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Preface

This text attempts to change the way we teach logic to beginning students.
Instead of teaching logic as a subject in isolation, we regard it as a basic
tool and show how to use it. We strive to give students a skill in the propo-
sitional and predicate calculi and then to exercise that skill thoroughly in
applications that arise in computer science and discrete mathematics.

We are not logicians, but programming methodologists, and this text
reflects that perspective. We are among the first generation of scientists
who are more interested in using logic than in studying it. With this text,
we hope to empower further generations of computer scientists and math-
ematicians to become serious users of logic.

Logic is the glue

Logic is the glue that binds together methods of reasoning, in all domains.
The traditional proof methods —for example, proof by assumption, con-
tradiction, mutual implication, and induction— have their basis in formal
logic. Thus, whether proofs are to be presented formally or informally, a
study of logic can provide understanding.

But we want to impart far more than the anatomy of the glue —proof
theory and model theory. We want to impart a skill in its use. For this rea-
son, we emphasize syntactic manipulation of formulas as a powerful tool for
discovering and certifying truths. Of course, syntactic manipulation cannot
completely replace thinking about meaning. However, the discomfort with
and reluctance to do syntactic manipulation that accompanies unfamiliar-
ity with the process unnecessarily forces all reasoning to be in terms of
meaning. Our goal is to balance the tendency to reason semantically with
the ability to perform syntactic reasoning. Students thereby acquire under-
standing of when syntactic reasoning is more suitable, as well as confidence
in applying it.

When we teach the propositional and predicate calculi, students are put
in a syntactic straightjacket. Proofs must be written rigorously. This is an
advantage, not a disadvantage, because students learn what it means for a
proof to be rigorous and that rigor is easily achieved. We also describe prin-
ciples and strategies for developing proofs and go over several proofs for the
same theorem, discussing their advantages and disadvantages. Gradually,
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students learn how the shape of formulas can help in discovering proofs.
The students themselves develop many proofs and, with time and prac-
tice, begin to feel at ease with the calculi. We also relate formal logic to
informal proofs and to various well-known proof methods. This allows stu-
dents to put what they have learned in context with their past experiences
with proofs. In the end, students have a firmer understanding of the notion
of proof and an appreciation for rigor, precision, brevity, and elegance in
arguments.

Teaching logic as a tool takes time. It is a terrible mistake to skim over
logic in one or two weeks. Five to eight weeks are needed to digest and
master the material. Time spent on logic early in the game can be gained
back many times over in later courses. By mastering this material early,
students will have an easier time with subsequent material in mathematics
and computer science.

An equational logic

We need a style of logic that can be used as a tool in every-day work. In our
experience, an equational logic, which is based on equality and Leibniz’s
rule for substitution of equals for equals, is best suited for this purpose.

e Equational logic can be used in class, almost from the first day, to
solve in a simple fashion problems that otherwise seem hopelessly
complex. Students see right from the beginning that logic is useful.

e Proofs in an equational logic are a nice alternative to reasoning in
English, because they rarely parrot informal English arguments in a
formal way. Formal logic is more than just a language in which En-
glish arguments are to be couched. Moreover, equational proofs are
frequently shorter, simpler, and easier to remember than their coun-
terparts in English or in other formal styles (e.g. Hilbert or natural
deduction).

e The equational style is already familiar to students, because of their
earlier experiences with high-school algebra.

e The equational style has wide applicability. This text is evidence for
this claim. We have used the equational style to reason about sets, se-
quences, relations, functions, the integers, combinatorics, recurrence
relations, programs, and graphs.
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Teacher’s manual and answer book

The departure of this text from the traditional method of teaching logic
and discrete math may initially present difficulties for instructors. To help
them make the switch, we have written a teacher’s manual, which contains
general guidelines on presenting the material as well as detailed suggestions
for each chapter. The teacher’s manual, which includes answers to all the
exercises in the text, can be obtained by writing the authors at Cornell.

Notation

Where possible, we use conventional mathematical notation. In a few places,
however, our standards for consistency, uniformity, unambiguity, and ease
of syntactic manipulation compel us to depart from tradition. The first
departure is our notation for function application, where we use an infix
period, as in f.b. Those who have been practicing formal manipulation
have found that eliminating unnecessary parentheses helps in making the
structure of formulas clear. When the structure of the function application
dictates the use of parentheses, as in f.(b+2) and g.(a,b), we abbreviate
by eliminating the period, as in f(b+2) and g(a,b).

We use a single notation for quantifications (e.g. (+i 10 <1i < n:i3)
and (Ai]0<1i<20:b[i] =0)) over any symmetric and associative oper-
ator. Having a single notation cleans up what until now has been a rather
muddled affair in mathematics, and it enables students to see semantic
similarities that are obscured by the standard notations.

We also depart from standard English usage in a few ways. For example,
we use the logical (rather than the traditional) approach to placing stops
relative to quote marks. In this, we follow Fowler and Gower in their “Dic-
tionary of Modern English Usage”. Traditionalists would have us place the
period of the previous sentence before the quote mark (but if the sentence
ended in an exclamation point it would be after!). The logical approach
puts the stop where it belongs. When the period is not part of the quote,
it appears outside the quote marks.

We place a space on one side of an em dash —here are examples— in
order to help the reader determine whether the em dash begins or ends a
parenthetical remark. In effect, we are creating two symbols out of one. In
longer sentences—and we do write long sentences from time to time—the
lack of a space can make it difficult to see the sentence structure—especially
if the em dash is used too often in one sentence. Parenthetical remarks
delimited by parentheses (like this one) have a space on one side of each
parenthesis, so why not parenthetical remarks delimited by em dashes?
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Historical notes

Students generally find math texts to be rather dry affairs. This reputation
is well deserved. But the creators of mathematics and computer science are
every bit as colorful as the characters one finds lurking behind other disci-
plines. Mathematics and its notation were shaped by personalities, cultures,
and forces of history. To give students a taste for our history and culture,
this text contains 30-odd historical notes (and some are very odd indeed).
These historical notes introduce mathematicians and computer scientists
as well as discuss topics such as the history of symbols for equality, the
golden ratio, and software patents. We hope that these notes help convince
students that our field is not sterile, but vibrant and living.

The facts for the historical notes were gleaned from a number of sources,
all of which appear in the list of references beginning on page 473. Three
sources were particularly helpful: Eric T. Bell's Men of Mathematics (3],
Florian Cajori’s A History of Mathematical Notations [7], and the Fncy-
clopedia Britannica [12].

Selecting topics for different audiences

This book contains far too much material for a typical one-semester, fresh-
man or sophomore course, and the instructor is advised to select a subset.
The core of the book —Chaps. 1-5.1, 8, and 9— belongs in every course.
At Cornell, this material takes five weeks, but there is nothing wrong with
spending as much as seven or eight weeks on it. We usually mix parts of
Sec. 5.1 on applications with the presentation of Chap. 3, thereby providing
motivation. Chaps. 11, 12, and 14 on sets, induction, and relations are also
central to almost any course. Finally, Chap. 13 provides a wealth of exer-
cises on proving theorems by induction, outside the domain of the natural
numbers.

Thereafter, there is ample opportunity for divergence.
e Computer-science oriented courses will want to cover Chaps. 10 (con-

cerning programming), 16 (combinatorial analysis), 17 (recurrence
relations), or 19 (graph theory).

e Math-oriented courses may tend towards Chaps. 15 (integers), 18
(modern algebra), and 20 (infinite sets).

e A logic-oriented course would cover Chaps. 6 and 7 thoroughly.

This text is also suitable for students seeking some exposure to math-
ematics. The material in Chaps. 1-5.1, 8, and 9 constitutes an effective
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alternative to calculus as the introduction to rigorous thinking that is re-
quired by most colleges. After all, the notion of proof is important in almost
all areas, and not only in scientific and engineering ones. We believe that
the material on propositional and predicate logic can be learned by every
student, as long as the teacher paces the material to the mathematical
aptitude and maturity of the students.

A reference text

We have organized most of the chapters for reference, as well as study.
Theorems are grouped in boxes, to assist the student or scholar in finding
a pertinent theorem when necessary. This is not only for the logic chapters
but also for the chapters on sets, sequences, relations, and integers. A list
of theorems for the propositional and predicate calculi has been placed at
the end of the text for easy reference.
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Chapter 0

Using Mathematics

athematics can be used to represent, or model, the world. This is

because mathematics provides a way to represent relationships that
is concise, precise, and well-suited to manipulations for revealing insights
about the objects being modeled. For example, the equation

e=m-c?

was Albert Einstein’s way of expressing a belief about the relationship
between energy e and mass m (c¢ denotes the speed of light). The laws
of planetary motion, or at least models of these laws, are used in launching
satellites and keeping them in orbit. Social scientists employ mathematics,
especially statistics, in understanding, analyzing, and making predictions
about the behavior of society. Mathematical models help in anticipating the
stock market and the weather. Since all areas of science and engineering
employ mathematical models of one kind or another, it is not surprising
that much time is spent building, manipulating, and analyzing models.

As a mundane example of a mathematical model, consider the following
problem.

Mary has twice as many apples as John. Mary throws half her
apples away, because they are rotten, and John eats one of his.
Mary still has twice as many apples as John. How many apples
did Mary and John have initially?

Using m and j to denote the numbers of apples that Mary and John have
initially, we write formula (0.1) as a mathematical model of the problem.
(0.1) m=2-5 and m/2=2-(j—1)

Any values of m and j that make (0.1) true could be the numbers of
apples that Mary and John had initially. Notice how much more succinct,
our mathematical model is than the English description of the problem.
The mathematical model also has other virtues, as we now see.

Virtues of mathematical models

What is it about mathematical models that makes them so useful? One of
their key virtues is the following:

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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A mathematical model may be more understandable, concise,
precise, or rigorous than an informal description written in a
natural language.

To illustrate the benefits of rigor (see Historical note 0.1 on page 3), consider
an algorithm to compute b, an integer approximation to /n for some
integer n . This algorithm is rigorously specified by giving a precondition,
which can be assumed to hold before execution of the algorithm, and a
postcondition, which describes what is to be true upon termination. For
computing +/n, the precondition is 0 < n, since the square root of a
negative number is undefined if we restrict ourselves to results that are not
complex numbers.

Formalizing the postcondition requires us to think carefully about what
approximations for y/n would be acceptable. Three choices are given be-
low, where variable b contains the approximation to /n .

Choice 1: b2 <n < (b+1)?

Choice 2: abs(b? —n) < abs((b+ 1) —n) and
abs(b? — n) < abs((b—1)? —n)

Choice 3: (b—1)2 <n < b?

Choice 1 corresponds to computing the largest integer that is at most /n;
choice 2, to computing the integer closest to /m; choice 3, to computing
the smallest integer that is at least /n.

Note that in the informal English specification of the problem, we simply
wrote “an approximation to 4/n”. In the mathematical formulation, we
were forced to be precise in specifying exactly what approximation was
acceptable —rigor guided us to a more thorough analysis.

A second important virtue of mathematical models is:

Answers to questions about an object or phenomenon can often
be computed directly using a mathematical model of the object
or phenomenon.

The discovery of the planet Neptune illustrates this virtue. As early as the
seventeenth century, Kepler, Newton, and others formulated mathematical
models of planetary motion, based on observing the stars and planets. In
the early 1800’s, it was discovered that observations of the planet Uranus
did not agree with the mathematical models being used. The discrepancies
between observations and models received so much attention that, in 1843,
the Royal Society of Sciences of Gottingen, Germany, offered a prize for
a satisfactory theory of the motions of Uranus. Scientists conjectured that



0. USING MATHEMATICS 3

HISTORICAL NOTE 0.1. WEBSTER AND HILBERT ON RIGOR

Calls for more rigor in programming and related areas have often been
met with glassy-eyed stares, frozen features, and stiffening of backs —as if
the listener equated rigor with rigor mortis. In searching for reasons for this
reaction, we looked up “rigor” in Webster’s Third International Dictionary.
We found the following meanings: “often harsh inflexibility in opinion, temper,
or judgement; the quality of being unyielding or inflexible; an act of severity
or harshness; a condition that makes life difficult”. No wonder people were
unsympathetic to calls for more rigor!

Only in the fourth definition of “rigor” did our intended meaning surface:
“strict precision or exactness”.

The brilliant and influential mathematician David Hilbert (see Historical
note 6.1 on page 111) also called for rigor. Here is what he had to say, in a
famous lecture to the Second International Congress of Mathematicians held
in Paris in 1900 (see [32]).

It remains to discuss briefly what general requirements may be
justly laid down for the solution of a mathematical problem. I
should say first of all this: that it shall be possible to establish the
correctness of the solution by means of a finite number of steps
based on a finite number of hypotheses which are implied in the
statement of the problem and which must be exactly formulated.
This requirement of logical deduction by means of a finite number
of processes is simply the requirement of rigor in reasoning ... .
It is an error to believe that rigor in proof is the enemy of simplic-
ity. On the contrary, we find it confirmed by numerous examples
that the rigorous method is at the same time the simpler and the
more easily comprehended. The very effort for rigor forces us to
discover simpler methods of proof. It also frequently leads the way
to methods which are more capable of development than the old
methods of less rigor.

Our respect for rigor is the same, and we hope that studying this text will
give you a better feeling for rigor and its application.

the orbit of Uranus was being affected by an unknown planet. Some two-
to-three years of calculation (all by hand!) uncovered the probable position
for the unknown planet. Searching that area with telescopes led to the
discovery of the planet Neptune in 1846.

There is a third important advantage in using mathematical models:

Mathematics provides methods for reasoning: for manipulating
expressions, for proving properties from and about expressions,
and for obtaining new results from known ones. This reasoning
can be done without knowing or caring what the symbols being
manipulated mean.
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That is, there are rules for performing syntactic manipulations, without
regard for semantics. We use these rules to learn, in a syntactic fashion,
things about the model and the phenomenon it models. Only the initial and
final formulations need be interpreted in terms of the original problem.

Here is a simple example of syntactic manipulation. Suppose we want an
expression equivalent to Einstein’s equation e = m-c? that shows how to
calculate m given e. Without thinking much about it, you will write m =
e/c? . In school, you learned rules for manipulating arithmetic expressions
and practiced them so much that you can now apply them automatically,
often several rules at a time. Below, in some detail, is a calculation of

e/c? =m from e=m-c*.

e=m-c?
= (Divide both sides by the non-zero c?)
e/c? = (m-c?)/c?
= (Associativity)
e/ct =m-(c?/c?)
=  (3/t=1)
e/c2 =m-1
= {(m:1=m)
e/c2=m

In this calculation, between each pair of expressions appears a line with an
equals sign and a hint (within brackets ( and ) ). The equals sign indicates
that the expressions are equal, and the hint indicates why. Since equality
is transitive (which means that from b = ¢ and ¢ = d we can conclude
that b= d holds), we conclude that e = m-c? is equivalent to e/c? =m.

We can understand each of the above manipulations without knowing
what m, e, and ¢ denote, that is, without knowing that the equations
being manipulated are models of the relation between energy and matter.
We are able to reason syntactically.

We expect that you are accustomed to manipulating arithmetic expres-
sions but probably have had little experience manipulating boolean expres-
sions (as found in programming languages like Pascal). For example, given
that p and ¢ together imply r and that r is false, what can be inferred
about p and about ¢ 7 Familiarity with manipulating boolean expressions
would allow you to conclude that at least one of p and ¢ is false. As

another example, consider the following English statement about an array
b.

Every value in array segment b[1..n] that is not in b[¢..5] is in
bli..j] -
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Do you know how to make sense of this apparent gibberish? Try formulating
this sentence as a boolean expression, simplifying the boolean expression,
and then translating back into English. (We do this in a later chapter.)

Manipulation of boolean expressions is obviously a useful skill for pro-
grammers, so our first task in this text is to help you develop that skill.
Acquiring skill in manipulation will require a great deal of practice on your
part, but the time spent will be worthwhile. This skill will be of service to
you in much of the mathematical work you do later, including computer
programming. And, of course, we will use such syntactic manipulations
throughout this text.

Beyond syntactic manipulation

Although the initial chapters of this text emphasize syntactic manipulation
of formulas, the text addresses much more. For example, we hope to convey
a sense of taste and style in inventing notation and using formalism. Some
notations are ambiguous, while others are suited for only certain tasks.
Perhaps you have had experience using the various arithmetic calculators
on the market. Keying in 13 4+ 5-6 on many will produce 108, which is
not consistent with the value a mathematician would ascribe to that ex-
pression: 43 (i.e. 13 + (5-6) ). Other calculators process “reverse polish
notation”, so one can enter either 13 5+ 6+ or 13 5 6-+, depending on
whether (13+5)+6 or 13+ (5-6) is desired. Without explicit parentheses
or operator-precedence rules, our usual infix notation for arithmetic expres-
sions is ambiguous. And, apparently, infix notation is not the only notation
for specifying arithmetic calculations.

This text also introduces you to a number of useful abstractions and their
properties. You are no doubt comfortable using integer variables to model
integer-valued quantities. Richer, more powerful abstractions are needed to
model other phenomena of interest. Mathematicians have invented a col-
lection of such general-purpose abstractions. The set allows us to model
and reason about collections of objects, like groups of cities in the North-
east or the Sun Belt. The relation allows us to model and reason about
relationships between objects in sets. For example, relation < on integers
characterizes the relative magnitudes of two integers and the “adjacent”
relation on cities tells whether it is possible to drive from one city di-
rectly to another. We also discuss in this text various types of infinities
—abstractions that may not have a counterpart in reality but neverthe-
less are useful in understanding questions that arise in connection with the
foundations of mathematics.

In science and engineering, mastery of a subject is equivalent to being
able to reason about the subject. One finds many different notions of what
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HISTORICAL NOTE 0.2. STARTING WITH ZERO

The first chapter of this text is numbered 0. In some situations, it does not
matter whether we start with 0 or 1, and we might start with 0 simply for
the shock value. In other situations, starting with 0 is really the best choice.
More and more programming languages, for example, number the first element
of a character string 0, because it makes many manipulations easier. And,
memory locations in a computer are numbered starting with 0. Numbering
from 0 also makes sense in some non-computer situations. What’s the lowest
score you can get on a test? How old are you on your first birthday —at your
birth?

Too many people write 1% for first, 2" for second, 3™ for third, and
so on. You won’t find us doing that, because that would lead to writing 0%?
when numbering starts at 0, and that makes no sense. First means “before
all others or anything else in time, rank, order, etc.”, so how could anything
come before the first? If counting starts at 0, then 0 is the 15° number.

The concept of zero was developed by the Hindus, and the small circle they
used to denote it was given the Sanskrit word for vacant. The concept and
symbol were transliterated into Arabic and then into Latin about 1200 A.D.
Before that, the Romans and the western world had no symbol for zero. That
may explain partially why starting from 1 has been ingrained in our society
for so long.

constitutes the embodiment of such reasoning, the “proof”. At one end of
the spectrum are highly stylized proofs, like those you learned in high-school
geometry; at the other end, are informal English language arguments typi-
cally found in introductory calculus texts. Underlying all these proof styles
is a small number of simple, domain-independent methods. In this text we
discuss these methods —mathematical induction, proof by contradiction,
the pigeonhole principle, and so on. We also discuss various styles and for-
mats for proofs. Formal logic is the basis for these discussions, because it
abstracts the notion of a reasoning system.

Finally, in this text we apply what we advocate in domains of particular
interest in computing science. The design of combinational circuits, a key
aspect of hardware design, is closely related to the study of boolean expres-
sions. Both involve reasoning about “variables” (called wires in a circuit
design) that can take one of two values and expressions obtained by com-
bining those variables with boolean operators (gates in a circuit design).
Reasoning about programs is also treated in this text —the importance of
this task should be obvious.



Chapter 1

Textual Substitution, Equality,
and Assignment

e introduce teztual substitution and illustrate its application to rea-

U » soning about equality and about the assignment statement in pro-

gramming languages. We discuss Leibniz’s definition of equality and for-

malize it in terms of textual substitution (see Historical note 1.2). We give
a proof format for showing equality of two expressions.

1.1 Preliminaries

Recall the syntax ! of conventional mathematical expressions. Expressions
are constructed from constants, variables, and operators (like +, -, <,
and =). We can define the syntax of simple expressions as follows.

e A constant (e.g. 231) or variable (e.g. z ) is an expression.
e If F is an expression, then (F) is an expression.

e If o is a unary prefix operator? and E is an expression, then oF
is an expression, with operand E . For example, the negation symbol
— is used as a unary operator, so —5 is an expression.

e If x is a binary infix operator and D and E are expressions, then
D x F is an expression, with operands D and E . For example, the
symbols + (for addition) and - (for multiplication or product) are
binary operators, so 1+ 2 and (—5):(3 + z) are expressions.

Parentheses are used in expressions to indicate aggregation (to aggregate
means to bring together). Thus, 2-(3 4+ 5) denotes the product of 2 and
3 + 5. Precedences are assigned to operators in order to reduce the need

! Syntaz refers to the structure of expressions, or the rules for putting symbols
together to form an expression. Semantics refers to the meaning of expressions,
or how they are evaluated.

2 A unary operator has one operand. A binary operator has two operands. A
prefix operator is written before its operands, as in —5. An infix operator is
written between its operands, as in x + 2.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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for parentheses. The precedences assigned to all operators used in this text
are given in a precedence table on the inside front cover. For example,
in (4+ 2)-3, parentheses indicate that 4 4+ 2 is multiplied by 3, while in
(4+2)+3, the parentheses can be omitted because multiplication, according
to the table, has higher precedence than addition.

An expression can contain variables, and evaluating such an expression
requires knowing what values to use for these variables. To this end, we
introduce the notion of a state. A state is simply a list of variables with
associated values. For example, in the state consisting of (z,5) and (y,6),
variable z is associated with the value 5 and variable y with 6.

Evaluation of an expression E in a state is performed by replacing all
variables in E by their values in the state and then computing the value
of the resulting expression. For example, evaluating x —y +2 in the state
just given consists of replacing variables x and y by their values to yield
5 — 6+ 2 and then evaluating that to yield 1.

1.2 Textual substitution

Let E and R be expressions and let x be a variable. We use the notation
Elz := R] or E%

to denote an expression that is the same as E but with all occurrences of
z replaced by “(R)” . The act of replacing all occurrences of = by “(R)”
in E is called textual substitution. Examples are given below.

Unnecessary
Expression Result parentheses removed
z[z =z + 2] (z+2) z+2

(z+y)r=2+2] ((z+2)+y) 2+2+y
(z-y)z =2 +2] (2 +2)y) (z+2)y

Observe that the parentheses delimiting R can be deleted if they are not
needed. We often combine the steps of textual substitution and removal of
unnecessary parentheses, saying, for example, simply that (z+y)[z := 2+2]
equals z+24vy.

For z alist z1,..., T, of distinct variables and R alist R;,..., R, of
expressions, the simultaneous textual substitution FE[x := R]| denotes the
simultaneous replacement in E of the variables of = by the correspond-
ing expressions of R, each expression being enclosed in parentheses. For
example, (z+y)[z,y:=5,6] is ((5) + (6)) , which simplifies to 546, and
(z+y)zy=y-y,w] is ((y-y)+ (w)), which simplifies to y-y+w.
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HISTORICAL NOTE 1.1. GOTTFRIED WILHELM LEIBNIZ (1646-1716)

Mathematics, law, religion, history, literature, logic, and philosophy all owe
debts to Leibniz. A man of tremendous energy, he read, wrote, and thought
incessantly. He was refused a law doctorate at Leipzig at the age of 20, basically
because the faculty was envious of him. So, he traveled to the University of
Altdorf in Nuremberg and submitted an essay on the historical method of
teaching law, which he composed during the trip. Altdorf not only awarded
him a doctorate but offered him a professorship. He turned it down.

Leibniz spent much of his life as a diplomat, librarian, historian, and geneal-
ogist in the service of the nobility —the last 40 years were spent with the Duke
of Hanover. Leibniz’s work brought him into contact with nobility and their
problems. In one essay written for an employer, he urged the European states
to work together in the conquest of the non-Christian world in the middle east.
He worked actively to reunite the Catholic and Protestant churches and wrote
treatises that looked for common ground between them. At one point, he was
offered the post of librarian at the Vatican but declined because he did not
want to become a Catholic.

As a mathematician, Leibniz is best known, along with Isaac Newton, for
the development of calculus —blame your Freshman Calculus course on them.
The controversy between these two giants is legendary. Leibniz was also far
ahead of his time in dreaming of a “general method in which all truths of the
reason would be reduced to a kind of calculation”. Its principal utility would
be in reasoning performed by operations on symbols —even geometry would
be handled this way, without need for diagrams and figures. Thus, Leibniz
foresaw symbol manipulation as we know it today.

Textual substitution has a higher precedence than any operator listed i

n

the precedence table on the inside front cover. Consequently, in the first

case below, the substitution is performed only on subexpression y. In the

second case, parentheses are used to indicate that the substitution is bein,
applied to z + y, rather than to y alone.

z+ylz,y:=5,6] is z+6
(z+y)[z,y:=5,6] is 5+6

g

The alternative notation E% is more concise than E[z := R], but, at
least to programmers, F|z := R] is more suggestive of the operation that

it denotes than is E% . Hence, we tend to use E[z := R| as long as
formula fits easily on one line.

a

Note that z in E[z := R] must be a list of distinct variables —all
the variables in z must be different. Also, note that textual substitution
is defined only for replacing variables and not for replacing expressions.

Further examples of textual substitution appear in Table 1.1.
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Textual substitution is left associative, so that Fz := R]y := Q] is
defined to be (E[z := R])[y := @], a copy of E in which every occurrence
of = has been replaced by R and then every y has been replaced by
@ . This means that, in general, E[z := R|[y := Q] is different from
Elz,y := R,Q)], as illustrated by the following two textual substitutions:

(z+2-y)[z,y:=y,z] and (z+2-y)x:=yly:= 1]

TEXTUAL SUBSTITUTION AND HIDDEN VARIABLES

At times, we name an expression and then use its name within another
expression. For example, we may give the name @ to an expression using
b+ Vb2 —4-a-c
Q: 5
‘a
We can then abbreviate the expression z = (—b+ vb? —4-a-c)/(2-a) by
r=Q.

However, the expression « = @ then has three hidden variables, a, b,
and c, and these must be taken into account when a textual substitution
is performed. For example, the textual substitution (z = Q)[b:= 5] yields

(z=Q"), where Q' =(—5+ V52 —4-a-c)/(2:a).

INFERENCE RULE SUBSTITUTION

Our first use of textual substitution comes in the form of an inference rule,
which provides a syntactic mechanism for deriving “truths”, or theorems
as we call them. Later we see that theorems correspond to expressions that
are true in all states. An inference rule consists of a list of expressions,

TABLE 1.1. EXAMPLES OF TEXTUAL SUBSTITUTION

Substitution for one variable

35[z:=2] = 35

ylz=2] =y

z[z:=2] = 2

(zz+y)lz=c+y]l = (c+y)(c+y +y

@+ +2%)z =24y = (2+y)°+4° + (= +y)°

Substitution for several variables
(+y+ylzy=zw = z+twtw
(z+y+yr,y:=2-y,2:2] = 2-y+z-2+z°2
(z+2-y)r,y:=y1] =y + 22
(x+2-y2)z,y,2:=2,2,9] = z + 2:2-y
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called its premises or hypotheses, above a line and an expression, called
its conclusion, below the line. It asserts that if the premises are theorems,
then the conclusion is a theorem.

Inference rule Substitution uses an expression FE, a list of variables v,
and a corresponding list of expressions F':
E

Efv :=F)]

This rule asserts that if E is a theorem, then so is E with all occurrences
of the variables of v replaced by the corresponding expressions of F'. For
example, if z+y =y+x (thisis E) is a theorem, Substitution allows us
to conclude that b+ 3 =3 +b (thisis Elz,y:=b,3|) is also a theorem.

(1.1) Substitution:

Here is another example. Suppose the expression 2-z/2 = z is a theo-
rem. By Substitution (1.1), we can conclude that (2-z/2 = z)[z :=j], ie.
2-5/2 =j, is also a theorem.

It should be noted that an inference rule like Substitution (1.1) is really
a scheme that represents an infinite set of rules —one rule for each combi-
nation of an expression F , list of variables v, and list of expressions F'.
For example, we can instantiate E, v, and F of Substitution (1.1) with
2:z/2=1x, z,and j+5, respectively, to obtain the inference rule

2-x/2=2x 2-z/2=x
(2:z/2=1x)[z:=j+5 2:(j+5)/2=5+5

1.3 Textual substitution and equality

Evaluation of the expression X =Y in a state yields the value true if
expressions X and Y have the same value and yields false if they have
different values. This characterization of equality is in terms of expression
evaluation. For reasoning about expressions, a more useful characterization
would be a set of laws that can be used to show that two expressions are
equal, without calculating their values. For example, you know that z =y
equals y = z, regardless of the values of  and y. A collection of such
laws can be regarded as a definition of equality, provided two expressions
have the same value in all states iff 2 one expression can be translated into
the other according to these laws.

We now give four laws that characterize equality. The first two are ex-
pressions that we postulate are theorems (and they are true in every state).

3 Mathematicians use #ff as an abbreviation for if and only if. Thus b iff ¢
holds provided (i) & holds if ¢ holds and (ii) ¢ holds if b holds.
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(1.2) Reflexivity: z ==z
(1.3) Symmetry?: (z=y)=(y=1)

The third law for equality, transitivity, is given as an inference rule.
X=Y,Y=27

1.4) Transitivity:
(1.4) ansitivity X =7

We read this inference rule as: from X =Y and Y = Z, conclude X = 7.
For example, from z+y = w+1 and w+1 = 7 we conclude, by Transitivity
(14), z +y = 7. As another example, on page 4, we gave a proof that
(e =m-c?) = (e/c? = m). It is Transitivity that allows us to conclude that
the first expression e = m-c? equals the third, then equals the fourth, and
finally equals the fifth expression, e/c? = m.

A fourth law of equality was articulated by Gottfried Wilhelm Leibniz,
some 350 years ago (see Historical Note 1.2). In modern terminology, we
paraphrase Leibniz’s rule as follows.

Two expressions are equal in all states iff replacing one by the
other in any expression F does not change the value of E (in
any state).

A consequence of this law can be formalized as an inference rule (see also
Exercise 1.4):

X=Y
Elz:=X|=E[z:=Y]

Variable z is used in the conclusion of (1.5) because textual substitution is
defined for the replacement of a variable but not for the replacement of an
expression. In one copy of E, z is replaced by X , and in the other copy,
it is replaced by Y . Effectively, this use of variable z allows replacement
of an instance of X in Efz:=X] by Y.

Here is an example of the use of Leibniz (1.5). Assume that b+3 =c+5
is a theorem. We can conclude that d +b+3 =d+ ¢+ 5 is a theorem, by
choosing X, Y, and E of Leibniz, as follows.

(1.5) Leibniz:

X: b+3 E: d+z
Y: ¢c+5 Z: z

4 A binary operator  (or function f with two parameters) is called symmet-
ric, or commutative, if zxy =y*x (or f(z,y) = f(y,z)) for all arguments z
and y. Hence, (1.3) asserts that = is a symmetric operator.
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HISTORICAL NOTE 1.2. LEIBNIZ’S DEFINITION OF EQUALITY

Def. 1. Two terms are the same (eadem) if one can be substituted for the
other without altering the truth of any statement (salva veritate). If we have
A and B, and A enters into some true proposition, and the substitution of
B for A wherever it appears results in a new proposition that is likewise true,
and if this can be done for every proposition, then A and B are said to be the
same; and conversely, if A and B are the same, they can be substituted for
one another as I have said. Terms that are the same are also called coincident
(coincidentia); A and A are, of course, said to be the same, but if A and
B are the same, they are called coincident.

Def. 2. Terms that are not the same, that is, terms that cannot always be
substituted for one another, are different (diversa).

Corollary. Whence also, whatever terms are not different are the same.

Charact. 1. A ~ B signifies that A and B are the same, or coincident.

Charact. 1. Anon B signifies that A and B are different.

(From [29, page 291], which is an English translation of the Latin version of
Leibniz’s work found in [19]. Note that Leibniz used the sign o for equality.)

1.4 Leibniz’s rule and function evaluation

A function is a rule for computing a value v (say) from another value w
(say). Value w is called the argument and v the corresponding result. For
example, consider the function g defined by

(1.6) g(z)=3-2+6

Function ¢ has the value of 3-w+ 6 for any argument w . The argument
is designated in a function application, which is a form of expression. The
conventional notation for the function application that applies g to the
argument 5 is g(5); it yields the value of 3-5+46 . In order to reduce the use
of parentheses when writing function definitions and function applications,
we use the notation g.5 instead of g(5) when the parameter or argument is
an identifier or constant. For example, function g of (1.6) might be defined
by

gz:3-2+6

We give two examples of evaluation of function applications.

g5 9(y +2)

= (Apply function) = (Apply function)
3546 3-(y+2)+6

= (Arithmetic)

21
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Function application can be defined in terms of textual substitution: If
(1.7) gz: E

defines function g, then function application ¢g.X for any argument X
is defined by ¢.X = E[z := X]. This close correspondence between func-
tion application and textual substitution suggests that Leibniz (1.5) links
equality and function application, and we can reformulate (1.5) as

X=Y
gX=gY
This rule indicates that from the equality of X and Y we can deduce the
equality of function applications ¢.X and ¢.Y . This fundamental prop-

erty of equality and function application holds for any function ¢ and
expressions X and Y.

(1.8) Leibniz:

In fact, any expression can (momentarily) be viewed as a function of one
or more of its variables. For example, we can consider x + y as a function
gr.x =z +y or as a function gy.y = x + y . Hence, the two Leibniz rules
(1.5) and (1.8) are just two different forms of the same rule.

1.5 Reasoning using Leibniz’s rule

Leibniz (1.5) allows us to “substitute equals for equals” in an expression
without changing the value of that expression. It therefore gives a method
for demonstrating that two expressions are equal. In this method, the for-
mat we use to show an application of Leibniz is

Elz:= X]
= (X=Y)
E[z:=Y]

The first and third lines are the equal expressions of the conclusion in
Leibniz; the hint on the middle line is the premise X = Y . The hint is
indented and delimited by ( and ). Variable z of Leibniz is not mentioned
at all.

Here is an illustration of the use of Leibniz from the problem of John,
Mary, and the rotten apples on page 1.

m/2=2-(j—1)
(m=2-7, by (0.1))
2-j/2=2-(j - 1)

Here, E of Leibniz is z/2=2:(j —1), X is m,and Y is 2-j.
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Leibniz is often used in conjunction with Substitution (1.1), in the fol-
lowing manner. Suppose we know that the following is a theorem:

(1.9) 2-z/2==x
The following calculation uses both Leibniz and Substitution.

2:j/2=2-(j 1)
= ((1.9), with z:=j)

j=2-(G-1)

We are using Leibniz with the premise 2:j/2 = j . We can use this premise
only if it is a theorem. It is, because 2-z/2 = z is a theorem and, therefore,
by Substitution, (2-z/2 = z)[z := j] is a theorem.

If a use of Substitution is simple enough, as in this case, we may leave

off the indication “with = := j” and sometimes even the rule number from
the hint, writing simply

2:3/2=2-(j — 1)
(2-z/2=2x)
i=2-(-1)

We may also place an explanatory comment in a hint (after a dash —), as
in the following hint.

(2-2/2 =x —note that / is division)

A proof that involves a sequence of applications of Leibniz has the fol-
lowing general form:

Eo

= (Explanation of why F0 = E1, using Leibniz)
E1l

= (Explanation of why E1 = E2, using Leibniz)
E2

= (Explanation of why E2 = E3, using Leibniz)
E3

The proof establishes that E0 = E3, by Transitivity (1.4) and the indi-
vidual steps E0=FE1, F1=F2,and E2=F3.

Most proofs of equalities in this text use the format just introduced.
In it, the expressions FEi are aligned but indented past the column in
which = appears, the hints are aligned and indented a bit further, and the
hints are delimited by ( and ). Each hint gives the premise X =Y for an
application of Leibniz. Parentheses are never placed around the expressions
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HISTORICAL NOTE 1.3. SYMBOLS FOR EQUALITY

The history of the signs for equality is so interesting and involved that
Cajori [7] devotes 12 pages to it. In the fifteenth century, a number of different
symbols were used infrequently for equality, including the dash. Generally,
however, equality was expressed using words like aequales, esgale, gleich, and
sometimes by the abbreviated form aeq.

The use of = for equality was introduced by Robert Recorde in 1577 [31],
who wrote,

And to auoide the tediouse repetition of these woordes: is equalle
to: I will sette as I doe often in woorke use, a paire of parallels, or
Gemove lines of one lengthe, thus: , bicause noe .2. thynges,
can be more equalle.

Recorde viewed = only as an abbreviation and not as a boolean function.
The concept of function took over 100 years to develop (Leibniz introduced
the term in 1694), and the notion of boolean took another 150 years (George
Boole introduced it in about 1850)!

In spite of the appropriateness of Recorde’s symbol for equality, it did not
appear in print again until sixty-one years later, many authors preferring to
use a word rather than a symbol for equality. One problem was that = was in
use at the time for at least five different purposes. Also, there were competing
symbols for equality, to cite a few: [, |, M, o , and 2|2 (by Hérigone, in
1634, who also used 3|2 and 2{3 for > and <).

In the late seventeenth century, = became the favorite in England for equal-
ity. However, = faced real competition on the continent, where Descartes had
used the symbol x for Taurus to denote equality in 1637 in [11]. On the con-
tinent, most authors used either Descartes’ symbol or no symbol at all. But in
the eighteenth century, = gradually won out, in large part due to the adoption
of = by Newton and Leibniz at the close of the seventeenth century.

Today, Recorde’s =, the only symbol he introduced, is universally em-
braced. Equality is one of our most important concepts, and it deserves a
unique symbol. The use of = for assignment in FORTRAN has only caused
confusion, as has the use of = for assignment and == for equality in C.

EQ, E1, etc., because the line breaks in the proof take their place. Adhere
carefully to this format; the more standard our communication mechanism,
the easier time we have understanding each other.

1.6 The assignment statement

In the previous section, we showed how textual substitution was inextri-
cably intertwined with equality. We now show a correspondence between
textual substitution and the assignment statement that allows program-
mers to reason about assignment.



1.6. THE ASSIGNMENT STATEMENT 17

Execution of the assignment statement
(1.10) z:= E

evaluates expression E and stores the result in variable x.® Assignment
z:= F isread as “z becomes E”.%

Execution of (1.10) in a state stores in z the value of E in that state,
thus changing the state. For example, suppose the state consists of (v,5),
(w,4), (z,8) and consider the assignment v:= v+w . The value of v+w
in the state is 9, so executing v := v + w stores 9 in v, changing the
state to (v,9), (w,4), (z,8).

Just as important as how to execute an assignment statement is a way
to reason about its effect. For example, from a precondition for an assign-
ment,” how can we determine a corresponding postcondition? Or, from a
postcondition, can we determine a suitable precondition? The conventional
way of indicating a precondition and a postcondition for a statement S is

(111) {P} § {Q} ,

where P is the precondition and @ is the postcondition, This is known as a
Hoare triple, after C.A.R. Hoare (see Historical note 1.4), who invented the
notation in giving the first definition for a programming language in terms
of how programs could be proved correct with respect to their specifications
rather than in terms of how they could be executed.

For example,
{z=0} z:=2z+1 {z>0}

is a Hoare triple that is valid iff execution of z:= z 4+ 1 in any state in
which z is 0 terminates in a state in which 2 > 0. Here are two other

5 For the time being, we assume that E always has a value and that the value
can be stored in z . We treat the more general case later, in Sec. 10.2.

8 Perhaps because of the use of = for assignment in FORTRAN (see Historical
note 1.3), assignment is often read as “z equals E ”. This causes great confusion.
The first author learned to distinguish between = and := while giving a lecture
in Marktoberdorf, Germany, in 1975. At one point, he wrote “:=" on the board
but pronounced it “equals”. Immediately, the voice of Edsger W. Dijkstra boomed
from the back of the room: “becomes!”. After a disconcerted pause, the first
author said, “Thank you; if I make the same mistake again, please let me know.”,
and went on. Once more during the lecture the mistake was made, followed by a
booming “becomes” and a “Thank you”. The first author has never made that
mistake again! The second author, having received his undergraduate education
at Cornell, has never experienced this difficulty.

7 Recall from Chapter 0 that a precondition of a statement is an assertion
about the program variables in a state in which the statement may be executed,
and a postcondition is an assertion about the states in which it may terminate.
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valid Hoare triples for the assignment statement z:= x + 1.

{x>5} z=z+1 {z>0}
{x+1>0} z:=z+1 {z>0}

The Hoare triple
{zr=5} z:=2+1 {2=T}

is not valid, because execution of z:= x + 1 in a state in which z =
does not terminate in a state in which z =7.

Formula (1.12) below schematically defines valid Hoare triples for an
assignment z:= FE in terms of textual substitution: for any postcondi-
tion R, a suitable precondition is R[z := E]. Thus, the precondition is
calculated from the assignment and the postcondition. 8

(1.12) Definition of assignment: {R[z:= FE|} z:= E {R}

As an example, consider the assignment z:= z + 1 and postcondition
z > 4. Thus, in definition (1.12) we would take E to be z + 1 and
R to be x > 4. We conclude that a precondition for a valid triple is
(x >4)[x:=x+1], whichis z+1>4.

Here are more examples of the use of definition (1.12).

{r+1>5} z:==z+1 {z>5}
{5#5} =z:=25 {z # 5}
{z? > 2%y} x:= 22 {z > z-y}

Let us see why definition (1.12) is consistent with execution of z:= E.
Call the initial program state s and the final state s’. We will show that
R[z := E] has the same value in s as R does in s'. This suffices because
then execution begun in a state in which R[z := E] is true will terminate
in a state in which R is true.

Note that R and R[z := E] are exactly the same except that where
R has an occurrence of z, R[zr := E] has an occurrence of “(F)”. Since
each variable except = has the same value in states s and s, we need
only show that the value of E in state s equals the value of z in state s’.
This last fact holds because execution of z := E begun in state s stores
into z the value of F in s.

8 The tendency is to expect the postcondition to be calculated from the pre-
condition and to expect the definition to be {R} z:= E {R[z := E]} . Fight this
intuition, for it is not consistent with how the assignment is executed. For exam-
ple, using this incorrect rule, we would obtain {z =0} z:= 2 {(z = 0)[z := 2]},
which is invalid. This is because when the assignment terminates, the resulting
state does not satisfy the postcondition, false. As will be seen later, definition
(1.12) works well with methodologies for the formal development of programs.
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HISTORICAL NOTE 1.4. C.A.R. HOARE (1934-)

C. Anthony (Tony) R. Hoare, a Fellow of the Royal Society and Professor of
Computer Science at Oxford University, has made fundamental contributions
to programming and programming languages. He is the creator of the sorting
algorithm Quicksort. His 1969 axiomatic definition of a programming language
gave us a basic manipulative method for reasoning about programs. He has
developed major programming constructs for concurrency, e.g. the monitor
and CSP (Communicating Sequential Processes), and has made deep and fun-
damental contributions to the theory of programming languages.

Hoare received the ACM Turing Award in 1980. His Turing lecture, The
Emperor’s old clothes, illustrates well why he has had so much impact in our
field. It is original, perceptive, elegant, extremely well-written, and pertinent
to the technical and social problems of the field.

Twenty-two of Hoare’s most major contributions have been collected in [22].
The last essay, Envoi, explains part of Hoare’s success. It begins with “I enjoy
writing.” The fourth paragraph begins with “I enjoy rewriting” and discusses
how and how many, many times he rewrites an article before it is suitable to
show to friends and colleagues. After that, he says, his article may sit in a
drawer for many months as responses accumulate. Finally, it will be entirely
rewritten before being submitted for publication. A paper may be rewritten
eight or more times before it appears in print. Hoare mentions that through-
out the development of an idea, the most important requirement is that it be
clearly and convincingly explained. Obviously, Hoare understands that com-
municating ideas well is just as important as having ideas.

As a final note, the house owned by Hoare’s in-laws was the setting for much
of the movie Room with a View.

In some programming languages, the assignment statement is extended
to the multiple assignment x1,z2,...,%Tn:= Ei, Es,..., E, , where the z;
are distinct variables and the F; are expressions. The multiple assignment
is executed as follows. First evaluate all the expressions FE; to yield values
v; (say); then assign vy to =1, ve to z2, ..., and finally v, to z,.
Note that all expressions are evaluated before any assignments are per-
formed. Thus, the last two examples of multiple assignment in Table 1.2
are equivalent.

TABLE 1.2. EXAMPLES OF MULTIPLE ASSIGNMENTS

T,Y= Y, & Swap z and y

z,i7:= 0,0 Store 0 in z and 1
t,z:=i+1,z+¢ Add 1 to ¢ and i to =
r,i:=xz+1%4,i+1 Add 1 to 7 and i to =
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Definition (1.12) for assignment actually holds for the multiple assign-
ment, when one considers z in (1.12) to be a list of distinct variables and
FE to be a list of expressions. Thus, multiple assignment is defined in terms
of simultaneous. textual substitution. Table 1.3 gives valid Hoare triples for
several assignments; in each, the precondition is determined using (1.12).

The preconditions for the last two assignments of Table 1.3 are identical,
even though the variables and expressions in the assignments appear in a
different order. Note also that in the last two cases, the precondition equals
the postcondition (to see this, subtract i from the LHS® and RHS of the
precondition). When the precondition and the postcondition are equal, we
say that the precondition is maintained by execution of the assignments,
or equivalently, the assignment maintains or preserves the precondition.

To see the difference between multiple assignment and a sequence of
assignments, consider

r,y:=z+y,x+y and z:=z+y,y:=x+Yy.

In initial state (z,2) and (y,3) , execution of the first sets both z and y to
5, but execution of the second would set z to 5 and then y to 8. So they
are different. The preconditions that are constructed using Definition (1.12)
for z,y:= E,F and for the sequence z:= F; y:= F with postcondition
R are given below. In the second case, the definition is first used to find the
precondition for the last assignment, which is also the postcondition for the
first assignment; then the definition is used again to find the precondition
for the first assignment.

{R[z,y:= E,F|} z,y:= E,F {R}
{R|y:= Fllzx:=E]} z:= E; y:= F {R}

9 LHS and RHS stand for the lefthand side and righthand side of the equation.

TABLE 1.3. EXAMPLES OF HOARE TRIPLES FOR MULTIPLE ASSIGNMENT

{y>z} z,y:=yz {x>y}

{r+i=1+2+---+(E+1-1)}
r,i:=r+1,1+1
{z=1+2+---+(GE-1)}

{e+i=1+2+--+(i+1-1)}
tL,r:=t+1,x+1
{fe=14+2+--4+(G-1)}
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We showed above that R[z,y :=...] is, in general, different from R[z :=
.Jly :=...], so it should be no surprise that these two assignments have
different effects.

It is a shame that the multiple assignment is not included in more pro-
gramming languages. The programmer is frequently called upon to specify
a state change that involves modifying several variables in one step, where
the values assigned all depend on the initial state, and the multiple assign-
ment is ideally suited for this task.

Exercises for Chapter 1

1.1 Perform the following textual substitutions. Be careful with parenthesization
and remove unnecessary parentheses.

(a) z[z:=b+ 2

(b) x4y -zjz:=b+ 2

(c) (z+y-a)fz:=b+2]

(d) (z+2z-2)[z:=z-y]

(&) (z+22)ly i=2-1]

) (z+zy+zry-2)z:=x+9]

1.2 Perform the following simultaneous textual substitutions. Be careful with
parenthesization and remove unnecessary parentheses.

(a) z[z,y:=b+2,x+ 2|

b) z+y-zjz,y:=b+ 2,1+ 2
(¢) (z+y-z)z,y:=b+2,z+2
d) (z+2-2)[z,y:=2"y,z-y]
(&) +y-2y,z:=3y,3z |

) @+zy+zy2)lewy:=yq

1.3 Perform the following textual substitutions. Be careful with parenthesization
and remove unnecessary parentheses.

(a) zlz =y + 2y :=y-q]

(b) z+y-zlz:=y+2y:=y-7]

(¢) (z+y-z)r:=y+2ly:=y-7]

(d) (z+z-2)[z,y:=y,z][z = 2]

(e) (z+z-2)[z,y:=z,2][z =y

) @+zy+zy2ey:=yzlly:=2y

1.4 Leibniz’s definition of equality given just before inference rule Leibniz (1.5)
says that X =Y is true in every state iff E[z := X] = E[z := Y] is true in
every state. Inference rule Leibniz (1.5), however, gives only the “if” part. Give
an argument to show that the “only if” part follows from Leibniz (1.5). That is,
suppose E[z := X]| = E[z := Y] is true in every state, for every expression E .
Show that X =Y is true in every state.
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1.5 Let X, Y ,and Z beexpressions and z a variable. Let E be an expression,

which may or may not contain Z . Here is another version of Leibniz.
Z=X,Z=Y

Ez:=X]|=E[z:=Y] ~

Show that transitivity of = follows from this definition.

Leibniz:

1.6 Inference rule Substitution (1.1) stands for an infinite number of inference
rules, each of which is constructed by instantiating expression E , list of variables
v, and list of expressions F' with different expressions and variables. Show three
different instantiations of the inference rule, where E is t <y V z >y.

1.7 Inference rule Leibniz (1.5) stands for an infinite number of inference rules,
each of which is constructed by instantiating E, X, and Y with different
expressions. Below, are a number of instantiations of Leibniz, with parts missing.
Fill in the missing parts and write down what expression E is. Do not simplify.
The last two exercises have three answers; give them all.

T=x+2
@ Tory=7
2y+1=5
(®) z+2y+1)w="7
z+l=y
3 (z+1)+32z+1=7

(¢)

@ zFz=7

T=y+1
© 7o Ty=7

1.8 The purpose of this exercise is to reinforce your understanding of the use of
Leibniz (1.5) along with a hint in proving two expressions equal. For each of the
expressions E[z := X] and hints X =Y below, write the resulting expression
E[z :=Y]. There may be more than one correct answer.

E[z .= X] hint X =Y
(a) z+y+w z=b+c
(b)) z+y+w bc=y+w
() z-(z+y) t+y=y+z
(d) (z+y)w w=z-y

(e) (z+y)q¢@Ex+y) ytr=z+y

1.9 The purpose of this exercise is to reinforce your understanding of the use of
Leibniz (1.5) along with a hint in proving two expressions equal. For each of the
following pair of expressions E{z := X] and E[z := Y], identify a hint X =Y
that would show them to be equal and indicate what E is.
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Elz:=Y]

Elz := X]
(
(
(
( T YT
(e) =y

a) (z+y)(z+y) (z+y)@y+=)
b) (@+y)(z+y) (y+a)(y+a)
c) zTH+ytw+tzx Tty wtz

d)

(y+w)yzx
YT

1.10 In Sec. 1.3, we stated that the four laws Reflexivity (1.2), Symmetry (1.3),
Transitivity (1.4), and Leibniz (1.5) characterized equality. This statement is
almost true. View = as a function eq(z,y) that yields a value true or false.
There is one other function that, if used in place of eq in the four laws, satisfies

all of them. What is it?

1.11 Using Definition (1.12) of the assignment statement on page 18, determine
preconditions for the following statements and postconditions.

Statement Postcondition
(a) z=2z4+7 zxz+y>20
b)) z=z-1 2*°4+2-2=3
(¢) z=2z-1 (z+1)(x—-1)=0
d) y=z+y y==z
(&) y=z+y y=z+y



Chapter 2

Boolean Expressions

e discuss boolean expressions, which are named after George Boole

U » (although the 1971 Compressed OED spells boolean as boolian!).

Boolean expressions are used in one form or another in most program-

ming languages today (e.g. Pascal, FORTRAN, C, Scheme, and Lisp), so

the material in this chapter will be familiar to practicing programmers.

The chapter also discusses how to model English statements as boolean
expressions.

2.1 Syntax and evaluation of boolean expressions

Boolean expressions are constructed from the constants true and false,
boolean variables, which can be associated (only) with the values true
and false , and the boolean operators =, #, =, V, A, = ,and <. The
constants true and false are often called boolean values, and a boolean
expression is often said to be of type boolean.

We begin by describing the unary boolean operators —those with one
operand. We do this by enumerating all boolean functions of one boolean
argument, i.e. functions that have one argument of type boolean and that
yield a boolean value. Since there are exactly two possible argument values
and two possible result values for such a function, there are a total of four
boolean functions of one boolean argument. These functions are shown in
the table below. Each column to the right of the vertical line describes a
function, whose name (if it has one) is givenh above the line. Each value
below the line in such a column is the result of applying the function to
the argument value appearing in the same row. Such a table is known as a
truth table.

| id .
true true true false false
Argument false true false true false

For example, from the table we see that id.true = true and id.false =
false .

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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HISTORICAL NOTE 2.1. GEORGE BOOLE (1815-1864)

George Boole was the son of a poor shopkeeper in England. In those days,
little in the way of formal education was open to such people. Boole, however,
was determined to learn enough to rise above the pitiful existence eked out by
his father. He learned Latin and Greek on his own before he was 12 and math
from his father, who also had gone beyond his schooling. At 16, young Boole
got a job teaching in an elementary school to help support his parents. At 20,
he opened his own school and, to prepare his pupils in math, began to study
in earnest what the great masters were doing. His at-first-unguided efforts led
to many contributions. He was so successful that, in 1849, he was appointed
Professor of Mathematics at Queens College, Ireland.

Boole’s great contribution was an algebraic basis for logic, something Leib-
niz had dreamed about 200 years earlier (see Historical Note 1.1 on page 9) and
that De Morgan, nine years older than Boole and also a great logician, was un-
able to devise (see Historical Note 3.1 on page 54). In The Laws of Thought 6],

Boole’s aim was to “investigate the fundamental laws ... by which reasoning
is performed, ... give expression to them in the language of a Calculus, and
upon this foundation ... establish the Science of Logic ... ”. Boole’s work

is the foundation of all mathematical logic. According to Bertrand Russell,
“Pure Mathematics was discovered by Boole in ... The Laws of Thought.”.

The two functions whose result does not depend on the argument are
unnamed. Function ¢d is the identity function of one argument; applying
it to an argument yields the value of the argument. Function symbol —,
read negation or not, is used as a prefix operator. For example, we write
—false .

The sixteen boolean functions of two boolean arguments are given in
the truth table below. In this table, there are two arguments in each row
instead of one (as in the previous truth table).

= n #

a n

n o

VAR = = A d # r

t t|t t t ¢t t ¢t t t f f f f f f ff
t fle t t ¢t f f f f t t t t f f f f
ftyje t f f ¢t ¢ f ft ¢ fftt ff
ffle ft ft ft ft ft ft ftf

Note: true is abbreviated by t and false by f

Eight of the functions in the table are useful enough to be named. Ap-
plications of these functions are written in infix form, so they are called
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operators' . For example, b V ¢ and z <« y denote applications of the
functions in the second and third columns of the table, respectively. We
now discuss the operators, in the order in which they will be discussed
later in Chap. 3.

Operator = is conventional equality. Expression b = ¢ is read as “b
equals ¢”. For boolean operands only, equality is given a second name,
equivalence, and a second symbol, =. We read b = ¢ as “b equivales
¢”.2 The operands of = are called equivalents. In Sec. 2.2, we explain the
use of the two different symbols for equality.

Operator # is conventional inequality. Expression b # ¢ is read as
“b differs from c¢”. Operator # satisfies (b # ¢) = =(b = ¢). For
boolean operands only, inequality is given a second name, inequivalence,
and a second symbol, #. Inequality is sometimes called zor, for exclusive
or, since it is true when exactly one of the two operands is true .

Operator V is called disjunction or or. Expression b V ¢ is read as “b
or ¢”, because it is true iff b or ¢ (or both) is true . Operands b and ¢
of bV ¢ are called disjuncts.

Operator A is called conjunction or and. Expression b A ¢ is read as
“b and c¢”, because it is true only if both operands b and ¢ are true.
Operands b and ¢ of b A ¢ are called conjuncts.

Operator = is called implication. Expression b = ¢ is read as “b im-
plies ¢” or as “if b then ¢”. Operands b and ¢ are called the antecedent
and consequent, respectively. Note that b = ¢ is true if b is false. This
is consistent with the usual English interpretation of a statement like “If
Schneider is ten feet tall, then Gries can walk on the ceiling” as being true
simply because Schneider is not ten feet tall. False implies anything, as the
saying goes. We discuss implication in more detail in Sec. 2.4.

Operator < is called consequence. Expression b < ¢ is read as “b fol-
lows from ¢”. Operands b and ¢ are called the consequent and antecedent,
respectively. Since b = ¢ is equal to ¢ <= b (according to the truth table),
< might seem superfluous. Later, we see how it can help make some proofs
more palatable.

The names of operators nand and nor stand for “not and” and “not

or”, respectively. Expression b nand ¢ is equalto =(bA¢), while b nor ¢ is
equal to —(b V ¢) . These operators are useful when implementing switching
circuits, as discussed in Sec. 5.2.

! Boolean operators are also called connectives.
2 The Ozford English Dictionary defines equivale as “to be equivalent to”.
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USING TRUTH TABLES TO EVALUATE BOOLEAN EXPRESSIONS

In addition to defining boolean operators, truth tables can be used to com-
pute the value of any boolean expression, in every state. The truth ta-
ble below gives the value of the expression p V (¢ A —). The first three
columns of each row of the table describe a state by giving values for p, ¢,
and r. Together, the eight rows describe all states. In each row, successive
columns to the right of the vertical line contain values for subexpressions
of pV (g A —r), with each being calculated from the values of its subex-
pressions, which appear to the left in some column. The righthand column
of each row contains the value of the entire expression p V (¢ A —r) for the
values of p, g, and r given in that row. Such a truth table allows us to
determine the value of an expression in any state in a systematic fashion.

-r gA-r pV(gA-T)

R N L
e R e S i ]
e S N IS S
S s T N
AN s e N
e T S

PRECEDENCE OF BOOLEAN OPERATORS

A table of precedences of operators appears on the inside front cover.

Not all texts assign V and A the same precedence, as we do. Sometimes,
V and + are given the same precedence, and A and - are given another,
but higher, precedence. One even finds 1 used for true, 0 for false, +
for vV, and - for A. This overloading of boolean and arithmetic operators
can lead to misconceptions, because the rules for manipulation of boolean
and arithmetic expressions are different. For example, true V true = true
evaluates to true but 1+ 1 =1 evaluates to 2 =1 and thus to false.
Also, the first expression below evaluates to true but the second does not.

zV(@yAz) = (VyY AV 2)
T+ (y-2)=(x+y)(c+2)
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2.2 Equality versus equivalence

The boolean expression b = c¢ is evaluated exactly as b = ¢, except that =
can be used only when b and c¢ are boolean expressions. We now discuss
the reasons for having two infix symbols = and = for the same boolean
operation.

First, giving the binary boolean operators lower precedences than the
binary arithmetic operators and assigning different precedences for = and
=, as in the precedence table on the inside front cover, allows us to avoid
parentheses in expressions like

zy=0 = z=0vy=0

Note how the extra space surrounding = serves as a reminder that = has
lower precedence. We often use white space in this manner to help indicate
aggregation.

The second reason for using both = and = for equality is that one can
be conjunctional and the other associative. All the operators on line (j)
of the precedence table on the inside front cover are conjunctional. For o
and * conjunctional operators, expression bocxd is an abbreviation for
boc A c¢xd. For example,

b=c < d is an abbreviation for b=c A c<d
b=c=d is an abbreviation for b=c A c=d

Hence, b = ¢ = d and (b = ¢) = d are different; the former uses =
conjunctionally, while the latter does not. In the state with (b, false),
(c, false) , and (d, true), b=c=d is false but (b=c)=d is true.

Operator = is associative, which means that b=c=4d, (b=c¢) =d,
and b= (c =d) are all equivalent. 3 Being associative, = cannot also be
conjunctional. On the other hand, = is conjunctional but not associative.

Thus, in formulas without parentheses, sequences of = and sequences of
= mean different things.

Treat the conjunctional use of = and other operators as syntactic sugar,
i.e. as an extension to the basic definition of expressions to make writing
some expressions easier. Whenever an expression that contains this syntac-
tic sugar is to be evaluated or manipulated, first remove the syntactic sugar.
For example, we evaluate false = false = true and false = false = true:

3 Binary operator o is associative iff ((boc)od) = (bo(cod)) for all b,c,d.
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HISTORICAL NOTE 2.2. NOTATIONAL SURPRISES

A few examples of surprises in programming languages will show the need
for extreme care in understanding and stating notational conventions. In math-
ematics, 1/bc stands for 1/(bc) , where the juxtaposition of b and ¢ denotes
multiplication of b and c¢. However, in FORTRAN, Algol, and most other
imperative programming languages, 1/b* ¢ means (1/b) xc (i.e. ¢/b). This
difference has not caused much confusion, perhaps because of the difference in
the two notations: the programming languages require an explicit operator for
multiplication, while mathematical notation does not.

PL/1, a popular language of the 1960s and 1970’s, exhibits an astonishing
oddity: the expression 2 < 1 < 1 has the value true! This is because PL/1
does not view < as conjunctional and is quite happy to insert type conversions
where possible. In PL/I, the expression 2 < 1 < 1 is evaluated as follows.

2<1k1
(2<1 = '0'B, PL/1’s representation of false )
"0'B<1
= (The bit '0’'B is converted into the integer 0)
0«1
= (0 <1 = true, which is represented by '1'B)
1B
= ('1'B is PL/1’s representation of true )
true

I

false = false = true false = false = true
= (= is conjunctional) (Evaluate first =)
(false = false) A (false = true) true = true
(Evaluate both =) (Evaluate =)
true A false true
(Evaluate A)
false

i

As another example, we show below how to change occurrences of = into
occurrences of =, and vice versa. In these manipulations, we parenthesize
operations b = ¢ and b = c¢ before making the replacements because
= and = have different precedences and we do not want the different
precedences implicitly to change the structure of the expression.

=c=d b=c=d
= (Parenthesize) = (= is conjunctional)
(b=c)=d b=cAc=d
= (Replace operators) = (Parenthesize)
(b=c)=d (b=c) A (c=4d)
= (Replace operators)
(b=c) A (c=d)
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This interplay between = and = may seem confusing. It is the prod-
uct of conventions passed down over the years. The conventions are rarely
stated, leading to misunderstandings —for example, see Historical note 2.2.

2.3 Satisfiability, validity, and duality

We now define some terms that will be useful later on.

(2.1) Definition. A boolean expression P is satisfied in a state if its
value is true in that state; P is satisfiable if there is a state in
which it is satisfied; and P is valid if it is satisfied in every state.
A valid boolean expression is called a tautology.

For example, pVgq is satisfied in any state that contains the pair (p, true),
so it is satisfiable. But it is not valid, since it is not satisfied in a state
containing (p, false) and (q, false) . Expression p V p = p is valid.

Being familiar with boolean expressions includes having a familiarity
with various simple expressions that are valid —i.e. are true in all states.
The following definition of duality helps reduce the number of valid expres-
sions one has to remember. Examples of duals are given in Table 2.1.

(2.2) Definition. The dual Pp of a boolean expression P is con-
structed from P by interchanging occurrences of

true and false
A and V,
= and #,
= and #, and
< and # .

We use the notion of duality to state Metatheorem* Duality (2.3). We
give (2.3a) without proof, because its proof requires techniques that we

4 See the footnote on page 45 for a definition of “metatheorem”.

TABLE 2.1. EXAMPLES OF DuALS

P Pp

pVyg PAg
P = q P £ q
p=-p p#E D

false # truevp  true = false Ap
pAg =T PV g ET
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have not yet developed. See Exercises 12.43-12.46.

(2.3) Metatheorem Duality.
(a) P is valid iff —Pp is valid.
(b) P = @ isvalid iff Pp = Qp is valid.

Table 2.2 illustrates Metatheorem (2.3). In Table 2.2, all the expressions
on the left are valid; hence, so are the expressions on the right. The two
expressions on the last line of this table are called “De Morgan’s laws”, after
Augustus De Morgan (see Historical note 3.1 on page 54). Remembering
one of these two valid expressions is enough, because the other one can be
obtained using Duality.

2.4 Modeling English propositions

We use the term proposition for a statement that can be interpreted as
being either true or false. An example of a proposition is

(2.4) Henry VIII had one son and Cleopatra had two.

We now investigate how a proposition can be translated into a boolean
expression. There are at least two reasons for performing such translations.
First, English is often ambiguous, and the translation process may force
us to identify and resolve the ambiguity. In the same way, lawyers write in
a very stylized manner, which has evolved partly to avoid ambiguity (and
partly to baffle the uninitiated). A second reason to translate propositions
into boolean expressions is that we can then analyze, reason about, ma-
nipulate, and simplify the expressions (using rules introduced in the next
chapter). As we will see, rules of logic provide an effective alternative to
reasoning in English.

TABLE 2.2. UsiNG DUALITY TO GENERATE VALID EXPRESSIONS

P (valid) —Pp (also valid)

true —false

pV true =(p A false)

pV-p =(p A -p)

P = @ (valid) Pp = Qp (also valid)
true = true false = false

pVqg =4qVp PAQ = gAp
P=g=q=p PEG=q#ED

-(pVeg) = pA—-g —(pAg) = pV g
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One trivial way to translate a proposition into a boolean expression is
simply to create a boolean variable to denote that proposition. For example,
we can use variable p to stand for proposition (2.4), with the meaning that
p is true exactly when (2.4) is:

p: Henry VIII had one son and Cleopatra had two.

A boolean variable that can denote a proposition is sometimes called a
propositional variable, but we will stick to the term boolean variable.

Note that (2.4) contains two subpropositions, “Henry VIII had one son”
and “Cleopatra had two (sons)”. If we give names to these propositions:

x : Henry VIII had one son,
y : Cleopatra had two (sons),

we can rewrite proposition (2.4) as the English statement “z and y”,
which we can then translate into the boolean expression z A y. Hence,
another translation of (2.4) would be =z A y.

Obviously, the translation of a proposition into a boolean expression de-
pends on which of its subpropositions are represented by boolean variables.
The smaller the subpropositions so represented, the more logical structure
the resulting boolean expression will have.

The process of translating a proposition into a boolean expression can
be summarized as follows.

(2.5) Translation into a boolean expression. To translate proposi-
tion p into a boolean expression:

1. Introduce boolean variables to denote subpropositions.

2. Replace these subpropositions by their corresponding boole-
an variables.

3. Translate the result of step 2 into a boolean expression, using
“obvious” translations of the English words into operators.
Table 2.3 gives examples of translations of English words.

TABLE 2.3. TRANSLATION OF ENGLISH WORDS

and, but becomes A
or becomes V
not becomes -

it is not the case that becomes -
if p then ¢ becomes p = ¢
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In programming, there is a tendency to use long identifiers to convey
meaning. This is not advisable here, for long identifiers make expressions
unwieldy, and symbolic manipulation then becomes painful. Further, ma-
nipulation is generally performed according to given rules, without regard
for the meaning of the identifiers, so knowing their meaning is of no benefit.
Use short identifiers.

We now give other examples of translating propositions into boolean
expressions. First, we introduce two more boolean variables, so that we
have

: Henry VIII had one son,

x
y : Cleopatra had two (sons),
z : I'll eat my hat,

w

: 1 is prime.

We then have the following sentences and their translations.

proposition translation

Henry VIII had one son or I'll eat my hat. TV z.

Henry VIII had one son and 1 is not prime. T A —w.

If 1 is prime and Cleopatra had two sons, I'lleat w Ay = 2.
my hat.

In the second example, some rearrangement of the sentence was necessary
before the translation could be performed. The phrase “1 is not prime” had
to be rephrased as “it is not the case that 1 is prime”, so that it could be
translated into “it is not the case that w” and finally into “—-w?”.

