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INTRODUCCIÓN 
 
 
La Matemática Discreta, no obstante que tuvo su origen ya hace muchos años (en 1700) , 
sigue siendo una de las ramas de la matemática superior con mayor variación de autor a 
autor en cuanto a conceptos y simbología usados, lo cual es muy preocupante porque la 
presentación de la materia en el salón de clases entonces se vuelve dependiente del profesor 
que la exponga ( o del libro que use para auxiliarse en sus clases). El resultado de esta falta 
de uniformidad en el uso de simbología y conceptos hace que los alumnos que presentan 
exámenes extraordinarios, por ejemplo, hechos por un profesor o grupos de profesores 
distintos al que le impartió la materia ,se confundan y en consecuencia reprueben la 
asignatura, quizás no por falta de conocimientos, sino por esta variedad de símbolos y 
conceptos que existen dentro de esta disciplina. 

Con el objetivo de apoyar a los alumnos en su autoaprendizaje, así como en sus tareas, y 
además con la finalidad de uniformizar la simbología, los conceptos y los temas abordados 
en la materia de Matemáticas Discretas en el TESOEM, presentamos estos apuntes, los 
cuales fueron posibilitados en parte con el apoyo  económico de el tiempo de academia, 
destinado con tal fin por la Dirección del Instituto Tecnológico de Estudios Superiores Del 
Estado de México. 

Estos apuntes, son el resultado  de los cursos que el autor ha impartido en este instituto y en 
otras escuelas de educación superior sobre el tema , de modo que  para su elaboración  se 
ha auxiliado con sus anotaciones , consultas bibliográficas y en ejercicios y discusiones que 
ha hecho con los alumnos durante los mismos. 

Agradezco antes que a nadie a mi esposa Sandra Villaverde su colaboración en la difícil 
tarea de la captura de este trabajo, así como su constante motivación y su paciencia al estar 
trabajando en este proyecto. Agradezco también el interés de las autoridades del TESOEM 
en que se lleve a cabo este tipo de actividades,  pensando en apoyar a nuestros alumnos en 
su  preparación y en ofrecerles una educación de mayor calidad. También agradezco a los 
alumnos sus críticas, sugerencias y participación durante las  clases. 

 
Mat. Jorge García Nieva. 
México,D.F;Mayo del 2005. 
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UNIDAD I 
 

LÓGICA MATEMÁTICA 
 

Objetivos: 
 
 
Al finalizar la unidad, el alumno : 

 
 

 Solucionará problemas relacionados con la lógica matemática. 
 Identificará los diferentes tipos de proposiciones compuestas que existen. 
 Identificará la  tabla de verdad asociada a cada tipo de proposición. 
 Comprenderá el método de demostración mediante las leyes de la lógica y la 

relación de este método con las tablas de verdad. 
 Entenderá el concepto de demostración por inducción. 
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INTRODUCCIÓN 
En esta unidad trataremos conceptos básicos de Lógica Matemática, los cuales resultan de 
gran importancia para aquellos especialistas que trabajen con computadoras; por ejemplo, 
los operadores lógicos los utiliza el programador para imponer condiciones en la ejecución 
de rutinas en sus programas y también resultan de gran relevancia  en el diseño de los 
circuitos (compuertas lógicas) de los instrumentos electrónicos, entre otras aplicaciones. 

En este capítulo, interesa también que el estudiante de ingeniería en sistemas sea 
introducido al concepto de demostración formal con la finalidad de que desarrolle el 
pensamiento estructurado o axiomático, lo cual tiene enorme  importancia para este tipo de 
profesionistas ya que la mayor parte de su trabajo lo llevan a cabo interconectando en 
forma lógica una gran cantidad de datos, hechos y procedimientos. De hecho, la  Lógica  
Matemática es el modo exacto de hablar en la  Ciencia.1

 
 

1.1 PROPOSICIONES 
 
Una proposición es  una oración afirmativa que se puede calificar de verdadera o falsa. 

En base a las proposiciones se forman las teorías científicas; debido a ello, es muy 
importante determinar las condiciones y la forma bajo las cuales se debe calificar de cierta 
o falsa una afirmación hecha en la  Ciencia. 1

EJEMPLO 1.1  

 

1.-El agua hierve a 100° a una altura de 100 metros sobre el  nivel del mar. 

2.-El agua es un elemento que se forma con 2 átomos de de Hidrógeno y 1 de Oxígeno. 

3.-La gasolina es inflamable. 

Estos ejemplos son proposiciones que se les puede calificar directamente  como verdaderas 
o falsas; a este tipo de proposiciones se les llama simples , atómicas o primitivas, debido a  
que no hay manera de descomponerlas en algo más sencillo. 

Denotaremos a las proposiciones simples con letras minúsculas como son p,q,r,s,t,... 

Las oraciones siguientes : 

 
(a)¡Ah, caramba! 
(b)¿Te gusta el helado de chocolate? 
 
No son proposiciones, porque no afirman , sino que exclaman o preguntan. Otro ejemplo de 
una oración que no es una proposición es: 

Las señoras son generalmente gordas. 

                                                 
 
 
1 El primer estudio sistemático del razonamiento lógico se encuentra en la obra del filósofo griego  Aristóteles 
((384-322 A.C), quien presentó una serie de principios para el razonamiento deductivo; es sin embargo  al 
matemático alemán  G.W. Leibniz ((1646-1716) quien es considerado el primero en intentar desarrollar a la 
lógica simbólica como un lenguaje científico universal en su obra De Arte  Combinatoria ( 1666). 
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Esta no es una proposición, no obstante que está disfrazada como si lo fuera, debido a que 
no tiene el mismo sentido para todos la palabra “gorda”. 

EJERCICIO 1.1 

Dar cinco ejemplos de proposiciones simples 
Dar cinco ejemplos de oraciones que no sean proposiciones; es decir que no se les pueda 
calificar de verdaderas o falsas. 

 A partir de proposiciones simples, podemos obtener otras más complejas: las 
proposiciones compuestas o moleculares. 
 

1.2 TIPOS DE PROPOSICIONES.  
 
Son oraciones que se forman con dos o más proposiciones simples. Para formarlas, a las 
proposiciones simples se les enlaza mediante los CONECTIVOS LÓGICOS, como son: 

 
CONECTIVO NOMBRE FORMA DE LEERLO 
CONJUNCIÓN qp ∧  p y q 

 
DISYUNCIÓN 
INCLUSIVA 

qp ∨  P ó q 

NEGACIÓN ¬p No p 
 

CONDICIONAL qp →  p implica q 
 

BICONDICIONAL qp ↔  p si y sólo si q 
 

DISYUNCIÓN 
EXCLUSIVA 

p q∨  y/o 

 
Para calificar de verdaderas o falsas cualquiera de estas proposiciones debemos seguir las 
tablas siguientes: 

 
 
 
 Conjunción Disyunción 

inclusiva 
Implicación 
o 
condicional 

Bicondicional 
o doble 
implicación 

Disyunción 
exclusiva 

Negación 

p q p q∧  qp ∨  p q→  p q↔  p∨ q p¬  
V V V V V V F F 
V F F V F F V F 
F V F V V F V V 
F F F F V V F V 
 
Dichas tablas constituyen formalmente la definición de los conectivos lógicos. 
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Nota: Se puede demostrar que la tabla de verdad de una proposición compuesta  que 
contenga   n   proposiciones simples debe tener exactamente n2  renglones. Esto debe 
tomarse en cuenta al momento de construir la tabla de verdad de dicha proposición 
compuesta. 

1.3 TERMINO DE ENLACE DOMINANTE 
 
En una proposición compuesta la precedencia de las operaciones se marcan con la ayuda de 
paréntesis; por ejemplo en  [ ( )] [( ) ]p q r q¬ ∧ ¬ → ¬ ∨ , se está indicando que lo primero que 
se debe ejecutar es q¬ , enseguida  ya se podrá ejecutar todo lo que está dentro del 
corchete; y una vez ejecutado esto, se puede efectuar la negación ¬ .   Hasta ese momento 
se ha  efectuado toda la operación compuesta a la izquierda del operador  → . Enseguida se 
efectúa la operación a la derecha de dicho operador . Es en este sentido que  →  es el 
término de enlace dominante, porque es el operador que se ejecuta al final de una 
operación.   Para distinguirlo, debe seguir las siguientes reglas: 

(1) Si aparecen solamente operadores  ∧   u  operadores  ∨ , entonces cualquiera de ellos 
puede ser considerado como el término de enlace dominante.  
Por ejemplo , en  ( ) ( ) ( )p q r p t q p t r∨ ∨ ∧ ∨ ∨ ¬ ∧ ∨ ¬ ∨ , se le puede entender como  
( ) [( ) ( )]p q r p t q p t r∨ ∨ ∧ ∨ ∨ ¬ ∧ ∨ ¬ ∨  

(2) Un operador ¬  puede ir a la derecha de cualquier otro operador  sin necesidad de usar 
paréntesis; como en  p t r∨ ¬ ∨   o bien  en  ( ) pqp ¬→¬∨¬  

(3) En cualquier otro caso que no sean  (1)  y  (2) se debe utilizar paréntesis para indicar la 
precedencia de los operadores. 

 
Teniendo en cuanta las reglas anteriores; se le llama  Término de  Enlace  Dominante 
al operador que ejecutaría al último en una operación lógica dada. 

EJEMPLO 1.2 

Hacer la tabla de verdad para cada una de las siguientes composiciones compuestas; 
indicando en cada caso el término de enlace dominante. 

 
1.- ( ) ( )rqp ¬∧∨ .    Debe tener 823 =  filas, porque hay tres letras. Término de enlace 
dominante:  ∧ . 

 
 
 
 
 
 
 
 
 
 
 
 

 

p Q r qp ∨  r¬  ( ) ( )rqp ¬∧∨  
V V V V F F 
V V F V V V 
V F V V F F 
V F F V V V 
F V V V F F 
F V F V V V 
F F V F F F 
F F F F V F 
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2.- ( ) pqp ¬→¬∨¬   .  Debe tener 422 = filas . Término de  enlace dominante:→  

p Q q¬  ( )qp ¬∨  ( )qp ¬∨¬  p¬  ( ) pqp ¬→¬∨¬  
V V F V F F V 
V F V V F F V 
F V F F V V V 
F F V V F V V 
 
 
3.- ( ) ( )rpqp ∨¬∧∨¬ .Debe tener 32  filas. Término de enlace dominante:∧  

p Q r p¬  qp ∨¬  rp ∨  ( )rp ∨¬  ( ) ( )rpqp ∨¬∧∨¬  
V V V F V F V V 
V V F F V V F F 
V F V F F F V F 
V F F F F V F F 
F V V V V V F F 
F V F V V F V V 
F F V V V V F F 
F F F V V F V V 
 
EJERCICIOS  1.2.  Construya una tabal de verdad para cada una de las siguientes 
proposiciones compuestas; p, q  y r denotan proposiciones simples o primitivas. 

(a) ( )p q p¬ ∨ ¬ →¬  (b)[( ) ( )] ( )p q q r p r→ ∧ → → →  © ( )q p q↔ ¬ ∨¬  
(d) [ ( )]p p q q∧ → →    
   
 
 

1.4 TAUTOLOGIAS Y CONTRADICCIONES. 
 
TAUTOLOGIA:  
Una proposición compuesta es una tautología si bajo cualquier  asignación de valores de 
verdad  para sus proposiciones componentes siempre resulta verdadera. Denotaremos a una 
tautología con el símbolo  0T .      

CONTRADICCIÓN: 
Una contradicción es una proposición compuesta que resulta falsa bajo cualquier 
asignación de valores de verdad para  sus proposiciones simples. Denotaremos  a  una 
contradicción con el símbolo  0F . 

Entenderemos  a estos símbolos como los vectores siguientes  

,...),,(0 VVVT =      y      ,...),,( FFFFo =  

EJEMPLO 1.3 

1.- Verificar que es tautología la proposición siguiente 
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( ) ( )qpqp ∨¬↔→  
 
Solución: 

P q qp →  p¬  ( )qp ∨¬  ( ) ( )qpqp ∨¬↔→  
V V V F V V 
V F F F F V 
F V V V V V 
F F V V V V 
 
En efecto es una tautología, porque se obtuvo sólo verdadero al final de la tabla. 

2.- Verificar que la proposición ( ) ( )[ ]qpqp ∨¬→¬∧¬¬  es una contradicción. 

Solución: 

 

 
Es una contradicción porque se obtuvo sólo falso al final de la tabla. 

3.- Ver si la proposición ( ) ( )[ ]rqqp →∧→ ( )rp →→  es tautología, contradicción o 
ninguna de las dos. 

p q r ( )qp →  ( )rq →
 

( ) ( )rqqp →∧→
 

( )rp →  ( ) ( )[ ] ( )rprqqp →→→∧→  

V V V V V V V V 
V V F V F F F V 
V F V F V F V V 
V F F F V F F V 
F V V V V V V V 
F V F V F F V V 
F F V V V V V V 
F F F V V V V V 
 
Este ejercicio corresponde a una tautología . 

PROPOSICIONES LÓGICAMENTE EQUIVALENTES. 
Dos proposiciones  p  y   q   son  lógicamente equivalentes si ambas tienen la misma tabla 
de verdad , o  bien si  p q↔   es una tautología.     Esta situación la denotamos con el 
símbolo qp ≡ . 

 

 

p q p¬  q¬
 

( )qp ¬∧¬
 

( )qp ∨
 

( )qp ∨¬
 

( ) ( )qpqp ∨¬→¬∧¬  ( ) ( )[ ]qpqp ∨→¬∧¬¬  

V V F F F V F V F 
V F F V F V F V F 
F V V F F V F V F 
F F V V V F V V F 
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EJEMPLO 1.3 

1.- Verificar que qp → es lógicamente equivalente con qp ∨¬ ; es decir  

 
[( qp → )↔ ( qp ∨¬ )]≡ 0T . 
 

 
 
 
 
 
 

2.-Verificar si  lógicamente equivalentes 
qp ↔   y  ( ) ( )pqqp →∧→  

 
 
Solución: 

 
 
 
 
 
 

Sí son lógicamente equivalentes, porque coinciden la tercera y la última columnas. 

CONTRAPOSITIVAS, RECIPROCAS E INVERSAS.  

Considere la implicación qp → ,entonces: 

A la proposición pq ¬→¬  se le llama contrapositiva de qp → . 
A la proposición pq →  se le llama recíproca de qp → . 
A qp ¬→¬  se le llama inversa del qp →  
Nota: En Matemáticas y Filosofía a p se le  llama “antecedente”  y a q se le llama 
“consecuente”. 

EJEMPLOS. Obtener la recíproca, las inversa y la contrapositiva de las siguientes 
proposiciones: 

1.- p: Juan va al lago de Téxcoco. 
q: María comprara los  boletos para el cine. 

a) Obtener qp → . 
Si Juan va al lago de Téxcoco María comprara los boletos para el cine. 

b) Contrapositiva. 
Si María no compra los boletos para el cine, entonces Juan no irá al lago de Téxcoco. 

c) Reciproca. 
Si María compra los boletos para el cine , entonces Juan irá al lago de Texcoco. 

d)Inversa. 

p Q qp →  p¬  qp ∨¬  
V V V F V 
 V F F F F 
F V V V V 
F F V V V 

p q qp ↔  qp →  pq →  ( ) ( )pqqp →∧→  
V V V V V V 
V F F F V F 
F V F V F F 
F F V V V V 



 

 

15 

Si Juan no va  al Lago de  Texcoco, entonces María no comprará los boletos para el 
cine.  

2.- p: Estudio. 
q: Apruebo. 

(a) Contrapositiva:  Si no apruebo , entonces no estudio. 
(b)Inversa : Si no estudio ,entonces no apruebo. 

c) Recíproca:  Si apruebo ,entonces estudio. 
 

A la contrapositiva  de una implicación se le utiliza  en Matemáticas ( y en general en 
la Ciencia)  para hacer demostraciones llamadas “por contradicción”: si al 
consecuente se le supone falso, entonces necesariamente según esta regla, el 
antecedente debería también resultar falso, si no es así, se obtendría la veracidad de 

qp → . Este es un tema que abordaremos posteriormente en esta misma unidad. 

EJERCICIO 1.3.  Demostrar que qp →   es lógicamente equivalente con q p¬ →¬ , 
usando una tabla  de verdad. 

 

1.5. LAS LEYES DE LA LÓGICA Y LAS REGLAS DE INFERENCIA 

 
En base a los  conceptos   de equivalencia lógica , tautología y contradicción , podemos 
formular las siguientes reglas del pensamiento lógico, conocidas como Leyes de la  Lógica. 
En sí, representan un sistema axiomático que nos permite generar a lo que se llama el 
Álgebra de Proposiciones, de modo que cualquier propiedad operativa que tengan las 
proposiciones es consecuencia de estas propiedades básicas, así como cualquier propiedad 
operativa ulterior que tengan los números reales es consecuencia de las propiedades de 
campo, de orden y de completez que poseen.2

Al ejemplificar el uso de estas reglas lógicas, de paso trataremos el tema de las 
demostraciones. 

 

LEYES DE LA LÓGICA . 
Para cualesquiera proposiciones primitivas p, q y r, cualquier tautología To y cualquier 
contradicción F 0 se cumplen las  siguientes leyes o propiedades de las operaciones con 
proposiciones: 

1.- Ley de la doble negación. 
qp =¬¬   

 
2 .-Leyes De Morgan 

   
qpqp
qpqp

¬∧¬≡∨¬
¬∨¬≡∧¬

)(
)(

 

    
                                                 
2 Estas reglas aparecieron en los trabajos de los matemáticos ingleses George Boole(1815-1864) y Augustus 
De Morgan  (1806-1871) en sus respectivas obras The Mathematical Analisis of  Logic  ,Being an Essays 
Towards a Calculus of  Deductive Reasoning  y  Formal  Logic ; or  the  Calculus of  Inference ,Necessary  
and Probable. 
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3.- Leyes  Conmutativas. 
    pqqp ∨≡∨  
    pqqp ∧≡∧  
 
4.- Leyes  Asociativas 

    ( ) ( ) rqprqprqp ∨∨≡∨∨≡∨∨  
    ( ) ( ) rqprqprqp ∧∧≡∧∧≡∧∧    . 
 
