencionado
en el paragrafo anterior, una trayectoria o camino de u a v es una sucesion alternada
de vértices y aristas de G. Esta sucesion empieza en u y termina en v.

TRAYECTORIA TRIVIAL: Si u y v son el mismo vértice, entonces la trayectoria
es trivial, sin aristas, y se denota por u o por v.

TRAYECTORIA SIMPLE: Una trayectoria simple de u a v es la que no tiene
veértices repetidos.

CIRCUITO O CICLO: Es una trayectoria que empieza y termina en el mismo
vértice y no tiene aristas repetidas.

CIRCUITO SIMPLE: Es una trayectoria que no tiene aristas ni vertices repetidos
excepto el primero y el ultimo.

EJEMPLO 4.3. En el grafo de la figura , notamos ,por ejemplo que:

Une

Cy

a) v,e,v,e.v,e,v.e,v, , esuna trayectoriave v, a v,. Dicha trayectoria no es simple porque
se repite el vértice v,.
b) ve.v,eV,e.v,e,v,e.Vv,e,V;, s un circuito simple.
C) V,8,V,8,V,e,V.e\V,eV,, este es un circuito simple
e) V,eV,e,V,e,Vv,e,V;, es una trayectoria simple.
C) V,8V,e,V.e, V6V, , esta es una trayectoria no simple, puesto que se repite v;.

EJERCICIO 4.3.

(a)Mostrar un ejemplo, si lo hay de trayectoria , trayectoria no simple, trayectorias simples,
circuitos y circuitos simples en el grafo dado :

Us ey v3
. 9 €3
€1
//p\/\eg}\-w
Uy e *7 /
k - 4
o er Uy

(b)Identificar cuales son trayectoria , trayectorias no simples, trayectorias simples, circuitos
y circuitos simples.
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() viesvgevseglaesiy 1 ey Uy
i B & i
(D) V@€l eV €5V e €g
€ e
(C) V€ Va8l s 1 ¢y & / 7 /‘_\c g
26 3 o
(d) vaenneviesseqae esv; AT T

(€) VsEglalaVaesV 2aVs

CIRCUITOS EULERIANOS.

El tema de los Circuitos Eulerianos es uno de los problemas méas antiguos en relacion con
los grafos. Leonhard Euler, uno de los matematicos mas prolificos de la historia, se ocup6
del problema de los Puentes de Konigsberg: La historia cuenta que en Konigsberg ,
existia un rio en el cual habia dos islas conectadas entre si y a tierra firme como se muestra
en la figura siguiente:

La gente de ese pueblo se preguntaba si era posible caminar por cada puente una sola vez,
si se comenzara en una de las orillas o en una de las islas, y regresar al punto de partida.

Euler pensé que este problema era equivalente a analizar al grafo siguiente:

O
(I

Donde Ay C son las orillas del rio, B es la isla méas grande, D es la isla mas pequefa.

Euler , en 1736 descubrid el siguiente resultado general que nos permite decidir en qué
condiciones un grafo tiene un circuito euleriano:

Sea G un grafo. G contiene un grafo euleriano siy solo si

1.- G es conexo
2.- Cada vértice de G es de grado par.
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Asi que llego a la conclusion de que en el problema de los Puentes de Kdnigsberg, no era
posible tal recorrido, puesto que , por ejemplo , el vértice D es de grado impar. Tenemos la
siguiente definicion general:

Sea G un grafo. Un circuito en G que contiene a todas las aristas de G recibe el
nombre de circuito euleriano.

EJEMPLO 4.4. Encontrar un circuito euleriano en el grafo siguiente:

Ul e n
e L2
7N\
U5, 2g g ey
€y
24
4 €3 vy

L a——. -
U

G
Solucién: El grafo dado si tiene un circuito de Euler , aebido a que cada uno de sus
vértices tiene grado par. Por ejemplo el circuito v,ev,e,v,e,v,e,v,e,V,e,v,e.Vv,e, VeV, ,. Es
tipo euleriano; desde luego, usted puede encontrar alguno distinto a este.

Ahora bien, en ciertos contextos se desea saber si es posible hacer no un circuito , sino un
recorrido (un camino que puede ser abierto, no cerrado como un circuito). El resultado
siguiente impone las condiciones en las cuales eso es posible:

Un grafo no dirigido sin vértices aislados tiene un recorrido de Euler siy sélo si dicho
grafo es conexo y tiene exactamente dos vértices de grado impar.

CIRCUITOS HALMILTONIANOS®.

Es aquel en donde todos los vértices de un grafo aparecen solo una vez, (excepto el primero
y el dltimo, que son el mismo), y puede incluir o no a cada arista.

Por ejemplo , el grafo (a) si tiene un circuito de Hamilton, como el que se encuentra
caminando por toda la periferia; sin embargo el circuito de la figura (b) no tiene un circuito
de Hamilton.

(3) (b) .,
v T 1
U2 % s /
E‘l \ eq > éq
£y eg -
e eq / eq P
m ™ ! ® @
v =1 U, Us 4
g Gy

® Se le llama asi en honor al matematico irlandés William Rowan Hamilton (1805-1864), quien presento el
problema en 1859 en forma de un juego que consistia n visitar todas las ciudades que aparecian en forma de
punto en los vértices de un dodecaedro.
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EJERCICIO 4.4.

1.- Determinar cual de los grafos siguientes contiene un circuito euleriano. Si es asi,
proceder a localizarlo.

2.- Encontrar un recorrido euleriano para el subgrafo que resulta de eliminar la arista e, en
el grafo del inciso (a) del problema anterior.

3.- Encontrar un circuito hamiltoniano para cada uno de los grafos siguientes.

g 1}1
]
€2 4 t‘['r NG/ \
U €1 b’;f I'_)8 ey Uy 3
N A ‘*3
27

»‘5 {)4

(@) (b)

3.- Demostrar que el grafo siguiente no tiene un circuito hamiltoniano.
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4.- La figura siguiente muestra tres islas unidas a tierra firme y entre si mediante un sistema
de puentes. ¢(Podré realizarse un paseo comenzando en cualquier punto y regresando a el
después de haber pasado por cada puente una sola vez?.

5.-En 1859, Hamilton presentd el siguiente juego que consistia en pasar por cada punto del
dodecaedro exactamente una vez y regresar al punto de partida. Encontrar un circuito de
Hamilton en dicho grafo.