Due to the subtleties, vagaries, and ambiguities of English, translation
from English into boolean expressions is not always easy. English is so
flexible that it would be impossible to give rules for translating all English
statements. Below, we limit the discussion to some subtle and intricate
points in performing the translation.

TRANSLATION OF “OR”

The word “or” in English is sometimes used in an inclusive sense and
sometimes in an exclusive sense. The sentence “Wear a blue shirt or blue
socks” would be considered inclusive, since you could wear both. On the
other hand, “I'll spend my two-day vacation in Florida or Vermont” —
i.e. “I’ll spend my two-day vacation in Florida or T'll spend my two-day
vacation in Vermont”— would be considered exclusive, since one cannot
spend the two days in both places simultaneously. The inclusive sense of
“b or c¢” is translated as b V c¢. The exclusive sense can be translated
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into b £ ¢, since the exclusive or of b and ¢ is true exactly when one of
them is true and the other false. The exclusive sense can also be written
as b = —c.

DEALING WITH IMPLICATION

Sentences of the form “If b then c¢” or “If b, ¢” are usually translated as
b = c. For example, consider the sentence “If you don'’t eat your spinach,
I'll spank you”. Using variable es for “you eat your spinach” and variable
sy for “I'll spank you”, we translate this as —es = sy. Note that this
expression is true if you eat your spinach, i.e. if —es is false then so is
—es => sy. This fact may seem strange at first. But note that the two
sentences

If you don’t eat your spinach, I'll spank you
Eat your spinach or I'll spank you

have the same meaning. Therefore, since the second is true if you eat your
spinach, the first should be also. This equivalence between —es = sy and
es V sy will be revisited in the next chapter, but it can be deduced using
the truth tables on pages 25-26.

Sometimes, an implication is subtly hidden in a proposition. For example,
consider the sentence “Every name in the Ithaca telephone directory is in
the New York City telephone directory”. This can be rewritten to reveal
an implication: “If a name is in the Ithaca telephone directory, then it is
in the New York City telephone directory”.

IMPLICATION VERSUS EQUIVALENCE

Some “If” phrases in English are more accurately regarded as equivalences
and not as implications. For example, when we say “If two sides of a triangle
are equal, the triangle is isosceles”, we might be defining “the triangle
is isosceles” to mean “the triangle has two sides equal”. Thus, using the
propositions

t: two sides of the triangle are equal,
is : the triangle is isosceles,

we would translate this sentence as t = is.

Oddly enough, English handles equivalence (i.e. equality) awkwardly.
For example, to write “If two sides of a triangle are equal, the triangle is
isosceles” unambiguously, we would have to write something like one of the
following alternatives
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Two sides of a triangle are equal iff the triangle is isosceles.
Two sides of a triangle are equal exactly when the triangle is isosceles.

“T'wo sides of a triangle are equal” is the same as “the triangle is isosceles”.

and all of these are slightly awkward. 5

The expression bob2 = bobl = bob0 is even more difficult to translate
into colloquial English. For example, if bobj stands for “Bob has sight in
j of his eyes”, we might want to verbalize bob2 = bobl = bob0 as

Bob has full sight is equivalent to Bob has only partial sight is
equivalent to Bob is blind.

This makes little sense in English, even though its translation bob2 =
bobl = bob0 is true, since exactly one of bob0, bobl, and bob2 is true.

NECESSITY AND SUFFICIENCY
When we say,
To stay dry, it’s sufficient to wear a raincoat.

we mean that if you wear a raincoat, then you will stay dry. Introducing
variables sd for “stay dry” and wr for “wear a raincoat”, we can formalize
the above statement as wr = sd.

On the other hand,
To stay dry, it’s necessary to wear a raincoat

means that you will stay dry only if you wear a raincoat. In other words,
staying dry implies wearing a raincoat: sd = wr. (This statement is
actually false, since you could use an umbrella.)

Thus, “z is sufficient for y” means z = y, “z is necessary for y”

means y => z, and “z is necessary and sufficient for y” means (z =
y) A (y = x). A shorter way of saying “z is necessary and sufficient
for y” is “z if and only if y”, or “z iff y”, and a shorter translation is
T =y.

5 An anecdote provides further evidence of lack of familiarity with equivalence.
Some electrical engineers were once asked what they would call the negation of
the boolean binary operator that is true when its two operands differ. Electrical
engineers use operator zor, or erclusive or, for the operator that is true when
its operands differ, so they decided to call its negation the ezclusive nor. They
did not realize that zor is #, so that its negation is =!
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STATEMENTS WITH MATHEMATICAL CONSTITUENTS

One way to formalize a statement like “z > 0 or y = 3” is to associate
boolean variables with the mathematical substatements. For example, if
we associate zg with > 0 and y3 with y = 3, we can then write the
expression as g V y3 . In Chap. 9, we will extend the language of boolean
expressions to the predicate calculus, so that it will no longer be necessary
to replace such mathematical substatements by boolean variables.

A FINAL EXAMPLE

As a final example of translating English propositions into boolean expres-
sions, consider the following paragraph. ¢

If Superman were able and willing to prevent evil, he would do
so. If Superman were unable to prevent evil, he would be im-
potent; if he were unwilling to prevent evil, he would be malev-
olent. Superman does not prevent evil. If Superman exists, he
is neither impotent nor malevolent. Therefore, Superman does
not exist.

This paragraph consists of assumptions about Superman and one conclu-
sion (Superman does not exist), which is supposed to follow from those
assumptions. In order to write this whole paragraph as an expression, we
first associate identifiers with the primitive subpropositions:

Superman is able to prevent evil.
Superman is willing to prevent evil.
Superman is impotent.

Superman is malevolent.

Superman prevents evil.

Superman exists.

ev3Tee

We then have, in order, the following translations of the first four sen-
tences of the paragraph (we have given a name to each):
FO: anw=1p ,
Fl: (ma = i) A (~w = m)
F2: -p ,
F3: e => -t A—-m

8 This example, taken from [2], is adapted from an argument about the nonex-
istence of God in [17].
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The paragraph about Superman asserts that its last sentence follows from
the first four, so it can be written as the following expression:

FOANF1IANF2AF3 = -e

The reason for giving a name (i.e. a boolean variable) to each sentence
now becomes clear; had we used the sentences themselves instead of their
names, the final expression would have been long and unwieldy. To deter-
mine the validity of the Superman paragraph, we have to see whether this
expression is true in all states. Rather than do this (there are 26 = 64
states to check!), let us wait until we have learned rules and methods for
manipulating and simplifying expressions given in the next chapter.

Exercises for Chapter 2

2.1 Each line below contains an expression and two states S0 and S! (using ¢
for true and f for false ). Evaluate the expression in both states.

state S0 state S1

expression m n p q m n p q
(a) ~(mVn) t f t t 7 t t t
(b) -mVn t f t t f t t t
(c) —.(m A n) t f t t f t t t
(d) -mAn t f t t f t t t
) (mvmn)=op t f t t t t f t
) mvin=p t f t t t t f t
(8 (Mm=n)A( =q) f f t f t f t f
h) m=MmAlP=y9) f 5 t f t f t f
i (m=MmAp=q) f f t f t f t f
G (m=n)A(p=4q ft f ¢t t t f f
k) (m=nAp =>q f t f t t t f f
0 (m=n)=(p=q f f f f t ot ot ot
(m) m=>M®m=p)=>q f f f f t ot ot ot

2.2 Write truth tables to compute values for the following expressions in all
states.

(a) bvevd (e) —-b= (bVec)

() bAcAd f) —-b=(@®Ve

(¢) bA(cvd) (g (-b=¢)Vd

(d bV (end h) b=cg=0b=>c)A(c=>0b
2.3 Write the duals Pp for each of the following expressions P .
(a)y bVeVtrue (e) —false = bV e

() bAcAd (f) -b<bve

(¢) bA(cV —d) () (—b = true) Vb

(d bV (cAd) (h) (b=c)=(b=c)A(c=b)
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2.4 For each expression P = @ below, write the expression Pp = Qp .
(@ p=gq (e) true = p=p

b)) pAp=op (f) false = p = true

() p=p = true (8 pA(@Vr)=(pAgV (pAT)

d p=>q¢g=-pvyg (h) p=qg=q=0p

2.5 Translate the following English statements into boolean expressions.
(a) Whether or not it’s raining, I'm going swimming.
(b) If it’s raining I’'m not going swimming.
(c) It’s raining cats and dogs.
(d) It’s raining cats or dogs.
(e) If it rains cats and dogs I'll eat my hat, but I won’t go swimming.
(f) If it rains cats and dogs while I am going swimming, I'll eat my hat.

2.6 Translate the following English statements into boolean expressions.
(a) None or both of p and q is true.

(b) Exactly one of p and q is true.

(¢) Zero, two, or four of p, q, r, and s are true.

(d) One or three of p, g, r,and s are true.

2.7 Give names to the primitive components (e.g. £ <y and z =y ) of the fol-
lowing English sentences and translate the sentences into boolean expressions.

(a) <y orz=y.

(b) Either z <y, z=y,or z>y.

(c)If 2>y and y >z, then v=w.

(d) The following are all true: x <y, y<z,and v=w.

(e) At most one of the following is true: z <y, y<z,and v=w.

(f) None of the following are true: <y, y<z,and v=w.

(g) The following are not all true at the same time: z <y, y< z,and v=w.

(h) When z <y, then y < z; when z >y, then v=w.

(i) When z < y, then y < z means that v = w, but if z > y then y > 2
does not hold; however, if v =w then z < y.

(j) If execution of program P is begun with z < y, then execution terminates
with y = 2%.
(k) Execution of program P begun with z < 0 will not terminate.

2.8 Translate the following English statement into a boolean expression. v is in
b[1..10] means that if v isin b[{11..20] then it is not in 5[11..20] .

2.9 The Tardy Bus Problem, taken from [1], has three assumptions:

1.If Bill takes the bus, then Bill misses his appointment if the bus is late.
2.Bill shouldn’t go home if Bill misses his appointment and Bill feels downcast.
3.If Bill doesn’t get the job, he feels downcast and shouldn’t go home.

The problem has eight conjectures:
4.If Bill takes the bus, then Bill does get the job if the bus is late.
5.Bill gets the job, if Bill misses his appointment and he should go home.

6.If the bus is late and Bill feels downcast and he goes home, then he shouldn’t
take the bus.
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7.Bill doesn’t take the bus if, the bus is late and Bill doesn’t get the job.

8.If Bill doesn’t miss his appointment, then Bill shouldn’t go home and Bill
doesn’t get the job.

9.Bill feels downcast if the bus is late or Bill misses his appointment.

10.If Bill takes the bus and the bus is late and he goes home, then he gets the
job.

11.If Bill takes the bus but doesn’t get the job, then either the bus is on time
or he shouldn’t go home.

Translate the assumptions and conjectures into boolean expressions. Write down
a boolean expression that stands for “conjecture (11) follows from the three
assumptions”.

2.10 Solve the following puzzle. A certain island is inhabited by people who
either always tell the truth or always lie and who respond to questions with a
yes or a no. A tourist comes to a fork in the road, where one branch leads to a
restaurant and the other does not. There is no sign indicating which branch to
take, but there is an islander standing at the fork. What single yes/no question
can the tourist ask to find the way to the restaurant?

Hint: Let p stand for “the islander at the fork always tells the truth” and let
q stand for “the left-hand branch leads to the restaurant”. Let E stand for a
boolean expression such that, whether the islander tells the truth or lies, the
answer to the question “Is E true ?” will be yes iff the left-hand branch leads
to the restaurant. Construct the truth table that E must have, in terms of p
and g, and then design an appropriate E according to the truth table.



Chapter 3

Propositional Calculus

his chapter offers an alternative to the widely-held view that boolean
T expressions are defined by how they are evaluated. Here, expressions
are defined in terms of how they can be manipulated. Our goals are to
convey a sense of how one manipulates boolean expressions and to teach
heuristics and principles for developing proofs. By working out the exer-
cises, the reader can develop a manipulative skill that will prove valuable
in later work.

3.1 Preliminaries

A calculus is a method or process of reasoning by calculation with sym-
bols. ! This chapter presents a propositional calculus. It is so named be-
cause it is a method of calculating with boolean expressions that involve
propositional variables (see page 33). We call our propositional calculus
equational logic E.

One part of E is a set of azioms, which are certain boolean expressions
that define basic manipulative properties of boolean operators. As an ex-
ample, for operator V, the axiom pVq = ¢V p indicates that V is
symmetric in its two operands, i.e. the value of a disjunction is unchanged
if its operands are swapped.

The other part of our propositional calculus consists of three inference
rules: Leibniz (1.5), Transitivity (1.4), and Substitution (1.1). We repeat
them here, as a reminder, formulated in terms of identifiers that will typi-

cally be used in this chapter: P,Q, R, ... for arbitrary boolean expressions
and p,q,r,... for boolean variables.

Leibniz: B = ]ﬁ; z g[r -l

Transitivity: P—:?Q’—:%:—R

Substitution: ﬁ

! From Webster’s Third New International Dictionary.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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A theorem of our propositional calculus is either (i) an axiom, (ii) the con-
clusion of an inference rule whose premises are theorems, or (iii) a boolean
expression that, using the inference rules, is proved equal to an axiom or a
previously proved theorem. Our proofs will follow the format discussed in
Sec. 1.5, although variations will emerge.

Choosing different axioms for our calculus could lead to the same set of
theorems, and many texts do use other axioms. Moreover, the sequence in
which the boolean operators can be introduced, each being defined in terms
of previously defined operators, is not unique. For example, sometimes A,
V, and - are defined first, then =, and finally = and #. In view of the
importance of Leibniz and equivalence in our calculus, we choose the order
= (and =), = and # (and #), V, A, and finally = and < .2

All theorems of our propositional calculus are valid (see Def. (2.1) on
page 31). This fact can be established by (i) checking each axiom with a
truth table and (ii) arguing for each inference rule that if its premises are
valid then so is its conclusion.

Not only are all theorems valid, but all valid expressions are theorems
of our calculus (although we do not prove this fact). Theoremhood and
validity are one and the same. Hence, Metatheorem Duality (2.3a) —which
says that the negation of the dual of a valid expression is itself valid— can be
used to discover theorems. However, in this chapter we do not use Duality to
derive theorems. The goal of this chapter is not simply to discover theorems
but to acquire a skill in manipulation and in developing proofs.

HELPFUL HINTS

One goal of this chapter is to present some heuristics for deriving proofs. To
become proficient at using these heuristics requires practice, and the reader
would do well to record in a loose-leaf notebook proofs of all theorems
stated in this chapter. All theorems either are proved herein or are exercises,
sometimes accompanied by hints.

When reading this chapter, avoid the temptation to evaluate the boolean
expressions being discussed. Simply derive theorems. The skill of manipu-
lating formulas, without regard for their meaning, is extremely useful in all
of mathematics, and studying this chapter will help you acquire this skill.

Do not be discouraged by the number of theorems. You do not have to
memorize them all. It will suffice to become familiar with them and how
they are organized, so that you can find the ones you need when developing
a proof. The more practice you have using the theorems, the more they will

2 Remember that = and = are interchangeable in formulas, without special
mention (subject to the caveats mentioned in Sec. 2.2).
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become your formal friends, who serve you in your mathematical work.

One final point. Just as you will struggle to develop nice short proofs, so
did we. The proofs you read here are our final versions. Many of them were
reworked two, three, or more times. Although we discuss heuristics for proof
development, do not be deceived and think that, once these heuristics are
mastered, all proofs will be easy to develop. Like good prose, good proofs
are the result of thinking, analysis, writing, and revision. Practice, of course,
makes the task easier. Tools have to be kept clean and oiled to be of use.

3.2 Equivalence and true

Equivalence is associative. This property is formalized as a manipulative
property by the following axiom.

(3.1) Axiom, Associativity of =: ((p=¢)=7) = (p=(¢=71))

Associativity allows us to be informal and insert or delete pairs of parenthe-
ses in sequences of equivalences, just as we do with sequences of additions
(e.g. w+z+y+ z is equivalent to w+ (z +y) + 2z ). Hence, we can write

p=qg=r insteadof p=(¢g=r) or (p=q)=r
Keeping axiom (3.1) in mind, we express the second axiom, symmetry,
without parentheses.
(3.2) Axiom, Symmetry of =: p=qgq=q=p
You can see why this axiom is called symmetry by imagining parentheses
as follows: (p=q)=(¢=p).
We now give our first proof, of the following theorem:

P=EP =49=¢
Remember that the axiom of associativity allows us to parenthesize an
expression such as (3.2) in several ways. In the following proof, we paren-
thesize (3.2) as (p = ¢ = q) = p, so that, using Leibniz, we can replace
p = q = q in an expression by p.

P=p=qg=49

= (Symmetry of = (3.2) —replace p=g=gq by p)
pP=Pp

= (Symmetry of = (3.2) —replace first p by p=¢g=gq)
P=qg=q9g =P

Since the final expression is axiom (3.2), and since, by the definition of
theorem on page 42, any expression that is proved equal to an axiom is a
theorem, the first expression has been proved to be a theorem.
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The final axiom of this section introduces the constant symbol true as
an abbreviation for ¢ = ¢ —using a constant symbol is reasonable because
the value of ¢ = ¢ does not depend on the value of q.

(3.3) Axiom, Identity of =: true=q=gq

We call true the identity of = because, as can be seen from the axiom of
symmetry and (3.3), p = (true = p) and (p = true) = p.2 We can now
prove the following two theorems.

Two theorems

(3.4) true

(3.5) Reflexivity of =: p=p

The proof of the second theorem is left to the reader (Exercise 3.3). To
show that true is a theorem, we show that it equivales axiom (3.3):

true

= (Identity of = (3.3), with ¢:= true)
true = true

= (Identity of = (3.3) —replace the second true )
true=q=gq —Identity of = (3.3)

Axioms Identity (3.3) and Symmetry (3.2) imply that occurrences of
“=true” (or “true =”) in an expression are redundant. Thus, Q = true
may be replaced by @ in any expression without changing the value of
the expression. Therefore, we usually eliminate such occurrences unless
something (e.g. symmetry) encourages us to leave them in.

For theorems of the form P = @, another proof method is available:
transform P to @ as shown to the left below.

true

((3.3), true=q=gq)
P P =P

(Hint 0) (Hint 0)
R P =R

(Hint 1) (Hint 1)

i

(Hint 2) = (Hint 2)
Q P =Q

3 U is the identity of operation o iff b=boU =Uob forall b. U is a left
identity if b=U ob for all b. U is a right identity if b=bo U for all b.
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In order to justify this technique, we show how such a proof can be con-
verted mechanically into a proof that transforms true to P = Q. The
conversion is shown to the right above. It is obtained from the proof on the
left by adding “ P =" to the beginning of each formula and adding a step
at the beginning of the proof. For all steps (except the additional one), the
hints are the same.

We summarize this new proof method:
(3.6) Proof method. To prove that P = @ is a theorem, transform
P to @Q or @ to P using Leibniz.
We end this section with the following metatheorem , whose proof is

left as an exercise.

(3.77 Metatheorem. Any two theorems are equivalent.

3.3 Negation, inequivalence, and false

We introduce three axioms. The first defines false ; the first and second
together define negation, —; and the third defines inequivalence, #.

(3.8) Axiom, Definition of false: false = ~true
(3.9) Axiom, Distributivity of - over =: -(p=q) = -p=¢
(8.10) Axiom, Definition of £: (p#¢q) = ~(p=q)

Theorems (3.11)—(3.19) below can now be proved. Double negation (3.12)
asserts that negation is its own inverse ® . Double negation is used in English
occasionally. For example, one might say “That was not done unintention-
ally” instead of “That was done intentionally”.

Mutual associativity of = and #, (3.18), allows us to omit parentheses
in mixed sequences of # and =, as, for example, in theorem (3.19). Mutual
interchangeability is startling at first; it allows the exchange of adjacent
occurrences of = and #.

4 A theorem in our technical sense is a boolean expression that is proved equal
to an axiom. A metatheorem is a general statement about our logic that we prove
to be true.

® Function g is the snverse of function f if g(f.z) =z for all z.
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Theorems relating =, #, —, and false
(3.11) p=g=p=—¢
(3.12) Double negation: ~—p=p
(3.13) Negation of false: —false = true
(8.14) (p#q) = p=gq

(3.15) —p=p= false

(3.16) Symmetry of #: (p#q) = (¢#p)
(3.17) Associativity of #: (pZq)#r) = (p#£(g#T))
(3.18) Mutual associativity: (pZq)=r) = (pZ(g=T1))

(3.19) Mutual interchangeability: pZg=r = p=q#r

At this point, we note an interesting and useful fact about sequences of
equivalences. The boolean expression

(3.20) PO = P1 = --- = Pn
is true exactly when an even number of the Pi are false. Why? By
Identity of = (3.3), each subexpression false = false can be replaced

by true until either one or zero false equivalents remain, in which case
the sequence is false or true . For example, we can determine without any
additional formal manipulation that false = false = false = true is false,
because three (an odd number) of its equivalents are false .

We can use this fact about sequences of equivalences in formalizing cer-
tain English statements. Below, the second and fourth examples rely on
the fact that “not an even number are true” equivales “an odd number
are true”.

None or both of p and ¢q is true: p=gq.
Exactly one of p and ¢ is true: ~(p=gq),or p#q.
Zero, two, or four of p, g, r,and s are true: p=gq
One or three of p, g, r,and s are true: —(p=gq=
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PROOF HEURISTICS AND PRINCIPLES

We now discuss some heuristics for developing proofs. The first heuristic
is illustrated by a proof of (3.11), —-p = ¢ = p = —q. To prove (3.11),
we try to transform it to true. This requires finding a theorem to use
with Leibniz. ® We match patterns in order to determine which theorems
are applicable. Axiom (3.1) does not match at all; (3.2) can be used, but
basically only to swap two operands, which does not seem useful; (3.3) can
be used only to add an equivalent true; (3.4) is of no use; (3.5) can be
used only to replace something by itself; and (3.8) and (3.10) do not match
at all. This leaves (3.9) —its RHS, —p = ¢, appears in the theorem to be
proved.

This reasoning uses an important heuristic for developing proofs:

(3.21) Heuristic. Identify applicable theorems by matching the struc-
ture of expressions or subexpressions. The operators that appear
in a boolean expression and the shape of its subexpressions can
focus the choice of theorems to be used in manipulating it.

Obviously, the more theorems you know by heart and the more practice
you have in pattern matching, the easier it will be to develop proofs.

We proceed with the proof of (3.11). It is given below. Note that Sym-
metry of = is used in the second step of the proof, without explicit men-
tion: the substitution used is p = =¢ = —(p = ¢) but the hint is
—(¢=p) = —q =p. These two expressions are the same, up to symmetry
of equivalence. To shorten proofs, Symmetry and Associativity axioms for
all binary operators are often used without mention. Finally, in two of the
hints we mention the substitution used to effect the transformation. Later,
we omit such hints when they are obvious.

P=g=p=—gq

= {((89), ~lp=q = p=q)
“(p=q¢)=p=—g¢

= ((3.9), with p,q:= ¢,p —ie. 7(¢g=p) = ~¢=p)
~(p=q)=-(p=q) —Reflexivity of = (3.5)

Theorem (3.11) can be proved in other ways, as well. For example, we
could use proof method (3.6) and transform -p = ¢ into p = —~¢. We
could also transform —p = p into —q = q. Or, we could begin with —p
and transform it into ¢ =p = —q.

8 Only a previously proved theorem or an axiom may used, so its number
should be less than the number of the theorem being proved. The only theorems
available for use are (3.1)-(3.5) and (3.8)—(3.10).
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Theorem (3.11) can be proved in so many ways, even though we have
only a few axioms and theorems to use, because its structure affords many
possibilities for manipulation. This capability is both a blessing, because
it gives flexibility, and a curse, because we may have to investigate several
options in developing a proof. As a rule, then, do not be satisfied with your
first proof, for it may not be the shortest or simplest.

Now consider the following two proofs of (3.15), —p = p = false .

-p =p = false

= ((39), ~(p=q) = -p=gq, with ¢:= p)
-(p = p) = false

= (Identity of = (3.3), with ¢q:= p)
—true = false ~ —theorem (3.8)

PEP
=  (39), ~(p=q) = ~p=gq, with ¢:= p)
~(p=p)
= (Identity of = (3.3), with ¢:= p)
—true
= ((38))
false

Which proof do you prefer? The first proof has fewer steps, but it requires
copying “= false” on every line. Here, the difference is slim, but if the
part to be copied were longer, the whole proof would look longer and more
complicated. There is also more danger of making mistakes in copying a
part many times. For the sake of brevity, ease of reading, and avoidance of
mistakes, adhere to the following principle.

(3.22) Principle: Structure proofs to avoid repeating the same subex-
pression on many lines.

We end this section with one final heuristic. It describes an oft-used
pattern for proving some property of an operator that is defined in terms
of another:

(3.23) Heuristic of Definition Elimination: To prove a theorem con-
cerning an operator o that is defined in terms of another, say e,
expand the definition of o to arrive at a formula that contains
e ; exploit properties of e to manipulate the formula; and then
(possibly) reintroduce o using its definition.

To illustrate the use of this heuristic, we prove (3.16), (p £q) = (¢ &
p). Here, o is # and e is =.
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P#Qq
= (Def. of # (3.10))

~(p=4q)
= (Symmetry of = (3.2))

—~(g =p)
= (Def. of # (3.10), with p,q:= q,p)

q#ED

3.4 Disjunction

The disjunction operator V is defined by the following five axioms.

(3.24) Axiom, Symmetry of V: pVg=qVp

(3.25) Axiom, Associativity of V: (pVq)Vr =pV (gVTr)

(3.26) Axiom, Idempotency "of V: pV p = p

(3.27) Axiom, Distributivity of vV over =:
pV(@=r)=pVg=pVr

(3.28) Axiom, Excluded Middle: p vV —p

Distributivity (3.27) can be viewed in two ways, much like distributivity
of - over +. Replacing the LHS of (3.27) by the RHS could be called
“multiplying out”; replacing the RHS by the LHS, “factoring”.

Axiom Excluded Middle can be interpreted to mean that in any state
either p or —p is true; there is no middle ground.

With the five axioms for V, we can prove the following theorems.

Theorems concerning V

(3.29) Zero®of V: p V true = true
(3.30) Identity of V: p V false = p
(3.31) Distributivity of V over V: pV(gVr) = (pVqg)V(pVr)

(332) pvg=pV-qg=p

7 A binary operator o is idempotent if x oz =z for all z. Multiplication -
and addition + of integers are not idempotent, but V and A are.
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MORE PROOF HEURISTICS AND PRINCIPLES

By Proof method (3.6), we can prove P = @ by transforming either P to
Q or @ to P. The following heuristic helps in deciding which to try.

(3.33) Heuristic: To prove P = @, transform the expression with the
most structure (either P or @) into the other.

To illustrate the use of this heuristic, we develop a proof of theorem
(3.29), p V true = true . Its LHS has the most structure, so we begin with
it. Its structure suggests which theorems may be used in applying Leibniz.
The only theorems available about V are axioms (3.24)—(3.27), and the
only likely way of using them is to introduce an equivalence into the LHS, so
that, perhaps, distributivity (3.27) can be used. Accordingly, we use axiom
identity of equivalence, (3.3), to replace true, yielding p V (p = p). This
is the germ of the following proof.

p V true
= (Identity of = (3.3))
pV(p =p)
= (Distributivity of V over = (3.27))
pVp=pVp
= (Identity of = (3.3))
true

Suppose we had tried instead to transform the RHS of p V true = true to
its LHS. The structure of its RHS, true, gives absolutely no insight into
where to begin! So the heuristic of beginning with the side with the most
structure makes sense here.

We could reverse the above proof, as shown below. This is a bad proof
to present, because readers have little motivation for the beginning of the
proof and hence are not able to visualize developing the proofs themselves.
The first step is a rabbit pulled out of a hat.

true

(Identity of = (3.3))
PVPp=pVp
= (Distributivity of vV over = (3.27))
pV(p =p)

(Identity of = (3.3))
p V true

Il

Il

8 Z is a zero of a binary operation o if z0Z =Zozxz =2, ,forall z. Z isa
left zeroif Zox=Z,forall x. Z is a right zero if xoZ = Z , for all . The
term zero comes from the fact that 0 is the zero of - .
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A general principle, then, is the following.

(3.34) Principle: Structure proofs to minimize the number of rabbits
pulled out of a hat —make each step seem obvious, based on the
structure of the expression and the goal of the manipulation.

3.5 Conjunction

We define conjunction A with a single axiom, called the Golden rule. Con-
vince yourself that (3.35) is valid by constructing a truth table for it.

(3.35) Axiom,Goldenrule:pAg=p=qg=pVy

We chose the Golden rule to define A because it is amazingly versatile,
given the associativity and symmetry of =. For example, one view is that
it defines pAq as p = ¢ = pV q, but it can also be rewritten as

p=q) = (prg=pVa ,

which indicates that p and ¢ are equal iff their conjunction and disjunction
are equal.

With the Golden rule, we can prove a host of theorems that relate A to
the already-defined operators. We now give these theorems, offering com-
ments as appropriate.

The first theorems state that A is symmetric, associative, and idempo-
tent and relate A to constants true and false .

Basic properties of A

(3.36) Symmetry of A: pAg=gAp

(3.37) Associativity of At (pAg) AT =pA(gAT)
(3.38) Idempotency of A: pAp = p

(3.39) Identity of A: p A true = p

(3.40) Zero of A: p A false = false

(3.41) Distributivity of A over A:
pAGAT) = (PA AAT)

(3.42) Contradiction: p A —=p = false
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Theorems (3.43) below are called absorption, because subexpression ¢
is absorbed into p. Theorems (3.44) are similar, with —p being absorbed.
The laws of distributivity that follow relate V and A . The Laws of De Mor-
gan are named after their discoverer —see Historical note 3.1.

Theorems relating A and Vv
(3.43) Absorption: (a) pA (pVgq) =p
b)) pvipArg =p

1

(3.44) Absorption: (a) pA(-pVg) = pAg
(b) pV(-pAg =pVy
(3.45) Distributivity of V over A:
pVigAr) = (Vg Ar(pVr)
(3.46) Distributivity of A over V:
pA(gVvr)=(AgV(pAT)
(3.47) De Morgan: (a) ~(p A q)
(b) ~(pV q)

—pV q

-p A —q

The next group of theorems relate conjunction and equivalence. Theorem
(3.48) is similar to (3.32), pV ¢ = p V ~¢ = p. Theorem (3.49) shows
how A distributes over =. Study (3.49) carefully, because it is too easy to
miss or forget the rather odd last equivalent, p . Theorem (3.50) is obtained
by replacing r by p in (3.49) and simplifying.

Theorems relating conjunction and equivalence

(348) pAgq=pA—qg= -p
(349) pA(g=r)=pAg=pAr =0p

(8350) pA(g=p) =pPAg

(3.51) Replacement: (p=g) A (r =p) = (p=q) A = q)

In most propositional calculi, (3.52) and (3.53) are used to define = and
# . The first theorem indicates that p = ¢ holds exactly when p and ¢
are both true or both false. The second theorem indicates that p # ¢
holds exactly when one of them is true and the other is false .
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Alternative definitions of = and #

(3.52) Definition of

tp=qg=@AqV(pA g

(3.53) Exclusiveor: p Z ¢ = (-p A q) V (p A —q)

STRUCTURING PROOFS USING LEMMAS

When a proof becomes long or complicated, it sometimes helps to impose
structure by separating the proof into lemmas ? . This process may bring to
light interesting facts that might otherwise have remained hidden. It can
also shorten the proof, if a lemma is used more than once. The same sort
of advantages accrue from the judicious use of procedures in programming.

(3.54) Principle: Lemmas can provide structure, bring to light interest-
ing facts, and ultimately shorten a proof.

We illustrate this principle by developing a proof of associativity of A,
(3.37). We can begin with the LHS, (p A g) A r, and attempt to transform
it into the RHS. The only thing we can do at first is to replace the conjunc-
tions using the Golden rule (using heuristic (3.23) of definition elimination),
and, after this, we decide to distribute V through = as much as possible:

PAg AT

= {(Golden rule (3.35))
(p=g=pVeAr

= (Golden rule (3.35), with p,q:= (p = q = pVgq),r)
p=qg=pVg=r=(p=q=pVgVr

= (Distributivity of vV over = (3.27))
p=q=pVg=r=pVr = qVr = pVqgVr

= {Symmetry and associativity of = and V)

p=q=r1=pVg =qgVr =rVp = pVqgVr

({1l

We have shown that (p A ¢) A r equivales the equivalence of all possible
nonempty unique disjunctions of p, ¢, and 7:

9 The lemma is the lower of the two bracts enclosing the flower in the spikelet of
grasses; also called flowering glume. Well, a lemma is also an auxiliary theorem
used in a proof of some other theorem. The difference between “lemma” and
“theorem” is in the eye of the beholder. The theorem is the thing we are interested
in; the lemma, just a small theorem needed in its proof. (These definitions are
taken from Webster’s Third New International Dictionary.)
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HISTORICAL NOTE 3.1. AUGUSTUS DE MORGAN (1806-1871)

De Morgan was born in India and educated at Trinity College, Cambridge.
He spent most of his career as a professor of mathematics at the University of
London (beginning at age 22!). De Morgan and George Boole are responsible
for the great renaissance of logic in the 19th century. De Morgan was a founder
and the first president of the London Mathematical Society and a founder of
the British Association for the Advancement of Science. He was also deeply
religious, but he abhorred any suspicion of sectarianism and turned down a
fellowship at Cambridge to avoid such suspicion.

De Morgan rarely socialized. In reply to a friend who thought he worked
too hard, De Morgan once wrote, “I have never been hard working, but I have
been very continuously at work. I have never sought relaxation. And why?
Because it would have killed me. Amusement is real hard work to me.”

We might expect such a person to be dull and ponderous. Not De Mor-
gan. He had a real sense of humor, as can be seen in his witty A Budget of
Paradozes, which exposed the writings of people who tried to do impossible
things like squaring the circle. (‘Budget’ meant ‘collection’, ‘stock’, ‘supply’;
‘paradox’, a tenet or proposition contrary to received opinion.) De Morgan’s
Budget contains all sorts of digressions —including anagrams of “Augustus De
Morgan”, like “Great gun! Do us a sum!” If you cannot find a copy of Budget,
then do obtain U. Dudley’s interesting A Budget of Trisections (1987), which
was inspired by De Morgan’s book.

(355) (pAg AT =
p=gqg=r =pVg =qVr =rVp = pVgqVr

This equivalence is interesting enough by itself to leave as a lemma. More-
over, since = and V are both associative and symmetric, we would hope
that the RHS of (3.37) would also equivale the RHS of lemma (3.55), and
then (3.55) can be used more than once. So we construct our proof of (3.37)
afresh, starting with its RHS and trying to use (3.55). Here is the result.

PA(gAT)
= (Symmetry of A (3.36))
(@Anr)Ap
= ((3.55), with p,q,r:= ¢,7,p)
g =r=p=gqVr =rVp = =gq
= (Symmetry and associativity of = and V)
p=gqg=r =pVg=qVr =rVp =p
= ((3.55))
(PA@ AT



3.5. CONJUNCTION 55

UsING THE GOLDEN RULE

Since the Golden rule is the definition of A, it can be used with the heuristic
of Definition Elimination, (3.23) on page 48. In fact, the Golden rule is used
to eliminate the conjunction in the first step of the proofs of almost all the
theorems listed in this section on conjunction. In most of these theorems, an
equivalent with a conjunction has the most structure, and heuristic (3.33)
on page b0 suggests beginning with that equivalent.

As an example, we prove theorem (3.44a), p A (-pV ¢) = p A gq.

pA(=pVyq)

= (Golden rule (3.35), with ¢:= —p V ¢)
p="pVvg=pVpVyg

Excluded middle (3.28))

1l

p=-pVgqg=trueVyqg
= ((3.29), trueVp = true)
p = pVg = true

—~

Identity of = (3.3), with g:=p = —pVgq)
p=pVyg
= ((332),pVg=pV—q=p,
with p,q:= ¢,p —to eliminate operator —)
P=pVg=gq
= {Golden rule (3.35))
pAgq

The Golden rule has four equivalents. Therefore, it can be used to replace
one equivalent by three, two equivalents by two, or three equivalents by one.
The idea of replacing more than one equivalent takes getting used to, so
here are some examples. First, we prove (3.39), p A true = p, by showing
that it equivales a previously proved theorem.

pAtrue = p
= {Golden rule (3.35) —replace two equivalents)
pV true = true —Zero of V (3.29)

We now prove theorem (3.49), p A (g =r) = pAqg=pAr = p.
Read the hints carefully, because they describe in detail how the Golden
rule is being used. It is used three times, and each time two equivalents
are replaced. The proof begins with first and last equivalents of (3.49) and
ends with the two middle equivalents —we prove something of the form
w=x =y =z by transforming w=2z to z=y.

pA(g=r)=p
= (Golden rule, with ¢:= g =r —replace two equivalents)

pV(g=r)=q=r
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= (Distributivity of V over = (3.27))
pVg=pVr=q=r
(Symmetry of = (3.2))
pVgq=gq = pVr=r
= (Golden rule, twice
—replace pV¢ = q and pVr = r)
pANg=p = pAT =D
= (Symmetry of = (3.2), p=qg=q=p,
with g:= pAqg = pAT)
pPANgq=pAT

In summary, we have the following heuristic.

(3.56) Heuristic: Exploit the ability to parse theorems like the Golden
rule in many different ways.

3.6 Implication

We now define and investigate two final operators, implication = and
consequence <.

(3.57) Axiom, Definition of Implication: p = ¢ = pV q = ¢

(3.58) Axiom, Consequence: p < ¢ = q = p

Because of the similarity of = and <, we give only theorems that involve
=; corresponding ones for < follow immediately from (3.58).

The first thing to note about implication is that it can be written in many
ways. Besides the next three theorems, other ways of rewriting implication
are given in Exercises 3.44-3.46. Theorem (3.59) or (3.60) is sometimes
used as the definition of implication.

Rewriting implication

(3.59) Definition of Implication: p = ¢ = —p V ¢
(3.60) Definition of Implication: p = ¢ = pAg =1p

(3.61) Contrapositive: p = ¢ = ~¢ = —p

Theorems (3.62) and (3.63) show how to eliminate = as the consequent,
while (3.65) shows how to shunt a conjunct from the antecedent to the
consequent.
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p = (q

Miscellaneous theorems about implication

(362) p=>(g=r)=pAg=pATr

(3.63) Distributivity of = over =:

(364) p = (¢g=r)
(3.65) Shunting: pAg =7 =p = (g = 7)
(366) pA(p=q) =pPAg

(3.67) pA (¢ = p)
(368) pV(p = q
(369) pV (g = p)

(3.70) pVg=pAg

r=Ep=>q=p=>r

=(p=q9=>@E=r

=Pp
= true

Eqg=p

Il
i
I
[

The next five theorems relate = and the boolean constants. Theorem
(3.71) asserts that = is reflexive; the others give the value of an implication
that has a constant as an operand. Theorems (3.72) and (3.73) indicate
that implication is not symmetric; this is why a non-symmetric symbol,
=, is chosen for it. From three of the theorems, “ = true” could have been
omitted; we leave it in for uniformity with the other two theorems.

Implication and boolean constants

(3.71) Reflexivity of =: p = p = true
(3.72) Right zero of =: p = true = true

(3.73) Left identity of =: true = p = p

(3.74) p = false = —p

(3.75) false = p = true

Theorem (3.76a) below is obtained from (3.71), p == p = true, by
deleting the redundant “ = true” and replacing consequent p by p V q;

this leaves the implication valid. Each of the theorems (3.76a)—(3.76¢) is
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called weakening or strengthening'®, depending on whether it is used to
transform the antecedent into the consequent, thus weakening it, or to
transform the consequent into the antecedent, thus strengthening it.

Weakening, strengthening, and Modus ponens

(3.76) Weakening/strengthening: (a) p = p V ¢

(
(
(d) pV(gAr)=pVyg
() pAg=>pA(qgVr)

(3.77) Modus ponens: p A (p = q) = ¢

Modus ponens (see (3.77)) is Latin for Method of the bridge. In many
propositional calculi, a form of Modus ponens is one of the major inference
rules —this is discussed in more detail on Sec. 6.2. Modus ponens takes a
back seat in our calculus because of our emphasis on equational reasoning.
Nevertheless, it is extremely useful at times.

The next two theorems embody case analysis. The first indicates that
proving p V ¢ = 7 can be done by proving separately the cases p = r
and ¢ = r. Similarly, the second indicates how a proof of r can be broken
into two cases. Such proofs are often done informally in English. We return
to case analysis on page 73 and more formally on page 115.

Forms of case analysis

37) p=r)A(g=1) = (pVg=r)

37 w=>r)A(p=>r1) =71

In most propositional calculi, equivalence is the last operator to be de-
fined and is defined as “mutual implication”. Thus, (3.80) below typically
is made an axiom. We down-play implication in our calculus because, as
an unsymmetric operator, it is harder to manipulate. Indeed, we can of-
ten progress most easily in a proof by eliminating implication from the
expression at hand (using the heuristic of Definition elimination, (3.23)).

10 Suppose P = Q. Then we say that P is stronger than Q and Q is weaker
than P . This is because @ is true in more (or at least the same) states than
P . That is, P imposes more restrictions on a state. The strongest formula is
false and the weakest is true .
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Theorem (3.81) is a direct corollary of mutual implication. Theorem
(3.82a) is the usual definition of transitivity of implication. The two theo-
rems following it are akin to transitivity, and that is why they are placed
here. All three transitivity theorems are used in Sec. 4.1 to justify a proof
format that allows shorter proofs.

Mutual implication and transitivity
(3.80) Mutual implication: (p = q) A (¢ = p) = p = ¢q
(3.81) Antisymmetry!': (p=q) A (g=p) = (p = q)

(3.82) Transitivity: (a) (p = Q) A (@g=7) = (p = 1)
b) p=grlg=r)={E=r
© @=>gnrlg=r)=>(=>r)

PROVING THEOREMS CONCERNING IMPLICATION

Many of theorems (3.59)-(3.82) can be proved quite simply using the princi-
ples and heuristics outlined in previous parts of this chapter, so we relegate
their proofs to the exercises. We limit our discussion here to some general
remarks and prove a few of the more difficult theorems.

The heuristic of definition elimination, (3.23) on page 48, is useful in
dealing with implication. For this purpose, look upon theorems (3.59)-
(8.61) as well as axiom (3.57) as being definitions of implication. The shape
of the goal of the manipulation should provide insight into which definition
to choose. To illustrate, we prove (3.62), p = (g = 1) = pAg=pA
r . Because (3.62) contains conjunctions, theorem (3.60) seems promising,
since it shows how to replace an implication by introducing a conjunction:

p=(¢g=r)
(Definition of implication (3.60))

pA(g=r1)=p
(349), pA(g=r) =pAg=pAr =p)
PANg=pAT

I

We made several attempts at proving mutual implication (3.80). The first
one began by replacing each of the conjuncts of (p = ¢) A (¢ = p) using
(3.59), p = q = —pVgq,toarriveat (-pVgq) A (—qVp) as the LHS. Then,

11 A binary relation o is antisymmetric if oy A yoxr = z =1y holds for all
z and y. For example, < and > are antisymmetric.
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because of the need to introduce equivalence at some point (since it is in
the RHS of (3.80)), we used the Golden rule. The proof was complicated,
so we threw it away and tried again —and again. Our final proof eliminates
implication and then heads for a form in which the alternative definition
of equivalence can be used:

(P =9 A(g=p)
(Definition of implication (3.59), twice)
(=pV g) A (=g V p)
(Distributivity of A over V (3.46), thrice)
(=pA=q) V (=pAp) V (gA—q) V (A p)
= (Contradiction (3.42), twice; Identity of Vv (3.30), twice)
(=pA—-q) V (gAp)
(Alternative definition of = (3.52))
Pp=g

I

Here is a short proof of (3.82a), transitivity of = :

P=>gA@g@=>r)=>(@=r)
= (Shunting (3.65), with p,g:= (p = q¢) A (¢ = r),p
—to shunt the p in the consequent to the antecedent)
PAPp=>gA(g=>r)=>T
= ((366), pA(p=>q =pAg
—replace first two conjuncts)
pAgA(g=>T1)=>T1
= ((3.66) —again, to replace second and third conjuncts—
with p,q:=gq,r)
p A g A r = r —Strengthening (3.76b)

LEIBNIZ’S RULE AS AN AXIOM

On page 12, we introduced Leibniz (1.5):

X=Y or X=Y
Elz:= X]=E[z:=Y] E% =FE%

Now that we have introduced operator =, we can give a version of Leibniz
as an axiom scheme:

(3.83) Axiom, Leibniz: (e = f) = (E; = E}) (E any expression)
Inference rule Leibniz says, “if X =Y is valid, i.e. true in all states, then
so is Elz:= X] = E[z:= Y].” Axiom (3.83), on the other hand, says,
“if e = f is true in a state, then E[z:= €] = E[z:= f] is true in that
state.” Thus, the inference rule and the axiom are not quite the same.
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We show why the implication of Axiom (3.83) does not hold in the other
direction. Let E be false A z, e be true,and f be false. Then E[z :=
e] = E[z:= f] is true but e= f is false.

The following rules of substitution follow directly from axiom (3.83).

Rules of substitution
(3.84) Substitution: (a) (e=f) A Ef = (e=f) A E}
(b) e=f) = Ef = (e=f) = E}
() gn(e=f) = EZ = qA(e=f) = E}

The first theorem below indicates that any occurrence of the antecedent
of an implication in the consequent may be replaced by true; the second
extends the first to the case that the antecedent is a conjunction. The
third and fourth theorems provide for a similar replacement of (disjuncts
of) the consequent in the antecedent. Theorem (3.89), attributed to Claude
Shannon (see Historical note 5.1 on page 93), provides for a case analysis
based on the possible values true and false of p.

Replacing variables by boolean constants
(3.85) Replace by true: (a) p = E; = p = Ef,,
(b) gAp = E; = qAp = Ef,

(3.86) Replace by false: (a) E; = p = Ef,. = p
(b)EgiquEEfalseipvq
(3.87) Replace by true: p A E; = p A Ef,,

(3.88) Replace by false: pV E; = pV Ej,,

(3.89) Shannon: E} = (p A Ef,.) V (-p A Ef.)

true

We illustrate the use of these theorems in proving p A ¢ = (p = q).

pAg=(p =gq)
= (Replace by true (3.85b))
pAqg = (true = q)
= (Replace by true (3.85Db))
p A q = (true = true)
= (Identity of = (3.3))
p A g = true —theorem (3.72)
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Exercises for Chapter 3

3.1 We have defined = using three axioms. Assuming that the symbol true is
identified with the symbol true of the previous chapter on boolean expressions,
do the axioms uniquely identify operator =7 Answer this question by seeing
which of the 16 possible binary operators o (say) given in the truth table on
page 26 satisfy ((pog)or)o(po(gor)), pogogop,and trueoqogq. (For
example, the operator given by the last column does not satisfy trueogogq, since
the operator always yields f.)

3.2 Use truth tables to show that axioms (3.1), (3.2), and (3.3) are valid ( true
in every state).

3.3 Prove Reflexivity of = (3.5), p=p.

3.4 Prove the following metatheorem. @ = #rue is a theorem iff Q is a
theorem.

3.5 Prove the following metatheorem. Any two theorems are equivalent.

3.6 Assume that operator = is identified with operator = of Sec. 2.1 (see Ex-
ercise 3.1) and true is identified with the symbol true of Sec. 2.1. Prove that
axioms (3.8) and (3.9) uniquely define operator — . That is, determine which
of the four prefix operators o defined in the truth table on page 26 satisfy
false = otrue and o(p=gq) = op=gq.

Exercises on negation, inequivalence, and false

3.7 Prove theorem (3.11) in three different ways: start with —p = ¢ and trans-
form it to p = ¢, start with —p = p and transform it into ¢ = —¢q, and start
with —p and transform it into ¢ = p = —¢ . Compare these three proofs and the
one given on page 47. Which is simpler or shorter?

3.8 Prove Double negation (3.12), ——p=p.
3.9 Prove Negation of false (3.13), —false = true.
3.10 Prove theorem (3.14), (pZq)=-p=gq.

3.11 Prove theorem (3.15) by transforming —p = p = false to true using (3.11).
The proof should require only two uses of Leibniz.

3.12 Prove Associativity of # (3.17), ((p#£q) Zr) = (p# (g # 7)), using the
heuristic of Definition elimination (3.23) —by eliminating #, using a property
of =, and reintroducing # .

3.13 Prove Mutual associativity (3.18), (p £q) =r) = (P £ (g = 1)),
using the heuristic of Definition elimination (3.23) —by eliminating #, using a
property of =, and reintroducing #.

3.14 Prove Mutual interchangeability (3.19), p Zg=r = p=gq # r,
using the heuristic of Definition elimination (3.23) —by eliminating #, using a
property of =, and reintroducing #.
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Exercises on disjunction

3.15 Assume that =, —, true, and false have meanings as given in Sec. 2.1.
Show that axioms (3.24)—(3.28) uniquely determine operator V —only one of
the operators of the truth table for binary operators on page 26 can be assigned
to it.

3.16 Prove that the zero of a binary operator & is unique. (An object is unique
if, when we assume that two of them B and C exist, we can prove B=C.)

3.17 Prove Identity of v (3.30), p V false = p, by transforming its more
structured side into its simpler side. Theorem (3.15) may be a suitable way to
introduce an equivalence.

3.18 Prove Distributivity of vV over V (3.31), pV(gVr) = (pVvg V(pVrT).
The proof requires only the symmetry, associativity, and idempotency of V .

3.19 Prove theorem (3.32), pVqg = pV ~¢ = p. Note that the pattern
PV q = pV —g matches the RHS of distributivity axiom (3.27), with r := —q,
so consider transforming pV ¢ = pV —q to p.

Exercises on conjunction

3.20 Show the validity of the Golden rule, (3.35), by constructing a truth table
for it.

3.21 Prove that the only distinct formulas (up to interchanging p and ¢q) in-
volving variables p, ¢, =, and V are: p, p=p, p=gq, pVg, pVqg=gq,
and p = ¢ = pVgq.

3.22 Prove Symmetry of A (3.36), p A ¢ = q A p, using the heuristic of Def-
inition elimination (3.23) —eliminate A (using its definition, the Golden rule),
manipulate, and then reintroduce A .

3.23 Prove Idempotency of A (3.38), p A p = p, using the heuristic of Defini-
tion elimination (3.23) —eliminate A (using its definition, the Golden rule) and
manipulate.

3.24 Prove Zero of A (3.40), p A false = false, using the heuristic of Defini-
tion elimination (3.23) —eliminate A (using its definition, the Golden rule) and
manipulate.

3.25 Prove Distributivity of A over A (341), pA(gAT) = (DA A(pAT).

3.26 Prove Contradiction (3.42), p A —=p = false , using the heuristic of Defini-
tion elimination (3.23) —eliminate A (using its definition, the Golden rule) and
manipulate.

3.27 Prove Absorption (3.43a), p A (p V ¢) = p, using the heuristic of Defini-
tion elimination (3.23) —eliminate A (using its definition, the Golden rule) and
manipulate.

3.28 Prove Absorption (3.43b), p V (p A q¢) = p. Use the Golden rule.
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3.29 Prove Absorption (3.44b), p V (-p A q) =. p V q. Use the Golden rule
and manipulate.

3.30 Prove Distributivity of V over A (345), pV (@A T) = (Vg A(pV
1), using the heuristic of Definition elimination (3.23) —eliminate A (using its
definition, the Golden rule), manipulate, and reintroduce A using the Golden
rule again.

3.31 Prove Distributivity of A over V (3.46). It cannot be proved in the same
manner as Distributivity of V over A (3.45) because A does not distribute over
= so nicely. Instead, prove it using (3.45) and Absorption.

3.32 Prove De Morgan (3.47a), -(p A q¢) = —p V —q . Start by using the Golden
rule; (3.32) should come in handy.

3.33 Prove De Morgan (3.47b), —~(p V ¢) = —-p A —q, beginning with the LHS
and using the Golden rule.

3.34 Prove (p A @) V(pA~q) = p.

3.35 Prove (3.48), pA g = p A ¢ = -p. Theorem (3.32) should come in
handy.

3.36 Prove (3.50), p A (g
Ti=p.

3.37 Prove Replacement (3.51), (p=g) A{r=p) = (p=q) A (r=gq), by
proving that the LHS and the RHS each equivale p = ¢ = r = pvgq =
gVr = rVp. The transformation of the LHS (or the RHS) to this expression
can be done by applying (3.27) three times.

P) = p A q, using (3.49) with the instantiation

Il

3.38 Prove Replacement (3.51), (p = ¢g) A(r=p) = (p=gqg) A (r = q),
by making immediate use of Distributivity of A over = (3.49) to replace both
equivalents.

3.39 Prove Definition of = (3.52), p = ¢ = (pAq) V (—p A ~q) . Hint: Apply
theorem (3.32), pV g = pV -¢ = p, to the RHS.

3.40 Prove Exclusive or (3.53), p # ¢
apply Definition of = (3.52).

(=p A q@) V (p A —q). Hint: Try to

Exercises on implication

3.41 Prove Implication (3.59), p = q¢ = —p V ¢. At one point of the proof,
you may find theorem (3.32) useful.

3.42 Prove Implication (3.60), p = ¢ = pA g = p.
3.43 Prove Contrapositive (3.61), p=¢q¢ = —q = —p.

3.44 Prove p = ¢ = —-(p A —¢q) . Axiom (3.57) may not be the best choice to
eliminate the implication.

3.45 Prove p == ¢ = ~pV —q = —p.
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3.46 Prove p = g = -p A ~q¢ = —q.

3.47 Prove Distributivity of = over = (363), p = (¢ = 7) = p = q =
p=r.

3.48 Prove theorem (3.64), p = (¢g=7r) = (p=>q) = (p = 7).

3.49 Prove Shunting (3.65), pA g = r = p = (¢ = r). Use the heuristic
of Definition Elimination, (3.23), on page 48. Use of one of (3.59)—(3.61) instead
of (3.57) to remove the implication will be more fruitful.

3.50 Prove theorem (3.66), p A (p = q) = p A q. Hint: Try to eliminate the
implication in a manner that allows an Absorption law to be used.

3.51 Prove theorem (3.67), p A (¢ = p) = p. Hint: Try to eliminate the
implication in a manner that allows an Absorption law to be used.

3.52 Prove theorem (3.68), p V (p = ¢) = true. Hint: Use (3.59) to eliminate
the implication.

3.53 Prove theorem (3.69), pV (¢ = p) = ¢ = p. Hint: use (3.59) to eliminate
the implication.

3.54 Prove theorem (3.70), p Vg = pAq = p = gq. Hint: Start with
pV q = p A q and remove the implication. Head toward a use of the alternative
definition of =.

3.55 Prove Reflexivity of = (3.71), p = p = true.
3.56 Prove Right zero of = (3.72), p = true = true.
3.57 Prove Left identity of = (3.73), true = p = p.
3.58 Prove theorem (3.74), p = false = -p.

3.59 Prove theorem (3.75), false = p = true.

3.60 Prove Weakening/strengthening (3.76a), p = p V q. After eliminating
the implication (in a suitable manner), you may find it helpful to use a law of
Absorption.

3.61 Prove Weakening/strengthening (3.76b), p A ¢ = p. The hint of the
preceding exercise applies here also.

3.62 Prove Weakening/strengthening (3.76c), p A ¢ = p V q. The hint of the
preceding exercise applies here also.

3.63 Prove Weakening/strengthening (3.76d), p V (¢ A 7) = p V q. Since the
main operator in this expression is V , one idea is to remove the implication
using (3.57). Alternatively, it can be proved in one step.

3.64 Prove Weakening/strengthening (3.76e), p A ¢ = p A (g V r). Since the
main operator in this expression is A , one idea is to remove the implication
using (3.60). Alternatively, it can be proved in one step.

3.65 Prove Modus ponens, (3.77), p A (p = q) = g. Hint: Use theorem (3.66).
3.66 Prove theorem (3.78), (p = r) A (g=>r) = (pVg=r1).
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3.67 Prove theorem (3.79), (p = r) A (-p = 1) = r.

3.68 Prove Mutual implication (3.80). Begin by replacing each conjunct in the
LHS using (3.59) and then use the Golden rule.

3.69 Prove Antisymmetry (3.81) in two steps (use Mutual implication (3.80)).

3.70 Prove Transitivity of implication (3.82a). Start with the whole expression,
transform each of the four implications in it using (3.59), and then massage.

3.71 Prove Transitivity (3.82b), (p = ¢) A (g = 7) = (p = 7). Use Mutual
implication (3.80), Transitivity (3.82a), and Shunting (3.65).

3.72 Prove Transitivity (3.82¢), (p = q¢) A (g = r) = (p = 7). Use Mutual
implication (3.80), Transitivity (3.82a), and Shunting (3.65).

Exercises on Leibniz’s rule as an axiom

3.73 Prove Substitution (3.84a), (e = f) A E = (e= f) A E} . Begin with
Leibniz (3.83) and replace the implication.
3.74 Prove Substitution (3.84b), (e = f) = E[z:=¢€] = (e= f) = E[z:=f].

3.75 Prove Substitution (3.84c), ¢ A (e = f) = E?
Use Shunting (3.65).

gA(e=f) = E}.

3.76 Prove Replace by true (3.85a), p = E[z:=p] = p = Elz:= true].In
order to be able to use (3.84b), introduce the equivalent true into the antecedent.
3.77 Prove Replace by true (3.85b), g Ap = Elz:=p] = gAp = E[z:=
true] .

3.78 Prove Replace by false (3.86a), E[z:=p] = p = E[z:= false] = p.

3.79 Prove Replace by false (3.86b), E[z:=p] = pV q = E[z:= false] =
pVag.

3.80 Prove Replace by true (3.87), p A E[z:=p] = p A E[z:= true].
3.81 Prove Replace by false (3.88), pV E[z:=p] = p V E[z:= false].
3.82 Prove p = (q => p) using theorem (3.85a) in the first step.
3.83 Prove Shannon (3.89), Ef = (p A Efue) V (0P A Efy) -

3.84 Prove Weakening/strengthening (3.76e), p A q = p A (¢ V r), using
Replace by true (3.85b).

Exercises on duals

3.85 Consider any expression P of the form true, g A7r, g = r,or ¢ = r,
and consider its dual Pp (see Def. (2.2) on page 31). Prove that P = —Pp for
expressions of the form given above, provided it holds for their subexpressions.
Hint: By the definition of the dual, for an operation like A, (gAT")p = gp V7D .
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3.86 Look through the equivalences that are theorems in this chapter (only up
through theorem (3.53)) and put them in pairs P = Q and Pp = Qp . (For
example, Symmetry of = (3.2) and Symmetry of # (3.16) form such a pair.)

3.87 Make a list of all theorems P in this chapter (only up through theorem
(3.53)) that are equivalences for which —Pp is not listed as a theorem in this
chapter (see the previous exercise).

Exercises on normal forms

A boolean expression is in conjunctive normal form if it has the form
EoNE1 AN ...NE, 1

where each E; is a disjunction of variables and negations of variables. For ex-
ample, the following expression is in conjunctive normal form.

(@av -b) A (avbVe) A(-a)

An expression is in disjunctive normal form if it has the form
EoVEL,V...... En._1

where each FE; is a conjunction of variables and negations of variables. For ex-
ample, the following expression is in disjunctive normal form.

(@ A=b) V (aAbAec) V (—a)

In electrical engineering, where conjunctive and disjunctive normal forms are
used in dealing with circuits, an expression of the form Vo V --- V V, , where
each V; is a variable, is called a mazterm, for the following reason. If one considers
false < true , then x V y is the maximum of z and y, so the maxterm is the
maximum of its operands. Similarly, an expression of the form Vo A --- AV, is
called a minterm.

3.88 The following truth table defines a set of states of variables a,b,c,d. Give
a boolean expression in disjunctive normal form that is true in exactly the
states defined by the truth table. Based on this example, outline a procedure
that translates any such truth table into an equivalent boolean expression in
disjunctive normal form. ‘

a b c d
t t t f
t f t f
fot t f

Since every boolean expression can be described by such a truth table, every
boolean expression can be transformed to disjunctive normal form.

3.89 The following truth table defines a set of states of variables a,b,c,d. Give
a boolean expression in conjunctive normal form that is #rue in exactly the
states defined by the truth table. Based on this example, describe a procedure
that translates any such truth table into an equivalent boolean expression in
conjunctive normal form.
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Since every boolean expression can be described by such a truth table, every
boolean expression can be transformed to conjunctive normal form.



Chapter 4

Relaxing the Proof Style

n the previous chapter, we defined the propositional calculus, discussed
I proof strategies and heuristics, and proved many theorems. In this chap-
ter, we provide some flexibility in the use of the propositional calculus.
First, we introduce an extension of our proof format in order to shorten
some proofs of implications. Second, we show how to present proofs in a
less formal style. In doing so, we relate classical proof methods to proofs in
the propositional calculus.

4.1 An abbreviation for proving implications

Step away from propositional calculus for a moment and consider arith-
metic relations. Suppose we have concluded that b = d — 1 holds. Since
d—1 < d, weinfer b < d. We are proving b < d using a law of transitivity,
r=y N y<z = zr<z.

We can extend our notion of proofs of equality in Sec. 1.5 and give this
proof of b < d as shown below. In this proof, we are making implicit use
ofthelaw 2=y A y<z = z<z.

b

= (Some hint)
d—1

< (Definition of <)
d

A similar proof format can be used whenever we have a relation o (say)
that satisfies transitivity laws like =y A yoz = zoz and boc A cod = bod .
(We already have transitivity of equality.) In particular, we can extend
the proof format for our propositional calculus in this fashion because of
theorems (3.82a)-(3.82¢). Given p = ¢ and ¢ = r, we would demonstrate
that p = r holds using the following proof.

p

= (Why p = q)
q

= (Why ¢g=r)
r

D. Gries et al., A Logical Approach to Discrete Math
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Formally, in order to accept proofs in this format, we have to show that
we can translate this proof into a proof of p = r that does not use the
extension. Here is such a proof, which uses the same two theorems.

p=g)A(g=r)= (p=r) —Transitivity (3.82b)
(Why p = q = true)
true A (g =r) = (p=r)
(Why ¢ = r = true)
true A true = (p = 1)
= (Idempotency of A (3.38); Left identity of = (3.73))
p=r

Generalizing, we allow any number of = steps and = steps to be used
in the proof format. Similarly, from a sequence of < and = steps we
conclude that the first expression is a consequence of the last.

The following theorems can be proved quite simply using the new format.

Additional theorems concerning implication

(41) p= (¢=p)
(4.2) Monotonicitylof V: (p = ¢) = (pVr = qVr)

(4.3) Monotonicity of A: (p = q) = (pAr = qgAT)

We develop a proof of (4.2) in order to illustrate the use of our abbre-
viation for proofs by implication. We begin with the consequent, since it
has more structure, and transform it into the antecedent, keeping in mind
the goal, antecedent p = g¢. The first step is to eliminate the implica-
tion. Any of the four “definitions” of implication (3.57), (3.59), (3.60), and
(3.61) could be used for this. Here, we use (3.57) so that all the operators
on both sides of the resulting equivalence are disjunctions. For the step of
weakening or strengthening (which puts = or < as the operator in the
left column), (3.76a), (3.76b), and (3.76¢) are often useful.

pVr=q4qVr
(857), p=>q¢=pVyg=q)
pvVrvVvgVr =qVr
= (Idempotency of V (3.26))
pVgVr=qVr
(Distributivity of V over = (3.27),
with p,q,r:==r,pV q7q>

Il

! A boolean function f is monotonic if (z = y) = (fx = fy).
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pVg=qgVr
<  (Weakening (3.76a))

pVg =g
= ((3.57) —again)

p=4q

Note that by starting with the consequent, we were forced to use <.
Starting with the antecedent, as shown below, allows us to use = instead.

p=4q

= (357, p=>qg=pVg=q)
pVaqg=gq

=  (Weakening (3.76a))

(pVg=qgVr

= (Distributivity of vV over = (3.27))
pVgVr=qVr

= (Idempotency of Vv (3.26))
pVvVrvgVr=gqVr

= ((3.57) —again)
pVr=gqVr

Il

However, a rabbit is pulled out of the hat in this second proof, contradicting
principle (3.34) on page 51: in the second step, disjunct r is introduced
without any motivation. This example, again, illustrates that the direction
a proof takes may determine whether it appears simple and “opportunity
driven”, i.e. whether the shapes of the expressions guide each step in a
straightforward manner.

4.2 Additional proof techniques

When dealing with proofs of boolean expressions, our equational logic suf-
fices. When dealing with other domains of interest (e.g. integers, sequences,
or trees), where we use inductively defined objects, partial functions and
the like, a few additional proof techniques become useful. In this section,
we introduce these techniques. In doing so, we can begin looking at the
relation between formal and informal proofs.

ASSUMING THE ANTECEDENT
A common practice in mathematics is to prove an implication P = @ by

assuming the antecedent P and proving the consequent ). By “assuming
the antecedent” we mean thinking of it, momentarily, as an axiom and thus
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equivalent to true . In the proof of consequent @, each variable in the new
axiom P is treated as a constant, so that Substitution (1.1) cannot be
used to replace the variable. Later, we discuss the need for this restriction.

We justify this method of proof with the following metatheorem.

(4.4) (Extended) Deduction Theorem. Suppose adding P, ...,
P, as axioms to propositional logic E, with the variables of the
P; considered to be constants, allows @ to be proved. Then P; A
...AP, = @ is a theorem.

The proof of this metatheorem involves showing how a proof of () using
Py, ..., P, asadditional axioms can be mechanically transformed into a
proof of Py A...AP, = Q. The description of the transformation is long
and tedious, and we do not give it here.

Below, we give a proof of p A ¢ = (p = ¢q) using metatheorem
(4.4). The proof illustrates how we say in English that the conjuncts of the
antecedent are “assumed”, or added as axioms to the logic.

Proof. To prove p A ¢ = (p = gq), we assume the conjuncts of its
antecedent and prove its consequent:

p
= (Assumption p)
true
= (Assumption ¢ )
q O

If a proof is long, it may be difficult to remember the assumptions. In
this case, we place the assumptions at the beginning of the proof, as in
the following example. The first line alerts the reader that a proof is being
conducted by assuming the conjuncts of the antecedent and proving the
consequent.

Assume p, g
p
= (Assumption p)
true
(Assumption ¢ )
q a

Metatheorem (4.4) requires that all variables in the assumed expression
be viewed as constants throughout the proof of @, so that Substitution
(1.1) cannot be used to replace them. The following incorrect proof of
(b=c) = (d=c) (which is not valid) shows why this is necessary. The
proof is incorrect because b in the assumption is replaced using the rule
of Substitution.
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Assume b=c (proof incorrect)
d
= (Assumption b=c, with b:=d —i.e. d=c)
c

Proofs by assumption can be hierarchical. For example, we prove

p=>p)=(eg=4d)=>@reg=p A{))

Our proof assumes first p = p’ and then ¢ = ¢ . However, p = p'
is not in a suitable form for use in this proof; by (3.60), it is equivalent to
p Ap = p,and this formula is needed in the proof. Rather than write
and prove p A p' = p separately, as a lemma, we simply say that it holds
and rely on the reader’s experience to fill in details if deemed necessary.
Here, then, is the proof.