 
5.-Leyes  Distributivas 

    ( ) ( ) ( )rpqprqp ∨∧∨≡∧∨    . 
    ( ) ( ) ( )rpqprqp ∧∨∧≡∨∧     
 
 
6.- Leyes Idempotentes 
     ppp ≡∨    
    ppp ≡∧  
 
7.- Leyes del Neutro 

    pFop ≡∨     
    pTop ≡∧  
 
 
8 .-Leyes Inversas 

     Topp ≡¬∨     
    Fopp ≡¬∧  
 
 
9.- Leyes de Dominación 

     ToTop ≡∨     
    FoFop ≡∧  
 
 
10 .-Leyes de Absorción 

      ( )pqpp ≡∧∨     
      ( ) pqpp ≡∨∧  
 
 
EJEMPLO 1.4. Usando las leyes de la lógica demostrar lo siguiente: 

a) ( ) ( ) pqpqp ≡∧¬¬∧∨  
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solución: 

PROPOSICIÓN                                 RAZÓN 
 
( ) ( )qpqp ∧¬¬∧∨                             DADA  
( ) ( )qpqp ¬∨¬¬∧∨≡                       LEY DE MORGAN 
( ) ( )qpqp ¬∧∧∨≡                            DOBLE NEGACIÓN 

( )qqp ¬∧∨≡                                    LEY DISTRIBUTIVA 
Fop ∨≡                                            LEY INVERSA 

p≡                                                    NEUTRO 
 
 

2.- Demostrar que ( )[ ][ ] rqqrqp ∧≡¬∨∧∨¬¬  
solución: 

 
 
 
PROPOSICIÓN 
 
 ]])[([ qrqp ¬∨∧∨¬¬  
≡ ( )[ ] ( )rqprq ∧∨∧∧ ( )[ ] qrqp ¬¬∧∧∨¬¬  
≡ ( )[ ] qrqp ∧∧∨  
≡ ( )[ ] ( )[ ][ ] qqrpr ∧∧∨∧  
≡ ( )[ ] ( )[ ]qrqprq ∧∧∨∧∧  
≡ ( )[ ] ( )rqprq ∧∨∧∧  

rq ∧≡  
 
 

RAZÓN                  
 
DADA 
LEY DE MORGAN 
DOBLE NEGACIÓN 
LEY DISTRIBUTIVA 
LEY DISTRIBUTIVA 
LEY CONMUTATIVA 
LEY ASOCIATIVA 
LEY DE ABSORCIÓN 
 

 
 
 
 
3.- Demostrar que    ( ) rqprqpqp ∨∨≡∧¬∧¬∨∨  
 

( )( )p q p q r ∨ ∨ ¬ ∨ ∧ ≡            LEY DE MORGAN, LEY ASOCIATIVA. 

[ ]s s r∨ ¬ ∧ ≡                               LEY DE CERRADURA con  s p q≡ ∨  

( ) ( )s s s r∨ ¬ ∧ ∨ ≡                       LEY DISTRIBUTIVA. 
( ) ≡∨∧ rsTo                                LEY DE INVERSAS. 

rqprs ∨∨≡∨                           LEY DEL  NEUTRO Y DE SUSTITUCIÓN. 
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4.-Demostrar que ( ) ( )p p p q r p q¬ ∨ ¬ → ∧ ∧ ≡ ∨    
PROPOSI CIONES                      RAZÓN 
( ) ( )p p p q r¬ ∨ ¬ → ∧ ∧ ≡              DADA 
 
( ) ( )p p q r¬ → ∧ ∧ ≡                   LEY INDEMPOTENTE. 

( ) ( )p p q r¬¬ ∨ ∧ ∧ ≡                  LEY ASOCIATIVA. 

( ) ( )p p q r∨ ∧ ∧ ≡                       DOBLE NEGACIÓN 

( ) ( )p s p r∨ ∧ ∨ ≡                       LEY DISTRIBUTIVA Ó CERRADURA. 

( )[ ] ( )rpqpp ∨∧∧∨                    LEY DE SUSTITUCIÓN. 
 
 
5.- ( ) ( ) ( )[ ]rpqprqp →∧→≡∧→  

ANTES: RECORDAR QUE qpqp ∨¬≡→   ( son lógicamente equivalentes) 

PROPOSICIONES                                            RAZÓN 
( )p q r→ ∧ ≡                                                       DADA  
( )p q r¬ ∨ ∧ ≡                                                      LEY SUSTITUCIÓN   

( ) ( ) ( ) ( )[ ]rpqprpqp →∧→≡∨¬∧∨¬                LEY DISTRIBUTIVA. 
( ) ( )rpqp →∧→  
 
 

6.- Demostrar que ( )[ ] ( ) ( )[ ]rqrprqp →∧→≡→∨   
PROPOSICIONES                                 RAZÓN 
( )[ ]rqp ∨∨¬                                    DADA 

( ) rqp ∨¬∧¬                                   LEY DE MORGAN. 
( ) ( )rqqp ∨¬∧∨¬                            LEY DISTRIBUTIVA. 
( ) ( ) ≡→∧→ rqrp                           LEY DE SUSTITUCIÓN 
 
 
REGLAS DE INFERENCIA  Y LA VALIDEZ  O INVALIDEZ DE UN 
ARGUMENTO: 
Generalmente, al demostrar que una proposición compuesta es equivalente a otra  o que un 
argumento dado es válido ó es falso (falacia),nos podemos valer de tres herramientas: las 
tablas de verdad, las Leyes de la Lógica y además de las Reglas de Inferencia , las cuales 
pueden ser expresadas en realidad en forma de implicación lógica  de la manera mostrada  

en la siguiente tabla: 

 
 



 

 

19 

 
REGLA DE 
INFERENCIA 

IMPLICACIÓN LÓGICA RELACIONADA NOMBRE DE LA 
REGLA 

p  
p q

q
→
∴

 

 
 
2) p q→  

q r
p r
→

∴ →
 

 
3) p q→  

q
p

¬
∴¬

 

 
4) p  

q
p q∴ ∧

 

 
5) p q∨  

p
q

¬
∴

 

 

6) 0p F
p

¬ →
∴

 

 
 

7) p q
p
∧

∴
 

 

8) p
p q∴ ∨

 

 
 
 
9) p q∧  

( )p q r
r

→ →
∴

 

 
 
10) p r→  

( )p p q q∧ → →    
 
 
 
 
( )( ) ( )p q q r p r→ ∧ → → →    

 
 
 
( )p q q p→ ∧¬ →¬    

 
 
 

p q p q∧ → ∧  
 
 
 
 
( )p q q q∨ ∧¬ →    

 
 
( )0p F p¬ → →  
 
 
 
( )p q p∧ →  
 
 
p p q→ ∨  

 
 
 
 
 
( ) ( )p q p q r r ∧ ∧ → → →     

 
 
 
 
 
( ) ( ) ( )p r q r p q r→ ∧ → → ∨ →        

Regla de 
separación. 
 
 
 
Ley de silogismo. 
 
 
 
 
Modus Tollens. 
 
 
 
 
Regla de la 
conjunción. 
 
 
Reglas del 
silogismo 
disyuntivo. 
 
Regla de 
contradicción. 
 
 
Regla de 
simplificación 
conjuntiva. 
 
Regla de 
amplificación 
disyuntiva. 
 
 
 
Regla de 
demostración 
condicional. 
 
 
 
 
Regla de 
demostración por 
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( )
q r

p q r
→

∴ ∨ →
 

 
11) p q→  
r s→  

p r
q s
∨

∴ ∨
 

 
12) p q→  
r s→  

q s
p r

¬ ∨ ¬
∴¬ ∨ ¬

 

 
 
 
 
( ) ( ) ( ) ( )p q r s p r q s→ ∧ → ∧ ∨ → ∨    

 
 
 
 
( ) ( ) ( ) ( )p q r s q s p r→ ∧ → ∧ ¬ ∨ ¬ → ¬ ∨¬    

casos. 
 
 
 
Regla del dilema 
constructivo. 
 
 
 
 
Regla del dilema 
destructivo. 

 
Diremos que un argumento es válido si la conclusión del mismo se desprende lógicamente 
de las premisas dadas para obtenerlo. Esta situación se denota  simbólicamente por   

1 1, , np p p q   
Formalmente esto significa que q  es una consecuencia de las premisas 1 2, ,...p p np , si 
siendo dichas premisas verdaderas, q  también lo es, en caso contrario la argumentación es 
una falacia.   

Los siguientes ejemplos nos muestran la forma de aplicar las reglas enumeradas junto con 
otros resultados como las leyes de la lógica para probar la validez o invalidez de un 
argumento: 

 
EJEMPLO 1.5 

1.- Demostrar la validez del argumento. 

 
p r→  

p q¬ →  
q s

r s
→

∴¬ →
   

 
PASOS                             RAZONES 
 
1) p r→                            Premisa. 
2) r p¬ →¬                        Paso (1) y p r r p→ ≡ ¬ →¬ . 
3) p q¬ →                          Premisa.  
4) p q∨                             Paso (2) y (3) y la ley del silogismo. 
5) q s→                             Premisa. 
6) r s∴¬ →                        Paso (4) y (5) y la ley del silogismo 
 
 
 
Una segunda forma de justificar el argumento es la siguiente. 
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PASOS                              RAZONES. 
 
1) p r→                              Premisa 
2) q s→                               Premisa 
3) p q¬ →                           Premisa  
4) p q∨                               Paso (3) y ( ) ( ) ( )p q p q p q¬ → ≡ ¬¬ ∨ ≡ ∨  
5) r s∨                                Paso (1),(2) y (4) y la regla del dilema constructivo 
6) r s∴¬ →                         Paso (5) y ( ) ( ) ( )r s r s r s∨ ≡ ¬¬ ∨ ≡ ¬ → , donde                                        
                                           usamos la ley de la doble negación en la primera 
                                           equivalencia lógica  
 
 
2.- Establezca la validez del argumento. 

 
p q→  

( )q r s→ ∧  

( )r t u¬ ∨ ¬ ∨  
p t

u
∧

∴
 

 
 
 
PASOS                              RAZONES. 
 
1) p q→                             Premisa 
2) ( )q r s→ ∧                      Premisa 
3) ( )q r s→ ∧                      Pasos (1) y (2) y la ley del silogismo 
4) p t∧                                Premisa 
5) p                                     Paso (4) y la regla de la simplificación conjuntiva 
6) r s∧                                 Paso (5) y (3) y Modus Ponens 
7) r                                      Paso(6) y la regla de la simplificación conjuntiva 
8) ( )r t u¬ ∨ ¬ ∨                    Premisa 
9) ( )r t u¬ ∧ ¬ ∨                    Paso (8), y la propiedad asociativa de∨  y las leyes De                      
                                            Morgan 
10) t                                     Paso (4) y la ley de la simplificación conjuntiva  
11) r t∧                                Pasos (7) y (10) y la regla de la conjunción. 
12 u∴                                    Pasos (9) y (11) y la regla del silogismo disyuntivo 
 

3) Este ejercicio nos muestra que el siguiente argumento es válido. 
Si alguno de los  muchachos de nuestro grupo de amigos  no pudiera aprobar todas 
sus materias o el salón de fiestas no se contratara a tiempo a tiempo, entonces la fiesta 
de graduación  tendría que cancelarse y Lupita se enojaría. Si la fiesta de graduación  
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se cancelara, habría que devolver el dinero. No se devolvió el dinero. Por lo tanto, 
todos los chicos  aprobaron sus materias. 

Primero convertiremos el argumento dado en una forma simbólica mediante la 
siguiente asignación de proposiciones. 

:p Todos los chicos aprobaron sus materias 
:q Se contrató un salón a tiempo. 
:r La fiesta de graduación se canceló. 
:s Lupita estaba enojada. 
:t Hubo que devolver el dinero. 

 
 
El argumento anterior se escribe como 

( ) ( )p q r s¬ ∨ ¬ → ∧  
r t→  

t¬  
 

p∴  
 
 
 
Ahora establezcamos la validez de este argumento como sigue: 

PASOS                                  RAZONES 
 
1) r t→                                  Premisa 
2) t¬                                      Premisa 
3) r¬                                     Paso (1),(2) y Modus Tollens 
4) r s¬ ∨                                Paso (3) y la regla de amplificación disyuntiva 
5) ( )r s¬ ∨                              Paso (4) y la leyes De Morgan 
6) ( ) ( )p q r s¬ ∨ ¬ → ∧            Premisa 
7) ( )p q¬ ¬ ∨ ¬                        Paso (6), (5) y Modus Tollens 
                               
8) p q∧  Paso (7) , Leyes de De Morgan  y la  Ley de la  

doble negación 
9) p∴  Paso (8) y la regla de simplificación conjuntiva 
 
 
 

4) En este caso utilizaremos el Método de Demostración por Contradicción. 
Consideremos el argumento: 

 
p q¬ ↔  

q r→  
p∴  
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Para establecer la validez de este argumento, hemos supuesto la negación p¬  de la 
conclusión p  como otra premisa. El objetivo ahora es usar las cuatro premisas para obtener 
una contradicción 0F . He aquí una forma de obtenerla. 

PASOS                                 RAZONES 
 
1) p q¬ ↔                             Premisa 
2) ( ) ( )p q q p¬ → ∧ →¬         Paso (1) y ( ) ( ) ( )p q p q q p¬ ↔ ⇔ ¬ → ∧ →¬    
3) p q¬ →                              Paso (2) y la regla de la simplificación conjuntiva 
4) p q→                                Premisa 
5) p r¬ →                              Paso (3), (4) y la ley del silogismo 
6) p¬                                     Premisa que hemos propuesto 
7) r                                        Paso (5),(6) y Modus Ponens 
8) r¬                                     Premisa 
9) ( )0r r F∧¬ ⇔                     Paso (7), (8) y la regla de conjunción 
10) p∴                                  Pasos (6), (9) y el método de demostración   por  
                                              contradicción. 
 
Nota. (Implicación lógica).  si p y q son proposiciones arbitrarias   tal que  p q→  
es una tautología , entonces decimos que  p implica lógicamente  a q y escribimos 
p q⇒ . 

 
Por ejemplo: Si analizamos lo que ocurrió  en el ejercicio anterior, tenemos que 

 
( ) ( ) 0p q q r r p F¬ ↔ ∧ → ∧¬∧ ¬⇒   . 

 
Esto quiere decir que el valor de verdad de ( ) ( )p q q r r p¬ ↔ ∧ → ∧¬ ∧¬    sea 0. Como 

,p q q r¬ ↔ →  y r  son las premisas dadas, cada una de estas proposiciones tiene el valor 
de verdad 1. En consecuencia, para  que 

( ) ( )p q q r r p¬ ↔ ∧ → ∧¬ ∧¬    tenga el valor de verdad 0, la proposición p¬  debe 
tener el valor de verdad 0. Por lo tanto p  tienen el valor de verdad 1 y la conclusión p  del 
argumento es verdadera. 

3.- Consideremos las proposiciones primitivas , , ,p q r s  y ,t  y el argumento. 

p  
p q∨  

( )q r s→ →  
t r→  
 

s t∴¬ →¬    
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Para mostrar que este argumento no es válido, necesitamos una asignación de valores de 
verdad para cada una de las proposiciones , , ,p q r s  y ,t  de modo que la conclusión 

s t¬ →¬   sea falsa (tenga el valor de verdad 0) mientras que las cuatro premisas sean 
verdaderas (tengan el valor de verdad 1). El único caso en que la conclusión s t¬ →¬  es 
falsa se presenta cuando s¬  es verdad y t¬  es falsa. Esto implica que el valor de verdad de 
s  es 0 y el valor de verdad de t  es 1. 

Como p  es una de las premisas, su valor de verdad debe de ser 1.Para que la premisa 
p q∨  tenga el valor de 1, q puede ser verdad (1) o falsa (0). Consideremos la premisa 
t r→ , donde sabemos que t  es verdadera. Si t r→  debe ser verdadera , entonces r debe 
ser verdadera (tener el valor de verdad 1). Ahora bien, si r  es verdadera  (1) y s  es falsa 
(0), tenemos que r s→  es falsa (0) y el valor de verdad de la premisa ( )q r s→ →  será 1 
únicamente cuando q  sea falsa (0). 

 
En consecuencia, con la asignación de los valores de verdad: 

 
:1p   : 0q   :1r   : 0s   :1t ,  

las cuatro premisas  

( )p p q q r s t r∨ → → →  
tienen el valor de verdad 1, mientras que la conclusión 

s t¬ →¬  
tienen el valor de verdad 0. En este caso hemos mostrado que el argumento dado no es 
válido. 

Las asignaciones de valores de verdad de  :1, : 0, :1, : 0p q r s  y :1t  muestran un caso que 
desaprueba algo que podría haberse considerado como un argumento válido. Debemos 
observar que, para mostrar que una implicación de la forma 

1 2 3( ... )np p p p q∧ ∧ ∧ ∧ →  representa un argumento válido, necesitamos considerar 
todos los casos en que la premisas 1 2, .... np p p sean verdaderas [Cada uno de estos casos es 
una asignación de valores de verdad para las proposiciones primitivas( que conforman las 
premisas en que 1 2 3, , .... np p p p  son verdaderas). Para lograr esto (analizar todos los casos 
sin escribir las tablas de verdad), hemos utilizados las reglas de inferencia junto con la leyes 
de la lógica y otras equivalencias lógicas. Para analizar todos los casos necesarios, no 
podemos recurrir a un solo ejemplo (o caso) específico como medio para establecerla 
validez del argumento (para todos los casos posibles). Sin embargo, cuando queremos 
mostrar que una implicación (de la forma anterior) no es una tautología, todo lo que 
debemos hacer es encontrar un caso para el que la implicación sea falsa; es decir, un caso 
en el que todas las premisas sean verdaderas pero que la conclusión sea falsa. Este caso 
proporciona un contraejemplo para el argumento y muestra que no es válido. 
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EJERCICIO  1.5 

1.- Los siguientes tres argumentos son válidos. Establezca la validez de cada uno por el 
método de una tabla de verdad. En cada caso, determinar las filas de la tabla que son 
cruciales para evaluar la validez del argumento y las que puedan dejarse de lado. 

a) ( ) ( )p p q r p q r∧ → ∧ → ∨ →        

b) ( ) ( ) ( )p q r q p r p q ∧ → ∧¬ ∧ → ¬ → ¬ ∨¬     

c) ( ) ( )p q r q p r ∨ ∨ ∧ ¬ → ∨     
 
2.- Use tablas de verdad  para verificar que cada una de las siguientes proposiciones es una 
implicación lógica. 

a) ( ) ( ) ( )p q q r p r→ ∧ → → →    

b) ( )p q q p→ ∧¬ →¬    

c) ( )p q q q∨ ∧¬ →    

d) ( ) ( ) ( )p r q r p q r→ ∧ → → ∨ →        
 
3.-Verifique que cada una de las siguientes proposiciones es una implicación lógica, 
mostrando que es imposible que la conclusión tenga el valor de verdad 0 mientras la 
hipótesis tenga el valor de verdad 1. 

a) ( )p q p∧ →  

b) ( )p p q→ ∨  

c) ( )p q p q∨ ∧¬ →    

d) ( ) ( ) ( ) ( )p q r s p r q s→ ∧ → ∧ ∨ → ∨    

e) ( ) ( ) ( ) ( )p q r s q s p r→ ∧ → ∧ ¬ ∨ ¬ → ¬ ∨¬    
 
4.-Para cada uno de los siguientes pares de proposiciones, use el Modus Ponens o el Tollens 
para completar la línea en blanco con un argumento válido. 

a) Si Juana tiene problemas para arrancar su aprobar sus materias, entonces su mamá 
la enviará a unos cursos de regularización. 
Juana tiene problemas para aprobar sus materias. 

∴________________________________________________________________ 
 

b) S i Pedro resolvió el último problema del examen correctamente, entonces aprobó 
el semestre. 
Pedro no resolvió el último problema correctamente 

∴________________________________________________________________ 
 

c) Si este es un ciclo repeat-until , entonces el cuerpo de este ciclo se ejecutara al 
menos una vez. 
∴ El cuerpo del ciclo se ejecuta al menos una vez. 
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5.- Para las proposiciones primitivas ,p q y r , sean  
P la proposición ( ) ( ) ( ) ( )p p q s r r q s t∧ → ∧ ∨ ∧ → ¬ → ∨    y  

1P  la proposición ( ) ( )p q r p q r∧ ∨ ∨ ¬ ∨ ∨        
Use las reglas de inferencia para mostrar que q r q r∧ ⇒ ∨ . 
¿Es cierto que 1P P⇒ ? 