1 £ tg
s -
‘16 e
e5 My o
- [ SL—
esf V6 - 1926 [8\"8
U5 & I'B(J/ Bl "
FTN E7 *lg
Tomee”” 025 221 _,7;

€14
#34 @y

& @
20 foqy vig, 23 alls

s ry by
Doy Can\ UL e Ty
13 ™ S, 0 e o
Tl Ty
. ]
> Ly
ey plgl 12 :

e

44  GRAFOS PONDERADOS.

Un grafo dirigido conexo y sin lazos es ponderado si a cada una de sus aristas se les
asocia un numero real positivo que llamaremos peso o valor, al cual denotaremos con
el simbolo p(e) o p(a,b) ,si e=(a,b). Si x y y son vértices del grafo, pero no
estan conectados entre si (no son adyacentes), se define p(x,y) = .

El estudio de estos grafos estd asociado a problemas de minimizacién de costos u
optimizacion de recursos. Como por ejemplo, determinar la menor cantidad de tuberia
para conectar a una red de distribucion de gas; o por ejemplo, la determinacion del
menor costo en combustible al recorrer una ruta de distribucion.

Existe un algoritmo, desarrollado por el especialista en programacion Edsger Wybe
Dijkstra (1930-2002) en 1959 .l cual proporciona el camino mas corta entre
cualesquiera dos vértices de un grafo ponderado.
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ALGORITMO DEL CAMINO MAS CORTO DE DIJKSTRA.
Paso 1. Haga el contador i=0 y S, ={v,}.Etiquete v, con (0,-) y cada v =V, con
(00, ).
Sin=1, entonces V ={v,} y el problema esta resuelto.
Si n>1, continde con el paso 2.

Paso 2 . Paracada veS;reemplace (cuando sea posible) la etiqueta de v por nueva
etiqueta final ((L(v),y), donde

L(v) = min{L V), L)+ p(u,v)}

ues;
Y y esun vertice en S, que produce el L(v) minimo. Si efectivamente hacemos un
reemplazo, esto se debe al hecho que podemos ir de v, a v Yy recorrer una distancia mas
corta si recorremos un camino que incluye una arista (y,v).]

Paso 3. Si cada vértice de S_, (para algin 0<i<n-2) tiene la etiqueta («,-), entonces
el grafo etiquetado contiene la informacion que estamos buscando.

Si no, existe al menos un vértice v e Si que no esta etiquetado como (o0,—) y realizamos
las siguientes tareas:

1) Seleccionamos un vértice v, , tal que L(v,,) sea minimo (para todo v de este tipo).
Puede haber varios de estos vértices , en cuyo caso podemos elegir cualquiera de los

posibles candidatos . el vértice v.., esun elemento de S, que es el més cercano a v,.

2) Asignamos S, U{v,,} a Si..

3) Incrementamos el contador i en 1 . Si i=n-1, el grafo etiquetado contiene la
informacién deseada . Si i <n -1, regresamos al paso 2..

EJEMPLO 4.5. Aplicar el algoritmo del camino méas corto para determinar la distancia
mas corta del vértice ¢ a cada uno de los otros cinco veértices del grafo de la figura
adjunta.

Aplicando el algoritmo Dijkstra, descrito antes, determinaremos la distancia mas corta del
vertice c(v,) a cada uno de los otro cinco vertices de G .

Iniciacién: (i=0). Sea S, ={c}. Etiquetamos ¢ como (0,-) y los demas vértices de G
con (0,—).
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Primera iteracion: (So = {a,b, f,0, h}) . En este caso i =0en el paso 2 y encontramos por
ejemplo, que
L(a) = min {L(a), L(c)+ p(c,a)}

min {oo0,0+ 00} =00, misma que

L(f) = min {L(f),L(c)+ p(c, f)}

min {0,046} =6 misma que

Célculos similares muestran que L(b)=L(g)=o y L(h)=11. Asi, etiqguetamos el
vértice f con(6,c) y el vértice h con (11,c). Los demas vértices de S, siguen etiquetados

con (o0,—). Véase en la figura (b), que aparece abajo.

En el paso 3 vemos que fes el vertice de v, en el S, mas cercano de v, por lo que
asignamos a S, el conjunto S, u{c, f} e incrementamos el contador ia 1.

comoi =1<5(=6-1), regresamos al paso 2.

Segunda interacion: E:{a,b,c,h}). Ahora, i=1 en el paso 2; cada VGS_1 hacemos
L(v) = min {L(v), L(u) + p(u,Vv)} de donde obtenemos

L(a) = min {L(a), L(c)+ p(c,a)+ L(f)+ p(f,a)}
min {o0,0+00,6+11} =17
por lo que etiquetamos el vértice a como (17, f) . De manera similar vemos que
L(b) = min{co,0+ 00,6 + 00} = o0
L(g) =min {{0,0+00,6+9}=15
L(h) = min {11,0+11,6+4}=10
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[Con estos resultados obtenemos el etiquetado de la figura ( b)]. En el paso 3 vemos que el
vértice es v, es h, pues heS; yL(h) es un minimo. Entonces asignamos aS, si el

conjunto S, u{h}= {c, f,h}, incrementamos el contador a 2 y como 2 < 5, el algoritmo
nos lleva de nuevo al paso 2.

Tercera iteracion: (S_2= {a,b, g}). Como i =2 ene le paso 2, ahora calculamos.

L(a) =min {L(a), L(u) + p(a,u)}
min {17,0+ 00,6 +11,10+11} =17
(asi la etiqueta de a no cambia)

L(b) =min {o0,0 + 0,6 +10,00} = o0
(la etiqueta de b sigue siendo ).
L(g) =min {15,0+ 00,6 +9,10+4} =14 <15
por lo que la etiqueta de g cambia a(14,h) puesto que 14= L(h)+ p(h,g). Entre los
vértices de g g es el més cercano a v, puesto que L(g) es un minimo. En el paso 3, el

vértice v, se define como g yS, =S, u{g}={c, f,h,g}. Incrementamos el contador i a
3> 5, y regresamos al paso 2.

Cuarta iteracion: (8_3: {a,b,}). Con i=3, determinamos lo siguiente en el paso 2:

L(a) =17; L(b) = «. (Asi, las siguientes etiquetas no cambian durante esta

iteracion). Hacemos v, =ay S, =S, S, = ng S, =S, u{a}={c, f,h,g,a}, en el paso

3. Entonces incrementa i=4 (<5) y regresamos al paso 2.

Quinta iteracion: (§={b,}) en el caso, i=4 en el paso 2, y vemos que

L(b) = L(a)+ p(a,b) =17+5=22 . La etiqueta de b cambia por (22, a). Entonces, v,=b en
el paso 3, S; es {c, f,h,g,a,b} e i se incrementa a 5. Pero ahora que i=5=|V |-1, el
proceso termina. Obtenemos El grafo etiquetado que se muestra en la siguiente figura.
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De las etiquetas de la figura anterior obtenemos las siguientes distancias méas cortas de ¢ a
los otros vértices de G .