Assume p = p’ (which is equivalent to p A p’ = p)
Assume q = ¢ (which is equivalent to ¢ I =
PAg
= (Assumption p A p' = p)
pPAP Ag
= (Assumption ¢ A ¢ = q)
pAP ANgNng
= (Weakening (3.76b))
PAad

>3
Q

PROOF BY CASE ANALYSIS

A proof of P (say) by case analysis proceeds as follows. Find cases (boolean
expressions) @ and R (say) such that @V R holds. Then show that P
holds in each case: @ = P and R = P. One could have a 3-case analysis,
or a 4-case analysis, and so on; the disjunction of all the cases must be true
and each case must imply P.

It is usually best to avoid case analysis. A single thread of reasoning is
usually easier to comprehend than several. A proof by case analysis can be
much longer than a proof that avoids it, simply because each case needs a
separate proof and because one must ensure with an additional proof that
all possibilities are enumerated by the cases. This situation occurs with our
proof of the law of contradiction, given below. Further, use of nested case
analysis can lead to an explosion in the number of cases to be considered
—much like the use of nested conditional statements in programs, which
we all know becomes unwieldy. However, case analysis cannot always be
avoided, and we need good methods for handling it.
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Our first formalization of case analysis depends on Shannon (3.89):

E; = (p A Etzrue) v (_'p A Efzalse)

Using (3.89), we can justify the following metatheorem, which indicates
that we can prove a theorem by considering two cases. In the first case,
one of its variables is replaced by true, and in the second case, the same

variable is replaced by false .

(4.5) Metatheorem Case analysis. If E[z := true] and E[z := false]
are theorems, then so is E[z := p].

We prove (4.5). Under the hypotheses of the theorem, we have,

Elz == p|
(Shannon (3.89))
(p N Elz := true]) V (-p A E[z := false])
(Hypotheses of (4.5) together with Exercise 3.4)
(p A true) V (—p A true)
= (Identity of A (3.39), twice)
pV —p —Excluded Middle (3.28)

We illustrate this kind of case analysis with two proofs of Contradiction
(3.42), p A =p = false ; they should be compared to the equational proof
requested in Exercise 3.26. The first proof is in English:

Proof. If p is true, then the LHS of the formula is true A —true, which,
by Identity of A (3.39)) and the Definition of false (3.8) is equivalent to
false . If p is false , then the LHS of the formula is false A —false , which,
by Zero of A (3.40) is equivalent to false . Hence, in both cases, the LHS
is equivalent to false and the formula is true . Therefore, by metatheorem
(4.5), the formula is true. a

The second proof illustrates a stylized form of proof by case analysis that
makes the structure of the proof clearer.

Prove: p A —p = false
By Shannon
Case (p A —p = false)[p := true]
= (Textual substitution)
true A —true = false
= (Identity of A (3.39); Definition of false (3.8))
false = false —which is Reflexivity of = (3.5)
Case (p A —p = false)[p := false]
= (Textual substitution)
false N —false = false
= (Zero of A (3.40))
false = false =~ —which is Reflexivity of = (3.5)
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In addition to its use in proofs, the case analysis embodied in (4.5) is
applicable as a sort of partial evaluation, to check quickly if a formula
could be a theorem. Choose a suitable variable and see what the value of
the formula is when the variable is true and when it is false . If in either
case the value is false, the formula is not a theorem. Such a check does
not work so easily for other domains, like the integers, because there are
too many different values of the variable to check.

We now turn attention to a more general kind of case analysis, which is
based on the following theorem (see Exercise 4.12).

(46) (pVaegVr)A(p=s)AN(g=3)AN(r=s) = s

This theorem justifies a three-case analysis; the antecedent indicates that
at least one of the cases p, g, and r is true in each state and that each
case implies s. It should be clear that the same kind of theorem, as well
as the results of this subsection, will hold for any number of cases. Here,
we treat only the three-case analysis.

A format for a three-case analysis is given in Fig. 4.1. Using a three-case
analysis, we can prove S by splitting the state-space into three parts P,
@, and R (which may overlap) and then proving that in each case S
holds. For example, suppose we define the Fibonacci numbers f.i for ¢ a
natural number by

0 ifi=0
fi=+{1 ifi=1
Fle—1)+fi—2) ifi>1

A proof of some property of f is then likely to use the three-case analysis
suggested by this definition, looking separately at the cases i =0, i =1,
and ¢ > 1. Such a proof is almost forced by the three-part definition of
f —although by noticing that f.i =14 for 0 <i <1, a two-case analysis
might suffice. In general, reducing the number of cases used in defining an
object can reduce the work necessary for proving its properties.

FIGURE 4.1. StYL1IZED PROOF By CASE ANALYSIS

Prove: S
By cases: P,Q,R
(proof of PV Q V R —omitted if obvious)
Case P: (proofof P = §)
Case Q: (proofof @ = 5)
Case R: (proofof R = S)

S~ o~
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PROOF BY MUTUAL IMPLICATION

A proof by mutual implication of an equivalence P = @ is performed as
follows:

(4.7) Proof method. To prove P=Q,prove P = Q and Q = P.
Such a proof rests on theorem (3.80), which we repeat here:

P=>adAN@=>p ={p=4q

Certain forms of equational proof involve mutual implication in disguise.
Consider a proof of P =@ of the form:

P
= (Hint)

‘ .<Hint)
Pv@Q
= (Hint)

— (Hint)
Q

This proof establishes (P =
P = PV Q equivales Q =
the proof establishes

P ) (PVQ = Q). Since

and
vV Q Q equivales P = @,
(@= P)N(P=Q)

But this formula is the LHS of (3.80). Hence, the proof is really just a proof
by mutual implication of P = Q.

In writing this section of the text, we searched for a good example of
proof by mutual implication. Several texts on discrete mathematics used
mutual implication to prove the following theorem. Let even.i stand for
“{ is a multiple of 27, i.e. i = 2-k for some natural number k.

(4.8) Theorem. For any natural number ¢, even.i = even(i?).

One proof by mutual implication in the literature proved LHS = RHS
and the contrapositive of RHS = LHS, odd.i = odd(i*) . Both of these
proofs were essentially in English. We made these proofs calculational and
polished them until they were as clear as we could make them. We then
realized that our proof of LHS = RHS , given below, had become a proof
of LHS = RHS, so that a proof by mutual implication was not needed!
Half the proof was thrown away! This story illustrates how formalizing can
shorten and simplify an argument.
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even.t
= (Definition of even )
i =2k (for some natural number k)

= (r=vy = 2% =142 (for natural numbers z,y))
i2 = (2-k)?  (for some natural number k)
= (Arithmetic)

i2 =2-(2-k?)  (for some natural number k)
= (Definition of even )
even(i?)

In Chap. 3, we used mutual implication to prove an equivalence only
once, even though we proved over 60 theorems (counting the exercises).
Just like case analysis, a proof by mutual implication is generally going
to be longer than a direct proof that avoids it, and we suggest eschewing
mutual implication where possible. However, there are situations where
mutual implication must be used to prove an equivalence P = . This
occurs when the proofs of P = @) and @ = P rely on different properties.
See, for example, the proof of Theorem (12.26) in Chap. 12.

PROOF BY CONTRADICTION

Another common practice in mathematics for proving a theorem P is
to assume P is false and derive a contradiction (that is, derive false
or something equivalent to false ). The formal basis for such a proof is
theorem (3.74), p = false = —p. With the substitution p := —p, and
using double negation (3.12), we derive the theorem

(4.9) Proof by contradiction: —-p = false = p

Hence, having proved that ~P = false is a theorem, we can conclude that
P is a theorem as well.

Formula —P = false is usually proved using the method of the previous
subsection: assume —P and prove false . A shortcut is often taken: instead
of proving false directly, prove something that is obviously equivalent to
false , like Q A Q).

This proof method is overused —many proofs by contradiction can be
more simply written using a direct method. Often, this overuse arises from
trying to do too much of the proof in English. As an example, consider the
following theorem and its (informal) proof by contradiction.

(4.10) Theorem. Let u be a left identity and v be a right identity of

operator o,i.e. uoxr =z and xzov=gz forall . Then u=v.

Proof. We assume u # v and prove a contradiction. Consider the expression
uow. Since u is a left identity, this expression equals v ; since v is a right
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identity, this expression equals w; hence, u = v, but this contradicts the
assumption u # v. Hence the assumption is false, and u=v. O

Here is a much simpler, straightforward equational proof.

u .
= (v is a right identity)
uov
(u is a left identity)
v

That the formal proof is much simpler is no accident. Using formal tools,
and not even letting contorted English sentences come into one’s thoughts,
can often lead to simpler arguments. Let the formal tools do the work.

Here is a case where proof by contradiction is sensible. Consider writing a
function Halt that would test whether execution of an input-free program
(or any imperative statement) halts. (By “input-free” we mean that the
program does not read from files or refer to global variables.) The first
line, a comment, is a specification for Halt; it indicates that a function
application Halt(P) equivales the value of the statement “ P halts”.

{Halt(P) = P halts}
function Halt(P : string) : bool;
begin ... end

Parameter P is a string of characters. Presumably, Halt analyzes P much
the way a compiler does, but the compiler generates a program in some
machine language while Halt just determines whether P halts.

Function Halt would be very useful. However, Alan Turing proved in
the 1930’s (see Historical note 4.1) that it cannot be written.

(4.11) Theorem. Function Halt does not exist.
Proof. Assume Halt exists and consider the following procedure.

procedure B;
begin while Halt(“call B”) do skip end

Note that the argument of the call on Halt in the body of B is a call on
B itself. We observe the following.

“call B” halts
= (inspection of B'’s procedure body)
—Halt(“call B”)
(Definition of Halt —see comment on function Halt )
- (“call B” halts)
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HISTORICAL NOTE 4.1. ALAN M. TURING (1912-1954)

Alan Turing is the legendary figure after whom the ACM’s Annual Tur-
g Award is named —computer science’s equivalent of the Nobel Prize. His
stature comes from work he did when he was 23 while on a student fellowship
at Cambridge University, work that was fundamental in a field that did not
exist yet: computer science.

Turing was taken by Hilbert’s claim that mathematics would be decidable
(see Historical note 6.1), i.e. in principle, there would be a mechanical proce-
dure for determining whether any statement was true or false. Turing devel-
oped an abstract form of computer (before computers existed) to carry out
mechanical procedures. This mathematical computer, which now bears the
name Turing machine, is still of great interest today. Turing gave convincing
evidence that the Turing machine was universal: any “computable function”
could be written as a Turing machine. Using Turing machines, Turing then
proved that decidability was out of the question. For example, the halting
problem discussed on page 78 is undecidable; there is no procedure for deter-
mining in a finite time whether an arbitrary program will halt.

Turing was also a key player on the team at Bletchley that deciphered
German messages during World War II. He was a prime developer of both the
electronics and the architecture of the British computer ACE (starting in 1945)
and was the first to recognize the full potential of a stored-program computer
that could create its own instructions. A paper of his in 1949 is viewed as the
first instance of a program-correctness proof.

The last two years of Turing’s life are a sad commentary on the times.
In 1952, Turing was charged with 12 counts of “committing an act of gross
indecency” with another male. He was a homosexual. Both men pleaded guilty,
but Turing felt no guilt and lived through the proceedings in a seemingly
detached manner. His punishment was a year of probation, during which he had
to take the female hormone estrogen to reduce his sexual libido. His intellectual
life went on as before. However, in June 1954, with no warning and no note
of explanation, he committed suicide by taking cyanide. (See the excellent
biography [23].)

We have derived a contradiction, so we have disproved the assumption that
Halt exists. O

PROOF BY CONTRAPOSITIVE

An implication P = @ is sometimes proved as follows. First assume P;
then prove @) by contradiction, i.e. assume —@Q and prove false. Such a
proof is not as clear as we might hope, and there is a better way:

(4.12) Proof method: Prove P = @ by proving its contrapositive
-Q = —P (see (3.61)).
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Here is an example: we prove z+y >2 = z>1V y > 1. By Contra-
positive (3.61), De Morgan, and arithmetic, this formula is equivalent to
r<1Ay<1l= z+y<2,and we prove the latter formula by assuming
the antecedent and proving the consequent.

r+y

< (Assumptions z < 1 and y < 1)
1+1

= (Arithmetic)
2

Exercises for Chapter 4

Exercises on an abbreviation for implications

4.1 Prove theorem (4.1), p = (¢ = p), using the method of Sec. 4.1.

4.2 Prove Monotonicity of A (4.3), (p = ¢) = (p AT = g A 1), using the
method of Sec. 4.1. Start with the consequent, since it has more structure.

4.3 Prove Weakening/strengthening (3.76d), p V (¢ A ) = p V q, using the
method of Sec. 4.1. Start with the antecedent, since it has more structure, and
distribute.

4.4 Prove (p=>q) AN (r=35) = (pVr = gV s), using the proof format
of Sec. 4.1. You may first want to remove the implications in the antecedent,
distribute as much as possible, and then use theorem (3.76d) and an absorption
theorem.

4.5 Prove (p=>qg) A (r=3s) = (pAr = qA s), using the proof format
of Sec. 4.1. Before using the proof format, you may first want to using Shunting
(3.65) to move p A r into the antecedent.

Exercises on-additional proof techniques

4.6 Prove p = (¢ = p) by the method of assuming the antecedent.

4.7 Prove (-p = ¢q) = ((p = q) = ¢) by the method of assuming the
antecedent.

4.8 Prove pAgq => (p =¢q) by the method of assuming the antecedent.

49Prove (p = P)A (@ = ¢) = (Vg = p V) by the method of
assuming the antecedent.

4.10 Prove Modus ponens (3.77), p A (p = q) = q, by the method of assuming
the antecedent.
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4.11 Prove the following theorem using Metatheorem Case analysis (4.5):
evgnrr = (PAT)VI(gAT)
4.12 Prove theorem (4.6), (pVgVr) A @=>s)A(@=>8) AN(r=35) = s.

4.13 Let z | y be the minimum of integers z and y, defined by z | y = (if z <
y then z else y) . Prove that | is symmetric, ie. b | ¢ =c | b. How many cases
do you have to consider? You may use the necessary rules of integer arithmetic,
for example, that b<c¢ = b=cV b<c and that b<c = ¢c>b.

4.14 Prove by case analysis that | is associative,i.e.that b| (c|d)=(blc) ] d)
(see the previous exercise). How many cases do you have to consider, based on
the definition of | ?

4.15 Consider the discussion on page 76 that shows how a proof of P = @ with
P V @ as an intermediate step can be viewed as a proof by mutual implication.
Write a similar discussion to show how a proof of P = @ with P A Q as an
intermediate step can be viewed as a proof by mutual implication.



Chapter 5

Applications of Propositional
Calculus

‘N 7’ e look at two applications of propositional calculus. The first is its

use in solving various “word problems”, such as the superman story
on page 37. Formalizing such problems in propositional calculus allows us
to solve them more easily than we could using English alone. As a second
application, we show how propositional calculus can be used in the design
of combinational digital circuits.

5.1 Solving word problems

We can reason about English statements by formalizing them as boolean
expressions and manipulating the formalization. This technique has at least
two uses. First, we can check an English argument by formalizing it as a
boolean expression and then proving the expression to be a theorem. Of
course, the expression may not be a theorem (which means that the English
argument from which it was derived is unsound). In this case, our attempt
at proving the expression may lead us to a counterexample —a state in
which the expression is false .

Second, we can use propositional logic to help solve word problems and
puzzles. The challenging puzzles in this chapter (and its exercises) con-
cerning Portia, Superman, the maid and the butler, the island of Marr,
and knights and knaves were taken from Backhouse [2], Smullyan [37],
and Wickelgren [45]. If, after studying this chapter, you want to try ad-
ditional recreational puzzles, get Smullyan’s book, which contains 270 of
them. Smullyan’s other books [38, 39] are also recommended.

CHECKING ENGLISH ARGUMENTS

We can check an argument given in English by formalizing it and proving
the formalization to be a theorem. Consider argument (5.1) below. It starts
with two English sentences, each of which states a fact that is asserted to be
true . These are followed by a conclusion, which is supposed to be supported
by the facts. The conclusion is introduced by the word “hence”.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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(5.1) If Joe fails to submit a project in course CS414, then he fails the
course. If Joe fails CS414, then he cannot graduate. Hence, if Joe
graduates, he must have submitted a project.

Most of the arguments considered in this section have this form, although
the number of facts will vary, different words like “thus” and “therefore”
will introduce the conclusion, and the facts and conclusion may be hidden
by obtuse wording.

Let us call the facts of (5.1) FO and F1 and call the conclusion C.
Then, from the truth of FO0 and F1, C is to be derived. That is, we have
to prove FOA F1 = C.

We now translate these facts and conclusion into propositional calculus.
We associate identifiers with the primitive propositions:

s: Joe submits a project in CS414.
f: Joe fails CS414.
g: Joe graduates.

FO is formalized as -s = f, F1 as f = —g,and C as g = s.To
check the soundness of (5.1), we prove FO A F1 = C':

(s = )N = ~9) = (g = 3)
We prove this theorem by transforming its antecedent into its consequent:

(=s = f) A(F = —9)

= (Transitivity of = (3.82a))
s = g

= (Contrapositive (3.61))
g =s

Actually, you should question whether English statement (5.1) really is
an argument. An argument is a coherent set of facts and reasons that gives
evidence of the truth of some statement. But (5.1) does not give any reasons
at all, it simply states the theorem to be proved, FOA F1 = C'! It is up
to the reader, without help from the writer, to prove the theorem because
none of the steps of the proof are provided. Perhaps this is why so many
arguments that are couched in English are difficult to understand.

CONSTRUCTING A COUNTEREXAMPLE

When an English argument is not sound, attempting to formalize and prove
it can lead to a counterexample —an assignment of values to its variables
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or primitive propositions that makes the argument false. Consider the
following argument:

(5.2) If X is greater than zero, then if Y is zero then Z is zero.
Variable Y is zero. Hence, either X is greater than zero or Z is
ZEro.

This argument consists of two facts and a conclusion drawn from them. We
begin formalizing the argument by associating identifiers with its primitive
propositions.

x: X is greater than zero.
y: Y is zero.
z: Z is zero.

We can then formalize (5.2) as
(53) (z=>@W=2)ANy = zVz
The antecedent has the most structure, so we manipulate it.
(= (y=2)Ny
(Shunting (3.65), twice)

(y=(z=2)Ay

((366), pA(p=>4q) =pAgq)
(z=>2) ANy

Compare the last form of the antecedent, (zx = 2) A y, with consequent
T V z. Variable y has nothing to do with the consequent, and =z =
z (i.e. (mz V z)) does not imply z V z. Hence, we should suspect that
(5.3) is not valid and that argument (5.2) is not sound. So we look for a
counterexample.

How can we find a counterexample? Based on the form of an expression,
we can determine what values of its operands make the expression false
by using Table 5.1. This table, then, helps in constructing counterexamples.

Expression (5.3) is an implication, so, based on Table 5.1, for it to be
false its consequent must be false, and this requires z = 2z = false . Then

TABLE 5.1. COUNTEREXAMPLES FOR EXPRESSIONS

expression counterexample 1 counterexample 2
pAgQ p = false q = false

pVg p = q = false

p=yq p=true, q = false p= false, q= true
p#Eq p=q=true p = q = false

p=q p = true, q = false
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y must be chosen to make the antecedent true, which requires y = true.
Hence, the counterexample, is © = z = false and y = true.

Whether one starts the search for a counterexample of an implication by
attempting to make the consequent false or by attempting to make the
antecedent true depends on their shape and content. Working with the
one with the fewest different variables is usually easier.

MAKING SENSE OF AN ENGLISH SENTENCE

We can use propositional logic to understand English sentences better.
Consider the following English statement, which seems preposterous.

Value v is in b[1..10] means that if v isin 5[11..20] then it is
not in b[11..20] .

We associate boolean variables with primitives of the sentence.

z: v isin b[1..10].
y: v isin b[11..20].

Then the sentence is formalized as x = y = —y. We simplify it.
T = Yy =y
{Rewrite implication (3.59))
r = —yV -y
(Idempotency of V (3.26))
r =y

Translating back into English, we see that the sentence has the meaning
“p isin b[1..10] means that it is not in 5[11..20]” —any value in the first
half of b is not in the second half. In this case, propositional logic helped
us clarify a seemingly gibberish sentence.

SOLVING PUZZLES: PORTIA’S SUITOR’S DILEMMA

Consider the following, which is a simplification of a situation in Shake-
speare’s Merchant of Venice. Portia has a gold casket and a silver casket
and has placed a picture of herself in one of them. On the caskets, she has
written the following inscriptions:

Gold: The portrait is not in here.
Silver: Exactly one of these inscriptions is true.
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Portia explains to her suitor that each inscription may be true or false,
but that she has placed her portrait in one of the caskets in a manner that
is consistent with this truth or falsity of the inscriptions. If he can choose
the casket with her portrait, she will marry him —in those days, that’s
what suitors wanted. The problem for the suitor is to use the inscriptions
(although they could be true or false) to determine which casket contains
her portrait.

To begin solving the problem, we formalize it. We introduce four variables
to stand for primitive propositions:

gc: The portrait is in the gold casket.
sc: The portrait is in the silver casket.
g: The portrait is not in the gold casket.
(This the inscription on the gold casket.)
s: Exactly one of g and s is true.
(This the inscription on the silver casket.)

Using these propositions, we proceed as follows. First, the fact that the
portrait is in exactly one place can be written as?

FO:gc = —sc

Next, inscription g on the gold casket is the negation of gc.

Fl:9 = —gc

Taking a cue from FO, we see that inscription s on the silver casket is
equivalent to s = —g. We do not want to claim that s = —g is a fact,
since we do not know whether this inscription is true; we only want to
claim that inscription s equivales s = —g. Hence, we arrive at F2:

F2:5 = (s = —g)

Expressions FO, F1,and F2 formalize the problem. We now determine
whether we can derive either gc or sc from them. F?2, which has the most
structure, looks the most promising for manipulation:

s=s =g
(Symmetry of = (3.2) —s0 g = s = s = g )
g
( F1; Double negation (3.12))
gc

! Those not facile with equivalence will write this as (gc A —sc) V (~ge A sc)
or as (gc V sc) A =(gc A sc). But gc = -sc is shorter and, because it is an
equivalence, easier to handle.
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Hence, from F1 and F2 ( FO is not needed) we conclude gc. The portrait
is in the gold casket.

We should make sure that FO, F1,and F2 are not contradictory, i.e.
that there is at least one assignment of values to g,s, gc, and sc that
makes all three true.If FO A F1 A F2 were false in every state, then the
propositional logic together with F0, F1,and F2 would be inconsistent
(see Def. (7.1)), and anything could be proved. Were that the case, the
assumption could not be satisfied, so we would conclude that the problem
had no solution.

With gc = true, the additional assignments sc = false, g = false , and
s = false (or s = true!) satisfy FO, F1, and F2. Note that it does not
matter whether the inscription on the silver casket is true or false .

This example illustrates how effective the calculational style of proof can
be. Through a rather simple formalization and calculation, we have solved
what seemed to be a complicated problem.

MORE ON INCONSISTENCIES

Formalizing the previous puzzle did not lead to an inconsistency. We now
analyze a similar puzzle whose formalization is inconsistent. Consider again
Portia’s suitor’s problem, and suppose that Portia writes a different inscrip-
tion on the silver casket:

s’ : This inscription is false.
A formalization of this inscription is
F2: s = -5

But F2' is true in no state; it is equivalent to false. Adding F2' as an
axiom of propositional logic, then, would be taking false as an axiom, and
from false , anything can be proved (3.75). With the addition of F2', our
logic becomes inconsistent and thus useless. F2' is absurd and cannot be
part of any mathematical model of reality, and we conclude that this puzzle
has no solution.

An inconsistency can also arise from an interplay between axioms. For
example, suppose F0 is already an axiom. If we now add the axiom F5 :
gc = sc,then FO A F5 = false, so the system is inconsistent.

ANOTHER PUZZLE: DOES SUPERMAN EXIST?

Page 37 contains an English argument that Superman does not exist:
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If Superman were able and willing to prevent evil, he would do
so. If Superman were unable to prevent evil, he would be im-
potent; if he were unwilling to prevent evil, he would be malev-
olent. Superman does not prevent evil. If Superman exists, he
is neither impotent nor malevolent. Therefore, Superman does
not exist.

We want to use the propositional calculus to determine whether this argu-
ment is sound —whether the conclusion “Superman does not exist” follows
from the previous sentences. As on page 37, we associate variables with the
primitive propositions:

Superman is able to prevent evil.
Superman is willing to prevent evil.
Superman is impotent.

Superman is malevolent.

Superman prevents evil.

Superman exists.

o3 TS

The first four sentences can be formalized as

FO: ahw=1p

Fl: (ma = i) A (~w = m)
F2: —p

F3: e = -iA-m

and the Superman argument is equivalent to the boolean expression

(54 FOAF1AF2AF3 = —e

One way to prove (5.4) is to assume the four conjuncts of the antecedent
and prove the consequent. That is, we begin by manipulating the conse-
quent —e . Beginning with —e, we see only one way to proceed. The only
assumption in which e appears is F'3. If we translate F'3 into its contra-
positive =(—¢ A =m) = —e, —e emerges. (See (3.61) for the contrapositive
of an implication).

Assume FO0, F1, F2, F3
—e
<  (Contrapositive —(—i A —-m) = —e of F3
—the only other place e appears)
~(-i A —m)
= (De Morgan (3.47a); Double negation (3.12), twice)
iV m
< (First conjunct of F1 and Monotonicity (4.2))
-aVm
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<  (Second conjunct of F'1 and Monotonicity (4.2))
—a V —w

= (De Morgan (3.47a))
=(a A w)

<  (Contrapositive -p = -(a A w) of FO)
—-p —thisis F2

We conclude that (5.4) is a theorem, so the argument of the Superman
paragraph is sound.

This calculation illustrates an important point. We started with the con-
sequent —e and worked “backward” toward the assumptions. In this case,
working backwards was a real help, for at each step there was essentially no
choice about what to do next! The only choice was in the order in which to
use the conjuncts of F'1, and this choice was immaterial to the proof de-
velopment. Proofs in which there is no choice at each step are particularly
nice, because the reader can see that each step is directed by a formula’s
structure and is not a rabbit pulled out of a hat.

5.2 Combinational digital circuits

Digital circuits are electronic circuits whose inputs and outputs denote the
boolean constants false and true. In one common scheme, each input
and output is a wire; low signal voltages represent false and high voltages
represent {rue.

Digital circuits can be designed to perform arithmetic operations, to pro-
cess text, and even to execute programs. This is because numbers, charac-
ters, and program operations all can be represented by sequences of bits 0
and 1 (see Sec. 15.5), and a bit can be implemented as a boolean constant.
Conventionally, 0 is represented by false and 1 by true.

A combinational digital circuit is a digital circuit whose outputs at any
time are determined solely by the values of its inputs at that time —
previous inputs and outputs have no effect on the current output. Such
circuits cannot implement components, such as a memory, whose opera-
tion depends on past inputs and outputs. Still, a significant portion of
most digital circuitry is combinational, and many circuits in computers are
entirely combinational. For example, the arithmetic-logical unit (ALU) and
memory-addressing circuitry of most computers are combinational.

A circuit can be described by a circuit diagram, which describes a collec-
tion of gates and their interconnections. Each gate is a component whose
output is a boolean function of its inputs. Circuit-diagram symbols for
three representative gates, which compute conjunctions, disjunctions, and
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negations, are given in Fig. 5.1. The gate for negation is called an inverter
Input wires of a gate usually enter from the left and top; output wire.
emerge from the right and bottom.

A circuit appears on the right in Fig. 5.2. Its wires are labeled. Wires
that always have the same signal may be given the same name. A black
dot where wires cross represents a connection that allows a signal to be
directed to several places. For example, input wire a in Fig. 5.2 is directed
to three places: two and-gates and an inverter.

In a combinational circuit, the output of no gate is connected (either
directly or through a series of wires and gates) to its inputs. This topological
restriction ensures that the input of a gate is not influenced by a past output
of the gate, the hallmark of a combinational circuit.

On the left in Fig. 5.2 is a “black-box” symbol for the circuit, giving it a
name HA and showing the relative positions of inputs a and b and out-
puts ¢ and s. This symbol is similar to a procedure heading, which names
a procedure and describes its parameters, in a programming language. A
black-box symbol (without the parameter names) can be used to denote
the circuit when it is used as a component in a larger circuit. Such a use
is similar to a procedure call. See the right side of Fig. 5.4 on page 100 for
an example.

CIRCUIT DIAGRAMS AND BOOLEAN EXPRESSIONS

In a combinational circuit, each output is determined solely by current
inputs. Thus, a circuit with n inputs z;, z2, ..., £, and m outputs
z1, 22, ..., Zm implements, for each output z;, a boolean function of n
arguments. This idea was first observed and exploited by Claude Shannon
in his Masters thesis some 55 years ago (see Historical note 5.1).

FIGURE 5.1. GATES FOR CONJUNCTION, DISJUNCTION, AND NEGATION
ai ai
42 z a > z
an
and-gate or-gate inverter
z = AND(a1,...,an) z = OR(a1,...,an) z= NOT(a)
z =a1NaxA\---ANan z=a1VaxV---Vay z = —-a
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A boolean expression that is equivalent to a given circuit can be con-
structed as follows. First, be sure that each wire of the circuit is labeled.
Then, for each gate, write a conjunct that embodies the relationship that
the gate implements between its inputs and outputs. Whenever different
names = and y are given to connected wires, include the conjunct =z =y
in the boolean expression.

Here is the boolean expression constructed from circuit HA of Fig. 5.2.
Greek letters are used for the internal wires to distinguish them from the
inputs and outputs.

(6.5) c=(aAb) A
p=-b AN 8=(and) A
w=-a A 1=((bAw) A
s=(0Vm

Let C be the boolean expression constructed from a circuit C . From
the construction, we can see that an _assignment of boolean constants to
the names of the wires is possible for C' iff the assignment satisfies C . For
example, the assignment

a=f,b=tc=f¢=f0=fw=t n=t s=t

is possible for the circuit of Fig. 5.2 and also satisfies (5.5). (We abbreviate
false as f and true as t.) On the other hand, an assignment with a = f,
b= f, c=1 is not possible because the uppermost and-gate ensures that
¢ = a A b holds.

Thus, C and C are two different representations of the same object,
and we can use them interchangeably.

Above, we showed how to construct a boolean expression from a circuit.
We now show how to construct a circuit (in terms of the gates of Fig. 5.1)

FIGURE 5.2. CIRCUIT DIAGRAM FOR HALF-ADDER HA(a,b,s,c)

| >

a a
HA | ) , s )0
{>o_ -

>_s




5.2. COMBINATIONAL DIGITAL CIRCUITS 93

HISTORICAL NOTE 5.1. CLAUDE SHANNON (1916-)

As an undergrad at MIT, Shannon majored in both math and electrical
engineering, and this combination led him to write one of the most important
Master’s theses of all time [35]. Shannon showed how Boole’s ideas on logic
could be used in the design of electronic circuits, thus revolutionizing the field.

Some ten years later, while working for AT&T Bell Labs, Shannon started
the field now called information theory and in [36] established the framework
for the efficient transmission of electronic data. This framework is the basis
for all systems that store, process, and transmit data in digital form, including
your modem, fax machine, and compact disk. So important is [36] that it has
been called the Magna Carta of the communications age.

Shannon defined the binary unit to be the basic unit of information —John
Tukey then abbreviated “binary unit” to “bit”, the term we use today.

Shannon has many interests, one of which is juggling —he was known for
riding a unicycle through Bell Labs while juggling four balls. He loves gadgets
and has built a juggling manikin that looks like comedian W.C. Fields, a
mechanical mouse that finds its way through a maze, and a computer that
calculates in Roman numerals. He has stated that “I’ve always pursued my
interests without much regard for financial value or value to the world; I've
spent lots of time on totally useless things.”

This material was gleaned from the profile [25] of Claude Shannon.

from a boolean expression C', provided C' has the following form:

(5.6) z1=FE1(z) N zo=FEx(z) A ... A 2y = En(x)
where
e the 2; are outputs,

e <z is the vector of inputs, and

e cach E; is a boolean expression that involves only z, true, false,
and the operators A, V,and - . (A boolean constant is implemented
by a wire connected to a constant voltage source.)

Each E; of (5.6) can be written in terms of the three boolean functions

(5.7) NOT(a) : -a
AND(ay,...,az): a1 A---ANay (for n>2)
OR(ay,...,an): a1 V:---Va, (for n>2)
A boolean expression z = F(A1,Az,...A,) is implemented by a circuit
whose output z comes from an F-gate whose inputs are connected to the
outputs of circuits that compute A;, ..., A,.

To illustrate, consider the boolean expression s = (—a A b) V (a A —b) .
We have
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s = (ma Ab) V (a A —b)
(Definition of OR gate (5.7))
s = OR(—a A b,a A —b)
(Definition of AND gate (5.7), twice)
s = OR(AND(-a,b), AND(a,—b))
(Definition of an inverter (5.7), twice)
= OR(AND(NOT(a),b), AND(a, NOT(b)))

Thus, we conclude that output s is the output of a 2-input or-gate. One
of the inputs of this or-gate is connected to the output of a circuit that
computes —a A b; the other input, to a circuit that computes a A —b.

The circuit for —a A b (the first input to the or-gate) is a 2-input and-
gate, with one input coming from a circuit for —a and the other input
being wire b.

The circuit for b A —a (the second input to the or-gate) is a 2-input
and-gate, with one input being wire a and the other input coming from a
circuit for —b.

This yields the part of the circuit of Fig. 5.2 that computes s, but
without names for internal wires.

In summary, for every combinational circuit C we have a boolean ex-
pression C, and for every boolean expression of form (5.6), we can con-
struct a circuit. Note, however, that the boolean expression constructed
from a circuit references internal-wire names, while the circuit constructed
from a boolean expression does not have names on its internal wires. This
difference is revisited in the next section.

FROM SPECIFICATION TO IMPLEMENTATION

A boolean expression, or equivalently a truth table, can serve as a speci-
fication of a combinational circuit, in which case we say that the circuit
tmplements the specification. So, we can use the propositional calculus to
manipulate and analyze combinational circuits. To do so, we have to inves-
tigate the notions of specification and implementation.

We are interested in the input-output behavior of a circuit C.A specifi-
cation of C should indicate for each set of inputs what the corresponding
outputs should be. We use the name behavior to denote this assignment
of input and output values. For example, one behavior for the circuit of
Fig. 52is a=t, b= f, ¢ = f, s =t. Thus, each behavior is a state
that assigns boolean values to variables modeling the circuit’s inputs and
outputs (but not to internal wires).

Consider a specification S, given as a boolean expression, and a circuit
C'. Remember that boolean expression C and circuit C' are equivalent



5.2. COMBINATIONAL DIGITAL CIRCUITS 95

representations. If c implements S, then every behavior of C should
satisfy S . In other words, suppose

C produces values Zi,...,Z,, on output wires zi,...,2zm
when given input values X,,...,X, on input lines z1,...,z, .

Then for C to implement S, any state that contains all the associations
z; = X; and z; = Z; should satisfy specification S. That is, if C is true
in a state, then S should be true in that state as well, or, equivalently,
C = § should be valid. Hence, we define an implementation as follows.

(5.8) Definition. Circuit C implements specification S exactly when
C = § isvalid.

‘We have recast the question of whether a circuit implements a specification
as a question about validity of a boolean expression.

As an example, we prove that the circuit of Fig. 5.2 implements speci-
fication (5.10). The proof below uses Substitution (3.84a) and Weakening
(3.76b) to eliminate the names of the internal wires.

HA

= ((5.5) is HA)
c=(aAb) AN p=-b A 8=(and) A
w=-a AN t=((bAw) A s=(0V 7

= (Substitution (3.84a) —for ¢ and w)
c=(aAb) AN pg=-b A 0= (aA-b) A
w=-a AN n=(bA-a) AN s=(@ V)

=  (Weakening (3.76b) —eliminate ¢ and w)
c=(anb) N 0=(aNn-b) Am=(bA—-a) AN s=(0V 7

= (Substitution (3.84a) —for § and =)
c=(aAb) AN 8=(aA-b) AN T=(bA—a) A
s=((aA—b)V (bA—a))

=  (Weakening (3.76b) —eliminate 6 and )
c=(aAb) A s=((aN=b)V (bA—a))

= (Exclusive or (3.53))
c=(aAb) N s=(a # D))

Note that, according to Definition (5.8), a specification that is equivalent
to true is satisfied by every implementation. This is because C = true is
a theorem no matter what C' is. Having every circuit implement true is
reasonable, since true imposes no requirements on implementations — true
is satisfied by every state and thus imposes no restrictions on outputs for
any input configuration. Similarly, an implementation that is equivalent to
false satisfies every specification, since false = S is a theorem for every
S'. This is not upsetting once we realize that a circuit characterized by
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false does not exist. A circuit that produces outputs cannot be specified
by false (a specification that prohibits outputs). 2

Besides using boolean expressions, we can use truth tables to specify
combinational circuits. The truth table would have one column for each
input and each output and one row for each possible combination of input
values.

For example, suppose we want to specify a circuit that adds two bits a
and b to yield a sum bit s and carry c:

[¢7
hal)

(]

This addition can be defined by giving the values of s and ¢ in four cases:

1 1 0 0
+1 40 41 0
1 01 01 00

Using the standard representation of false for 0 and true for 1, we
rewrite this definition of s and ¢ as a truth table.

(5.9)

N
e s
H,H»N\:
hSh S RO

This truth table can be expressed more succinctly as

(5.10) HA(a,b,s,¢): s=(a £ b) A ¢c=(aADb)

or, using Exclusive or (3.53), as

s=((-aAb)V(aA-b) ANc=(aAb)

This specification for a one-bit adder is implemented by the circuit of
Fig. 5.2, as we proved above. The circuit is called a half-adder because, as
we see later, two such half-adders are required to build a circuit to add a
column of two n-digit binary numbers.

A specification should characterize the desired behavior of the circuit and
nothing more. Eschewing superfluous restrictions and details gives freedom
to the implementor, who ultimately must design a circuit to satisfy the
specification. In this sense, (5.10) is a better specification of a half-adder
than specification (5.5) of the circuit of Fig. 5.2, because (5.5) unnecessarily

% Even the circuit with one output z that is always false is characterized by
a non-false expression: -z .
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refers to internal wires (e.g. w) and imposes other irrelevant structure on
the implementation (e.g. two inverters, three and-gates, and an or-gate).

DON’T CARE CONDITIONS

Definition (5.8) can be used to guide the design of a circuit. Given a spec-
ification S, we need only manipulate S to yield a boolean expression C
that satisfies C' = S and that has the form described in (5.6). Then, from
C, we construct the circuit as described earlier.

We now illustrate this approach to circuit design. The truth tables of
Table 5.2 specify a circuit that yields false if the number of true input
wires is less than 2 and true if the number of true input wires equals
2. In the left truth table, a row for the case when all three input wires are
true has been omitted, presumably because, in the context in which the
implementation is to be used, it does not matter what output is produced
for that input. The right truth table uses a convention of electrical engi-
neers to indicate this “Don’t care” condition: the value D in the top row
means that either ¢ or f is an acceptable result. By having this Don’t-
care condition, the author of the specification has given the implementor
some freedom, so that there is more opportunity for an efficient and simple
implementation.

Our first task in implementing this specification is to write an equivalent
boolean expression. Each row of the left truth table of Table 5.2, e.g.

a b c|z

t ot f|t

indicates that the given inputs on the wires imply the given output. Hence,

TABLE 5.2. TRUTH TABLE FOR PARTIAL MAJORITY CIRCUIT

a b c z a b c z

t t t D
t t I t t t f t
t f t t t f t t
t f f|f t f f|f
f t t t or f t t t
ft flf ft ff
ffF t|fF fr t|f
f r rir F fr flf

Don’t-care case implicit Don’t-care case explicit
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each row contributes an implication to the boolean expression. For example,
the row above contributes

aANbA-c= 2z

In this manner, we can construct the following boolean expression, which
is equivalent to the truth tables of Table 5.2.3
(5.11) (@ AbA-c=2)A
(anh=-bAc=2)A
(@ A=b A e = -z) A
(raAbAC= 2) A
(ma AbA-c = —2) A
(maA-bAc= —z) A
(ma A mb A e = 2)

We can use theorem (3.78), which is
pVg=>r = (p=>r)A(g=r) ,
to aggregate antecedents in (5.11) and then simplify, to yield

(5.12) ((maA-b) V (mbA-C) V (maA-e) = 0z) A
((maAbAC) V (aA-bAc)V (aAbDA-C) = 2)

This expression does not have form (5.6) (see page 93), from which a
circuit could be derived. It also contains more operations than we would
like —remember, each operation is implemented by a gate, and it makes
sense to try to minimize the number of gates used. Perhaps we can resolve
the Don’t-care condition in Table 5.2 in a way that allows us to simplify the
boolean expression even further. There are two possibilities: replacing D by
true adds the implication a A b A ¢ = z as a conjunct to (5.12); replacing
D by false adds a A b A ¢ = —z. We can investigate the consequence of
adding each conjunct. Here, we investigate only the conjunct aAbAc = z,
since its introduction does result in a simplification. Exercise 5.14 concerns
proving that a AbA ¢ = z together with (5.12) is equivalent to

(513) 2z = (aAb)V(bAC)V (cAa)

3 In the construction, a don’t-care row like
tt f| D

contributes the conjunct a AbA—-c = 2V -z, since D signifies that the result
can be either true or false . Because the consequent is equivalent to true, the
implication is itself true and can be omitted entirely.
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Since we added a conjunct to (5.12) and then manipulated using only Leib-
niz to arrive at (5.13), we have (5.13) = (5.12), so, by definition, a circuit
for (5.13) implements (5.12). Further, (5.13) is in form (5.6), and it can
easily be turned into a circuit. The resulting circuit is given in Fig. 5.3.

Expression (5.13) is false when fewer than two of a, b, and c are true
and true when at least two are true. Thus, it specifies a circuit whose
output is true exactly when a majority of its three inputs are tr-

USING HIGHER-LEVEL BUILDING BLOCKS

We can use Definition (5.8) to derive implementations of circuit specifica-
tions in terms of higher-level building blocks. This is now illustrated with
the design of a binary adder. Starting with a specification that character-
izes addition of two unsigned binary numbers, we obtain an expression that
(i) implies the specification and (ii) is in terms of boolean expressions for
half-adders (circuits now at hand), conjunction, disjunction, and negation.

Adding unsigned binary numbers is similar to adding unsigned decimal
numbers; the sole difference is that only the two bits 0 and 1 are available
instead of the ten digits 0, ..., 9. Below, we give an example, show how
the addends are encoded using boolean constants, and then give the general
case:

1001 tfft ap—1 --. Q1 Qo
+1101 + ttft 4+ bp_1 ... b1 b
10110 tfttf dn dn_1 ... d1 do

In the general case, each d; is the least significant bit of the sum of a;,
b; , and the carry from the previous column, except that (i) the carry into

FIGURE 5.3. A MAJORITY CIRCUIT

MAJ

>_z

f
TS

MAJ(a,b,e,2): z = (aAb)V (bAc)V (cAa)
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column 0 is 0 and (ii) the carry from column n—1 is d, . We define the
addition as follows. Let ¢; be the carry from column ¢. Then, the result
of adding a,_1...a9 and b,_;...by is given by

e ¢_; =0. In the boolean representation, c_; = f.

e Each carry ¢;, 0<i<mn,is 1 iff at least two of a;, b;, and ¢;_1,
are 1. As a boolean expression, c; is defined by

¢ = (ai /\bi) \% (bi /\Ci—l) \% (Ci—l /\ai)

o Each d;, 0 <i < n, is the least significant bit of the 2-bit result of
adding bits a;, b;, and c;—; . Investigation shows that it is 1 iff an

odd number of a;, b;, and ¢;_; are 1. As a boolean expression, d;
is defined by

di = (a; = b, = ¢;—1)
e d, is the carry from position n—1,ie. d, =¢,.

The key building block for an n-bit adder is a full adder, a circuit that
calculates sum d and carry e that result from adding bits a,b,c:

(5.14) d=(a=b=c¢c) AN e=((anb) V (bAc)V (cNa))

We can manipulate this expression so that it can be implemented using half-
adders. In each step of the manipulation, we seek to rewrite the current
line into one involving subexpressions of the foorm A # B and A A B,
since these are the outputs of a half-adder (see (5.10)).

d=(a =b = ¢
(Definition of # (3.10), twice, and Associativity)

FIGURE 5.4. FULL ADDER FA(a,b,c,d,€)

a ~
a e ) e
b HA
b | FA —
c d

c HA d

d is the least significant bit of a+b+c¢: d=(a = b = ¢)
e is the most significant bit of a+b+c: e=((aAb) V (bAc) V (cAa))
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d=(a £ b # ¢
= (Ass 0c1at1v1ty —insert parentheses)
d=((a #b) # ¢

Now, a # b is output argument v of HA(a,b,u,.) and d is then an output
argument of HA(u,c,d,_) . Hence, a circuit that computes d results simply
from connecting a and b to the inputs of one half-adder and connecting
its output, along with ¢, to the inputs of another half-adder, as shown in
Fig. 5.4.

We now manipulate the definition of e; in doing so, we try to use the
the two half-adders used in implementing d.

e = (anb) vV (bAc) V (cAha)
= (Distributivity of A over V (3.46))
e = (aAb) V ((avb)Ac)
= (Absorption (3.44b), with p,g:=a A b,(a V b) A ¢)
= (aAb) V (m(aAb)A(aVb)Ac)
= (Propositional calculus —see Exercise 5.17)
e=(aAb)V ((a#b) Ac)
= (Definition of gate OR)
e = OR(aADb, (a£b) Ac)

.

Now, a A b is the fourth argument p (say) of HA(a,b,u,p). Further,
(a #b) A c isoutput s of HA(u,c,d,s). Hence, we can implement the
full-adder as in Fig. 5.4 and use FA({a,b,c,d,e) to compute d and e.

It is now a simple matter to connect a series of full adders to compute
the sum of a,_1...a9 and b,—1...by. We give such an adder in Fig. 5.5,
for the case n = 3.

NAND AND OTHER BUILDING BLOCKS

The collection of gates in Fig. 5.1 is a natural set of building blocks, because
any boolean expression can be written using conjunction, disjunction, and
negation (operations of the form P = @ can be replaced by (P A Q) V
(~PA-Q),and P = @ can be replaced by =P V Q). In fact, a set of 2-
input and-gates, 2-input or-gates and inverters suffices. This is because an
n-input and-gate can be implemented using a cascaded network of 2-input
and-gates, as the following manipulation shows.

AND(a1,a9,as,...,a,)
= (Definition of AND )
ayr Nas ANag A --- A ay
= (Associativity of A (3.37); Definition of AND)
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AND(ai,a2) Aaz A -+ A an
= (Associativity of A (3.37); Definition of AND)
AND(AND(ay,az2),a3) A -+ A ay,

A similar argument demonstrates that an n-input or-gate can be imple-
mented by a network of 2-input or-gates.

Other collections of gates can also suffice as a universal set of building
blocks. For example, surprising though it may seem, any boolean function
can be implemented using a single type of gate: the nand-gate. An n-input
nand-gate is defined by

NAND(a1, a9, -+,ar): (a1 Aag A -+ A ay)

By the argument just given for implementing n-input and-gates (or-gates)
using 2-input and-gates (or-gates), we can establish the universality of
NAND . We show how to implement an inverter, a 2-input and-gate, and
a 2-input or-gate in terms of 2-input nand-gates. We give these implemen-
tations in Fig. 5.6.

-q

= (Identity of Vv (3.30))
—a V false

= (Definition of false (3.8); De Morgan (3.47a))
=(a A true)

= (Definition of NAND)
NAND(a, true)

FIGURE 5.5. THREE-BIT ADDER FA3; FROM THREE FULL ADDERS

ba _ds
a FA
ag — ds 2 ﬂ
a1 — r—
|_do by —————————
@0 ™ FAs ag—— FA dx
by — | d1 r
bl ] ’__dO bO ]
bo — ag— FA do
false —

d3d2d1d0 = az2a10¢9 + bzblbo
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anb
= (Double negation (3.12), twice; De Morgan (3.47a))
—(—a V —b)
= (Zero of A (3.40))
=((-a V —b) A true)
= (De Morgan (3.47b))
=(=(a A b) A true)
= (Definition of NAND , twice)
NAND(NAND(a,b), true)

aVb
= (Double negation-(3.12), twice; De Morgan (3.47b))
=(—a A —b)
= (Zero of A (3.40))
=(=(a A true) A =(bA true))
= (Definition of NAND , thrice)
NAND(NAND(a, true), NAND(b, true))

Thus, the nand-gate is universal. The exercises ask you to establish that
the nor-gate is also universal, where a two-input nor-gate is specified by

NOR(a,b) : 7(a V b)

An obvious question is to identify the merits of different universal sets of
building blocks. Unquestionably, the 3-gate collection of Fig. 5.1 is the most
natural for the neophyte circuit designer. As a practical matter, however, it
is best when the number of distinct gates in a (universal) collection is small.
Construction of any object is easier if it involves fewer kinds of building

FIGURE 5.6. NAND-GATE CIRCUIT DIAGRAMS FOR A, V, AND -

a
NAND(a,b) = —(a Ab): b )OL
The nand-gate
a
a @ |
a b )o true )O
z 1 _Z
true _
true

z = —a z = a1 N\ a2 z = a1V a2
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blocks. A second practical concern is the complexity of each building block;
obviously, we seek simpler building blocks, since each is then cheaper to
design and produce. Fortuitously, nand-gates and nor-gates are easier to
implement with transistors than are and-gates and or-gates. Since the nand-
gate by itself and the nor-gate by itself are each universal, rarely is the
3-gate set of Fig. 5.1 used in actual hardware; combinational circuits are,
in fact, most often constructed using nand-gates.

Exercises for Chapter 5

5.1 Formalize the following arguments and either prove that they are valid or
find a counterexample.

(a) Either the program does not terminate or n eventually becomes 0. If n
becomes 0, m will eventually be 0. The program terminates. Therefore, m
will eventually be 0.

(b) If the initialization is correct and if the loop terminates, then P is true in
the final state. P is true in the final state. Therefore, if the initialization
is correct, the loop terminates.

(c) If there is a man on the moon, the moon is made of cheese, and if the moon
is made of cheese then I am a monkey. Either no man is on the moon or
the moon is not made of cheese. Therefore either the moon is not made of
cheese or I am a monkey.

(d) If Joe loves Mary, then either mom is mad or father is sad. Father is sad.
Therefore, if mom is mad then Joe doesn’t love Mary.

5.2 Prove that the following argument is valid if the “or” in it is considered to
be inclusive and invalid if it is considered exclusive.

If an algorithm is reliable, then it is okay. Therefore, either an algo-
rithm is okay or it is unreliable.

5.3 Suppose we have the following facts. Prove that if the maid told the truth,
the butler lied.

The maid said she saw the butler in the living room. The living room
adjoins the kitchen. The shot was fired in the kitchen and could be
heard in all adjoining rooms. The butler, who had good hearing, said
he did not hear the shot.

5.4 Suppose Portia puts her picture into one of three caskets and places the
following inscriptions on them:

Gold casket: The portrait is in here.
Silver casket: The portrait is in here.
Lead casket: At least two of the caskets have a false inscription.

Which casket should the suitor choose? Formalize and calculate an answer.
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5.5 Suppose Portia puts a dagger in one of three caskets and places the following
inscriptions on the caskets:

Gold casket: The dagger is in this casket.
Silver casket: The dagger is not in this casket.
Lead casket: At most one of the caskets has a true inscription.

Portia tells her suitor to pick a casket that does not contain the dagger. Which
casket should the suitor choose? Formalize and calculate an answer.

5.6 This set of questions concerns an island of knights and knaves. Knights always
tell the truth and knaves always lie. In formalizing these questions, associate
identifiers as follows:

b: B is a knight.
¢: C is a knight.
d: D is a knight.

If B says a statement “ X 7, this gives rise to the expression b = X, since if
b, then B is a knight and tells the truth, and if —b, B is a knave and lies.

3

(a) Someone asks B “are you a knight?” He replies, “If I am a knight, I'll eat
my hat.” Prove that B has to eat his hat.

(b) Inhabitant B says of inhabitant C, “If C is a knight, then I am a knave.”
What are B and C7?

(c) It is rumored that gold is buried on the island. You ask B whether there
is gold on the island. He replies, “There is gold on the island if and only if
I am a knight.” Can it be determined whether B is a knight or a knave?
Can it be determined whether there is gold on the island?

(d) Three inhabitants are standing together in the garden. A non-inhabitant
passes by and asks B, “Are you a knight or a knave?” B answers, but
so indistinctly that the stranger cannot understand. The stranger then asks
C, “What did B say?” C replies, “ B said that he is a knave.” At this
point, the third man, D, says, “Don’t believe C; he’s lying!” What are C
and D?

Hint: Only C’s and D ’s statements are relevant to the problem. Also, D’s
remark that C is lying is equivalent to saying that C is a knave.

(e) B, C,and D are sitting together. C says, “There is one knight among

us.” D says, “You're lying.” What can you tell about the knighthood or
knavehood of the three?
Here is a hint. One can describe the fact that 1 or 3 of them are knights by
the rather nice expression b = ¢ = d, since this expression is true when the
number of false operands is even. Restricting it further to 1 knight requires
only the additional conjunct =(b A ¢ A d) . See the discussion beginning on
page 46.

(f) A non-inhabitant meets three inhabitants, B, C', and D, and asks a ques-
tion, and B replies indistinctly. So the stranger asks C , “What did he say?”
C replies, “ B said that there was one knight among us.” Then D says,
“Don’t believe C'; he’s lying.” What are C' and D ? Hint: See the hint on
the previous problem.

(g) In the group of three inhabitants, B says that all three are knaves and C
says that exactly one of the three is a knight. What are B, C, and D?
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Hint: See the hint on the previous problem.

5.7 The country of Marr is inhabited by two types of people: liars always lie
and truars always tell the truth —sounds like a knight-knave problem, eh? At a
cocktail party, the newly appointed United States ambassador to Marr talked to
three inhabitants. Joan remarked that Shawn and Peter were liars. Shawn denied
he was a liar, but Peter said that Shawn was indeed a liar. From this information,
can you tell how many of the three are liars and how many are truars?

5.8 In Marr (see the previous exercise), the Nelsons, who are truars, were leaving
their four children with a new babysitter, Nancy, for the evening. Before they left,
they told Nancy that three of their children were consistent liars but that one
of them was a truar. While she was preparing dinner, one of the children broke
a vase in the next room. Nancy rushed into the room and asked who broke the
vase. The children’s answers were:

Betty: Steve broke the vase,

Steve: John broke it,

Laura: 1 didn’t break it,

John: Steve lied when he said he broke it.

Nancy quickly determined who broke the vase. Who was it? Solve the problem
by formalizing and calculating.

Here is a hint. Let b, s, I, and j stand for Betty, Steve, Laura, and John are
truars, respectively. That 1 or 3 children are liars can be written as

Fl:b=s=101#j ,

since this expression is true exactly when one or three of the operands are false .
This is a nice expression to work with. Restricting it to three liars (i.e. one truar)
requires the additional conjuncts —(z A y) for z and y different identifiers
drawn from b, s, I, and j. The same kind of expressions can be used to deal
with the fact that exactly one child broke the vase.

5.9 Exercise 2.9 on page 39 gives three assumptions and 8 conjectures about the
Tardy Bus Problem. Translate each of the assumptions and conjectures into the
propositional calculus and determine formally which of the 8 conjectures follow
from the three assumptions and which do not.

Exercises on combinational digital circuits

5.10 (a) Construct boolean expressions for the following circuits. (b) Remove the
internal names from your answers to (a), thus arriving at specifications for the
circuits. (c) Construct truth tables for the expressions of part (b).
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RS

) () (i)
5.11 (a) Construct boolean expression for the following circuits. (b) Remove the

internal names from your answers to (a), thus arriving at specifications for the
circuits. (c) Construct truth table for the boolean expressions of (b).

IQ.. °
I3

a

D e XD
b_‘>o c ,b_{>o
o) (i) (i)

5.12 How many different truth tables are there for combinational circuits having
2 inputs and 1 output? Two inputs and 2 outputs?

5.13 Prove (5.11) = (5.12) in more detail than done in the text.
5.14 Prove (5.13) = (5.12) by proving that (aAbAc = 2) A (5.12) = (5.13).

5.15 Draw a circuit for each expression, where a, b, and ¢ are the inputs and
z and s the outputs. Use only inverters, 2-and gates, and 2-or gates,

(a) z=aANAbAc
) z=(aVvbd)Aa
() 2 = —aA(aVb)

(d (z=aA-bA(s=aAb)
&) (z=aAb)A(s=aAbAc)
5.16 Suppose you are given a boolean expression that is implemented by a circuit,

with the input variables and output variables identified. Explain how to figure
out what the “don’t care” states are.

5.17 Prove theorem —(a Ab)A(aVb) = (a#b).

5.18 (a) The implementation of AND(a1,...,axs) interms of 2-input and-gates
can have an input traverse n levels of gates. A faster circuit is possible,
where no input signal has to traverse more than logz(n) levels of gates.
Derive this circuit for the case where n is a power of 2.

(b) Suppose n is not a power of 2. Derive an implementation that still gives
reasonable, logarithmic performance.

5.19 Derive implementations of -, V, and A in terms of nor-gates.
5.20 Derive an implementation of a nand-gate in terms of nor-gates.

5.21 Derive an implementation of a nor-gate in terms of nand-gates.
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5.22 This exercise introduces another useful building block, the multiplezor, usu-
ally abbreviated MUX . Here is the boolean expression that specifies a 1-control
MUX (see also Fig. 5.7(a)):

MUX1(ao,a1,¢0):  (coAa1) V (—co Aag)

Thus, MUX1(ao,a1,¢c0) is a1 if co is true and ao if co is false. MUX,
switches between inputs ap and a1, depending on control line co .

An n-control MUX , MUX, , has a sequence ¢ of n control lines ¢, ...,
cn—1 and a sequence a of 2" other inputs ao,...,a2n_1 (see Fig. 5.7(b)). Here
is the best way to think of MUX,, . Consider the n control lines ¢p,...,cn—1 as
the binary representation of a natural number C in the range 0..2" — 1. Then
the output of MUX,(c,a) is ac —i.e. MUX,(c,a) uses the control lines as an
integer C to choose ac . We now give a series of questions that show the use of
multiplexors.

(a) Show how to implement — with MUX; (remember that circuits can have
input lines that are always true and other input lines that are always false ).

(b) Show how to implement V with one MUX; .

(c) Show how to implement A with one MUX; .

(d) Show how to construct the equivalent of MUX, using several copies of
MUX, .

(e) Let n > 0, where 2™ ! < n < 2™ for some m . Show how to implement
any circuit having n input variables using MUX,, .

(f) Show how to implement a truth table with n input variables and one output
variable using one n-control multiplexor.

FIGURE 5.7. MULTIPLEXORS
Cp—1 - |Co
co

ag

ao

a MUX, —— e MUX, —
ak

k=2"-1
(a) MUX1(a,c) (b) MUX(a,c)




Chapter 6

Hilbert-style Proofs

e present hierarchical, Hilbert-style proofs (see Historical note 6.1)

U » as an alternative to the equational proof system E of Chap. 3. The
Hilbert style of proof is used often in teaching geometry in high school.
To illustrate a propositional logic in the Hilbert style, we give a natural
deduction logic, ND. Using this logic, we formalize informal proof methods
used in mathematics and discuss various proof styles and their advantages.

6.1 Hilbert-style proofs

Our Hilbert style of proof consists of (i) the theorem to be proved, on one
line, followed by (ii) a sequence of numbered lines, each of which contains
a theorem and an explanation of why it is a theorem. The last numbered
line must be the theorem being proved.

A Hilbert-style proof is given below. Line 1 is a theorem by virtue of
Leibniz with premise (3.8). Line 2 is theorem (3.12), with p := true . Line
3 follows from Transitivity of equality (1.4) with the two premises appearing
on lines 1 and 2. Note that line 3 is the theorem being proved.

—false = true

1 —false = ~—true Leibniz, (3.8) false = —true
2 ——true = true Substitution, (3.12) ~—p=p
3 —false = true Transitivity (1.4), 1, 2

Here is a corresponding equational proof.

—false

= ((3.8), false = —true)
——true

= <(312)7 _'—‘pEp>
true

The explanation given for a line of a Hilbert-style proof justifies the
validity of the line. Therefore, it must be one of the following.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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e The number of an axiom or a previously proved theorem, if the for-
mula on the line is that axiom or theorem.

o The name of an inference rule that is used to derive the theorem.
Suppose line k has the form

k R inf-rulei,j,...
where R is the theorem being proved. Then

formula on line i,formula on line j,...

R

must be an instance of rule inf-rule. Instead of being a line number,
i and j may be references to axioms or theorems previously proved
elsewhere.

As in equational proofs, applications of symmetry and associativity can be
made without mention.

It should be clear from the example above that any equational proof can
be transformed mechanically into a Hilbert-style proof, and vice versa. But
there are significant differences in the styles. The structure of an equational
proof allows implicit use of inference rules Leibniz, Transitivity of equal-
ity, and Substitution. In the Hilbert style, the structure is no help in this
regard, so all uses of inference rules must be mentioned explicitly. With
only the three inference rules available at this point, the equational style
is preferable. However, the Hilbert style has other advantages. Additional
inference rules may be used, and the Hilbert style can be easily extended
to incorporate subproofs within a proof, as we now show.

SUBPROOFS AND SCOPE

Consider the following Hilbert-style proof.

pA-p = pV-p = false

1 pA-p = pV-p = p = —p Substitution, Golden r. (3.35)
2 p= —p = false (3.15)

3 pA-p = pV-p = false Transitivity (1.4), 1, 2

Now, suppose that Theorem (3.15) had not yet been proved. We could
prove it as a lemma, but, for locality, it is sometimes preferable to include
a proof as a subproof, as shown on the next page. Note how the subproof
is indented and numbered.

To understand such a proof, focus your attention on one level at a time.
For example, in the proof below, first look at the outer proof —only lines
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HISTORICAL NOTE 6.1. DaviD HILBERT (1862-1943)

David Hilbert’s broad interests and originality made him a pioneer in many
different fields, including number theory, geometry, formal foundations of
mathematics, and physics. So enormous were his accomplishments that, at
the age of 43, he was the runner-up for the first Bolyai prize, given by the
Hungarian Academy of Sciences to the mathematician who had most con-
tributed to mathematics in the past 25 years; later, he received the second
Bolyai prize to be awarded. Hilbert set the tone and direction of mathematics.
For example, in 1900, at an international mathematical congress, he discussed
the future of mathematics, posing what are now known as Hilbert’s problems.
(There were 10 in the talk but 23 in the accompanying paper.) Some are still
unsolved.

Hilbert spent most of his working life at the University of Gottingen, Ger-
many, which, under the influence of Klein, Hilbert, Minkowski, and Runge,
flourished in mathematics as no other place has. Mathematicians came to
study from all over the world. Hilbert himself advised 69 Ph.D. students, many
with names that resound throughout mathematics. A sad note was the decline
of this great institution in the 1930’s, as Jewish scientists were forced out.
In 1933, the Nazi minister of education asked Hilbert how mathematics was,
now that it had been freed of Jewish influence. “Mathematics in Géttingen?”,
replied Hilbert, “There is really none any more.”

Leibniz dreamt of having a general method for reducing mathematics to
calculation. Boole and De Morgan provided a basis for it. And Hilbert worked
to make it a practical reality. When close to 60, he proposed to formalize all of
mathematics as an axiomatic system in which theorems would be proved purely
by symbol manipulation. Hilbert felt that mathematics should be complete
(all truths should be provable), consistent (nothing false should be provable),
and decidable (there should be a mechanical procedure for deciding whether
any assertion is true or false). Hilbert felt that this formalization could solve
foundational arguments concerning classical versus constructive mathematics
rampant at the time (see Sec. 7.2). Godel shattered Hilbert’s dreams (see
Historical note 7.1), and yet Hilbert’s program had a profound effect on the
field. See Historical note 0.1 and Reid’s biography [32].

1, 2, and 3— and check that it is indeed a proof of the theorem on the first
line. In doing this checking, study the justifications for lines substantiated
by inference rules, but do not check subproofs. Next, check the subproofs.

pA—p = pV-p = false
1 pA—-p = pV—-p =p = -p Substitution, Golden r. (3.35)
2 p = —-p = false
21 p=-p=-(p=p Substitution, (3.9)
—with ¢:=p
2.2 ~(p=p) = —true Leibniz, Identity of = (3.3)
23 p = —p = —true Transitivity (1.4), 2.1, 2.2
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2.4 —true = false Definition of false (3.8)
25 p = —p = false Transitivity (1.4), 2.3, 2.4
3pA-p = pV-p = false Transitivity (1.4), 1, 2

Note how the indentation of a subproof helps one understand the proof
structure, in the same way that indenting substatements of a Pascal or C
program helps one see program structure. It takes practice to read such a
proof efficiently, partly because of its hierarchical nature and partly because
there may not be any direct connection between formulas on adjacent lines.
Each formula is being staged for a later use.

Actually, we could present a subproof in-line with its outer proof, as
shown below. However, the proof then becomes more difficult to under-
stand because its structure is hidden. The subproof mechanism allows us
to engineer proofs for ease of reading.

pA-p = pV—p = false
1 pA—-p =pV-p=p= -p Substitution, Golden r. (3.35)
2p=-p=-(p=p) Substitution, (3.9)
—with ¢g:=p
3 ~(p=p) = —true Leibniz, Identity of (3.3)
4 p = —-p = —true Transitivity (1.4), 2, 3
5 —true = false Definition of false (3.8)
6 p = —-p = false Transitivity (1.4), 4, 5
7TpA-p = pV-p = false Transitivity (1.4), 1, 6

Finally, a subproof can be given in the equational style:

pA-p = pV-p = false
1 pA-p=pV-p=p=-p Substitution, Golden r. (3.35)
2 p = —p = false
p=-p
= (Distributivity of = over = (3.9))
~(p=p)
= (Identity of = (3.3))
—true
= (Def. of false (3.8))
false ,
3pA-p = pV-p = false Transitivity (1.4), 1, 2

With the introduction of subproofs, we have to be careful about referenc-
ing theorems on previous lines of a proof. A line may refer to previous lines
of the proof (or subproof) in which it directly occurs. A line of a subproof
may also reference previous lines of surrounding proofs. Such global refer-
ences are similar to global references in imperative programming languages
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in which a procedure may contain references to variables declared in its
surrounding scope.

We state this scope rule more formally as an inductive definition.

(6.1) Scope rule. For k£ an integer, line k& of a proof may contain
references to lines 1 through k—1. A line numbered ...j.k (say)
can reference lines ...j.1 through ...j.(k—1) as well as whatever
can be referenced by line ...j.

According to the scope rule, the following is not a proof because it has
two invalid references.

4p= (p= p INVALID PROOF!

41 p 5 (invalid forward reference)
42 p = (p = -p) 4 (invalid reference)
43 p = —p
p = p
= (Left identity of = (3.73))
P —Iline 4.1
5 p

6.2 Natural deduction

The inference rules used thus far —Leibniz, Transitivity of equality, and
Substitution— are not particularly suited to the Hilbert style. Different
inference rules will put the Hilbert style in a better light. In this section,
we present an entirely different propositional logic, ND, called a natural
deduction logic, which uses inference rules that are more attuned to the
Hilbert style. Natural deduction is due to Gerhard Gentzen —see Historical
note 6.2.

Table 6.1 presents the inference rules for ND. There are two inference
rules for each operator and each constant: one rule shows how to introduce
the symbol into a theorem and the other rule shows how to eliminate it.
For each operator or constant «, the rules are named *-I and +-E. For
example, the introduction and elimination rules for A are A-I and A-E. As
before, each inference rule is a schema, and substituting boolean expressions
for the variables P, @, and R in it yields an inference rule.