 
 
6.- Justifique cada uno de los pasos necesarios para mostrar que el siguiente argumento es 
válido. 

( ) ( )p q r p q r∧ ∧ ∨ ¬ ∨ ∧        
 

PASOS                                 RAZONES 
1) p  
2) p q→  
3) q  
4) r q→¬  
5) q r→¬  
6) r¬  
7) s r∨  
8) s  
9) s t∴ ∨  

 
7.- Dar las razones para los pasos que verifican el siguiente argumento. 

( )p q r¬ ∨ →  

( )r s t→ ∨  
s u¬ ∧¬  
u t¬ →¬  
p∴  

 
 

PASOS                                       RAZONES 
1) s u¬ ∧¬  
2) u¬  
3) u t¬ →¬  
4) t¬  
5) s¬  
6) s t¬ ∧¬  
7) ( )r s t→ ∨  

8) ( )s t r¬ ∨ → ¬  

9) ( )s t r¬ ∧¬ →  
10) r¬  
11) ( )p q r¬ ∨ →  
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12) ( )r p q¬ →¬ ¬ ∨  

13) ( )r p q¬ → ∧¬  
14) p q∧¬  
15) p∴  

 
8.- a) Dé las razones para los pasos que justifican el argumento 

 
( ) ( ) ( ) ( )p q r s p r q s→ ∧ ¬ ∨ ∧ ∨ → ¬ →    

 
PASOS                                 RAZONES 
1) ( )q s¬ ¬ →  
2) q s¬ ∧¬  
3) s¬  
4) r s¬ ∨  
5) r¬  
6) p q⋅ →  
7) q¬  
8) p¬  
9) p r∨  
10) r  
11) r r¬ ∧¬  
12) q s∴¬ →  

 
b) Realice una demostración directa del resultado de la parte (a). 
 

9.- Establezca la validez de los siguientes argumentos. 
a) ( ) ( )p q r p r q∧¬ ∧ → ∧ ∨        

b) ( ) ( )p p q q r r∧ → ∧ ¬ ∨ →    

c) p q→                              d) p q→                           e) ( )p q r→ →  
   q¬                                      r q→¬                             q p¬ →¬  
   r¬                                       r                                      p  
_________                            ________                         ____________ 

( )p r∴¬ ∨                               p∴¬                                r∴  
 
f) p q∧                                g) ( )p q r→ →                  h) p q∨  

  ( )p r q→ ∧                          p s∨                                 p r¬ ∨  

  ( )r s t→ ∨                            t q→                                 r¬  
  s¬                                        s¬                                    __________ 
__________                         ___________                     q∴  
   t∴                                        r t∴¬ →¬    
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11.- Muestre con un contraejemplo que ninguno de los siguientes argumentos es válido, es 
decir, dé una asignación de valores de verdad a las proposiciones primitivas , , ,p q r y s  de 
modo que todas las premisas sean verdaderas (tengan el valor de 1) y que la conclusión sea 
falsa (tenga el valor de verdad de 0). 

a) ( ) ( )p q p q r r ∧ ¬ ∧ → → →¬     

b) ( ) ( )p q r q r p ∧ → ∧ ¬ ∨ →     
c) p q↔                                                d) p  
   q r→                                                    p r→  
   r s∨ ¬                                                   ( )p q r→ ∨¬  

   s q
s

¬ →
∴

                                                q s
s

¬ ∨ ¬
∴

 

 
 
12.- Escriba cada uno de los siguientes argumentos en forma simbólica. Establezca después 
la validez del argumento o dé un contraejemplo para mostrar que no es válido. 

Si Felipe obtiene el puesto de supervisor y trabaja mucho, entonces obtendrá un aumento. 
Si obtiene el aumento, entonces comprará una casa . El no ha adquirido una casa. Por lo 
tanto, Felipe no ha obtenido el puesto de supervisor o no ha trabajado mucho. 

 
DEMOSTRACIONES POR INDUCCIÓN MATEMÁTICA. 
En el siglo XVIII , el matemático italiano Giuseppe Peano(1858-1932)3

Dicho principio se desprende del principio del buen orden, el cual indica: 

 ideó la inducción 
matemática para argumentar la validez de las fórmulas  o procedimientos con un número de 
pasos infinito numerable, es decir, con un número de pasos contable o equivalente al 
conjunto de los números naturales.  La importancia de este tema para el ingeniero en 
sistemas es que a menudo dentro de esta área se debe analizar el número de operaciones 
que hace un programa para llevar a cabo una tarea ,y dicho análisis se hace en base a 
fórmulas cuya validez debe probarse y es cuando se recurre al método de prueba por 
inducción. 

Principio del Buen  Orden:  Cualquier subconjunto no vacío de +  contiene un elemento 
mínimo ( Es en este sentido que a veces se dice  que +  es bien ordenado). 

Principio de Inducción Matemática.  Sea   ( )S n una proposición matemática abierta  (o 
un conjunto de tales proposiciones abiertas) , en la que aparece una o varias veces  la 
variable n , que representa un entero positivo. 

Si  (1)S es verdadera; y 

                                                 
3 En realidad, el mismo  Giuseppe Peano atribuyó la invención del método al matemático Richard Dedekind 
(1831-1916). Se cree que el veneciano Francesco Maurocylus fue el introductor  en 1575 de la idea en 
Europa, y así lo atestigua una cita del importante matemático francés  Blaise Pascal  ( en 1653), al demostrar 
resultados de análisis combinatorio como  ( , ) ( , 1) * ( 1) / ), 0 1C n k C n k k n k k n= + + − ≤ ≤ − . El 
término  “inducción matemática” fue acuñado por el matemático inglés  Augustus De Morgan, quien 
describió el proceso en 1838. 
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Siempre que ( )S k sea verdadera (para algún k +∈  particular , pero elegido al azar) 
entonces ( 1)S k +  será verdadera; 

Entonces ( )S n será verdadera  para todo n +∈ . 

Demostración.  Sea ( )S n  una proposición abierta con las condiciones  (a)  y  (b) , 
y sea   { | ( ) }F t S t es falsa+= ∈ . Se desea mostrar que  F = ∅ ; así que para 
obtener na contradicción  suponemos que F ≠ ∅ . Entonces, por el principio del 
buen orden , F  tiene un elemento mínimo s .Como (1)S  es verdadera, 1s ≠ , de 
modo que necesariamente 1s > , y en consecuencia , 1s +− ∈ . Como  

1s F− ∉ ,tenemos que ( 1)S s −  es verdadera. Así , por la condición (b) ,se sigue 
que (( 1) 1) ( )S s S s− + =  es verdadera , lo que contradice  que  s F∈ . La 
contradicción surge de la hipótesis  de que F ≠ ∅ . Por lo tanto F = ∅ . 
 
EJEMPLO1.6.Demostrar que para cualquier.   

n +∈ ,
1

1 2 3 ... ( )( 1) / 2
n

i
i n n n

=

= + + + + = +∑  

Demostración:  Está claro que (1) 1 (1)(1 1) / 2S = = + . Por lo tanto (1)S  es verdadera. 
Esta es nuestra base de inducción. En segundo lugar , dado k +∈ , supongamos 
que  es verdad que  ( ) :1 2 3 .... ( 1) / 2S k k k k+ + + = +  y demostremos que esto 
“obliga” a que  ( 1)S k + es verdadera. En efecto: 
1 2 3 ... ( 1)k k+ + + + + = ( 1) / 2 ( 1)k k k+ + + , puesto que ( )S k  es supuesta verdadera. 
Simplificando nuestra suma, llegamos a que: 
1 2 3 ... ( 1)k k+ + + + + = ( 1)( 2) / 2k k+ + . 
Lo cual establece la veracidad del paso inductivo, y por tanto, valiéndonos del 
Principio de Inducción , concluimos la veracidad de nuestra  fórmula. 
 
 
2.-Según los ejemplos: 
14 3 3 8
1 53 3 3 3 3
16 8 8

= + +
= + + + +
= +

 

 
Hacemos la conjetura de que todo número natural n  ,con 14n ≥ , se puede escribir como 
una suma de treses y ochos. 

Demostración: 

Como el 14,15 y 16 se pueden escribir en la forma descrita, ello establece nuestra base de 
inducción.  Supongamos que la proposición es válida para 16k ≥ , con k +∈ .Entonces 
tenemos que probar que para 1k +  la propuesta es también válida.  Obsérvese para esto que 

1 ( 2) 3k k+ = − + , pero como 14 2k k≤ − ≤ , entonces 2k −  es un número que puede 
escribirse como una suma de treses y ochos, de aquí concluimos que 1k +  también puede 
ser escrito de esa manera.; de esta forma, por el  Principio de Inducción, llegamos a la 
conclusión de que nuestra afirmación es válida. 
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EJERCICIOS 1.7.  Demostrar por inducción matemática lo siguiente: 

(a) 2 2 2 21 2 3 ... (2 1) ( )(2 1) / 3n n n+ + + + − = +  

(b) 
1

1
( 1) 1

n

i

n
i i n=

=
+ +∑  

(c) , 10Si n con n+∈ > ,demostrar que  
2

2
12

n nn −
− < . 
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UNIDAD II 
RELACIONES 
 
 
 
Objetivos: 
 
Al finalizar la unidad, el alumno: 

 Comprenderá el concepto de producto cartesiano y  aprenderá a calcularlo 
 Entenderá el concepto de relación 
 Manejará la simbología propia de las relación 
 Identificará  los diferentes tipos  de relaciones que hay , según sus propiedades 
 Entenderá el concepto de relación de equivalencia y su relación con la partición de 

un conjunto en subclases. 
 
 
 
En esta unidad desarrollaremos el concepto de relación ,el cual es esencial en el análisis del 
concepto de función, de partición y del concepto de grafo, temas que se estudiarán más 
adelante. Además, el concepto de relación juega un papel importante en varias teorías como 
la de probabilidades, estadística y análisis combinatorio, materias que son importantes en la 
formación de un ingeniero en sistemas computacionales. 

Iniciaremos estudiando el concepto de producto cartesiano, el cual es la base para definir 
una relación.  
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PRODUCTO CARTESIANO. 
 
El producto cartesiano entre dos conjuntos A y B se denota  A B× , y formalmente se 
define como sigue:  

{( , ) | }A B a b a A y b B× = ∈ ∈  
 
Nota:  Observe que el orden es importante; es decir, no es lo mismo  A B×   que  B A× .  
Puede demostrarse  que si el conjunto  A  consta de m elementos , y el conjunto  B  de n 
elementos, entonces su producto cartesiano A B×  contendrá m n×  elementos ( parejas 
ordenadas).  Esto es importante de señalar y tomar en cuenta porque nos proporciona una 
guía al momento de calcular un producto cartesiano, al indicarnos si hemos  enumerado 
exactamente el número de elementos que debe tener un producto entre dos conjuntos dados 

EJEMPLO 2.1 

1.- Obtener  A x B, si 

A =  {1, 2, 3} 

B =  { q, p} 

Solución: El producto A B×  debe contener 3*2=6  elementos.  En efecto, haciendo una 
enumeración directa:  A x B =  {(1, p), (1,q), (2,p) ,(2,q), (3,p), (3,q)}. 

 
2.- Obtener A x B ,si A = {a, s}  y  B = {1, 2, 3, 4, 5, 6} , obtener  A B×   y  B A× . 

.Solución:  

Deben haber 2*6=12 elementos en cada uno de los productos. En efecto:   

A x B = {(a,1), (a,2), (a,3), (a,4), (a,5), (a,6) ,(s,1), (s,2), (s,3), (s,4), (s,5), (s,6)}  

B x A = {(1,a), (1,s), (2,a), (2,s) (3,a), (3,s), (4,a), (4,s), (5,a), (5,s), (6,a), (6,s)} 

3.-  Si B = {2,5,7}, obtener  2B   y  3B . 

Solución: 
2B = B x B = {(2,2), (2,5), (2,7), (5,2), (5,5), (5,7), (7,2), (7,5) (7,7)} 

=3B B x B x B =  { (2, 2, 2), (2, 2, 5), (2, 2, 7), (2, 5, 2), (2, 5, 5), 
(2, 5, 7(2, 7, 2), (2, 7, 5), (2, 7, 7) (5, 2, 2), (5, 2, 5), (5, 2, 7), (5, 5, 2), 
(5, 5, 2), (5, 5, 7),  (5, 7, 2), (5, 7, 5), (5, 7, 7)  (7, 2, 2), (7, 2, 5), (7, 2, 7) 

(7, 5, 2), (7, 5, 5), (7, 5, 7), (7, 7, 2), (7, 7, 5), (7, 7, 7)} 

 
PROPIEDADES DEL PRODUCTO  CARTESIANO.  
 
Para cualesquiera subconjuntos A, B y C de un conjunto universal U, 
se cumplen las siguientes propiedades: 
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)()()(.4
)()()(.3
)()()(.2
)()()(.1

CBCACBA
CBCACBA
CABACBA
CABACBA

×∪×=×∪−
×∩×=×∩−
×∪×=∪×−
×∩×=∩×−

 

 
EJEMPLO 2.2 

1.- Si {},,{,}2,1{ === CycbaBA @, },*, dc , comprobar que 
)()()( CABACBA ×∪×=∪×  

Solución: 

Por un lado: ,.,{ cbaCB =∪ @,*,d} 
,1(),,1(),,1(),,1{()( cbaCBA =∪× @),(1,*),(1,d),(2,a),(2,b),(2,c),(2,@),(2,*), 

(2,d)} 
Desarrollando por el lado izquierdo: 

A x B ={(1,a),(1,b),(1,c),(2,a),(2,c)} 
A x C ={(1,@),(1,*),(1,c),(1,d),(2,@),(2,*),(2,c),(2,d)} 
(A x B)∪ (A x)={(1,a),(1,b),(1,c),(2,a),(1,@),(1,*),(1,c),(1,d),(2,@),(2,*),(2,c), 
(2,d)}. Se puede ver que ambos conjuntos coinciden. 

 
 
EJERCICIO 2.1. Obtener lo que se pide en cada caso: 

(a) Sean { , }, {1,2,3,4,5,6}M águila sol D= = . Obtenga el producto M D× . 
(b) Si  {1,2,3}, {2,4}, {3,4,5}.A B C= = =   Hallar  A B C× × . 
(c) Sean { , }, {2,3}, {3,4}A a b B y C= = = . Hallar :i)  ( ),A B C× ∪   

(ii)  ( ) ( )A B A C× ∪ ×    (iii)  ( )A B C× ∩  

 
 
 

2.2 RELACIONES. 
A un subconjunto del producto cartesiano A x B se le llama relación de A  en B. 
En general si A es un conjunto con n elementos y B un conjunto con m elementos, 
entonces el número de relaciones de A a B es igual a mn2 , incluyendo a la relación vacía 
∅ . 

EJEMPLO 2.3  
Obtener cinco  relaciones de A en B , si 

A = {m, n ,l} 
B ={1, 0} 

 
Solución: 

Paso 1. 
Hay 6426 =  relaciones de A en B      
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Obtener A x B = {(m,1), (m,0), (n.1), (n,0), (l,1), (l,0)}       
 
Paso 2. 

Del producto anterior obtendremos las cinco relaciones pedidas. 
1R  =  {(m,1)}  

2R = {(n,1),(n,1)} 

3R = {(m,0), (n,1),(l,1), (m,1)} 

4R = {(n,1), (n,0)}, {(n,1), (l,1)}, {(n,1),(l,0)} 

5R = ∅  ,etc. 
 
EJEMPLO 2.4 

. 
1.- a) Obtener cuántas relaciones pueden establecerse entre el conjunto 

A = {0,1,2,3,4} B = { γβα ,, ) 

Solución: 

n(A)= 5 
m(B)=3 

 
Así que hay 152  relaciones de A en B. 

b) Dar tres ejemplos de relaciones no vacías de A en B. 

 
Solución: 

Como primer paso, calculamos el producto cartesiano de ambos conjuntos en el orden 
requerido: 

A x B = {0,1,2,3,4} x { γβα ,, } 
{(0,α  ), (0, β  ), (0,γ ), (1,α ), (1, β ), (1,γ ), (2,α ), (2, β ), (2,γ ),  
(3,α  ), (3, β  ) (3,γ ), (4,α  ). (4 β ,), (4, γ )} 

 
De aquí, se obtienen tres relaciones no vacías de A en B: 

1R ={(2,α  )}, 

2R ={(2, β  ), (1, α ), (1, β )}, 3R ={(3, β  ), (4, β )} 
c) Obtener tres relaciones de tamaño 5. 
 

Solución: 

=1R {(0,α  ), (1, β  ), (1, γ ), (2, β  ), (3, γ )} 
=2R {(0, β ), (2,α  ), (4, γ ), (4, β  ), (4, α )} 
=3R {( 0,γ ), (1,α  ), (3,α  ), (4, γ ), (2, β )} 
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RELACIÓN BINARIA. 
Considere a un conjunto vacío A, se le llama relación binaria a todo subconjunto de A x 
A. 
Es necesario indicar el significado de los siguientes símbolos: 

Suponga que ℜ  es una relación binaria, definida sobre el producto cartesiano A x A, y que 
(a, b) ∈ℜ  , entonces a esta situación la denotamos con el símbolo a bℜ , que significa :” a 
está relacionada con b, mediante  ℜ ”.  En caso contrario, es decir  si  a no está relacionada 
con b  mediante ℜ , escribimos  a bℜ .   

La notación anterior cobra importancia en los siguientes ejemplos: 

Definimos la relación ℜ  sobre el conjunto   como a bℜ , o (a, b)∈ℜ , si a ≤  b. Este 
subconjunto de x   es la relación ordinaria “ menor o igual que “ sobre el conjunto  , y 
también puede definirse sobre o  , pero no sobre  . Con esta definición de ℜ , por 
ejemplo está claro que 2ℜ 3, porque 2≤3; sin embargo 5 ℜ 8, porque 5 ≤ 8. En tal sentido 
decimos que (2,3)∈ℜ , pero  que (5,3)∈ ℜ . 

La relación siguiente es una relación importante en muchos ámbitos, por ejemplo, nos  
permite definir a una “función localizadora”, como veremos en el tema de funciones.    Sea  
n +∈ . Para  ,x y ∈ ,la relación  módulo n  ,ℜ , está definida  como   x yℜ , si x-y es un 
múltiplo de n.  Por ejemplo, si 7n = , encontramos que  9 2ℜ , 3 11, (14,0)− ℜ ∈ℜ ,pero 
3 7ℜ  (es decir, 3 no está relacionado con 7). 

 
EJEMPLO 2.5 

1.-Si A = {a, b, c} ,obtener 3 relaciones binarias no vacías de A. 

Solución: 

Primero obtenemos el producto cartesiano  A x A: 

A x A =  A{a ,b, c} x A{a, b, c}  
= {(a ,a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)} 

=1R  {(a, a), (a, b)} 
=2R {(a, a), (a, b), (a, c)} 
=3R {(a, a), (a, b), (a, c), (b, a)} 

 
2.- Con  A +=  , considérese  la relación binaria  ℜ  en el conjunto  A como  
{( , ) | }x y x y≤ . A esta relación se le llama “menor ó igual” para los  enteros positivos.  En 
esta relación están por ejemplo las parejas ordenadas  (6,6), (8,11); pero (6,4)∉ℜ . 