1) d(c, f)=L(f)=16 2) d(c,h)=L(h)=10
3)d(c,g)=L(g)=14 4) d(c,a)=L(a)=17
5) d(c,b)=L(b)=22

Por ejemplo, para determinar un camino dirigido méas corto de ca b, partimos del
vértice b, que tiene la etiqueta (22,a), por lo tanto, a es el predecesor de b en este

camino mas corto. La etiquetaen a es (17, f), por loque f procede a a en el camino.
Por ultimo la etiqueta f es (6, c), por lo que regresamos al vértice ¢ y el camino
dirigido mas corto de ¢ a b determinado por el algoritmo esta dado por las aristas

(c, f),(f,a) y (a,b).

EJERCICIO. 45
Determine el camino mas corto del vértice a a los vértices c, f e i

2.- a) Aplique el algoritmo de Dijkstra al grafo de la figura siguiente, y determine la
distancia mas corta del vértice a a los demas vertices del grafo.

b) Determine el camino simple mas corte del vértice a a cada uno de los vértices f,g y h.
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3.- Determine la ruta mas corta entre el nodo 1 y cualquier otro nodo de la red en la
siguiente figura.

GRAFOS ISOMORFOS.

Dos grafos G, =(V,,E;)) v G, =(V,,E,) son isomorfos, si existe una funcion
f=V, >V, tal

1) que f es inyectiva; es decir; a cada vértice de V, le asigna un vértice en V, distinto
al asignado a cualquier otro.
2) Paratodos los a,b eV, {a,b}eE, sisolosi {f(a), f(b)}<E,.

NOTA: La correspondencia de vértices de un isomorfismo de grafos mantiene las
adyacencias y esto hace que se preserve la estructura de un grafo.

EJERCICIO. 4.6Demostrar que los grafos siguientes son isomorfos.
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Solucion.
Sienlos grafos (A)y (B) definimos f como:
f(a)=w fc)=y
f(b) =x f(d)=z

b) Verifique que los siguientes grafos son isomorfos, dando una funcién que lo justifique

Solucion. Aungue no podemos dar una funcion en forma directa; nos podemos dar cuenta
que los grafos son isomorfos, porque el primero al ser rotado a 90°, realmente reproduce al
segundo. De este modo podemos dar la siguiente funcion que los identifique.

f(m=s, f(m=r, f(p)=  f(q)=t

En este caso tenemos la correspondencia de aristas

{m,n} & {f(m), f(n)}={s,r},
{m, p} < {f(m), f(p)}={s,ui},
{m,q} < {f(m), f(@)}={s,t},
{na} > {f (), f(a)}={r.t},
{p,a} ={f(p), f(a)}={u,t},
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EJERCICIO 4.7. Indicar en cada caso si son isomorfos los siguientes pares de grafos.

_1\
o

(a) (b)

GRAFOS PLANOS.

Un grafo (o multigrafo ) G es plano si podemos dibujarlo en el plano de modo que sus
aristas se intersecten sélo en los veértices del mismo .

EJEMPLOS.

(@)El grafo (a) es un grafo plano, en el sentido de que se puede dibujar de modo que sus
aristas se intersecten sélo en sus vértices como en el grafo (b).

(a) (b)
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2.- El grafo siguiente también es plano  , debido a que sus aristas sélo se intersectan en
sus Vértices.

Nota: Un vértice solo se considera grafo plano.

EJERCICIO 4.7

(@) Dibuje tres grafos planos.
(b)EI grafo siguiente se le llama Grafo de Petersen. Comprobar que el grafo de Petersen no
es plano..

Py
Jal

o C

Para finalizar nuestro tema de grafos, introducimos la siguiente definicion: Sea G
un grafo no dirigido y sin lazos, tal que E # & . Una subdivision elemental de
G resulta cuando se elimina una arista e ={u,w} de G y entonces las aristas

{u,v},{v,w} se afladen a G-e,donde vgV.

Los grafos no dirigidos sin lazos G, =(V,,E,) y G, =(V,,E,) son homeomorfos

si son isomorfos o si ambos pueden obtenerse del mismo grafo no dirigido sin
lazos H por una sucesion de subdivisiones elementales.



70

Siguiendo estas definiciones se plantea el siguiente resultado , debido al matematico polaco
K. Kuratowski:

Teorema de Kuratowski. Indica que:

Un grafo no es plano si y solo si contiene un subgrafo homeomorfo a K; 0 K,,

Por ejemplo los grafos G y G, son homeomorfos, debido a que en el primero se ha hecho
una subdivision de su arista {a,b}, mediante la introduccion del vértice w. Esto hace que
se obtenga, a partir del grafo G (figura (a) ) al grafo G, que se muestra en al figura (b).
Obsérvese que se han afiadido las aristas

Por ejemplo, el grafo de Petersen de la figura (a), tiene como subgrafo a la figura (b).

(@) (b)

Se puede dar la siguiente sucesion de subdivisiones hasta al finar obtener un subgrafo
homeomorfo a K,,:
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También se tiene el siguiente resultado debido a L. Euler sobre una relacion entre el
namero de regiones en que un grafo divide al plano , su nimero de vértices v y su nimero
de aristas e:

Teorema de Euler Sobre Grafos Planos. Sea G=(V,E) un grafo o multigrafo plano
conexo con V|=v y |E|=e. Sea r el nimero de regiones en el plano determinadas por

una inmersion (o representacion) plana de G ; una de estas regiones tiene un area infinita
y se conoce region infinita . Entonces v—e+r =2.

En efecto, considere por ejemplo el grafo plano .En este caso como puede notar existen
v=3 veérices; el nimero de aristas es igual a e=3; el numero de regiones es r=2 (la interna
y la externa que es infinita). Por lo tanto: 3-3+2=2.

Ahora, si observamos el siguiente ejemplo, también
verificamos que  v=4; e=6; r=4. Por tanto:

4-6+4=2.
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EJERCICIO 4.8. Indicar si los grafos siguientes cumplen con la relacion de
Euler.