Natural deduction is noteworthy for several reasons. First, ND has no
axioms. Actually, in any logic, one can view an inference rule that has no
premise as an axiom. But in ND, all inference rules have premises, so there
really are no axioms.
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Second, theorem Modus ponens (3.77), p A (p = ¢) = q, is an inference
rule in ND (rule =-E).

Third, Deduction theorem (4.4), a metatheorem of the equational calcu-
lus, is an inference rule in ND (rule =-I). While =-E allows an impli-
cation to be eliminated from a formula, =--1 allows an implication to be
introduced. Rules =-1 and =-E are a hallmark of natural deduction.

Rule =-I has the sequent Py,...,P, F Q asits premise. We now explain
sequents. In logic E, we postulated axioms (call them Ay,..., A, for now)
and then proved theorems using them. We did not prove each theorem @Q
(say) in isolation; instead, we proved that @ follows from some formulas.
Logicians express this relationship between a theorem and the formulas
assumed for its proof as the sequent

A07"°aATLI_Q or '_LQ )
where L is the name of the logic with axioms Ag,...,A,.

Symbol F is called the “turnstile”, and the A; are called the premises
of the sequent. The sequent Ag,...,A, + @ is read as “@Q is provable
from Ap,...,A,.” (The order of the A; is immaterial.) The sequent +j,
Q is read as “(@Q is provable in logic L” —i.e. using the axioms of L.
Often, when the logic is unambiguous from the context, the subscript L is
omitted. Thus, F @ means that ) is a theorem in the logic at hand. In
Chap. 3, we could have placed the turnstile before each theorem.

Note the difference between the sequent Ag,..., A, - Q and the formula

TABLE 6.1. INFERENCE RULES FOR ND
Introduction rules Elimination rules
P Q PAQ PAQ
I (PR N A-E: )
M AQ P 0
P P PvQ@, P=>R, Q=R
v-1: , V-E :
PVQ QVP R
P,....P,FQ P P=qQ
-1: -E: ——
T PR A AR, Q | T Q
:_IlpﬂQ,QéP —F. P=Q P=qQ
- P=qQ T P=Q’ Q=P
L PrOr-Q g, SPFQA-Q
' -P ' P
P=rPr true
true-1: —— true-E: ————
rue-1 true rue P=P
false-1: irue false-E : false
false true
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AgA---ANA, = Q. The sequent is not a boolean expression. The sequent as-
serts that @} can be proved from Ay,..., A, . Formula AgA---AA, = @,
on the other hand, is a boolean expression (but it need not be a theorem).
However, in ND, the sequent and formula are related by inference rule
=-1.1

Since a sequent P F () can be a premise of an inference rule, subproofs
arise naturally in ND-proofs. To conclude P = @) using =-I, one needs
a proof of P @, and this proof can be presented as a subproof.

We now illustrate the use of the inference rules of logic ND, in the order
in which they appear in Table 6.1. We begin with a proof that from p A ¢
we can conclude g A p. The proof is in the Hilbert style, with one addition.
In an explanation, to refer to a premise of a sequent we use “pr a” for the
first premise, “pr b” for the second, and so on. Table 6.2 summarizes the
forms of references to a premise.

pAgEqgAp

1 pAg pr a
2 p ANE, 1
3 q ANES 1

4 gAp AT, 3,2

As another example, we prove that from p A ¢ we can infer pA (g V r).
Here, we use rule V-I. In this proof, to save space, we do not write the
premise on a separate line of the proof but just refer to it in the justification
of an inference rule.

pAgEpA(gVT)

1 p N-E, pr a
2 q A-E,pr a
3 qgVr v-I, 2

4 pA(gVrT) AT, 3

The two proofs given so far illustrate the nature of many proofs in natural
deduction; expressions are picked apart to get at their constituents and then
new expressions are built up from the constituents.

We give another proof, which uses rule V-E. This rule embodies case
analysis. If each of P and @ imply R, and if at least one of P and Q
holds, we can conclude R.

! In logic E, the sequent and the formula are related by Deduction theorem
(4.4), which can now be rephrased using sequents as “If P,...,P, F @, then
FPA...AP,= Q)
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HISTORICAL NOTE 6.2. GERHARD GENTZEN (1909-1945)

Gerhard Gentzen was born in Pomerania, which at the time was in north-
eastern Germany but is now part of Poland. Even as a young boy, he had de-
clared that mathematics was the only subject he would ever be able to study.
He received his doctorate in 1933 at the age of 23 at Gottingen. In 1934, he
became David Hilbert’s assistant at Gottingen, and this profoundly affected
his later work. For example, his work on axiomatic methods stems in part from
his concerns with the aims of Hilbert’s program for providing firm foundations
for mathematics (see Historical note 6.1), and his natural-deduction system of
logic was developed “to set up a formal system that comes as close as possible
to natural reasoning.”

Gentzen’s tragic end illustrates how stupid war is. Conscripted into the
German armed forces at the outbreak of World War II, he became seriously
ill, was placed in a military hospital for three months, and was then freed from
military duty. He returned to Gottingen, but in 1943 was requested to move to
the German University of Prague. In 1945, all the professors at Prague were
jailed by the local authorities. Amidst all the turmoil of that time, after several
months of physical hardship, Gentzen died in his cell of malnutrition.

After reading about natural-deduction proof systems, the reader may want
to tackle Gentzen’s original paper [18] on natural deduction, which appears
(in English) in the volume [42] of his collected papers.

V@A), (p=3s),(@AT =3s)F sVp

1 s V-E,pr a, pr b, pr ¢
2 sVp v-I,1
SUBPROOFS

To prove P = @ using rule =-I, we must have a proof of P F Q.
The proof of P+ @ can be embedded as a subproof within the proof of
P = @ . The following illustrates this. Note the explanation “pr 1l.a” on
line 1.1 below, which refers to the first premise of line 1. See Table 6.2 for
the forms of references to premises of a sequent.

TABLE 6.2. FORMS OF REFERENCES TO A PREMISE

The general form is “pr line-number . letter”, where line-number
gives the line number of a sequent with that premise and letter
refers to the premise (a is the first, b is the second, etc.). For
example, “pr 1.2.b” refers to the second premise of line 1.2.

If “line-number.” is missing, the reference is to the sequent on the
unnumbered first line, which contains the theorem to be proved.
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Fp=pVyg
1 pkpVyg

1.1 pVg V-1, pr l.a
2 p=>pVyg =-1,1

The next two theorems will be used later to reprove shunting theorem
(3.62). On line 1.3 of the first proof below, we see our first use of rule =-E,
Modus ponens. The second proof shows a proof within a proof within a
proof.

62 p=>(@=r)FpAg=r

1 pAgkr
1.1 p A-E, pr la
12 g =r =-E, 11, pr a
1.3 ¢ A-E,pr la
14 r =-E, 13,12
2 phg=r =-I,1

63) pAg=rFp=(¢g=r)

1l pkFg=r
1.1 gkr
1.1.1 pAgq AL, pr l.a,pr 1l.1.a
1.1.2 r =-E, 1.1.1, pr a
1.2 g=r =-I,1.1
2 p=>(g=r) =-I,1

ON THE USE OF EQUIVALENCE

Rules =-1 and =-E of ND indicate that equivalence P = @ is viewed as
an abbreviation of (P = Q) A (Q = P). This means that equivalence is
proved in ND only by mutual implication. As an example of such a proof,
we reprove Shunting (3.65).

FpAg=>7r = p= (¢g=r)

1 pAg=>r71) = (p=(¢g=>r) =-I, proof (6.3)
2 (p=>@=r) = PAg=>r) =-1, proof (6.2)
3 pAg=>1 = p={(q=r) =I,1,2

PROOF BY CONTRADICTION

Proof by contradiction (see page 77) in ND is embodied in rules —-I and
—-E . These rules are similar, and one might think that one would suffice.
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However, if one of them is omitted, several valid formulas are no longer
theorems, as explained in Sec. 7.2.

To illustrate proof by contradiction, we prove the law of Double Negation,
(3.12). The proof is longer than its proof in the equational system because
ND relegates equivalence to a minor role.

1 pk-—p
1.1 -pkp A -p
1.11 p A —p AL pr la,pr 1l.1l.a
1.2 ——p =1, 1.1
2 p= -p =-1,1
3 - pkp

3.1 -pk-p A -—p
311 =pA==p AL, pr 3.1a,pr 3.a

32 p —~E, 3.1
4 ——p =>0p =-1,3
5 p = —p E—I, 2, 4

We now show that from p and —p one can prove anything. This makes
sense; from a contradiction anything can be proved.

p,pkg
1 ~gkp A -p

1.1 pA-p Al,pra,prb
2 q --E,;1

THE CONSTANTS TRUE AND FALSE

According to the ND inference rules for introducing and eliminating con-
stants, the constant true is equivalent to P = P and false is equivalent
to =(P = P). Hence, one can have a propositional logic that does not
use the two constants, but instead uses the equivalent expressions P = P
and —(P = P). Strictly speaking, the constants are not necessary, which
should not be surprising. In the equational logic, we also introduced true
in axiom (3.3) to abbreviate p =p, and false to abbreviate —true.

6.3 Additional proof formats

We now look at reformatting proofs in ND to make them more readable.
The benefits can be seen in proofs that use rule =-E. Such a proof has
the following structure.
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—_ .

P . explanation
3 P=@Q . explanation
4 Q =-E,1,3
5

This structure does not make clear the intent as one reads from beginning
to end, especially if the proofs of P and P = @Q require several lines. Why
is' P being proved? P = @ 7 For this frequently used rule, we introduce a
special format that makes some proofs easier to read:

1Q by Modus ponens

1.1 P ... explanation
2 P=4Q ... ezxplanation
2 ...

In this format, the theorem to be proved, @, comes first, along with the
explanation “by Modus ponens”. This alerts the reader that the indented
subproof will consist of (at least) two lines containing some theorem P
and the implication P = () —there may be other lines if they are needed
to prove these two.

The general idea, then, is to announce the shape of the proof early rather
than keep the reader in suspense.

Table 6.3 contains some additional proof formats, each of which corre-
sponds to an inference rule of ND. (In proofs, other lines may be needed
besides the ones shown in the table in order to prove the ones shown.) These
inference rules and proof formats correspond to frequently used methods
of proof, like proof by contradiction, proof by case analysis, and proof by
mutual implication. Natural deduction does indeed formalize many of the
informal ideas that are used in proving theorems.

Compare the following proof with the proof of the same (except for one
application of shunting) theorem given on page 73. The natural-deduction
style of picking formulas apart and then building up new ones works well
with formulas involving many implications. Note that the proof does not use
the special format for Modus ponens, even though Modus ponens is used
twice. Proving the premises of Modus ponens was not long and difficult,
and the special format was not needed.

p=p)AN(@=>¢) = (prhqg = pAT) by Deduction

1 p=yp Assumption

2 g=¢ Assumption

3 pAgq = p’Aq¢" Dby Deduction (continued on next page)
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31 p A-E, Assumption 3
32 p =-E, 31,1
3.3 ¢ A-E , Assumption 3
34 ¢ =-E, 33,2
35 p A ¢ AT,32, 34

6.4 Styles of reasoning

The point of a proof is to provide convincing evidence of the correctness
of some statement. Almost every statement to be proved, no matter what
the domain, contains propositional elements —implication, disjunction, etc.
Thus, propositional logic, in one form or another, is the glue that binds rea-

Inference rule

Proof format

TABLE 6.3. ADDITIONAL PROOF FORMATS

P, P=Q
sE:. D 72@
Q
PL,P2F Q
e
T PIAP2 = Q

Q
1P

2 P=Q

P1AP2 = Q
1 Pl
2 P2

P
1 P

i QA-Q

-P
1 P

i Qn-Q

R

1 PvQ@
2 P=R
3 Q=R

[ .|

o~

Q
= Q
= P

by Modus ponens
. explanation
. ezxplanation

by Deduction
Assumption
Assumption

. explanation

by Contradiction
Assumption

. explanation

by Contradiction
Assumption

. explanation

by Case analysis
. explanation
. explanation
. explanation

by Mutual implication
. explanation
. explanation
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soning together. Studying different styles of propositional proof and gaining
experience with them increases understanding of reasoning methods.

We have given two styles of formal, propositional proof. Logic E uses
an equational style; logic ND, a hierarchical Hilbert style. Proofs in these
styles constitute convincing evidence because each step of a proof can be
checked, independently of the others, either by a human or by a computer.

An informal proof written 'in English might seem easier to read (but not
always!), although often it will omit steps or contain subtle errors, since
English is rich but ambiguous. Thus, one could argue that no proof in a
natural language could be construed as convincing evidence. However, a
good informal proof can be viewed as an outline or set of instructions for
constructing a formal proof in some specified formal logical system. Such
an informal proof could be considered convincing evidence. Thus, informal
proofs are legitimate reasoning tools when they serve as descriptions or
outlines of formal proofs.

One purpose of mathematics and logic is to prevent complexity from
overwhelming. One can take refuge in formalism when informal reasoning
becomes too intricate. Formal proofs are often simpler than their informal
counterparts in English, because inferences can be based purely on well-
defined syntactic manipulation. Finally, formal proof styles provide insight
into strategies for developing proofs. Chap. 3 discussed a number of such
strategies.

For everyday use, we prefer the equational style. The equational style is
based on equivalence and the rules of equality. It allows us to calculate with
logical formulas in the same way we learned to calculate with arithmetic
formulas in elementary school and high school. The equational style does
not mimic the usual way of thinking in English —in fact, English, which
is more attuned to implication, does very poorly with equivalence. For
example, there is no simple way to say P = @ = R in English, while P =
@ = R can be read as “If P, then if @, then R”. The equational style
is often an effective alternative to reasoning in English, because it allows
a concise and precise argument for something that would be complicated
and contorted in English. Portia’s suitor’s problem on page 86 is a good
example of this. Further, when dealing with the development of programs
and their proofs, we have found the equational style to be far more useful
than natural deduction, and we use it most of the time.

Why was the natural deduction style invented? Gentzen felt that the
pure Hilbert style of proof (as a sequence of theorems, with no hierarchical
structure) was “rather far removed from the forms of deduction used in
practice in mathematical proofs”, and he wanted “to set up a formal sys-
tem that comes as close as possible to actual reasoning” [42, p. 68]. And,
in general, natural deduction seems to mirror English arguments well. For
example, rule A-I can be read in English as “If P and @ are true, then
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so is P A Q.” However, mirroring English arguments is not necessarily
a good thing. Indeed, English arguments are not always effective, since
they tend to be long, unwieldy, and contorted, with many case analyses.
Why should formalizing them be an improvement? Furthermore, natural
deduction proofs appear to require far more steps than proofs in the equa-
tional style. Even for some of Gentzen’s proofs in [42], it has been said
that simplicity and elegance of procedure are sacrificed to the demands of
‘naturalness’.

The natural deduction style is heavily used in mechanical proof-checking
systems, perhaps because of its modus operandi of picking an expression to
pieces and then building up the desired expression from the pieces. And its
method of nesting proofs is useful for structuring large proofs. A mechanical
system based on natural deduction can be useful, especially when one is
not interested in reading a proof but just in knowing that a theorem has
been proved.

If you have mastered both the equational style and the natural-deduction
style of proof, you will always be able to use the one that best fits the con-
text in which you are working. Formal tools are supposed to help. Some-
times just the formal ideas used informally are of benefit. Sometimes, a
blend of formal tools is better. Thus, we can have the best of all worlds;
on any particular problem and in any particular context, use the style that
bests suits it.

Exercises for Chapter 6

6.1 Using the example on page 109 of an equational proof and its Hilbert-style
counterpart, give a procedure to transform any equational proof into a Hilbert-
style proof.

In the following exercises, use the proof format of Table 6.3 in proving theorems
in logic ND. ’

6.2 Prove p = (¢ = p).

6.3 Prove p = (¢ = p A q).

6.4 Prove (pAgQ) AT = pA(QAT).

6.5 Prove (p = q) = (pAT = qAT).

6.6 Prove (p = (g =17) = (¢g= (p=>r1)).
6.7Prove (p=> @) A(p=>71)= (p=qgAT).
6.8Prove (p = g)A(g=>71)=> (p=>T1).
6.9 Prove (q = 1) = (p=>9 = @{m=>r).
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6.10Prove (p = (¢ = 1)) = (p=q = (p = ).
6.11 Prove (p = -p) = -p.

6.12 Prove (p A =q) = —~(p = q).

6.13 Prove (p = ¢) A (p = —q) = —p.

6.14 Proof of p vV —p.

6.15 Prove —(p A —p).

]

6.16 Prove p = ¢ g = —p.

il

6.17 Prove p = ¢ -pVgq.

123



Chapter 7

Formal Logic

e study the general notion of a formal logical system and its in-

terpretations. Thus, we discuss both syntax (proof theory) and se-
mantics (model theory) for logics. We also study constructive logic in a
propositional setting.

7.1 Formal logical systems

PROOF THEORY

A formal logical system, or logic, is a set of rules defined in terms of

e a set of symbols,

a set of formulas constructed from the symbols,

e a set of distinguished formulas called azioms, and

a set of inference rules.

The set of formulas is called the language of the logic. The language is
defined syntactically; there is no notion of meaning or semantics in a logic
per se.

Inference rules allow formulas to be derived from other formulas. Infer-
ence rules have the form

H,,H,,...,H,
C

where formulas Hi, Hs,...,H, are the premises (or hypotheses) of the
inference rule and formula C is its conclusion. A formula is a theorem of
the logic if it is an axiom or if it can be generated from the axioms and
already proved theorems using the inference rules. A proof that a formula
is a theorem is an argument that shows how the inference rules are used to
generate the formula.

For equational logic E of Chap. 3, the symbols are (, ), =, #, =, #,
-, V, A, =, <, the constants true and false, and boolean variables

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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p,q, etc. The formulas are the boolean expressions constructed using these
symbols. E has 15 axioms, starting with Associativity of =, (3.1). Its infer-
ence rules are Leibniz (1.5), Transitivity of equality (1.4), and Substitution
(1.1). Its theorems are the formulas that can be shown to be equal to an
axiom using these inference rules.

A logic can only be useful if it makes some distinction between formulas:

(7.1) Definition. A logic is consistent if at least one of its formulas is a
theorem and at least one is not; otherwise, the logic is inconsistent.

For example, logic E is consistent, because true is a theorem and false is
not. Adding false = true as an axiom to E would make it inconsistent.

Table 7.1 presents another logic, PQ-L, due to Hofstadter [24]. PQ-L is
slightly perplexing because we do not say what the formulas, axioms, and
inference rules mean. PQ-L forcefully illustrates the view that a logic is a
system for manipulating symbols, independent of meaning.

Below are three formulas of PQ-L.

——-P-Q--
PQ-
-P-Q--

PQ-L uses the Hilbert style of proof. Here is a proof of theoremhood of
-—-P-—-——Q---—-—-—- . This theorem, together with the fact that
— P — Q - is not a theorem, tells us that PQ-L is consistent.

e P-—-Q-——————

1. -P-Q-- Axiom 0

2. - -P-Q--- Axiom 1

3. - ——P-—-Q-——-—-—-—- Inf. rule, 1, 2
4 - ——P---Q-—————- Inf. rule, 1, 3

TABLE 7.1. Logic PQ-L

Symbols: P,Q, -
Formulas: Sequences of the form a P b Q ¢, where a, b, and
¢ denote finite sequences of zero or more dashes —.
Axioms: 0: -P-Q--
1: ——-P-Q---

aPbQec dPeQf
adPbeQcf

Inference Rule:
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MODEL THEORY

Typically, the formulas of a logic are intended to be statements about some
domain of discourse, that is, some area of interest. We give the formulas a
meaning with respect to this domain by defining which formulas are true
statements and which are false statements about the domain.

An interpretation assigns meaning to the operators, constants, and vari-
ables of a logic. For example, we can give formulas of PQ-L meaning by
providing the following interpretation.

(7.2) Addition-equality Interpretation. A formula a P b Q ¢ is
mapped to #a + #b = #c, where #zr denotes the number of
dashes in sequence z .

For example, formulas — P Q — and — P — - Q — —— are mapped to 1+
0=1 and 1+ 2 = 3, which are true, and — P - Q - is mapped to
141 =1, which is false. Also, axiom — P — Q — — of PQ-L is interpreted
as 1+1=2 and axiom ——-P-Q-—-as 2+1=3.

Because a logic is purely a syntactic object, it may have more than one
interpretation. For example, here is a second interpretation for PQ-L.

(7.3) Addition-inequality Interpretation. A formula ¢ P b Q ¢ is
mapped to true iff #a+#b < #c, where #x denotes the number
of dashes in sequence .

Interpretations (7.2) and (7.3) are different. The first maps - P - Q — — -
to false, since 14+ 1 =3 is false . The second maps this formula to true,
since 1+1<3 is true.

In a logic in which formulas have variables, an interpretation associates a
value with each variable. Each interpretation gives the meaning of formulas
with a different variable-value association, so the complete meaning of a
formula is given by a set of interpretations. Conventionally, we split such
an interpretation into two parts: one gives a fixed meaning to the operators
and constants; the other supplies values for variables, i.e. denotes a state.

For example, consider logic E, with its standard notion of evaluation: an
interpretation of an expression gives the value of the expression in some
state. We can formalize this notion as follows.

(7.4) Standard interpretation of expressions of E. For an expres-
sion P without variables, let eval.‘P’ be the value of P, as
explained in Sec. 2.1. (Note that eval gives “meaning” to the op-
erators and constants of E.) Let @ be any expression, and let
s be a state that gives values to all the variables of @ . Define
5.Q)" to be a copy of @ in which all its variables are replaced by
their corresponding values in state s. Then function f given by
f4Q = eval(s.'‘Q’) is an interpretation for Q.
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We can give other, less conventional, interpretations to E as well. For
example, one interpretation maps every expression to false. Such an in-
terpretation provides no connection between the logic, which tells us which
formulas are theorems and which are not, and the domain of discourse.

On page 31, we defined satisfiability and validity of boolean expressions.
We now extend the definition to cover satisfiability and validity of a formula
with respect to any logic and interpretation.

(7.5) Definition. Let S be a set of interpretations for a logic and F'
be a formula of the logic. F is satisfiable (under S) iff at least
one interpretation of S maps F to true. F is valid (under S)
iff every interpretation in S maps F to true.

In terms of E, a boolean expression F is satisfiable iff F evaluates to true
in at least one state. F' is valid iff F' evaluates to true in all states.

An interpretation is a model for a logic iff every theorem is mapped to
true by the interpretation.

The next definition gives terminology for describing the relationship be-
tween a logic and a set of interpretations for it.

(7.6) Definition. A logic is sound iff every theorem is valid. A logic is
complete iff every valid formula is a theorem.

Soundness means that the theorems are true statements about the domain
of discourse. Completeness means that every valid formula can be proved.

E is sound and complete with respect to standard interpretation (7.4).
Adding the axiom p A —p would make E unsound, because p A —p is
unsatisfiable. Logic PQ-L is sound with respect to interpretation (7.2) but
not complete, because the valid formula — PQ — is not a theorem of PQ-L.

A sound and complete logic allows exactly the valid formulas to be
proved. Failure to prove that a formula is a theorem in such a logic cannot
be attributed to weakness of the logic. Unfortunately, many domains of dis-
course of concern to us —arithmetic truths, program behavior, and so on—
do not have sound and complete axiomatizations. This is a consequence of
Gédel’s incompleteness theorem (see Historical note 7.1), which states that
no formal logical system that axiomatizes arithmetic can be both sound and
complete. Fortunately, this incompleteness is not a problem in practice.

In order to isolate sources of incompleteness in a logic, the logic can be
defined in a hierarchical fashion. A logic L™ is an extension of logic L
if the symbols, formulas, axioms, and inference rules of L are included in
LT . For example, we obtain a predicate logic by extending a propositional
logic with variables that may be associated with other types of variables
(e.g. the integers) and by introducing predicates on those variables, i.e.
boolean functions of those variables (e.g. less(z,y), or z <y).
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HISTORICAL NOTE 7.1. KurT GODEL (1906-1978)

In 1929, in his 35-page Ph.D. thesis, 23-year old Gédel proved that a log-
ical system similar to our predicate calculus of Chap. 9 was complete. (The
predicate calculus is an extension of the propositional calculus.)

Just over a year later, he wrote paper [20], which has been called the greatest
single piece of work in the whole history of mathematical logic. Hilbert had
proposed a program to completely formalize mathematics and show that it was
complete, consistent, and decidable —all facts could be proved, nothing false
could be proved, and any statement could be proved to be either true or false
(see Historical note 6.1). In [20], Gédel showed that Hilbert’s program could
not be realized. He showed that any formal system that included arithmetic
was either incomplete or inconsistent, and he exhibited arithmetic statements
that were not decidable. But [20] did much more. As Wang says in [44], it
“pulled together, consolidated, and raised previous work to a much higher level
in nearly all directions, proving surprising central results, making old concepts
precise, introducing new concepts, and opening up wholly new horizons.”

Godel was born and raised in Czechoslovakia and did his Ph.D. work at
the University of Vienna. After several professional visits to the Institute for
Advanced Study at Princeton, he left Austria in 1940 (with his wife) to spend
the rest of his life in Princeton. There, he and Einstein were good friends. Most
of his work on mathematical logic was done before 1940, and he spent much
of his later working life on philosophy.

Because of bad health, Godel never visited Europe after 1940, and he did
surprisingly little travel within the U.S. (He spent some time in the 1930’s
in sanatoriums for nervous depression, was relatively frail, and had various
physical problems.) He could not even attend the conference organized to
celebrate his sixtieth birthday at Ohio State. Unfortunately, relatively few
people saw this great man in action.

A DECISION PROCEDURE FOR PROPOSITIONAL LOGIC

In E, or any equivalent propositional logic, there is a simple way to deter-
mine whether a formula is a theorem: just check its validity.

(7.7) Decision Procedure for logic E. Compute the interpretation of
a formula F' in every possible state of the state space defined by
the boolean variables in F'. F' is a theorem of E iff it is mapped
to true in every state.

Determining whether a boolean expression involving n boolean variables
is valid requires checking 2™ cases, since that is the size of the state space
defined by n boolean variables. This decision procedure is time-consuming
for formulas involving a large number of variables.

Not all logics have decision procedures. That is, for some logics, there is
no algorithm to tell whether an arbitrary formula is a theorem or not. In
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fact, most logics that deal with interesting domains of discourse, like the
integers, do not have decision procedures.

7.2 Constructive logics

Let P be any mathematical statement whose truth is not known. For
example, we could take as P the statement “there are an infinite number
of twin primes” (twin primes are prime numbers that differ by 2; 11 and
13 are twin primes). Given such a P, we can define z (say) as follows.

| 0 if P is true
TZY 1if Pis false

This definition defines x unambiguously. And yet, since we do not know
whether P holds, we cannot compute the value of z! We have given a
non-constructive definition of x —a constructive definition would tell us
how to calculate the value of x.

We can also prove things in a non-constructive way. We give an example
that deals with real numbers. A real number is rational if it can be written
in the form b/c for two integers b and ¢ (¢ # 0) ; otherwise it is irrational.
The number 1/3 is rational, while v/2 and the number 7 (the ratio of
the circumference of a circle to its diameter) are irrational.

(7.8) Theorem. There exist two irrational numbers b and ¢ such that
b is rational.

Proof. The proof is by case analysis: (\/5)‘/5 is either rational or irrational.
Case (v/2)V2 is rational. Choose b=c= /2.

Case (V2)V? is irrational. Choose b = (v2)V2 and ¢ = /2. Since 2
is rational, we can show that b° is rational:

(V2)V2)V2 —this is b°
= (Arithmetic)
(VZ)v2v2
= (Arithmetic)
2 O

This proof of the existence of rational b does not show us how to con-
struct b°, since we do not know whether (\/5)‘/i is rational. It is a non-
constructive proof.

Constructive mathematics is the branch of mathematics in which each
definition or proof of existence of an object provides an algorithm for com-
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HISTORICAL NOTE 7.2. CONSTRUCTIVE MATHEMATICS

One of the first proponents of the constructive style was Leopold Kronecker
(see Historical note 7.3), who did not believe in the existence of m because he
did not know how to construct it. Kronecker railed against non-constructive
mathematics, such as Cantor’s theory of infinite sets (see Chap. 20), as a
dangerous mathematical insanity. Others followed in Kronecker’s footsteps —
Poincaré, Borel, Lebesgue, Brouwer, Heyting, and Weyl, to name a few— al-
though they were often more liberal in their views than Kronecker. Brouwer’s
work is called intuitionistic mathematics, since it is based on the thesis that
mathematics is based on primitive intuitions. Intuitionistic mathematics re-
jects the law of the excluded middle.

Two modern-day events brought constructive mathematics into the lime-
light. The first was E. Bishop’s work on constructive mathematics in the 1960’s
—see his book [4] and also [5]. Bishop’s book has “an ultimate goal: to hasten
the day when constructive mathematics will be the accepted norm”. The sec-
ond event was the development of the computer, because a computer system
can extract an algorithm from a constructive proof and then run the algorithm.
Nuprl [8] is perhaps the first software system to mechanize constructive logic
and extract programs from proofs.

For more on constructive mathematics and logic, turn to Bishop’s book or
[43]. See also Historical notes on Hilbert (page 111), Gentzen (page 116), and
Kronecker (page 132).

puting it. (In some versions of constructive mathematics, and there are
several, it is enough to provide an algorithm to construct as close an approx-
imation to an-object as we desire, even if the object cannot be computed
exactly. This kind of constructive mathematics would allow as objects the
irrational numbers, while the stricter form of constructive mathematics,
which is usually called finitistic mathematics, would not.)

Constructive mathematics has increased in popularity with the advent
of computers. Embedded in a constructive proof that an object exists is
an algorithm for constructing the object. A computer program can analyze
such a proof and extract an algorithm from it, so the programming task
can be replaced by the task of proving theorems. (However, this interesting
idea has not yet been brought to fruition in a practical way.)

Of course, the algorithm extracted from a proof may not be as efficient
as we want, so we may want to develop another proof whose embedded
algorithm is more efficient. Mathematicians often develop different proofs
in their search for brief, concise, and simple ones. The development of
constructive mathematics provides a new basis for comparing proofs: how
fast are the algorithms that can be extracted from them?

We now introduce a constructive propositional logic. This logic is based
on the following principles, which tell us how a constructive mathematical
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HISTORICAL NOTE 7.3. LEoPoLD KRONECKER (1823-1891)

Kronecker received his doctorate in mathematics from the University of
Berlin when he was 22. For the next 8 years, he managed his family businesses,
pursuing mathematics as a recreation, until he was financially able to retire at
the age of 30. Such is life.

At the age of 38, he began lecturing at the University of Berlin, receiving a
professorship when he was 59. He made major contributions to the theories of
elliptic functions, algebraic equations, and algebraic numbers. But his philoso-
phy of mathematics and his polemics against those with different opinions are
what some people remember him for. Kronecker really liked people. His house
was open to his pupils, and he was known for his generous hospitality. But
he was also quite vociferous about his views, most notably about constructive
mathematics. If a thing could not be constructed, it did not exist and should
not be talked about, and he railed against others, like Weierstrass, Hilbert, and
Cantor, who thought otherwise. “God made the integers,” said Kronecker, “all
the rest is the work of man”.

For more on this story of constructive versus classical mathematics, see
Historical notes 7.2 on constructive mathematics (page 131), 6.1 on Hilbert
(page 111), and 20.1 on Cantor (page 464).

proof of an expression should be built from proofs of its constituents. These
principles are called the BHK-interpretation of constructive mathematics,
after the people who were involved in their formulation: Brouwer, Heyting,
and Kolmogorov.

1. A proof of P A Q is given by presenting a proof of P and a proof
of Q.

2. A proof of P V @ is given by presenting either a proof of P or a
proof of @ (and indicating which it is).

3. A proof of P = (@ is a procedure that permits us to transform a
proof of P into a proof of Q.

4. The constant false , which is a contradiction, has no proof.

5. A proof of —P is a procedure that transforms any hypothetical proof
of P into a proof of a contradiction.

The fifth principle can be explained as follows. The constant false is not
true, so there exists no proof for it. Hence, if we show that false follows
from a hypothetical proof of P, then P itself is false. We regard the
proof of P+ false as a proof of —P .

In constructive logic, the law of the Excluded Middle, P vV =P, is not
a theorem. For if it were, then, for any expression P, we could construct
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a proof either of P or of —P (see principle 2 of the BHK-interpretation,
given above). Since there are many statements in mathematics that no one
has been able to prove or disprove, for example whether there are an infinite
number of twin primes, we cannot accept the law of the Excluded Middle
in a constructive system.

The inference rules for a constructive propositional logic are given in
Table 7.2. Each premise of each inference rule is a sequent, which we in-
terpret as a proof that its conclusion follows from its premise. Similarly,
we make each conclusion a sequent. Each rule mirrors a corresponding
principle in the BHK-interpretation given above. Note that we have given
different names to the two rules for V -introduction, so that the rule’s name
indicates which of the two operands is being used as evidence that PV Q)
holds.

Consider rule =-I. Instantiating P;,Q@,n with P, false,1 yields

P+ false
P = false
which, since —P denotes P = false, can be written as
Pt false
(79) ———
TABLE 7.2. RULES FOR CONSTRUCTIVE NATURAL DEDUCTION
Introduction rules Elimination rules
FP, FQ FPAQ FPAQ
ATl ———= A-E; : A-E, :
FPAQ ! FP FQ
P FQ FPVQ, PFR, QFR
vip: ————, VI ——%_— | V-E:
Y PVvQ FPVQ FR
P,...,P,+FQ FP,FP=Q
I: E: - TX
T TR A AP, = Q = FQ
false-1: (none) false-E : - false
' " FP
P =@ denotes (P=Q)A(Q=P)
-P denotes P = false
true  denotes —false
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However, there is no corresponding inference rule to eliminate —;

-P | false
(7.10) ———

is not an inference rule of constructive propositional logic. The absence
of (7.10) has drastic repercussions on what can be proved. For example,
——p = p is not a theorem! But p = ——p is. It is interesting to compare the
following constructive proof of p = ——p (i.e. p = ((p = false) = false))
with the non-constructive proof in ND given on page 118 (as a subproof
of the proof of p = ——p).

Fp = ((p = false) = false)
1 pk(p = false) = false
1.1 p = false - false
1.1.1 false =-E,pr la,prlla
1.2 (p = false) = false =-1,1.1
2 p = ((p = false) = false) =-1,1

Since ——p = p is not a theorem, neither is ——p = p. The law of
Double Negation does not hold in constructive propositional logic. If we
add inference rule (7.10) to the logic, we leave the realm of constructive
logic and have a non-constructive propositional logic, which has the same
theorems as logics E and ND.

Formula p V —p is not a theorem of constructive logic, but —=—(p V —p)
is. To prove it, we first have to rewrite it to eliminate —:
(711) H(p V (p = false) = false) = false
1 pV (p = false) = false & false

1.1 pl false
1.1.1 p V (p = false) v-I;, pr 1.1.a
1.1.2 false =-E, 1.1.1, pr l.a
1.2 p = false =-1,1.1
1.3 pV (p = false) V-1, , 1.2
1.4 false =-E, 1.3, pr l.a
2 (pV (p = false) = false) = false =-I,1

We have barely touched the surface of constructive logic. Do not make a
judgement for or against constructive logic until you thoroughly understand
it and have seen it being used.

Exercises for Chapter 7

7.1 Give a finite set of axioms that can be added to PQ-L to make it sound and
complete under Addition-Equality Interpretation (7.2).
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7.2 Consider the logic defined as follows, where a, b, and ¢ denote finite se-
quences of zero or more 0’s.

Symbols: Mo
Formulas: Sequences of the form a M b1 ¢
Axiom: ooMooloooo
Inference Rule R1: -—(I—M—é—16—
aaMblce
Inference Rule R2: a—Mb_lz_I_g_c_
aaMblce

(a) Give 5 formulas of this logic.

(b) State and prove five theorems of the logic.

(c¢) Give an interpretation of the logic that makes multiplication of integers a
model.

(d) Give a formula that is true according to your interpretation but is not a
theorem. Argue (informally) why it cannot be a theorem.

7.3 Two possible definitions for soundness of an inference rule are:

Theorem-Soundness. An inference rule is considered sound if a for-
mula derived using it is valid whenever the premises used in the infer-
ence are theorems.

Model-Soundness. An inference rule is considered sound if a formula
derived using it is valid whenever the premises used in the inference
are valid.

What are the advantages/disadvantages of considering axiomatizations in which
all inference rules satisfy Theorem-Soundness versus Model-Soundness?

7.4 Recall from Exercise 3.88 (page 67) that a formula is in conjunctive normal
form if it is the conjunction of propositional logic formulas, each of which is
a disjunction of boolean variables. For such a formula P, denote by #P the
minimum number of boolean variables that, if all were false , would cause P to
be false . Describe a procedure to calculate #P for P a formula in conjunctive
normal form in which no variable is negated.

(Solving this problem turns out to be useful in determining the fault-tolerance
of a distributed system. Each variable denotes whether a give processor is faulty,
and the formula is true iff the system has sufficient resources to work.)

7.5 This exercise concerns a new calculus, the 01 ¢-calculus. The symbols of the
calculus are

e Variables =, y, z, ....

e The three constant symbols 0, 1, and ©.

e The binary infix predicate symbol =.

e Parentheses.

Formulas of the calculus have the form a = 8, where a and (3 are sequences
of one or more constants, possibly with balanced parentheses as usual to indicate
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aggregation. Examples of expressions are

0c=1 and (oz)(c0)=10
By definition, if parentheses are omitted, left association is assumed, so that 0100
is shorthand for ((01)0)0.

The 01 ¢ -calculus has inference rules Leibniz, Substitution, and Transitivity
of equality =. Note that symmetry and reflexivity of = are not axioms, so be
extremely careful in applying inference rules. There are four axioms:

Left zero: 0o=1

Zero: 00 =zl
Left one: lo =10
One: zlo=z00

A theorem of the calculus is either an axiom or an expression X =Y such
that X can be transformed into Y using the inference rules. As an example, we
prove that 01160 = 1000 is a theorem.

01100

(Axiom One, with = :=01)
01000

(Axiom One, with = :=0)
00000

{Axiom Left zero)
1000

H

We now give meaning to the 01 ¢ -calculus by defining interpretations for it.
A state assigns to each variable a natural number or ¢. For example, the state
{(x,19), (y,o)} assigns 19 to z and o to y. Expressions are evaluated in a
state by first replacing each variable by its value in the state and then applying
the following rules. (In the rules, z > y means that = evaluates to y).

mn > (2-m+n) (for integers m and n)

mo > (m+1) (for integer m )

on > (24 n) (for integer n)

00 > 2

(z =) > true (for x an integer)

(z =y) > false (for z and y different integers)

Perform the following exercises.

(a) Prove: 0 oo =10.

(b) Prove: 0ooo=11.

(¢) Prove: 00000 =100.

(d) Prove: 0ooo00=101.

(e) Why does the following metatheorem concerning the 01 o -calculus hold:
Every theorem of the 01 ¢ -calculus contains a ¢ .

(f) Does it follow from the previous question that the 01 ¢ -calculus is consis-
tent?

(g) Evaluate the expression 1011 in the state {(z,19),(y,©)}. In doing these
and other evaluations, fully parenthesize the expression in order to be able to
distinguish characters 0 and 1 from integers. Thus, evaluate the expression

(MO)1.
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(h) Evaluate the expression 1011¢ in the state {(z,19),(y,¢)}.

(i) Evaluate the expression 1011 0o in the state {(z,19),(y,©)}.

(j) Evaluate the expression 1zOyo in the state {(z,19),(y,0)}.

(k) Evaluate the expression 0(oy) = 10 in the state {(x,19), (y,9)}.
(1) Find a model and a counterezample for the expression z¢0 = 10.

(m) Show that the 01 ¢ -calculus with the interpretation given above is sound
by checking that all four axioms are valid and that all three inference rules
preserve validity.

(n) Show that the 01o-calculus is incomplete by finding a valid expression that
is not a theorem.
(o) Show that the expression z1 = 0o is unsatisfiable.



Chapter 8

Quantification

"N 7’ e introduce gquantification for any symmetric and associative op-

erator. Summing a set of values (using addition + ) and “oring”
together a set of values (using disjunction V ) can be expressed using quan-
tification. Quantification is important in the predicate calculus of the next
chapter, and it is used in most later chapters.

8.1 On types

In programming languages, a type denotes the (nonempty) set of values
that can be associated with a variable. Thus far, we have been dealing
mainly with type bool, or B as we write it from now on. It is the set
of values true and false. We now begin dealing with other types as well
—see Table 8.1. The introduction of types causes us to refine our notion of
an expression. To be an expression, not only must a sequence of symbols
satisfy the normal rules of syntax concerning balanced parentheses, etc., it
must also be type correct. Thus, some expressions that earlier seemed okay
will no longer be called expressions because they do not satisfy the typing
rules.

Every expression E has a type ¢ (say), which we can declare by writing
E:t. For example, since the constant 1 has type Z and true has type
B, we may write 1:Z and true:B. Similarly, every variable has a type.
Sometimes, the type of a variable is mentioned in the text accompanying an

TABLE 8.1. SOME Basic TYPES
Name Symbol Type (set of values)
integer Z integers: ...,-3,-2,-1,0,1,2,3,...
nat N natural numbers: 0,1,2,...
positive Zt positive integers: 1,2,3,...
negative /A negative integers: —1,—2,-3,...
rational Q rational numbers i/j for i,j integers, j #0
reals R real numbers
positive reals RY positive real numbers
bool B booleans: true, false

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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expression that uses the variable, and sometimes it is given in some sort of a
declaration, much like a programming-language declaration var z:integer .
However, when the type of a variable is not important to the discussion, in
the interest of brevity and clarity we may omit it.

We may want to declare the type of a subexpression of an expression, in
order to make the expression absolutely clear to the reader. For example,
we might write 1" as

(1:z)~N

to indicate that 1 is an integer and n a natural number. This convention
may be useful, for example, in a context where 1 could denote an identity
matrix as well as an integer and where we want to make clear that n is
nonnegative. Any subexpression of an expression may be annotated with
its type. Here is a fully typed expression: ((z:N+ y:N)-2:N):N.

Besides constants and variables, the only other kind of expression we
have encountered thus far is function application.! Each function has a
type, which describes the types of its parameters and the type of its result.
If the parameters pi,...,p, of function f have types ti,...,t, and the
result of the function has type r, then f has type ¢; x ... xt, —»r. We
indicate this by writing

(8.1) fiti X -Xty—r

(The reason for this strange-looking syntax will become clear in Chap. 14.)
Here are‘some examples of functions and their types.

function type typical function application
plus Zx7Z—7Z plus(1,3) or 1+3
not B—B not.true or —irue
less ZxZ—B less(53) or 5<3

For function f with type as shown in (8.1), we define function application
f(a1,...,a,) to be an expression iff each argument a; has type ¢;. The
type of the function application is then r. In this way, “expressionhood”,
as well as the type of the expression, is determined from the types of its
operands.

It is important to recognize that type and type correctness, as we have
defined them, are syntactic notions. Type correctness depends only on the
sequence of symbols in the proposed expression, and not on evaluation of
the expression (in a state). For example, (1/(z:Z)):R is an expression,
even though its evaluation is undefined if  =0.

! Operations like z+y and —z are simply convenient ways of writing function
applications plus(z,y) and minus.x.
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For any type (or set) ¢ and expression E , we define the expression E €t
to be the value of “E is in t”. For example, we might write

(82) ieN = —i<0

Thus, E et is an expression, just like £ < y, which is evaluated when
the expression in which it appears is evaluated, while z:t is simply the ex-
pression z annotated with its type. The connection between the syntactic
annotation E:t and the expression F €t can be expressed as follows:

If E hastype t,ie. E:t,then E et evaluates to true in all
states in which E is well defined.

A language with syntactic rules that assign a type to each expression is
called strongly typed. Pascal, Ada, and ML are strongly typed programming
languages. Strong typing provides a measure of syntactic control, in two
ways. First, as we will see, it frees us from having to place expressions
E et in various places within expressions. If the syntax indicates E:t,
then E €t necessarily holds (if E is defined). Second, when the language
is implemented, strong typing allows some errors to be detected early by a
compiler, editor, or other software tool.

A language without syntactic typing rules is called untyped. Lisp, Scheme,
and Prolog are untyped. In an untyped language, —true is an expression,
and the mistake in it is considered to be a semantic error, which is detected
(if at all) only when the expression is evaluated. Many texts on logic deal
only with untyped logics, in which case the only type available is the type
consisting of all possible values. Since there is only one type, it is unnamed.
In this case, heavy use of expressions F et (for different sets ¢) is made.

With the notion of type, some restrictions are needed to ensure type
correctness during manipulations:

(8.3) In a textual substitution E[z := F], z and F must have the
same type.

(8.4) Equality b = ¢ is defined only if b and ¢ have the same types.
That is, equality = has type ¢t xt — B, for any type t.

Restriction (8.3) ensures that making a textual substitution does not pro-
duce a non-expression. Restriction (8.4) ensures that application of Leibniz
or Substitution does not violate restriction (8.3).

A number of issues have been glossed over in this brief introduction to
types. For example, the natural numbers N are a subset of the integers
Z,so 1:Z and 1:N are both suitable declarations. We obviously need a
notion of subtypes, as well as a notion of overloading of both constants and
operators, so that the same constants and operators can be used in more
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than one way. We also need a notion of polymorphism. As an example,
function =: ¢ xt — bool is polymorphic because it is defined for any type
t. We shall not delve into these issues, because that would detract from
our current task, the study of quantification.

8.2 Syntax and interpretation of quantification

The reader is probably familiar with the following notation (in which ex-
pression e may refer to ).

(85) X,e

Formula (8.5) stands for e} + €% + - --+ e}, —in words, for the sum of the
values e[i := v] for integers v in the range 1..n. Here is an example.

v 2 = 12422432
Henceforth, we use the linear notation
(Xill<i<n:e) or (+ill<i<n:e)
instead of (8.5), for several reasons:

e The parentheses in the linear notation make explicit the scope of the
dummy or quantified variable i: the places where ¢ can be refer-
enced. This scope comprises the expressions within the parentheses.
Note that X4 (or +i) acts as a declaration, introducing dummy 7.
This dummy is not a variable in the usual sense, for it does not obtain
a value from the state in which the expression is evaluated.

e The linear notation makes it easier to write more general ranges for
1. We can write any boolean expression to describe the values of ¢
for which e should be summed. For example, using even.: for “i is
even” and odd.i for “i is odd”, we have

1<i<7 A eveni:i) = 24446
(+i11<i<7 A oddi:2-7) = 2-1+2-3+2:5+4+2-7

e The linear notation extends more easily to allow more than one
dummy, as shown in the following example. In determining which
values i/ are being summed, we choose all combinations of i and j
that satisfy the range 1 <i1<2 A 3<j5<4:

(+4,j 11 <i<2 A 3<j<4:49) = B+14 428 +2¢
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In the summations above, our intent is that dummy ¢ ranges over integer
values, rather than real values (say). However, the formulas do not tell us
this. To make the type explicit, we can write (+4:Z11<i<2:¢).

What has been said about summation generalizes to other operators.
Let + be any binary operator that is symmetric, is associative, and has an
identity u (say):?

Symmetry: bxc = cxb
Associativity: (bxc)xd = bx(c*d)
Identity u: uxb = b = bxu

For example, for x and u, we could choose + and 0, - and 1, A
and true, or V and false. The general form of a quantification over * is
exemplified by

(8.6) (*x:tl,y:t2 | R: P)
where:

e Variables z and y are distinct. They are called the bound variables or
dummies of the quantification. There may be one or more dummies.

e t1 and t2 are the types of dummies =z and y. If ¢t1 and t2 are
the same type, we may write (xz,y:t1 | R : P). In the interest of
brevity, we usually omit the type when it is obvious from the context,
writing simply (xz,y | R: P).

e R, a boolean expression, is the range of the quantification —values
assumed by r and y satisfy R. R may refer to dummies z and
y . If the range is omitted, as in (xx |: P), then the range true -is
meant.

e P an expression, is the body of the quantification. P may refer to
dummies z and y.

e The type of the result of the quantification is the type of P.

Expression (xz:X | R : P) denotes the application of operator * to the

values P for all z in X for which range R is true®.

2 A set of values together with an operator * that is associative and has an
identity is called a monoid. It is an abelian monoid, after Niels Henrik Abel
(see Historical note 8.1), if % is also symmetric. Abelian monoids occur often
in mathematics. The integers with operator + and identity 0 forms an abelian
monoid, as do the reals with operator + and identity 1.

3 Later, we define this notation more formally by stating its properties as
axioms, just as we did for the boolean operators = , -, etc.
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HISTORICAL NOTE 8.1. N1eLs HENRIK ABEL (1802-1829)

Scientifically, we see Abel in this text only through abelian monoids. But
he contributed enormously to mathematics, in spite of poverty and neglect
by other mathematicians. Abel’s father, a pastor, died when Abel was 18.
Thereafter, he had to care for his mother and six siblings. He had help from
a few who recognized his mathematical genius, but Norway was experiencing
severe poverty, and life was difficult for all.

When about 21, Abel solved a problem that had confounded mathematicians
for centuries: how to find the roots of ax®+bz*+cx®+dz?+ex+f with a finite
number of additions, subtractions, multiplications, divisions, and extractions
of roots. Abel proved that the task was, in general, impossible! He used what
little money he had to print the result himself.

Abel then received a small grant to travel in Europe. He hoped that talking
to the great mathematicians would gain him entree into mathematical circles
and provide him with a good position, but he was not well received. Gauss, for
example, refused to read Abel’s paper on the impossibility of solving quintic
equations, believing Abel to be just another amateur.

On his two-year trip, Abel did have the good fortune to meet A.L. Crelle,
who perceived Abel’s greatness. Shortly thereafter, Crelle began publishing
the first periodical in the world devoted exclusively to mathematical research,
Journal fiir die reine und angewandte Mathematik (Journal for pure and ap-
plied mathematics). The first three volumes contained 22 of Abel’s papers.
Crelle showed Abel off and tried to get him a professorship in the University
of Berlin, but to no avail, and Abel remained an outsider. His famous pa-
per on transcendental functions, presented to the Paris Academy of Sciences
when he was 24, was misplaced by Cauchy, almost lost, and only published 17
years later. Jacobi called it the most important mathematical discovery of the
century.

Abel returned home from his trip, poor and sick with tuberculosis but still
doing mathematics. In 1829, at the age of 26, he died. Two days later, a letter
arrived from Crelle saying that Berlin was offering him a professorship after all.
A year later, the Paris Academy of Sciences made some amends by awarding
Abel the Grand Prize in Mathematics.

Here are examples of quantifications, assuming, as we do throughout this
chapter, that 7 has type Z.

0-8 + 1-8 + 2-8 + 3-8

0+1)- (1+2) - (2+3)

0:d#£6 A 1-d+#6

O] =0 V - V b[20] =0

(+i10<i<4:4¢-8)
(«410<i<3:i4+(1+1))
(AM10<i<2:i-d#6)
(Vil0<i<21:b[i]=0)

(-

Many notations are used for quantification. Different ways are used to
express range R and body P, and, for operators V and A, the range is
not given as a separate entity. For example, one sees the following,.
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DILIRE N for (+ill<i<n:z)
Vil <i = 2, =0 for (Ail1<i:z;=0)
Vi)l<i = ;=0 for (AMil1<i:z;=0)
F.1<iANz;=0 for (Vill<i:z;=0)

We use the linear notation (xz | R : P) throughout, for all quantifications,
but we will bow to convention and use a different symbol for % in certain
cases. In particular, in Chaps. 9 and 15 we write

(+z | R: P) as (Xz | R:P)
(‘z| R:P) as (Tz | R: P)
(Vz | R: P) as (3z | R: P)
(Az 1 R: P) as (Vz | R: P)

SCOPE

The expression
(8.7 (ANil:z-i=0)

asserts that z multiplied by any integer equals 0. This fact is true only
if =20, so (8.7) is equivalent to the expression z = 0. Thus, the value
of (8.7) in a state depends on the value of x in the state but not on the
value of i. Further, it should be clear that the meaning of (8.7) does not
change when dummy 4 is renamed:

(Njlizej=0) = (ANil:z-i=0)

We introduce terminology to help distinguish the different roles played
by i and z in (8.7). Occurrences of z in (8.7) are said to be free. The
scope of dummy 1, i.e. the places in which it can appear, is the range and
the body of (8.7). All occurrences of ¢ in the scope of dummy 4 are said
to be bound to dummy 3.

According to these definitions, all occurrences of a variable in an expres-
sion without quantifications are free. In Chap. 3, for example, every use of
“variable” could be replaced by “free variable”.

Now consider the expression
(88) i>0V (ANil0<i:z-i=0)

The leftmost occurrence of ¢ (i.e. the occurrence in i > 0) is free, and,
during evaluation, it is replaced by the value of ¢ in the state; the other
occurrences of ¢ are bound. Variable i is being used in two different ways
in (8.8), each with different meaning. The first (i.e. free) occurrence of i
refers to a different variable than do the other (i.e. bound) occurrences of
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1 within the quantification. The use of ¢ with two different meanings in
this fashion can be confusing, so we avoid it by renaming dummies.

The scope rules for a dummy are similar to the scope rules for a local
variable of a procedure in an Algol-like (Pascal-like) language. ¢ Consider
the following Pascal procedure.

procedure p (var x:integer);
var i:integer;
begin i:= x-x; x :=2-7 end

The scope of local variable i is the procedure body —the text between
begin and end. Any occurrence of ¢ outside the procedure body refers
to an entirely different entity, which happens to have the same name. In
the same way, the scope of ¢ in (x¢ | R: P) is R and P. An occurrence
of ¢ outside this expression refers to an entirely different entity.

We now define free and bound occurrences of variables. Remember that
it is an occurrence of a variable that is free or bound, not the variable itself.
Remember also that infix and prefix operators are just forms of function
application.

(8.9) Definition. The occurrence of ¢ in the expression i is free.

Suppose an occurrence of i in expression F is free. Then that
same occurrence of i is free in (F), in function application
fG..,E,..),and in (xx | F: F) and (xz | F : E) provided i

is not one of the dummies in list z .

Define occurs(‘v’,‘e’) to mean that at least one variable in the list
v of variables occurs free in at least one expression in expression
list e.

(8.10) Definition. Let an occurrence of ¢ be free in an expression E .
That occurrence of ¢ is bound (to dummy i) in the expression
(xx | E:F) or (xx | F: E) if i is one of the dummies in list z.

Suppose an occurrence of ¢ is bound in expression E . Then it is
also bound (to the same dummy) in (E), f(...,E,...), (xx | E:
F) and (xz | F: E).

As an example, consider the expression

i+ +(Zi11<i<10:b[)P) +
(Bi11<i<10:(T511<35<10:¢c[i,5])

4 Algol 60 was the first programming language to make full use of the scope
rules defined here, but such scope rules were used in logic long before 1960.
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We have the following:

e The leftmost occurrence of i is free in this expression.

e The leftmost occurrence of j and the occurrence of j as an exponent
in the first summation are both free.

o All other occurrences of 7 and j are bound. There are two different
dummies 1.

TEXTUAL SUBSTITUTION REVISITED

Textual substitution E[x := F] was defined in Sec. 1.2 for E a constant,
variable, or function application. We now extend this definition to cover
quantification:
(8.11) Provided —woccurs(‘y’,‘z, F’),

(xy | R: P)[x:=F] = (xy | R[z := F|: P[z:= F))

The caveat in (8.11) means that a dummy of list y will have to be replaced
by a fresh variable® if that dummy occurs free in z or F.

Here are some examples of textual substitution in quantifications.

(Fz11<z<2:y)ly=y+2] = (+z11<z<2:y+2)

(Fil0<i<n:blil]=n)n:=m] = (+i10<i<m:bfi]=m)
(tyl0sy<n:by=n)n:=y] = (+j10<j<y:bjl=y)
(Hy10<y<n:byl=n)ly:=m] = (+j10<j<n:bj]=n)

In the last two examples, dummy y was first replaced by fresh variable
j, as required by the caveat. Changing the dummy ensures that a free
occurrence of y in the textual substitution z := F does not become
bound.

8.3 Rules about quantification

Consider a language of expressions that includes the operator x. Assume
that x is symmetric and associative and has an identity «. We introduce
two inference rules and several axioms that can be used, along with infer-

® A fresh variable is a variable that does not occur in the expressions under
consideration.
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ence rules Leibniz, Transitivity of equality, and Substitution, to manipulate
quantifications over x.°

Inference rule Leibniz, (1.5), is supposed to enable substitution of equals
for equals in expressions, and for expressions without quantification it is
fine. However, for substitutions in quantifications, it is inadequate. For
example, since x + x = 2-z holds, we would expect to be able to prove

(+z10<z<9:z4+z)=(+x10<2<9:2-x)
However, the instance of Leibniz (1.5) that we want to use in this case,

r+r=2-x

(+z10<z<9:2)%,,=(+z10<x<9:2)5.,

?

does not work. This is because variable z in the replacing expression z+4z
is (deliberately) the same as the dummy, so (+z 10 <z < 9: 2)[z := T+2]
equals (+y10<y<9:z+z) andnot (+z|0<z<9:2+1x), due to
the caveat in (8.11).

Two additional inferences rules allow substitution of equals for equals in
the range and body of a quantification.

P=Q
(xx 1 E[z:=P]:S)=(xx | E[z:=Q)]:S5)

(8.12) Leibniz:

R = P=Q
(xz | R: E[z:=P]) = (xx | R: E[z := Q))

As with Leibniz (1.5), we use these inference rules implicitly in substituting
equals for equals.

Our first two axioms concern the introduction and elimination of quan-
tifiers. The notation occurs(‘z’,‘E’) is explained in Def. (8.9).

(8.13) Axiom, Empty range: (xz | false : P) = u (the identity of x)

(8.14) Axiom, One-point rule: Provided -occurs(‘z’,‘E’),
(*x |lz=FE:P) = Plz:=E]

6 Actually, most of the axioms require only symmetry and associativity. An
identity is required only when an empty range comes into play. For example, if %
does not have an identity, then One-point rule (8.14) does not hold, and axiom
Range split (8.16) does not hold if R or S is false. Operator |, where z | y
is the minimum of z and y, is an example of an operator for which we can still
use quantification, even though | has no identity.
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As an example of the One-point rule, we have

(+z 1z =3:2%) = 32

We explain the need for the restriction in the One-point rule that z not
occur free in E . The LHS of the One-point rule is not dependent on z (in
the state in which it is evaluated), since all occurrences of T are bound.
Hence, for the equivalence to hold, the RHS also cannot depend on z, and
this requires (in general) that = not occur free in E.

(8.15) Axiom, Distributivity: Provided each quantification is defined, ”
(x| R:P)x(xx | R:Q) = (xx | R: PxQ)

Note that the dummies are the same and the ranges are the same in all
three quantifications of (8.15). Distributivity holds because operator * is
symmetric and associative, so that the order in which the operands are
accumulated has no bearing on the result. As an example, for dummy i of
type integer, we have

(+il1i2<9:2) 4+ (+i1i2<9:¥) =(+i12<9:42+4°)

The next axiom is called range split, because the range R V S in its
LHS is split into the two ranges R and S in its RHS.

(8.16) Axiom, Range split: Provided R A S = false and
each quantification is defined,
(xx | RVS:P) = (xxIR:P)x(xz|S:P)

Axiom (8.16) may be understood using the following analogy. Suppose one
has a bag of Red numbers and Silver numbers to sum. They can be summed
in any order, as the LHS of (8.16) implies. The RHS simply specifies a bit
about the ordering of summation: sum the Red ones, sum the Silver ones,
and add the two sums.

"Thesum (+i10<i:4)=1+2+3+... is not defined. Using 0 = i+ (—1),
we have the following instance of Axiom (8.15). Its LHS is 0 but its RHS is
undefined.

(i10<i:0)=(+i 10<i:i)+ (+i10<i:—d)

This is the reason for the caveat on some of the axioms.

The sum (44 | 0 < i :1/i%®) = 1/14+1/441/84+1/16 + ... is defined to
equal 7%/6, even though it is an infinite sum, because (+i 1 0 < i < n : 1/i?)
“converges” to 7°/6 as m gets larger. Similarly, (=410 < 4 : true) is defined
to equal true,since (=:¢10<i<n:true) = true forall n. But (=i10<
i: false) is undefined (why?).

A complete discussion of when a quantification is defined is outside the scope of
this text. Entire books are written on the subject of convergence of summations.
However, quantifications with finite ranges are always defined, and quantifications
using operator A and V are always defined.
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The restriction that RA S = false in the above axiom ensures that
an operand is not accumulated twice in the RHS —once because a value
x satisfies R and once because the same value z satisfies S. Axiom
(8.17) eliminates this restriction by adding to the LHS the accumulation
(xx | RAS : P); thus, the values of P that are accumulated twice because
values for the dummies satisfy both R and S are accumulated twice on
both sides of the equation.

(8.17) Axiom, Range split: Provided each quantification is defined,
(*xzx |RVS:P)x(xx | RAS:P) = (xzx | R: P)x (x| S: P)

On the other hand, if operator x is idempotent —so that exe = e for
all e, then it does not matter how many times e is accumulated. Hence,
we have the theorem
(8.18) Axiom, Range split for idempotent x: Provided each

quantification is defined,
(x>x I RVS:P) = (x| R: P)x(*x | S: P)

The next three axioms concern dummies. The first indicates that nested
quantifications with the same operator can be interchanged. The second
indicates how a single quantification over a list of dummies can be viewed
as a nested quantification. The third shows that a dummy can be replaced
(in a consistent fashion) by any fresh dummy.

(8.19) Axiom, Interchange of dummies: Provided each quantifi-
cation is defined, —occurs(‘y’,‘R’) and —occurs(‘z’,‘Q’),

x> |R: (g1 Q:P)=(yl1Q:(xx | R:P))

(8.20) Axiom, Nesting: Provided -occurs(‘y’,‘R’),
(xz,y IRANQ:P)=(z | R:(xy | Q: P))

(8.21) Axiom, Dummy renaming: Provided —occurs(‘y’,‘R, P’),
(*x | R: P)=(xy | Rlz:=y]: Plz:=1y])
The “occurs” restrictions on these laws ensure that an expression that

contains an occurrence of a dummy is not moved outside (or inside) the
scope of that dummy.

We now generalize axiom Dummy renaming (8.21). We motivate this
generalization as follows. Consider the expression

(+i12<i<10:4?)
Rewriting this expression so that the range starts at 0 instead of 2 yields
the following expression.

(+k10<k<8:(k+2)?)
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Here, note that the relationship between ¢ and k is i = k+2,0r k =49—2.

The equality of the two summations above is an instance of the following
general theorem, which holds for any symmetric and associative binary
operator *. Let f be a function that has an inverse f~!, so that z =
fy = y=f"lx.Then

(8.22) Change of dummy: Provided —occurs(‘y’,‘R,P’) and

f has an inverse,
(xx | R: P)= (*y | Rlz := f.y]: Plz := f.y])

The proof of this theorem illustrates the use of several of the axioms given
above. The proof starts with the RHS of (8.22), because it has more struc-
ture.

(xy | Rlz := f.y]: Plz:= fy])
= (One-point rule (8.14)
—Quantification over x has to be introduced. The One-
point rule is the only rule that can be applied at first.)
(xy | Rlz:=fy]: >z |z = f.y: P))
= (Nesting (8.20) —Moving dummy z to the outside
gets us closer to the final form.)
(xz,y | Rz := fy]| Nz = fy:P)
= (Substitution (3.84a) — R[z := f.y] must be removed
at some point. This substitution makes it possible.)
(xz,y | Rz .=z Nz = fy:P)
= (R[z := x| = R; Nesting (8.20), —occurs(‘y’,‘R’)
—Now we can get a quantification in = alone.)
(kx| R: >yl z= fy:P))
= (x = fy = y= f~l.x —This step prepares for the
elimination of y using the One-point rule.)
(xx | R:(xyly=flx:P))
= (One-point rule (8.14))
(xx | R: Ply:= f~'.z])
= (Textual substitution — —occurs(‘y’, ‘P’) )
(*.r | R: P)

Discovering this proof is not as difficult as it may appear at first, because
each step is almost forced by the shape of the expression at that point and
the shape of the final goal —in fact, in several of the steps there is only
one choice. The proof changes the side with the most structure into the
side with the least structure, as per heuristic (3.33).
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8.4 Manipulating ranges

We now illustrate the manipulation of ranges in quantifications, in order to
show the application of the axioms introduced thus far and to prepare for
later application in proving theorems by induction and in proving properties
of programs.

In dealing with quantifications with ranges like 0 < ¢ < n and 0 <
i < n, we often want to split the quantification into two quantifications,
using Range split (8.16). Two useful cases of this splitting are given in the
following theorem.

(8.23) Theorem Split off term. For n:N and dummies i:N,

(*¥10<i<n+1:P) = (x10<i<n:P)xPli:=n]
(*10<i<n+1:P) = Pli:=0lx(xi10<i<n+1:P).

Proof. We prove the first formula and leave the second to the reader.

*¥10<i<n+1:P)

= (0<i<n+l = 0<i<nVi=n)
(*%10<i<nVi=n:P)

= (Range split (8.16) —0<i<n Ai=n = false)
*¥10<i<n:P)x(*xili=n:P)

= (One-point rule (8.14))
(xi10<i<n:P)xPli:=n] a

Here are some examples of the use of Split off term (8.23). In the third
example, the range has been writtenas 0 <i < n insteadof 0 <i <n+1.
And, in the fourth example, we use the obvious extension of the theorem
to a lower bound other than 0.

(Ri10<i<n+1:8i]) = (Zi10<i<n:b])+b[n]

Il

(Mil0<i<n4+1:bf4]) = b0]-(Mi]0<i<n:b[i]
(Vil0<i<m:b[i]=0) = (Vil0<i<n:b[i]=0)Abn]=0
(Mi15<i<10:4%) = 52-(I1i | 5 < i< 10:4?)

In splitting a range into two, we are actually making use of the following
theorem. Its proof awaits the introduction of axioms for arithmetic, in
Chap. 15 (see Exercise 15.39).

(824) b<c<d = (b<i<d=b<i<cVe<i<d)

We will use this theorem in the following, more complex, example, which
concerns the sum of a certain set of elements of a two-dimensional array
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¢[0..n,0..n] :
(8.25) (24,j10<i<j<n+1:cij])

We want to prove that this expression is equivalent to
(X4,j10<i<j<n:cli,j]) + (Bi10<i<n:clin])

The proof requires splitting the range of the quantification, and to do this
we rewrite the range 0 < i < j < n+ 1 as a disjoint disjunction. The
way to deal with this rewriting is to remember that the range uses an
abbreviation:

0<i<j<n+1
= (Remove abbreviation)
0<i<jAj<n+1
(j<n+l=j<nVji=n)
0<i<jA(G<nVj=n)
(Distributivity of A over V (3.46))
0<i<jAnj<n) V (0<i<jAj=n)
(Reintroduce abbreviation)
0<i<j<n V (0<i<jAj=n)

Using the last formula, we can now manipulate (8.25) as follows.