3.- Sea ℜ  el subconjunto de ×   donde  {( , ) | 3 }m n n mℜ = = . Esta relación indica que 
dos enteros n   y   m  están relacionados si n   es el triple de m .Así, por ejemplo dentro de 
esta relación se encuentran (1,3), (4,12), ( 2, 6)− −  
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EJERCICIO 2.2  Obtener lo que se pide en cada caso: 

1.-Si A = {p, q, r} dar dos ejemplos de relaciones binarias no vacías de A . 

2.- ¿Cuántas relaciones binarias tiene  el conjunto  {1,2,3,4,5,6}A = ? 

3.-Sea A   un conjunto con 3 elementos.  Si existen 4096 relaciones de  A en  B, ¿Cuántos 
elementos contiene el conjunto B?. 

4.- Indicar si a bℜ , para 
ℜ= {(1,3), (2,5), (2,7)} 

(a) 1ℜ 5 
(b) 2ℜ 5 

 
5.-  Si  ℜ  = { (0,1).(3,2), (7,5)},es verdadero o falso que: 

3 ℜ 5  

• 1ℜ  0  
 
3.-Si ℜ  = {(a, b)| a-b es un número entero positivo}, donde ℜ ℜ  es un subconjunto de 
×  . 

(a) ¿ (7, 4)∈ℜ ?,   (b)  ¿ ( 2, 8)− − ∈ℜ ? 

 
 
TIPOS DE RELACIONES 

Dada una relación  ℜ   , puede o  no tener la característica de ser reflexiva, simétrica y 
transitiva, entre otras  .  Hacer esta distinción es importante, porque de el hecho que tengan 
estas propiedades depende de que puedan introducir o no una partición o un orden parcial 
dentro de un conjunto, lo cual es muy significativo en la ciencia de la computación para 
poder clasificar datos. 

 
RELACIÓN REFLEXIVA: 

ℜ  una relación  sobre un conjunto A es una relación reflexiva, si para todo  x∈A, implica 
que xℜ x . 

 
RELACIÓN SIMETRICA: 

La relación ℜ  sobre el conjunto A es simétrica, si dados x, y ∈ A y ( , )x y  ∈ℜ , implica  
que (y, x) ∈ℜ . 

 
RELACIÓN TRANSITIVA:  

R es una relación transitiva sobre un conjunto A si dados x, y, z ∈A  y además se cumple 
que: xRy  y  yRz, implica que xRz . 

EJEMPLO 2.6 
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1.-Si  A ={1,2,3,4} , 1R  = {(2,1), (1,2), (4,3), (3,4)}. Puede verse que 1R  no es reflexiva , 
porque  por ejemplo (2,2) no es parte de 1R . También 1R   es simétrica ; pero no es 
transitiva, porque (2,1) y (1,2) son parte de 1R , pero (2,2) no. 

2.- Considere  R = {(a, b)| a, b∈   y a≥b} .Es una relación transitiva  porque  si x, y, z son 
números reales y además  x≥y x≥ z, entonces x≥ z. También es simétrica y reflexiva. A 
esta relación se le llama  “mayor ó igual”. 

3.- Si A ={1,2,3,4} entonces 1ℜ ={(1,1),(2,3), (3,4), (2,4) } es una relación transitiva. 
Claramente no es simétrica, porque por ejemplo (3,2) no es parte de esta relación, siendo 
que (2,3) sí lo es; además tampoco es reflexiva, porque (2,2), por ejemplo, no forma parte 
de dicha relación.  

 
 
 
EJERCICIO 2.4.  

 
1.-Si A = conjunto que consta de   
A ={1,2,3} 
ℜ  ={(1,2), (2,1), (1,3), (3,1)}, 

(a) ¿ℜ  es simétrica? 
(b)¿Es reflexiva? 
© ¿Es transitiva? 
 
2.-Si  {1,2,3,4}A = , dar un ejemplo de una relación ℜ  sobre A que sea: 

(a) Reflexiva y simétrica, pero no transitiva. 
(b) Reflexiva y transitiva, pero no simétrica 
© Simétrica y transitiva, pero no reflexiva. 

3.- Considere  la relación ℜ  sobre el conjunto  + , definida como 

{( , ) | }ba b es un número entero
a

ℜ = . Indicar si  dicha relación es reflexiva, simétrica o 

transitiva. 

4.- ℜ  es una relación definida sobre  , dada por  ℜ={ ( , ) |a b a b+  es un número par}.¿Es  
esta relación reflexiva, simétrica o transitiva?. 

 
RELACIÓN DE EQUIVALENCIA. 
Se le llama relación de equivalencia aquella que tenga las propiedad simétrica, reflexiva y 
transitiva  ( las tres juntas) 

EJEMPLO 2.7 

1.- Si A ={1,2,3} 
R = {(1,1), (2,2),(3,3), (3,2)} 
R es reflexiva, simétrica y transitiva  (¿por qué?). Por lo tanto, dicha relación es una 
relación de equivalencia. 
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2.- Si A ={1,2,3}, entonces 
1R ={(1,1), (2,2), (3,3)}, 

2R ={(1,1), (2,2), (2,3), (3,2), (3,3)}, 

3R ={(1,1), (1,3), (2,2), (3,1), (3,3)} y 

4R ={(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),(3,2), (3,3)} 
son relaciones de equivalencia sobre A ¿Por  qué ?. 
 
 
PARTICIONES Y CLASES DE EQUIVALENCIA 
Una relación de equivalencia induce una partición dentro del conjunto sobre el cual está 
definida; es decir, lo divide en subconjuntos mutuamente disjuntos a los cuales llamaremos 
clases de equivalencia.  

Formalmente definimos: 

Partición: De un conjunto A es una división de  A en n  subconjuntos   1 2, ,.. nA A A , tales 
que: 

(i) ,i jA A con i j∩ = ∅ ≠ . Para todo 1 1i n y j n≤ ≤ ≤ ≤ . 

(ii) 
1

n

i
i

A A
=

=  

A los conjuntos  iA   se les llama células o celdas. De modo que la definición de partición 
significa simplemente que esta es una descomposición de un conjunto en celdas , tales que 
todo elemento del conjunto esté en exactamente una de las celdas. 

Tenemos al conocido teorema siguiente: 

Teorema:  Sea  A un conjunto no vacío  y sea ℜ  una relación entre elementos de  A que es 
reflexiva, simétrica y transitiva, entonces  ℜ   produce una partición natural  de A, en donde  

{ | }a x S x a= ∈ ℜ  
 
es la celda que contiene a  todos los elementos x  que son equivalentes a a . 

Cada celda a   en la partición natural es una clase de equivalencia. 

 
 
EJEMPLO 2.8.   

1.-Dar tres ejemplos de particiones del conjunto  {1,2,3,4}A = . 

Solución: 

 
1

2

3

{{ , , , }}
{{ },{ , , }}
{{ , },{ , }}

a b c d
a b c d
a b c d

℘ =
℘ =
℘ =
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Todas ellas son particiones en donde todo elemento está en exactamente uno de los 
conjuntos, y la unión de los conjuntos de cada clase es exactamente igual a  A. 

2.- Denotamos por ejemplo con el símbolo  2 / 3   a  todos los números racionales  o 
fraccionarios que equivalen en decimal  a dicho número; es decir: 2 / 3   

= 2{2 / 3, 2 / 3,4 / 6,6 / 9, 6 / 9....} { | 0}
3

n n y n
n

− − − = ∈ ≠ .  Este ejemplo muestra que los 

números fraccionarios o racionales pueden partirse en clases, cada una de las cuales 
contiene  a todos aquellos elementos que son numéricamente iguales a un número racional 
dado.  

3.- Definamos  una relación ℜ   en el conjunto    mediante n mℜ   si y sólo si 0nm ≥ . ¿Es  
ℜ  una relación de equivalencia?.  Debemos verificar las tres características de una relación 
de equivalencia: 

(1) Reflexividad:    Si a∈ , entonces a aℜ , debido a que 2 0a ≥ . 

(2) Simetría:  Si  ,a b∈   y  además  a bℜ , entonces es claro que b aℜ , porque  
0ba ab= ≥ . 

(3) Transitividad: No lo es , porque  por ejemplo  (-3)(0) 0≥   y  (0)(5) 0≥ , pero (-
3)(5)<0. 

 
De este modo dicha relación no es una relación de equivalencia. 

4.-  Por último, tratemos el importante caso de las congruencias módulo n.  Para ,h k ∈ , 
definimos  h  congruente con k   módulo n , lo cual se escribe (mod )h k n≡ , si  h k−   es 
divisible entre  n; es decir ,  que  h k ns− = , para alguna s∈ .  Por ejemplo  , 
17 33(mod 8)≡ , puesto que 17-33=8(-2). Las clases de equivalencia para la congruencia  
módulo  n  son las  clases residuales módulo n.  Cada una de estas clases  residuales  
contiene  un número infinito de elementos . Por ejemplo, la clase residual  para la 
congruencia módulo 8 que contiene al 17 y al 33 es: 

 
{..., 47, 39, 31, 23, 15, 7,1,9,17,25,33,41,49,...}− − − − − − . 
 
Esta clase residual contiene cada octavo número , comenzando con 1.  De hecho, hay siete 
clases residuales más en la partición dada por la congruencia módulo 8.. 

EJERCICIOS 2.5 

1.-Determínese si la relación dada es una relación de equivalencia en el conjunto y 
descríbase la partición que surge de cada relación de equivalencia. 

a) n mℜ  de  si 0nm >  
b) x yℜ  si  | | | |x y=  
c) n mℜ en +  si y m  tienen el mismo número de dígitos en la notación usual de base 

diez. 
d) x yℜ  en ℜ  si x y≥  
e) x yℜ  en ℜ  si | | 3x y− ≤  
f) n mℜ en   +  si n  y m  tienen el mismo dígito final en la notación usual de base diez. 
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g) n mℜ  en +  si n m−  es divisible entre 2. 
h) Sea n  un entero en +  muéstrese que la congruencia módulo n  es una relación de 

equivalencia en + . Descríbanse las clases de residuales para 1, 2, 3.n =  
i) El siguiente es un formato falso. Encuéntrese el error. “ El criterio de reflexividad es 

redundante en las condiciones para una relación de equivalencia, ya que de  
a b  y b a  (simetría) deducimos a a  por transitividad. 

 
2.- Encuéntrese el número de  relaciones de equivalencia posibles en un conjunto S S  a 
partir del número de sus elementos  (Sugerencia: ayudarse del hecho de que una relación de 
equivalencia introduce una partición natural  en un conjunto dado). 

a) 1 elemento 
b) 2 elemento 
c) 3 elementos 
d) 4 elementos 
e) 5 elementos 
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UNIDAD III 

 
FUNCIONES 

En esta unidad , el alumno: 

 Entenderá el concepto de función y las diferentes formas en las cuales puede 
describirse a una función. 

 Identificará y aprenderá a usar la simbología propia de las funciones. 
 Entenderá las partes que describen o identifican a una función, como son el 

dominio, el codominio y el rango. 
 Aprenderá a clasificar a las funciones en inyectivas, suprayectivas y biyectivas. 
 Entenderá las condiciones en las cuales una función es invertible. 
 Aprenderá a calcular la inversa de una función. 
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En este capítulo estudiaremos a las funciones, las cuales en realidad son un tipo especial de 
relación, cuya definición tiene una larga historia que comenzó en el siglo XVIII, con los 
trabajos matemáticos  de Euler, y cuya definición fue aclarada y extendida en el siglo 
pasado por matemáticos como Cantor, Fourier , Dirichlet y Cauchy. El concepto de función 
aparece en ramas como la  Física, la  Teoría de  Probabilidades, Economía, etc.; es uno de 
los conceptos más usados. Y lo es porque nos permite modelar fenómenos de respuesta 
única; es decir acontecimientos que cada vez que ocurren lo hacen arrojando exactamente 
un resultado. 

 
3.1. CONCEPTO DE FUNCIÓN. 
 
 

Para los conjuntos  A ,B , una función , o aplicación , f de  A en  B , que se denota  con 
:f A B→ , es una relación de A en  B en la que cada elemento de  a aparece 

exactamente una vez como la primera componente de un par ordenado en una relación.4

Esta forma de definir a una función es sumamente fructífera , porque  nos permite hablar 
de  funciones actuando  sobre  conjuntos no numéricos.  También es común definir a una 
función como una relación de un conjunto A a un conjunto  B de modo que a cada 
elemento 

 

a A∈ , dicha relación le asigna exactamente un elemento b B∈ .  
Simbolizamos esta situación como  ( )f a b=  o bien (a,b)∈ f . Al número b se le llama 
la imagen de a  bajo  f ( al elemento a se le llama preimagen de b)  y a la función f se le 
llama regla de correspondencia.  
De modo que para describir a una función ,se necesitan tres elementos: 

(i) El conjunto A, al cual llamaremos dominio de la función 
(ii) El conjunto  B, al que llamaremos codominio 
(iii) La regla de correspondencia dada por f. 

 
EJEMPLO 3.1.   Considere {1,2,3}A =     y   { , , , }B w x y z=  . Sean   

(a) :f A B→  y {f =  (1, ), (2, ), (3, )}x z y . Esta es una función definida de A   a  B . 
(b) :f A B→   y {(1, ), (3, )}f x z= . Esta regla de asignación no es una función, porque la 

definición indica que a cada elemento de  A   ( el dominio), dicha regla le debe asignar 
exactamente un elemento en el conjunto  B  (el codominio) y en este caso  al número  2 
no se le asigna ningún elemento en  B . 

(c) :f A B→  con {(1, ), (2, ), (3, ), (3, )}f w x y z= . En este caso f tampoco es una función, 
debido a que al número 3 le asigna dos valores distintos y   y  z . La definición de 
función dice  que a cada elemento del dominio se le debe asignar exactamente un 
elemento en el codominio. 

(d) :f A B→   con {(1, ), (2, ), (3, )}f w w w= . En este caso f  es una función, porque la 
regla de correspondencia f  le asigna exactamente un elemento  a cada número que 
aparece en el conjunto dominio A , no importa que sea el mismo. 

                                                 
4 Esta definición de función la dio por primera vez el matemático alemán Peter Gustav Lejeune Dirichlet  
( 1805-1859) en 1837.  Como se ve en la definición de función dada por este matemático ,no es necesaria una 
fórmula que relacione a las cantidades dependientes de las independientes, como a menudo se podría creer, 
sobre todo por los cursos de cálculo diferencial e integral. 
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Para la función :f A B→ , A es el dominio ( lo denotaremos  fD ) y  B es el codominio 
de f ( lo denotaremos Codf ). El subconjunto de  B  formado por aquellos elementos 
que aparecen  como segundas componentes de los pares ordenados de f  se le conoce 
como la imagen de f  y se le denota también como ( )f A  ya que es el conjunto de 
imágenes (de los elementos  de A ) mediante f .5

FORMAS DESCRIPTIVAS DE UNA FUNCIÓN. Las funciones aparecen en muchas 
formas en la práctica, como por ejemplo en forma de tablas ( una nómina es una función 
que asigna a cada empleado un solo salario).  Nos es familiar la forma gráfica de una 
función, o los diagramas sagitales , y por supuesto, en forma de fórmula.                                                                                           

  

                                                                                                                                                                                               

                                                 
 

Forma gráfica           Forma sagital                    Forma tabular 

 
 
FUNCIONES EN  COMPUTACIÓN 
En la Computación aparecen repetidamente varios tipos de funciones ;por ejemplo, en los  
lenguajes de programación , se hallan implementadas una gran cantidad de funciones, como 
las siguientes: 

a) Función parte entera  o función suelo. Esta función  se simboliza como 
:f con f x→ =       y está dada por  

f x=    =  el mayor entero menor o igual  que  x  

Por ejemplo:  (3.7) 3; (4) 4; ( 5) 5; ( 3.8) 3.f f f f= = − = − − = − Esta función en el 
lenguaje C ++ , se implementa mediante el molde int. En BASIC , se implanta mediante  
INT. 

b) La función trunc  (de truncar)  aparece en Pascal, por ejemplo , y su acción sobre un 
número real elimina su parte fraccionaria .Por ejemplo, trunc(3.78)=3; trunc(5)=5;  
trunc(-6.13)=-6. 

c) Funciones localizadoras. Al guardar una matriz en una tabla unidimensional , 
varios lenguajes de programación lo hacen por filas , con el método de la fila 

                                                 
5 En los cursos de cálculo diferencial e integral también se le llama “rango  o recorrido de "f  
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principal . En este caso, si ,( )i j n nA a ×=  es una matriz  n n× , la primera fila de A , 
se guarda  en los lugares 1,2,3,...,n de la tabla  si comenzamos con 11a  en el lugar 1. 

 
11a  12a    1na  21a  22a    2na  31a    ija  

 nna
 

1 2   n 1n +  2n +
 

  2n 2 1n +
 

  ( 1)i n j− +
 


 

 

 
El elemento 21a  se encuentra entonces en la posición 1n + , mientras que el 34a ocupa la 
posición 2 4n +  en la tabla. A fin de determinar el lugar de cualquier elemento ja  de A  en 
donde 1 ,i j n≤ ≤ , se define la función de acceso  f  de los elementos de A en las 
posiciones 1, 2, 3.... 2n  de la tabla. Una formula para la función de acceso es  

( ) ( 1)ijf a i n j= − + . A este tipo de funciones se les llama funciones localizadoras y existen 
varias formas de obtenerlas. 

3.2 OPERACIONES ENTRE FUNCIONES. 
 

Se pueden  realizar varias operaciones entre dos funciones f y g dadas. En seguida 
definimos la suma, la resta, la multiplicación, la división  y la composición de dos 
funciones. 

Sean f y g dos funciones definidas como sigue :f A B→    y   :g C D→  , entonces: 

a) SUMA  y  RESTA: Definimos la suma  (resta) de f y g  como aquella función 
cuyo dominio es igual al conjunto A C∩  y cuya regla de correspondencia  f g±  es  

  
 
                          {( , ) | ( ) ( ) }f g a b b f a g a± = = ±  
 
 

b) MULTIPLICACIÓN.  Definimos la multiplicación f  y g   como aquella función 
cuyo dominio es igual al conjunto A C∩  y cuya regla de correspondencia  *f g  es  

  
                          * {( , ) | ( ) * ( ) }f g a b b f a g a= =  

 
c) DIVISIÓN: .  Definimos la división f  y g   como aquella función cuyo dominio es 

igual al conjunto ( ) { | ( ) 0 }A C a C g a∩ − ∈ ≠  y cuya regla de correspondencia  /f g  
es : 

                           / {( , ) | ( ) / ( ) }f g a b b f a g a= =  
 
d) COMPOSICIÓN:  Definimos la composición g f   de  las funciones  f  y g   como 

aquella función cuyo dominio es igual al conjunto { | ( ) }a A f a C∈ ∈  y cuya regla de 
correspondencia   es : 

 
                               {( , ) | ( ( )}g f a b b g f a= =  
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EJEMPLO 3.2.  Si 

 {(2,3), (4, 1), (3,5), (7, 4), (6,8)} ; {(2,5), ( 2,3), (3,0), (7, 2), (13,4)}f g= − = −  
Obtener:  , , * , / ,f g f g f g f g f g y g f+ −   . 