(@) (b)
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UNIDAD V
ARBOLES

Objetivo:

En esta unidad, el alumno

a

a

Conocera la terminologia basica de la teoria de arboles.
Aplicara la teoria de arboles para optimizar codigos (Huffman)

Aprenderd a utilizar los arboles binarios para ordenar series de
simbolos, segun alguna convencion.

Aplicard los arboles para generar notaciones para expresiones
algebraicas ( notacion polaca de Lukasiewicz).

Conoceré el algoritmo de Pri m para optimizar una ruta.
Aplicara los arboles en el andlisis de juegos.



74

5.1 DEFINICION DE UN ARBOL
Otra clase de grafos, llamados arboles, son grafos que no tienen circuitos ( de
modo que no pueden tener aristas paralelas ni lazos.). A menudo es necesario
utilizar &rboles en la ciencia de la computacion.
Propiedades de los &rboles.
ARBOL: Sea T un grafo. T recibe el nombre de arbol si y sélo si
a) T es convexo.
b) T no contiene circuitos (excepto los triviales).
A un conjunto de arboles se le llama bosque.

EJEMPLO 5.1

Los grafos (@) y (b) vy (c) son arboles.

(a) (b) (c)
Sin embargo, los grafos (d) y (e) y ( f) no son arboles, el primero porgue no es

conexo, y el segundo porque tiene un lazo; mientras que el tercero no es un arbol
porque forma circuitos.

(d) () (f)
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EJERCICIOS 5.1

1.- Dibujar todos los arboles distintos que tengan tres vértices.

2.- Determinar por qué cada grafo de las siguientes figuras no presenta un arbol.
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El teorema siguiente nos permite caracterizar un arbol:

Teorema: Sea un G grafo conexo que tiene n vértices. G es u arbol si sélo si
tiene exactamente n-1 aristas.

EJERCICIO 5.2. Verifique el resultado anterior usando como grafos de prueba a
todos los grafos del ejemplo 5.1.

Existe un tipo especial de arbol, llamado arbol con raiz que es util en la ciencia
de la computacién. (A un arbol que no esté enraizado se le llama arbol libre).

Las caracteristicas de un arbol con raiz son:

Raiz: Si v se distingue de los otros vértices de T, entonces T recibe el nombre
de arbol con raiz y vse denomina raiz.

Hijo: Si u es adyacente a v pero se encuentra mas lejos de la raiz de lo que esta
v entonces a u se le llama hijo de v. Si u yw son los unicos hijos de v, con la u
localizado a la izquierda de u yw a la derecha de v, entonces u yw se llaman,
respectivamente hijos izquierdos y derecho de v.

Hoja: Si el vértice u no tiene hijos, entonces u se le llama hoja ( o vértice
terminal).
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Si u tiene uno o dos hijos, entonces u se denomina vértice interno.
Los descendientes del vértice u es el conjunto que consiste en todos los hijos de
u junto con los descendientes de esos hijos.

EJEMPLO 5.2. Considere el siguiente arbol conraiz T

a) ¢Cualeslaraizde T?

b) ¢Es T es un arbol binario? Si es asi, encontrar los hijos izquiedo y derecho de
cada vértice.

c) Encontrar las hojas y los vértices internos de T

d) Encontrar los descendientes de los vértices a yc.

Solucién:

a) El vértice a se distingue por ser el Unico localizado en la copa del arbol. Por
lo tanto a es la raiz.

b) Si, cada vértice tiene dos hijos, un hijo o ninguno. La tabla siguiente indica

los hijos de cada vértice.

vértice Hijo Hijo

izquierdo derecho
a b Ninguno
b Ninguno Ninguno
c d e
d Ninguno f
e 9 h C) Las.hojas son los vértices que
- Ninguno Ninguno no tienen hijos. Estos son b, g
g Ninguno Ninguno y h.L 0S vértices internos son
h Ninguno Ninguno los que tienen uno o dos hijos.

Estosson c,d y e.
Los descendientes de a son b,c,d,e, f,g,h. Los descendientes de ¢ son

d,e,f,g,h.

Arbol binario: Si T tiene raiz y cada vértice de T tiene hijos izquierdo y derecho,
o hijo izquierdo o hijo derecho, o no tiene hijos, entonces T se denomina arbol
binario. Por otro lado, si en el arbol binario los vértices tienen exactamente dos
hijos o ninguno se les llama arboles binarios completos.

Sea T un arbol binario y sean u yv dos vértices de T . El arbol con raiz en u es
el arbol que consiste en la raiz u, todos sus descendientes y todas las aristas que



7

los unen. Si u es el hijo izquierdo de v, entonces el subarbol con raiz en u se
llama subérbol izquierdo de u, y si u es el hijo derecho de v, entonces el
subarbol con raiz se llama subarbol derecho de v con raiz en u. Si u es una
hoja, entonces el subarbol con raiz en u se denomina subarbol trivial.

EJEMPLO 5.3 .Considere el siguiente arbol binario.

/\
/\ .

a) Encontrar los subarboles izquierdo y derecho de v.
b) Encontrar el subarbol con raizen r.

Solucion: Laraiz es el vértice v. En la siguiente figura se dan , respectivamente
los subarboles izquierdo y derecho de dicho grafo.

/ 2
/\\ AN

c) en la figura siguiente se da el subarbol con raiz en r.

N
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Continuando con la presentacion de la terminologia basica de la teoria de arboles,
definimos a un arbol jerarquizado cuando se establecen niveles de mayor a
menor ,partiendo de la raiz del arbol. Por ejemplo, en un organigrama:

DIRECTOR GENERAL

{ SUBDIRECTOR DE RECURSOS HUMANOS ‘] { SUBDIRECTOS ACADEMICO ‘] { SUBDIRECTOR DE VINCULACION ‘]

[ CONTADOR } [ MAESTROS }

También , si en cada nodo de un arbol tomamos una decision, a dicho arbol le
llamaremos arbol de decision . Por ejemplo, un arbol como este se puede
utilizar para resolver un viejo acertijo de toma de decisiones, llamado El juego de
las ocho monedas. En tal juego, se supone que tenemos ocho monedas , una
de las cuales es falsa, por lo cual pesa mas o0 menos que las otras siete. El juego
consiste en analizar todas las posibilidades de formas de pesar a las monedas con
una unica balanza, hasta descubrir a la que es falsa. Esta claro que podemos
dividir, al principio a las monedas en dos grupos de cuatro, y poniéndolas en la
balanza, podremos descubrir el grupo en la que esta la moneda falsa; luego a
dicho subgrupo se le divide a su vez en otro dos subgrupos de tamafio dos, etc.
Dependiendo de como tomemos a las monedas, se generan las dos posibilidades
que se ven en la figura:
1,2,3,4-15,6,7,8

11,2,3]—6,7, 8

- 18

125 1 g [0 LAt

TP E T | T T R A Rt 18
solucién con arbol binario solucién con arbol ternario
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BUSQUEDAS A LO LARGO Y A LO ANCHO.