(24,5 10<i<j<n+1:clij])
(Above proof)
(4,j10<i<j<n V (0<i<jAj=n):clij))
= (Range split (8.16))
(4,7 10<4<j<n:clij])
+ (24,7 10<i<jAj=n:clj])

Now, the One-point rule and the conjunct j = n lead us to believe that
dummy j can be removed from the second summation. We continue the
manipulation:

= (Nesting (8.20))
(24,j 10<i<j<n:clij])
+XEjlj=n:(2i10<i<j:cli,j]))
(One-point rule (8.14))
(X4,j10<i<j<n:ci,j]) + (Zi10<i<n:cfi,n])

The manipulation to show that (8.25) equals the expression following it
seems rather torturous. This is because we wanted to show you every detail.
With some experience, you will be able to perform this manipulation is one
step:
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(24,j10<i<j<n+1:cij])
= (Range split (8.16); One-point rule (8.14))
(Zi,j10<i<j<n:j]) + (Zil10<i<n:cfin])

DESCRIBING RANGES

Consider ways to formalize a range that denotes the values 2,...,15 of a
dummy 7. Here are four possibilities.

(a) 2<i<15

(b) 2<i<16
(c) 1<i<15
d 1<i<16

Which is best? Well, that depends on the kinds of manipulations being
performed on ranges. One nice point about (b) and (c) is that the number
of values of i in the range is equal to the upper bound minus the lower
bound: 16 —2 or 15— 1. With (a) and (d), the number of elements is not
so easily calculated. This should bias us towards (b) or (c).

Another operation that is sometimes performed on ranges is to collapse
adjacent ranges (or split a range into two adjacent ones):

(a) 2<i<15 VvV 16<i<20 = 2<4<20
(b) 2<i<16 v 16<i<2l = 2<i<21
(c) 1<i<15V 15<i<20 = 1<4<20
(d 1<i<16 V 16<i<2l = 1<i<21

Again, (b) and (c) seem easiest to manipulate, because the upper bound
of the lower adjacent range equals the lower bound of the upper adjacent
range. Collapsing or splitting such ranges is likely to be done with less
chance of a mistake. So, all other things being equal, we usually try to use
(b) or (c) to describe ranges of integers.

Which of (b) and (c) should we prefer? We often want to describe a range
consisting of the first n natural numbers. Using (b), this is easily done:
0 < i < n, and the upper bound n is the number of values in the range.
Using (c), we are forced to use the unnatural number —1 and to write the
range as —1 <7 < n—1. Hence, (b) would appear to be the better choice.

Experiments performed at Xerox PARC concerning the number of er-
rors programmers made using the four forms of range (a)—(d) found that
programmers made fewer errors with form (b).
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Exercises for Chapter 8

8.1 Given are functions a,b,c,d, and e with types as follows.
a:A— B
b:B—-C
c:C— A
d:AxC —D
e:BxB—F

State whether each expression below is type correct. If not, explain why. Assume
wA, w:B, ©:C, y:D,and z:E.

(a) e(a.u,w)

(b) bz

(c) e(a(c.x),a.u)

(d) a(c(b(a-y)))

(e) d(c.z,c.x)

8.2 Consider the expression e €t where ¢ has type set(Z), i.e. set of integers.
Give a reasonable type for function € and for function application e<t.

8.3 Expand the following textual substitutions. If necessary, change the dummy,
according to Dummy Renaming (8.21).

(a) (z10<z+r<n:z+v)v:=3

(b) )z 10<z+r <n:z+v)x:=3

(¢) xx10<z+r<n:z+v)n:=n+x

(d) xz10<z<r:(xyl0<y: z+y+n))[n:=z+1y|
(e) xx10<z<r:(xyl0<y:z+y+n))r:=y

8.4 Give a definition of E[z := e] for all expressions E, including quantifica-
tions. The definition should be in terms of the different kinds of expression E,
just as the notions of free and bound were defined. Treat expressions that are con-
stants, variables, parenthesized expressions, unary operations, binary operations,
function applications, and quantifications.

8.5 Prove the following theorems. Provided 0 < n,
(a) (Zil10<i<mn+1:b[d) = b0]+(Xill<i<n+1:bf)
(b) (£i10<i<n:bli]) = (Xi10<1i<n:bfi)+bn]
(¢) (2210<i<n:bE]) = b0]+(Xi11<i<n:bl)
8.6 Prove the following theorems. Provided 0 < n,
(a) (Vil0<i<n+1:b[]=0)

(Vil0<i<mn:bli=0)V bn] =0
(b) (Ail0<i<n+1:b[]]=0) =
(Ai10<i<n:bli]=0) Abn =0

(¢) (Vil0<i<n+1:b[i=0)
bO]=0V (VilO<i<n+1:b[i]=0)

(d) (Ail0<i<n+1:b[i]=0) =
bO]=0A (Ail0<i<n+1:b[i]=0)
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8.7 Prove the following theorems:
@ (+i10<i<n:)=(H+il0<i<nAeveni:i)+(+i | 0<1i<
n A odd.i:i)
(b) (+110<i<10:0)=0



Chapter 9

Predicate Calculus

W e introduce predicate logic, an extension of propositional logic that
allows the use of variables of types other than B. This extension
leads to a logic with enhanced expressive and deductive power.

PREDICATES AND PREDICATE CALCULUS

Propositional calculus permits reasoning about formulas constructed from
boolean variables and boolean operators. Therefore, the expressiveness of
the logic is restricted to sentences that can be modeled using boolean ex-
pressions. Predicate calculus permits reasoning about a more expressive
class of formulas. A predicate-calculus formula is a boolean expression in
which some boolean variables may have been replaced by:

e Predicates, which are applications of boolean functions whose argu-
ments may be of types other than B. Examples of predicates are
equal(z,x — z + 2z) and less(z,y + z). The function names (e.g.
equal, less ) are called predicate symbols. Infix notation is sometimes
used for predicates, asin z <y.

The arguments of predicates can be expressions having types other
than B (e.g. the integers Z), so arguments may contain variables
and constants of these other types. These arguments are called terms.
Examples of terms are: z +y, maz(a,b), and —b+ b2 —4-a-c.

i

e Universal and existential quantification, as discussed in this chapter.

Here is a formula of the predicate calculus: z <y A z=2 = ¢(z,2+zx).
It contains three predicates: z < y, z = z, and ¢(z,z + z) . The terms
used in this formula are z, y, z,and z+4x.

The pure predicate calculus includes the axioms of propositional calculus,
together with axioms for quantifications (Az | R: P) and (Vz | R: P),
which are introduced in the next two sections. The inference rules of the
predicate calculus are Substitution (1.1), Transitivity (1.4), Leibniz (1.5),
and Leibniz for quantification (8.12). Substitution may be used to replace
a variable of any type by any expression of that type.

In the pure predicate calculus, the function symbols are uninterpreted
(except for equality =), so the logic provides no specific rules for manip-
ulating them. With these symbols uninterpreted, we can develop general
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rules for manipulation that are sound no matter what meanings we ascribe
to the function symbols. Thus, the pure predicate calculus is sound in all
domains that may be of interest.

We get a theory by adding axioms that give meanings to some of the
(uninterpreted) function symbols. For example, the theory of integers con-
sists of the pure predicate calculus together with axioms for manipulating
the operators (i.e. functions) +, —, -, <, <, etc. Thus, the axioms say
that - is symmetric and associative and has the zero 0. And, the theory
of sets provides axioms for manipulating expressions containing operators
like € (membership), U (union), and N (intersection). We can also form
a joint theory of sets and integers, allowing us to reason about expressions
that contain both.

The core of all these theories, however, is the pure predicate calculus;
it provides the basic machinery for reasoning about, or providing proofs
about, all other domains of interest.

9.1 Universal quantification

Conjunction A is symmetric and associative and has the identity true.
Therefore, it is an instance of x of the previous chapter. The quantification
(Az | R: P) is conventionally written as

9.1) (Vz|IR:P)
The symbol V, which is read as “for all”, is called the universal quantifier.

Expression (9.1) is called a universal quantification and is read as “for all
x such that R holds, P holds.”

General axioms (8.13)—(8.21) hold for (Vz | R : P) and are not repeated
here. Note that A is idempotent, so that universal quantification satisfies
range-split axiom (8.18). We now introduce additional axioms and theorems
for universal quantification.

TRADING WITH UNIVERSAL QUANTIFICATION

Axiom (9.2) allows a range to be moved into the body.

(9.2) Axiom, Trading: (Vz | R: P) = (VzI: R = P)

This axiom allows us to prove several theorems for universal quantification.
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Trading theorems for V

(9.3) Trading: (a) (Vz | R:P) = (Vz|: -R V P)

(b) VzIR:P) = VzI:RAP = R)

(c) VzIR:P) = VzI:RV P = P)
(9.4) Trading: (a) (VzIQAR:P) = Vz|Q:R = P)

(b) VZIQAR:P) = (V2| Q:-RV P)

(¢) VZIQAR:P) = VzIQ:RAP = R)

(d VzIQAR:P) = (Vz|Q:RV P =P)
We prove (9.4a).

(Vz 1 QAR: P)

(Trading (9.2))
(Vzl: QAR = P)
= (Shunting (3.65))
(Vzl: Q = (R = P))
= (Trading (9.2))
Vzx1Q:R = P)

DISTRIBUTIVITY WITH UNIVERSAL QUANTIFICATION

The following axiom shows how V distributes over V.

(9.5) Axiom, Distributivity of V over V:
Provided —occurs(‘z’,‘P’),
PV(VzIR:Q) = (Vx| R:PV Q)

In the axiom, the expression P that is being moved out of the scope (or into
it, depending on your point of view) cannot contain x as a free variable.
This restriction ensures that the LHS and the RHS of the axiom refer to
the same free variables —otherwise, the LHS and RHS would, in general,
not be equivalent.

Axiom (9.5) allows us to prove the following theorems.

Additional theorems for V

(9.6) Provided —occurs(‘z’,‘P’),
(VI R:P) =P Vv (Vz|: =R)
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Additional theorems for V (continued)

(9.7) Distributivity of A over V: Provided —occurs(‘z’,P’),
-(Vz|:-R) = (M1 R:PANQ) = PA(NzIR:Q))

(9.8) (Vx| R: true) = true

(99 (VzIR:P=Q)= (VzIR:P) = Vx| R:Q))

Be careful when using theorem (9.7). A conjunct can be moved outside
the scope of the quantification only if the range R is not everywhere false
(as prescribed by the antecedent —(Vz |: =R)). The proof of (9.7) uses
the technique of assuming the antecedent (see page 71). We assume the
antecedent —(Vz|: ~R) and prove the consequent:

(VzIR:P A Q)

(Distributivity of V over A (8.15))
(Vz | R:P)A(Vz | R: Q)

((9.6) —since —occurs(‘z’,‘P’))
(PV (Vz|: -R)) A (Vz | R: Q)

(Assumption —(Vz|: ~R), ie. (Vzl: ~R) = false)
(P V false) AN (Vz | R: Q)
= (Identity of Vv (3.30))

PA(MzIR:Q)

MANIPULATING THE RANGE AND BODY WITH UNIVERSAL
QUANTIFICATION

Theorems (9.10) and (9.11) have counterparts (3.76a) and (3.76b), with
similar names, in propositional calculus; indeed, these two theorems are
proved using their counterparts.

Weakening, strengthening, and monotonicity for V
(9.10) Range weakening/strengthening:
Mz 1QVR:P)= (Vz|Q:P)

(9.11) Body weakening/strengthening:
Vx|l R:PAQ) = (Vz | R:P)

(9.12) Monotonicity of V:
Mz lR:Q=P) = (VI R:Q) = (Vx| R: P))
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INSTANTIATION WITH UNIVERSAL QUANTIFICATION

In many predicate logics, the following law of Instantiation (9.13) is written
as an inference rule, and One-point rule (8.14), particularized for universal
quantification as (Vx | ¢ = F : P) = Pz := E], does not appear.
However, the One-point rule is sharper than Instantiation —it is sharper
to replace an expression by an equivalent one than by one that it implies,
just as it is sharper to replace an integer expression by one equal to it
rather than by one that is greater than or equal to it.

Instantiation for V

(9.13) Instantiation: (Vzl|: P) = Pz := E]

Nevertheless, there are many situations where Instantiation is useful,
and, like symmetry and associativity, it is often used implicitly. For exam-
ple, suppose we want to prove B V even(z +y) = B V even((z + y)?)
for integer expression z + y. Assuming that

(9.14) (Vi:Z1: even.i = even(i2))

holds, we would first use Instantiation (9.13) with (9.14) to infer even(z +
y) = even((z +y)?). Then we would give the following proof:

B V even(z +y)
= (even(z +y) = even((z +y)?) —(9.14) instantiated
with i:=2z+y)
B V even((z +y)?)

However, we typically take a short cut and simply write

B V even(z + y)

= ((9.14)
B V even((z +y)?)

The implicit use of Instantiation is even more concealed if universal quan-
tification itself is not written formally. For example, conventionally,
(Va,b:Zl:a+b=b+a)
may be written as
(9.15) a+b=b+a (for all integers a,b)

In this form, because universal quantification is a side comment and not
part of the formula, it is easy to forget that producing, say, z-y+2 = 2+z-y
from (9.15) requires not Substitution (1.1) but Instantiation (9.13).
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ON THEOREMS AND UNIVERSAL QUANTIFICATION

A boolean expression that has free occurrences of variables, like bV z < y,
is called open, and its value may differ from state to state. The expression
becomes closed if we universally quantify over all of its free variables, as in
(vb,z,yl: bV z < y) . The value of a closed expression does not depend on
the state in which it is evaluated, since it has no free variables. Therefore,
a closed expression is equivalent either to true or to false. The follow-
ing metatheorem characterizes (at least partially) when quantifying over a
variable does not change the value of a boolean expression.

(9.16) Metatheorem. P is a theorem iff (Vz|: P) is a theorem.

Proof. The proof is by mutual implication.

LHS = RHS. Assume P is a theorem. Then there is a proof of it that
transforms P to true, using Leibniz, Transitivity of equals, and Substi-
tution:

P
(Hint 1)

= (Hint n)
true

Leibniz (8.12) allows us to turn this proof into a proof of (Vz|: P):

(Vz1: P)
= (Hint 1)

* (Hint n)
(Vz |: true)

{(9.8), (Vz | R: true) = true)
true

RHS = LHS. Assume (Vz|: P) is a theorem. Using Instantiation (9.13)
with z for F, we conclude that P is a theorem. O

Here are some applications of Metatheorem (9.16). Since pvVq = qVp
is a theorem, then so are (Vpl:pVgq = ¢qVp), (Vgl:pVg = ¢qVp), and
(Vp,ql:pVg = qVp).
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A standard terminology is often used for proving a universal quantifica-
tion using Metatheorem (9.16). We say:

To prove (Vx| R: P), we prove P for arbitrary = in range R.

Thus, (Vz | R: P) can be proved by proving R = P (and R = P itself
can be proved by assuming antecedent R and proving consequent P ). This
method of proof is often used informally in mathematics. In fact, we used
it on page 76 in proving theorem (4.8), where the universal quantification
was expressed in English as “for any natural number 7”.

9.2 Existential quantification

Disjunction V is symmetric and associative and has the identity false.
Therefore, it is an instance of * of Sec. 8.2. The quantification (Vz | R : P)
is typically written as

(3z | R: P)

The symbol 3, which is read as “there exists”, is called the existential
quantifier. The expression is called an ezistential quantification and is read
as “there exists an z in the range R such that P holds”. A value & for
which (R A P)[z := %] is valid is called a witness for  in (3z | R: P).

General axioms (8.13)—(8.21) hold for (Vz | R : P) and are not repeated
here. Note that V is idempotent, so that existential quantification satisfies
Range split (8.18) as well.

We now give additional theorems for existential quantification. We begin
with axiom (9.17) below, which relates existential quantification to univer-
sal quantification. We call this axiom Generalized De Morgan, and later
we will abbreviate it as De Morgan, since it is a generalization of De Mor-
gan’s law (3.47a), —(p A ¢) = —-p V —g. We can get the idea behind this
generalization with an example:

(Vil0<i<4:P)

= (Eliminate quantification)
Piv PiV PV P

= {Double negation (3.12); De Morgan (3.47a))
—(=P§ A =P} A ~Pi A —P%)

= (Introduce quantification)
~(Ai10<i<4:-P)

Axiom (9.17) can be viewed as a definition of 3, in the sense that it can
be used along with the strategy of definition elimination, (3.23), to prove
all theorems concerning existential quantification.
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(9.17) Axiom, Generalized De Morgan:
Bz | R:P) = -(¥Vz | R: -P)

Using Double negation and De Morgan’s laws, we immediately derive three
similar forms of Generalized De Morgan.

Generalized De Morgan
(9.18) Generalized De Morgan: (a) ~(3z | R: -P) = (Vx| R: P)
(b) ~(3z 1 R:P) = (Vz | R: -P)
(c) @xIR:-P) =~(Nz|R:P)

The range is the same on both sides of the various Generalized De Morgan
theorems. Often, the body of a quantification will be manipulated while
the range remains the same; our syntax for quantification facilitates this
by keeping this non-changing part out of the way.

On page 31, we introduced the concept of the dual of a boolean expres-
sion. To complete the definition of the dual for all boolean expressions, we
define the dual of (Vz | R: P) to be (3z | R : -P) (and the dual of
(3z 1| R: P) tobe (Vx | R : —P)). This definition is consistent with
Definition (2.2) given on page 31. That is, Metatheorem (2.3a) still holds:
if P is a theorem, then so is ~Pp .

TRADING WITH EXISTENTIAL QUANTIFICATION

The trading theorems for existential quantification are surprisingly different
from their counterparts for universal quantification, with a conjunction
instead of an implication in the RHS. To understand Trading (9.19), recall
our meaning of 3. The LHS of (9.19) states that “there exists a value z
in the range R for which P is frue.”. This means that there is a value
z for which both R and P are true. And that is exactly what the RHS
says.

Trading theorems for 3
(9.19) Trading: (3z | R: P) = (3zI: R A P)

(9.20) Trading: (3z | QAR:P) = (3x1Q:R A P)
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DISTRIBUTIVITY WITH EXISTENTIAL QUANTIFICATION

The new theorems concerning 3 parallel those of V.

Additional theorems for 3

(9.21) Distributivity of A over 3: Provided —occurs(‘z’,‘P’),
PABzIR:Q) = (FzIR:PAQ)

(9.22) Provided -occurs(‘z’,‘P’),
(FxIR:P) = PA(Bzl:R)

(9.23) Distributivity of V over 3: Provided —occurs(‘z’,‘P’),
(3zlI:R) = (3xIR:PVv Q) =PV (3IzIR:Q))

(9-24) (3z | R: false) = false

MANIPULATING THE RANGE AND BODY WITH EXISTENTIAL
QUANTIFICATION

The theorems for manipulating the range and term of V have counterparts
for 3.

Weakening, strengthening, and monotonicity for 3
(9.25) Range weakening/strengthening:
(3z|R:P)= 3z1QV R:P)

(9.26) Body weakening/strengthening:
(3z|R:P) = 3z | R: PV Q)

(9.27) Monotonicity of 3:
Mzl R:Q=P) = (IzIR:Q) = (Az | R: P))

INTRODUCTION OF EXISTS AND INTERCHANGE

We have two final theorems for manipulating quantifier 3.
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Introduction and interchange for 3

(9.28) 3I-Introduction: P[z:=E] = (3z|: P)

(9.29) Interchange of quantifications:
Provided —occurs(‘y’,‘R’) and -occurs(‘z’,‘Q@’),
(FzIR:(VylQ:P) = VylQ:(3z| R: P))

Theorem (9.28) shows how to introduce an existential quantifier using an
implication. One-point rule (8.14) is a sharper way to introduce or eliminate
existential quantification.

Theorem (9.29) permits the interchange of ¥V and 3. It is an implication,
and not an equivalence. The implication does not hold in the other direction
for the following reason. For the antecedent of (9.29) to be true , there must
exist a single value = such that P holds for all y. For the consequent to
be true, no such single value of z is required; for each y, a different value
of x may satisfy P.

We give the proof of (9.29) because it illustrates well how a proof can be
“opportunity driven”. In our proof, there is a reason for taking each step,
although one does not know at that step exactly how the rest of the proof
will go. To start, in isolation, neither the antecedent nor the consequent
presents much invitation for manipulation, so we take them together. (We
give the proof with ranges implicit to make it easier to read; they can be

filled in by the reader).

Bzl: (Vyl: P)) = (Vyl: (3z1: P))
= (Implication (3.57), p = ¢ = pV q = g,
to eliminate the problematic =)
Bzl: (Vyl: P)) vV (Vyl: (3z1: P)) = (Vyl: (3z|: P))
= (Distributivity of V over V (9.5) —so that the LHS
and RHS have the same outer quantification)
(Vyl: 3z 1: (Vyl: P)) v (3z|: P)) = (Vyl: 3z |: P))
= (Distributivity (8.15) —so that the LHS
and RHS have the same two outer quantifications)
(Vyl: 3z|: (Vyl: P) v P)) = (Vyl: (3z1: P))
= (Instantiation (9.13) says (Vyl: P) = P,
which by (3.57) is equivalent to (Vyl: P) vV P = P)
(Vyl: 3zl: P)) = (Vyl: (3z|: P)) —Reflexivity of equality
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WITNESSES

On page 162, we mentioned that free variables in a theorem are implicitly
universally quantified. For example, b V¢ = ¢ V b is a theorem iff
(Wb,c I bV ¢ = ¢V b) is a theorem. This allows us to manipulate the
simpler, unquantified formulas, instead of their more complex quantified
counterparts. A similar technique for existential quantification is embodied
in the following theorem.

(9.30) Metatheorem Witness. Suppose —occurs(‘Z’,‘P,Q, R’) . Then

(3z | R: P) = @ is a theorem iff
(R A P)lz:=%] = Q is a theorem.

Identifier # is called a witness for the existential quantification.

Proof. (FzIR:P) > Q

= (Trading (9.19))
(3zl:RAP) = Q

= (Implication (3.59); De Morgan (9.18b))
Vzl: ~(RAP))VQ

= (Dummy renaming (8.21), ——\occurs(‘z’ ‘P,R’))
(Vzl: =(R A P)lz:=2]) V

= (Distributivity of V over \7’ (9.5) — —occurs(‘z’,‘Q’) )
(VZ1: =(R A P)lz:=3] vV Q)

= (Implication (3.59))
Vzl: (R A P)z:=2] = Q)

By Metatheorem (9.16), the last line is a theorem iff (R A P)[z :=&] = Q
is a theorem. 0

Metatheorem Witness is often used in the case that (3z | R: P) is a
known theorem (or axiom) and @ is to be proved. In such cases, the proof
often proceeds by assuming (R A P)[z := £] and proving @ . We illustrate
this technique in proving a +b=a +c¢ = b= c. In the proof, we make
use of Additive inverse (15.6), which appears later in Chap. 15, specialized
to the integers:

(9.31) (Fz:Zl: z+a=0)

This axiom says that, for any integer a, there exists another integer z
such that £ +a = 0. We use the assumption (z + a = 0)[z := 4] with
witness @, i.e. we use the assumption ¢ +a=0.

To prove a+b=a+c = b=c, we assume the antecedent a+b=a+c
(in addition to & + a = 0) and prove the consequent:

! Identifier z itself can be used for & if = does not occur free Q.
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b

= (Additive identity (15.3), 0+b=1")
0+b

= ((9.31), (3z:Z1: z + a = 0), with witness a)
a+a+b

= (Assumption a+b=a+c)
a+a+tc

= (6 +a =0 —again)
0+c¢c

= (Additive identity (15.3) —again)
c

Deduction Theorem (4.4) on page 72 requires that, in proving (R A
P)[z .= ] = @ by assuming (R A P)[z := Z] and proving @, the
variables of (R A P)[z := Z] be considered to be constants. The discussion
following Metatheorem (4.4) explains the reason for this restriction.

One more point concerning Metatheorem Witness needs to be empha-
sized. When two (or more) witnesses are used in a proof, they must be
distinct, for the following reason. Suppose we want to prove (3z|: P) A
(3z1: R) = Q. Use Shunting (3.65) to write this expression as

(3z1: P) = ((3AzI: R) = Q)
Two applications of Metatheorem Witness indicates that this expression is
equivalent to

Plz:=3%] = (Rlz:=12'] = Q)
Here, £ and z’ must be distinct because of the requirement that Z not
occur free in the consequent Rz :=z'] = Q of this implication.

We illustrate the inconsistency that may arise if two witnesses are given
the same name. Consider again (9.31). Use Substitution (1.1) to replace a
by a+ 5, yielding theorem

(Fz:Zl: 2 +a+5=0)

From this theorem, derive using Witness (9.30) the assumption ¢+a+5 =
0, where & is the witness. From theorem (9.31), derive the assumption
a+a = 0, where the mistake is made of using the same witness a . Together,
these two assumptions yield the contradiction 5 =0.

9.3 English to predicate logic

Formalizing a statement in terms of propositional logic does not always
provide the opportunity to reason formally about the constituents of the
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statement. For example, consider the statement “some integer between 80
and n is a multiple of x”. We could simply assign a propositional variable
S (say) to this statement and use S everywhere this statement might
appear, but this formalization does not give us the ability to reason about
the statement.

Using predicate calculus, we can write a formalization that offers more
chance of manipulation:

(Fi:Z 1 80 < i < n:mult(n,z)) |,

where mult(n,z) denotes “n is a multiple of z”. And, we could formalize
mult(n,z) as well:

Gm:Z1:n=m-x)

With axioms for the integers, we could then prove various theorems, for
example,

even.x A (3m:Zl:n=m-z) = (Am:Zl:n=m-z/2)

Formalizing English (or a mixture of English and mathematics) in pred-
icate logic can help in at least two ways. First, it may expose ambiguities
and force precision. As an example, does the phrase “between 80 and n”
include 80 and m or not? A formalization in predicate logic must an-
swer this question. Second, having the formalization allows us to use the
inference rules of predicate logic to reason formally about objects under
consideration. Later, we give an example of such reasoning.

Just as Table 2.3 on page 33 gives a correspondence between English
words and boolean operations, so there is a correspondence between En-
glish and the additional symbols of predicate logic. We read the universal
quantification symbol V as “for all”, so it is not surprising that appearances
of the phrases

every, all, for all, for each, and any

signal that a universal quantification is at hand. Here are two examples.

All even integers are multiples of 2: (Vz:Z | even.x : mult(z,2))
Every chapter has at least 3 pages: (Ve | c€ Chap : size.c > 3)

Not all universal quantifications are signaled by explicit phrases. Some-
times, the universal quantification is implicit, and the appearance of an
indefinite article may be a clue. The following two sentences illustrate this
point.

Even integers are multiples of 2: (Vz:Z | even.z : mult(z,2))
An even integer is a multiple of 2: (Vz:Z | even.z : mult(z,2))
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This is consistent with our convention that free variables in a theorem of
the predicate calculus are implicitly universally quantified (see subsection
“On theorems and universal quantification” on page 162). When we write

z2>0 ,

if there is no particular state implied by the discussion, the meaning is that
every value z satisfies 22 > 0, that is, (Vzl: 22 > 0).

Existential quantifications are also signaled by a host of English words:
erists, some, there are, there is, at least one, and for some.
Here are two examples.

Some even integer is divisible by 3:
(3z:N | even.z : divisible(z, 3))

There is a chapter with an even number of pages:
(3c | ce Chap : even(size.c))

It is instructive to contrast the roles of negation and quantification in
natural language. Suppose we are asked to negate “All integers are even”.
“All integers are not even” is incorrect. The negation of the sentence is
“Not all integers are even”, which we read as “Not (all integers are even)”.
This phrase is equivalent to “Some integer is not even”, as we now show.

Not (all integers are even)
= (Formalize in predicate calculus)
~(Vz:Z1: even.z)
= (De Morgan (9.18c))
(Fz:Z1: —even.z)
= (Return to English)
Some integer is not even

Once again, we see that arguments couched in English are easy to get
wrong. Formalizing the English in predicate logic makes it easier to derive
consequences systematically, as we have just done.

Formalizing an English statement in the propositional calculus requires
associating boolean variables with the subpropositions of the statement.
Formalizing an English statement in predicate logic may require defining
predicate symbols and other functions to allow us to capture relationships
between variables. For example, mult(z,2), even.z, size.c (for ¢ a chap-
ter) all made it possible to formalize the statements above.

Here is another example of formalization. Consider translating

(9.32) Every senior took one mathematics class and passed one program-
ming class.
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We introduce the following predicates:

taken(s,c): Student s completed class c.
passed(s,c): Student s received a passing grade in c.
senior(s): Student s is a senior.

math(c):  Class ¢ is a mathematics class.

prog(c) : Class ¢ is a programming class.

Then a translation of (9.32) is

(9.33) (Vs | senior.s : (3¢, c’ |: math.c A taken(s,c) A
prog.c’ A passed(s,c’)))

Note the consequence of interchanging the quantification. The formula
(e, I: (Vs | senior.s : math.c A taken(s,c) A
prog.c’ A passed(s,c’)))
says that all students took the same math class and passed the same pro-

gramming class. Some people could claim that this is what is meant by
(9.32). The English is ambiguous.

In dealing formally with the domain of students and classes, we would
have to develop axioms that capture the properties of student transcripts.
For example, given (9.33), proving that every senior took a programming
class would probably require an axiom like

passed(s,c) = taken(s,c)

Developing a useful theory of student transcripts, or any other domain,
takes time and effort. In later chapters, we develop theories of sets, se-
quences, relations, and integers.

ARGUMENTS IN MATHEMATICS

In high-school algebra and calculus you wrote proofs. We now see that
they were not really formal. They were in English and never explicitly
cited inference rules from a formal logic. If your proofs were correct, then
they were informal descriptions that could be translated into formal proofs.
And, we now know enough predicate logic actually to construct such proofs
formally.

In high school, for example, you might have been asked to determine
whether there is some real = for which

1/(z?+1)>1
Formalized in predicate logic, the question is whether

(Fz:RI:1/(z? 4+ 1) > 1)
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is valid. We can investigate this question as follows.

(Azl:1/(z2+1) > 1)
= (Arithmetic)
(Brl:1>22+1)
= (Arithmetic)
(3z1: 0 > z?)
=  (z? >0 —from the theory of reals)
(3z1: false)
= ((9.29))
false

Here, we have formalized the part of the manipulation that deals with
quantification. The part that deals with algebraic manipulation has been
left informal, because we have not yet studied theories of arithmetic.

fx ~_  We now look to the domain of functions for another ex-

—_— ample. Informally, a function is continuous at a point c

1 2 T if it doesn’t “jump” at c. The function illustrated in this
paragraph is continuous at 1 but not at 2.

Continuity of f at a point ¢ is defined as follows.
fet « Choose any distance ¢ > 0. Suppose for any such
fz I € <1 distance ¢ that another distance § > 0 can be

- found such that for all points = within distance

6 from ¢, f.r is within distance e from f.c.
Then f is said to be continuous at ¢. This definition outlaws functions
that “jump”, as illustrated in the previous paragraph.

T C

Using |z| to denote the absolute value of z, we formalize the notion of
continuity at a point as follows. Function f is continuous at c iff

(9.34) (Vele>0:(36186>0:(Vzl:|z—c| <6 = |fx— fc|l<e)

Theorem. f(z)=3-x+ 15 is continuous at all points.

Proof. For arbitrary c, we begin by manipulating the consequent of |z —
cl<é = |f.x— fc| <e of the body of (9.34), for the given function f.

13-z 415 — (3-c+15)| < e
(Arithmetic)
3-(z—c)| <e
= (Property of |...|)
3-lz—c| <e¢
= (Arithmetic)
|z —c|l <€/3

We have proved |z —c| < ¢/3 = |f.x — f.c| < € for arbitrary c.
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Therefore, it appears that we have €/3 as a witness for § of (9.34). We
can now construct the desired quantified formula.

z—-c|<e/3 = |fox—fcl<e
= (The above is a theorem; use Metatheorem (9.16))
(Vzl: |z —cl <€/3 = |fx—fc<e
(One-point rule (8.14))
(F6516=¢/3:(Vzl: |z —¢| <6 = |fx—fc| <€)
=  (Range weakening (9.25) —since € > 0)
(F616>0:(Vzl: |z —¢c|<bé = |fx—fe<e)
= (The above is a theorem; use Metatheorem (9.16) twice)
(Vel: (Vele>0:(3616>0:
Vzl:|lz—¢c| <6 = |fx— f.c<¢€)))
= (Definition of continuous at ¢)
(Vel: f is continuous at c¢) O

Il

We end this section with predicate-calculus formalizations of three other
statements concerning functions. A function is one-to-one if for different
arguments it yields different values. We can state this as follows.

f isone-to-one: (Vz,ylz#y: fx# fy)
or
f isone-to-one: (Vz,y | fx=fy:z=1y)
Function g is the inverse of function f if ¢ maps f.x back into z.In
other words,
g is the inverse of f : (VzI: z = g(f.x))

A two-argument function is symmetric if interchanging the arguments of
a function application does not change its value:

f is symmetric = (Vz,yl: f(z,y) = f(y,z))

Exercises for Chapter 9

9.1 Prove that Distributivity of V over V (9.5), PV Vz I R:Q) = (Vz | R:
PV Q) (provided x does not occur free in P ), follows from a similar expression
with all ranges true: PV (Vz|: Q) = (VzI: P vV Q) (provided z does not
occur free in P ). This means we could have used a simpler axiom.

9.2 Prove that (Vz | R: P)A(Vz | R: Q) = (Vz | R: P A Q) follows from a
similar expression with all ranges true: (Vz|: P) A (Vz|: Q) = (VzI: P A Q).
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9.3 Prove theorem (9.6), (Vx| R: P) = PV (Vzl: -R) (provided z does not
occur free in P ). Beginning with the LHS and trading seems appropriate, since
the RHS has true as a range.

9.4 Prove theorem (9.8), (Vz | R : true) = true. Trading with the LHS will
yield a formula to which some form of distributivity may be applied. Or, use
(9.6).

9.5 Prove theorem (9.9), (Vz I R: P = Q) = (VzIR:P) = Vz | R: Q)).
Our proof replaces the whole expression using theorem (3.62).

9.6 Since A is idempotent, Range split for idempotent * (8.18) specializes for
A to

(Ve |IRVQ:P) = Yz |R:P) A (Vz 1 Q: P)

However, it is possible to prove this expression without relying on axiom (8.18).
Develop such a proof. You may find it useful to trade R and @ into the body.

9.7 Prove Range weakening/strengthening (9.10), (Vz | QV R: P) = (Vz 1 Q:
P) . Range splitting may be helpful.

9.8 Prove Body weakening/strengthening (9.11), Vz IR: PA Q) = (Vz | R:
P) . Distributivity of V over A may be helpful.

9.9 Prove Monotonicity of V (9.12), Vz | R: Q = P) = ((Vz I R: Q) =
(Vx| R: P)).

9.10 Suppose that instead of One-point rule (8.14) for V, (Vz lz =FE: P) =
P[z := E] (provided z does not occur free in E ), we choose the axiom (Vz | z =
e : false) = false . Prove that the one-point rule for V still holds (using this
new axiom and theorems numbered less than (9.13)).

9.11 Prove Instantiation (9.13), (Vz|: P) = Pz := E]. The key is to replace
the dummy using Dummy renaming (8.21) so that the dummy occurs neither in
P norin E.

Exercises on existential quantification

9.12 Prove Generalized De Morgan (9.18a), ~(3z | R: —=P) = (Vz | R: P).
9.13 Prove Generalized De Morgan (9.18b), ~(3z | R: P) (Vz | R:—P).
9.14 Prove Generalized De Morgan (9.18c), (3z | R: -P) = —(Vz | R: P).
9.15 Prove Trading (9.19), (3z | R: P) = (3z1: R A P).

9.16 Prove Trading (9.20), (x| QAR:P) = (3z 1 Q: R A P).

9.17 Prove Distributivity of A over 3, (9.21), PA (3z 1 R: Q) = (3z | R:
P A Q) (provided z does not occur free in P).

9.18 Prove Distributivity of 3 over V, (3z | R: P)V (Az | R: Q)
PV Q).

9.19 Prove (9.22), (3z | R: P) = P A (3z|: R) (provided —occurs(‘z’,‘P’)).

1]

Az I R:
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9.20 Prove Distributivity of V over 3 (9.23), (3z1: R) = (3z I R: PV Q) =
Pv 3z | R:Q)) (provided z does not occur free in P).

9.21 Prove (9.24), (3z | R : false) = false.

9.22 Since V is idempotent, Range split for idempotent + (8.18) specializes for
V to

(FzIRVQ:P)=(3FzIR:P)V(IzIQ:P)

However, it is possible to prove this expression without relying on axiom (8.18).
Develop such a proof.

9.23 Prove Range weakening/strengthening (9.25), (3z | R: P) = (3z | QV R :
P).

9.24 Prove Body weakening/strengthening (9.26), (3z | R: P) = (3z | R :
PV Q).

9.25 Prove Monotonicity of 3 (9.27), Vz I R: Q= P) = (3z I R: Q) =
3z | R:P)).

9.26 Prove J-introduction (9.28), Pz := E] = (3z|: P).

9.27 Prove (3x | R: P) = Q@ = (Vz | R:P = Q) (provided = does not
occur free in Q).

9.28 Prove (3zI: R) = ((VzIR:P) = Q = (3z | R: P = Q)) (provided
z does not occur free in P).

Exercises on translation to and from predicate logic

9.29 Translate the following English statements into predicate logic.

(a) The natural number 1 is the only natural number that is smaller than
positive integer p and divides p.

(b) Some integer is larger than 23.

(c) Adding two odd integers yields an even number. (Use only addition and
multiplication; do not use division, mod, or predicates even.r and odd.x .)

(d) A positive integer is not negative.

(e) Every positive integer is smaller than the absolute value of some negative
integer. (Use abs.i for the absolute value of i.)

(f) Cubes of integers are never even. (Use only addition and multiplication; do
not use exponentiation, division, mod, or predicates even.z and odd.r.)

(g) Real number ¢ is the largest real solution of the equation f.i =4+ 1.
(h) For no integer i is f.i both greater than and less than i .

(i) Value f.j is always j +i greater than f.i.

(j) Function f.¢ is non-decreasing as i increases.

(k) No integer is larger than all others.
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(1) Every integer is larger than one and smaller than another.
(m) Value g(f.7) is the smallest positive integer i such that fi=1.

9.30 Translate the following predicate-logic formulas into English. In doing so,
don’t simply make a literal translation; try instead to extract the meaning of
each formula and express that as you would in English.

(a) Gk:R | (Vi:Z1: fi=k))

(b) @zRI: (Vi:Z1: f.5 = f(G+1i-2)))

(c) Ve:Rlz#m: fx> fm)

(d) Gz, y:RI: fx<0A0< fy = (Az=R}: f.2=0))
(e) (Vz:Z}: (3z:RI: f.x = 2))

() (Vz:RI: (A= Z1: f.x = 2))

(8) (V2:Z | even.z : (Yw:Z | odd.w : z 3 w))

(h) (Vz2:Z | even.z: Bw:Z | odd.w : z = w + 1))

9.31 Define suitable predicates and functions and then formalize the sentences
that follow.

(a) Messages sent from one process to another are received in the order sent.
(b) Broadcasts made by a process are received by all processes in the order sent.
(c) All messages are received in the same order by all.

9.32 Define suitable predicates and functions and then formalize the sentences
that follow.

(a) A student receives a grade for every course in which they registers.
(b) Registration for a course requires passing all its prerequisites.

(c) No student who has received an F in a required course graduates with hon-
ors.

9.33 Translate into predicate Logic.

Assuming that each task ¢ requires work.t seconds, the start time start.t for
a task t is the earliest time such that all prerequisite tasks in set prereq.y have
completed.

9.34 Formalize the following English sentences in predicate logic.
(a) Everybody loves somebody.
(b) Somebody loves somebody.
(c) Everybody loves everybody.
(d) Nobody loves everybody.
(e) Somebody loves nobody.

9.35 Formalize the following English sentences in predicate logic.

(a) You can fool some of the people some of the time.



EXERCISES FOR CHAPTER 9 177

(b) You can fool all the people some of the time.
(c) You can’t fool all the people all the time.
(d) You can’t fool a person all the time.

9.36 Show that the following argument is sound by translating it into the predi-
cate calculus and proving that the translation is a theorem: All men are mortal;
Socrates is a man; therefore, Socrates is mortal.



Chapter 10

Predicates and Programming

e turn to some applications of predicate logic in computing: the

formal specification of imperative programs (i.e. ones that use as-
signment statements) and the proof and development of sequences of as-
signments. Skill with predicate logic can be used to reformulate English
specifications, with all their vagueness and ambiguities, as formal specifi-
cations. Also, parts of assignments can be calculated instead of guessed.
Finally, we discuss the conditional statement and conditional expression.

10.1 Specification of programs

Recall from Sec. 1.6 that a state is a set of identifier-value pairs. Further,
the Hoare triple {Q} S {R}, where S is a program statement, @ is the
precondition, and R is the postcondition, has the interpretation

Execution of S begun in any state in which @ is true is
guaranteed to terminate, and R is true in the final state.

As a specification notation, {@} S {R} is inadequate. The notation
does not indicate which variables may be changed by S. For example,
{true} S {z = y} says that S should truthify! x = y, but it does not
say which of z and y to change. Also, the notation forces us to name a
program S (say), even though there may be no other reason to do so.

A specification of a program should give:

e aprecondition @ (say): a boolean expression that describes the initial
states for which execution of the program is being defined,

e alist x (say) of variables that may be assigned to, and

e a postcondition R (say): a boolean expression that characterizes the
final states, after execution of the program.

We formally denote such a specification by {Q} z:=? {R}.

! If you can falsify, you should be able to truthify. We coined this word because
alternatives like “establish the truth of” are long-winded and awkward.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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A specification can be non-deterministic, which means that, for some
initial state, the final state is not unambiguously determined. For example,
{true} b:=? {b? = 25} specifies a program that in any initial state stores
a value in b so that b* = 25. A program that satisfies this specification
can assign either —5 or 5 to b.

To formalize an English description of a program we have to define a
precondition and a postcondition. In so doing, we are often forced to intro-
duce restrictions that are implicit in the English specification, and we may
have to invent variables into which the results of a computation are to be
stored. For example, consider the following English specification:

Find an integer approximation to the square root of integer n.

Because of our knowledge of mathematics, we know that n cannot be neg-
ative (the output is to be an integer, not a complex number). So a necessary
part of the precondition is 0 < n. Next, the integer approximation has to
be stored in some variable; we choose d. Finally, we must precisely define
what is acceptable as an approximation; we choose the largest integer d
such that d? < n. We have derived the formal specification

{0<n}d:=7{d® <n<(d+1)?}

We develop another formal specification. Suppose we want a program
that finds the index of a value z in an array b[0..n — 1]. An informal
specification might be “Find z in b”. A more precise definition must give
conditions on b and n. Can the array segment be empty (n = 0)? How
should the index of  in b be indicated? Can we assume that z is actually
in the array segment? If not, how should its absence be indicated? Here are
four possible formal specifications. Each answers these questions in different
ways.

{zebl0.n-1]} :=? {0<i<n A z =05}

{0<n} i:=2? {(0<i<n A z=0b[t]) V
(i=nAzeb0.n-1])}

{0<n} i:=2 {(0<i<n A xebl.i-1]);A
(z=0b[f]] Vi=n)}

{0 <n} i,e:=? {{c=zebl0.n—1]) A (c=z =b[i])}

The first specification presumes that z is in b and requires the index of
z in b to be stored in i. The second does not, presume z to be in b, but
it requires that ¢ be set to n if x is not in b. The third is similar to the
second, but in addition it requires that ¢ should be set to the index of the
first occurrence of z in b. The fourth uses an extra boolean variable ¢
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to indicate whether z is in b and requires ¢ to be set only if z isin b.
Throughout, we have used z € b[0..n — 1] as an abbreviation for

(Fj10<j<n:z=>[j])

There may be many ways to formalize an English specification. It takes
experience, thought, and care to be able to do it well. Developing a clear
and rigorous (if not formal) specification is an important part of the pro-
gramming task. The more complicated the problem being tackled, the more
important are good specifications.

Some specifications use variables that are not actually implemented in
the program, usually to refer to the initial or final values of program vari-
ables. We call these rigid variables. We will use “typewriter font”, e.g. X,
for rigid variables. For example, here is a specification for an algorithm to
add 6 to x.

{z =X} z:=?{z =X+6}
This specification means that for all values X, if £ = X, then execution of
the algorithm should assign to « to truthify « = X+ 6. Here, X denotes

the initial value of z, but it can just as well be regarded as denoting a
final value, as in the following equivalent specification.

{z=X-6} z:=?{z =X}

In the following specification, rigid variable C is an array.
{e=CcA0<n} e:=2{(Vil0<i<n:ci=-C[i])}

Each element of ¢ is to be negated. Note that we allow assignments to an
array and not just to its elements. The specification allows (but does not
require) all elements of ¢ to be assigned. For example, if c[i] = 0, cfi]
need not be assigned.

10.2 Reasoning about the assignment statement

DEALING WITH PARTIAL FUNCTIONS

In Sec. 1.6, we defined the (multiple) assignment z := E by the axiom
{R[z:= E]} z:= E {R}

This definition was given under the assumption that E was total, i.e. that
E had a value in all states. Many expressions are not total; for example
10/z is defined only if x # 0, and array reference cli] is defined only if %
is within the array bounds.
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For each expression E, we define the predicate
dom.‘'E’

to be satisfied in exactly those states in which E is defined (dom.'E’
stands for domain of E). We do not show how to construct dom.‘E’, but
rely on the reader’s knowledge of expressions. For example,

dom.‘\z/y = y#0Az/y>0

We can use different definitions of dom for different purposes. For ex-
ample, when first writing a program, we assume that type tnteger con-
tains all the integers and use, for example, dom.‘c +y’ = true. Later,
when implementing the program on a particular computer whose range 2
of integers is —216 4 1..21® — 1| we may want to prove that no overflow
occurs, so we restrict the set of values accordingly and use the definition
dom.z+y = 218 <4y <26,

We can now give the more general definition of assignment:

(10.1) {dom.‘E> A R[z:=E|} z:= E {R}

That done, we often omit dom.‘E’ from preconditions when discussing the
assignment statement, in order to simplify discussions.

PrOOFS oF {Q} z:= E {R}

We claim (without proof) that R[z := E] is the weakest precondition 3
such that executing z:= FE terminates with R true. That is, another
precondition @ (say) satisfies {Q} z:= E {R} iff Q@ = Rz := E]
holds. Therefore, we have the following proof method.

(10.2) Assignment introduction: To show that z := E is an imple-
mentation of {Q} z:=? {R}, prove Q = Rz :=E].

Here are two examples of Assignment introduction. Consider the speci-
fication {x > 0} z:=? {z > 1} . We want to prove that it is implemented

2 We use i..j for integers i,j to denote the set of integers ¢,i+1,...,7.

3 This idea of the weakest precondition of a statement with respect to a post-
condition was used by Edsger W. Dijkstra (see Historical note 10.1) in developing
a formal definition of a programming language and a methodology for the for-
mal development of sequential programs. In some institutions, this methodology
has radically changed how programming is taught. It is the only methodology
we know of that has been used to develop new and important algorithms and
to better present old algorithms on a non-trivial scale. Sec. 12.6 goes into more
detail on this view of programming,.
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HISTORICAL NOTE 10.1. EDSGER W. DIJKSTRA (1930-)

The citation for Edsger W. Dijkstra’s 1972 ACM Turing Award reads, “The
working vocabulary of programmers is studded with words originated or force-
fully promulgated by E.W. Dijkstra —display, deadly embrace, semaphore,
go-to-less programming, structured programming. But his influence on pro-
gramming is more pervasive than any glossary can possibly indicate. The pre-
cious gift that this Turing Award acknowledges is Dijkstra’s style: his eloquent
insistence and practical demonstration that programs should be composed cor-
rectly, and not just debugged into correctness; and his illuminating perception
of problems at the foundations of program design. ... We have come to value
good programs in much the same way as we value good literature. And at
the center of this movement, creating and reflecting patterns no less beautiful
than useful, stands E.W. Dijkstra.”

This award was made more than two decades ago, before Dijkstra’s seminal
work on weakest preconditions and the formal development of programs [9],
his development of a propositional calculus on which our equational logic E
is based [10], and all his work on method in mathematics. Dijkstra’s influence
can be attributed to a penetrating mind; a rare intellectual honesty, which
does not allow him to compromise his principles; and a way with words that
few computer scientists can match. These factors make him appear caustic, at
times, as he says what he believes but not what we want to hear. (A colleague
once said, “Dijkstra’s right, but you don’t say those things.”).

Dijkstra loves to write —usually with a fountain pen, and never on a com-
puter. He writes letters regularly (not just business letters). His technical pa-
pers, trip reports, and essays (e.g. “Real mathematicians don’t prove” and On
the cruelty of really teaching computing science), form the “EWD” series. New
EWD'’s —there are almost 1200 EWD’s by now— are distributed several times
a year through an informal distribution tree.

A native of the Netherlands, Dijkstra has been in the CS Department at
the University of Texas at Austin since 1984. One of his pleasures is camping
in Texas parks with his wife in their Touring Machine, a Volkswagen camper.
While camping, he will walk, bike, and, of course, write. You see, the Touring
Machine is equipped with all the equipment he needs: a piece of paper and his
Mont Blanc fountain pen.

by the assignment z :=z + 1. So we prove

>0 = (z>1[z:=x+1] ,
by assuming the antecedent and proving the consequent.

(x> Dx:=c+1]

(Definition of textual substitution)
z+1>1

(Arithmetic)
z>0 —Assumption z >0

i
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Our second example occurs in an algorithm for summing the elements of
array b[0..n — 1]. Consider the predicate

P:0<i<n A z=(Zk|10<k<i:bk]) |,

which stipulates that = is the sum of the first ¢ elements of b[0..n —1].
We want to show that

(103) {PAI=i#n}z,i:=7{PANi=I+1}

is implemented by z,¢ := z+b[i],i+1 . First, however, we discuss a context
in which specification (10.3) might arise, so that the reader can gain some
appreciation for this kind of problem. It specifies the body of a loop that
accumulates the sum of the elements of b[0..n — 1]. The requirement that
i be increased by 1 ensures that each iteration of the loop makes progress
towards termination. The requirement that P be maintained (i.e. that if it
is true before the iteration it is true after) ensures that, upon termination
of the loop, x will contain the sum of the first n values of b. Specification
(10.3) is illustrative of many specifications of loop bodies.

We proceed by proving that z,i := z + b[§],i + 1 truthifies the second
conjunct of P, z=(Xk10<k <i:blk]):
PAI=i#n =
(z=(Zk10<k<i:blk])[zi:=ax+b[],i+1]

The proof assumes the antecedent and proves the consequent.

(x=(Zk10<k<i:blk])|z,i:=z+b[],i+1]
= (Textual substitution)
z+bi]|=(Ek10<k<i+1:bk|)
= (Split off term (8.23))
z+b[i)=(Tk10<k<i:blk]) + b[g]
= (Assumption P)
xz+bli] =z +b[§] —Identity of = (3.3)

Note how theorem (8.23) was used. In this instance, we want to make use
of the conjunct = (X k|10 <k <i:blk]) of P, and this is best done by
splitting off a term of the quantification.

We now prove that 0 < i <n A ¢=1I+1 is truthified, i.e. that the
following holds:

PAI=i#n = (0<i<n A i=TI+1)z,i:=z+0bl,i+1].

Again, we assume the antecedent and manipulate the consequent.
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0<i<n A i=TI+1)[z,i=z+b[i+]1]
= (Textual substitution)

0<i:+1<n Ai+1=1I+1
= (Assumption ¢ = I; Identity of A (3.39))

0<i+1<n
= (Assumption ¢ # n; Arithmetic)
0<i<n —Conjunct of assumption P

REASONING ABOUT SEQUENCES OF ASSIGNMENTS

Suppose we want to find the weakest precondition such that execution of
a sequence x:= F; y:= F of assignments will terminate with R true:

{?} z:= E; y:= F {R}

We know how to find the weakest precondition such that y:= F terminates
with R true: it is R[y:= F]. We can then find the weakest precondition
such that execution of z:= FE truthifies R[y := F]:itis Ry := Fl[z :=
E]. We illustrate this below. The left column shows the two assignments
and the postcondition; the middle column shows the calculated middle
assertion, and the rightmost column also shows the calculated precondition.

{Rly := Fl[z := E}

z:=F z=F r:=F
{Rly := F]} {Rly := F]}

y:=F y:=F y:=F

{R {R} {R}

This method can be generalized to find the weakest precondition for a
sequence of assignments in order to truthify R:

{R|zn := Ep] - [22 := Ex]z1 := E1|}
1= FEq; 9= Ey; -5 x,:= FE,

{R}

For example, let us find the weakest precondition such that execution of
t:= x; x:= y; y:= t truthifies z =X A y =Y. We have:

(=XAy=Y)y:=tz:=yt = 1]
(Textual substitution)
(z=XAt=Y)[z =yt := 1]
(Textual substitution)
(y=XAt=Y)[t:=z]
{Textual substitution)
y=XAz=Y

|

We have discovered that the sequence of assignments swaps = and y.
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10.3 Calculating parts of assignments

Consider maintaining
Pl: z=(Zk10<k<i:blk])

using an assignment ¢,x:= ¢+ 1,e, where we assume that e is unknown.
We now show how e can be calculated, instead of guessed. We want to
solve for e in

{P1} i,z:= i+ 1,e {P1}

This Hoare triple is valid exactly when Pl = Pl[i,z:= i+ 1,€], so our
task is to “solve” this boolean expression for e. We assume the antecedent
P1 and manipulate the consequent:

Plli,z:=i+1,¢]

= (Definition of P1; Textual substitution)
e=(Zk10<k<i+1:0blk])

= (Split off term (8.23))
e=(Xk10<k<i:blk])+ b

= (Assumption P1)
e =z + bfi]

Hence, we can use the expression z + b[i] for e.

Here is another example. Consider solving for e in

{P2:z=Zkli<k<n:bk])} i,z:=i—1e {P2}
To do this, we have to solve for e in P2 = P2[i,z:=i—1,¢].

P2li,xz:=i—1,¢]

= (Definition of P2 ; Textual substitution)
e=(Zkli—1<k<n:blk])

= (Split off term (8.23))
e=bli—1]+(Xk i<k <n:bk])

= (Assumption P2)
e=bli-1]+=z

Hence, we can use the expression b[i — 1] + z for e.
There is another way to view the task of finding e in
P = Pli,z:=f,¢]
where f is some expression in ¢. Note that the consequent has the same

structure or shape as the antecedent, except that where the antecedent has
variables ¢ and x the consequent has expressions. Therefore, if we can
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manipulate antecedent P until it has the necessary shape but contains
expressions where ¢ and z were, we will have identified e.

Here is an example. Consider the function F' defined by

F0O=0
Fl1=1
F(2-n)=Fn (for even n greater than 0)

F2-n+1)=Fn+F(n+1) (for odd n greater than 0).

Consider the predicate

P:C=aFn+b-F(n+1)

and suppose we want to find d and e that satisfy

{P An>0A even.n} n,a,b:=n=+2,d,e {P}

This requires solving for d and e in P A n >0 A even.n = Pln,a,b:=
n <+ 2,d,e]), which, by Shunting (3.65), we rewrite as

n>0A evenn = (P = Pln,a,b:=n-+2,d,¢])

We assume the antecedent n > 0 A even.n. To simplify the calculations
somewhat, let £ = n + 2. We manipulate P with the goal of arriving at
an expression with the same shape but with n + 2 instead of n:

P
(Definition of P)

C=a-Fn+b-F(n+1)

= (Assumption even.n,so n=2-k)
C=a-F(2:k) +b-F(2-k+1)

= (Definition of F', twice)
C=aFk+b-(Fk+F(k+1))

= (Arithmetic)
C=(a+b)-Fk+b-F(k+1)

= (Definition of k; Textual substitution)
Pln,a,b:=n-+2,a+b,b]

Hence, we have solved for d and e, and the desired assignment is n,a,b:=
n -+ 2,a+ b,b, which we can write as n,a:= n+2,a+5b.
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10.4 Conditional statements and expressions

The conditional statement, call it IF', has the following form in many
imperative programming languages:

(10.4) IF: if B then S1 else 52

where B is a boolean expression and S1 and S2 are statements. It is
executed as follows: If B is true, execute S1; otherwise execute S2.

Suppose we want execution of the conditional statement begun in a state
that satisfies predicate @ to truthify predicate R,i.e. {Q} IF {R}. What
must hold in order to guarantee that {Q} IF {R} is valid? If B is true,
then S1 is executed, so execution of S1 must truthify R; on the other
hand, if B is false, then S2 is executed, so execution of S2 must truthify
R . We can annotate IF to illustrate this and also to indicate that B can
be assumed before S1 and —B can be assumed before S2.

{Q}

if Bthen {Q A B} S1{R}
else {Q A -B} S2 {R}

{R}

Thus, we have the following.

(10.5) Proof method for IF. To prove {Q} IF {R}, it suffices to prove
{Q A B} S1 {R} and {Q A ~B} S2 {R}.

Example. To prove

{true}
if © < y then skip else z,y :==y,x
{z <y}

we prove the following, both of which are straightforward.

{true A z < y} skip {z <y}
{true A ~z <y} z,y:=y,z {z <y} 0

4 Statement skip does nothing, but very fast. In some languages, the effect
of skip is achieved by writing no statement at all, as in

if x <y then elsez,y :=y,x

Statement skip satisfies {R} skip {R}, for all predicates R.
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THE ALTERNATIVE STATEMENT

The statement if B then S1 else $2 can be written in the notation of
guarded commands as the alternative statement shown below.

if B—S1
| -B— 52
fi

A phrase of the form B — S is called a guarded command. B is the
guard at the gate — , making sure that command S is executed only when
appropriate. In the guarded command notation, an alternative statement
can be written with more than two possible choices. For example, here is
an alternative statement, called IFG , with three guarded commands.

(10.6) IFG: if B1 — S1

| B2— 52
[ B3— S3
fi

Execution of the alternative statement proceeds as follows. If none of the
guards is true, execution aborts ° . If at least one guard is true, then one
true guard is chosen and the corresponding command is executed.

There are two key points with the alternative statement.

e Execution aborts if no guard is true.

o If more than one guard is true, only one of them is chosen (arbitrar-
ily) and its corresponding command is executed.

If more than one guard can be true, the alternative statement is said
to be nondeterministic. Nondeterminism helps in writing some algorithms
more cleanly and in allowing symmetry. For example, in the program below,
it doesn’t matter which of =z and y is stored in z when z = y. With a
nondeterministic alternative statement, the programmer need not make a
choice.

fe<y—z:i=y
ly<z—z:=z

fi

{z is the maximum of = and y}

5 To abort means to terminate prematurely. When a program aborts, what
happens is undefined, although a good implementation will give an error message
and then stop execution.
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As another example, here is a program that sorts variables w,z,y,z by
repeatedly swapping their values. It would be messier to write this program
without nondeterminism.

while -(w <z <y <z)do
ifw>zr ->wz:=z,w
lz>y —»z,y:=yx
ly>z —y,z:=2y

{fw<z<y<z}

To prove {Q} IFG {R} (see (10.6)), we have to show that (i) when
execution starts, at least one guard is true and (ii) each guarded command
truthifies R.

(10.7) Proof method for IFG. To prove {Q} IFG {R}, it suffices to
prove
(a) Q = BlV B2V B3,
(b) {Q A B1} S1{R},
(¢) {Q A B2} S2 {R}, and
@) {Q A B3} S3 {R}.

This method of proof extends to alternative commands with more than
three or fewer than three guarded commands in the obvious way.

CONDITIONAL EXPRESSIONS

Analogous to the conditional statement if B then S1 else 52, we have
the conditional expression

(10.8) if B then F1 else E2

where B is a boolean expression and E1 and FE2 are expressions of the
same type (both yield integers, or booleans, etc.). Evaluation of this expres-
sion yields the value of E1 if B is true and the value of E2 otherwise.

Examples of conditional expressions. Consider a state with * = 5,
y=4, b= true, and ¢ = false. In this state, we have

(a) (if z=ythenzelsex+2)=7

(b) (f z#ythenzelsex+2)=35

(c) (ifbV cthenz -yelsex+2)=20

(d) (ifbActhenz -yelsez+2)=T7

(e) (if bthen c = belse b = ¢) = true

(f) (if cthen c V belse b A ¢) = false a
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There are two rules for manipulating the if-then-else expression:

(10.9) Axiom, Conditional: B = ((if B then F1 else E2) = E1)
(10.10) Axiom, Conditional: —B = ((if B then E1 else E2)) = E2)

Exercises for Chapter 10

10.1 Consider an array segment b[0..n —1], where 0 < n.Let j and k be two
integer variables satisfying 0 < j < k < n. By b[j..k] we mean the subarray
of b consisting of b[j], b[j + 1], ..., blk]. The segment b[j..k] is empty if
j=k+1.

Translate the following sentences into boolean expressions. For example, the first
one can be written as (Vi | j <7 < k: b{]] = 0). Some of the statements may be
ambiguous, in which case you should write down all the reasonable possibilities.
Simplify the expressions where possible. You may use abbreviations —e.g. use
zebl0.n—1] for (Fi10<i<n:z=D>bl).

(a) All elements of b[j..k] are zero.

(b) No values of b[j..k] are zero.

(c) Some values of b[j..k] are zero. (What does “some” mean?)

(d) All zeros of b[0..n — 1] are in b[j..k].
(e) Some zeros of b[0..n — 1] are in b[j..k].
(f) Those values in b[0..n — 1] that are not in b[j..k] are in b[j..k].
(g) Tt is not the case that all zeros of b[0..n — 1] are in bj..k].
(h) If b[0..n — 1] contains a zero, then so does b[j..k] .
i) If b[j..k] contains two zeros then j=1.

(j) Either b[1..5] or b[j..k] contains a zero (or both).

(k) The values of b[j..k] are in ascending order.

M) If z isin b[j..k] then 4+ 1 isin bk + 1.n —1].

(m) Segment b[j..k] contains at least two zeros.
(n) Every element of b[0..5] is less than z and every value of b[j + 1.k — 1]
exceeds x .

10.2 Define a predicate perm(b,c,n) that means: array segment b[0.n—1] is a
permutation of array segment c[0..n — 1]. (One array segment is a permutation
of another if its values can be interchanged (swapped) so the two segments are
equal. For example, (3,5,2,5) is a permutation of (2,3,5,5).

10.3 Define a predicate ascending(b,n) that means that array segment b[0..n—
1] is sorted (in ascending order).

10.4 Define the term median of an array of distinct numbers —a value such
that half are lower and half are greater than the value. (You have to make the
definition clearer for the case that the size of the set is even.)

10.5 Define the reverse of an array, e.g. the reverse of (3,2,5,5) is (5,5,2,3).
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Exercises on program specifications

10.6 Formalize the following English specifications. Be sure to introduce nec-
essary restrictions. Also, if there are ambiguities or vague parts of the English
specification, resolve them in some reasonable way (there may not be a single
answer). You may use z T y for the maximum of z and y. Note that 1 is sym-
metric and associative, so T can be used as a quantifier (see Chap. 8). However,
T over the integers has no identity, so axioms that require an identity cannot be
used with it.

(a) Calculate the sum of the elements of b[j..k —1].

(b) Find the maximum value of b[j..k —1].

(c) Find the index of a maximum value of b[j..k —1].

(d) Store in array c¢[0..n — 1] a sorted (in ascending order) permutation of
b[0..n — 1] . Use the predicate perm(b,c,n) to denote that b[0..n — 1] is a
permutation of ¢[0..n — 1] (see Exercise 10.2). You can also use predicate
ascending(b,n) of Exercise 10.3.

(e) Calculate the greatest power of 2 that is not greater than n .

(f) Count how many zeros b[0..n — 1] has.

(g) Suppose we have an array integer b[0..n—1] . Each of its subsegments b[¢..j—
1] has a sum. Find the largest such sum. Hints: For this specification, it helps
to give the sum of a segment b[..j—1] a name, say S, ; , so that the formula
for the sum does not appear everywhere.

(h) Integer array s[0..n] contains the grade of each student on a homework,
where a negative number means that no grade was handed in. All the grades
handed in turned out to be different. Find the average grade.

(i) Integer array s[0..n] contains the grade of each student on a homework,
where a negative number means that no grade was handed in. Find the
median (i.e. the number such that half the grades are lower and half higher).

(j) Consider boolean array bit[0..n — 1] as a sequence of bits. Think of it as
the binary representation of a decimal number, with bit[0] being the least
significant bit. Calculate the decimal number.

(k) Array b contains the list of students at Cornell and ¢ the list of people who
have part-time jobs in Ithaca. Both lists are alphabetically ordered. Find
the first person who is on both lists.

(1) Array b contains the list of students at Cornell and ¢ the list of people who
have part-time jobs in Ithaca. Both lists are alphabetically ordered. Make
up an alphabetical list of all people who are on both lists.

(m) Array b is sorted. Find the index of the rightmost element (i.e. the element
with the highest index) that equals z (also take care of the case that z is
not in b in a suitable fashion).

(n) Set = to true if integer array b contains a negative value.

10.7 Formalize the following specifications, some of which will require the use
of rigid variables to indicate how program variables are to be changed. Be sure
to introduce necessary restrictions on the input. Also, if there are ambiguities or
vague parts of the English specification, resolve them in any reasonable way that
comes to mind (there may not be a single answer).

(a) Double each element of integer array b.
(b) Sort integer array b.
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(¢) Find the minimum and maximum values of array b.

(d) Reverse b —e.g. change (3,2,5,5,1) into (1,5,5,2,3).

(e) Swap arrays b and c.

(f) Integer array b contains the grades of students on a homework (a negative
number means the grade was not handed in). Change John’s grade (it is
b[j]) to 80, but if it is a late grade, also subtract 10 percent.

(g) Delete duplicates from array b.

(k) Array b contains red, white, and blue numbers. Put all the red ones first,
then the blues, then the whites.

(i) Permute array b so that the elements smaller than = come first and give
the index of the last element that is smaller than x .

Exercises on the assignment statement

10.8 Calculate and simplify the weakest precondition for the following (where z
and y are integer variables):

{Y e=z4+y;y=zc—yz=z—y =X Ay=Y}

10.9 Calculate and simplify the weakest precondition for the following (where z
and y are boolean variables):

() smatyy=—s#ye=s#y (@ = X) Ay = V)
10.10 Suppose the number of apples that Mary and John have (represented by
m and j, respectively) are related by the formula (C is some constant)
P:C=m+2-j
Find a solution for e in {P A even.m} m,j:= m-+2,e {P}.
10.11 The Fibonacci numbers F.i are given by F.0 =0, F.1=1,and F.n =

F(n—1)+ F(n—2) for n > 2. For example, the first few Fibonacci numbers
are 0,1,1,2,3,5,8. The following predicate defines the variables n, a, and b:

P:n>0ANa=FnAb=F(n-1)
Find a solution for e and f in {P} n,a,b:= n+1l,e,f {P}.

Exercises on the conditional statement

10.12 Use method (10.5) to prove that the following annotated program is cor-
rect.

{z > 5}

if £ < y then skip else z,y :=y,x

{z <y}
10.13 Use method (10.5) to prove that the following annotated program is cor-
rect.

{z=Xx}
if £ < 0 then z := —z else skip
{z = abs.X}
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10.14 Use method (10.5) to prove that the following annotated program is cor-
rect.

{y>0A 2:z¥ =X}
if odd.y then z,y:=z2-z,y — 1l else ¢,y :==z-z,y/2
{y>0 A z:2¥y =X}

10.15 Some programming languages have the conditional if B then S. It is
executed as follows: if B is true, then execute S ; otherwise, do nothing. How
does one prove {Q} if B then S {R} 7 Hint: Rewrite this statement in terms of
the other statement if B then S1 else S2.