Solución: El dominio de  f , es igual a  {2,4,3,7,6}fD =   y el dominio de g  es igual  a  
{2, 2,3,7,13}gD = − .  El dominio de f g+  , f g−   y  *f g , es el mismo y es igual al 

conjunto  {2,3,7}, de modo que dichas operaciones sólo están definidas en ese conjunto.  
Las reglas de correspondencia, son: 

 
{2,3 5), (3,5 0), (7, 4 2)} {(2,8), (3,5), (7,6)}
{(2,3 5), (3,5 0), (7, 4 2)} {(2, 2), (3,5), (7, 2)}

* {(2,3*5), (3,5*0), (7, 4* 2)} {(2,15), (3,0), (7,8)}

f g
f g
f g

+ = + + + =
− = − − − = −

= =
 

 
 
Por otro lado, el dominio de  la composición de estas funciones f g , viene dado por  el 
conjunto  { | ( ) } { 2,7,13}f g g fD a D g a D= ∈ ∈ = − . Por lo tanto, en esos números tiene 
sentido hablar de tal composición; la regla de correspondencia resulta  

{( 2,5), (7,3), (13, 1)}f g = − − . 

De manera similar se puede ver que  {2}g fD =   y que por tanto  {(2,0)}g f = . 

2.-En este ejemplo, obtendremos los resultados de operar dos funciones dadas como una 
fórmula.  Sean  : [ 8, 2]f − →    y  : [ 2,5]g − →  , con reglas de correspondencia  dadas 
por  las fórmulas  2( ) 2 3 ( )f x x y g x x= + = .  Obtenga 

, , / ,f g f g f g f g y g f+ −   . 

EJEMPLO 3.3. (a) Obtenga el rango de la función : [2,10]f →  , cuya regla de 
correspondencia viene dada por 2( )f x x= . 

Solución .   Si   2 10x≤ ≤ , entonces es claro que 24 100x≤ ≤ . De este modo, el rango o 
recorrido de esta función sobre el dominio dado es el conjunto  

{ | 4 100}Rango f x x= ∈ ≤ ≤ , es decir, son todos los enteros entre 4  y 100. 

(b) Obtenga el rango de la función :{1,2,3} {1,2,3,4,5}f → , con regla de correspondencia  
{(1,3), (2, 4), (3,5)}f = . Solución: {3, 4,5}Rangof = . 

 
 
 
El dominio de la suma , de la resta y de la multiplicación es exactamente el mismo, según la 
definición. Todo lo que tenemos que hacer para obtenerlo es intersectar los dominios , para 

obtener [ 2, 2]− .  Las reglas de correspondencia en cada 
caso, son: 

 
2

2

2

2

2

( )( ) (2 3)
( )( ) ( ( )) 2( ) 3
( )( ) ( ( )) (2 3)
( )( ) (2 3)
( * )( ) (2 3)

f g x x x
f g x f g x x
g f x g f x x
f g x x x
f g x x x

+ = + +

= = +

= = +

− = + −

= + +




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Observe que la composición de dos funciones ( )( ) ( ( ))g f x g f x=  es una operación en 
donde primero se aplica la función f  sobre un elemento válido x , y enseguida la otra 
función  g  retoma el resultado y lo transforma en otro valor; a esta situación la denotamos 
así ( )( ) ( ( ))g f x g f x= , y en la práctica significa que sustituya dentro de la variable de la 
función g   a la función f . 

 
 
EJERCICIO 3.1. 

1) Indicar si las relaciones siguientes son funciones o no: 

           

( ) {(2,1), ( 1,5), (0,0), (6, 2)}
( ) {( 3,1), ( 3,0), (4, 2), (7,5)}
( ) {( 5,2), (1, 2), (3, 2), (5, 2), (7, 2)}

( ) {(0, 2), (1/ 2,3 / 2), (1/ 3, 2 / 5), (1/ 4,3)}

a
b
c

d

−
− −
−

−

 

          
 

2)Obtenga el dominio de las funciones   

(i) 3 1( )
5 1

xf x
x
+

=
−

       (ii)  g(x)= 3 1x +      (iii) {(3,1), (2, 8), (7, 2), (0, 1)}f = − −  

3) Calcular  (4), ( 3), (3.5)f f f− , si  3 1( )
5 1

xf x
x
+

=
−

. 

4) Si   

(a) 
{(2,1), (5,0), (4,8), (6,5), (9,3)}
{(2,8), (7, 2), (4,0), (6, 4), (5,6), (3, 2)}

f
g
=
= −

 

(b) 
{(1,3), (2, 4), (3,5), (4,6)}
{(0, 3), (3, 2), (4,1)}

f
g
=
= −

  

Obtenga , , * , / , / ,f g f g f g f g g f f g y g f+ −   . 

4.- Suponga que : ( , 4] : ( 1,0)f y g−∞ → − →  , con reglas de correspondencia  
2( ) 3 2 ( ) 3 2f x x y g x x= − = − . Obtenga 

, , * , / , / ,f g f g f g f g g f f g y g f+ −   . 
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3.3. FUNCIONES INYECTIVAS, SUPRAYECTIVAS Y BIYECTIVAS. 
 

Existen ciertas clases de funciones que por la manera en que transforman un conjunto 
en otro, adquieren una importancia muy especial en varios contextos. 

Función Inyectiva  o Uno a Uno: Si :f A B→ , y cada si ( ) ( )f a f b= , solamente 
si a b= ,entonces se dice que f es una función inyectiva. En otras palabras, una 
función será inyectiva si a no hay en su dominio dos elementos a los cuales les asigne 
el mismo elemento en el codominio. 

Por ejemplo:  

(a) {(1,4), (3,1), (2,8), ( 5, 4)}f = − , es una función inyectiva.  
(b) {(1,3), (3, 2), (2,3)}f = , o es inyectiva, porque al 1 y al 2 les ha sido el número 3 

©  Si  :f →    con 2( )f x x= , entonces f  no es inyectiva, porque 
(2) ( 2)f f= − , por ejemplo. 

 

 
(d) Sin embargo  : [0, )f ∞ →  , sí es una función inyectiva, puesto que no hay 

dentro del dominio de esta función dos elementos que reciban el mismo valor. 
 

Función Suprayectiva: : Si :f A B→ , y para cada elemento  y  en el 
codominio, existe un elemento  x  en el dominio tal que ( )y f x= , entonces se 
dice que la función f es suprayectiva. ( o simplemente sobre). Es decir, una función 
es suprayectiva si “mapea” a su dominio de manera que no queden elementos de 
su codominio sin preimagen, no importando que sea la misma. 

Por ejemplo:  

(a) La función {1,2,3} { , , }S iA y B a b c= =  y :f A B→  con 
{(3, ), (2, ), (1, )}f a c b= es un ejemplo de función suprayectiva. 

(b) La función :f A B→ , con  {1,2,3,4,5} { , , }A y B a b c= = , cuya regla de 
correspondencia es  {(1, ), (2, ), (3, ), (4, ), (5, )}f a b c a b= , es suprayectiva. 

(c) La función : [0, )f → ∞  con 2( )f x x= ,es una función suprayectiva: también la 
función ( )f x x=       es una función sobre, porque está definida como  :f →  . 

 
Función Biyectiva: Es una función que es al mismo tiempo inyectiva y suprayectiva. 

Es claro que una función será biyectiva si su dominio y codominio tienen la misma 
cantidad de elementos; de hecho, a estas funciones se les utiliza para definir conceptos 
como isomorfismo, numerable,etc., porque en ciertos contextos los conjuntos con el mismo 
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número de elementos se les podría considerar como semejantes o equivalentes en algún 
sentido o para ciertos usos.  

Por ejemplo:  

(a) La función :f →   cuya regla es  3( )f x x=  es biyectiva, porque  a cada 
número real le asigna exactamente otro número real diferente al que haya asignado 
a otro elemento distinto de su dominio; y por otra parte no existe ningún número 
dentro de su codominio que no tenga una preimagen. 

(b) Por las mismas razones que en (1) , la función ( ) ( )f x sen x= , con  
: [0, 2 ] [ 1,1]f π → − , es una función biyectiva; sin embargo no lo sería si la 

hubiéramos definido como : [ 1,1]f → − . ¿Por qué?. 
(c) La función suelo ( )f x x=    , no es biyectiva. ¿Por qué?. 

 
 
3.4 FUNCIÓN INVERSA 
 

Se dice que :f A B→   es una  función invertible si existe una función que denotaremos 
como  1f − , tal que 1 :f B A− →    y 1 1( )( ) ( ( ))f f x f f x x− −= = , para cada elemento x 
en el dominio de  f ; 

y además  
1 1( )( ) ( ( ))f f x f f y y− −= = , para cada elemento y   en  B . 

 
Nota:Se puede demostrar que una función es invertible ( que tiene inversa) si y sólo si es 
biyectiva. 

EJEMPLO 3.4 

1) La importancia de que una función sea invertible, es que representa la posibilidad de 
revertir el proceso al cual esté ligada o describa; así, por ejemplo, las funciones 
CHR y ORD del lenguaje Pascal son inversas una de la otra, y por tanto permiten 
pasar del código binario ASCII a la representación común de un símbolo, mediante 
CHR; y viceversa, mediante ORD se puede pasar a un símbolo común definido en 
ese lenguaje a su representación binaria. 

2) Todos sabemos de la importancia de las funciones trigonométricas en varias áreas 
de la ciencia y la tecnología; la función inversa de ( )f x senx=  es 

1 ( )f x arcsenx− = , que da respuesta a la pregunta de bajo qué  ángulo , la función 
seno toma determinado valor.  

3) Es relativamente simple determinar la inversa de una función de una variable. Por 

ejemplo, considere  2 1( ) , : { 2 / 3} {1}
3 2

xf x con f
x
+

= − − → −
+

  . Esta función es 

biyectiva. Su fórmula inversa  se determina  como sigue: 
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Haga  2 1
3 2

xy
x
+

=
+

. Enseguida se despeja  x , quedando  2 1
2(1 )

yx
y

−
=

−
. Intercambiando  x   

por  y , se obtiene la fórmula  2 1
2(1 )

xy
x

−
=

−
. Esta última fórmula es la inversa de la función 

dada. 

 
                 
 
EJERCICIO 3.3.  Contestar los siguientes problemas: 

1) Indicar si las funciones que se ven en la gráfica son inyectivas, suprayectivas o 
biyectivas. 

 
(a) (b)                                     

            
 
 
 
(c) (d)   

                    
 
2. Indicar si existe la inversa de la función .Si no, indicar por qué no. 

a) {(2,3), (5, 2), (4,1)} {2,5,4} {1,2,3,5}f con Domf y Codf= = =  
 
(b) La función {1,2,3} { , , }S iA y B a b c= =  y :f A B→  con {(3, ), (2, ), (1, )}f a c b= es un 

ejemplo de función. 
(d) La función :f A B→ , con  {1,2,3,4,5} { , , }A y B a b c= = , cuya regla de 

correspondencia es  {(1, ), (2, ), (3, ), (4, ), (5, )}f a b c a b= . 
(e) La función : [0, )f → ∞  con 2( )f x x=  
(f) La función ( )f x x=       definida como  :f →  . 

 
3.-Determine  la inversa de la función.  

2( ) , { 2 / 3} { 1/ 2}
3 2

xf x con Domf y Codf
x

−
= = − − = − −

+
  . 
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UNIDAD IV 

 
TEORÍA DE GRAFOS 

En esta unidad, el alumno: 

 
 

 Conocerá la terminología básica de la teoría de Grafos. 
 Aprenderá a representar a un grafo mediante su matriz de incidencia o mediante su 

matriz de adyacencia. 
 Aplicará en problemas prácticos los conceptos de caminos y circuitos eulerianos y 

hamiltonianos. 
 Aplicará en problemas prácticos el concepto de grafo ponderado 
 Resolverá ejemplos asociados con el concepto el concepto de grafos isomorfos. 
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La Teoría de  Grafos  nació en 1736, con el problema de los puentes de Königsberg  
planteado y resuelto por  Leonhard  Euler.  En la actualidad esta disciplina se aplica en la 
resolución de problemas en   la  Computación  (Estructura de  Datos, Topología de  Redes), 
Investigación de Operaciones (Teoría de redes),  Electrónica (en el área de digitalización de 
imágenes e información),  en la Teoría de  Códigos, Física y Economía. 

 
 
4.1 GRAFOS 
 
 
 

Ejemplos cotidianos en  donde se utilicen grafos: 

a) Diseño de tuberías. 
b) Diseño de carretera. 
c) Rutas de avión. 
d) Un recorrido a través de un museo. 
e) La ruta que sigue un vendedor. 
f) Un árbol de toma de decisiones. 

 
Comenzamos el estudio de la teoría de los  grafos con  la exposición de la terminología 
básica: 

GRAFOS: Un grafo  es una estructura que está formada por los dos conjuntos finitos 
siguientes: 

1.- Un conjunto no vacío V de vértices o nodos, y 

2.- Un conjunto E de aristas, donde cada arista une a dos vértices o a un mismo vértice. 

 
EJEMPLO 4.1  La figura siguiente es un grafo: 

 
 
 
Los nodos están 
representados por puntos: 

1 2, 3,v v v . 
Las aristas son las líneas 
que unen a  los vértices: 

1 2 3 4 5 6, , , , ,e e e e e e . 
Para trabajar con la teoría 
de grafos, es necesario 
familiarizarse con los 
términos siguientes. 

LAZO: Cuando un vértice esta unido consigo mismo. En la figura anterior, son lazos las 
aristas 6 3e y e . 
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RAMAS O ARISTAS PARALELAS: Son aquellas que unen al mismo  par de vértices. 
En la figura , son aristas paralelas  1 2e y e . 

VÉRTICE AISLADO: Vértice que no esta unido a otro o así mismo.  

 
GRAFO SIMPLE: Es aquel que no tiene aristas paralelas ni lazos. 

VALENCIA O GRADO DE UN VÉRTICE: Sea  G  un grafo  y  v   un vértice de  G.  El 
grado  de  v ,   denotado por  ( )grad v   es el número de aristas que salen de v .   Una arista 
que sea un lazo se cuenta dos veces.  Por ejemplo, en la figura que  nos está sirviendo de 
ejemplo, observamos que  : 

 
1

3

2

( ) 5
( ) 2
( ) 5

grad v
grad v
grad v

=
=
=  

GRAFOS BIPARTITOS Y GRAFOS COMPLETOS.  Sea V  un conjunto de n vértices  
El   grafo completo  sobre  V de orden n , que se denota nK , es un grafo no dirigido sin 
lazos tal que para todos , , ,a b V a b∈ ≠ existe una arista { , }a b . Es decir, un grafo simple 
es completo si y sólo si todos sus vértices distintos están conectados entre sí por 
exactamente una arista.  Por ejemplo 

 

                                   
 
 
Grafo completo  3K                                        Grafo completo 4K  

Se le llama Grafo bipartito si se le puede dividir en dos conjuntos ajenos 1 2V y V , de 
modo que cada arista de dicho grafo conecte a dos vértices, uno que esté en 1V   y el otro 
en 2V . Si cada vértice de 1V  está unido con los vértices de 2V , se tiene un grafo bipartito 
completo.  En el caso de que 1V  tenga m vértices  y  2V   contenga n vértices, entonces 
usaremos el símbolo ,m nK . 

Por ejemplo, en las figuras siguientes se muestran los grafos bipartitos  K 2,3   y  
K 3,3 .Obsérvese como se advierten dos conjuntos de vértices  V1 ={a,b} y 2 { , , }V c d e= ,para 
el primer caso. Cabe aclarar que en este caso ambos ejemplos son grafos bipartitos 
completos; pero quitando las aristas  {b,e}  y  {b,d}, del primer grafo, seguiría siendo un 
grafo bipartito, aunque ya no sería grafo bipartito completo. 
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Grafo bipartito completo 2,3K                Grafo bipartito completo  3,3K  

 
 
EJERCICIO 4.1 

1)Dado el grafo  de la figura 

 

                                                                           
 

a) Escribir el conjunto de  aristas.   
b) Hallar los vértices. 
c) Hallar los vértices aislados.                             
d) Hallar los lazos. 
e) Hallar las aristas paralelas 

 
2.- Dibujar un grafo simple con cuatro vértices y seis aristas si es que es posible. 

3.-Se puede argumentar de una manera sencilla la veracidad del siguiente resultado: Sea G 
un grafo con vértices 1 2, ..., nv v v . Entonces la suma de los grados de todos los vértices G es 
igual a dos veces el número de aristas en G, es decir, 

( ) 2igrad v =∑ * ( número de aristas en G).Según este resultado, ¿Se puede dibujar un 
grafo G con tres vértices 1 2 3, ,v v v  donde 

a) ( )1 1grad v =  

   ( )2 2grad v =  

   ( )3 2grad v = ? 
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SOLUCIÓN. 

No, ya que ( )1grad v + ( )2grad v + ( )3 1 2 2 5grad v = + + =  que es un número impar. 
Entonces, por el teorema anterior, ese grafo no existe. 

b) ( )1 2grad v =  

    ( )2 1grad v =                  

    ( )3 3grad v =       
     
© 

¡ Intente hacer un grafo con las características del inciso (a)!. También intente hacer un 
grafo con las características del inciso  (b). 

2.- Dibujar el grafo completo  5K  

3.- Haga el dibujo del grafo bipartito    4,2K . También haga el dibujo del grafo bipartito 
completo    4,2K . 

4.2. REPRESENTACIÓN MATRICIAL DE GRAFOS.  
 

Si  G es un grafo no dirigido de n vértices y k aristas, usamos las siguientes matrices 
para representar  G. 

Sea 1 2{ , ,..., }nV v v v= .Definimos a la matriz de adyacencia  ( )ij n nA a ×=  donde 
1, { , } 0ij i j ija si v v E y a= ∈ =   en otro caso. 

Si   1 2{ , ,..., },kE e e e= la matriz de incidencia  I  es la matriz  ( )ij n kn k b ×× tal que 
1ijb =   si  1ijb =   si  iv  es un vértice en la arista 0j ije y b =   en otro caso. 

 
 
 
 
 
EJEMPLO 4.2.  

(a) Encuentre las matrices de  adyacencia e incidencia asociadas con el 
grafo de la figura. 
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Solución: 

La matriz  A   de adyacencia es  

 1v  2v  3v  4v  5v  

1v  0 1 1 0 1 

2v  1  0 1 1 1 

3v  1 1 1 1 1 

4v  0 1 1 0 1 

5v  1 1 1 1 1 
 
La matriz de incidencia es I  viene dada por : 

 1e  2e  3e  4e  5e  6e  7e  8e  9e  10e  11e  

1v  1 1 1 0 0 0 0 0 0 0 0 

2v  0 0 1 1 1 1 0 0 0 0 0 

3v  1 0 0 0 1 0 0 1 0 1 1 

4v  0 0 0 0 0 1 0 1 1 0 0 

5v  0 1 0 1 0 0 1 0 1 1 0 
 
 
Sean x   y  y   vértices, no necesariamente distintos, de un grafo no dirigido.  Un  camino  
de x  a y   en dicho grafo es una sucesión alternada finita y sin lazos  de vértices y aristas 
del grafo . que comienza en el vértice  x  y termina en el vértice y . 