La busqueda a lo largo o0 a lo ancho sirven para establecer una busqueda de
alguna clave (nodo) ubicado en un arbol.Estos conceptos después nos serviran
para establecer recorridos en diversos érdenes a través de un arbol.

Busqueda a lo largo (en profundidad).

Sea G =(V,E) un grafo conexo no dirigido con r eV . A partir de r, construimos

un camino simple en G, lo mas largo posible. Si este camino simple incluye
todas los vértices de V , entonces el camino simple es un arbol recubridor T de
nuestro grafo.. En caso contrario, sean X,y los dos ultimos vértices visitados por
este camino, con y como ultimo vértice. Después retrocedemos al vértice x vy
construimos un segundo camino simple en G, lo mas largo posible, a partir de x
que no incluya a los vértices ya visitados. Si no existe tal camino, retrocedemos al
padre p de x yvemos lo lejos que podemos llegar a partir de p ,construyendo
un camino simple , lo méas largo posible, sin ir a vértices ya visitados) hasta una
nueva hoja y,. En caso de que todas las aristas que parten de p conduzcan a
vértices ya visitados, retrocedemos un nivel mas y continuamos el proceso.
Puesto que el grafo es conexo y finito , este procedimiento, llamado buUsqueda a
lo largo, determinara finalmente el arbol recubridor T de G, donde r se
considera laraizde T. Por medio de T podemos ordenar los vértices de G en un
orden llamado orden previo que después definiremos.

Para mayor precision, damos enseguida el algoritmo exacto de busqueda a lo
largo:

Sea G =(V.E), un grafo no dirigido, conexo, sin lazos, tal que |V| =n Yy donde
los vertices estan ordenados  como v,v,,..v,. Para encontrar el arbol
recubridor en profundidad, ordenado con raiz, aplicamos el siguiente algoritmo,
donde usamos la variable v para guardar el vértice analizado en un momento

dado.
Algoritmo de Busqueda en Profundidad o a lo Largo.

Paso 1. Se asigna v, a la variable v y se inicializa T como un arbol que
consta solamente de este vertice . ( El vertice v, sera la raiz del arbol recubridor
que se va a desarrollar)

Paso 2. Seleccionamos el subindice mas pequefio i2<i<n,talque Yy v, no
ha sido visitado todavia.
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Si no se encuentra tal subindice , entonces se va al paso 3. En caso contrario ,
se hace lo siguiente: (1) Ailadimos a la arista {v,v.} al arbol T; (2) asignamos v,

a v (3) regresamos al paso 2.

Paso 3. Siv=v, , el arbol T es el arbol recubridor (ordenado, con raiz ) del
orden dado.

Paso 4. Sl v=v, retrocedemos desde v. Si u es el vertice asignado a v en
T, entonces asignamos u a v Yy regresamos al paso 2..

EJEMPLO 5. 4. Determine el arbol recubridor para el grafo siguiente mediante el
algoritmo de busqueda a lo largo.

Solucién:

En este caso el orden de los vértices es alfabético:
a,b,c,d,e, f,g,hi,j

Asignamos primero el vértice a a la variable v e

inicializamos T so6lo con dicho vértice (el cual jugara el

papel de raiz). En el paso 2 , vemos que el vértice b es el
primer vértice tal que no ha sido visitado aun, por lo que agregamos la arista
{a,b} a T ,asignamos b a v yregresamos al paso 2.

Para v=>b, vemos que el primer vértice ( no visitado todavia) y que proporciona
una nueva arista al arbol recubridor es d. En consecuencia, agregamos la arista
{b,d} a T ,asignamos d a v yvolvemos al paso 2.

Sin embargo, esta vez no existe un nuevo vértice que podamos obtener de d ,
puesto que los vértices a y b ya han sido visitados., por lo que vamos al paso
3. Pero en este caso el valorde v es d , no a ; asi que vamos al paso 4.
Retroceder de ha e a b a a. Cuando v tiene asignado el vértice apor segunda
vez, se obtiene la nueva arista {e, f}y{e,h}. Después agregamos las aristas
{c,0}.{0,i} y{g, j}. En este momento hemos visitado todos los vértices de G, por
lo que retrocedemos de ja g ac a a.Con v=ade nuevo, regresamos al paso
2 y de ahi al paso 3, donde termina el proceso.
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El arbol resultante T =(V,E,) aparecen en la parte (b) de la siguiente figura.

Un segundo método para buscar los vértices de un grafo no dirigido conexo con
lazos es la busqueda en anchura. Aqui designamos un vértice como la raiz y
recorremos todos los vértices adyacentes a la raiz. Desde cada hijo de la raiz
podemos recorrer los vértices ( ho visitados) que son adyacentes a uno de estos
hijos. Al continuar este proceso, nunca enumeraremos un veértice dos veces, de
modo gue no se construye un ciclo; como G es finito, el proceso termina en cierto
momento.

Cierta estructura de datos es util para desarrollar un algoritmo en este segundo
meétodo de busqueda. Una cola es una lista ordenada en la que los elementos se
insertan en un extremo ( el final ) de la lista y se eliminan del otro extremo ( el
frente). En consecuencia, una cola se conoce como una estructura FIFO ( “ first-in,
first-out” , primero en entrar, primero en salir).

Como en la busqueda en profundidad, nuevamente asignamos un orden a los
vértices de nuestro grafo.
Comenzamos con un grafo no dirigido conexo sin lazos G =(V,E), donde [V | =n

y los vértices estan ordenados como v,,v,,V,....v, . El siguiente algoritmo genera el
arbol recubridor en anchura (ordenado con raiz) T de G para el ordenador dado.

Algoritmo de busqueda de anchura.

Paso 1: Insertemos el vértice v, en la cola Q e iniciamos en T como el arbol
formado por este unico vértice v, ( la raiz de la version final T .