Chapter 11

A Theory of Sets

e define set theory as an extension of predicate calculus. A set is
U » simply a collection of distinct (different) elements. Examples of sets
are the set of integers, the set of brown cows, and the set of computer sci-
ence departments. A cornerstone of mathematics, the set is also an essential
ingredient of computer science and finds application in areas such as artifi-
cial intelligence, databases, and programming languages. The study of sets
leads to questions about the existence of many kinds of infinities. Thus,
while appearing simple, set theory is a rich intellectual playground.

11.1 Set comprehension and membership

We start our discussion with set enumeration and set comprehension, two
methods for describing sets. We define set comprehension in terms of testing
membership in sets. This membership test is the basis for the definition of
equality of sets, as well as for everything else we do with sets.

SET ENUMERATION AND SET COMPREHENSION

One way to describe a set is to list its elements. In the usual syntax, called
set enumeration, the list is delimited by braces { and } and its elements
are separated by commas. For example, {5,2,3} denotes the set consisting
of the elements 2, 3, and 5. And, if b and ¢ are variables, evaluation of
the expression {b,c} in a state yields a set whose elements are the values
of b and ¢ in that state.

Set enumeration has its drawbacks. Consider, for example, describing the
set of even integers between 0 and 9999 in this fashion! A more effective
means of specifying a set is set comprehension, which describes a set not
by listing its elements but by stating properties enjoyed (exclusively) by its
elements. For example, the set comprehension

{z:Z10<z<5: 2z}

denotes the set of values 2-z for all integers x that satisfy 0 < z < 5.
The integers that satisfy 0 < = < 5 are 0,1,2,3 and 4; hence, the set
comprehension above denotes the set {0,2,4,6,8} .

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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We now give the general form of set comprehension. Let R be a pred-
icate, E an expression, z a list of dummies, and ¢t a type. Evaluation
of

(11.1) {z:t| R: E}

in a state yields the set of values that result from evaluating E[z :=v] in
the state for each value v in ¢ such that R[z :=v] holds in that state. In
contexts where the type of the dummy is obvious, the type may be omitted.
If E has type t1, then the set comprehension has type set(¢1).

The notation for set comprehension is similar to that for quantification
in (8.6). As in (8.6), boolean expression R is the range and expression
E is the body. The notions of scope, free variable, and bound variable
apply to set comprehension, without change. Finally, the dummies may
have different types, just as in a quantification.

We can define a set enumeration {ep,...,e,—1} to be an abbreviation
of a set comprehension:

(11.2) {eg,...,en-1} = {zlz=€ V- VT =¢€p_1:71}

In the following examples of set comprehension, the dummies range over
the integers.

{i10<i<4:4} The set {1,2,3}

{i10<i<50A even.:i} Even positive integers less than 50
{i10<21<50:2-3} Even positive integers less than 50
{z,y11<2z<2<y<3:z¥} Theset {12,13,22 2%}
{z10<z<3:2-y} The set {0-y,1-y,2-y}
{z10<z<0:2-y} The empty set {}

The second and third examples denote the same set. The fourth example
shows two dummies in one set comprehension. The fifth illustrates the use
of a free variable in a set comprehension; the value of the expression depends
on the value of y in the state in which the expression is evaluated.

THE UNIVERSE

A theory of sets concerns sets constructed from some collection of elements.
There is a theory of sets of integers, a theory of sets of characters, a theory
of sets of sets of integers, and so forth. This collection of elements is called
the domain of discourse or the universe of values; it is denoted by U . The
universe can be thought of as the type of every set variable in the theory.
For example, if the universe is set(Z), then v:set(Z).

When several set theories are being used at the same time, there is a
different universe for each. The name U is then overloaded, and we have
to distinguish which universe is intended in each case. This overloading is
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similar to using the constant 1 as a denotation of an integer, a real, the
identity matrix, and even (in some texts, alas) the boolean true.

SET MEMBERSHIP AND EQUALITY

For an expression e and a set-valued expression! S,
ecS

is an expression whose value is the value of the statement “e is a member
of §”,or “e isin §”. The expression —(e€.S) may be abbreviated by
e ¢S . For example, 2¢€{1,2,4} is true and 3¢{1,2,4} is true. Symbol
€ is treated as a conjunctional operator and has the same precedence as
the sign = for equality —see the precedence table on the inside front cover.

Set comprehension is formalized by defining membership in the set it
denotes. For expression F:t and set {z | R: E:t} (for some type t), we
define:

(11.3) Axiom, Set membership: Provided —occurs(‘z’,‘F’),
Fe{z|R:E} = (3z|R:F=E) .

Two sets are equal if they contain the same elements. Thus, for sets S
and T we have the following axiom. 2

(11.4) Axiom, Extensionality: S=T7T = (Vzl:zeS = zeT)

Several consequences follow from the definition of set comprehension, set
membership and the abbreviation {eg,...,en,—1} for {z lz =€ V ... V
T=€n_1:T}:

o {z | false : E} and { } denote the empty set, i.e. the set with no
elements. Exercise 11.4 asks you to prove formally that e € {z | false :
E} = false for all e and E. The empty set is also denoted by 0.
Note that the set {{ }} contains one element: the set { }.

e The expressions {z | x = e : z} (where z does not occur free in
e) and {e} yield a singleton set, which has one element, the value
of e. Note that e yields a value, while {e} yields a set containing
that value. The expression ee€ {e} is always true; e = {e} is not
even an expression since the LHS and RHS have different types (¢
and set(t) for some type t).

1 See Table 11.1 on page 200 for type restrictions on set-theory expressions.

2 An extensional definition of set equality depends only on the contents of
the sets. An intentional definition would concern how the sets are defined or
constructed. For example, was the element 0 added to the set before or after the
element 27
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e Since V is symmetric, the order of elements in a set enumeration
is irrelevant. For example, {1,3} = {zlz=1Vvx=3:z} =
{zlz=3Vvz=1:2}={31}.

e Since V is idempotent, repetition of elements in a set enumeration
has no significance. For example, {1,3} = {1,1,3}. Duplicates may
arise when expressions are used to designate elements. For example,
evaluation of {b,c} in a state in which b # ¢ yields a set with two
elements, while its evaluation in a state in which b = ¢ yields a set
with one element.

e Sets may be elements of other sets. As an example from sports, major
league baseball in the U.S. consists of a set of two leagues; each league
is a set of two subdivisions, the East and the West; each subdivision
is a set of teams; and each team is a set of players.

e Sets may be heterogeneous, i.e. they may contain different kinds of
elements. For example, the set {{1, “B”},{2,3}, “A”} has as its el-
ements two sets and the character A. The universe for such a set
consists of the integers together with the characters.

Although Leibniz (1.5) can be used to show equality of sets, sometimes
axiom Extensionality (11.4) works better. If we can show that an arbitrary
element is in S exactly when it is in T, then (11.4) allows us to conclude
that S = T . We now use the second method to prove the (obvious) theorem

(11.5) S={zlzeS:z}

According to axiom Extensionality (11.4), it suffices to prove that ve S =
ve{z |z S :z}, for arbitrary v. We have,

ve{zlzeS:x}

= (Definition of membership (11.3))
BzlzeS:v=2x)

= (Trading (9.19), twice)
Bzlz=v:zel)

= (One-point rule (8.14))
vesS

THE TRADITIONAL FORM OF SET COMPREHENSION

The traditional mathematical notation for set comprehension is
{z | R}

(z is a single variable), which we view as an abbreviation of {z | R: z}.
For example,
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{i10<i<4} is the set {1,2,3}, and
{i10<i<50 A even.i} is all even positive integers less than 50.

The notation {z | R} is often extended to allow expressions in place
of dummy z. Thus, the set of even integers in the range 0..99 could be
written as {2:z | 0 < z < 100} . We do not use this extension, because it
is ambiguous: it is impossible to tell which variable(s) is the dummy. For
example, the value of the expression

{z+ylz=y+1}

depends critically on what the dummies are:

If z is the dummy, then the set is {2:y+ 1};
If y is the dummy, then the set is {2:2 — 1};
If £ and y are the dummies, then it is the set of odd integers.

Actually, the traditional form of set comprehension is sufficient to de-
scribe any set that can be described using our more general form (11.1), as
the following theorem shows:

(11.6) Provided —occurs(‘y’,‘'R’) and —occurs(‘y’,‘'E’),
{zIR:E} = {yl 3z | R:y=E)}

We introduced the new notation for set comprehension because it is
unambiguous, more suitable for expressing some sets, and more amenable
to formal manipulation. Also, we can carry over the definitions of scope,
free variables, and bound variables from our notation for quantification.
However, we do use the conventional notation when it is more appropriate.

SETS VERSUS PREDICATES

Theorem (11.7) formalizes the connection between sets and predicates: a
predicate is a representation for the set of argument-values for which it is
true .

(11.7) =ze{z| R} = R

Note that x is used with two different meanings in the LHS of (11.7).
The leftmost occurrence of z is free, as are free occurrences of = in the
RHS. All occurrences of z in {z | R} are bound. Since (11.7) is valid, by
instantiating free variable x with any expression y wehave ye{z | R} =
R[z := y] for any expression y.
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Theorem (11.7) can be stated as the following principle.

(11.8) Principle of comprehension. To each predicate R there corre-
sponds a set comprehension {z:¢ | R}, which contains the objects
in t that satisfy R; R is called a characteristic predicate of the
set.

Theorem (11.7) tells us that we can define a set not only by using set
comprehension but also by giving its characteristic predicate. For example,
the following definitions of the set S = {3,5} are equivalent:

S={zlz=3Vz=5}
zeS = z=3Vvz=5 (for all z).

Henceforth, we use both forms interchangeably, without explicit mention,
relying on the more suitable one in each context.

Using (11.7), we can easily prove the following theorems:
(11.9) {z1Q}={z IR} = (Vz|I:Q=R)

(11.10) Theorem. {z | Q}={z | R} isvalid if @ =R is valid.

Theorem (11.10) gives us a new method of proving equality of sets: show
that their characteristic predicates are equivalent. We now have three gen-
eral methods for proving set equality:

(11.11) Methods for proving set equality S =T
(a) Use Leibniz directly.
(b) Use axiom Extensionality (11.4) and prove veS = veT
for an arbitrary value v.
(¢) Prove @ = R and conclude {z | Q} ={z | R}.

TABLE 11.1. TYPES OF SET EXPRESSIONS IN THEORY set(t)

Expression Example (with types) Type of result
Empty set, universe, variable @ or U or S set(t)
Set enumeration {e1:t,...,en:t} set(t)
Set comprehension {z | R:B: E:t} set(t)
{z:t | R:B} set(t)
Set membership xz:t € S:set(t) B
Set equality S:set(t) = T:set(t) B
Set size # S:set(t) N
c,>,C,D S:set(t) C T:set(t) B
Complement ~ S:set(t) set(t)
u, n, — S:set(t) U T:set(t) set(t)

Power set (P S):set(t) set(set(t))
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11.2 Operations on sets

We define some useful operations on sets. Table 11.1 contains information
concerning the types of set expressions and the table on the inside front
cover defines the precedences of operations.

Throughout this chapter, variables S,T,U,V have type set(t) for some
type t. With this convention, we do not have to state their types each time
they are used. This convention also allows us to write most axioms and
theorems without quantification. For example, the definition of cardinality
(11.12) given below could be written as

(VS:set(t): #S = (Ez lzeS:1))

However, Metatheorem (9.16) on page 162 allows us to eliminate the quan-
tification and write simply #S = (X2 | €S :1). But in this expression,
it is necessary to remember that S has a particular type and that it cannot
be replaced by expressions of other types.

CARDINALITY OF FINITE SETS

The cardinality or size of a finite set S, denoted by #S , is the number of
elements in S . It can be defined as follows: 3

(11.12) Axiom, Size: #S = (Xz1z€S:1)

SUBSET AND SUPERSET

Set S is a subset of set T if every element of S is an element of
T . This is depicted in the Venn diagram in this paragraph. With
the convention that a circle surrounds the elements of a set, the
circle for set S is drawn inside the circle for set T to indicate
that every element of S is also an element of T, i.e. S is a subset of T .

S is a proper subset of T if it is a subset of T" and S # T holds.
Predicates S CT and S C T denote subset and proper subset:

(11.13) Axiom, Subset: SCT = (VzlzeS:zeT)
(11.14) Axiom, Proper subset: SCT = SCT A S#T

Set T is a superset of (proper superset of) S if S is a subset of (proper
subset of) T . Operators 2 and D denote superset and proper superset.

3 The notation |S| is sometimes used for #S .
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(11.15) Axiom, Superset: T2 S = SCT
(11.16) Axiom, Proper superset: T>S = SCT
Operators C, C, D, and O are conjunctional and have the same prece-

dence as =. As with all conjunctional operators, a superimposed slash
denotes negation. For example, S € T means ~(S CT).

COMPLEMENT
i The complement of S, written ~ S ,%is the set of elements that
I are not in S (but are in the universe). In the Venn diagram

in this paragraph, we have shown set S and universe U. The
non-filled area represents ~ S .

(11.17) Axiom, Complement: ve~S = veU Avgs

For example, for U = {0,1,2,3,4,5}, we have
~{3,5} = {0,1,2,4} ,
We can easily prove

(11.18) ve ~8§ = v¢gS (for v in U).
(11.19) ~~8=S8
SET UNION, INTERSECTION, AND DIFFERENCE

The three operations union, intersection, and difference are used to con-
struct a set from two other sets. The union of sets S and T, written

4 8€ and S are also used to denote set complement.

FIGURE 11.1. VENN DI1AGRAMS FOR UNION, INTERSECTION, AND DIFFER-
ENCE

i
Q)

SuT sSNnT §-T
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S UT, is the set of all elements that are in S or T' (or both). The inter-
section of S and T, written S N T, is the set of all elements that are in
both S and T . The difference of S and T is the set of elements that are
in S and not in T . Operators U, N, and — have the same precedence.
These operators are depicted using Venn diagrams in Fig. 11.1; S and T
are the circles, and the shaded portion is the operator applied to S and
T.

Formally, these three operations are defined as follows.

(11.20) Axiom, Union: veSUT = veSVveTl
(11.21) Axiom, Intersection: ve SNT = veS AveT
(11.22) Axiom, Difference: veS—-T = veS AveT

Examples of U, N, and —

{3,5,6} U {3,2,1} = {3,5,6,2,1} ,
{3,5,6} N {3,2,1} = {3} ,
{3,5,6} — {3,2,1} = {5,6} . O

From definition (11.17) of set complement, we see that the complement
of S is the difference of the universe and §: ~S=U-§.

Sets S and T are disjoint if they have no elements in common, i.e. if
SNT=0.
POWER SET

The power set of a set S, denoted by PS, is the set of subsets of S:°
(11.23) Axiom, Power set: vePS = vCS
For example, P{3,5} = {0,{3},{5},{3,5} }.

11.3 Theorems concerning set operations

RELATING SET AND BOOLEAN EXPRESSIONS
The definitions of the set operators reveal a connection between the set

operators and the propositional operators. For example, in the definition
of U (repeated below), as the phrase “v €” of the LHS is distributed

5 25 ig also used to denote the power set of S.
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inward to the operands S and T of the RHS, U becomes V:
veSUT = veS V veT

This connection suggests that properties of propositional operators may
be reflected in similar properties of set operators. The two pairs of valid
relations below reinforce this conjecture. The first pair indicates how law
of Absorption (3.43a) becomes an absorption law for sets. The second pair
indicates how Zero of A (3.40) becomes a zero law for N.

|

SASVT) =S8 (S,T:B)
SNEuUT) =S8 (S,T:set(t))

S A false = false (S:B)
SNo=0 (S:set(t) ).

To arrive at the formal description of the connection between set expres-
sions and boolean expressions, we need the following definition.

(11.24) Definition. Let E; be a set expression constructed from set vari-
ables, §, U (a universe for all set variables in question), ~ , U,
and N. Then E, is the expression constructed from FE; by re-

placing
0 with false, U with true,
U with V, N with A,

~ with -.
The construction is reversible: E; can be constructed from FE, .
Then we have the following Metatheorem (11.25).

(11.25) Metatheorem. For any set expressions E; and F:
(a) Es=F; isvalid iff E, = F, is valid,
(b) E; C Fy is valid iff E, = F}, is valid,
(¢) Es;=1U isvalid iff E, is valid.

The proof of this metatheorem, which relies on mathematical induction, is
relatively lengthy and would detract from our main task here, which is to
survey theorems concerning set operators. Therefore, the proof is presented
in Exercises 12.47-12.52 of Chap. 12.

Use of the metatheorem reduces tremendously the work needed to prove
validity of various set expressions. Note that the metatheorem does not
mention expressions that contain = and = . However, any such expression
is equivalent to one that contains only —, A, and V, since = and =
can be replaced using Mutual implication (3.80) and Implication (3.59),
p = q = —pV q. Therefore, any boolean expression is equivalent to some
expression F, for which E, can be constructed. Going the other way,
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set difference can be eliminated from a set expression using the identity
S—-T =85Sn~T.

PROPERTIES OF SET OPERATORS

We give some theorems concerning set operators. All the theorems concern-
ing union and intersection given below are proved directly using Metathe-
orem (11.25). Therefore, they are given the same names as their proposi-
tional counterparts. There is no need to memorize these theorems, for you
can construct them using Metatheorem (11.25) whenever necessary.

Basic properties of U

( ) Symmetry of U: SUT =TUS

( ) Associativity of U: (SUT)UU = SU (TTUU)
( ) Idempotency of U: SUS = S

(11.29) Zeroof U: SUU = U

( ) Identity of U: SUD = S

( ) Weakening: SCSUT

( ) Excluded middle: S U~S=U

Basic properties of N

(11.33) Symmetry of N: SNT =TnN S

(11.34) Associativity of N: (SNT)NU = SN (T nNnU)
(11.35) Idempotency of N: SN S = S

(11.36) Zeroof N: SNP =0

(11.37) Identity of N: SNU = S

(11.38) Strengthening: SNTCS

(11.39) Contradiction: SN ~S =40

Basic properties of combinations of U and N

(11.40) Distributivity of U over N:
SU(TnU)=EluT)yn(SUl)

(11.41) Distributivity N over U:
SNTUU) =(SNT)U(SNU)
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Basic properties of combinations of U and N (cont.)

(11.42) De Morgan: (a) ~(SUT) = ~SN~T
(b) ~(SNT) = ~SU~T

Some other theorems concerning U and N are given below. They can
be proved directly using predicate logic and set theory.

Additional properties of U and N

(1143) SCTAUCV = (SulU)c(TuV)
(11.44) SCTAUCV = (SNU)C(TnV)
(1145) SCT = SUT=T
(1146) SCT = SNT=S

(11.47) SUT=U = (VzlzeU:z¢S = z€T)
(11.48) SNT=0 = (Vzl:zeS = z¢T)

The following theorems concerning set difference can be proved using
predicate calculus and set theory. However, Metatheorem (11.25) can be
used to advantage if set difference is replaced using Difference (11.22).

Properties of set difference

(1149) S—T=8N~T

(11.50) S—-TCS

(11.51) S-0=S

(1152) SN(T-S) =0

(1153) SU(T-8) =SUT

(11.54) S—(TUU) = (S-T)n (S-0)
(1155) S—(T'NU) = (S-T)u (S-0)

We turn to theorems concerning subset and superset. Some of these can-
not be proved easily using Metatheorem (11.25), so we use predicate logic
and set theory directly. Note the relation between C and = . In any given
state, one set is a subset of another iff the characteristic predicate for the
one implies the characteristic predicate for the other:
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Implication versus subset

(11.56) (VzI: P = Q) = {z 1 P}C{z1Q}

Here is a proof of (11.56).

{z1P}C{z1Q}
= (Subset C (11.13), where —occurs(‘v’, P,Q’))
(M lve{z| P}:ve{z1Q})
= ((11.7), twice)
(Mv | Plz :=v]: Qlx :=v])
=  (Trading (9.2); Dummy renaming (8.21))
(Vz|: Plz :=v][v:=1z] = Qlz :=v][v:=z])
=  (Property of textual substitution, —occurs(‘v’,‘P,Q’))
Vzl: P = Q)

We list below some properties of C and C. Properties (11.61) and
(11.62) can be viewed as alternative definitions for C that make clearer
the fact that S satisfying S C T is strictly smaller than T .

Properties of subset

( ) Antisymmetry: SCTATCS = S=T
( ) Reflexivity: SC S

(11.59) Tramsitivity: SCTATCU = SCU

(11.60) 0 C S

( ) ScCT SCT AN =(TCS)

( ) SCT A (JzlzeT:z¢8)
(1163) SCT = SCT VvV §=T

(11.64) S¢ S
(

(

(

(

(

(

SscT

11.65) SCT = SCT

11.66) SCT = T¢S

1167) SCT = T¢S

11.68) SCTAUCT) = -(UCS)

11.69) (FxlzeS:z¢T) = S#T

11.70) Transitivity: (a) SCTATCU = ScCU
(b) SCTATCU = ScU
(¢) SCTATCU = ScCU
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Transitivity theorems (11.70) can be proved using (11.68) and {11.69). The
proof of (11.68) shows a nice use of instantiation (9.13):

SCTA-UCT)

= (Subset C (11.13); Generalized De Morgan (9.18c))
SCTA@BzlzeU:2¢T)

= (Distributivity of A over 3, (9.21))
(FzlzeU:2¢T ANSCT)

= (Subset C (11.13); Trading (9.2))
(FzlzeU:zeT A (Vyl:yeS = yeT))

= (Monotonicity of 3 (9.27), using Instantiation (9.13))
(FzlzeU:2¢T A (zeS = zeT))

= (Contrapositive (3.61))
(FzlzeU:z¢T A (z¢T = z2¢5))

= ((366), pA(p=q) =pAg)
(FzlzeU:zeT Nzxeb)

= (Monotonicity (9.27), using (3.76), p A ¢ = p)
(FzlzeU:x¢8)

= (Generalized De Morgan (9.18¢); Subset C (11.13))
(U C8)

We state three properties of the power set operation. The first property
says that the power set of the empty set is a singleton set whose sole
element is the empty set. The second property says that S is a member
of its power set. The proof of (11.73) requires mathematical induction and
must therefore await Chap. 12 —see Exercise 12.15.

Theorems concerning power set P
(11.71) PO = {0}
(11.72) SePS
(11.73) #(PS) = 2#5 (for finite set S)

11.4 Union and intersection of families of sets

Union and intersection are symmetric, associative, and idempotent and
have identities. Therefore, each is a binary operator * for which the nota-
tion (xz | R: E) is defined, as discussed in Sec. 8.2. Thus, we can use the
expressions

(11.74) (Uz | R: E)
(11.75) (Nz | R: E)
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to denote the union and intersection, respectively, of the sets E[x := v] for
values v that satisfy Rz :=v].

For example,
(Uilo<i<n:{5,6,7Y})
denotes the set of values 5, 6%, 7¢ for i satisfying 0 <i < n.

One reason for choosing a particular definition or notation is that it
extends easily to other contexts. In this regard, our notation for quan-
tification in Sec. 8.3 was well chosen, for it has allowed immediate use of
quantification for the union and intersection of families of sets.

Note that (11.74) and (11.75) satisty the general axioms of quantification
(8.13)~(8.21): Empty range, One-point, Distributivity, Range split, Inter-
change of dummies, Nesting, and Dummy renaming. In addition, because
of the definitions of U and N in terms of V and A , other properties of
(Uz | R:E) and (Nz | R: E) can be derived from the properties of
(3z I R:E) and (Vz | R: E). We leave this task to the reader.

A set S of sets is called a partition of another set T if every element
of T is in exactly one of the elements of S. We can state this in another
way. Set S partitions T if (i) the sets in S are pairwise disjoint and (ii)
the union of the sets in S is T, i.e. if

(11.76) Partition: (Vu,vlueS AveSAu£v:unNuv=0) A
(VulueS:u)=T

11.5 The axiom of choice

Given a bag of candy, you can reach in and pick out a piece. In the same
way, we would expect to be able to choose some arbitrary element from a
nonempty set. We postulate the ability to do so in the following axiom.

(11.77) Axiom of Choice: For t a type, there exists a function
f:set(t) — t such that for any nonempty set S, f.S€8S.

Thus, f chooses an element from S'; it is our formalization of the hand
that picks out a piece from a bag of candy.

A more general version of the Axiom of Choice was first formulated by
Ernst Zermelo at the beginning of the 20th century. We have stated a simple
version only to convey the general idea. Note that the axiom merely states
the existence of a choice function; it does not say how to obtain one. The
Axiom of Choice seems so obvious that it is often used without mention.
However, whether it could be proved from the rest of set theory or had to
be postulated turned out to be a central problem of modern mathematics,
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and it has still not been solved completely. (The problem is with infinite
sets, not finite sets.)

When we use the Axiom of Choice, we will point it out. For example, it
is used in Chap. 12 to justify a characterization of mathematical induction
(see page 231).

11.6 Ill-defined sets and paradoxes

In Sec. 3.3, we proved —P # P, for all predicates P . Therefore, if we
could prove -P =P fora partlcular predicate P, we could also prove

(—\If’ifj) = (—vPEP) ,

which is false . An inconsistency would have been introduced. Our use of
(syntactic) types to restrict expressions ensures that there are no incon-
sistencies in set theory. However, in an untyped theory of sets, some set
comprehensions lead to inconsistencies and have to be prohibited.

For example, suppose our theory of sets is untyped. Consider the set S
of all sets that do not contain themselves as elements, which we define by

(11.78) zeS = z¢x (for all sets ).
Direct substitution of set S for z in (11.78) yields
SeS = S5¢8

which is false. An inconsistency arose by introducing the set comprehen-
sion S = {z | z¢x}. We conclude that S is not well defined and refuse
to allow it or consider it to denote a set.

This paradoxical set was discovered in 1901 by Bertrand Russell (and
independently by Ernst Zermelo), some 25 years after the first publica-
tion of a theory of sets by Georg Cantor —see Historical notes 20.1 on
page 464 and 11.1 on page 212). Other paradoxes had been known before,
but had not been associated with the foundations of mathematics. The
oldest paradox, according to Bertrand Russell, was proposed by a Cretan
named Epimenides. Epimenides said (in Greek, we think), “All Cretans are
liars, and all statements made by Cretans are lies”, and then asked whether
this statement was true or false. A similar popular paradox concerns the
barber who cuts the hair of all people in his small village except those who
cut their own: does he cut his own hair? A third paradox asks whether the
following statement is true or false:

This statement is false.
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The common characteristic of all such paradoxes is self-reference or self-
reflectiveness. Something is defined in terms of itself. To eliminate this kind
of paradox, it suffices to ban the use of such self-reference. However, if we
are not careful in stating the restriction, we may end up banning useful
definitions.

Rather than patch the theory of sets by banning contradictions, perhaps
we could develop a new theory that, by construction, would not allow the
contradictions in the first place. Such a theory (of types) was proposed
by Russell in 1901 [33]. In essence, Russell restricted what he would call
a set by defining a hierarchy of all possible sets. At the lowest level are
the elements that are not sets —the “individuals”, like the integers. At the
second level are the sets whose elements are in the lowest level. And so on.
A set on any level can have as its members only elements from lower levels.
Therefore z ez is false: a set x cannot have itself as a member because
its members come from lower levels.

Our syntactic type restrictions on expressions serve the same purpose.
According to Table 11.1, ec {z | R: E} is an expression only if ¢ and E
have the same type t (say). And, as long as ¢ cannot contain elements of
type set(t), self-reference is prohibited.

11.7 Bags

The elements of a set are distinct. In some situations, we need to deal with
collections of elements in which duplicates have significance. For example,
when dealing with the collection of names of people in New York City,
duplicate names abound, and if we are interested in population counts, we
had better not maintain the names as a set. In this situation, the set is not
the proper mathematical abstraction to use.

A collection of elements in which an element may occur any (finite)
number of times is called a bag.® Bag comprehension and enumeration
have the same forms as set comprehension and enumeration, except that
we use delimiters { and [ instead of { and }. For example, the bag
consisting of the elements 3, 3, and 6 is written as {3,3,6[ .

The following examples illustrate the difference between bags and sets.

(NI —2<2<2:2%} = {4,1,0,1,4)
{z:N| —2<2<2:2?} = {4,1,0}

We define the bag as we did the set, by defining operations on bag-

5 A bag is also called a multiset.
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HISTORICAL NOTE 11.1. BERTRAND A.W. RUSSELL (1872-1970)

Russell maintained that the whole of pure mathematics could be rigorously
deduced from a small number of axioms. In the famous three-volume work
Principia Mathematica (1910-1913), he and Whitehead went a long way to-
wards showing how this could be done. But Russell was much more than a
mathematician; he made fundamental contributions in philosophy and also
wrote extensively about education, society, and politics. He wrote a number
of popular books as well, for example The A.B.C. of Atoms (1923) and On
Education (1926). He and his (second of four) wives ran a school for young
children for five years.

Russell became a Fellow of the Royal Society in 1908, received the Order of
Merit in 1949, and won the Nobel prize for literature in 1950.

Russell belongs to a famous English family of dukes and earls, who trace
their ancestry back to the fifteenth century. His grandfather, John Russell,
was the first earl in the family (Bertrand was the third) and served twice as
prime minister of England. In spite of this background and his enormous con-
tributions, Russell was a controversial figure. At the outbreak of World War
I, he was fined for writing a leaflet criticizing the sentencing of conscientious
objectors. During the War, he was offered a post at Harvard but was refused
a passport. And, in 1918, he spent six months in prison for writing a paci-
fist article (in prison, he wrote An Introduction to Mathematical Philosophy).
Beginning in 1938, he spent several years in the U.S., teaching at various uni-
versities. In 1940, his appointment to teach philosophy at the College of the
City of New York was canceled because of his views on morality.

comprehension. Three operations are considered primitive: a test of mem-
bership of a value v in a finite bag B, v e B; the number of elements in
B (if finite), #B; and the number of occurrences of v in a finite bag B,
v # B. They are defined as follows.
(11.79) Axiom, Membership: ve{z | R: E} = (x| R:v=1F)
(11.80) Axiom, Size: #{z | R: E[} = (Xz | R:1)
(11.81) Axiom, Number of occurrences:

v#{z | R:E[} = (ExzIRANv=F:1)

Based on these primitive operations, we define equality of bags, subbag,
and proper subbag. Infix operator |, used below; is the minimum of its
two operands.

(11.82) Axiom, Bag equality: B=C = (Wwlv#B=v#C()
(11.83) Axiom, Subbag: BCC = (Vvl:v# B <v#C(C)

(11.84) Axiom, Proper subbag: BCC = BCC AN B#C
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Finally, we define the union, intersection, and difference of bags.

(11.85) Axiom, Union: BUC = {v,i |0<i<v#B+v#C:vf}
(11.86) Axiom, Intersection:
BNC = {v,il0<i<v#B|lv#(C:v}
(11.87) Axiom, Difference:
B-C = {v,il0<i<v#B-v#C:vf}

We refrain from listing the many properties of the bag operations, under
the assumption that the reader can derive them when necessary.

Exercises for Chapter 11

11.1 Define the following sets using set comprehension or one of its abbrevia-
tions.

(a) The set of nonnegative integers that are less than 4.

(b) The set of positive integers that are divisible by 3 and less than 7.

(c) The set of letters in the first author’s last name.

(d) The names of the two parts of the Congress of the U.S.A.

(e) The set of odd integers.

(f) The set of prime numbers between 10 and 30. You may use prime.i as a
boolean function that yields the value of “i is a prime”.

(g) The set of squares between 0 and 50.

(h) All powers of 2.

11.2 Give English-sentence descriptions of the following sets. The type of all
dummies is Z .
(a) {z10< 2z A even.z}.
(b) {z10<z:2%x}.
(c) {z10<z A (Fylz=3-y)}.
d) {z10<z:3-x}.
(e) {z1 (Fz,yl0<xzAN2<y<3:z=2")}.
@) {z,y10<2zA2<y<3: 2%},

11.3 Prove {b,b} = {b}, using the set-enumeration definition of the abbrevia-
tion of set comprehension on page 196.

11.4 Prove formally, using Set membership (11.3), that e {z | false : E} =
false holds.

11.5 Prove {} = {z | false}.

11.6 Using the facts that {b} and {b,c} are abbreviations for {z | z = b: z}
and {zlz=bVzx=c:z},prove ve{b} = v=">b and ve{bec} = v=
bvuv=c.

11.7 Use the results of Exercise 11.6 to prove the following four theorems. You
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can prove them in the order given, or you can prove the last one first and use it
to prove the first three.

(a) {b} ={c} = b=c,

(b) {b} ={c,d} = b=c=d,

(c) {b,c} ={be} = c=e,

(d) {b,c}={d,e} = (b=dAc=e)V(b=eAc=4d).

11.8 Prove (11.6), {x | R: E} = {y1(3z | R:y = E)} (under the condition
-occurs(‘y’, ‘R, E’) ).

11.9 Prove (11.7), z e {z | R} R.
11.10 Prove (11.9), {z 1 Q}={z I R} = (VzI:Q=R).
11.11 Prove (11.10), that {z | Q} = {z | R} is valid iff Q@ = R is valid.

Exercises on the set operators

11.12 Prove the following theorems concerning union and intersection.

(a) Theorem (11.43), SCT AUCV = (SUU)C (T U V). To prove this
theorem, you may use the theorem of Exercise 4.4.

(b) Theorem (11.44), SCT AU CV = (SNU) C(T N V). To prove this
theorem, you may use the theorem of Exercise 4.5.

(c) Theorem (11.45), SCT = SUT=T.

(d) Theorem (11.46), SCT = SNT=S.

(e) Theorem (11.47), SUT=U = (VzlzeU:2¢8 = zT).

(f) Theorem (11.48), SNT =0 = (VzlzecU:ze8 = z¢T).

11.13 Prove the following theorems concerning set difference. Where possible,
make use of Metatheorem (11.25).

(a) Theorem (11.49), S—~T=SnN~T.

(b) Theorem (11.50), S—T C S.

(¢) Theorem (11.51), S—0=S.

(d) Theorem (11.52), SN (T —-S) = 0.

(e) Theorem (11.53), SU (T —-8) = SUT.

(f) Theorem (11.54), S— (T U U) = (S-T) N (S-U).
(g) Theorem (11.55), S— (T NU) = (S-T)U (S-U).

11.14 Prove #{z | P} = (Xz | P:1).
11.15 Prove (11.69), Bz lzeS:z¢T) = S#T.

11.16 Prove the following theorems concerning C and C.
(a) Antisymmetry of subset, (11.57), SCT ATCS =
(b) Reflexivity of subset (11.58), S C S.

(c) Transitivity of subset (11.59), SCT AT CU = SCU.

(d) (11.60), pC S.
(e) (11.61), SCT
(f) 11.62), ScT
(g) (11.63), SCT
(h) (11.64), S¢ S.

S=T.

SCT AN ~(TCS).
SCT AN BzlzeT:z¢S).
ScT v §=T.
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(i) (11.65), SCT = SCT.
() (11.66), SCT = T ZS.
(k) (11.67), SCT = T¢S.
1) (11.70a), SCTATCU = ScU.
(m) (11.70b), SCTATCU = ScU.
(n) 11.70c), SCT ATCU = ScCU.

11.17 Prove (11.71), PO = {0}.

11.18 Prove (11.72), SePS.
11.19 Prove S=~T = SUT=U A SNT=40.



Chapter 12

Mathematical Induction

he set N of natural numbers {0,1,2,...} is infinite. Proving prop-
T erties of such an infinite set often requires a technique that is of fun-
damental importance in mathematics and computer science: mathematical
induction. We explore this technique in this chapter. We also investigate
induction over sets other than N. We show how properties of an induc-
tively defined function can be proved using induction, and we show how a
loop can be analyzed using induction.

12.1 Induction over the natural numbers

Consider the following boolean expression, which we view as a boolean
function P(n:N) of its free variable n .

(121) Pn: (Zill1<i<n:2:-i—1) = n?
For example, for n equal to 2 and 3, respectively, it states 1 4+ 3 = 22
and 1+3+5=32.

We can prove (Vn:N | 0 < n: Pn) as follows. First prove P.0. Then
prove that for all n >0, if P.0,...,P(n—1) hold, then so does P.n:
(12.2) (VmN|O0<n:POAPLA---AP(n—1) = Pn)

Having proved P.0 and (12.2), we claim that P.n holds for all natural

numbers 7. This is because in principle —given enough time and space—

we can now prove P.N for any given N by proving, in turn, P.1, P.2,
., and finally P.N:

e From P.0 and P.0 = P.1 (which is (12.2) instantiated with n := 1),
by Modus ponens (3.77) we conclude P.1.

e From PO A P.1 and P.OA P11 = P.2 (which is (12.2) instantiated
with n:=2), by Modus poneuns (3.77) we conclude P.2.

e From POA --- A P(N—-1) and POA --- A P(N-1) = PN
(which is (12.2) instantiated with n := N ) by Modus ponens (3.77)
we conclude P.N .

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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Of course, we do not really have to prove P.N in this fashion; it suffices
to know that in principle we can do so. The proofs of P.0 and (12.2) are
all we need to conclude that P.n holds for all natural numbers.

The technique just described for proving P.n for all natural numbers n
is called mathematical induction over the natural numbers. It can be used
to prove many properties, and not just the particular one defined in (12.1).
The technique is formalized as a single axiom in the predicate calculus as
follows, where P:N — B.

(12.3) Axiom, Mathematical Induction over N:
(Vn:N|: (Vi1 0<i<n:Pi) = Pn) = (Vn:N|: Pn).

The consequent of (12.3) trivially implies the antecedent. Hence, by mu-
tual implication (3.80), we can rewrite (12.3) as follows.

(12.4) Mathematical Induction over N:
(V:NI: (Vi1 0<i<n:Pi) = Pn) = (Yn:N|: Pn).

Whether we use (12.3) or (12.4) depends on our purpose. For proving
universal quantifications by induction, the first is usually the best. For
proving properties of induction, the second may be easier to use, because
= is symmetric and = is not.

The case P.0 is included in (12.3), as we show by manipulating the
antecedent of (12.3).

(Vn10<n:(Vil0<i<n:Pi) = Pn)
= (Split off term (8.23))
(Vi 10<i<0:Pi) = P0) A
(Vn11<n:(Vil0<i<n:Pi) = Pn)
= (Empty range (8.13))
(true = PO)A (Vnll<n:(Vil0<i<n:Pi) = Pn)
= (Left identity of = (3.73); Change of dummy (8.22))
POA(VRI0<n:(Vil0<i<n+1:Pi) = P(n+1))

Thus, we can rewrite (12.3) in the following form, which is the form we
generally use when proving properties by induction.
(12.5) Mathematical Induction over N:

PO A (Vu:NI: (Vi10<i<n:Pi) = Pln+1)) =

(Yn:N|: P.n).

Conjunct P.0 of (12.5) is called the base case of the mathematical in-
duction. The second conjunct of the antecedent,

(12.6) (Ym:N|: (Vi1 0<i<n:Pi) = P(n+1)) ,
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is called the inductive case, and (Vi | 0 < i < n: P.1) is called the inductive
hypothesis.

When proving (Vn:N|: P.n) by induction, we often prove the base case
and inductive case separately and then assert, in English, that P.n holds
for all natural numbers n. The proof of the inductive case is typically
done by proving (Vi | 0 < ¢ < n : Pi) = P(n+1) for arbitrary
n > 0. Further, (Vi 10<i<n:Pi) = P(n+1) is usually proved by
assuming (Vi | 0 <4 < n: P4) and then proving P(n+ 1). The standard
phraseology for such proofs is: “prove P(n+ 1) using inductive hypothesis
POA...ANPn”.

(12.7) Example of a proof by induction. We prove (12.1) for all
natural numbers.

Base case P.0.

(Si11<i<0:26—1)

= (Identity of + (8.13) —since the range is empty)
0

= (Arithmetic)
02

Inductive case. For arbitrary n > 0, we prove P(n+ 1) using inductive
hypothesis P.0 A ... A Pn. To prove P(n+ 1), we transform its LHS

(Zitl1<i<n+4+1:2-i—1)
into its RHS (n+1)? (see (12.1)):

(Till1<i<n41:2+i-1)
= (Split off term (8.23))
(Cill<i<n:2-i—1) + 2-(n+1)—1
= (Inductive hypothesis P.n)
n? + 2-mn+1)-1
(Arithmetic)
(n+1)? O

In the proof above, only P.n of the inductive hypothesis was used. When
only P.n is used, the proof is called a proof by weak induction. When other
conjuncts of the inductive hypothesis are used, it is called a proof by strong
induction. But don’t worry about the difference between weak and strong
induction; for the inductive case, just prove P.OA --- A Pn = P(n+1)
in whatever way you can.

Study carefully the proof of P.n = P(n+1) given above, for it employs
a technique that is used often: The LHS of P(n+1) is manipulated to “ex-
pose P.n”, that is, to make it possible to make use of inductive hypothesis
P.n . Here, splitting off a term exposes P.n.
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INDUCTION STARTING AT OTHER INTEGERS

Formula (12.5) describes induction over the natural numbers 0,1,... . Ac-
tually, induction can be performed over any subset ng,ng+1,n9+2,... of
the integers. The only difference in such a proof is the starting point and
thus the base case; it is either P.0 or P.ng. The statement of induction
over ng,ng + 1,n9 + 2,... is given as follows.

(12.8) Mathematical Induction over {ng,no+1,...}:
PngA(Vnilng<n:(Vilng<i<n:Pi) = Pln+1)) =
(Ynino<n:Pn)

(12.9) Example of a proof by induction. Prove 2-n+1 < 2", for
n>3.

Here, we prove (Vn |13 <n:Pn), where Pn is 2-n+1<2".
Base case P.3. P.3 is 2-3+1 < 23, which is valid.

Inductive case. For arbitrary n > 3 we prove P(n+ 1) using inductive
hypothesis P.n .

2n+1
= (Arithmetic)

2.2™
> (Inductive hypothesis P.n )
2-(2-n+1)

(Arithmetic)

2:(n+1)+1 + 2:n—1
> (Arithmetic —2-n—1 > 0, because 3 < n)

2:(n+1)+1 0

Here, to prove the inductive case, we transformed the RHS of P(n + 1)
into the LHS. Instead, we could have transformed the LHS into the RHS,
or P(n+1) into true.

The following example shows how a proof by induction can be done

informally, with P.n written in English.

Example of a proof by induction. Consider a currency consisting of
2-cent and 5-cent coins. Show that any amount above 3 cents can be rep-
resented using these coins.

We write P.n in English as

P.n : Some bag of 2-cent and 5-cent coins has the sum n.

Our task is to prove (Vn |4 <n:Pn).
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Base case P.4. A bag with two 2-cent coins has the sum 4.

Inductive case. We prove P(n+1) using inductive hypothesis P.n. Pn
means that there is a bag of 2-cent and 5-cent coins whose sum is n. We
have two cases: either the bag contains a 5-cent coin or it does not:

Case (a) The bag contains a 5-cent coin. Replacing the 5-cent coin by
three 2-cent coins yields a bag of coins whose sum is one greater, so
P(n+ 1) holds.

Case (b) The bag contains only 2-cent coins. It has at least two 2-cent
coins, since 4 < n. Replacing two 2-cent coins by a 5-cent coin yields
a bag whose sum is one greater, so P(n + 1) holds.

In this proof, the arguments are in English. We now show how to for-
malize the proof. The difficulty is in defining P.n. We need names for the
numbers of 2-cent and 5-cent coins in the bag. Existential quantification
can be used to create these names; we write P.n as

Pn: 3h,k10<hAO0Lk:2:h+5-k=n)

Exercise 12.3 asks you to finish this formal proof. O

HINTS ON PROVING BY INDUCTION

The first step in proving a universal quantification by induction is to put
the formula in the form

(Vnlng<n:Pn)

This means identifying nyg and Pn. P.n may be a mathematical state-
ment or it may be in English; it does not matter. What does matter is that
P.n be of type B —i.e. a true-false statement— and that it be precise.
Without identifying P.n correctly, the proof cannot be completed.

Typically, the inductive case
(Mnlng<n:(Vilng<i<n:Pi) = Pn+1))

is done by proving (Vi | ng < ¢ < n: Pi) = P(n+1) for arbitrary
n > mp. And this step is typically (though it need not be) proved by
assuming P.ng,..., Pn and proving P(n + 1). This kind of proof often
requires manipulating P(n + 1) in some fashion.

The goal in manipulating P(n + 1) is to make it possible to use the
conjuncts P.0,..., P.n of the inductive hypothesis. We call this exposing
the inductive hypothesis. For instance, in Example (12.9), we rewrote 2"+!
as 2-2" sothat P.n:2-n+1 < 2" could be used. And, in Example (12.7),
we exposed P.n by splitting off a term. This technique of exposing some
of the P.i is the key in many proofs by induction.
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(12.10) Heuristic: In proving (Vi | no < ¢ <n: Pi) = P(n+1) by
assuming (Vi | ng < i < n: P.i), manipulate or restate P(n + 1)
in order to expose at least one of P.0,...,Pn.

12.2 Inductive definitions

Thus far, we have defined functions and operations directly in terms of the
propositional and predicate calculi. For example, we might define exponen-
tiation b™ for b:Z and n:N as

b* = (il 1<i<n:b)

An alternative style of definition uses recursion. For example, we can define
b™ with two axioms:

(12.11) ° =1

prtl = pep” (for n>0).

Such a definition consists of two parts. First, there is (at least) one base case,
which defines the function directly for one (or more) argument. Second,
there is (at least) one inductive case, which defines the function for all
other arguments recursively —the definition contains function applications
of the same function. Such a definition bears a resemblance to mathematical

induction, in which there is a base case and an inductive case. For this
reason, such recursive definitions are called inductive definitions.

Using the above definition with b = 2, the base case indicates that
20 = 1 and the inductive case yields, in order,
2l =2.20=2 |
22 =2.21=4 |
22=2.22=8 , etc.

Note that Definition (12.11) is equivalent to
(12.12) »° =1 ,
bm = bt (for n>1)
Definition (12.11) defines b"*! in terms of 4™, while (12.12) defines b™ in

terms of "1 . The range of n in the inductive or recursive case differs in
the two definitions.

Because of their resemblance to induction, inductive definitions lend
themselves to proofs by induction. We now give examples.

Example of proof by induction. Prove by mathematical induction that
for all natural numbers m and n, b™t" =bp™-b" .
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The theorem to be proved is the first line of the following calculation.

(Vm,n:N|: o™+ = p™ - p™)
= (Nesting (8.20))
(Vr:N1: (Ym:N|: p™t™ = p™ - p™))

We prove the last formula by proving (Vn:N}: P.n), where P.n is
Pn: (Vm:N[: b™F™ = b™-p")

Base case P.0. For arbitrary m , we have:

pm+0 — pm . p0

(Identity of addition; Definition (12.11) of &°)
b =bm-1

(Identity of multiplication)
true

Inductive case. For arbitrary m, we prove b™+(+1) = pm.pnt1 yging
inductive hypothesis (Vm |: ™1™ = p™.pn) .

bm+(n+1)
= (Arithmetic)
b(m+1)+n

(Inductive hypothesis P.n, with m :=m +1.)

bm+1 "
= (Definition (12.11))

b-b™-b"
= (Associativity and symmetry of - )

b~ (b+b™)
= (Definition (12.11))

bl O

It

Example of a proof by induction. Consider function factorial n , writ-
ten n!, which is inductively defined by

(12.13) 0! = 1,
n! = n:(n-1) (for n>0).

We prove that n! =1-2-...-n=1Ii11<i<n:4). For P.n, we have
Pn: nl=Mill1<i<n:q)
Base case P.0. We have

O=(M:¢11<i<0:¢)= il false: i) =1
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HISTORICAL NOTE 12.1. FiBoNAcCcl NUMBERS

We use Fibonacci numbers in discussing mathematical induction, but they
are quite interesting and useful in their own right. They were introduced by
Leonardo Fibonacci (Filius Bonaccii, i.e. son of Bonaccio) of Pisa in 1202,
in connection with the following problem. Beginning with one fertile pair of
rabbits, how many pairs will be produced in a year if each fertile pair produces
a new pair each month and a pair becomes fertile after one month?

Over 400 years later, Kepler, unaware of Fibonacci’s work, discovered the
same sequence of numbers in studying the arrangement of leaves and flowers
in plant life. Fibonacci numbers have been observed in other places in nature,
as well. For example, consider the bee. The male bee develops from an un-
fertilized egg and therefore has no father and one mother, while the female
has a father and a mother. So, the male bee has 0 fathers and 1 mother, 1
grandfather and 1 grandmother, 1 great grandfather and 2 great grandmoth-
ers, and 2 great? grandfathers and 3 great? grandmothers. In general, he has
F,y1 great™ grandfathers and F,42 great™ grandmothers.

In the latter part of the 19th century, E. Lucas gave the sequence the name
“Fibonacci numbers” and proved many properties of them. In 1844, G. Lamé
used the Fibonacci numbers in studying Euclid’s algorithm for finding the
greatest common divisor of two positive integers. Since then, Fibonacci num-
bers have been used in various places in algorithms and computer science.
For example, they have been suggested for use in algorithms for sorting using
magnetic tapes and in a scheme for allocating memory in a computer.

the last equality following from Empty range (8.13).

Inductive case. We prove P(n+ 1) assuming inductive hypothesis P.n:

(n+1)!
= (Definition (12.13))
(n+1)-n!
= (Inductive hypothesis P.n)
(n+1)(Ili|11<i<n:q)
= (Split off term (8.23) (in reverse))
(Mi]l1<i<n+1:i) O

Our next examples concern the Fibonacci numbers, which are defined as
follows (see also Historical note 12.1) for n:N:

(12.14) Fy = 0, F; = 1,

F, = Fo_1+F,_» (fOI‘ n>1 )
The first few Fibonacci numbers are 0,1,1,2,3,5,8,13. Observe that ex-
cept for the first two, each is the sum of the previous pair.

The Fibonacci numbers are intimately connected with the number ¢ =
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HISTORICAL NOTE 12.2. THE GOLDEN RATIO

The golden ratio (1++/5)/2 = 1.6180339887... has been known for a long
time. Euclid called it the extreme and mean value, and Renaissance writers
called it the divine proportion. It is also called the golden mean: the perfect
moderate course or position that avoids extremes; the happy medium. The
name ¢ for the golden ratio is said to have come from the name of the Greek
artist Phideas, who used it in his sculptures.

B A  The golden section is the division of a length such that the smaller

length A and larger length B satisfy A/B = B/(A+ B), as

illustrated at the beginning of this paragraph. The ratio B/A is then the

golden ratio. The main measurements of many buildings in antiquity and the

middle ages have the golden section built into them —the Parthenon on the

Acropolis in Athens, for example. Today, the golden section is still in use in

the fine arts and in industrial design.

In a golden rectangle, illustrated to the left, the vertical and horizontal

side lengths A and B satisfy B/A = ¢. Drawing another vertical

line at distance A from the left side splits the rectangle into two: one is a
square and the other is again a golden rectangle.

The architect Corbusier developed a scale for the human body based on
the golden section: A is from the head to the navel and B from the navel
to the foot. Further, the length from the naval down splits in golden-section
form at the knee; from the naval up, at the throat. Do you have these golden
proportions? Measure yourself.

(1++/5)/2, and its twin ¢ = (1—+/5)/2. ¢ is called the golden ratio (see
Historical note 12.2). As proved in Exercise 12.21, ¢ and ¢ satisfy

(12.15) ¢2 = ¢+1 and ¢ = ¢+1
Example of a proof by induction. Prove the remarkable fact that for
n>1,

¢n—2 < Fn < ¢n-—1

We prove only (Vn | n > 1: P.n), where P.n is given in (12.16), and leave
the other part to the reader. The proof by induction proceeds as follows.

(12.16) Pn:F, < ¢™ !

Base case P.1. Since both sides of P.1 reduce to 1, P.1 holds.

Base case P.2. P2 = 1 < (14 +/5)/2, which is true. Hence, P.2
holds.

Inductive case. For arbitrary n > 2, We assume inductive hypothesis
Pi for 1 <i<n and prove P(n+1):
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Fn+1

= (Definition (12.14) of Fibonacci numbers)
Fn + Fn—l

< (Inductive hypothesis, P.n and P(n—1))
¢n—1 + ¢n—2

= (Arithmetic —factor out ¢"~2)
g2+ (¢ +1)

= ((12.15), ¢* = ¢+ 1; Arithmetic)
¢TL

This is the first proof that relies on more than one of P.0,...,P.n. The
recursive definition of F, forces the use of P(n —1) and Pn. a

Example of a proof by induction. Prove

(12.17) Foym=Fpn Fop1+ Fp1°F, (for n>0 and m >1).

We prove (Vn:N|: P.n) by induction, where P.n is
Pn: (Ymll1<m:Foym=Fyn Foi1+Fp_1F,)

Base case P.0. Since .0 =0 and F.1 =1, the body of P.0 reduces to
F,, = F,-1+ F,,—1:0, which further reduces to F,, = F,, . Hence, the
base case holds.

Inductive case. We assume inductive hypothesis P.n and prove P(n+1).
Since the RHS of the body of P(n+ 1) is more complicated than its LHS,
we transform its RHS into its LHS. For arbitrary m > 1, we have,

Fm'Fn+1+1 + Fm—l'Fn+l
= (Definition (12.14) of Fibonacci numbers)
Fm'(Fn+1 +Fn) +Fm—1'Fn+1
= (Arithmetic)
(Fm +Fm—1)'Fn+1 +Fm'Fn
= (Definition (12.14) of Fibonacci numbers)
Fm+1 'Fn+1 + - F,
= (Inductive hypothesis P.n, with m:=m+1)
Froimpr O

The exercises give more interesting facts about the Fibonacci numbers.
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HISTORICAL NOTE 12.3. GIUSEPPE PEANO (1858-1932)

Born in Spinetta, Italy, Peano spent his life from the age of 12 in Turin.
He was “professor of infinitesimal calculus” at the University of Turin and
later at the Accademia Militare. (“Infinitesimal” does not refer to the size of
the calculus.) Peano is known primarily for his axiomatization of the integers,
but he made contributions in other fields, such as topology, as well. Peano
was interested in language, and he created an international language based on
words common to Latin, German, French, and English. It never caught on.

12.3 Peano arithmetic

An inductive definition of the positive integers was first suggested by Peano
in 1889 (see Historical note 12.3). This definition and the theory that ensues
from it has been called Peano arithmetic.! Here, we define the natural
numbers in a similar manner.

(12.18) Definition. The set of natural numbers N, expressed in terms
of 0 and a function S (for successor), S : N — N, is defined as
follows.

(a) 0 is a member of N: 0eN.

(b) If n isin N, thensois Sn: neN = SneN.

(¢) The element 0 is not the successor of any natural number:
(Vn:N|: S.n #0).

(d) S is one-to-one, i.e. (Vn,m:N|: Sn=8m = n=m).

(e) If a subset N of N (i) contains 0 and (ii) contains the
successors of all its elements, then N =N:

NCNAOeNA(MnlneN:SneN) = N=N

Each part of the definition is necessary to define N unambiguously. Parts
(a) and (b) would seem to define the set of natural numbers —we could
use the notation n + 1 for S.n. However, by themselves, these two parts
are satisfied by many other sets, for example the integers and the real
numbers. Part (c) rules out cases like the following: N is {0,1,2} and
S0=1, S1=2, $2=0. Part (d) rules out cases like N is {0,1,2}
and $.0=1, S1=2, S2=1.

Part (e) is actually a form of weak induction, but expressed in terms
of sets instead of predicates. To see this, define predicate P.n by P.n =
ne N andlet N be a subset of N. Then we manipulate part (e) as shown
below. Compare the last formula of the manipulation with axiom (12.3) for
induction.

! And one who dabbles in this arithmetic might be called a Peano player.
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NCNAOeNA(VnIneN:SneN)= N=N
= (Assumption N C N; replace N using definition of P)
POA (Yn| Pn:P(Sn)) = (VnlneN: Pn)
(Denote S.n by n+1)
POA(Yn|Pn:Pn+1)) = (VnlneN: Pn)

We can introduce conventional notation for the integers by using n for
n+0, n+1 for Sn,and n+m+1 for S(n+m). We can now prove
various properties of addition —for example, that addition is symmetric
and associative. We do this in Chap. 15.

12.4 Induction and well-founded sets

Thus far, we have been exploring mathematical induction over natural num-
bers using relation <. We now generalize the notion of mathematical in-
duction to deal with sets other than N and other relations. For example,
we can use mathematical induction to prove properties of the negative in-
tegers Z~ with relation > ; to prove properties of Pascal programs with
the relation “program p’ is a subprogram of program p”; and to prove
properties of binary trees with the relation “tree t' is a subtree of tree t”.

Let < be a boolean function of two arguments of type U (say), i.e. a
function of type U x U — B. We want to determine the cases in which
(U, <) admits induction —that is, in which mathematical induction over
(U, <) is sound. Not every pair (U, <) admits induction, and we charac-
terize those that do.

We write the principle of mathematical induction over (U, <) as follows
(omitted ranges are true; also z:U and y:U).

(12.19) Mathematical induction over (U, <):
(Vzl: Pz) = (VzI: (Vyly <z : Py) = Pux)

In the case (U,<) = (N, <), (12.19) reduces to the induction over N,
(12.4). To see this, rewrite (12.19), substituting N for U and < for <:

(Vz:NI|: Px) = (Vo:NI: (Vy:Nly <z:Py) = Pux).

This expression is like (12.4) (see page 218), except for renaming of dum-
mies and the interchange of the LHS and RHS.

We want to show that mathematical induction has two characterizations.
These require the notion of a minimal element of a nonempty subset S of

U:

(12.20) Definition. Element y is a minimal element of S if ye S and
Vzxlz<y:z ¢ S).
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Examples of minimal elements

(a) For (N, <), the minimal element of any nonempty subset of N is its
smallest element, in the usual sense.

(b) For (N, <), no nonempty subset of N has a minimal element, because
1 < 1 holds for all natural numbers 7.

(c) Consider (N, pdiv), where ipdivj means “i is a divisor of j and
i < 7”7 (“pdiv” stands for proper divisor). Then the subset S =
{5,15,3,20} has two minimal elements, 5 and 3, since they have no
proper divisors in S'.

(d) Consider (P,pdiv), where P is the set of prime numbers and pdiv
is as in the previous example. All elements of (P,pdiv) are mini-
mal, since their only proper divisor is 1 and 1 is not a prime and
consequently is not in the set. O

We use this notion of minimal element to define well foundedness.

(12.21) Definition. (U, <) is well founded if every nonempty subset of
U has a minimal element, i.e. if for all subsets S of U,

S#40 = Fzl:zeSANVyly<z:y ¢ S))

Examples of well founded (U, <)

(a) (N, <) is well founded: the minimal element of any nonempty set of
the natural numbers is its smallest element, in the usual sense.

(b) (Z,<) isnot well founded. To see this, take § = Z; Z has no smallest
integer.

(c) Let U be the set of all boolean expressions, and let z < y mean “zx
is a proper subexpression of y”, i.e. = is a subexpression of y but
z and y are (syntactically) different. Note that a constant or vari-
able contains no proper subexpression. Since any boolean expression
contains at least one constant or variable, (U, <) is well founded. O

We now prove a remarkable fact: well foundedness of (U, <) and math-
ematical induction over (U, <) are equivalent. That is, we can perform
induction over (U, <) iff (U, <) is well founded. The proof is simple. It
rests on the fact that for any subset S of U we can construct the expres-
sion P.z = z¢ S, and for any boolean expression P.z we can construct
the set S={z|-P.z}.

(12.22) Theorem. (U, <) is well founded iff it admits induction.

Proof. For any subset S of U and corresponding expression P.z = 2z¢ S5,
we change the formula of (12.21) into the formula of (12.19):
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S#0 = (Fxl:zeSAVMyly<z:y¢€5))
= ((3.11), X =Y =-~X = Y ; Double negation (3.12))
S=0 = (Elxl xeS/\(Vyly%x y€5))
= (D Morgan (9.18b); De Morgan (3.47a))
=0 = (V:cl zgSV -(Vyly=<z:y¢5))
= (P = 2¢ S —replace occurrences of S')

( = (VzI: Pz VvV ~(Vyly=<z:Py))
= (Law of implication (3.59))
(Vzl: Pz) = (Vzl:(Vyly<z:Py) = Pux) a

S
o
fi

There is a third characterization of well foundedness, in terms of the
decreasing finite chain property. Consider a chain of relations < using
only natural numbers z; :

Ty < <23 < T < T < Tg (for some n ).

Any such chain is finite, since for any natural number ¢ there are a fi-
nite number of natural numbers smaller than 7. In contrast, the set of all
negative integers has the infinite chain ... < -3 < -2 < —1.

Consider again (U, <), and define predicate DCF.x:
(12.23) DCF.x: “every decreasing chain beginning with z is finite”.

The following property of DCF.x is based on our understanding of finite-
ness. Suppose for every y satisfying y < x that every decreasing chain
starting with y is finite, i.e. DCF.y holds. Then DCF.x holds as well,
since a chain beginning with z is one longer than some chain beginning
with y. We formalize this property as follows.
(12.24) Axiom, Finite chain property:
(VzI: Yy ly <z : DCF.y) = DCF.x)
A relation < over a set U is called noetherian if every decreasing chain

beginning with any z in U is finite (the name noetherian honors Emmy
Noether; see Historical note 12.4):

(12.25) Definition. (U, <) is noetherian iff (Vz:U|: DCF.z).

We now characterize well foundedness in terms of finite decreasing chains.
(12.26) Theorem. (U, <) is well founded iff (U, <) is noetherian.
Proof. The proof is by mutual implication.

LHS = RHS. Assume that (U,<) is well founded. Then, by (12.22),
(U, <) admits induction. So we have

(Vzl: (Vy ly <z : DCF.y) = DCF.z) —(12.24)
= (Induction over (U, <) (12.19), with P := DCF')
(Vz|: DCF.z) —this is the RHS
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HISTORICAL NOTE 12.4. EMMY NOETHER (1882-1935)

E.T. Bell says that Noether was one of the most creative abstract algebraists
in the world [3]. She had an impressive knowledge of areas that David Hilbert
and Felix Klein needed in their work, and, during World War I, she arrived in
Gottingen to study and work with them.

Unfortunately, Noether’s sex was a handicap for her advancement. When
she was ready to take her habilitation exam (a second doctorate, required in
Germany before one could teach), most of the non-mathematical members of
the Faculty were opposed. If she passed, she could later become a professor and
a member of the University Senate, and that couldn’t be allowed! Hilbert had
no patience with this, saying that her sex should not matter, for the Senate
was not a bathhouse. She finally did habilitate in 1919 and received a special
professorship in 1922. But the professorship carried no salary; in fact, during
most of her 15 or so years in Gottingen she received no official salary.

In 1934, Noether, a Jew, was forced by the Nazis to give up her work in
Gottingen and leave the country. She obtained a position at Bryn Mawr College
in Pennsylvania and died there a year later, following an operation. Einstein
wrote a letter to the New York Times, calling her “the most significant creative
mathematical genius [of her sex| thus far produced ... .” (See [32, p. 208].)

RHS = LHS. We prove this part informally, since DCF' is defined in-
formally. Assume that (U, <) is noetherian, so that every decreasing chain
is finite. With this assumption, we show that every nonempty subset S of
U has a minimal element. Let subset S be nonempty. Choose an arbitrary
element zg of S (by Axiom of Choice (11.77)). Construct a descending
chain beginning with g, choosing at each step ¢ some element z;,; sat-
istying z;+1 < x; . Since every decreasing chain is finite, the construction
of the descending chain stops with an x, for which there is no element y
in S that satisfies y < x, . Element z,, is a minimal element of S . ]

In the following sections, we give other examples of induction over well
founded sets. First, however, we state some theorems concerning induction
(the proofs are left as exercises).

(12.27) Theorem. If (U, <) admits induction, then < is irreflexive, that

is, £ A x holds for every x in U .

(12.28) Theorem. If (U, <) admits induction, then for all z,y in U,
r<y =y L.
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12.5 Induction for inductive definitions

We now know that (U, <) admits induction iff (U, <) is well founded,
which also means that every decreasing chain is finite. Any inductive defi-
nition gives rise to a set U and a relation < that admits induction.

Suppose an inductive definition is given by three (say) cases (as in the
first example below). Then in proving some property P by induction, it
has to be shown that each case satisfies P . If the proof of a case does not
require an inductive hypothesis, then that case is a base case; otherwise,
it is an inductive case. In the first example given below, the first case is a
base case and the second two are inductive cases.

INDUCTIVELY DEFINED EXPRESSIONS

Let U be the set of finite expressions defined inductively as follows.

(a) A digit 0,1,2,3,4,5,6,7,8,9 is an expression.
(b) If Ey and E; are expressions, then sois Ey + E; .
(¢) If E is an expression, then so is (F).

For two expressions FEy and FE, define ‘Fy’ < ‘Ey’ to mean that Ej
is a proper subexpression of Fy , i.e. a subexpression of E; that is not E;
itself. For example, the proper subexpressions of (3+5) are 3+5, 3, and
5.

Above, the term “finite” means that we are considering only expressions
that can be written with a finite number of symbols. For example, the
sequence (((---1---))) that involves an infinite number of parentheses is
not an expression. Restricting consideration to finite expressions allows us
to claim that (U, <) has the finite decreasing chain property, which means
that (U, <) admits induction.

In summary, the inductive definition of the set U of expressions E gives
rise to a pair (U, <) that admits induction.

(12.29) Theorem. Each expression of U contains the same number of
left and right parentheses.

Proof. Let L‘E’ and R.‘E’ denote the number of left and right parenthe-
ses in F , respectively. Our task is to prove

P'X': L‘'X'=R'X’

for arbitrary expressions X . We prove this by induction by proving P.‘X’
under the assumption that P.‘Y’ holds for all proper subexpressions Y of
X . We proceed by case analysis, investigating each kind of expression:

Case (a) For any digit d, L.'d>=0= R.‘d’, so P.‘d’ holds.
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Case (b) The proper subexpressions of an expression Ey + E; are Ej
and F;. We prove P.'Ey’ A P'Ey’ = P‘'Ey+ E;’.

PEy+ Ey

= (Definition of P')
L‘Ey+Ey’ = R‘Ey+ Ey’

= (Definition of L and R)
L‘Ey + L'E;’ = R‘Ey + R‘Ey’

< (Arithmetic)
L‘Ey’ =R.‘Ey’ N L‘E;’=R.Ey’

= (Definition of P)
P‘Ey’ AN PEY’

Case (c) Consider an expression (F). We have L.(E) =1+ L.‘E’ and
RYE) =1+ R.‘E’. From this, we can conclude P.‘E’ = P.(E)' .0

Such detail is not really needed on such a trivial problem. We went to
such great lengths for three reasons. First, so you could see in detail how
induction is applied on a pair other than (N, <). Second, so you could
see how the structure of the definition of expressions was reflected in the
structure of the proof: each kind of expression was a separate case. Third,
so you could see that, because the base case was submerged in the inductive
definition, the base case did not have to be mentioned separately. We simply
had to prove (Vy |y <z : Py) = P.x for arbitrary x.

INDUCTIVELY DEFINED BINARY TREES

Our second example of proof by induction over a pair (U, <) concerns
binary trees. We define the (finite) set of binary trees inductively, as follows.

(12.30) Definition.
0 is a binary tree, called the empty tree.
(d,1,7) is a binary tree, for d:Z and [, r binary trees.

We consider only finite binary trees, which means that we consider only
trees that can be written using a finite number of symbols. A tree (d,®,0) is
often abbreviated as (d) . Let ¢ be a nonempty binary tree, i.e. t = (d,l,r).
The value d is called the root of t, I is called the left subtree of t, and r
is called the right subtree of t. The three components of ¢ are referenced
using t.d, t.l,and t.r.