La longitud de un camino  es igual al número de aristas que hay en el camino. 

Se puede demostrar que la potencia n de la matriz de adyacencia  nA , es una matriz cuya 
entrada  ija   proporciona el número de caminos de longitud   n   que van del vértice  i  al 
vértice  j.  

Por ejemplo, en nuestro caso 2A , es  

3     2     3     3     3 
2     4     4     2     4 
3     4     5     3     5 
3     2     3     3     3 
 3     4     5     3     5 
 
La cual indica ,por ejemplo, que hay  4 caminos de longitud  2 entre el vértice 

2 3v y v .En efecto, dichos caminos son :  v2v1v3,  v2v4v3;  v2v3v3;  v2v5v3. 

Además en la matriz de adyacencia , la suma de cada columna, en el caso de que no haya 
lazos en el vértice correspondiente a la columna, es igual al grado de dicho vértice; en el 
caso de que haya lazos,   

( ) {(grad v = suma de la columna para v)-1]+ 2( número de lazos en v).  
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Por último, la suma de cada columna de  I , la matriz de incidencia, es igual  a 1 para un 
lazo  y 2 para una arista que no sea un lazo. ¿Puede decir por  qué?. 

 
EJERCICIOS 4.2.   

 
1.- Obtenga las matrices de adyacencia A  y de incidencia  I para el grafo  que se ve en la 
figura : 

 

 
 
 
 
(b) Obtenga  2A  y diga cuántos y cuáles son los caminos de longitud 2 del vértice 

2 3v y v . 
 
 
A grosso modo , un grafo es conexo si entre dos de sus vértices existe al menos una 
sucesión de vértices y aristas que los conectan.   En la práctica estos grafos son muy 
importantes, por ejemplo, una red de computadoras es una gráfica conexa. 

 
 
 
4.2 GRAFOS CONEXOS.  
 
 
 

Sea G = (V, E), un grafo no dirigido. Decimos que G es conexo si existe un camino 
(trayectoria)  simple entre cualesquiera dos vértices distintos de G. Un grafo que no 
es conexo es disconexo. 

En la práctica estos grafos son muy importantes, por ejemplo, una red de 
computadoras o una red de distribución de gas o petróleo, o bien una red de carreteras 
son una gráfica conexa. 

Continuando con nuestro tema de los caminos  ( trayectorias) entre los vértices de un 
grafo, nos conviene analizar las siguientes definiciones, a fin aplicarlas en el estudio 
de las gráficas conexas: 
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TRAYECTORIA: Sean u y v  dos vértices de un grafo G. Como ya fue mencionado 
en el parágrafo anterior, una trayectoria o camino de u a v  es una sucesión alternada 
de vértices y aristas de G. Esta sucesión empieza en u y termina en v. 

TRAYECTORIA TRIVIAL: Si u y v son el mismo vértice, entonces la trayectoria 
es trivial, sin aristas, y se denota por u o por v. 

TRAYECTORIA SIMPLE: Una trayectoria simple de u a v es la que no tiene 
vértices repetidos. 

CIRCUITO O CICLO: Es una trayectoria que empieza y termina en el mismo 
vértice y no tiene aristas repetidas. 

CIRCUITO SIMPLE: Es una trayectoria que no tiene aristas ni vértices repetidos 
excepto el primero y el último. 

EJEMPLO 4.3.  En el grafo de la figura , notamos ,por ejemplo que: 

 

 
 
 
a) 1 1 2 6 4 3 3 2 2v e v e v e v e v    , es una trayectoria ve 1v   a  2v . Dicha trayectoria no es simple porque 
se repite el vértice  2v . 

b) 5 5 1 8 4 3 3 2 2 6 4 4 5v e v e v e v e v e v e v , es un circuito simple. 
c) 2 2 3 3 4 4 5 5 1 1 2v e v e v e v e v e v , este es un circuito simple                   
e) 1 1 2 2 3 3 4 4 5v e v e v e v e v , es una trayectoria simple. 

c) 1 8 4 3 3 7 1 8 4v e v e v e v e v , esta es una trayectoria no simple, puesto que se repite 1v . 
 
EJERCICIO 4.3.  

(a) Mostrar un ejemplo, si lo hay de trayectoria , trayectoria no simple, trayectorias simples, 
circuitos  y circuitos simples  en el grafo dado : 

 
 

 
 
(b) Identificar cuáles son trayectoria , trayectorias no simples, trayectorias simples, circuitos 

y circuitos simples. 
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CIRCUITOS EULERIANOS. 
El tema de los Circuitos Eulerianos es uno de los problemas más  antiguos en relación con 
los grafos. Leonhard Euler, uno de los matemáticos más prolíficos de la historia, se ocupó 
del  problema de los Puentes de Königsberg: La historia cuenta que en Königsberg , 
existía un río en el cual había dos islas conectadas entre sí y a tierra firme como se muestra 
en la figura siguiente: 

 

 
 
 
La gente de ese pueblo se preguntaba si era posible caminar por cada puente una sola vez, 
si se comenzara en una de las orillas o en una de las islas, y regresar al punto de partida. 

Euler pensó que este problema era equivalente a analizar al grafo siguiente: 

 

 
 
Donde A y C son las orillas del río, B es la isla más grande, D es la isla más pequeña. 

Euler , en 1736 descubrió el siguiente resultado general que nos permite decidir en qué 
condiciones un grafo tiene un circuito euleriano:  

Sea G un grafo.  G contiene un grafo euleriano si y sólo si 
1.- G es conexo 
2.- Cada vértice de G es de grado par. 
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Así que llegó a la conclusión de que en el problema de los Puentes de Königsberg, no era 
posible tal recorrido, puesto que , por ejemplo , el vértice D es de grado impar. Tenemos la 
siguiente definición general: 

Sea G un grafo. Un circuito en G que contiene a todas las aristas de G recibe el 
nombre de circuito euleriano. 
EJEMPLO 4.4.  Encontrar un circuito euleriano en el grafo siguiente: 

 
 
 
 
 
 
 
 
 
Solución: El grafo  dado sí tiene un circuito de Euler , debido a que   cada uno de sus 
vértices tiene grado par.  Por ejemplo el circuito  1 1 2 8 4 3 3 2 2 9 3 7 1 6 4 4 5 5 5 1v e v e v e v e v e v e v e v e v e e v ,. Es 
tipo euleriano; desde luego, usted puede encontrar alguno distinto a este. 

Ahora bien, en ciertos contextos se desea saber si es posible hacer no un circuito , sino un 
recorrido (un camino que puede ser abierto, no cerrado como un circuito). El resultado 
siguiente impone las condiciones en las cuales eso es posible: 

Un grafo no dirigido sin vértices aislados tiene un recorrido de  Euler si y sólo si dicho 
grafo es conexo y tiene exactamente dos vértices de grado impar. 
 

CIRCUITOS HALMILTONIANOS6

Es aquel en donde todos los vértices de un grafo aparecen solo una vez, (excepto el primero 
y el último, que son el mismo), y puede incluir o no a cada arista. 

. 

Por ejemplo , el grafo  (a) sí tiene un circuito de Hamilton, como el que se encuentra 
caminando por toda la periferia; sin embargo el circuito de la figura (b) no tiene un circuito 
de Hamilton. 

(a) (b)    
 

 
                                                                                                                                                                                                                     
 

                                                 
6 Se le llama así en honor al matemático irlandés William Rowan  Hamilton (1805-1864), quien presentó el 
problema en 1859  en forma de un juego que consistía n visitar todas las ciudades que aparecían en forma de 
punto en los vértices de un dodecaedro. 
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EJERCICIO 4.4. 

1.- Determinar cual de los grafos siguientes contiene un circuito euleriano. Si es así, 
proceder a localizarlo. 

 

       
         
2.- Encontrar un recorrido euleriano para el subgrafo que resulta de eliminar  la arista 9e , en 
el grafo del inciso (a) del problema anterior. 

3.- Encontrar un circuito hamiltoniano para cada uno de los grafos siguientes.  

 

                                      
 

(a) (b)                                              
 
 
 
 
3.- Demostrar que el grafo siguiente no tiene un circuito hamiltoniano. 
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4.- La figura siguiente muestra tres islas unidas a tierra firme y entre sí mediante un sistema 
de puentes. ¿Podrá realizarse un paseo comenzando en cualquier punto y regresando a el 
después de haber pasado por cada puente una sola vez?. 

 
 
5.-En 1859, Hamilton presentó el siguiente juego que consistía en pasar por cada punto del 
dodecaedro exactamente una vez y regresar al punto de partida. Encontrar un circuito de 
Hamilton en dicho grafo. 

 
 
 
 
 
 
4.4 GRAFOS PONDERADOS. 
 

Un grafo dirigido conexo y sin lazos  es ponderado  si a cada una de sus  aristas se les 
asocia un número real positivo  que llamaremos  peso o valor, al cual denotaremos con 
el símbolo ( )p e  o ( , )p a b  ,si ( , )e a b= .  Si  x   y  y   son vértices del grafo, pero no 
están conectados entre sí (no son adyacentes), se define ( , )p x y = ∞ . 

El estudio de estos grafos está asociado a problemas de minimización de costos u 
optimización de recursos. Como por ejemplo, determinar la menor cantidad de tubería 
para conectar a una red de distribución de gas; o por ejemplo, la determinación del 
menor costo en combustible al recorrer una ruta de distribución.  

Existe un algoritmo, desarrollado por el especialista en programación Edsger Wybe  
Dijkstra (1930-2002)  en 1959 ,el cual proporciona el camino más corta entre 
cualesquiera dos vértices de un grafo ponderado. 
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ALGORITMO DEL CAMINO MÁS CORTO DE DIJKSTRA. 

Paso 1.  Haga el contador  i=0  y  0 0{ }.S v= Etiquete 0v  con (0,-) y cada 0v v≠  con 
( , )∞ − . 

Si n=1, entonces 0{ }V v=  y el problema está resuelto. 
Si 1n > , continúe con el paso 2. 
 
Paso 2 .  Para cada  iv S∈ ,reemplace  (cuando sea posible) la etiqueta de v   por nueva 
etiqueta final  ( ( ( ), )L v y , donde   

( ) { ( ), ( ) ( , )}
iu S

L v L v L u p u vmín
∈

= +  

Y y   es un vértice en iS   que produce  el  ( )L v  mínimo. Si efectivamente hacemos un 
reemplazo, esto se debe al hecho que podemos ir de 0v   a  v   y recorrer una distancia más 
corta si recorremos  un camino que incluye una arista ( , )y v .] 

Paso 3.  Si cada vértice de iS  (para algún 0 2i n≤ ≤ − )  tiene la etiqueta ( , )∞ − , entonces 
el grafo etiquetado contiene la información que estamos buscando. 

Si no, existe al menos un vértice iv S∈  que no está etiquetado como ( , )∞ −  y realizamos 
las siguientes tareas: 

1) Seleccionamos un vértice  1iv +  tal que 1( )iL v +  sea mínimo (para todo v    de este tipo). 
Puede haber varios  de estos vértices , en cuyo caso podemos elegir cualquiera de los 
posibles candidatos . el vértice  1iv +  es un elemento de iS  que es el más cercano a 0v . 

2) Asignamos  1{ }i iS v +∪  a  1iS + . 
3) Incrementamos el contador  i  en 1 . Si 1i n= − , el grafo etiquetado contiene la 

información  deseada . Si 1i n< − , regresamos al paso 2.. 
 

EJEMPLO 4.5. Aplicar el algoritmo del camino más corto  para determinar la distancia  
más corta del vértice c a cada uno de los otros cinco vértices del grafo de la figura 
adjunta. 

 
 
 
 
 
 
 
 
 
Aplicando el algoritmo  Dijkstra, descrito antes, determinaremos  la distancia más corta del 
vértice ( )c v  a cada uno de los otro cinco vértices de G . 

Iniciación: ( )0i = . Sea { }S c= . Etiquetamos c  como (0,-) y los demás vértices de G  

con ( ),∞ − . 
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Primera iteración: { }( ), , , ,S a b f g h= . En este caso 0i = en el paso 2 y encontramos por 
ejemplo, que 

( )L a =  mín { }( ), ( ) ( , )L a L c p c a+  

mín { },0 ,∞ +∞ = ∞   misma que  

 
( )L f =  mín { }( ), ( ) ( , )L f L c p c f+  

mín { },0 6 6∞ + =   misma que  

 
Cálculos similares muestran que ( ) ( ) ( ) 11L b L g y L h= = ∞ = . Así, etiquetamos el 
vértice f  con (6, )c  y el vértice h  con (11, )c . Los demás vértices de S  siguen etiquetados 
con ( ),∞ − . Véase en la figura (b), que aparece abajo. 

En el paso 3 vemos que f es el vértice de 1v  en el S  más cercano de v  por lo que 
asignamos a 1S  el conjunto S  { },c f∪  e incrementamos el contador i a 1. 

como 1 5( 6 1)i = < = − , regresamos al paso 2. 

 
 

 
 
 
Segunda interación: 1( { , , , })S a b c h= . Ahora, i =1 en el paso 2; cada 1v S∈  hacemos 

( )L v =  mín { }( ), ( ) ( , )L v L u p u v+ de donde obtenemos  

( )L a =  mín { }( ), ( ) ( , ) ( ) ( , )L a L c p c a L f p f a+ + +  

mín { },0 ,6 11 17∞ +∞ + =  
por lo que etiquetamos el vértice a  como (17, )f . De manera similar vemos que 

( )L b =  mín{ ,0 ,6 }∞ +∞ + ∞ = ∞  
( )L g =mín { { ,0 ,6 9} 15∞ +∞ + =  
( )L h =  mín {11,0 11,6 4} 10+ + =  
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[Con estos resultados obtenemos el etiquetado de la figura ( b)]. En el paso 3 vemos que el 
vértice  es 2v  es  h , pues h 1S∈  y ( )L h  es un mínimo. Entonces  asignamos 2aS  si el 
conjunto 1 { }S h∪ = { }, ,c f h , incrementamos el contador a 2 y como 2 < 5,  el algoritmo 
nos lleva de nuevo al paso 2. 

 
Tercera iteración: ( )2 { , , }S a b g= .  Como 2i =  ene le paso 2, ahora calculamos. 

( )L a = mín { }( ), ( ) ( , )L a L u p a u+  
mín {17,0 ,6 11,10 11} 17+ ∞ + + =  
(así la etiqueta de a  no cambia) 

( )L b =mín { ,0 ,6 10, }∞ +∞ + ∞ = ∞  

( la etiqueta de b  sigue siendo ∞ ). 

( )L g =mín {15,0 ,6 9,10 4} 14 15+ ∞ + + = <  

por lo que la etiqueta de g  cambia a (14, )h  puesto que 14= ( ) ( , )L h p h g+ . Entre los 
vértices de 2 ,S g  es el más cercano a vpuesto que  ( )L g  es un mínimo. En el paso 3, el 
vértice 3v  se define como g  y 3 2 { } { , , , }S S g c f h g= ∪ = . Incrementamos el contador i  a 
3> 5, y regresamos al paso 2. 

 

Cuarta iteración: ( )3 { , ,}S a b= . Con i =3, determinamos lo siguiente en el paso 2: 

( ) 17; ( )L a L b= = ∞ . (Así, las siguientes etiquetas no cambian durante esta 

iteración). Hacemos  4v a=  y 4 3S S= 4 3S S= ∑ 4 3 { } { , , , , }S S a c f h g a= ∪ = , en el paso 

3. Entonces incrementa i =4 (<5) y regresamos al paso 2. 

 

Quinta iteración: ( )4 { ,}S b=  en el caso,  i =4 en el paso 2, y vemos que 

( ) ( ) ( , )L b L a p a b= +  =17+5=22 . La etiqueta de b  cambia por (22, a ). Entonces, 5v =b  en 
el paso 3, 5S  es { , , , , , }c f h g a b  e i  se incrementa a 5. Pero ahora que i =5=|V |-1, el 
proceso termina. Obtenemos El grafo etiquetado que se muestra en la siguiente figura. 
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De las etiquetas de la figura anterior obtenemos las siguientes distancias más cortas de c  a 
los otros vértices de G . 

1) ( ) ( ), 16d c f L f= =                           2) ( ) ( ), 10d c h L h= =  

3) ( ) ( ), 14d c g L g= =                           4) ( ) ( ), 17d c a L a= =  
5) ( ) ( ), 22d c b L b= =  
 
 

Por ejemplo, para determinar un camino dirigido más corto de c a b , partimos del 
vértice b , que tiene la etiqueta (22, )a , por lo tanto, a  es el predecesor de b  en este 
camino más corto. La etiqueta en a  es (17, )f , por lo que f  procede a a  en el camino. 
Por último la etiqueta f  es (6, c ), por lo que regresamos al vértice c  y el camino 
dirigido más corto de c a b  determinado por el algoritmo está dado por las aristas 
( , ), ( , )c f f a  y  ( , )a b . 

 

EJERCICIO.  4.5 

Determine el camino más corto del vértice a  a los vértices ,c f  e  i  

 

 
 
 
2.- a) Aplique el algoritmo de Dijkstra al grafo de la figura siguiente, y determine la 
distancia más corta del vértice a  a los demás vértices del grafo. 

 
 
 
 
 
 
 
 
 
 
b) Determine el camino simple más corte del vértice a  a cada uno de los vértices ,f g  y h . 
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3.- Determine la ruta más corta entre el nodo 1 y cualquier otro nodo de la red en la 
siguiente figura. 

 
 
 
 
 
 
 
 
 
 
 
 
 
GRAFOS ISOMORFOS. 
 
 
Dos grafos 1 1 1( , )G V E=  y   2 2 2( , )G V E=    son isomorfos, si existe una función 

1 2f V V= →   tal  

1) que f  es inyectiva; es decir;  a cada vértice de  1V  le asigna un vértice en 2V  distinto 
al asignado a cualquier otro. 

2) Para todos los 1 1, { , }a b V a b E∈ ∈  si sólo si 2{ ( ), ( )}f a f b E∈ . 
 
NOTA: La correspondencia de vértices de un isomorfismo de grafos mantiene las 
adyacencias y esto hace que se preserve la estructura de un grafo. 

 

EJERCICIO. 4.6Demostrar que los grafos siguientes son isomorfos. 
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Solución. 

Si en los grafos   (A) y (B)  definimos f  como: 
( )f a w=                           ( )f c y=     

 
( )f b x=                           ( )f d z=     

 
 
 
b) Verifique que los siguientes grafos son isomorfos, dando una función que lo justifique 
 
 
 

 
 
 
 

Solución. Aunque no podemos dar una función en forma directa; nos podemos dar cuenta 
que los grafos son isomorfos, porque el primero al ser rotado a 90°, realmente reproduce al 
segundo. De este modo podemos dar la siguiente función que los identifique. 

 
 
 

( ) , ( ) , ( ) , ( )f m s f n r f p f q t= = = =  
 
 

 

En este caso tenemos la correspondencia de aristas 

 
{ , } { ( ), ( )} { , },m n f m f n s r↔ =  
{ , } { ( ), ( )} { , },m p f m f p s ui↔ =  
{ , } { ( ), ( )} { , },m q f m f q s t↔ =  
{ , } { ( ), ( )} { , },n q f n f q r t↔ =  
{ , } { ( ), ( )} { , },p q f p f q u t↔ =  
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EJERCICIO 4.7. Indicar en cada caso si son isomorfos los siguientes pares de grafos. 