Paso 2: Eliminamos los vértices del frente de Q. Al eliminar un vertice v,
consideremos v, para cada 2<i<n. Sila arista (v,v;) € E y v, no ha sido visitado,

agregamos la arista a T . Si examinamos todos los vértices ya que estabanen Q y

no obtenemos aristas nuevas, el arbol T (generado hasta este momento) es el
arbol recubridor (ordenado con la raiz) del orden dado.

Paso 3: Insertamos los vértices adyacentes a cada v ( del paso 2) en el final de la
cola Q, segun el orden en que fueron visitados por primera vez. Después

regresamos al paso 2.
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EJEMPLO 5.4

Utilizaremos el grafo de la siguiente figura con el orden a,b,c,d,e, f,g,h,i,j para
ilustrar el uso del algoritmo de busqueda de anchura.

a)
1.-Partimos del vértice a , Insertamos a en Q e

inicializamos T con este vértice ( la raiz del arbol
resultante).
2.- En el paso 2 eliminamos a de Q y visitamos los

vértices adyacentes a él:

b,c,d (estos vértices no han sido visitados previamente ).
Esto permite afiadir las aristas {a,b},{a,c},{a,d}.

3.- En el paso 3, insertamos b,c,d (en este orden) en Q vy

regresamos al paso 2. Ahora eliminamos estos vértices de
b Q y visitamos los vértices adyacentes a ellos (no visitados

antes de acuerdo con el orden dado de los vértices de G,
De aqui obtenemos los nuevos vértices e,g y las aristas
{b,e},{c,g} que agregamosa T.

4.- Después vamos al paso 3 e insertamos e,g en Q.

Regresamos al paso 2, eliminamos cada uno de estos
vértices de Q.y encontramos, en orden, los nuevos

vértices ( no visitados previamente ) f,h,e,i. Esto nos permite afadir las aristas

al arbol T .
De nuevo regresamos al paso 3, donde insertamos los vértices f,h,e,i,j en Q.

Pero ahora cuando vamos al paso 2 y eliminamos los vértices de Q, no

encontramos vértices nuevos ( no visitados previamente). En consecuencia el
arbol T de la siguiente figura es el arbol recubridor de anchura de G, para el
orden dado. ( El arbol T, que aparece en la parte de abajo surge con el orden

j,i,h,g, f,e,d,c,b,a.).

ARBOLES GENERADORES MINIMALES.

Un arbol generador de un grafo G es un subgrafo del mismo el cual es un arbol
gue contiene todos los vértices de G.

Si se asignan pesos p(i)a las aristas de dicho arbol generador y la suma de

dichos pesos es la minima posible, entonces a dicho arbol se le llama arbol
generador minimal.
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Los arboles generadores minimales aparecen en forma natural en varios
problemas, como por ejemplo, al disefiar una red de distribucién de agua o gas,
en donde lo que interesa es ,por ejemplo, minimizar la cantidad de material
utilizado. Robert Prim dio el siguiente algoritmo para determinar a un arbol
minimal en tales casos.

5.2. ALGORITMO DE PRIM.

Paso 1: Hacemos el contador i=1 y colocamos un vértice arbitrario v, eV en el
conjunto P. Definimos N =V —{v;} yT =9.

Paso 2: 1<i<n-1, donde |V|=n, sean P=(v,v,..,v,)T={e,e,...e..} VY
N =V —P afiadimos a T la arista mas corta ( la arista de peso minimal) de G que
conecta un vertice x en P con un vertice y(=v,,,) en N. Colocamos y en P y lo
eliminamos de N.

Paso 3: Incrementamos el contador en 1.
Si i=n el subgrafo de G determinado por las aristas ee,,...,e, ; €s conexo, con n

vértices y n-1 aristas y es un arbol 6ptimo para G .
Si i<n, regresamos al paso 2.

EJEMPLO 5.4 Usamos este algoritmo para encontrar un arbol optimo para el
grafo siguiente.

Solucién.

. El algoritmo de Prim genera un arbol éptimo de la forma siguiente.
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El arbol generador minimal es el que se muestra en la figura:

b C

EJERCICIO 5.2

2.- a) Aplique el algoritmo el algoritmo de Prim para determinar el arbol
recubridor minimal para el siguiente grafo.

2.- La siguiente tabla proporciona informacion acerca de la distancia existente ( en
millas ) entre pares de ciudades en el estado norteamericano de Indiana, E. U.
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Se construira un sistema de carreteras para unir estas siete ciudades. Determine
las carreteras que deben construirse para minimizar el costo de construccion. (
Suponga que el costo de construccion de una milla de carretera es el mismo entre
cualquier par de ciudades ).

3.- Se desea establecer una red de comunicacion por cable que enlace las
ciudades que se ven en la figura. Determine como deben conectarse las
ciudades de modo que se minimice la longitud total de cable que se utilice.

El algoritmo de Prim representa un ejemplo de lo que es un algoritmo voraz, en
el sentido de que en cada iteracion va agotando los pesos de las aristas ,para
finalmente obtener el mejor resultado posible.
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5.3. TIPOS DE RECORRIDOS DE UN ARBOL.

Sea T =(V,E) un arbol con raiz r.Si T no tienen otros vértices, entonces la
misma raiz es el recorrido en orden previo y orden posterior deT . Si |V|>1, sean
T,,T,,T,..T, los subarboles de T de izquierda a derecha.

a) El recorrido en orden previo de T visita primero r y después
recore los vértices de T, en orden previo, después los vértices de
T, en orden previo y asi sucesivamente, hasta recorrer los vertices de
T, en orden previo.

b) El recorrido en orden posterior de T recorre en orden posterior los
vertices de los T,,T,,...T, para después llegar a la raiz.

©recorrido de orden simetrico: Sea T =(V,E) un arbol binario con

raiz, donde r es | raiz.

1) Si|V | =1, entonces el vértice r es el recorrido en orden simétricode T .

2) Si|V |>1, sean T, YT, los subarboles izquierdo y derecho de T .El recorrido
en orden simétrico de T recorre primero los vértices de T, en orden
simétrico, después visita la raiz y luego recorre, en el orden simétrico, los
vertices de T, .

EJEMPLO 5.5

Si aplicamos el recorrido en el orden simétrico al arbol binario con raiz que se
muestra en la siguiente figura, veremos que la lista de orden simétrico para estos
vértices es p, j,q, f,c,k,g,a,d,r,b,h,s,m,e,i,t,n,u. Las otras lecturas son:

Orden posterior: p,q,j,f,k,g,c,d,a,s,m,h,t,u,n,i,,e,b,r

Orden previo: r,a,c,f,j,p,q,9,k,d,b,e,h,m,s,i,n,f,u.
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p q
EJERCICIO 5.2. Dar los recorridos en orden previo, posterior y simétrico para los
siguientes arboles.