In computer science, nonempty trees are drawn as shown in Fig. 12.1. The
values d in the tree are called nodes of the tree. The middle tree in Fig. 12.1
has nodes 3, 4, and 2. Nodes with two empty subtrees are called leaves,
and the others are called internal nodes. The leaves of the rightmost tree
of Fig. 12.1 are 6 and 7, and its interior nodes are 3, 4, and 2.
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For a tree (d,l,r), d is called the parent of the roots of subtrees ! and
r, the roots of [ and r are called d’s left and right children, and the
roots of [ and r are called each other’s siblings. In the rightmost tree in
Fig. 12.1, 3’s child is 4 and 4’s children are 6 and 2. Root 3 has no
parent. An empty subtree (§ is usually interpreted as being the absence of
a subtree. In other words, 3 has no right child and 6 has no children.

We define #t, the number of nodes in tree t, inductively as follows.
(12.31) #0=0
#(d,l,r) =1+ #l+#r

The root of a tree is on level 0, its children are on level 1, its grandchil-
dren are on level 2, and so on. The height of a tree ¢ is defined inductively
as follows (where b1 ¢ is the maximum of b and c).

(12.32) height.) =0
height(d,l,r) = 1 + (height.l 1 height.r)

For example, the height of the empty tree is 0 and the heights of the three
trees of Fig. 12.1 are 1, 2, and 4, respectively.

A binary tree is complete if every node has either 0 or 2 children. The
empty tree and the first two trees of Fig. 12.1 are complete, but the right-
most tree of Fig. 12.1 is not.

Now consider U to be the set of finite binary trees and < to be the
proper-subtree relationship. (U, <) has the finite decreasing chain prop-
erty, since a finite binary tree has only a finite number of proper subtrees.
Therefore (U, <) admits induction.

(12.33) Theorem. The maximum number of nodes in a tree with height
nis 2" —1.

Proof. We prove the theorem by mathematical induction over (U, <). We
consider the two kinds of trees as given by definition (12.30).

FIGURE 12.1. THREE BINARY TREES

3 3 3
N /
i 2 4
AN
6 2
N

(3,0,0) (3,(4),(2)) (3,(4,(6),(2,0,(7)),0)
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Case (a) The empty tree has 0 nodes and height 0, and 2° —1=0.
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Case (b) Consider a tree ¢t = (d,l,r) with height n (say), so n > 0.
First, since ¢ has the maximum number of nodes for its height, both
subtrees have the same height, n — 1 (if not, one could add nodes
to the subtree with smaller height without changing height.t ). We

calculate #t:

#(d,l,r)

= (Definition (12.31))
14 #1 4+ #r

= (Inductive hypothesis, twice)
142011427t —1

= (Arithmetic)
2" -1

The proofs of the following theorems are left as exercises.

(12.34) Theorem. The minimum number of nodes of a tree of height n

is n.

(12.35) Theorem. The maximum number of leaves in a tree of height n
is 2" 1: the maximum number of internal nodes is 2"~ ! — 1.

(12.36) Theorem. The minimum number of leaves in a tree of height n
is 1;if n > 0, the minimum number of internal nodes is n — 1.

(12.37) Theorem. Every nonempty complete tree has an odd number of

nodes.

LEXICOGRAPHIC ORDERING OF PAIRS OF NATURAL NUMBERS

Let N x N denote the set of pairs (¢,j) of natural numbers. For example,
N x N contains (0,0}, (0,3), and (999,1). We define binary relations <
and > over N x N (thus overloading < and > ), called the lexicographic

ordering of pairs of natural numbers, as follows.
(12.38) (b,c) < (t',¢') = b<¥ vV (b=b ANe<{)
',y > (b,c) = (bc) < ¥, c)

Examples of lexicographic ordering

(a) ( 1,0) > (0, 99) >---> (0, 2) > (0,1) > (0,0)
(b) { 2,0) > (1,999) > --- > (1, 2) > (1,1) > (1,0)
(c) (3,0)>(2, 57T)>--->(2, 2) >(2,1) > (2,0)
(d) (22,9) > (14,85) > --- > (6,11) > (4,9) > (0,0)

ad

This ordering is similar to the dictionary ordering of words —IN, IT, TO,
for example. The only difference between the two orderings is that, with
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the dictionary ordering, the number of different symbols is finite, 26 , while
with N the number of symbols is infinite. This means that an infinite
number of pairs follow (1,0) in the ordering >: (1,0) > (0,b) for all
natural numbers b. For any b, the longest decreasing chain that begins
with (0,b) has length b+ 1, but there is no upper bound on the length
of decreasing chains beginning with (1,0) . Nevertheless, we can prove the
following theorem by induction on b.

(12.39) Theorem. For natural numbers b,c, every decreasing chain be-
ginning with (b, c) is finite.
Thus, by Theorem (12.26), (NxN, <) is well founded and admits induction.

Note the difference between (N x N, <) and (N,<). In (N,<), the
length of a finite chain beginning with b is bounded above by b+ 1; in
(N x N, <), there is no upper bound on the length of a chain beginning
with (1,0), although all such chains are finite in length.

Another ordering that has this unboundedness property is (Z, <), with
b < ¢ defined as follows: (i) < does not hold between negative integers;
(ii) a negative integer is “bigger” than any nonnegative integer; and (iii)
the conventional ordering holds between natural numbers:

(1240) b<c = 0<b<cVe<0<Lh
Here are examples:
0<2<15<-3

It is readily seen that every decreasing chain is finite, so that (Z, <) admits
induction. We put (Z, <) to use in proving termination of a loop in the
next Sec. 12.6.

12.6 The correctness of loops

We introduce a theorem concerning the while loop while B do S. The
proof of the theorem will show how correctness of a loop is inextricably
intertwined with induction. This section builds on Chap. 10.

We prefer to write a while loop using the syntax
(12.41) do B — S od

where boolean expression B is called the guard and statement S is called
the repetend? .

2 Repetend: the thing repeated.
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Loop (12.41) is executed as follows: If B is false , then execution of the
loop terminates; otherwise S is executed and then the process is repeated.

Each execution of repetend S is called an iteration. Thus, if B is initially
false , then 0 iterations occur.

We will be analyzing the following loop (with initialization). Its execution
requires exactly m iterations. As shown by the annotation, given 0 <
n initially, execution stores the value n-z in p. We have labeled the
assertions P, @@, and R for later reference.

(12.42) {Q: 0<n}
i,p:=0,0;
{P:0<i<n A p=i-z}
doi#n—i,p:=i+1,p+zod
{R: p=n-z}

We now state and prove the fundamental invariance theorem for loops.
This theorem refers to an assertion P that holds before and after each
iteration (provided it holds before the first). Such a predicate is called a loop
invarient. In algorithm (12.42), loop invariant P is 0<i<n A p=i-x.

(12.43) Fundamental invariance theorem. Suppose

e {P A B} S {P} holds —i.e. execution of S begun in a state
in which P and B are true terminates with P true — and

e {P}do B — S od {true} —i.e. execution of the loop begun
in a state in which P is #rue terminates.3

Then {P} do B — S od {P A —-B} holds.

Proof. By the second hypothesis, the loop terminates, say in n > 0 itera-
tions. It remains to show that PA-B holds upon termination. B is false
upon termination because the loop can terminate only when B becomes
false . We prove that P is true upon termination of the n iterations by
proving (by induction) that it is true after i iterations, 0 <i < n.

P is true before execution of the loop, so P is true after 0 iterations.
Hence the base case holds. For the inductive case, assume P is true after
1 (4 < n) iterations. Iteration ¢+ 1 is executed with P and B ¢rue and
consists of executing S . By the first hypothesis of the theorem, P holds
after iteration 7 + 1. Hence the inductive case holds. O

3 The formalization of the argument for termination is given on page 240.
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Example. We use Theorem (12.43) to prove the following Hoare triple,
where we have labeled the guard B and the invariant P .

(12.44) {invariant P: 0<i<n A p=i-x}
doB:i#n—ip=i+1,p+zxzod
{P AN i=n}

We prove the first hypothesis of the theorem, {P A B} i,p:= ¢+ 1,p +
z {P} . To do this, we calculate the precondition P[i,p:= ¢+1,p+z] and
show that it is implied by P A B.

Pli,p:=i+1,p+x]
= (Definition of P ; textual substitution)
0<i+1<n A p+z=(>G+1)=
= (Arithmetic)
-1<i<n A p=i-=x
< (Arithmetic)
iZn A 0<i<n A p=i-zx
= (Definition of B and P)
BAP

Next, we prove the second hypothesis of the theorem. Since initially i < n
and each iteration increases ¢ by 1, after a finite number of iterations
i =n and the loop guard is false .

Hence, by Theorem (12.43), we conclude that (12.44) holds. O

Theorem (12.43) concerns a loop with a precondition and postcondition,
in isolation. Usually, we need to show something about a loop in a given
context, since the loop may have initialization and a postcondition R that
differs from P A —B:

{Q} initialization; do B — S od {R}

Hence, there is more to prove concerning the loop than simply the two
points given in Theorem (12.43). With a loop annotated in this fashion, we
need to prove four points:

(12.45) Checklist for proving loop correct
(a) P is true before execution of the loop.
(b) P is a loop invariant: {P A B} S {P}.
(c) Execution of the loop terminates.
(d) R holds upon termination: P A =B = R.
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Example of the use of Checklist (12.45). We prove that the annotation
in program (12.42) is correct; we repeat the annotated program here.

{0<n}

i,p:= 0,0;

{invariant P: 0<i<n A p=i-x}
doi#n—i,p:=i+1Lp+zod
{R: p=n-z}

Proving point (a) requires proving 0 <n = P[i,p:= 0,0]; proving point
(d) requires proving "B A P = R. We leave these two proofs to the
reader. Since we already proved the other two points, we conclude that the
program is correct. a

Loop invariants are crucial to understanding loops —so crucial that all
but the most trivial loops should be documented with the invariants used
to prove their annotations correct. In fact, (a first approximation to) the
invariant should be developed before the loop is written and should act as
a guide to the development of the loop. For example, since the fourth point
for proving correctness of the loopis P A =B = R, given P and R one
can derive the loop guard by solving this expression for B.

Finding a suitable loop invariant is the most difficult part of writing
most loops. However, a few simple ways of finding an approximation to the
invariant work in many instances. In the example used above, invariant P
is derived from result assertion R by replacing n by a fresh variable ¢ and
imposing suitable bounds on . In the next example and all the exercises,
we indicate how the invariant is obtained.

Example of a proof using Checklist (12.45). We prove correct an
algorithm for division, which finds the quotient ¢ and remainder r when
b is divided by ¢ (where ¢ > 0). The annotated algorithm is given below.
Invariant P is obtained by deleting conjunct r < ¢ from R.
(12.46) {Q: b>0 A ¢>0}

q,T = 07 b;

{invariant P: b=g-c+r ANO0<r}

dor>c—gqri=q+1,r—cod

{R: b=gc+r NO<r<c}

We prove the correctness of this annotated program. We prove point (a) of
Checklist (12.45) by proving that @ = Plg,r:= 0,}].

Plg,7:= 0,b]
= (Definition of P ; textual substitution)
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b=0-c+b N0}
<= (Arithmetic; definition of Q)
Q

We next prove point (b), {P A B} S {P}, by proving that P A B =
Plg,r:=q+1,7r— (.

Plg,r:=q+ 1,7 — ]
= (Definition of P and textual substitution)
b=(¢g+1)c+(r—c) ANO<r—c
= (Arithmetic)
b=qgc+r ANr>c
< (Definition of P and B)
PAB

For point (c), note that each iteration decreases r by ¢ (¢ > 0), so that
after a finite number of iterations r < ¢ is achieved.

Point (d), P A =B = R, is trivial. a

PROVING TERMINATION OF LOOPS

Consider the following loop.
(12.47) {0 <i=1}
{invariant P :0 <}
do 0# i —if true > i:= 1 -1
lJi#Al—odi:=14-2
fi
od
{R:i=0}
It is readily seen that invariant P is initially ¢rue, that the repetend
maintains P, and that P A -(0#:) = R.

We can argue that the loop terminates as follows. (i) Integer expression
i is decreased by at least 1 at each iteration, and (ii) as long as there is
another iteration to be performed, 7 > 0 holds. Since 0 < 7 = I holds
initially, the loop terminates after at most I iterations.

More generally, we can prove the following theorem. In the program
scheme within the theorem, we have added a comment to indicate the

4 See page 189 for a definition of the alternative statement if --- fi.
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bound function that is used in proving termination of the loop.
(12.48) Theorem. To prove that

{invariant : P}
{bound function : T'}
do B— Sod

terminates, it suffices to find a bound function T ,i.e. an integer

expression T that is an upper bound on the number of iterations

still to be performed. Thus, bound function 7' satisfies:

(a) T decreases at each iteration: that is, for v a fresh variable,
{P AB} vi=T;S{T <v}.

(b) As long as there is another iteration to perform, 7" > 0:
PAB=T>0.

Proof. We prove the theorem by induction on the initial value of T'.

Base case T < 0. Since P isinitially true,from PA B = T >0 (which
equivales P A T <0 = -B), we conclude —B, so the loop terminates
after 0 iterations.

Inductive case T > 0. We assume as inductive hypothesis that the
theorem holds for all initial values of T < k for some arbitrary integer
k > 0; we prove the theorem for T =k + 1. If B is initially false, then
the loop terminates immediately and the theorem holds. If B is initially
true , then execution of one iteration decreases T so that T' < k (while
maintaining P ); by the inductive hypothesis, further execution of the loop
terminates in at most k iterations. O

Example use of Theorem (12.48). Consider program (12.42) on page
237. We write the part of it that is germane to this discussion, annotated

with the bound function:
{invariant P : 0<i<n A p=i-z}
{bound function T :n — i}
doi#n—i,p:=i+1,p+zod

Each iteration increases ¢ by 1 and thus decreases n—i. Second, we prove
P A B = T>0, by transforming P A B to T > 0.

0<i<n A p=ix Ni#n
=  (Weakening)

1<n
= (Arithmetic)
0<n—1

= (Definition of T')
0<T



242 12. MATHEMATICAL INDUCTION

Hence, by Theorem (12.48), the loop terminates. O

Example use of Theorem (12.48). We prove that the loop of program
(12.46) on page 239 terminates. Here is the pertinent part of that program:

{invariant P: b=gq-c+r ANO0<r}
{bound function T': r}
dor>c—gq,r:=q+1,r—cod

T is decreased by each iteration, since ¢ > 0.° Second P A B, along
with ¢ > 0, implies » > ¢ > 0, so point (b) of Theorem (12.48) also
holds. Therefore, by Theorem (12.48), the loop terminates in at most r
iterations.

Note that r is not the exact number of iterations still to perform, but
only an upper bound on the number of iterations. For T' we could have
taken the smaller expression r — ¢ as well. O

Finally, we revisit program (12.47). Use expression ¢ for T . The invari-
ant 0 <1 is not needed to prove P A =B = R. P is used only in proving
point (b) of (12.48): P A B = T > 0. For example, if we changed invariant
P to true, the only part that would not be provable would be this point
(b). This might seem strange, but note that if we changed the invariant
to true and also replaced the repetend by i:= i — 2, termination could
no longer be guaranteed, although every other part concerning correctness
would be provable.

TERMINATION PROOFS USING OTHER WELL-FOUNDED SETS

Thus far, we have proved termination of loops using a bound function.
And our proof that the bound function was sufficient to show termination
was based on mathematical induction over the natural numbers. We now
present a loop for which this method of proof does not work.

Let choose(z) store an arbitrary natural number in variable . State-
ment choose(x) is nondeterministic: its execution need not always store
the same value in z . One execution of choose(z) may store 0 in z, an-
other may store 99 , and another 16180339887 . Now consider the following
loop, where i:Z (thus, initially ¢ contains an integer).

51n principle, ¢ > 0 should be a conjunct of the invariant. Note, however,
that ¢ is not changed by the algorithm. Cluttering up the invariant with the
many facts about variables that remain unchanged would be counterproductive,
and we use the mathematician’s license to leave the obvious unstated.
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(12.49) {Q: true}
{invariant P : true}
do i # 0 — if i < 0 then choose(i) else i ;=i — 1 od
{R: i=0}

It is easy to see that this loop terminates. Its first iteration ensures i > 0,
and thereafter each iteration decreases ¢ by 1 until ¢ = 0. However, our
previous method of proof of termination cannot be used to prove termina-
tion, because there is no a priori upper bound on the number of iterations.
If initially ¢ < 0, then the number of iterations is determined by the value
chosen for i during the first iteration, and the value chosen for ¢ is un-
bounded.

We outline briefly how one can prove termination of a loop do B — S od
with invariant P, using a pair (U, <) that admits induction. Since the pair
admits induction, every decreasing chain is finite. Consider an expression
T:U . Suppose that each iteration of the loop changes T to a smaller value:

{PAB}v:=T; S{v<T}

Suppose further that P A B = (Ju:U |: u < T) . Since every decreasing
chain is finite, in a finite number of iterations, T' will become a minimal
element of U , in which case B is false and the loop terminates.

In the case of program (12.47), to prove termination, we can choose
(Z, <), where < is defined by (12.40) on page 236.

Exercises for Chapter 12

12.1 State an induction principle for proving properties of the negative integers.

12.2 What is wrong with the following proof that all people in any group have
red hair? The proof is by induction on the number of people. For the base case,
consider a group of 0 people. Since the group is empty, each person in it has red
hair. For the inductive case, for arbitrary n > 0 we prove that n + 1 people
have red hair using the fact that n people have red hair. So consider a group of
n+ 1 people. Remove one of them. By the inductive hypothesis, all those left in
the group have red hair; take one (with red hair) of them out and place the first
one removed back in; the group still consists of n people, and they all have red
hair. Hence, the original group of n + 1 people had red hair.

12.3 Prove by induction that the following boolean expression holds for all n,
4<n:

Pn: (3hk10<hAO0Lk:2:h+5k=mn)
12.4 Prove the following arithmetic identities by induction on n .

(a)For n>0, (¥:11<:<n:i) = n(n+1)/2.
(b) For n >0, (Zil0<i<n:2:i+1)=n2.
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(c)For n>0, (Ril0<i<n:2)=2"—1.

(d)For n>0, (Xi10<i<n:3)=3"-1)/2.

(e) For n>0, (Zil0<i<n:i? =n-+(n+1):(2:n+1)/6.

(f)For n>0, (Zil11<i<n:i:2)=m-1)-2"" 42,

(g For n>0, (Til11<4<n:3%-3i+1)=nd.
12.5 Prove (£i10<i<n:7) = ("1 —1)/(r — 1) for r a real number,
r# 1, and n a natural number. Use induction.
12.6 Prove (Zil0<i<n:i'r’) = (n-r" —(n+1)-r"" 4+ r)/(r = 1) for
r areal number, r # 1, and n a natural number. Use induction.
12.7 A convex polygon is a polygon in which the line joining any two points on
its perimeter is in the polygon. Prove by induction that, for n > 3, the sum of

the angles of a convex polygon with n sides is (n — 2)-180° . Use the fact that
the sum of the angles in a triangle is 180° .

12.8 Prove by induction on n that 2-n+1 < 2" for n> 3.

12.9 Prove by induction on n that n2 < 2" for n > 4.

12.10 Prove by induction that 22°™ — 1 is divisible by 3, for n > 0.
12.11 Prove by induction that 4™ — 1 is divisible by 3, for n > 0.

12.12 Prove by induction that 10° — 1 is divisible by 9, for ¢ > 0. Use this
to show that 9 divides a decimal integer r,_1---r170 (where all the 7; satisfy
0<r; <10) if and only if 9 divides the sum of the r; .

12.13 Prove by induction that for = # y, =™ — y™ is divisible by z — y, for
n > 0. Hint: subtract and add z-y™ to z"™! —gy"t1.

12.14 Prove by induction that any amount greater than 14 can be obtained using
3-cent and 8-cent coins.

12.15 Prove (11.73), #(PS) = 275 .

Exercises on equivalence of weak and strong induction

Induction (12.3) describes what is known as strong induction. Weak induction
allows only P.n as the inductive hypothesis:

Weak induction over N:

PO A (Vn:N|: Pn = P(n+1)) = (Yn:N|: Pn)
Exercises 12.16-12.19 are devoted to proving that weak induction and strong
induction are equivalent. We give some abbreviations that will be used in the
exercises. First, let WS and SS stand for the Weak induction Step and Strong
induction Step:

WS: (vn10<n:Pn = P(n+1)) ,

SS: (Vnl0<n:(Vil0<i<n:Pi) = Pn+1))
Next, let A mean that all P.n are true:

A: (VYnl10<n:Pn)
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Finally, let WI and SI denote Weak Induction and Strong Induction:
WI: POAWS = A |
SI: POANSS = A
The equivalence of weak and strong induction is then written as
(12.50) (VPI|: WI) = (VPI|:SI)
where P : N — B. Formula (12.50) says that weak induction holds for all
predicates P iff strong induction holds for all predicates P . This quantification

is necessary for a correct statement of equivalence of the two kinds of induction.
Formula (12.50) is different from (VP|: WI = SI) which is not valid.

Thus far, we have not encountered quantification over predicates. The predicate
calculus with quantification over conventional variables, as in Chap. 9, is called
the first-order predicate calculus. A calculus with quantification over predicates,
as in (12.50), is a second-order predicate calculus. In the second-order predi-
cate calculus, all the theorems of the first-order calculus are valid, and there are
additional axioms and theorems to deal with the new kind of quantification.

12.16 We begin the proof of (12.50). The first step, the object of this first exer-
cise, is to prove WS = SS.

12.17 Prove that SI = WI (see the previous exercise).

12.18 Prove (VP |: WI) = (VP |: SI) by setting aside its antecedent and
proving its consequent. This means proving that strong induction holds for all P
under the assumption that weak induction holds for all P . Here are some hints.
Introduce a predicate Q.n:

Qn: (Vi|0<i<n:Pi)
Since (Yn 1 0 <n:Pmn) = (Vn] 0 < n:Qmn), wecan rewrite strong
induction (for arbitrary P ) as

POA(Vn10<n:Q.n) = Pn+1) = (Vnl0<n:Q.n)
Now prove this formulation of mathematical induction by assuming the two con-
juncts of its antecedent and proving its consequent by (weak) induction.

12.19 Prove (12.50) of Exercise 12.16, using the results of the previous two ex-
ercises.

Exercises on Fibonacci numbers

12.20 Prove by strong induction that F, < 2" for n <0.

12.21 Prove properties (12.15).

12.22 Prove that ¢" 2 < F, for n>1. (Note that ¢! 2=¢ 1 =1/¢.)
12.23 Prove that, for all n >0, F, = (¢" — ¢")/v/5.

12.24 Using the results of the previous exercise, prove the Binet formula F, =

(¢" —¢™)/(¢— ¢) for n>0.
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12.25 Prove that the following identities hold. Hint: Substitute appropriately in
(12.17).

o, =F, Foi1+Fo1+F, for n>1,
F2’n+1=F3+1+F3 for n>0

12.26 Prove that F2 = F,,_1*Fp1 — (=1)™ for n > 1.
12.27 Prove that (2 10<i<n:F;))=Fy,2—1 for n>0.
12.28 Prove that (£i10<i<n:F?) =F, Fu41 for n>0.

12.29 Prove that, for n > 0, F3., iseven, F3.,41 isodd, and F3-,42 is odd.

Other exercises on proofs by induction

12.30 The greatest common divisor of two natural numbers p and ¢, writ-
ten p gcd g, is the largest natural number that divides both. For example,
10 gcd 0 = 10, 12 ged 10 = 2, and 1 ged 8 = 1. Prove by induction that
F,ged Foy1 =1 forall n >0.

12.31 Prove that the two definitions (12.11) and (12.12) of exponentiation are
equivalent, i.e. b" has the same value in both definitions.

12.32 Juris Jones maintains that he is exactly one-third Latvian. Prove that he
is lying. Hint: Relate this problem to the following set S and show that 1/3 is
notin S.

0 isin §;
1isin §;
If £ and y arein S, thensois (z+1y)/2.
12.33 Define the value n! for n >0 by
o =1,
(n+1)! = (n+1)'n! for n>0.
Prove by induction that, for n >0, n! = (IIi11<i<m:i).

12.34 Prove by induction that n! > 2" for n > 3. See Exercise 12.33 for a
recursive definition of n!.

12.35 Prove by induction that (X:10<i¢<mn:i-i!) = (n+1)!—-1 for n>0.
See Exercise 12.33 for a recursive definition of n!.
12.36 Define the values m, for n > 0 recursively by

mo = 0 )

Mpt1 = 2°mp+1 for n>0.
Prove by induction that m, =2" —1 for n > 0.
12.37 The ring of lights. Suppose we have a ring of 2V lights, for some N >
0, each of which can be on or off. The lights repeatedly change their state, in

synchrony, according to the following rule: If the follower of a light (in clockwise
order) is off, the light switches (from off to on or from on to off); if the follower
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is on, the light does not switch but remains the same. Show that after a certain
number of steps all the lights will be on —the number of steps to achieve this
depends on N but not on the initial state of the ring of lights.

Hint: Number the lights 0,1,...2"7 — 1, so that the follower of light i is light
i+ 1 (modulo 2V). Let boolean L(i,j) denote the state of light i at (i.e.
just before) step j, according to L(i,j) = (light ¢ is on at step 7). Prove by
induction on n that for arbitrary ¢ and j,

Lij+2") = Li,j) = Li+2",)

12.38 Consider the following game, played with a non-empty bag S of positive
real numbers. Operation avg removes two elements of S (at random) and inserts
two copies of the average of the two removed elements. The game terminates when
all numbers in S are equal. Does the game always terminate?

12.39 Define inductively the function dom.e of page 182 for integer expressions
using integers, integer variables, array references b[i], binary addition, subtrac-
tion, multiplication, integer division, and unary subtraction.

12.40 Prove theorem (12.27).
12.41 Prove theorem (12.28).

Exercises on loops

12.42 Each algorithm below is annotated with a precondition, loop invariant,
and postcondition. Prove the algorithm correct using Checklist (12.45).

(a) This algorithm stores in ¢ the Fibonacci number F, ,for n > 0. In addition
to the definition of Fibonacci numbers given in (12.14), we define F_; =1,
so that Fy satisfies the recursive definition ( F1 = Fy + F_1 ). Invariant P
arises by replacing n in R by a fresh variable, placing suitable bounds on
k , and then adding the extra conjunct b = Fj_1; —for reasons that cannot
be made entirely clear at this time.

{Q@: n>0}

k,b,c:= 0,1,0;

{invariant P: 0<k<n A b=Fr_1 A c=Fi}
dok#n—kbc:=k+1cb+cod

{R: c=F,}

(b) This algorithm stores in z the sum of the n elements of array b[0..n — 1],
for n > 0. Invariant P is developed by replacing n in R by a fresh
variable k and placing suitable bounds on k.

{Q: n>0}

z,k:=0,0;

{invariant P: 0<k<n A z=(X¢10<i<k:b[i])}
dok#n—z,k:=xz+bkl,k+1od
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{R: z=(Zil0<i<n:b[])}

(c) This algorithm stores in x the sum of the n elements of array b[0..n—1],
for n > 0. Invariant P is developed by replacing 0 in R by a fresh
variable k and placing suitable bounds on k.

{Q: n>0}

z,k:=0,n;

{invariant P: 0<k<n A z=(Zilk<i<n:bf)}
dok#0—-z,k:=xz+bk—-1],k—10od

{R: z=(Xi10<i<n:b[])}

(d) This algorithm finds the greatest common divisor X ged Y of two natural
numbers X and Y —i.e. the largest natural number that divides both X
and Y. (ged is discussed in Sec. 15.4 on page 316). The algorithm uses
z mod y, which is the remainder of z divided by y. You can use the
following properties of z ged y: (0) 2 gedy=yged z, (1) zged 0 ==z,
and (2) z ged y = y ged (z mod y). Property (2) holds because, if
T = gy + r, if an integer divides both z and y then it also divides r,
and if an integer divides both y and r then it also divides z .

{Q: 0<X A0LY}

z,y:= X,Y;

{invariant P: zgcdy=XgedY A 0<z A 0<y}
doy+#0— z,y:=y,r mod y od

{R: XgedY ==z}

Exercises on the proof of Metatheorem duality

Metatheorem duality (2.3a) on page 32 states that a propositional formula P is
valid iff = Pp is valid, where Pp is the dual of P, and that P = Q is valid
iff Pp = @p is valid. The following exercises prove these claims.

We begin by defining expression P corresponding to a boolean expression P .

P is constructed from P by replacing in P each variable ¢ (say) by —q and
interchanging symbols as given in the following table. Note that only operator —
remains unchanged.

true and  false
A and V

= and #

= and £
<~ and #
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Examples. P P
pVyg -p A g
P = q -p £ —gq (or ~(-p < —q))
P=gq -p £ ¢

“DA-qg =T aop Vg #E T
12.43 Define expression P , illustrated above, inductively.

12.44 Using your inductive definition of P from Exercise 12.43, prove that for
any boolean expression P,

-P =P

12.45 The dual of P is similar to P, the only difference being that variables
are left unchanged (and not replaced by their negations):

Examples of expressions P, P, and Pp.

expression P P dual Pp
pVyg -p A g PAg

pP=q -p £ g P £q
pP=gq P E q PEQq

—\p/\—\qE'r' —1—|pV—|—|q$—\’r ﬂp\/ﬂqi_é’r

Prove that if an expression is a theorem, then so is the negation of its dual —i.e.
if P is a theorem, then sois —Pp .

12.46 Prove that if P = @ is a theorem, thensois Pp = Qp .

Exercises on proving Metatheorem (11.25)

Consider a set expression E; constructed from set variables, {}, U (the uni-
verse for all set variables in question), ~ , U, and N. Let E, be the proposition
constructed from E, by replacing @, U, ~, U, and N with false, true, —,
Vv, and A, respectively. Note that the transformation is reversible: E, can be
constructed from E, .

We wish to prove Metatheorem (11.25) on page 204.
Metatheorem. For any set expressions E; and F,
(12.61) E, = F, is valid iff E, = F, is valid,
(12.52) E, C Fs is valid iff E, = F, is valid,
(12.63) E, =1U is valid iff E, is valid.
12.47 The first step in the proof is to introduce another translation of expression
E,.Let E. beacopyof Es in which each occurrence of a set variable P, {},or
U is replaced by the set {z | P}, {z | false}, or {z | true}, respectively. Thus,
each set variable and constant of FE, is replaced by a set comprehension that

exhibits the characteristic predicate of the set —note that in E. the identifiers
P are interpreted as predicates rather than sets.

For example, for Es = P U U, we have E;, = {z | P} U {z | true}.
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We introduced E. because we can prove that, for any predicate E.,
(12.54) zeE, = E, (forall z),
which is equivalent to
(12.55) E;, = {z | Ep}
Thus, E, is the characteristic predicate for the set E. .
Your task in this exercise is to prove (12.54) by induction on the structure of
E..
12.48 Using the results of Exercise 12.47, prove that for any expression E. and
F.,
(1256) E.=F. = E, = F
12.49 Prove the following theorem. Make use of (12.56) from Exercise 12.48.
(12.57) E.=U = E,
12.50 Prove the following theorem by mutual implication.
(1258) E.CF. = E, = F,
12.51 Use the validity of (12.56)—(12.58) to argue that the following hold (trivial)
E.=F, isvalid iff E, = F, is valid.
E. =1U isvalid iff E, is valid.
E. CF, isvalid iff E, = F, is valid.
12.52 Finally, Metatheorem (11.25) can be proved. Note that (11.25) is in terms

of F,, while the theorems proved in Exercise 12.51 are in terms of E. . Find the
connection between them that allows (11.25) to be proved (and prove it).



Chapter 13

A Theory of Sequences

sequence is a finite list of elements from some set. In this chapter, we
develop a theory of sequences by defining them inductively and then
defining various operations on them.

There are a variety of reasons for studying sequences. First, the theory of
sequences provides an excellent opportunity to practice proofs by induction
in a setting other than the natural numbers. Second, the theory of sequences
serves as a basis for reasoning about lists in Lisp and arrays in imperative
languages, allowing us to make our reasoning about programs written in
these languages clearer and more precise. Third, the theory is the basis for
the important study of formal languages, which, among other things, has
led to methods for the automatic generation of parts of compilers.

13.1 The basic theory of sequences

Let A be a nonempty set that does not include an element ¢. We define
inductively the set seq(A) of finite sequences over A. Throughout this
chapter, variables a,b,c,d are of type A, while w,z,y,z are of type
seq(A) .

(13.1) Axiom, Empty sequence: ¢ ¢ seq(A)

(13.2) Axiom, Prepend: ¢ < z € seq(A)

(13.3) Axiom, Nonempty sequence: c 4z # ¢

(134) Axiom, Equality: b<zx=c<ay = b=cAz=y

The first two axioms define the members of set seq(A). Constant e is
called the empty sequence; it contains no elements. Operator <« is called
the prepend operator, because it “prepends” an element to a sequence. !

Axioms (13.3) and (13.4) define equality and inequality of sequences.

! To append an element to a sequence means to add the element at the end
of the sequence. There is no word for adding an element to the beginning of a
sequence, so we have coined the word “prepend”. The Oxford English Dictionary
defines the (obsolete) word “prependant” as “hanging down in front”.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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Operator < is taken to be right associative, so that
bdc<az = ba(c<x)

Left associativity would not make sense, because b < ¢ is not defined for
¢ an element; b <4 x is defined only for b: A and x:seq(A) . This explains
why the sequence € is placed at the end of 39694 <€e; 396 <4 isnot
an expression.

In this text, we abbreviate a sequence 3 <6 <4 <€ by the tuple (3,6,4).
A tuple is simply a list of expressions, separated by commas and delimited
by ( and ). Sometimes, we prefix the term tuple with the length of the
tuple in question. For example, we may talk of the 2-tuple (6,4).

Note that ¢ is not considered an element of the sequence 3 16 <4 qe€.
Also, € = () . Further, an element c is different from the singleton sequence
consisting of ¢, which is written as ¢ < €, or (c).

INDUCTION OVER SEQUENCES

Define relation istail for sequences z and y by
(y,z) €istail = (Fel:z = c < y)
Thus, y is a tail of x iff deleting the first element of z results in y.

Since we are considering only finite sequences —i.e. sequences with a
finite number of elements— the length of any chain
(1, x0) € istail,
(xg, 1) € istail,

(z3,x2) € istail,

is finite. Hence, (seq(A),istail) satisfies finite chain property (12.24) and
is noetherian (12.25), which in turn implies that it is well founded and
admits induction. The induction principle, according to (12.19), is

(Vzl: Px) = (VzI: (Vy | ({y,z) €istail : P.y) = P.x)

Since (z,c < z) € istail , we can express this induction without referring to
relation istail , and as a form of (weak) induction. For any predicate P.x,

(13.5) Axiom, Induction over sequences:
(Vz|: Px) = Pe A (Ve,xz|: Pz = P(c<azx))

We present two theorems. Theorem Decomposition (13.6), the more im-
portant one, gives us a means of proving properties of an arbitrary sequence
z by case analysis: either z = ¢ or £ =b <y for some b and y.
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Theorems for sequences

(13.6) Decomposition: z =€ V (Ib,yl:x = b < y)

(13.7) caz#z

The proof of Decomposition (13.6) is by Induction (13.5). We prove
(Vz|: Px), where Pz is z=¢V (3byl:z=b<y).

Base case Plz:=¢]|.
Plz := € |
(Definition of P ; textual substitution)
e=¢V (Ab,yl:e = bay)
(Reflexivity of equality; Zero of V (3.29))
true

Inductive case. For arbitrary element ¢ and sequence z, we assume
inductive hypothesis P.z and prove P(c < ).

P(c <)

= (Definition of P)
cax=¢V (Iylic<cz = bay)

= (Nonempty sequence (13.3); Identity of Vv (3.30))
(3bylicaz = bay)

<  (Range strengthening (9.25))
(@bylb=cAy=z:cdz = bdy)

= {One-point rule (8.14), twice)
cax = c<dx —Reflexivity of equality

We now prove (13.7), c<z # , by induction. Thus, we prove (Vz|: P.x)
where P.x is (Vel:c <z # ).

Base case P.c. P.c is Nonempty sequence (13.3) with z instantiated
with €.

Inductive case. We assume inductive hypothesis P.z and prove P(d < z)
for arbitrary d. For arbitrary ¢, we have,

~(cad<dz=ddazx)
= (Equality (13.4))
~{c=dAdazxz=x)
(Inductive hypothesis P.z)
—(c=d A false)
= (Zero of A (3.40); Negation of false (3.13))
true
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13.2 Extending the theory with new operations

Thus far, we have presented a rather bare theory of sequences. Our next
step is to make the theory more convenient to use, by defining new opera-
tions. The operations we define and analyze are:

e head.x and tail.x, the first element of x and the rest of x.
e cex, a test for membership of ¢ in x.

e x> ¢, which appends element ¢ to .

e 1 "y, which catenates two sequences together.

e ¢ Cy, apredicate equal to “z is a subsequence of y”.

1

e isprefiz(x,y) a predicate equal to “z is a prefix of y”.

3

o isseg(z,y) a predicate equal to “z is a subsegment of y”.

HEAD AND TAIL
Functions head and tail , defined below by axioms (13.8) and (13.9), pro-

vide a convenient way to refer to the elements of a sequence. Note that
head and tail are applied only to nonempty sequences.

(13.8) Axiom, Head: head(c <« z) =¢
(13.9) Axiom, Tail: tail(c < z) =z

Examples. Let =3 <6 <4 <€,ie z=(3,6,4). Then

head.x = 3 tailz =6 <4 qe¢ (= (6,4))
head(tail.z) = 6 tail(tail.z) =4 < ¢ (={4)
head(tail(tail.x)) =4  tail(tail(tail.z)) = (=) ad

Operations ¢ <z, head.z, and tail.z are found in many functional
programming languages. For example, they are written in Lisp and Scheme
as (cons cx), (car z), and (cdr x), respectively.

MEMBERSHIP

The following axioms define the membership relation for sequences: element
¢ is in sequence z iff ¢ is one of the elements of z. The first axiom
indicates that no element is in the empty sequence ¢ ; the second gives a
more positive, recursive, statement about when an element is in a sequence.

(13.10) Axiom, Membership: bee = false
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(13.11) Axiom, Membership: bec<sax = b=cV bex

APPEND

Being able only to prepend an element to a sequence is a bit limiting. We
now define binary infix operator append, . Expression x > ¢ yields a
sequence consisting of the elements of = followed by element c.

(13.12) Axiom, Append: ebc = c <€

(13.13) Axiom, Append: (b<az)pbc = b<a(z>c)

We show how this definition is used in calculating the result of appending
an element to a sequence.

(adab<ac<e)>d —whichis (a,b,c) > d

= (Append (13.13), with b,z,c:=a,b < c < €,d)
a<d((bacae)rd)

= (Append (13.13), with b,z,¢c:=b,c < €,d)
a<b<a((cae) > d)

= (Append (13.13), with b,z,c:=c,€,d)
adbdacda(erd)

= (Append (13.12))
a<db<ac<addae —whichis {(a,b,c,d)

Here are some theorems concerning © .

Theorems for

(13.14) Nonempty sequence: z > ¢ 7# €
(13.15) Equality: zpb=ypc = 2=y Ab=c

(13.16) Membership in b: be(z>c¢) = bex Vb=c

We prove Nonempty sequence (13.14) by induction, where we write
(13.14) as (Vz|: P.x) with Pxz: (Vel:e#zpc).

Base case P.c. For arbitrary ¢, we have

e c

= (Append (13.12))
cde

#+ (Nonempty sequence (13.3))
€
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Inductive case. We assume inductive hypothesis P.x and prove P(d < )
for arbitrary d. For arbitrary c, we have,

(dazx)>ec

= (Append (13.13))
d<(zp>o)

# {Nonempty sequence (13.3))

CATENATION

Evaluation of the expression z "y yields a sequence consisting of the ele-
ments of sequence x followed by the elements of sequence y. Operation
~ is inductively defined as follows.

(13.17) Axiom, Left identity of ": ¢"z = z
(13.18) Axiom, Mutual associativity: (b<y) "z = b« (y " x)

We have the following theorems. Mutual associativity theorem (13.22)
allows us to write expressions like z ~y > ¢ without parentheses. Due to
(13.13) and (13.18), we can now write sequences like a<bac z " y>c>d
and associate in any way we please.

Membership (13.24) is often taken as the definition of membership in a
sequence. To make it easier to read, we have used the notation (b) instead
of bae.

Theorems for > and °
(13.19) Right identity of ~: z"¢ =«
(13.20) Associativity of ": z~(y"2) = (z"y) "2
(13.21) Membership: bexz "y = bex V bey
(13.22) Mutual associativity: (z"y)>c = z"(y > ¢)

~

(13.23) Empty catenation: " y=€¢ = z=€eAy=¢

(13.24) Membership: bez = (Jy,zl:z=y" (b) " 2)
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SUBSEQUENCE

One sequence z is a subsequence of another sequence y if eliminating zero
or more elements from y yields z. For example, three subsequences of
y=12,3,8,5,2) are (), (3,5), and (3,5,2). The sequence (8,3) is not
a subsequence of y. We use the predicate « C y for “z is a subsequence
of y”. Formally, we define the subsequence relation, as well as the proper-
subsequence relation, as follows.

(13.25) Axiom, Empty subsequence: ¢ C y
13.26) Axiom, Subsequence: —(c < z C¢)

(

(13.27) Axiom, Subsequence: c<zCc<y = zCy
(13.28) Axiom, Subsequence: b#c¢ = (bazCcay = bdaz Cy)
(

13.29) Axiom, Proper subsequence: t Cy = zCyAz#y

The following theorems can be proved concerning subsequences.

Theorems for subsequence
(13.30) Reflexivity of C: zCzx
(1331) zCc«rx
(1332) zCcazx
(1333) 1Ce = z=¢
(13.34) zCy = (Vel:cex = cey)

(13.35) caxCy =
y#e N ((c=heady A x Ctaily) V c <z C tail.y)

PREFIXES AND SEGMENTS

A sequence z is prefir of y if y begins with z. For example, (2,3)
is a prefix of (2,3,8,1). Similarly, = is a segment of y iff r appears
somewhere within y as a subsequence of adjacent elements. For example,
(3,5,8) is a segment of (2,3,5,8,6), but (3,8) is not. We define relations
isprefiz(x,y) and isseg(xz,y) as follows.

(13.36) Axiom, Empty prefix: isprefiz(e,y)
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(13.37) Axiom, Not Prefix: isprefiz(c 4 x,¢) = false

(13.38) Axiom, Prefix: isprefiz(c < z,d <y) = c=d A isprefiz(z,y)
(13.39) Axiom, Segment: isseg(z,e) = T =¢

(13.40) Axiom, Segment:
isseg(z,c 4 y) = isprefix(z,c < y) V isseg(z,y)
The definitions of isprefir and isseg are rather cumbersome to use.

However, we can use operation "~ to provide characterizations of isprefiz
and isseg that are easier to use in reasoning about them.

Characterization of isprefix and isseg

(13.41) usprefix(z,y) = (Fzl:z"z=1y)

(13.42) isseg(r,y) = (Fw,zl:w "z " z=4y)

13.3 Extending the theory to use integers

In order to define the length of a sequence (the number of elements in it) and
to refer to elements directly (for example, using .0, z.1, ... to reference
the elements of ), we need integers. A theory of integers is introduced
later, in Chap. 15; we will use integers here, assuming knowledge of the few
properties of the integers that we will need.

THE LENGTH OF A SEQUENCE

The length of a sequence z, denoted by #z , is the number of elements in
x . The length is defined by two axioms.

(13.43) Axiom, Length: #e =0
(13.44) Axiom, Length: #(c < z)=1+#z

From these axioms, we can prove the following properties.



13.3. EXTENDING THE THEORY TO USE INTEGERS 259

Properties of length #
(13.45) Singleton length: #(c <€) =1

(13.46) Length of ~: #(x "y) = #z + #y

(13.47) Length of subsequence: r Cy = #x < #y

CoOuNT
Operation ¢ # z yields the number of occurrences of element ¢ in sequence

z , analogous to the corresponding operation on bags (see page 212). Op-
eration ¢ # x is defined as follows.

(13.48) Axiom, Count: c#e=10
(13.49) Axiom, Count: c# (c<z) =1+ (c# 1)
(13.50) Axiom, Count: b#c = b#(cazxz)=b#z

We can use # to characterize the membership relation:

Characterization of membership

(1351) cexz = c#x>0

REFERRING TO ELEMENTS OF A SEQUENCE

In the sequence z = (4,6,1), we refer to the first element 4 by z.0, the
second element 6 by z.1, and the third element by z.2. That is, we use
function-application notation to refer to elements. We define this notation
as follows.

(13.52) Axiom, Element reference: (c < z).0=c

(13.53) Axiom, Element reference:
(Vnl0<n<#z:(caz)(n+1)=z.n)

Note that z.n is not defined if n > #x . In particular e.n is undefined for
all natural numbers n because #e¢ = 0. Also, we now have two notations
for referring to the first element of a sequence: .0 and head.z .
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Catenation is related to our notation for referring to elements by the
following two theorems.

Referencing elements of a catenation

(13.54) (Ym:N|n<#z:(x"y)n=zn)

(13.55) (Vm:N|#z <n<#(z"y):(z " y)n=y(n—#z))

Our notation for referring to an element of a sequence suggests a relation
between sequences and functions. In fact, we could have defined a sequence
z:seq(A) of length n to be a function z:N — A where x.i is defined only
for ¢ satisfying 0 < ¢ < n. With this definition, element references z.i
would have been primitives, while head.x , tail.z, etc., would have been
defined in terms of these primitives.

REFERENCING A SEGMENT OF A SEQUENCE
Given sequence x and two integers i,j satisfying 0 < ¢ < j 41 < #z,

the notation z[i..j] refers to the segment of z consisting of z.i, z(i+1),
.., x.j . For example,

(3,5,6,8)[0..1] = (3,5)
(3,5,6,8)[1..3] = (5,6,8)
(3,5,6,8)[1..1] = (5)
(3,5,6,8)[2.1] = ()

Note that #(z[i..j]) =j—i+1. So, z[i..7] is a singleton and «[i..i — 1] is
the empty segment beginning at z.i. In particular, €[0.. — 1] =

This notation can be defined inductively as follows.

(13.56) Axiom, Empty reference: z[0.. —1] =¢

(13.57) Axiom, Prefix reference:
(Vi:NJ0<j<#z:(caz)0.j]=caz[0.j—1])

(13.58) Axiom, Segment reference:
(Vi,j:N11<j<#z:(c<x)i.j]l=zft—1.5—-1])

As an example of the use of the notation, we show how (3,5,6,8,9)[1..2]
can be calculated.

(345969819 <¢)[l..2] —whichis (3,5,6,8,9)[1..2]
(Segment reference (13.58))

I
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(5496 a8 <9<e¢)0..1]

= (Segment reference (13.57))
54(6 <8<9 «e¢)0..0]

= (Segment reference (13.57))
5464819 a¢)0..—1]

= (Segment reference (13.56))
596 <e —whichis (5,6)

As an abbreviation, we write z[i..] for the segment z[i.#z — 1] and
z[..3] for the segment z[0..7].

ALTER

Most programming languages allow assignment to an element z.i of a
sequence or array z using the assignment statement z[i] := ¢. When
viewing a sequence as a function, it is advantageous to view z[i] := ¢ as
an assignment to z itself, and not simply as an assignment to one of its
elements. But to do this, we need a notation for the function that is being
assigned to x .

The notation (z;i:c) denotes a function or sequence that is the same as
sequence x except that its value at index ¢ is ¢. Thus, the assignment
zli] := ¢ could be written as z := (z;i:¢). For example,

((3,5,6);0:7) = (7,5,6)
((3,5,6);1:7) = (3,7,6)
((3,5,6);2:7) = (3,5,7) O

We define function alter in non-inductive fashion as follows.
(13.59) Axiom: (Vi:N | i< #z:(z; i:c) =z[0..i — 1) " {¢) " z[i + 1..])

Exercise 13.24 asks for an inductive definition for alter and a proof that
it is equivalent to (13.59). We also have the following theorem.

Alternative definition of alter

(13.60) (Vi,7:N,z,cl: (z;i:¢)[j] = if ¢ = j then c else z.j)

DiscusSsION

This chapter illustrates how one builds a theory of a set of objects by:

e Inductively defining the set of objects.
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e Deriving from the inductive definition a principle of induction that
can be used to prove things about the objects.

e Defining convenient functions on the objects and proving properties
about them.

Our theory of sequences introduced several notations for referring to
elements of a sequence. For example, the second element of z could be
referred to by head(tail.z) or by z.2. Each notation has some context
where it is useful —or else it should not have been created. For example,
Lisp aficionados will prefer using head.x (i.e. (car z)), tail.z ((cdr z))
and ¢ <4z ((cons c z)). But those using imperative languages like Pascal,
as well as the Lispers when dealing with arrays in Lisp, will use the notation
2.0 to refer to the first element of z . An array, after all, is simply a variable
that contains a sequence of fixed length. Our theory of sequences provides
the basic rules for reasoning about sequences in many different languages;
just the notation may change.

A number of concepts dealing with sequences have been relegated to
exercises:

e For sequences containing elements that are all the same, see Exer-
cises 13.26-13.27.

e For the reverse of a sequence, see Exercises 13.28-13.31.
e For permutations of a sequence, see Exercises 13.32-13.36.

e For palindromes, see Exercise 13.37.

Exercises for Chapter 13

13.1 Prove Equality (13.15), z b b=yb>c¢c = b=c A x =y by induction.
Hint. Rewrite this as (Vz |: P.z). In both the base case and the inductive case,
a case analysis on y will be used: y =€ or y =e < z for some e,z.

13.2 Prove Membership in > (13.16), be (z b ¢) bexVb=c.

13.3 Prove Right identity of ~ (13.19), 2 "¢ = z.

13.4 Prove Associativity of ~ (13.20), " (y "2) = (z"y) " z.
13.5 Prove Membership in ~ (13.21), be(z"y) = bex V bey.
13.6 Prove Mutual associativity (13.22), (z"y)pc =z " (y > ¢).
13.7 Prove Empty catenation (13.23), c "y=€¢ = z=€e¢ Ay=c¢.
13.8 Prove Membership (13.24), bez = (Jy,zl:z=y " (b) " 2).
139 Prove x Cy = zCyVz=y.
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13.10 Prove Reflexivity of C, (13.30), z C z.
13.11 Prove (13.31), z Ccax.

13.12 Prove (13.32) x Cc<ax.

13.13 Prove (13.33), t Ce = z=¢.

13.14 Prove (13.34), £ Cy = (Vel: cex = cey). This is perhaps the
messiest proof in the text, and we don’t like it. Our proof is by induction on y.
The inductive case has a case analysis based on z = ¢ and x = b < &’ for some
b and z’. The proof in the case £ = b < =’ has a three-case analysis.

138.15 Prove (13.35), cqazCy = y#e A ({c=heady Az Ctaily) Veax C
tail.y) .

13.16 Prove (13.41), isprefiz(z,y) = (Fzl:z"z=y).

13.17 Prove (13.42), isseg (z,y) = (Quw,zl:w’z"z=y).

13.18 Prove Singleton length (13.45), #(c g ¢)=1.

13.19 Prove Length of ~ (13.46), #(x " y) = #x + #y .

13.20 Prove Length of subsequence (13.47), x Cy = #z < #y.

13.21 Prove (13.51), cexz = c#z>0.

13.22 Prove (13.54), (Vm:N | n < #z:(z " y)n=1x.n).

13.23 Prove (13.55), (Vva:N | #z <n < #(z " y): (z " y).n =y(n — #x)).

13.24 Give an inductive definition for function alter and prove that the induc-
tive definition is equivalent to axiom (13.59).

13.25 Prove (13.60), (Vi,5:N|: (z;i:¢)[j] = if ¢ = j then c else z.j7) .

Exercises on relation same

13.26 Define inductively a boolean function same:seg(A) — B with meaning
“all the elements of sequence x are the same”.

13.27 Prove the following theorem concerning function same of Exercise 13.26.

same.x = (Vb,clbex Acez:b=c)

Exercises on the reverse of a sequence

13.28 Give an inductive definition, using < and b , of the reverse rev.x of a
sequence z . Function rev:seq(A) — seq(A) yields the elements of z, but in
reverse order. For example, rev.(3,5,6,2) = rev.(2,6,5,3) .

13.29 Prove rev(z > b) =b < rev.x.

13.30 Prove rev(rev.x) =x.
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13.31 Prove rev(z " y) = rev.y " rev.x.

Exercises on permutations of a sequence

13.32 Sequence z is a permutation of sequence y, written perm(z,y), if y
can be constructed by rearranging the order of the elements of z . For example,
(2,5,1,4) is a permutation of (5,4,2,1).

Define perm(z,y) using catenation, by defining perm(e,y) and perm(c<z,y)
(for all d,z ). Define the latter predicate in a manner similar to characterization
(13.42) of isseg .

13.33 Prove perm(z,z) (for all z).
13.34 Prove that perm is symmetric: perm(z,y) = perm(y, z) .

13.35 Prove that perm is transitive: perm(z,y) A perm(y,z) = perm(z,z).
This exercise, together with the two previous ones, shows that perm is an equiv-
alence relation (see Definition (14.33) on page 276).

13.36 Prove perm(z,rev.x).

Exercise on palindromes

13.37 Let A be the set of lowercase letters ‘a’, ... ‘z’. The palindromes are
the elements of seq(A) that read the same forwards and backwards. For exam-
ple, noon, is a palindrome, as is the following (if the blanks and punctuation
are removed): a man, a plan, a canal, panama!. And, the empty sequence is a
palindrome.

Using pal.z to mean that x is a palindrome, we define the palindromes as
follows.

pal.e = true
pal(c <€) = true
pallbazpbc) = b=c A palx

Prove that pal.z = rev.r = z for all sequences z, where rev.z is defined in
Exercise 13.28.



Chapter 14

Relations and Functions

e study tuples, cross products, relations, and functions. The n-

tuple, or sequence of length n, is the mathematical analogue of
the Pascal-like record: it is a list of values (but without names). The cross
product is the mathematical analogue of the Pascal record type: it is a set
of tuples, corresponding to the set of records that may be associated with
a variable of a record type.

In everyday life, we often deal with relationships between objects. There
is the relationship between parent and child, between name and address,
between position and wage, and so on. In mathematics, such relationships
are modeled using relations, which are simply sets of tuples with the same
length. And, a function can be viewed as a restricted kind of relation. The
theory of relations and functions that we present here is essential to much
of mathematics. Further, as can be seen in Sec. 14.5, the theory of relations
finds application in the very practical area of computerized databases.

14.1 Tuples and cross products

For expressions b and c, the 2-tuple (b,c) is called an ordered pair, or
simply a pair. In some notations, parentheses are used around a pair instead
of angle brackets.

Ordered pairs are frequently useful. For example, a
pair can be used to denote a point in the plane, with
the first component being the horizontal coordinate
and the second component being the vertical coordi-
nate of the point. As another example, the set of pairs
(name, address) , where name is the name of a student at Cornell and
address is their address, can represent the correspondence between stu-
dents and the addresses to which their grades should be sent.

It is possible to define ordered pairs using sets, as follows. For any ex-
pressions b and c,

(14.1) Ordered pair: (b,c¢) = {{b},{b,c}}

Thus, the pair can be formally defined in terms of set theory. We do not
explore the use of definition (14.1) here, but relegate it to exercises. Instead,

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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we use the following definition of pair equality.

(14.2) Axiom, Pair equality: (b,c) = (b',c) = b=V Ac=¢

CROSS PRODUCTS

The cross product or Cartesian product (named after the French mathe-
matician René Descartes; see Historical note 14.1) S x T of two sets S
and T is the set of all pairs (b,c) such that b isin S and ¢ isin T'.

(14.3) Axiom, Cross product: SxT = {b,clbeS AceT:(bc)}

For example, Z X Z denotes the set of integral points in the plane, R x R
denotes the set of all points in the plane, and {2,5} x {1,2,3} is the set

{(2,1),(2,2),(2,3),(5,1),(5,2), (5,3)} -

Here are some properties of the cross product.

Theorems for cross product

(14.4) Membership: (z,y)e SxT = 28§ A yeT

(14.5) (z,y) € SxT = (y,z) € Tx S8
(146) S=0 = SxT=TxS=0
(147) SxT=TxS =S=0vT=0vS=T

(14.8) Distributivity of x over U:
Sx(TUU) = (SxT)U (SxU)
(SUT)YxU = (SxU)u (TxU)

(14.9) Distributivity of x over N:
Sx(TNU) = (SxT)n(SxU)
(SNT)xU = (SxU)N (T xU)

(14.10) Distributivity of x over —:
Sx(T-U) = (SxT)—(SxU)

(14.11) Monotonicity: TCU = SxTCSxU
(1412) SCUATCV = SxTCUxV

(1413) SxTCSxUANS#0 = TCU
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Theorems for cross product (continued)

(14.14) (SNT)xUNV) = (SxU)N (T xV)

(14.15) For finite S and T, #(S x T) = #S-#T

We can extend the notion of a cross product from two sets to n sets.
For example, Z x N x {3,4,5} is the set of triples (z,y,2) where z is an
integer, y is a natural number, and 2z is 3, 4, 0or 5. And, RXxR xR
is the set of all points in three-dimensional space. The theorems shown for
the cross product of two sets extend to theorems for the cross product of
n sets in the expected way, so we don’t discuss them further.

The n-tuple and cross product are directly related to the record and
record type in a programming language like Pascal. Suppose type T and
variable v are declared in Pascal as follows:

T = record z:integer; r:real; y:integer end ;

var v: T

Then T denotes the cross product Z x R x Z —i.e. T stands for the set
of all tuples (z,r,y) where x, r, and y have the appropriate types. Also,
variable v may be associated with any such tuple. The difference between
the record and the tuple is that the record names the components, while
the tuple does not. We could call a record a named tuple.

In Chap. 8, we discussed the type of a function. A function of two
arguments of types t1 and t2 and a result of type 3 was given type
t1 x t2 — t3. We see now the reason for the use of x in describing this
type. As a tuple, the arguments a1l and a2 (say) of a function application
f(al,a2) form an element of the set ¢1 x ¢2.

14.2 Relations

A relation on a cross product B X ---X B, is simply a subset of By x---x
B,, . Thus, a relation is a set of n-tuples (for some fixed n).! A binary
relation over B x C is a subset of B x C . The term binary is used because
a member of a binary relation is a 2-tuple. 2 If B and C are the same, so
that the relation is on B x B, we call it simply a (binary) relation on B.

! The reader is invited to skip ahead to Sec. 14.5, where databases are dis-
cussed. There, the idea of a relation as a set of n-tuples is made concrete.
2 Prefix bi, from Latin, means two.
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HISTORICAL NOTE 14.1. RENE DESCARTES (1596-1650)

Descartes, the greatest of French philosophers, is known for his Discourse
on Method. The first part of Discourse outlines the essentials of Descartes’s
philosophy. Important for him are four points: (1) never accept anything as
true that is not clearly known to be so; (2) break problems into small, simple
parts, (3) start with the simplest and easiest things to know and build up
knowledge from them in small, orderly steps; and (4) make sure enumerations
are complete, so that nothing is omitted. Other parts of Discourse apply his
method in different fields, e.g. optics and analytic geometry. In later works,
application of the method leads Descartes to his first certitude, his famous “I
think, therefore I am.”, as well as to proofs for himself of the existence of God
and the separateness of the soul and the body.

Discourse was finished in 1637, but the beginnings of Descartes’s great dis-
coveries in analytic geometry came by way of a sort of spiritual conversion,
some twenty years earlier. In 1616, while in the army, he had three vivid
dreams, which filled him with “enthusiasm” and revealed to him, among other
things, “the foundations of a wonderful science”. This was the application of
algebra to geometry, with the use of coordinates in the plane as a link between
the two. Descartes is the first to describe curves by equations, to classify curves,
and to use algebra to discover new curves and theorems about curves. He made
the study of geometries of higher dimensions possible. Through Descartes, as
E.T. Bell puts it, “algebra and analysis [became] our pilots to the uncharted
seas of ‘space’ and its ‘geometry’.”

At the age of eight, Descartes was precocious but very frail. Consequently,
the rector of his school let him stay in bed as late as he wanted, even until
noon. Descartes continued the practice almost all his life —suppress your envy,
college students! At the age of 53, he was persuaded to come to Sweden to teach
Queen Christina. Unfortunately for Descartes, she wanted to start lessons at
5AM. Less than five months later, he caught a chill coming home from one of
her lessons one bitter January morning and died a few weeks later.

In the following sections, we will be focusing on binary relations. There-
fore, from now on, we abbreviate “binary relation” by “relation”.

If a relation is not too large, we can define it by listing its pairs. For
example, the following relation consists of two pairs, each containing the
names of a coauthor of this book and his spouse.

{(David, Elaine}, (Fred, Mimi) }

The “less than” relation < over the natural numbers is also a binary
relation. We could try to list its pairs,
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but because there are an infinite number of pairs, a better presentation
would use set comprehension:

{1,7:N | j — ¢ is positive : (i, 5)}

1,1 Finally, a binary relation can be described by
(1,3) @ a directed graph. The graph has one vertex
2,5) for each element of the set, and there is a
@n (9/ directed edge from vertex b (say) to vertex
5,3) ® c iff (b,c) isin the binary relation. Thus, the

theory of relations and the theory of directed
graphs are related. We return to graph theory in Chap. 19.

Examples of (binary) relations
(a) The empty relation on B x C' is the empty set, 0.
(b) The identity relation 15 on B is {z | zx€ B : (z,x)}.

(c) Relation parent on the set of people is the set of pairs (b,c) such
that b is a parent of c¢. Relation child on the set of people is the set
of pairs (b,c) such that b is a child of c. Relation sister on the set
of people is the set of pairs (b,c) such that b is a sister of c.

(d) Relation pred (for predecessor) on Z is the set of pairs (b—1,b) for
integers b, pred = {b:Z | (b —1,b)}. Relation succ (for successor)
is defined by succ = {b:Z | (b+ 1,b)}.

(e) Relation sgrt on R is the set {b,c:R | b2 =c:(b,c)}.

(f) An algorithm P can be viewed as a relation on states. A pair (b, c)
is in the relation iff some execution of P begun in state b terminates
in state c. O

Two completely different notations are used for membership in a relation.
Conventionally, we view b < ¢ as an expression that evaluates to true or
false depending on whether or not b is less than c. Alternatively, < is a
relation, a set of pairs, so it is sensible to write (b,c) € <. In general, for
any relation p:

b,c) e p and b p ¢ are interchangeable notations.
P P

One notation views p as a set of pairs; the other views p as a binary
boolean function written as an infix operator. By convention, the prece-
dence of a name p of a relation that is used as a binary infix operator
is the same as the precedence of =; furthermore, p is considered to be
conjunctional. For example,

bpcpd = bpec AN cpd
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In this chapter, we use small Greek letters for names of arbitrary relations,
to distinguish them from names of other entities (see the front inside cover).

The domain Dom.p and range Ran.p of a relation p on B x C are
defined by

(14.16) Dom.p = {b:B | (3cl:bpc)}
(14.17) Ran.p = {cC | (Il:bpc)}

P Dom.p is just the set of values that appear as the

first component of some pair in p, and Ran.p is the

@’ @ set of values that appear as the second component
of some pair in p. B and Dom.p need not be the

same. For example, let B be the set of people and let p be the relation

parent given above. Then Dom.p is the set of people who have children,
and not the set of all people.

OPERATIONS ON RELATIONS

Suppose p and o are relations on B x C' . Since a relation is a set, p U o,
pNo, p—o,and ~p (where the complement is taken relative to universe
Bx (') are also relations on BxC'. We now introduce two other important
operations on relations: the inverse of a relation and the product o of two
relations.

The inverse p~' of a relation p on B x C is the relation defined by
(14.18) (b,c)ep™ = (c,byep (forall b:B, c:C).

For example, the inverse of relation parent (see page 269) is relation child,
the inverse of pred is succ, and the identity relation is its own inverse.

The following theorem gives useful properties of the inverse; its proof is
left to the reader.

FIGURE 14.1. ILLUSTRATION OF PRODUCT RELATION

b(poo)d holds iff bpcod holds for some c.
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(14.19) Theorem. Let p and o be relations.

(a) Dom(p~!) = Ran.p.

(b) Ran(p~!) = Dom.p.

(¢) If p isarelationon BxC,then p~! isarelationon CxB.
d () =p.

(€ pSo = piCo™!

Let p be a relation on B x C and o be a relation on C x D. The
product of p and o, denoted by p o o, is the relation defined by

(14.20) (b,dyepooc = (BeclceC:(bchep A {c,dyer) |,
or, using the alternative notation, by

(14.21) b(poo)d = (Fel:bpcod)

The product relation is illustrated in Fig. 14.1.

Examples of product

(a) Let p and o both be relation parent. Then (b,d) € p o o iff there
is a person c¢ such that b is a parent of ¢ and ¢ is a parent of d.
Thus, b po o d iff b is d’s grandparent, so parent o parent is the
relation grandparent .

(b) The relation sister o father denotes the relation paternal aunt: b
is a paternal aunt of d means b is a sister of a person who is the
father of d.

(c) The relation succ o pred is the identity relation 2y . o

We list below a number of theorems for o. These theorems hold for all
binary relations p, ¢, and 6.

Theorems for relation product

(14.22) Associativity of o: po (0 0f) = (pooc)of

(14.23) Distributivity of o over U: po(cUf) =pooc U pof
(cUB)op=0cgop UBop

(14.24) Distributivity of o over N: po (o N 6)
(cnNéb)op

Cpoo N pob
CoopnNnN Bop

Since relation product is associative, we may omit parentheses in a sequence
of products.
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We prove Associativity of o (14.22). By Axiom of Extensionality (11.4),
it suffices to prove that any arbitrary element is in the LHS exactly when
it is in the RHS, which we now do. For an arbitrary pair (a,d) we have:

apof(cofd)d

= (Definition (14.21) of p o (o 0 8))
(3bl:apb A b(o o0 8)d)

= (Definition (14.21) of o o #; Nesting (8.20))
(3b,cl:apb A boc A chd)

= (Nesting (8.20); Definition (14.21) of p o o)
(Fel:a(poo)e A chd)

= (Definition (14.21) of (p 0 o) 0 8)
a(pooc)ofd

Relation p o p is often written as p?. In fact, for p defined on a set
B, for any natural number n we define p composed with itself n times,
or p™, as follows.

(14.25) p° = 1p (the identity relation on B ; see example (b) on

page 269)
= prop (for n>0)

For example, we have: parent? is parent o parent, (i.e. grandparent),
parent® is parent? o parent ( great-grandparent ), and so forth. We also
have bpredic = b+i=c.

We have the following two theorems. Their proofs, by mathematical in-
duction, are left as exercises.

Theorems for powers of a relation

(14.26) p™ o p" = p™t™ (for m >0,n>0)

(14.27) (™)™ = p™'" (for m>0,n>0)

When the set over which a relation is constructed is infinite, then all the
powers p' may be different. For example, relation pred® is distinct for
each natural number i. However, if the set is finite, then there are only a
finite number of possible relations for the pt:

(14.28) Theorem. For p a relation on finite set B of n elements,
(3i,j10<i<j<2 :pf = pT)

Proof. Each relation p' is a member of the power set P(B x B). B x B

has n? elements. By theorem (11.73), P(B x B) has 27" elements, so
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there are o glifferent relations on B. The sequence p°,p!,...,p* for
k=2" has 2™ + 1 elements, so at least two of them are the same. g

We leave the proof of the following theorem to the reader. The theorem

states that if the sequence p°, p!,... begins repeating, it repeats forever
with the same period.