 

    
                           

(a)                                                                           (b) 
 
GRAFOS PLANOS. 
 
Un grafo (o multigrafo ) G  es plano si podemos dibujarlo  en el  plano de modo que sus 
aristas se intersecten sólo en los vértices del mismo . 

 

EJEMPLOS. 

 

 

(a) El grafo (a) es un grafo plano, en el sentido de que se puede dibujar de modo que sus 
aristas se intersecten sólo en sus vértices como en el grafo (b).  

 

 
 

(a)                                                                         (b) 
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2.- El grafo siguiente también es plano     , debido a que sus aristas sólo se intersectan en 
sus vértices.                                                                                

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Nota: Un vértice solo se considera grafo plano. 

 
EJERCICIO 4.7 

(a) Dibuje tres grafos planos. 
(b)El grafo siguiente se le llama Grafo de  Petersen. Comprobar que el grafo de Petersen no 
es plano.. 

 

 
 
Para finalizar nuestro tema de grafos, introducimos la siguiente definición: Sea G 
un grafo no dirigido y sin lazos, tal que E ≠ ∅ . Una subdivisión elemental   de  
 G resulta cuando se elimina una arista  { , }e u w=  de G y entonces las aristas   
{ , }, { , }u v v w  se añaden  a  G e− ,donde  v V∉ . 
 
Los grafos no dirigidos sin lazos 1 1 1( , )G V E=  y  2 2 2( , )G V E=  son   homeomorfos  
si son isomorfos o si ambos pueden obtenerse del mismo grafo no dirigido sin 
lazos  H por una sucesión de subdivisiones elementales. 
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Siguiendo estas definiciones se plantea el siguiente resultado , debido al matemático polaco 
K. Kuratowski: 

Teorema de Kuratowski.  Indica que: 

Un grafo no es plano si y sólo si contiene un subgrafo homeomorfo a 5K  o 3,3K  

 
Por ejemplo los grafos G  y  1G  son homeomorfos, debido a que en el primero se ha hecho 
una subdivisión de su arista { , }a b , mediante la introducción del vértice w . Esto hace que 
se obtenga, a partir del grafo  G   (figura (a) ) al grafo 1G  que se muestra en al figura (b).  
Obsérvese que se han añadido las aristas   

Por ejemplo, el grafo de Petersen  de la figura (a), tiene como subgrafo a la figura (b). 

 

                            
(a)                                                                                              (b) 

 
Se puede dar la siguiente sucesión de subdivisiones  hasta al finar obtener un subgrafo 
homeomorfo a 3,3K : 
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También se tiene el siguiente resultado debido a  L.  Euler  sobre  una relación entre el 
número de regiones  en que un grafo divide al plano , su número de vértices v y su número 
de aristas  e: 

Teorema de Euler  Sobre Grafos Planos.  Sea  G=(V,E)  un grafo o multigrafo plano 
conexo con  V v=   y  E e= .  Sea r  el número de regiones en el plano determinadas por 
una inmersión  (o representación)  plana de G ; una de estas regiones tiene un área infinita  
y se conoce  región infinita . Entonces  2v e r− + = . 

 
En efecto, considere por ejemplo el grafo plano  .En este caso como puede notar existen  
v=3  vérices; el número de aristas es igual  a e=3; el número de regiones es r=2  (la interna 
y la externa que es infinita). Por lo tanto:  3-3+2=2. 

 
 
                                      
 
 
 
 
 

 
Ahora, si observamos el siguiente ejemplo,  también 
verificamos que     v=4; e=6; r=4.  Por tanto: 

4-6+4=2. 
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EJERCICIO   4.8.  Indicar si los grafos siguientes cumplen con la relación de 
Euler. 
 
 

             
 
 

(a)                                                                                                           (b) 
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UNIDAD V 

 
ARBOLES 

Objetivo: 
 
En esta unidad, el alumno 

 Conocerá la terminología básica de la teoría de árboles. 
 Aplicará la teoría de árboles para optimizar códigos (Huffman) 
 Aprenderá a utilizar los árboles binarios para ordenar series de 

símbolos, según alguna convención. 
 Aplicará los árboles para generar notaciones para expresiones 

algebraicas ( notación polaca de Lukasiewicz). 
 Conocerá el algoritmo de Pri m para optimizar una ruta. 
 Aplicará los árboles en el análisis de juegos. 
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 5.1 DEFINICIÓN DE UN ÁRBOL 
 
Otra clase de grafos, llamados árboles, son grafos que no tienen circuitos ( de 
modo que no pueden tener aristas paralelas ni lazos.). A menudo es necesario 
utilizar árboles en la ciencia de la computación. 
 
Propiedades de los árboles. 
 
ÁRBOL: Sea T un grafo. T  recibe el nombre de árbol si y sólo si 

a) T es convexo. 
b) T no contiene circuitos (excepto los triviales). 

 
A un conjunto de árboles se le llama  bosque. 
 
EJEMPLO 5.1 
 
Los grafos  (a)  y  (b)    y  (c)  son árboles. 

    
     
 
 
                (a)                                           (b)                                        (c) 
 
Sin embargo, los grafos  (d) y  (e) y ( f) no son árboles, el primero porque no es 
conexo, y el segundo porque tiene un lazo; mientras que el tercero no es un árbol 
porque forma circuitos. 
 
 

                  
 
 
 
                   (d)                                         (e)                              (f) 
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EJERCICIOS 5.1 
 
1.- Dibujar todos los árboles distintos que tengan tres vértices. 
 
2.- Determinar por qué cada grafo de las siguientes figuras  no presenta un árbol. 
 
 

 
 
 

 
 
El  teorema siguiente nos permite caracterizar un árbol: 
 
Teorema: Sea un G grafo conexo que tiene n  vértices. G es u árbol si sólo si 
tiene exactamente 1n −  aristas. 
 
EJERCICIO 5.2.  Verifique el resultado anterior usando como grafos de prueba a 
todos  los grafos del ejemplo 5.1. 
 
 
Existe un tipo especial de árbol, llamado  árbol con raíz que es útil en la ciencia 
de la computación.  (A un árbol que no esté enraizado se le llama   árbol libre). 
 
Las características de un árbol con raíz son: 
 
Raíz: Si v  se distingue de los otros vértices de T , entonces T  recibe el nombre 
de árbol con raíz y v se denomina raíz. 
 
Hijo: Si u  es adyacente a v  pero se encuentra más lejos de la raíz de lo que esta 
v  entonces a u  se le llama hijo de v . Si u  y w  son los únicos hijos de v , con la u  
localizado a la izquierda de u  y w  a la derecha de v , entonces u  y w  se llaman, 
respectivamente hijos izquierdos y derecho de v . 
 
Hoja: Si el vértice u  no tiene hijos, entonces u  se le llama hoja ( o vértice 
terminal). 
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Si u  tiene uno o dos hijos, entonces u  se denomina vértice interno. 
Los descendientes del vértice u  es el conjunto que consiste en todos los hijos de 
u  junto con los descendientes de esos hijos. 
 
EJEMPLO  5.2. Considere el siguiente  árbol con raíz T  

 
 
a) ¿Cuál es la raíz de T ? 
b) ¿Es T  es un árbol binario? Si es así, encontrar los hijos izquiedo y derecho de 
cada vértice. 
c) Encontrar las hojas y los vértices internos de T  
d) Encontrar los descendientes de los vértices a  y c . 
 
Solución: 
 

a) El vértice a  se distingue por ser el único localizado en la copa del árbol. Por 
lo tanto a  es la raíz. 

b) Sí, cada vértice tiene dos hijos, un hijo o ninguno. La tabla siguiente indica  
los hijos de cada vértice. 
 

 
 
 
 
 
 
 

c) Las hojas son los vértices que 
no tienen hijos. Estos son b , g  
y h . L os vértices internos son 
los que tienen uno o dos hijos. 
Estos son c , d  y e . 

Los descendientes de a  son b , c , d , e , f , g , h . Los descendientes de c  son 
d , e , f , g , h .  
 
Árbol binario: Si T  tiene raíz y cada vértice de T  tiene hijos izquierdo y derecho, 
o hijo izquierdo o hijo derecho, o no tiene hijos, entonces T  se denomina árbol 
binario.   Por otro lado, si en el árbol binario los vértices tienen exactamente dos 
hijos o ninguno se les llama  árboles binarios completos. 
                                                                        
Sea T  un árbol binario y sean u  y v  dos vértices de T . El árbol con raíz en u  es 
el árbol que consiste en la raíz u , todos sus descendientes y todas las aristas que 

vértice Hijo 
izquierdo 

Hijo 
derecho 

a  b  Ninguno 
b  Ninguno Ninguno 
c  d  e  
d  Ninguno f  
e  g  h  
f  Ninguno Ninguno 
g  Ninguno Ninguno 
h  Ninguno Ninguno 
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los unen. Si u  es el hijo izquierdo de v , entonces el subárbol con raíz en u  se 
llama subárbol izquierdo de u , y si u  es el hijo derecho de v , entonces el 
subárbol con raíz se llama subárbol derecho de v  con raíz en u . Si  u  es una 
hoja, entonces el subárbol con raíz en u  se  denomina subárbol trivial. 
 
EJEMPLO  5.3 .Considere el siguiente árbol binario.  
 
 

 
 

a) Encontrar los subárboles izquierdo y derecho de v . 
b) Encontrar el subárbol con raíz en r . 

 
 
 
Solución:  La raíz es   el vértice  v . En la siguiente figura se dan , respectivamente 
los subárboles izquierdo y derecho  de dicho grafo.   
 

                                     
 
 
 
 
 
 

c) en la figura siguiente se da el subárbol con raíz en r . 
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Continuando con la presentación de la terminología básica de la teoría de árboles, 
definimos a un  árbol jerarquizado  cuando se establecen niveles de mayor a 
menor ,partiendo de la raíz del árbol. Por ejemplo, en un organigrama: 
 

 
 
 
También , si en cada nodo de un árbol tomamos una decisión, a dicho árbol le 
llamaremos   árbol de decisión .   Por ejemplo, un árbol como este se puede 
utilizar para resolver un viejo acertijo  de toma de decisiones, llamado  El juego de 
las  ocho monedas.  En tal juego, se supone que tenemos ocho monedas , una 
de las cuales es falsa, por lo cual pesa más o menos que las otras siete. El juego 
consiste en analizar todas las posibilidades de formas de pesar a las monedas con 
una única balanza, hasta descubrir  a la que es falsa.  Está claro que podemos 
dividir, al principio a las monedas en dos grupos de cuatro, y poniéndolas en la 
balanza, podremos descubrir el grupo en la que está la moneda falsa; luego a 
dicho subgrupo se le divide a su vez en otro dos subgrupos de tamaño dos, etc. 
Dependiendo de cómo tomemos a las monedas, se generan las dos posibilidades 
que se ven en la figura:   

                  
solución con árbol binario                                             solución con árbol ternario 
 
 
 
 
 
 
 
 

DIRECTOR GENERAL 

SUBDIRECTOR DE RECURSOS HUMANOS SUBDIRECTOS ACADEMICO SUBDIRECTOR DE VINCULACIÓN 

CONTADOR MAESTROS 
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BÚSQUEDAS A LO LARGO Y A LO ANCHO. 
 
 
 
La búsqueda a lo largo  o a lo ancho sirven para establecer una búsqueda de 
alguna clave (nodo)  ubicado en un árbol.Estos conceptos después nos servirán 
para establecer recorridos en diversos órdenes a través de un árbol. 
 
Búsqueda a lo largo (en profundidad). 
 
Sea  ( , )G V E=  un grafo conexo no dirigido con r V∈ . A partir de r , construimos 
un camino simple en  G , lo más largo posible.  Si este camino simple incluye 
todas los vértices de V , entonces el camino simple es un árbol recubridor  T  de  
nuestro grafo.. En caso contrario, sean   ,x y   los dos últimos vértices visitados por 
este camino, con  y   como último vértice.  Después retrocedemos al vértice    x   y 
construimos un segundo camino simple en G, lo  más largo posible, a partir de  x   
que no incluya a los vértices ya visitados. Si no existe tal camino, retrocedemos al 
padre  p   de  x   y vemos lo lejos que podemos llegar  a partir de  p ,construyendo 
un camino simple , lo más largo posible, sin ir  a vértices ya visitados) hasta una 
nueva hoja   1y .  En caso de que todas las aristas que parten  de  p  conduzcan a  
vértices ya visitados, retrocedemos un nivel más  y continuamos el proceso.  
Puesto que el grafo es conexo y finito , este procedimiento, llamado   búsqueda a 
lo largo,   determinará  finalmente el árbol  recubridor   T   de   G, donde  r   se 
considera la raíz de T .  Por  medio de  T podemos ordenar los vértices de G en un 
orden llamado  orden previo   que después definiremos. 
 
Para mayor precisión, damos enseguida el algoritmo exacto de   búsqueda a lo 
largo: 
 
 
Sea  ( . ),G V E=   un grafo no dirigido, conexo, sin lazos, tal que   V n=   y donde 
los vértices están ordenados   como  1 2, ,..., nv v v .  Para encontrar  el árbol 
recubridor en profundidad, ordenado con raíz, aplicamos el siguiente algoritmo, 
donde usamos la variable   v  para guardar  el vértice  analizado en un momento 
dado. 
 
 
Algoritmo de Búsqueda en Profundidad o a lo Largo. 
 
 
Paso 1.  Se asigna   1v   a la variable  v  y se inicializa  T como un  árbol  que 
consta solamente de este vértice .  ( El vértice   1v   será la raíz del árbol recubridor 
que se va a desarrollar) 
 
Paso 2.    Seleccionamos el subíndice más pequeño  i 2 i n≤ ≤ , tal que    y  iv   no 
ha sido visitado todavía. 
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Si no se encuentra tal subíndice , entonces se va al paso  3.  En caso contrario , 
se hace lo siguiente: (1) Añadimos a la arista   { , }iv v  al árbol  T; (2) asignamos  iv  
a  v   (3)  regresamos al paso 2. 
 
 
Paso 3.    Si iv v=  , el árbol  T es el árbol recubridor  (ordenado, con raíz ) del 
orden dado. 
 
Paso 4.   SI iv v≠ , retrocedemos  desde  .v   Si  u   es el vértice asignado  a  v  en  
T , entonces asignamos  u   a  v   y regresamos al paso  2.. 
 
 
EJEMPLO 5. 4.  Determine el árbol recubridor para el grafo siguiente mediante el 
algoritmo de búsqueda a lo largo. 
 
 

 
 
Solución: 
 
En este caso el orden de los vértices es alfabético: 

, , , , , , , , ,a b c d e f g h i j  
 
Asignamos primero el vértice a  a la variable v  e 
inicializamos  T  sólo con dicho vértice (el cual jugará el 
papel de raíz). En el paso 2  , vemos que el vértice  b  es el 

primer vértice tal que  no ha sido visitado aún, por lo que agregamos la arista  
{ , }a b   a  T  , asignamos  b   a  v   y regresamos  al paso 2. 
 
Para  v b= , vemos que el primer  vértice  ( no visitado todavía)  y que proporciona 
una nueva  arista al árbol recubridor es  d . En consecuencia, agregamos la arista  
{ , }b d   a  T   , asignamos   d  a  v   y volvemos al paso 2. 
 
 
Sin embargo, esta vez no existe un nuevo vértice que podamos obtener de d  , 
puesto que los vértices   a   y  b    ya han sido visitados., por lo que vamos al paso  
3.  Pero en este caso el valor de v   es  d  , no a  ; así que vamos al paso  4.  
Retroceder de  h a e  a b  a a . Cuando v   tiene asignado el vértice a por segunda 
vez, se obtiene la nueva arista { , } { , }e f y e h . Después agregamos las aristas 
{ , },{ , } { , }c g g i y g j . En este momento hemos visitado todos los vértices de G , por 
lo que retrocedemos de  j  a g   a c   a a . Con v =a de nuevo, regresamos al paso 
2 y de ahí al paso 3, donde termina el proceso. 
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El árbol resultante 1( , )T V E=   aparecen en la parte (b) de la siguiente figura. 

 
 
Un segundo método para buscar los vértices de un grafo no dirigido conexo con 
lazos es la búsqueda en anchura. Aquí designamos un vértice como la raíz y 
recorremos todos los vértices adyacentes a la raíz. Desde cada hijo de la raíz  
podemos recorrer los vértices ( no visitados) que son adyacentes a uno de estos 
hijos. Al continuar este proceso,  nunca enumeraremos un vértice dos veces, de 
modo que no se construye un ciclo; como G  es finito, el proceso termina en cierto 
momento. 
 
Cierta estructura de datos es útil para desarrollar un algoritmo en este segundo 
método de búsqueda. Una cola es una lista ordenada en la que los elementos se 
insertan en un extremo ( el final )  de la lista  y se eliminan del  otro extremo ( el 
frente). En consecuencia, una cola se conoce como una estructura FIFO ( “ first-in, 
first-out” , primero en entrar, primero en salir). 
 
Como en la búsqueda en profundidad, nuevamente asignamos un orden a los 
vértices de nuestro grafo. 
Comenzamos con un grafo no dirigido conexo sin lazos ( , )G V E= , donde |V | = n  
y los vértices están ordenados como 1 2 3, , .... nv v v v . El siguiente algoritmo genera el 
árbol recubridor en anchura (ordenado con raíz) T  de G  para el ordenador dado. 
 
Algoritmo de búsqueda de anchura. 
 
Paso 1: Insertemos el vértice 1v  en la cola Q  e iniciamos en T  como el árbol 
formado por este único vértice 1v  ( la raíz de la versión final T . 
Paso 2: Eliminamos los vértices del frente de Q . Al eliminar un vértice 1v  
consideremos 1v  para cada 2 i n≤ ≤ . Si la arista  1( , )v v E∈  y 1v  no ha sido visitado, 
agregamos la arista a T . Si examinamos todos los vértices ya que estaban en Q  y 
no obtenemos aristas nuevas, el árbol T  (generado hasta este momento) es el 
árbol recubridor (ordenado con la raíz) del orden dado. 
 
Paso 3: Insertamos los vértices adyacentes a cada v  ( del paso 2) en el final de la 
cola  Q , según el orden en que fueron visitados por primera vez. Después 
regresamos al paso 2. 
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EJEMPLO 5.4 
 
Utilizaremos el grafo de la siguiente figura con el orden , , , , , , , , ,a b c d e f g h i j  para 
ilustrar el uso del algoritmo de búsqueda de anchura. 
 
a) 

1.-Partimos del vértice a  , Insertamos a  en  Q  e 
inicializamos T  con este vértice ( la raíz del árbol 
resultante). 
2.- En el paso 2 eliminamos a  de Q  y visitamos los 
vértices adyacentes a  él:  

, ,b c d  (estos vértices no han sido visitados previamente ). 
Esto permite añadir las aristas { } { } { }, , , , ,a b a c a d . 
3.- En el paso 3, insertamos , ,b c d  (en este orden) en Q  y 
regresamos al paso 2. Ahora eliminamos estos vértices de               
Q  y visitamos los vértices adyacentes a ellos (no visitados 
antes de acuerdo con el orden dado de los vértices de G , 
De aquí obtenemos los nuevos vértices ,e g  y las aristas 
{ } { }, , ,b e c g  que agregamos a T . 
4.- Después vamos al paso 3 e insertamos ,e g  en Q . 
Regresamos al paso 2, eliminamos cada uno de estos 
vértices de Q .y encontramos, en orden, los nuevos  

           
 vértices ( no visitados previamente ) , , ,f h e i . Esto nos permite añadir las aristas  
al árbol T . 
De nuevo regresamos al paso 3, donde insertamos los vértices , , , ,f h e i j   en Q . 
Pero ahora cuando vamos al paso 2 y eliminamos los vértices de Q , no 
encontramos vértices nuevos ( no visitados previamente). En consecuencia el 
árbol T  de la siguiente figura es el árbol recubridor de anchura de G , para el 
orden dado. ( El árbol 1T  que aparece en la parte de abajo surge con el orden 

, , , , , , , , , .j i h g f e d c b a ). 
 