12.3.2

1231

(1) (@)
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©)

REPRESENTACIONES PREFIJAS, INTERFIJAS Y POSTFIJAS DE UNA
EXPRESION ALGEBRAICA

Los arboles binarios se usan para representar expresiones algebraicas . Los
vértices del arbol son marcados con los numeros, las variables u operaciones que
conforman la expresion. Las hojas de un arbol se pueden marcar Unicamente con
nameros o variables. Las operaciones como adicion, sustraccion, multiplicacion,
division o potenciacién solo pueden ser asignadas a los vértices internos. La
operacion en cada vértice afecta a sus subarboles izquierdo y derecho, de
izquierda a derecha. Los dos ejemplos siguientes ilustran estos usos de los
arboles binarios.

A una operacion en donde se especifica mediante un paréntesis a cada operacion
se le llama Notacion totalmente parentética. Por ejemplo

[(2x—3)?/(2—X)]+ (6x—3), esta escrita en esta forma. Es claro que esta forma de
escribir a una expresion algebraica es necesaria para evitar ambigledades.

EJEMPLO 5.5
1.- Usar un arbol binario para representar la expresion

(@) (x +y)/z ("I"significa division).
(b) [(x — y)++2]/(x +y) ("**” significa potenciacion)

SOLUCION:

a) En esta expresion, el primer término es x, el segundo es y y la operacion es *.

Por lo tanto, este valor, que se muestra en la figura siguiente debe tener su raiz en
*y debe tener dos subarboles, uno para cada término.
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b) Aqui, primero se suma x cony Yy luego se divide entre z. Esto significa que el

arbol debe tener a / como raiz y dos subarboles<. Un subarbol izquierdo con raiz
en + que suma a x con y y un subarbol derecho con raizen z.

b) Para obtener el primer término, que es (x-y)**2, primero se resta y dex y
luego se eleva al cuadrado. Para obtener el segundo término, que es x+y, se
suma x con y. Por ultimo, se divide estos términos. Esto significa que el arbol
debe tener raiz en / y debe tener dos subarboles, como se muestra en la siguiente
figura:

Una vez representada la operacién en un arbol binario, se puede proceder a
leerla , generando tres lecturas: la lectura en orden previo, se le llama notacién
en orden prefijo ( 0 notacidon polaca); a la lectura en orden simétrico, se le
llama orden interfijo y a la lectura en orden posterior, se le llama orden postfijo
(o notacion polaca inversa).

EJEMPLO 5.6. Dar la expresion en notacion polaca, en orden interfijo y en orden
posterior de la expresion  [(x—y)*]/(x+Y).

Soluciéon: El arbol y a lo hemos obtenido antes en el ejemplo anterior. Leyendo a
dicho arbol en los ordenes especificados, se obtiene:

Orden previo (notacion polaca): /A —xy2+ xy
Orden interfijo: xX—yA2/x+Yy
Orden postfija (notacion polaca inversa): xy —2 A xy +/
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ORDENAMIENTOS

Suponga que se tienen un conjunto de numeros. Se le llama claves. S e tiene
interés en dos de las diversas operaciones que se pueden realizar en este
conjunto:

1.- Ordenamiento ( o clasificacion) del conjunto.
2.- Exploracion del conjunto ordenado para localizar cierta clave y, en el caso de
no encontrar la clave en el conjunto, afiadirla en la posicion derecha de manera
gue se mantenga el ordenamiento del conjunto.

EJEMPLO 5.7.

(b) Usar un arbol binario para almacenar en orden creciente los elementos de
la siguiente lista de nameros: 7, 10,21, 3, 24, 23.

(c) Usar el arbol construido en (a) para buscar el numero 19 en la lista. Si éste
no se encuentra, actualizar la lista agregandole el nimero.

SOLUCION:

(a) Se empieza por seleccionar cualquier nimero de la lista para que sea la
raiz del arbol binario. Supongase que se elige el 10 para que sea esta raiz.
Se dibujan los hijos izquierdo y derecho de 10, como se muestra a
continuacion en la figura (a).

Luego se escoge otro numero de la lista, por ejemplo 3. Ahora, 3 es menor
que 10, por lo que el hijo izquierdo de 10 se marca con 3 y luego se dibujan
los hijos izquierdo y derecho de 3, como se muestra en la figura (b).
Enseguida se escoge otro numero de la lista, por ejemplo 21. Para ubicar a
21 en el arbol, se empieza en la raiz 10 y se compara con 21. Como 21 es
mayor que 10, se desciende hasta el hijo derecho de 10 . Este no esta
marcado, por lo que se marca con 21 y luego se dibujan los hijos a la
izquierdo y derecho de este vértice., obsérvese en la figura (c).

Se continua del mismo modo. Se escoge el siguiente elemento de la lista,
por ejemplo 7. De nuevo se empieza en la raiz 10 y se compara con 7.
Como 7 es menor que 10, se desciende hasta el hijo izquierdo de 10, el
cual es el vértice marcado con 3. Se compara 7 con 3. Como es mayor que
3, entonces se desciende hasta el hijo derecho de 3. Este hijo no esta
marcado, por consiguiente se marca con 7 y se dibujan los hijos izquierdo y
derecho de 7 obsérvese en la figura (d).

Supdngase que el niumero siguiente que se escoge de la lista es 24. Debido
a que 24 es mayor que 10, se desciende hasta el hijo derecho de 10.
Puesto que 24 es mayor que 21 se desciende hasta el hijo derecho de 21.
Este hijo no esta marcado. POR lo tanto, se marca con 24 y se dibujan los
hijos izquierdo y derecho de 24 obsérvese en la figura (e)
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(e) G

Para finalizar el ultimo namero de la lista es 23. Se empieza en la raiz 10.23 es
mayor que 10, por lo que se desciende hasta el hijo derecho de 10, el cual esta
marcado como 21. Puesto que el 23 es mayor que el 21, entonces se
descendiente hasta el hijo derecho de 21, el cual cual estd marcado con 24.
Debido a que 23 es menor que 24, se desciende hasta el hijo izquierdo de 24, el
cual no estda marcado. Entonces se marca con 23 y se dibuja el hijo izquierdo y
derecho de 23 el cual se observa en la figura (f). Puesto que se a llegado ha un
vértice no marcado, se concluye que el nimero 19 y se dibujan los hijos izquierdo
y derecho de 19 en el inciso (g). Esto afiade la clave 19 a la lista a la vez que
mantiene el orde3n creciente de los nimeros en dicha lista.