 
ARBOLES GENERADORES MINIMALES.  
 
Un árbol generador de un grafo G es un subgrafo  del mismo  el cual  es un  árbol   
que contiene todos los vértices de G. 
 
Si se asignan pesos ( )p i a las  aristas de dicho árbol  generador  y la suma de 
dichos pesos  es la mínima posible, entonces a dicho árbol se le llama   árbol 
generador minimal. 
 
 

b 
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Los árboles generadores minimales  aparecen en forma natural en varios  
problemas, como por ejemplo, al diseñar una red de  distribución de agua o gas, 
en donde lo que interesa es ,por ejemplo, minimizar la cantidad de material 
utilizado.  Robert  Prim dio el siguiente algoritmo para determinar a un árbol 
minimal en tales casos. 
 
 
5.2. ALGORITMO DE PRIM. 
 
Paso 1: Hacemos el contador 1i =  y colocamos un vértice arbitrario 1v V∈  en el 
conjunto P . Definimos 1{ }N V v= −  yT =∅ . 
 
Paso 2: 1 1i n≤ ≤ − , donde | |V n= , sean 1 2 1 2 1( , ..., ), { , ,..., }i iP v v v T e e e −= =  y 
N V P= −  añadimos a T  la arista más corta ( la arista de peso minimal) de G  que 
conecta un vértice x  en P  con un vértice 1( )iy v +=  en N . Colocamos y  en P  y lo 
eliminamos de  N . 
 
Paso 3: Incrementamos el contador en 1. 
Si i n=  el subgrafo de G  determinado por las aristas 1 2 1, ,..., ie e e −  es conexo, con n  
vértices y  n -1 aristas y es un árbol óptimo para G . 
Si i n< , regresamos al paso 2. 
 
EJEMPLO 5.4  Usamos este algoritmo para encontrar un árbol óptimo para el 
grafo siguiente. 
 

 
 
Solución. 
 
. El algoritmo de Prim genera un árbol óptimo de la forma siguiente. 
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El árbol generador minimal es el que se muestra en la figura: 

 
 
EJERCICIO 5.2 
 
2.-  a) Aplique el algoritmo  el algoritmo de Prim  para determinar  el árbol 
recubridor  minimal para el siguiente grafo. 
 

 
 
2.- La siguiente tabla proporciona información acerca de la distancia existente ( en 
millas ) entre pares de ciudades en el estado norteamericano de Indiana, E. U. 
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Se construirá un sistema de carreteras para unir estas siete ciudades. Determine 
las carreteras que deben construirse para minimizar el costo de construcción. ( 
Suponga que el costo de construcción de una milla de carretera es el mismo entre 
cualquier par de ciudades ). 
 

 
 
 
3.- Se desea establecer una red de comunicación por cable que enlace las 
ciudades que se ven en la figura. Determine cómo deben conectarse las 
ciudades  de modo que se minimice la longitud total de cable que se utilice. 
 
 

 
 
El algoritmo de  Prim representa un ejemplo de lo que es un algoritmo voraz, en 
el sentido de que en cada iteración va agotando los pesos de las aristas ,para 
finalmente obtener el mejor resultado posible. 
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5.3. TIPOS  DE RECORRIDOS  DE UN ARBOL. 
 
 
Sea ( , )T V E=  un árbol con raíz r .Si T  no tienen otros vértices, entonces la 
misma raíz es el recorrido  en orden previo y orden posterior deT . Si |V|>1, sean 

1 2 3, , ... kT T T T  los subárboles de T  de izquierda a derecha. 
 

a) El recorrido en orden previo de T   visita primero r  y después 
recore los vértices de 1T  en orden previo, después los vértices de 

2T en orden previo y así sucesivamente, hasta recorrer los vértices de 

KT  en orden previo. 
b) El recorrido en orden posterior de T  recorre en orden posterior los 

vértices de los 1 2, ,... kT T T  para después llegar a la raíz.  
                 ©recorrido de orden simetrico:   Sea ( , )T V E=  un árbol binario con                 
raíz, donde r  es l raíz. 
 

1) Si |V | =1, entonces el vértice r  es el recorrido en orden simétrico de T . 
2) Si |V |>1, sean 1T  Y 0T  los subárboles izquierdo y derecho de T .El recorrido 

en orden simétrico de T  recorre primero los vértices de 1T  en orden 
simétrico, después visita la raíz y luego recorre, en el orden simétrico, los 
vértices de 0T . 

 

 
 
 
 
 
EJEMPLO 5.5  
 
 Si aplicamos el recorrido en el orden simétrico al árbol binario con raíz que se 
muestra en la  siguiente figura, veremos que la lista de orden simétrico para estos 
vértices es , , , , , , , , , , , , , , , , , , .p j q f c k g a d r b h s m e i t n u   Las otras lecturas son: 
Orden posterior:  p,q,j,f,k,g,c,d,a,s,m,h,t,u,n,i,,e,b,r 
Orden  previo:  r,a,c,f,j,p,q,g,k,d,b,e,h,m,s,i,n,f,u. 
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EJERCICIO 5.2. Dar los recorridos en orden previo, posterior y simétrico para  los 
siguientes árboles. 
 
 
 
 

                                                       
            
 
                     (1)                                                                            (2) 
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                              (3)        
 
 
 
  
REPRESENTACIONES PREFIJAS, INTERFIJAS  Y POSTFIJAS DE UNA 
EXPRESIÓN ALGEBRAICA 
 
 
Los árboles binarios se usan para representar expresiones algebraicas . Los 
vértices del árbol son marcados con los números, las variables u operaciones que 
conforman la expresión. Las hojas de un árbol se pueden marcar únicamente con 
números o variables. Las operaciones como adición, sustracción, multiplicación, 
división o potenciación solo pueden ser asignadas a los vértices internos. La 
operación en cada vértice afecta a sus subárboles izquierdo y derecho, de 
izquierda a derecha. Los dos ejemplos siguientes ilustran estos usos de los 
árboles binarios. 
 
A una operación en donde se especifica mediante un paréntesis a cada operación 
se le llama    Notación totalmente parentética.  Por ejemplo  

2[(2 3) /(2 )] (6 3)x x x− − + − , está escrita en esta forma. Es claro que esta forma de 
escribir a una expresión algebraica es necesaria para evitar ambigüedades. 
                         
 
EJEMPLO 5.5 
 
1.- Usar un árbol binario para representar la expresión 
 
(a) (x + y)/z (‘’/’’significa división). 
(b) [(x – y)++2]/(x + y) (‘’**’’ significa potenciación) 
 
SOLUCIÓN: 
 
a) En esta expresión, el primer término es x , el segundo es y  y la operación es *. 
Por lo tanto, este valor, que se muestra en la figura siguiente debe tener su raíz en 
* y debe tener dos subárboles, uno para cada término. 
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b) Aquí, primero se suma x  con y  y luego se divide entre z . Esto significa que el    
árbol debe tener a / como raíz y dos subárboles<. Un subárbol izquierdo con raíz 
en + que suma a x  con y  y un subárbol derecho con raíz en z . 
       

 
 
 
b) Para obtener el primer término, que es (x-y)**2, primero se resta y  de x  y                                                    
luego se eleva al cuadrado. Para obtener el segundo término, que es x y+ , se 
suma x  con y . Por último, se divide estos términos. Esto significa que el árbol 
debe tener raíz en / y debe tener dos subárboles, como se muestra en la siguiente 
figura: 
 

 
 
Una vez representada la operación en un árbol binario, se puede proceder  a 
leerla , generando tres lecturas: la lectura en orden previo, se le llama notación 
en orden prefijo ( o notación polaca);   a la lectura en orden simétrico, se le 
llama  orden interfijo  y a la lectura en orden posterior, se le llama orden postfijo 
(o notación polaca inversa).  
 
EJEMPLO 5.6.   Dar la expresión en notación polaca, en orden interfijo y en orden 
posterior de la expresión   2[( ) ] /( )x y x y− + . 
 
Solución:   El árbol y a lo hemos obtenido antes en el ejemplo anterior. Leyendo a 
dicho árbol en los ordenes especificados, se obtiene: 
 
Orden previo (notación polaca):  / 2xy xy∧ − +  
Orden interfijo:  2 /x y x y− ∧ +  
Orden postfija (notación polaca inversa): 2 /xy xy− ∧ +  
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ORDENAMIENTOS 
 
Suponga que se tienen un conjunto de números. Se le llama claves. S e tiene 
interés en dos de las diversas operaciones que se pueden realizar en este 
conjunto: 
 
1.- Ordenamiento ( o clasificación) del conjunto. 
2.- Exploración del conjunto ordenado para localizar cierta clave y, en el caso de 
no encontrar la clave en el conjunto, añadirla en la posición derecha de manera 
que se mantenga el ordenamiento del conjunto. 
 
EJEMPLO  5.7.  
 

(b) Usar un árbol binario para almacenar en orden creciente los elementos de 
la siguiente lista de números: 7, 10,21, 3, 24, 23. 

(c) Usar el árbol construido en (a) para buscar el número 19 en la lista. Si éste 
no se encuentra, actualizar la lista agregándole el número. 

 
SOLUCIÓN: 
 

(a) Se empieza por seleccionar cualquier número de la lista para que sea la 
raíz del árbol binario. Supóngase que se elige el 10 para que sea esta raíz. 
Se dibujan los hijos izquierdo y derecho de 10, como se muestra a 
continuación en la figura (a). 
Luego se escoge otro número de la lista, por ejemplo 3. Ahora, 3 es menor 
que 10, por lo que el hijo izquierdo de 10 se marca con 3 y luego se dibujan 
los hijos izquierdo y derecho de 3, como se muestra en la figura (b). 
Enseguida se escoge otro número de la lista, por ejemplo 21. Para ubicar a 
21 en el árbol, se empieza en la raíz 10 y se compara con 21. Como 21 es 
mayor que 10, se desciende hasta el hijo derecho de 10 . Éste no esta 
marcado, por lo que se marca con 21 y luego se dibujan los hijos a la 
izquierdo y derecho de este vértice., obsérvese en la figura (c). 
Se continua del mismo modo. Se escoge el siguiente elemento de la lista, 
por ejemplo 7. De nuevo se empieza en la raíz 10 y se compara con 7. 
Como 7 es menor que 10, se desciende hasta el hijo izquierdo de 10, el 
cual es el vértice marcado con 3. Se compara 7 con 3. Como es mayor que 
3, entonces se desciende hasta el hijo derecho de 3. Este hijo no está 
marcado, por consiguiente se marca con 7 y se dibujan los hijos izquierdo y 
derecho de 7 obsérvese en la figura (d). 
Supóngase que el número siguiente que se escoge de la lista es 24. Debido 
a que 24 es mayor que 10, se desciende hasta el hijo derecho de 10. 
Puesto que 24 es mayor que 21 se desciende hasta el hijo derecho de 21. 
Este hijo no está marcado. POR lo tanto, se marca con 24 y se dibujan los 
hijos izquierdo y derecho de 24 obsérvese en la figura (e) 
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Para finalizar el último número de la lista es 23. Se empieza en la raíz 10.23 es 
mayor que 10, por lo que se desciende hasta el hijo derecho de 10, el cual está 
marcado como 21. Puesto que el 23 es mayor que el 21, entonces se 
descendiente hasta el hijo derecho de 21, el cual cuál está marcado con 24. 
Debido a que 23 es menor que 24, se desciende hasta el hijo izquierdo de 24, el 
cuál no está marcado. Entonces se  marca con 23 y se dibuja el hijo izquierdo y 
derecho de 23 el cual se observa en la figura (f). Puesto que se a llegado ha un 
vértice no marcado, se concluye que el número 19 y se dibujan los hijos izquierdo 
y derecho de 19  en el inciso (g). Esto añade la clave 19 a la lista a la vez que 
mantiene el orde3n creciente de los números en dicha lista. 

 
 
 
Observe que la lectura en orden simétrico genera la serie de números ordenada: 
 
3,7,10,19,21,23,24. 
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EJERCICIO 5.3.  
 
1.-Leer al árbol siguiente en orden previo, simétrico y posterior. 
 

 
 
2.- Representar a la operación  3( 3 ) /(2 )x y x− −   en notación polaca. 
3.- En el siguiente árbol binario encontrar la expresión algebraica representada por 
el árbol. 
 

 
                   (a)                                  (b)                                     (c) 
 
 

 
                                                    (d) 
 
 
3-  En los siguientes problemas se da una expresión algebraica. Usar un árbol 
binario para representar la expresión. 
 

(a) [( a + b )/ c] + d 
(b) {1/[(a + b )^ 2]} – [(a + b) ^ c] + b 

 
4. Ordene, mediante el uso de un árbol binario de búsqueda a la serie 
13,4,5,9,17,41,22. 
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CODIGO HUFFMAN.  
 
Un conjunto P  de sucesiones binarias (que representa un conjunto de símbolos) 
es un código prefijo si ninguna de las sucesiones de P  es el prefijo de otra 
sucesión de P . 
 
David  Huffman ,diseñó una forma de encontrar un código binario con cadenas de 
longitud óptima,según su frecuencia de uso.  Básicamente se basa en los 
resultados siguientes: 
  
Lema: Si T  es un árbol óptimo para los n  pesos 1 2 ... np p p≤ ≤ ≤ , entonces existe 
un árbol óptimo para T  en el que las hojas de pesos 1p  y 2p  son hermanos en el 
nivel maximal (en T ). 
 
Con este lema vemos lo que los pesos aparecen en los niveles superiores (lo que 
produce números del nivel más alto) en un árbol óptimo. 
 
Teorema: 
 
Sea T  un árbol óptimo para los pesos 1 2 3, ... np p p p+  donde 1 2 ... np p p≤ ≤ ≤ . En 
la hoja con peso de 1 2p p+  colocamos un árbol binario (completo) de peso 1 y 
asignamos los  pesos 1 2,p p  a los hijos (hojas) de esta hoja anterior. El nuevo 
árbol binario 1T  construido de esta forma es óptimo para los pesos 1 2 3, ... np p p p+ . 
 
 
Demostración: 
 
Sea 2T  un árbol óptimo para los pesos 1 2, , ... np p p  donde las hojas 
correspondientes a los pesos 1 2,p p  son hermanos. Eliminamos las hojas de pesos 

1 2,p p  y asignamos el peso 1 2p p+  a su padre (ahora una hoja). Este árbol binario 
completo se denota con 3T  y 2 3 1 2( ) ( )P T P T p p= + + . Además 1 1 2( ) ( )P T P T p p= + + . 
Puesto que T  es óptimo , 3( ) ( )P T P T≤ . Si 3( ) ( )P T P T< , entonces 1 3( ) ( )P T P T< , 
Entonces 1 2( ) ( )P T P T< , lo que contradice la elección de 2T  como óptimo. Por lo 
tanto, 3( ) ( )P T P T=  y en consecuencia 1 2( ) ( )P T P T< .así 1T  es óptimo para los 
pesos 1 2, , ... np p p
 
 
EJEMPLO  5.9 
 
Construyamos  un código prefijo óptimo para los símbolos , , , , ,a o q u y z  que 
aparecen con las frecuencias 20, 28, 4, 17,12, 7, respectivamente. 
La figura siguiente muestra la construcción que sigue el procedimiento de 
HUFFMAN.  
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En la parte (b), se combinan los pesos 4 y 7, de modo que podamos considerar la 
construcción para los pesos 11,12,17, 20, 28. En cada paso ( en las partes (c)-(f) 
creamos un árbol con subárboles con raíz en los dos pesos menores. Estos dos 
pesos menores pertenecen a vértices que antes o estaban aislados (un árbol 
solamente con una raíz) o bien eran la raíz de un árbol anteriormente obtenido en 
la construcción. De este último resultado, determinamos un código prefijo como 
 

:11 01 0000 10 : 001 : 0001a o q u y x= = =  
 
Podemos obtener diferentes códigos prefijos a partir de la forma en que 
seleccionan los árboles , 'T T , 'T T  y se asignan como subárboles izquierdo y 
derecho en los pasos 2(a) y 2(b) de nuestro algoritmo, y a partir de las 
asignaciones de 0 y1 a las ramas (aristas) de nuestro árbol (de Huffman)  final. 
 
 
EJERCICIO 5.5 
 
1.- Para el código prefijo de la siguiente figura, decodifique las sucesiones (a) 
1001111101;  (b)10111100110001101; (c) 1101111110010 
 
 

 
 
2.-Determine el código de  Huffman para los símbolos  p,q,r,s,t,u,v  , cuyas 
frecuencias de aparición son, respectivamente: 12, 17, 15,19,32,18. 
 
 
 
ARBOLES DE JUEGO 
 
Los árboles tienen una utilidad muy amplia,una de las cuales es tomarlos como 
herramientas de decisión. Un juego   es básicamente una sucesión de decisiones 
que toma un jugador en cada etapa del juego. Por ejemplo: 
 
 
 
EJEMPLO  5.4. Usar árboles para analizar a los juegos propuestos. 
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1.- Un hombre tiene tiempo para jugar ruleta cinco veces a lo sumo. En cada juego 
gana o pierde un dólar. El hombre empieza con un dólar y dejará de jugar si antes 
de la quinta vez pierde todo su dinero o si gana tres dólares, esto es, si tiene 
cuatro. Hallar el número de casos en que la apuesta  puede ocurrir. 
 
En siguiente diagrama de árbol, describe el camino en que la apuesta puede 
suceder. Cada número del diagrama denota el número de dólares que el hombre 
tiene en ese punto. Observamos que la apuesta puede suceder 11 maneras 
diferentes. Obsérvese que él suspenderá la apuesta antes de que los cinco juegos 
se hayan realizado en solamente tres de los casos. 
 
 
 

 
 
 
 
 
2.- Los equipos A y B juegan en un torneo de baloncesto. El primer equipo que 
gane dos juegos seguidos o un total de cuatro juegos gana el torneo. Hallar el 
número de maneras como puede suceder el torneo. 
 
 
SOLUCIÓN: 
 
14 Maneras 
2.-Un hombre tiene tiempo  para jugar ruleta cinco veces. Gana o pierde un dólar 
en cada jugada. El hombre empieza con dos dólares y dejará de jugar a la quinta  
vez si pierde todo su dinero o si gana tres dólares ( esto es, complete 5 dólares). 
Hallar el número de maneras como puede suceder el juego. 
 
SOLUCIÓN: 
 
20 maneras (como se muestras en el siguiente diagrama): 
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EJERCICIO 5.4.   Analice mediante un árbol el llamado juego del gato. 
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