3./13\ b
W N
N NN\

LR

A

Observe que la lectura en orden simétrico genera la serie de nUmeros ordenada:

3,7,10,19,21,23,24.
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EJERCICIO 5.3.

1.-Leer al arbol siguiente en orden previo, simétrico y posterior.

2.- Representar a la operacién (x—3y)*/(2—x) en notacién polaca.
3.- En el siguiente arbol binario encontrar la expresion algebraica representada por

N
\ S \ ,
/\ /\ /+< N, SN\,

(b) (c)

\\
-

/
'~
N, /\/\

,/
N 7\
VY

(d)
3- En los siguientes problemas se da una expresion algebraica. Usar un &rbol
binario para representar la expresion.

@ [(a+b)c]+d
(b) {1/[(a+Db)*2]}—[(a+b)*c]+b

4. Ordene, mediante el uso de un arbol binario de buUsqueda a la serie
13,4,5,9,17,41,22.
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CODIGO HUFFMAN.

Un conjunto P de sucesiones binarias (que representa un conjunto de simbolos)
es un coédigo prefijo si ninguna de las sucesiones de P es el prefijo de otra
sucesion de P.

David Huffman ,disefié una forma de encontrar un codigo binario con cadenas de
longitud Optima,segun su frecuencia de uso. Basicamente se basa en los
resultados siguientes:

Lema: Si T es un arbol 6ptimo para los n pesos p, < p, <...< p,, entonces existe
un arbol optimo para T en el que las hojas de pesos p, y p, son hermanos en el
nivel maximal (en T).

Con este lema vemos lo que los pesos aparecen en los niveles superiores (lo que
produce numeros del nivel mas alto) en un arbol éptimo.

Teorema:

Sea T un arbol optimo para los pesos p, + p,, p;... p, donde p, < p, <..<p,. En
la hoja con peso de p, + p, colocamos un arbol binario (completo) de peso 1y
asignamos los pesos p,,p, a los hijos (hojas) de esta hoja anterior. El nuevo
arbol binario T, construido de esta forma es 6ptimo para los pesos p, + p,, Ps... P, -

Demostracion:

Sea T, un arbol oOptimo para los pesos p,p,, ..p, donde las hojas
correspondientes a los pesos p,, p, son hermanos. Eliminamos las hojas de pesos
p,, P, Y asignamos el peso p, + p, a su padre (ahora una hoja). Este arbol binario
completo se denota con T, y P(T,) =P(T,)+ p, + p,. Ademas P(T,))=P(T)+p, +p,.
Puesto que T es o6ptimo , P(T)<P(T,). Si P(T)<P(T,), entonces P(T,) < P(T,),
Entonces P(T,) < P(T,), lo que contradice la eleccion de T, como optimo. Por lo
tanto, P(T)=P(T,) y en consecuencia P(T,)<P(T,).asi T, es optimo para los

pesos p;,p,, .. P,

EJEMPLO 5.9

Construyamos un codigo prefijo Optimo para los simbolos a,o,q,u,y,z que

aparecen con las frecuencias 20, 28, 4, 17,12, 7, respectivamente.
La figura siguiente muestra la construccibn que sigue el procedimiento de
HUFFMAN.
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En la parte (b), se combinan los pesos 4 y 7, de modo que podamos considerar la
construccion para los pesos 11,12,17, 20, 28. En cada paso ( en las partes (c)-(f)
creamos un arbol con subarboles con raiz en los dos pesos menores. Estos dos
pesos menores pertenecen a veértices que antes o estaban aislados (un arbol
solamente con una raiz) o bien eran la raiz de un arbol anteriormente obtenido en
la construccion. De este ultimo resultado, determinamos un codigo prefijo como

a:ll 0=01 g =0000 u=10 y:001 x: 0001

Podemos obtener diferentes codigos prefijos a partir de la forma en que
seleccionan los arboles T,T'T,T' y se asignan como subarboles izquierdo y

derecho en los pasos 2(a) y 2(b) de nuestro algoritmo, y a partir de las
asignaciones de 0 y1 a las ramas (aristas) de nuestro arbol (de Huffman) final.
EJERCICIO 5.5

1.- Para el cédigo prefijo de la siguiente figura, decodifique las sucesiones (a)
1001111101; (b)10111100110001101; (c) 1101111110010

2.-Determine el cédigo de Huffman para los simbolos p,q,r,s,t,u,v , cuyas
frecuencias de aparicion son, respectivamente: 12, 17, 15,19,32,18.

ARBOLES DE JUEGO
Los arboles tienen una utilidad muy amplia,una de las cuales es tomarlos como

herramientas de decisién. Un juego es basicamente una sucesion de decisiones
gue toma un jugador en cada etapa del juego. Por ejemplo:

EJEMPLO 5.4. Usar arboles para analizar a los juegos propuestos.
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1.- Un hombre tiene tiempo para jugar ruleta cinco veces a lo sumo. En cada juego
gana o pierde un dolar. EI hombre empieza con un dolar y dejara de jugar si antes
de la quinta vez pierde todo su dinero o si gana tres ddlares, esto es, si tiene
cuatro. Hallar el nimero de casos en que la apuesta puede ocurrir.

En siguiente diagrama de arbol, describe el camino en que la apuesta puede
suceder. Cada numero del diagrama denota el nimero de doélares que el hombre
tiene en ese punto. Observamos que la apuesta puede suceder 11 maneras
diferentes. Obsérvese que él suspendera la apuesta antes de que los cinco juegos
se hayan realizado en solamente tres de los casos.

2.- Los equipos A y B juegan en un torneo de baloncesto. El primer equipo que
gane dos juegos seguidos o un total de cuatro juegos gana el torneo. Hallar el
namero de maneras como puede suceder el torneo.

SOLUCION:

14 Maneras

2.-Un hombre tiene tiempo para jugar ruleta cinco veces. Gana o pierde un délar
en cada jugada. El hombre empieza con dos dolares y dejara de jugar a la quinta
vez si pierde todo su dinero o si gana tres doélares ( esto es, complete 5 dolares).
Hallar el nimero de maneras como puede suceder el juego.

SOLUCION:

20 maneras (como se muestras en el siguiente diagrama):



EJERCICIO 5.4. Analice mediante un arbol el lamado juego del gato.

97
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