(14.29) Theorem. Let p be arelation on a finite set B . Suppose p* = p?
and 0 <7< j. Then

(a)ptk = pitk (for £ >0)
(b)p* = p"*P" U= (for p>0)

CLASSES OF RELATIONS

A few classes of relations that enjoy certain properties are used frequently,
and it is best to memorize them. Table 14.1 defines classes of relations p
over some set B . Each class is defined in two ways: first in terms of the
property that the elements of such a relation satisfy and then in terms of
operations on sets. The definition in terms of the properties, which is often
the first one thought of, mentions set members in some way. The definition
in terms of operations on sets is more succinct and is often easier to work
with. Exercise 14.25 asks you to prove that these alternative definitions are
equivalent.

Examples of classes of relations

(a) Relation < on Z is reflexive, since b < b holds for all integers b.
It is not irreflexive. Relation < on Z is not reflexive, since 2 < 2 is
false. It is irreflexive.

TABLE 14.1. CLASSES OF RELATIONS p OVER SET B

Name Property Alternative
(a) reflexive (Vbl:bpb) 13 Cp
(b) irreflexive (Vbl: =(bp b)) ieNp = 0
(¢) symmetric (Vb,cl:bpc = cphb) ol =p
(d) antisymmetric (Vb,cl:bpc A cpb = b=c) pnp ! C i
(e) asymmetric  (Vb,cl:bpc = —(cpb)) pNp™t =0
(f) transitive (Vb,c,dl:bpec A cpd = bpd) p=(Uili>0:p")




274 14. RELATIONS AND FUNCTIONS

(b) Consider relation square on Z that is defined by b square c iff
b = c-c. It is not reflexive because it does not contain the pair (2,2) .
It is not irreflexive because it does contain the pair (1,1). Thus, a
relation that is not reflexive need not be irreflexive.

(¢) Relation = on the integers is symmetric, since b = ¢ = ¢ =b.
Relation < is not symmetric.

(d) Relation < is antisymmetric since b < cAc¢<b = b=c. Relation
< is antisymmetric: since b < ¢ A ¢ < b is always false , we have
b<cAc<b= b=c forall b,c. Relation # is not antisymmetric.

(e) Relation < is asymmetric, since b < ¢ implies ~(c < b). Relation
< is not asymmetric.

(f) Relation < is transitive, since if b < ¢ and ¢ < d then b < d. Rela-
tion parent isnot transitive. However, relation ancestor is transitive,
where b ancestor ¢ holds if b is an ancestor of c. O

The closure of a relation p with respect to some property (e.g. reflex-
ivity) is the smallest relation that both has that property and contains
p . To construct a closure, add pairs to p, but not too many, until it has
the property. For example, the reflexive closure of < over the integers is
the relation constructed by adding to relation < all pairs (b,b) for b an
integer. Therefore, < is the reflexive closure of <.

The construction of a closure does not always make sense. For example,
the irreflexive closure of a relation containing (1,1) doesn’t exist, since it
is precisely the presence of this pair that makes the relation not irreflexive.
Three properties for which constructing closures makes sense are given in
the following definition.

(14.30) Definition. Let p be arelation on a set. The reflezive (symmetric,
transitive) closure of p is the relation p’ that satisfies:
(a) p’ is reflexive (symmetric, transitive);
(b) pC '
(¢) If p” is reflexive (symmetric, transitive) and p C p”, then

o Cp.

We use the following notations: r(p) is the reflexive closure of p;
s(p) , the symmetric closure; p*, the transitive closure; and p*,
the reflexive transitive closure.

Examples of closures

(a) The reflexive closure (<) of < on the integers is <.

(b) The symmetric closure s(parent) of parent is parent U child , since
if (b,c) is in the symmetric closure, then so is (c,b) .
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(c) The transitive closure parent™ of parent is ancestor , since when-
ever (b,c) and (c,d) are in the transitive closure, then so is (b,d) .

(d) The reflexive transitive closure parent* of parent is the relation
ancestor-or-self . O

The following theorem is almost so trivial that it needs no proof, although
we do ask you to prove it in the exercises.

(14.31) Theorem. A reflexive relation is its own reflexive closure; a sym-
metric relation is its own symmetric closure; and a transitive rela-
tion is its own transitive closure.

In Definition (14.30), we defined a closure of a relation p in terms of three
properties enjoyed by p and its closure. An alternative definition shows
how to construct the closure from the set. Here, we state the constructive
formulations as a theorem.

(14.32) Theorem. Let p be a relation on a set B. Then,
(a) r(p)=pUs

(b) s(p)=puUpt
() pT=(Uil0<i:p)
(d) p*=ptUip.

Proof. We prove the more difficult part (14.32c) and leave the others to the
reader. To prove (14.32c), we have to show that it satisfies the three parts
of Def. (14.30). We first show that p* is transitive. For arbitrary elements
b, ¢, d of B, we have,

(byc)e (Uill1<i:p') A {c,dye (Uil 1<i:p)

= (Definition of U (11.20), twice)
(3jl..: (b,c) € pI) A (Fkl..: {c,d) € p¥)

= (Distributivity of A over 3 (9.21); Nesting (8.20))
(34,k1...: {b,c) e p? A {c,d) € p¥)

=  (Definition of product (14.20))
(34, k1...: {b,d) € p? o p¥)

= (Theorem (14.26) —and inserting ranges of j and k)
(F7,k 11 <5 AL1<k:(bd)epitk)

= (One-point rule (8.14))
G, kli=j+hkA1<jAL<k:(bd ep)

= (Arithmetic; predicate calculus to eliminate j, k)
(Fi12<i:(bd)ep))

= (Definition of U (11.20); Range weakening)
(b,d) € (Uil: p*)

Hence, (Uil: p?) is transitive.
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Next, Part (b) of Def. (14.30), p C (Ui | 0 < i : p*), follows easily from
p! = p and properties of U.

Finally, we show that Part (c) of Def. (14.30) holds:
if p” is transitive and p C p”, then pt C p”.

where pt = (Ui | 0 <1 : p*). Thus, we assume p” is transitive and p C p”
and prove pT C p”. Any pair (b,c) in pT satisfies b p’ ¢ for some positive
integer 7. Hence, we prove the following by induction.

(Vil0<i:p'Cp")
Base case i = 1. The base case follows from the definition p! =p.

Inductive case. For ¢ > 1, we assume the inductive hypothesis pt Cp”
and prove p*t! C p” . For arbitrary b,d we have,

(b,d) € p**!
= (Def. of power (14.25); Def. of product (14.20))
(3el: (b,c) € p* A {c,d) € p)
= (Induction hypothesis p* C p”; Assumption p C p”)
(Fcl: (b,c) € p” A (c,d) € p")
=  (Assumption p” is transitive)
(b,d) € p" O

EQUIVALENCE RELATIONS

Another important class of relations is the class of equivalence relations.

(14.33) Definition. A relation is an equivalence relation iff it is reflexive,
symmetric, and transitive.

For example, equality = is an equivalence relation, while < is not.

An equivalence relation p on a set B partitions B into non-empty
disjoint subsets. Elements that are equivalent under p are placed in the
same partition element, and elements that are not equivalent are placed in
different partition elements. For example, the relation sameeye over the
set of people is defined by

(b,c) € sameeye = b and ¢ have the same eye color.

This relation partitions the people into the subset of people with blue
eyes, the subset with brown eyes, etc. Having a correspondence between
equivalence relations and partitions is a useful bridge between the theory
of relations and the theory of sets. The purpose of this subsection is to
prove formally that this correspondence exists.
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We begin by defining the subsets determined by an equivalence relation.

(14.34) Definition. Let p be an equivalence relation on B. Then [b],,
the equivalence class of b, is the subset of elements of B that are
equivalent (under p) to b:

zebl, = zpb

In what follows, we eliminate the subscript p and write
[b], as [b] when it is obvious from the context what re-
lation is meant. The diagram to the left illustrates the
partition of a set by an equivalence relation p. Assuming
bpc, b and ¢ are in the same partition element and
[0] = [¢] . Assuming —(bpd), b and d are in different partition elements
and [b] N [d]=0.

Examples of equivalence classes

(a) Consider the relation b £ ¢ on the integers 0..9:

bZc = b—c is a multiple of 4.
We have,

[0] = [4] = [8] = {0,4,8}

(1] = [5] = [9] = {1,5,9}

2] = [6] = {2,6}

Bl=[71={3,7}

(b) Consider relation p defined on the set of people by b p ¢ iff b and
¢ are female and either b and ¢ are the same person or b is c¢’s
sister. Relation p is reflexive, symmetric, and transitive, so it is an
equivalence relation. For a female b, [b] consists of b and b’s sisters,
while the equivalence class for a male contains only that male. O

We now prove the following theorem.

(14.35) Theorem. Let p be an equivalence relation on B and let b,c be
members of B . The following three predicates are equivalent:

(a) bpc,
(b) ] N [c]#0,and
(c) [Bl=Id.

Thatis, (bpc) = (16N [d #8) = (] = [c]).

Proof. We can prove, in turn, (a) = (b), (b) = (c¢), and (¢) = (a).
Mutual implication and transitivity of = then give the equivalence of all
three. We prove (a) = (b) and leave the other two cases to the reader:
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bpc
= (Identity of A (3.39); p is reflexive)
bpb A bpc
= (Definition (14.34), twice)
be[b] A beld
= (Definition of N (11.21))
be BN
= (The empty set @ does not contain b (see page 197))
BN # 0 O

Theorem (14.35) allows us to show, and quite easily, that the sets [b],
for an equivalence relation p on B form a partition of B. First, none
of the sets is empty, since each element b is in [b],. Second, the union
of the sets [b], is B, since each element b is in the set [b],. Third, we
show below that if two sets [b], and [c], are not the same, then they are
disjoint. The proof relies on the fact that (b) and (c) of Theorem (14.35)
are equivalent:

( )
bl,=1[cl, = [b] N [c]#0
((14.35b) = (14.35¢))

true

Thus, an equivalence relation on B induces a partition of B, where each
partition element consists of equivalent elements.

We could ask the question in the other direction: does a partition of
B define an equivalence relation on B ? The next theorem answers this
question affirmatively.

(14.36) Theorem. Let P be the set of sets of a partition of B. The
following relation p on B is an equivalence relation:

bpc = (IplpeP:bep A cep)

Proof. We must show that p is reflexive, symmetric, and transitive. Re-
flexivity follows from the fact that each element is in one of the sets in P.
Symmetry follows from the definition of p in terms of A, which is sym-
metric. Thus, to prove b pc = c¢ pb, apply the definition of p to the
LHS, use Symmetry of A (3.36), and then apply the definition of p in the
other direction. We prove transitivity as follows (in the proof, the range of
dummies p and g is P):
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bpec N cpd
= (Definition of p, twice)
(Ipl:bep Acep) AN (3gl:ceq Adegq)
= (Distributivity of A over 3 (9.21); Nesting (8.20))
(Op,ql:bep Acep ANceg Adeq)
= (¢ is in only one element of the partition,
so ceEpAceq = p=q)
(Ip,ql:bep Acep ANcegq NdeqAp=q)
=  (Trading (9.20), One-point rule (8.14))
(3pl:bep Acep Acep ANdep)
=  (Idempotency of A (3.38))
(3pl:bep A cep A dep)
= (Monotonicity of 3 (9.27))
(pl:bep A dep)
= (Definition of p)
bpd O

14.3 Functions

We have used functions throughout this text, but in a rather informal
manner. We regarded a function f as a rule for computing a value v
(say) from another value w (page 13), so that function application f(w)
or f.w denotes value v: f.w =wv. The fundamental property of function
application, stated in terms of inference rule Leibniz (page 13), is:

X=Y
fX=fYy
It is this property that allows us to conclude theorems like f(b+b) = f(2-b)
and fb+ fb=2-fb.

This definition of function is different from that found in many program-
ming languages. It is possible in some programming languages to define a
function f that has the side effect of changing a parameter or global vari-
able, so that in evaluating f.b+ f.b, the value of the first and second func-
tion applications f.b are different. But this means that f.b+ f.b=2-f.b
no longer holds! Eschewing such side effects when programming enables
the use of basic mathematical laws for reasoning about programs involving
function application.

For the rest of this section, we deal only with functions of one argument.

This restriction is not serious, because a function f(pi,...,p,) can be
viewed as a function f.p with a single argument that is an n-tuple. Thus,
a function application f(ai,...,a,) would be written as f.{(a1,...,an).

In addition to thinking of a function as a rule for computing a value, we
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can regard a function as a binary relation on B x C that contains all pairs
(b,c) such that f.b=c. However, a relation f can have distinct values ¢
and ¢ that satisfy b f ¢ and b f ¢, but a function cannot.

(14.37) Definition. A binary relation f on B x C is called a function
iff it is determinate:

Determinate: (Vb,c,c/ |bfc A bfc:c=¢)

Further, we distinguish between two kinds of functions:
(14.38) Definition. A function f on B x C is total if
Total: B = Dom.f;

otherwise it partial. We write f : B — C for the type of f if f
is total and f:B~» C if f is partial.

In some texts, the word function means either a total or a partial func-
tion; in others, function means only total function. In this section, we are
careful to state exactly which we mean. In the rest of the text, we are not
so careful. For example, elsewhere, we use the notation f:B — C for all
functions, total or partial.

The reason for distinguishing between total and partial functions is that
dealing with partial functions can be messy. What, for example, is the
value of f.b=f.b if bg Dom.f, so that f.b is undefined? The choice of
value must be such that our rules of manipulation —the propositional and
predicate calculi— hold even in the presence of undefined values, and this
is not so easy to achieve. However, for a partial function f:B ~» C, one
can always restrict attention to its total counterpart, f:Dom.f — C.

Examples of functions as relations

(a) Binary relation < is not a function, because it is not determinate
—both 1 <2 and 1 <3 hold.

(b) Identity relation :p over B is a total function g : B — B; 1.b=1b
for all b in B.

(¢} Total function f:N — N defined by f(n) = n + 1 is the relation
{(0,1),(1,2),(2,3),...}.

(d) Partial function f:N ~ Q defined by f(n) = 1/n is the relation
{{(1,1/1),(2,1/2),(3,1/3),...} . It is partial because f.0 is not de-
fined.

(e) Function f:Z* — Q defined by f(b) = 1/b is total, since f.b is
defined for all elements of Z* , the positive integers. However, g:N ~»
Q defined by g.b=1/b is partial because ¢.0 is not defined.
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(f) The partial function f that takes each lower-case character to the
next character can be defined by a finite number of pairs: {(‘a’,‘b’),
(‘b’,¢), ..., {4,‘2")}. It is partial because there is no pair whose
first component is ‘z’. O

When partial and total functions are viewed as binary relations, functions
can inherit operations and properties of binary relations. For example, two
functions (partial or total) are equal exactly when, viewed as relations,
their sets of pairs are equal.

On page 271, we defined the product of two relations. Therefore, the
product (f o g) of two total functions has already been defined. We now
manipulate (f o g).b =d to determine what this means in terms of f and
g separately.

(fog)b=d

= (Viewing f o g as a relation)
b(fog)d

= (Definition (14.20) of the product of relations)
(Bel:bfe A cgd)

= (Viewing relation pairs in terms of function application)
(Fel: fb=c AN gec=4d)

= (Trading (9.19))
Becle=fb:gc=4d)

= (One-point rule (8.14))
g(fb) =d

Hence, (f o g).b = g(f.b). That seems backward! We would rather see
f(g.b) = d in the RHS of this equality, so that we don’t have to switch
the order of f and g when switching between relational notation and
functional notation. We therefore introduce a new symbol «, called com-
position:

(14.39) Definition. For functions f and g, feg = go f.
Then, with the above calculation, we have proved the following theorem.

(14.40) Theorem. Let g: B — C and f:C — D be total functions. Then
the composition feg of f and g is the total function defined by

(f+9).b = f(gb)

The theory of binary relations tells us that function composition is asso-
ciative: (feg)eh = fe(g+h). Powers of a function f:B — B are defined
as well. Thus, f° is the identity function: f°.b = b. And, for n > 0,
FrLb = f(frb).
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INVERSES OF TOTAL FUNCTIONS

We now investigate the inverse of a total function. Every relation p has
an inverse p~!, which is defined by (c,b)ep™! = (b,c)ecp. However,
for total function f, relation f~! need not be a function. For example,
consider the total function f:Z — N given by f(b) = b*>. We have

f(=2)=4 and f2=4,ie (-2,4)ef and (2,4)€ f.
Therefore, (4,2) € f~! and (4,—-2)e f~!,s0 f~! is not determinate and
is not a function.

Some terminology helps characterize the total functions with inverses
that are functions.

(14.41) Definition. Total function f:B — C is onto or surjective if
Ran.f = C . Total function f is one-to-one or injective if

(Vo,t:B,c:Cl:bfcAb fc=b=1V)
Function f is bijective if it is one-to-one and onto.

A function can be made onto by changing its type. For example, function
f:N — N defined by f(b) =b+1 is not onto, since f.b # 0 for all natural
numbers b. However, function f:N — Z* defined by f(b) = b+1 is onto.

(14.42) Theorem. Let f be a total function, and let f~! be its relational
inverse. Then f~! is a function, i.e. is determinate, iff f is one-
to-one. And, f~! is total iff f is onto.

Proof. We first show that f~! is determinate iff f is one-to-one —the left
part of Fig. 14.2 illustrates this property.

(Ve,b,b lcf'b A cf tV:b=0b) — f! is determinate
= (Definition of f~1)
(Ve,b,b' 1bfe AN b fc:b=b) —f is one-to-one

Next, we prove that f~! is total iff f is onto —the right part of Fig. 14.2
illustrates this property.

FIGURE 14.2. ILLUSTRATION FOR THEOREM (14.42)

D) (L

function not inverse not function not inverse not
one-to-one determinate total onto
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Dom(f~')=C — f7! is total
= (Definition of f~1)
Ran.f =C — f is onto O

From the theory of relations, we also borrow the notion of an identity.
If total function f:B — C has an inverse, then f~!s f =15, the identity
function on B, while fef ! =1c.

(14.43) Definition. Let f:B — C. A left inverse of f is a function
g:C — B such that ge f =15 . A right inverse of f is a function
g:C — B such that feg=1¢. Function g is an inverse of f if
it is both a left and a right inverse.

In some situations, it helps to distinguish between left and right inverses.
Historical note 14.2 shows how these concepts are useful in providing secu-
rity in electronic message-passing systems, where a third party should not
be able to understand an intercepted message between two people.

Examples of left and right inverses

(a) Consider abs:Z — N defined by if b < 0 then —b else b. Then, for
any natural number b, abs(iy.b) = abs.b = b. Therefore, abs <1y =
I, 80 1y is a right inverse of abs.

(b) Consider abs:Z — N defined by if b < 0 then — b else b. Define
neg:N — Z by neg.b = —b. Then abs(neg.b) = abs(—b) = b. There-
fore, abseneg = 1, so neg is a right inverse of abs (see example
(a) above).

(c) Look at the first two examples. Both ©:N — N and neg:N — Z are
one-to-one. By theorem (14.45) below, they have left inverses. The

two examples above show that abs:Z — N is a left inverse of both
functions. O

(14.44) Theorem. Function f:B — C is onto iff f has a right inverse.

Proof. Consider relation f~!. Theorem (14.42) says that f~! is total iff
f is onto. However, relation f~! may not be determinate. We show how
to construct from f~1 a function g such that

(a) g is determinate,
(b) g istotal iff f is onto, and
(¢) feg=1c (iff f is onto).

This function g, then, is the right inverse of f —iff f is onto.
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HISTORICAL NOTE 14.2. MESSAGE ENCRYPTION AND AUTHENTICATION

Some functions are time-consuming to evaluate, but this fact can be ex-
ploited to implement message encryption and authentication in computer
networks. In private key cryptography, two users agree secretly on a func-
tion E and its inverse E~!. Then, to communicate a message m, the
sender sends an encrypted text m’ = E.m and the receiver of m’ com-
putes E"'(m’) = E"Y(E.m) = m. Provided E~! is difficult to compute
from E.m, an intruder cannot easily infer m from m'.

In public-key cryptography, each user U to whom messages can be sent
selects functions Ey and Dy having the following properties.

(i) Du(Ey.m) =m, so that Dy is a left inverse of Ey and Ey is a
right inverse of Dy .
(ii) It is prohibitively expensive to compute Dy given Ey .

A message m is sent to U in the encrypted form m’ = Ey.m. U decrypts
m' by calculating Dy.m’ = Dy(Ey.m) = m. Ey can be made publicly
available without compromising messages encrypted using Ey because, ac-
cording to (ii), knowing Ey doesn’t help an intruder compute Dy.m’. The
name public key cryptography is apt because encryption scheme Ey is made
public.

In some situations, U wants to be certain who sent a message. For example,
a request for an electronic funds transfer should be honored only if it comes
from the account owner. A digital signature can be implemented using a public
key cryptosystem if Ey and Dy also satisfy:

(iii) By(Dy.m)=m, so that Ey is a left inverse of Dy and Dy is a
right inverse of Ey .

The signer can use Dy.t as a signature, for some text t. For example, to
construct a signed message m , user U might send m” = Dy(t ~ m), where
t is U'’s name. The receiver has access to Ey and can compute Ey.m’ =
Ey(Dy(t " m)) . Provided U has not revealed Dy to anyone, by (ii), no one
else knows Dy . Thus, no one else can construct a message m” such that
Ey.m” produces U’s name.

. & For each ¢ in C, there may be several values by, b, ...
I such that f.b; = ¢, as illustrated to the left. Therefore,
¢ f~1 b holds for all i. For each such ¢, arbitrarily

g choose one element, say by, and define g.c = by . Hence
> g is determinate and satisfies (a). Next, (b) is satisfied

—g is total iff f is onto— because Dom.g = Dom.f~! and f~! is total

iff f is onto. Finally, we show that (c) is satisfied by computing (f+g).c,
assuming f is onto.

(Fe9)-c
= (Definition of «)
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flg-c)
= (Since f is total, at least one pair (c,b) isin f~1.
Therefore, there is one pair (¢,b) in g.)
b
= ({c,b)eg = (c,b) € f~1. Therefore, (b,c)e f.)
c O

(14.45) Theorem. Let f:B — C be total. Then f is one-to-one iff f
has a left inverse.

We leave the proof of this theorem and the following one to the reader.

(14.46) Theorem. Let f:B — C be total. The following statements are
equivalent.
(a) f is one-to-one and onto.

(b) There is a function g:C — B that is both a left and a right
inverse of f.

(c) f has a left inverse and f has a right inverse.

14.4 Order relations

An order relation compares (some) members of a set. A typical order re-
lation is relation < on the integers. However, an order relation need not
allow comparison of every pair of members of a set. For example, with
relation parent , some pairs are comparable but not others. For example,
neither Schneider parent Gries nor Gries parent Schneider holds.

(14.47) Definition. A binary relation p on a set B is called a partial
order on B if it is reflexive, antisymmetric, and transitive. In this
case, the pair (B, p) is called a partially ordered set or poset.

We use the symbol = for an arbitrary partial order, sometimes writing
¢ > b instead of b <c¢c.

Examples of partial orders
(a) (N,<) is a poset and < is a partial order on N.

(b) Let B beaset. Then (PB,C) is aposet and C is a partial order on
PB, since C is reflexive, antisymmetric, and transitive (Theorems
(11.57)—(11.59) on page 207).

(¢) Consider the set C of courses offered at Cornell University. Define the
relation < by ¢l < ¢2 if courses ¢l = ¢2 or if ¢l is a prerequisite
for ¢2. Then (C,=) is a poset and < is a partial order on C'.
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(d) Let P be the set of loops in a Pascal program. Define < on P by
{1 <12 if loops {1 and [2 are the same or if /1 is nested within [2.
Then (P,=) is a poset and =< is a partial order on P.

(e) In constructing a house, certain jobs have to be done before other
jobs. Let J be the set of jobs to be done, and let < on J be defined
by 71 <342 if j1 and j2 are the same or if j1 has to be completed
before j2 can be started. Then (J, <) is a poset. The scheduling
of jobs in such situations, including redefining and ordering jobs in
order to reduce time to completion, is sometimes referred to as PERT
(Program Evaluation and Review Technique). a

If set B of poset (B,=) is finite (and small enough), then relation
=< can be depicted in a Hasse diagram, as illustrated in Fig. 14.3. The
Hasse diagram on the left in Fig. 14.3 describes the poset (1..9, |), where
b|c = “bdivides ¢” . For example, 2|4 holds, but not 2 |5. In general,
in the Hasse diagram for poset (B, =), if b <X ¢ holds, then b appears
below c¢. Further, a line is drawn from b up to ¢ iff

b=<c and noelement d (other than b,c) satisfies b <d < c.

An element b is connected to an element ¢ by a series of lines in the
Hasse diagram iff b < ¢. The Hasse diagram is a minimal description of the
poset, in that as few lines as possible are drawn. Thus, the Hasse diagram
for a partial order p actually presents the smallest relation p’ such that
p=(p')* . Relation p’ is called the transitive reduction of partial order p.

Deleting all pairs (b,b) from relation < on the integers results in relation
<. Similarly, deleting all pairs (b,b) from a subset relation C gives the
relation C . Such an operation can be applied to any partial order < to
yield a relation <. We give a name to the class of relations that result
from this operation.

FIGURE 14.3. HASSE DIAGRAMS FOR FINITE POSETS
8

|
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poset (1..9,]) poset (0..3,<)
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(14.48) Definition. Relation < is a quasi order or strict partial order if
< is transitive and irreflexive.

Being irreflexive means that b < ¢ and ¢ < b do not both hold (for all
b, c¢). Therefore, the antecedent of the definition of antisymmetry, b < ¢ A
c<b=b=c (forall b,c),is false, so all quasi orders are antisymmetric.
The operation of adding pairs (b,b) to a quasi order or deleting such pairs
from a partial order does not harm the transitivity property of the relation.
Hence, we see that adding in all pairs (b,b) to a quasi order makes it into
a partial order, and deleting all pairs (b,b) from a partial order makes it
into a quasi order. Thus, we have the following theorem.

(14.49) Theorem. If p is a partial order over a set B, then p—1p is a
quasi order. If p is a quasi order over a set B, then pU1p is a
partial order.

Given <, then, its reflexive closure < is computed by adding all pairs (b, b)
to <. Given =, its reflexive reduction < is computed by eliminating all
pairs (b,b) from =. The same Hasse diagram can be used to represent
both a partial order and its corresponding quasi order; we just have to
know which is intended by the diagram.

TOTAL ORDERS AND TOPOLOGICAL SORT

Thus far, we have dealt with partial orders, so all elements need not be
comparable. We now investigate the class of fotal orders. Again, we define
the class of total orders in two ways: in terms of membership and in terms
of operations on sets.

(14.50) Definition. A partial order < over B is called a total or linear
order if

(Vb,el:b2cVbrc) |
ie. iff XU =<"! = Bx B. In this case, the pair (B, <) is called
a linearly ordered set or a chain.
Examples of total orders and chains
(a) < over the natural numbers is a total order, and (N, <) is a chain.
(b) < over the reals is a total order, and (R, <) is a chain.

(c) Letset S contain more than one element. Then C over PS is not a
total order. For example, if b and ¢ are distinct elements in S, then
neither {b} C {c} nor {c} C {b} holds.

(d) Let C be the set of courses at Cornell. Let b < ¢ mean that b= ¢
or b is a prerequisite for ¢. Relation < is a partial order but not a
total order. O
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A linear order < over B can be given simply by listing the elements of
B in the order imposed by <: b precedes ¢ in the sequence iff b < ¢ holds.
For example, the linear order < on the integers 1..9 can be presented as
(1,2,3,4,5,6,7,8,9) .

It is possible to extend any partial order < to a total order. That is,
we can construct a total order <’ such that < C <’. For example, con-
sider the partially ordered set (1..9,|) of Fig. 14.3. The two linear or-
ders (1,2,3,4,5,6,7,8,9) and (1,2,3,4,5,6,7,9,8) both contain relation
|. Since 8 and 9 are incomparable, their relative placement does not
matter in the extension of partial order | to a total order. This example
illustrates that there may be several ways to extend a partial order to a

total order.

We now present an algorithm, called topological sort, for extending a
partial order = over a finite set B to a total order. This algorithm has
many applications, including the ubiquitous spreadsheet, where quasi order
~< is given by the way in which values in the spreadsheet depend on each
other. For example, an entry that is to contain ¢ := d + 3 has to be
computed before an entry that is to contain b := ¢+ 2, since the formula
for b depends on the formula for c. Therefore, “c:=d+3” < “b:=c+2".
Other applications of topological sort are found in code optimization within
compilers.

We use topological sort to illustrate a method of presenting (or devel-
oping) algorithms. We start with the specification of the algorithm. We
then write a simple, but inefficient, algorithm, whose correctness is easy to
see. Finally, we replace some variables of the algorithm by fresh ones and
obtain a more efficient algorithm. This data refinement or coordinate trans-
formation requires replacing the statements and expressions that use the
old variables by ones that have the same effect on the new variables. The
replacement is done independently of the algorithm itself; correctness of
the resulting algorithm is ensured if each replacement of a local statement
has certain properties.

Topological sort is the subject of some legal maneuvers concerning soft-
ware patents. See Historical note 14.3.

The algorithm begins with a variable B containing set B and terminates
with sequence variable s being the linear order of B. So, the precondition
@ and postcondition R of the algorithm are:

Q: B=B
R : s is a linear order of B that contains <.

We assume that B = 0..K for some natural number K . Thus, the
elements of set B have been labeled in some fashion, and the labels of the
elements are manipulated rather than the elements themselves.
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HISTORICAL NOTE 14.3. SOFTWARE PATENTS

The U.S. Constitution gives Congress the power “to promote the Progress of
Science and useful Arts, by securing for limited Times to Authors and Inventors
the exclusive Right to their respective Writings and Discoveries.” So, Congress
passed laws to allow the copyrighting of written material (and, later, music, art,
records, films, etc.) and the patenting of “any new and useful process, machine,
manufacture, or composition of matter, or any new and useful improvement
thereof.” Patents and copyrights protect the rights of inventors and writers
and create incentive for advances in technology.

Software does not fit the framework of these laws very well. Is an algorithm
just an idea or concept, like the unpatentable mathematical theorem? Or is it
a real invention, like the carrot peeler or frisbee? Needless to say, the devel-
opment of computers and software has led to a morass of legal and economic
problems in regard to patents.

Patents are being granted for software. In fact, the patent office has 145
examiners who deal with patent applications related to computer applications
and systems, including software-related patents. Their workload is so high
that they would like to grow in 1993 to 200. But the League for Programming
Freedom argues forcefully for eliminating software patents [41], and the issue
of software patents is being hotly debated (see [34] for references).

In 1968, Knuth published in an undergraduate text [26] a topological sort
in a general setting that required only n steps for a set of n pairs. Two years
later, in 1970, two people filed for a patent for a version of topological sort in
a business application. Their version was slower than Knuth'’s, requiring up to
n? steps. The patent office told them they could not patent topological sort,
because lots of people knew about it. The filers appealed. The judge for the
appeal said that the patent office cannot simply say that people know about
it; evidence of prior art has to be given. Such evidence had not been given,
so, in 1983 the filers got their patent. Believe it or not, the whole process
took thirteen years. Lotus was then sued for infringement of the patent (even
though Lotus probably used Knuth’s faster algorithm —who would use the
slow one?). As of Spring 1993, the case is in the courts. Some prior art has
been found that seems to be directly related to the patent —topological sort
in a business application— but no one knows what will happen. Millions of
dollars ride on the outcome.

The basic idea of the algorithm is this. Start with s = €. Then, re-
peatedly choose a minimal element (with respect to <) of subset B of
B, delete it from B, and append it to s. A minimal element of B has
nothing smaller than it in B, so all elements that precede it in the partial
order < are already in s. Hence, s becomes a linear extension of <.

We can write this algorithm as follows.
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{Q: B=8}
s:=¢
{invariant P : (B and {b|be s} partition B) A
(Vb,c:B I b <c A ces:bprecedes ¢cin s)}

doB#0 —

Choose a minimal element b (say) of B;

B,s:= B —{b},s" (b)
od
{R: (Vb,c:B| b= c:b precedes cin s)}

The correctness of the algorithm should be checked using the points
of Checklist (12.45) for proving a loop correct: (a) Does the initialization
truthify invariant P ? (b) Does the repetend maintain the truth of P ? (c)
Does the loop terminate? (d) Does P A B =0 = R hold? Each of these
questions can be answered affirmatively, so the algorithm implements the
specification.

A naive implementation for choosing the minimum element of B would
require checking every pair b, c. The algorithm would then end up requiring
a number of steps that is at least quadratic in the number of such pairs.
We can do better by developing data structures that allow this choice to
be done more efficiently.

We need an efficient way to find minimal elements of B . So, let sequence
variable m contain the minimal elements of B.

When a minimal element b of B is deleted from B, other elements may
become minimal elements of B . We want to determine these new minimal
elements quickly and add them to sequence m. This requires knowing
the elements c¢ that satisfy b < ¢, as well as the number of predecessors
(according to <) that such a ¢ has. For this purpose, we introduce two
arrays N and S, so we have three new variables:

var m : seq(0..K);
var N : array 0..K of integer;
var S : array 0..K of set(0..K);

N|c] is the number of elements of B that precede c in relation <, and
S[b] is the set of elements of B that succeed b.
We describe the relation between variable B, which is being replaced,

and the three new variables in the following coupling invariant.

(sequence m contains the minimal elements of B) A
(VelceB:N[c]=(EblbeBAb=<c:1)) A
(Vb 1beB:Sbl={clceBAb=<c})

The new variables are initialized as follows.
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for ce Bdo N[c]:= (Zb|lbeB Ab=<c:1);
for be B do S[b):= {clceB Ab=<c}
m :=¢; for c€0..K do if N|c] =0 then m :=m " (c)

We now show how the various statements and expressions of the algo-
rithm can be rewritten to make them efficient and to maintain the defini-
tions of the three new variables.

(a) Expression B # § can be replaced by m # €, since every finite
nonempty set over quasi order < has a minimal element.

(b) The statement “Choose a minimal element b of B” can be replaced
by b:=m.0.

(c) The replacement for B := B —~ {b}, where b = m.0, may have to
change all three new variables. Here is its replacement:

m:=m[l.]; —m.0 is being removed from B
for ce S[b] do N|c] := Nic] - 1;
if N[c] = 0 then m :=m " (c)
od

The algorithm that results from making these replacements in the original
algorithm is shown below. This algorithm takes time proportional to the
number of pairs b < ¢ because, in total, the statement N[c] := Nlc] —1
is executed exactly once for each such pair.

for ce Bdo N¢]:= (XblbeB Ab=<c:1);
for be Bdo S[b):= {clceB A b=<c};
m :=¢; for c€0..K do if N{c] =0 then m :=m " (¢);

8= ¢
dom#e—
b:=m.0;
s:=5"{b);
m:=m[l.]; —m.0 is being removed from B

for ce S[b] do N|c| := N|¢] - 1;
if N[c] =0 then m:=m " {(c)
od
od
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MORE ON POSETS

This subsection defines some special elements of a poset (e.g. maximal
element and least upper bound of a subset of a poset). These elements
play important roles in further analysis of posets and their application, but
much of this is beyond the scope of this text. Thus, we restrict ourselves
to giving some definitions and theorems and making a few remarks.

Throughout, (U, <) denotes an arbitrary poset and < is the quasi order
corresponding to partial order <.

(14.51) Definition. Let S be a nonempty subset of poset (U, <) .
(2) Element b of S is a minimal element of S if no element of
S is smaller than b,i.e. if beS A (Vele<b:cgS).

(b) Element b of S is the least element of S if beS A
(VeleceS:b=<c).

(c) Element b is a lower bound of S if (Ve | ceS :b=<¢).
(Element b need not be in S.)

(d) Element b is the greatest lower bound of S, written glb.S,
if b is a lower bound and if every lower bound ¢ satisfies
c=b.

We already defined “minimal element” on page 228, where we proved
that (U, <) admits induction iff (U, <) is well founded. A set may have
more than one minimal element, as the examples below show. However, a
set has at most one least element. Minimal elements and least elements of
a set belong to the set. Lower bounds need not belong to the set.

Examples of minimal and least elements
(a) Set N of poset (N, <) has minimal element 0 and least element 0.

(b) Set R of poset (R,<) has no minimal or least element. But subset
{z 1 0 <z} has 0 as its minimal and least element.

(c) Consider (N,|), where 7|j means “i divides j”. Subset {3,5,7,15,
20} has three minimal elements, 3, 5, and 7, but it has no least
element. Subset {2,4,6,8} has minimal and least element 2.

(d) Consider poset (P{b,c}, C), with Hasse diagram in Fig. 14.4. The
elements of P{b,c} are @, {b}, {c}, and {b,c}. Its minimal and
least element is @. The minimal and least element of subset {{b}}
is {b}. Subset {{b},{c}}; has two minimal elements, {b} and {c},
and no least element. O
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Examples of lower bounds and greatest lower bounds

(a) Consider poset (R,<}). Subset S ={z |0 <z <1} has 0 and all
nonnegative numbers for lower bounds. Its greatest lower bound is 0.
But S has no least element. On the other hand, subset T'= {z | 0 <
x < 1} has the same lower bounds and greatest lower bounds, but it
has a least element: 0.

(b) Consider poset (P{b,c},C), with Hasse diagram in Fig. 14.4. Subset
{{b}} has @ and {b} for lower bounds, and its greatest lower bound
is {b}. Subset {{b,c}} has every element of P{b,c} as lower bound,
and itself as its greatest lower bound. O

We give a simple condition for minimal elements to exist.

(14.52) Theorem. Every finite nonempty subset S of poset (U, <) has
a minimal element.

Proof. Choose any element xg of S and construct a decreasing chain of
elements of S: z,... < 22 < x; < zo (for some n) until no longer
possible. Antisymmetry of < implies that all elements of the chain are
distinct. Since § is finite, this chain is finite. Element z, is a minimal
element of S. O

The following theorem follows directly from the definitions. The proof is
left to the reader.

(14.53) Theorem. Let B be a nonempty subset of poset (U, X).
(a) A least element of B is also a minimal element of B (but
not necessarily vice versa).

(b) A least element of B is also a greatest lower bound of B
(but not necessarily vice versa).

(¢) A lower bound of B that belongs to B is also a least element
of B.

FIGURE 14.4. PoseT (P{b,c},C)
{b,c}
{b}Q{c}
0




294 14. RELATIONS AND FUNCTIONS

We now define maximal elements, greatest elements, and upper bounds
of a poset.

(14.54) Definition. Let S be a nonempty subset of poset (U, =) .
(a) Element b of S is a mazimal element of S if no element of
S is larger than b,ie. if be S A (Velb=<c:cgS).

(b) Element b of S is the greatest element of S if beS A
(VelceS:ec=xb).

(c) Element b is an upper bound of S if (Ve |l ceS:c=<Xb).
(An upper bound of S need not bein S.)

(d) Element b is the least upper bound of S, written lub.S, if
b is an upper bound and if every upper bound c satisfies
b<e.

There is a symmetry between Definitions (14.51) and (14.54). In fact,
one can easily see the following about a subset S of U. An element is a
maximal element of S with respect to relation =< iff it is a minimal ele-
ment of S with respect to > . Similar statements can be made concerning
greatest elements, upper bounds, and least upper bounds. Thus, any results
concerning minimal elements, least elements, and lower bounds have their
counterparts concerning maximal elements, greatest elements, and upper
bounds.

14.5 Relational Databases

An n-ary relation over the cross product By x---x B, is simply a subset
of the n-tuples of By X --- X B, . Such an n-ary relation can be presented

TABLE 14.2. POPULAR AMERICAN BROADWAY MUSICALS (PABM)
Opening
Title Month Day Year Theater Perfs
My Fair Lady 3 15 1956 Mark Hellinger 2717
Man of La Mancha 11 22 1965 ANTA Wash. Sq. 2329
Oklahoma! 3 31 1943 St. James 2248
Hair 4 29 1968 Biltmore 1750
The King and I 3 29 1951 St. James 1246
Guys and Dolls 11 24 1950 Forty-Sixth St. 1200
Cabaret 11 20 1966 Broadhurst 1166
Damn Yankees 5 5 1955 Forty-Sixth St. 1019
Camelot 12 3 1960 Majestic 878
West Side Story 9 26 1957 Winter Garden 732
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as an n-column table. Each row of the table corresponds to an n-tuple
of the relation, and each column corresponds to one of the dimensions,
or components, of the cross product on which the relation the based. For
example, the relation defined by Table 14.2 is a subset of the following cross
product PABM ,

PABM = Title X Month x Day X Year x Theater x Perfs

where

Title is the set of titles for Broadway shows;

Month is the set 1..12 corresponding to the months of the year;
Day is the set 1..31 corresponding to the days of the months;
Year is the set ZT of positive integers;

Theater is the set of theaters in and around Broadway, NYC;
Perfs is the set ZT of positive integers.

Table 14.3 contains another table or relation, MC .

A database is a collection of information, or data, about some area of
interest. When the database is accessed in a way that appears to users as
if it consists of a set of relations, it is called a relational database. The
designer of such a database decides on a set of cross products (or tables)
that together comprise the database. Each cross product is defined by a
relational scheme, which is conventionally denoted by

rel-name(attributes, attributes, . . . , attribute,)

where rel-name is the name associated with the cross product and each
attribute is a name for a set of values. Thus, our database of Broadway

TABLE 14.3. MUSICAL CREATORS (MC)
Title Book Lyrics Music
My Fair Lady Lerner Lerner Loewe
Man of La Mancha Wasserman Darion Leigh
Oklahoma! Hammerstein Hammerstein Rodgers
Hair Ragni & Rado Ragni & Rado MacDermot
The King and I Hammerstein Hammerstein Rodgers
Guys and Dolls Swerling & Burrows Loesser Loesser
Cabaret Masteroff Ebb Kander
Damn Yankees Abbott & Wallop Adler & Ross Adler & Ross
Camelot Lerner Lerner Loewe
West Side Story Laurents Sondheim Bernstein
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musicals is defined by the following two relational schemes.

PABM( Title, Month, Day, Year, Theater, Perfs)
MC(Title, Book, Lyrics, Music)

The relational schemes shown above are not the only possible relational-
database design for this application. We might have a database with a single
relational scheme that combines the information in PABM and MC:

ALL(Title, Month, Day, Year, Theater, Perfs, Book, Lyrics,
Music)

Or, we might use a larger collection of simpler relations:

(14.55) Where(Title, Theater)
When(Title, Month, Day, Year)
Author(Title, Book)
Run(Title, Perfs)
Lyricist( Title, Lyrics)
Composer( Title, Music)

All three of these collections of schemes contain the same information.
Further, as we see below, all can be used to answer the same questions, or
queries, as they are called in the database world. In choosing a database
design, the designer takes into consideration factors such as the speed at
which various queries can be answered, the amount of space needed for the
scheme, and ease of modification of the database. Database PABM-MC
of this chapter is small enough so that questions of space and speed are
not relevant. However, some databases contain millions of records, and for
such databases economy of space, quick access, and ease of modification
are important. Consider, for example, the IRS’s database of people in the
U.S. and their income-tax returns, or the database of financial accounts
and transactions that a bank must maintain.

OPERATIONS FOR CONSTRUCTING QUERIES

Users of a relational database formulate queries, or questions, about the
database. Processing a query produces a set of tuples that answer the query.
For example, consider a query that requests all shows that opened at the
Mark Hellinger on 3/15/56. Applying this query to PABM of Table 14.2
would generate a subset consisting of a single 6-tuple:

(14.56) (My Fair Lady, 3, 15, 1956, Mark Hellinger, 2717)
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A query to find shows that opened at the Forty-Sixth St. would produce a
relation with two elements:

(Guys and Dolls, 11,24, 1950, Forty-Sixth St., 1200)
(Damn Yankees, 5,5, 1955, Forty-Sixth St., 1019)

Three basic operators used in constructing queries are: selection (denoted
by o ); projection (denoted by = ), and natural join (denoted by ). We
now discuss these three operators.

Operation o(R, F) selects the set of tuples of relation R that satisfy
predicate F . Here, predicate F' may centain the names of the fields of
relation R . Thus,

o(R,F)={tIteR A F}

For example, 6(PABM, Theater = Mark Hellinger) is the set consisting of
the single tuple (14.56).

The operations allowed in F' depends on the particular database system
being used. Some systems are quite primitive, but, in principle, any oper-
ation that could be applied to a field name could be applied to an entry
in a field. For example, o(PABM, Perfs > 2,000) would select the three
tuples of PABM with more than 2,000 performances.

Projection operator 7 allows irrelevant information to be discarded in
answering a query. Suppose, for example, that we are interested in the titles
(only) of shows that opened at the Forty-Sixth St. and not in the dates of
their opening. By itself, query

o(PABM, Theater = Forty-Sixth St.)

produces 6-tuples containing dates and numbers of performances, as well
as titles. Operator 7 allows us to identify the desired fields, causing the
unnamed fields to be suppressed. For A;,..., A, a subset of the names of
the fields of relation R,

W(R,Al,...,Am) = {t | teR: <tA1,tA2,,tAm>}

Thus, (R, Ai1,...,An) is like R, but it has fewer dimensions (columns),
because the attributes of R that do not appear as an argument to « are
not in the projection. (A projection of R may also have fewer rows than R,
by virtue of having fewer dimensions —in deleting a dimension, previously
distinct tuples may become identical.) For example, the following query
lists the titles (only) of shows that opened at the Forty-Sixth St. Note that
evaluation of o(...) constructs the desired set of tuples; then, evaluation
of m(...) discards the unwanted fields. Here, the first argument of 7 is
not one of the original relations but a relation that was constructed using
o.

m(o(PABM, Theater = Forty-Sixth St.), Titles)
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The database consisting of PABM and MC contains enough informa-
tion to determine who wrote the lyrics for the show having 2717 perfor-
mances (Lerner). However, the query that will produce the answer cannot
be solely in terms of o and 7 and relations PABM and MC', because
the information needed to determine the answer is split across the two
relations. We need a way to join the relations together. One operation
to accomplish this is called the natural join, denoted by the infix symbol
><. Relation PABM 1 MC has all the attributes that PABM and MC
have, but if an attribute appears in both, then it appears only once in
the result; further, only those tuples that agree on this common attribute
are included. An example will make this clear. Suppose relation Where of
(14.55) contains the three tuples

(My Fair Lady, Mark Hellinger)
(Oklahomal, St. James)
(Hair, Biltmore)

Suppose relation Author of (14.55) contains the three tuples

(My Fair Lady, Lerner)
(Oklahoma!, Hammerstein)
(The King and I, Hammerstein)

Then the natural join Where <1 Author includes

(My Fair Lady, Mark Hellinger, Lerner)
(Oklahomal, St. James, Hammerstein)

Using natural join, a query to find out who wrote the lyrics for the show
that had 2717 performances is

w(o(PABM <« MC, Perfs = 2717), Lyrics)

With natural join, we can now revisit the various database schemes for
representing our small database. Observe that

ALL = (PABM =1 MC) =
(When <t Where <t Run 1 Author > Lyricist > Composer)

Thus, these three relational schemes are equivalent. Not all such relational
schemes are equivalent. For example, the relational scheme

(14.57) Wherel (Composer, Theater)
When1 (Composer, Month, Day, Year)
Author1 (Composer, Book)
Run1(Title, Perfs)
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Lyricist1 ( Composer, Lyrics)
What1 (Composer, Title)
is not equivalent to ALL because
Whenl b Wherel < Runl <1 Authorl > Lyricistl 0 Whatl
contains, among others, the tuple
(Camelot, 12, 3, 1960, Mark Hellinger, 2717, Lerner, Lerner, Lowe)

which is not in ALL. The problem is that (14.57) decomposes ALL in
such a way that the common attribute in each relation ( Composer ) is not
a key: it does not uniquely identify a tuple in ALL.

DiscussioN

Databases are an important application of the theory of relations. There is
a rich theory concerning ways to decompose relational schemes in ways that
information will not be lost. There are also ways to rearrange computations
automatically in queries in order to reduce time and space requirements.
Tor example, in many cases, deleting extraneous fields before constructing
a cross product will produce the same result as deleting the fields after
constructing the cross product, but the former is far more efficient. There
is also research on ways to make the implementation of a relational database
and its operations efficient.

Exercises for Chapter 14

14.1 Using Definition (14.1) of an ordered pair, what are the pairs (1,1) and
(1,2)?

14.2 Using Definition (14.1), prove that {8} = (Ny l ye (b, c):y).

14.3 Using Definition (14.1), prove the following concerning the value of the
second component of a pair (b,c): If b # ¢, then {¢} = (Uy | ye(bc) :
y) — (Nylye(bo:y).

14.4 Using Definition (14.1), prove the following concerning the value of the
second component of a pair (b,c¢): If b = ¢, then { } = (Uy | ye(bc) :
y) = (Nylye(bo):y).

Exercises on cross products

14.5 Prove Membership (14.4), (z,y)e SxT = zeS A yeT.
14.6 Prove theorem (14.5), (z,y) e SxT = (y,z)eT x S.
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14.7 Prove theorem (14.6), S=0 = SxT=TxS=490.
14.8 Prove theorem (14.7), SxT=Tx S8 = S=0vT=0v S=T.

14.9 Prove Distributivity of x over U (14.8), (SUT)xU = (SxU)U (T xU)
and Sx(TULU) = (SxT)U (SxU).

14.10 Prove Distributivity of x over N (14.9), (SNT)xU = (SxU)N(TxU)
and Sx(TNU) = (SxT)N (SxU).

14.11 Prove Distributivity of x over — (14.10), Sx (T'-U) = (SxT) -
(SxU).

14.12 Prove Monotonicity (14.11), TCU = SxTCSxU.

14.13 Prove theorem (14.12), SCUATCV = SxTCUXV.
14.14 Prove theorem (14.13), SXTCSXU A S#0 = TCU.

14.15 Prove theorem (14.14), (SN T)x (U NV) = (SxU)N (T x V).
14.16 Prove theorem (14.15), For finite S and T, #(S x T) = #S-#T .

Exercises on relations

14.17 Prove Theorem (14.19).

14.18 Let p and o be relations on set B = {b,c,d, e} :
p= {<b7 b)a <b,C), <Ca d>}
o ={(b,c),{c,d),(d,b)}
Compute po o, o op, p°,and p°.
14.19 Prove Distributivity of o over U (14.23), po(c U8) = poo U pof
and (cUB)op = cop U fop.
14.20 Prove Distributivity of o over N (14.24), po (6 N@) C poo N pob
and (cN@)op C cop N Gop.
14.21 Prove theorem (14.26), p™ o p"™ = p™*™ | by induction.
14.22 Prove theorem (14.27), (p™)* = p™ ™, by induction.
14.23 Prove Theorem (14.29a).
14.24 Prove Theorem (14.29b).

14.25 Each of the six classes given in Table 14.1 is defined in two different ways.
Prove that the two ways are equivalent.

14.26 The following argument purports to prove that every symmetric and tran-
sitive relation is an equivalence relation. What is wrong with it?

Let R be symmetric and transitive. To show that R is an equivalence re-
lation, we have to show that R is also reflexive. Because R is symmetric, if
(z,y) € R, then (y,z) € R.Because R is transitive, if (z,y) € R and (y,z) e R,
then (z,z) e R. Therefore, R is reflexive.
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14.27 Which of the properties Table 14.1(a)-Table 14.1(f) holds for each of the
following relations?

(a) bpc iff b and ¢ are both positive or both negative, for integers b, c.
(b) bpc iff b— c is a multiple of 5, for integers b, c.
(c) @ for a non-empty set B.

(d) up, the identity relation on a nonempty set B .

(e} :p x 15, where tp is the identity relation on a set B.
(f) = over the integers Z.

(g) < over the integers Z .

(h) < over the integers Z .

(i) bpc iff b is the father of c.

() bpc iff b is the father of ¢ or vice versa.

(k) bpc iff b is ¢ or the father of c.

14.28 Find a smallest nonempty set and a relation on it that is neither reflexive
nor irreflexive.

14.29 Find a smallest nonempty set and a relation on it that is neither symmetric
nor antisymmetric.

14.30 Prove Theorem (14.31): A reflexive relation is its own reflexive closure; a
symmetric relation is its own symmetric closure; and a transitive relation is its
own transitive closure.

14.31 Prove Theorem (14.32), parts (a), (b), and (d).

14.32 Consider binary relations over a set B. A property of a relation on B
is preserved under some set operation if applying the operation to the relation
results in a relation with the same property. For example, the union of two sym-
metric relations is symmetric, so U preserves relational symmetry. Fill in the
entries of the following table with Y if the operation in the column preserves the
property for the row and with N otherwise. For each N, give a counterexample.

| pus pno  p—o (BxB)-p

Reflexivity
Irreflexivity
Symmetry
Antisymmetry
Transitivity

14.33 Prove the part (b) = (c) of Theorem (14.35).
14.34 Prove the part (c) = (a) of Theorem (14.35).

Exercises on functions

14.35 Prove that the composition of two total functions is a total function.

14.36 Prove that the composition of a partial function and a total function (in
either order) or of two partial functions is a partial function.
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14.37 Prove formally that function composition is associative (using the notion
that a function is a binary relation).

14.38 Prove Theorem (14.45). In this proof construct a left inverse g by adding
pairs to f~! to make it total, instead of deleting pairs, as in the proof of Theorem
(14.44).

14.39 Prove Theorem (14.46).

Exercises on posets

14.40 Prove Theorem (14.53).



Chapter 15

A Theory of Integers

"N 7 e have used laws of integer arithmetic for manipulating integer ex-

pressions in several places in this text. We now study a theory of
integers. Many of the properties of the integers will be familiar to you, but
new ones will also emerge.

We can proceed in two different ways. We can start with the inductive
definition of the integers & la Peano (see page 227) and begin proving theo-
rems about the integers from this definition. Alternatively, we can postulate
various axioms that the integers should satisfy.

We choose the second alternative. To start, we define an integral do-
main: a set of elements on which binary operators + and - have certain
properties. We then introduce notions of positive and negative and a rela-
tional operator < to obtain an ordered integral domain. Finally, we add
the well-ordering principle for the positive elements, yielding the integers
as we know them.

Once we have the integers, we study operations min(z,y), maz(z,y),
and abs.z (the absolute value of z). We also study division, greatest
common divisors, and prime numbers. Finally, we look at various represen-
tations of the integers.

15.1 Integral domains

Let D be a set (type) of elements, two of which are 0 and 1, and let
+ and - be binary operators on D . Assume D is closed with respect
to + and -+ ,ie forany a and b in D, a+b and a+b are alsoin D.
D (together with + and - ) is called an integral domain if the following
axioms hold. ! Throughout, variables a,b,c,d are of type D .

(15.1) Axiom, Associativity: (a+b)+c=a+ (b+c)
(a-b):c=a-(bc)

! Because of Symmetry (15.2), we could have fewer axioms. Only one Additive
identity axiom, Multiplicative identity axiom, Distributivity axiom, Additive in-
verse axiom, and Cancellation axiom are needed. Also, in the Cancellation axiom,
we could have used = instead of =.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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(15.2) Axiom, Symmetry: a+b=b+a
a*b="b-a

(15.3) Axiom, Additive identity: 0 +a=a
a+0=a

(15.4) Axiom, Multiplicative identity: 1-a=a

a'l=a

(15.5) Axiom, Distributivity: a-(b+c¢) =a*b+a-c
(b+c)ra=ba+c-a

(15.6) Axiom, Additive inverse: (3z:D|:z+a =0)
(Fz:Dl:a+2x=0)

(15.7) Axiom, Cancellation: ¢c# 0 = (cca=c'b = a=1b)
c#0 = (arc=bc = a="b)

The set Z of integers satisfies these axioms and is, therefore, an integral
domain. Other integral domains exist as well, e.g. the rational numbers
Q and the real numbers R. A less familiar integral domain is the set of
irrational numbers of the form a4+ b+v/5, where a and b are integers.

We have the following theorems.

Theorems for integral domains

(15.8) Cancellation: a+b=a+c = b=c
(15.9) Zero: a-0=0

(15.10) Unique identity: a+z=0a =
a#0 = (a

(15.11) a*b=0 = a=0Vvb=0

We prove Cancellation (15.8) by mutual implication.

LHS = RHS. We assume the LHS and prove the RHS. This proof rests
on Axiom (15.6), which says there is a witness z satisfying z+a=0:

b
= (Additive identity (15.3))
0+
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= (Additive inverse (15.6), with witness z )

r+a+b

= (Assumption a+b=a+c)
r+a+c

= (Additive inverse (15.6))
0O+c

= (Additive identity (15.3))
c

RHS = LHS. We assume the antecedent b = ¢ and prove the consequent
a+b=a+c:

a+b
(Assumption b=c)
a+c

As another example, we prove (15.9), a-0 = 0. In the proof, Cancella-
tion (15.8) is used to add something to both sides of the equation so that
Distributivity (15.5) can be used.

a0=0
= (Cancellation (15.8), with a,b,c:=a-a,a-0,0)
g-a+a0=a-a+0
= (Distributivity (15.5))
a(a+0)=a-a+0
= (Additive identity of + (15.3), twice)
a+a = a+a —which is Reflexivity (1.2), with z:=a-a

SUBTRACTION

Additive inverse (15.6) indicates that for any element a there exists an
element = satisfying x + a = 0. This element z is unique:

Unique additive inverse

(1512) z4+a=0Ay+a=0 = z=y

We prove this theorem as follows. For arbitrary a,z,y in D we have,

z+a=0 A y+a=0
= (Transitivity of equality (1.4))
r+a=y+a
(Cancellation (15.8))
T=y
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Since the = that satisfies £+a = 0 is unique, we can define it as a function
of a: —a. We can also define subtraction now.

(15.13) Axiom, Unary minus: a+ (—a) =0
(15.14) Axiom, Subtraction: a —b=a+ (-b)

The familiar laws of subtraction now follow.

Some theorems for subtraction
(15.15) z4+a=0 = z=—a
(15.16) —a=-b = a=b
(1517) —(—a)=a
(15.18) —0 =0
(15.19) —(a+b) = (—a)+(-b)
(15.20) —a=(-1)-a
(15.21) (—a)-b=a-(-b
(15.22) a-(=b)=—(a-b
(15.23) (—a)-(-=b) = a-b
(1524) a—0=a
(15.25) (a—b)+(c—d)=(a+c)—(b+4d)
(15.26) (a—b)—(c—d)=(a+d)—(b+¢)
(15.27) (a=b)-(c—d)=(a-c+b-d)—(a-d+b-¢)
(15.28) a—b=c—d = a+d=b+c
(15.29) (a—b):c=a-c—b-c

A simple corollary of Theorem (15.23) is (—1)+(—1) = 1. We prove theo-
rem (15.23). For arbitrary a,b in D, we have

(—a)-(=b)

= ((15.21), (—a)-b=a-(-b))
a-(~(5))

= ((15.17), —(-a)=a)
a-b

ORDERED DOMAINS

We usually list the integers in the order

.., —3,-2,-1,0,1,2,3,...
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and write b < c if integer b occurs before integer c¢ in this list. We
now restrict attention to integral domains that have such an order. To
define an order, we first define a predicate pos.b for b in domain D, with
interpretation “b appears after 0 in the order”, or “b is positive”. Note
that this interpretation is not the real definition of pos.b, but only the
interpretation we want pos.b to have.

Predicate pos.b is defined by four axioms. The first says that the sum of
two positive elements is positive. The second says that the product of two
positive elements is positive. The third says that 0 is not positive. The
fourth says that for any non-zero element b, exactly one of b and —b is
positive.

(15.30) Axiom, Addition: pos.a A pos.b = pos(a+b)
(15.31) Axiom, Multiplication: pos.a A pos.b = pos(a-b)
(15.32) Axiom: —pos.0

(15.33) Axiom: b# 0 = (pos.b = —pos(—b))

An integral domain D with predicate pos that satisfies axioms (15.30)—
(15.33) is called an ordered domain, and the ordering is a linear order
or total order (see Definition (14.50) on page 287). The integers are an
ordered domain, as are the rational numbers and the real numbers (and
many others). In all ordered domains, we have the following two theorems,
the first of which says that the square of a non-zero element is positive.

Theorems for pos
(15.34) b#0 = pos(b-b)

(15.35) pos.a = (pos.b = pos(a-b))

We prove (15.34). For arbitrary nonzero b in D, we prove pos(b-b) by
case analysis: either pos.b or —pos.b holds (see (15.33)).

Case pos.b. By axiom (15.31) with a,b:=b,b, pos(b-bv) holds.
Case —pos.b A b # 0. We have the following.

pos(b+b)

= ((15.23), with a,b:=b,b)
pos((—b)* (b))

<  (Multiplication (15.31))
pos(—b) A pos(—b)

= (Idempotency of A (3.38))
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pos(—b)
= (Double negation (3.12) —note that b # 0; (15.33))
—pos.b  —the case under consideration

A corollary of this theorem is that 1 (= 1-1) is positive, so —1 is negative.

We are finally ready to define the conventional inequality relations, which
are predicates over pairs of elements of D .

(15.36) Axiom, Less: a <b = pos(b—a)

(15.37) Axiom, Greater: a > b = pos(a — b)
(15.38) Axiom, At most: a <b =a<bVa=b
(15.39) Axiom, At least: a >b =a>bVa=5b

Now we can prove that the positive elements are greater than 0 (i.e.
pos.b = b > 0) and the negative elements are less than 0. A host of other
theorems follow, a few of which are given below. Theorem (15.44), the law
of Trichotomy, says that exactly one of a <b, a=b,and a > b is true.
According to the discussion on page 46, the first conjunct of (15.44) is true
iff one or three of its equivalents are true, and the second conjunct is true
iff fewer than three of them are true.

Some theorems for arithmetic relations

(15.40) Positive elements: pos.b = 0<b

(15.41) Transitivity: (a)a<bAb<c = a<c
b)a<bAb<c=a<c
(ca<bAb<c=a<c
dag<bAb<c=a<c

(15.42) Monotonicity: a <b = a+d<b+d

(15.43) Monotonicity: 0 <d = (a<b = a-d <b-d)

(15.44) Trichotomy: (a<b = a=b = a>b) A
~(a<b A a=b A a>b)

(15.45) Antisymmetry: a <bAb<a =a=b

(15.46) Reflexivity: a < a

(1547) a=b = (Vz:D|:2<a = z2<))

We prove the first of the Transitivity theorems (15.41a). The proof uses
(b—a)+ (¢ —b) =c— a, which is proved in an exercise.
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a<bAb<ec
= (Axiom Less (15.36))
pos.(b—a) A pos(c—b)
=  (Addition (15.30))
pos((b—a) + (c - b)
= (Arithmetic —see Exercise 15.22)

pos(c — a)
= (Axiom Less (15.36))
a<c

WELL-ORDERED DOMAINS

We began this chapter with integral domains. We then postulated addi-
tional properties (in terms of predicate pos) that hold only for some inte-
gral domains, the ordered domains. We now give one more property, which
is enjoyed (essentially) only by the ordered domain of integers.

A subset D’ of an ordered domain is called well ordered if each non-
empty subset S of D’ contains a minimal element (according to relation
<):

(15.48) S#0 = (Ib1beS:(Vele<b:cgS)) forall SCD'.

According to Definition (12.21) on page 229, a pair (D’,<) is well
founded if it satisfies (15.48). But if < is also a total order on D’, then
D' is called well ordered. So, a well order is simply a well-founded set that
is totally ordered.

We state the following axiom concerning the natural numbers.

(15.49) Axiom, Well ordering: The set N of natural numbers is well
ordered (under the ordering < defined in (15.36)).

Thus, any subset of the natural numbers contains a minimal element. For
example, the minimal element of the set of odd natural numbers is 1. Note
that Well ordering (15.49) does not hold for the set of all integers, since
the subset consisting of the negative numbers has no minimal element. In
Chap. 20, we show that any infinite set contains (in a sense described in that
chapter) the natural numbers. Thus, the natural numbers are the smallest
infinite set and the integers are the smallest infinite ordered domain.

In Sec. 12.1, we introduced mathematical induction over the integers.
We also justified induction, by giving an argument why, having proved
(Vi 10<4i<n:Pi) = Pn for all n:N, we could in theory prove
P.N for any natural number N . Here, we have taken a different tack and
postulated the well-ordering property for the natural numbers. And this
property is enough to guarantee that (N, <) admits induction.
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The following theorem shows that the real numbers and the rationals are
not well ordered.

(15.50) Theorem. In a well-ordered domain, there is no element between
0 and 1.

Proof. The proof is by contradiction. Assume element c¢ from the well-
ordered domain satisfies 0 < ¢ < 1. By Well ordering (15.49), the set of
elements between 0 and 1 has a minimal element m (say). We have,

O<m<l1

= (Remove abbreviation; Idempotency of A (3.38))
O<mAm<l A m<l

= ((15.43), twice)
Oom<m-m A mm<lm A m<l1

= (Zero of - (15.9); Multiplicative identity (15.4))
O<mm A mm<mA m<1

= (Introduce abbreviation)
O<mm<m<l1

The last line contradicts the fact that m is the smallest element between
0 and 1, so the assumption that there exists a ¢ satisfying 0 <c <1 is
false . O

QUANTIFICATION FOR + AND

Arithmetic operators + and - are symmetric and associative. The identity
of + is 0 and the identity of - is 1. Hence, + and : are candidate
operators for + in Sec. 8.2. The expressions (+z | R: P) and (-z | R: P)
are conventionally written as

Xz I R:P) and (IIz | R: P)

The first is read as “the sum of P for z in the range R”; the second as
“the product of P for z in the range R”.

Axioms (8.13)—(8.21) hold for (X3z | R: P) and (IIz | R: P) and will
not be repeated here. In addition, we have the following distributive law.
(15.51) Axiom, Distributivity: For finite R and —occurs(‘z’,‘Q’),

Q- (Zz|R:P) = (XzIR:Q-P)
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15.2 Exploring minimum and maximum

We define the minimum and mazimum of two numbers in an ordered do-
main and explore the properties of these operators. Our treatment differs
from the usual one, since we are concerned with simplifying the manipula-
tion of expressions containing these operators. Our treatment is based on
work found in [14].

The minimum of z and y is the smaller of the two; the maximum is
the larger. For example, 3 is the minimum and 5 is the maximum of 3
and 5. Using =z | y and x T y to denote the minimum and maximum of
z and y, we can define | and T in terms of relation < as follows.

(156.52) z |y = if z <y then z else y

x Ty = if 2 <y then yelse x
The above definitions are by cases. Therefore, manipulation of expressions
containing | or T are likely to require case analysis, because the definitions
force us to handle the two cases x < y and z > y separately. We formulate

a definition of | and 1 that avoids this problem —at the expense of using
quantification.

Operators | and T are defined to satisfy the following properties.

(15.53) Axiom, Definition of | and 7:
(Vzl:z2<zly = 2<z A z<y)
Vzl:z>zxly = z2z A z22y)

Definitions (15.52) constructively define | and 7: they show how to
compute them. Definitions (15.53) do not show how to compute | and 1;
but they provide a way to manipulate expressions containing | and T.

Having defined | and 7, we investigate their properties. We list below
some theorems that follow from Definition (15.53). These theorems justify
our belief that | and T are indeed definitions of minimum and maximum.

Theorems for minimum and maximum

ylzo
zly=yTlx

(15.54) Symmetry: z |y

(15.55) Associativity: (z |y) |z =2z ] (y | 2)
@ty lz=21T@F12)
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Theorems for minimum and maximum (continued)

(15.56) Idempotency: =z |z = =

zlzx ==z

(15.57) zly <z A zly <y
zlyzz AN zly 2>y

(1658) z<y = zly ==
r2y = zly==z

(1559) zly =2 V zly =1y
zly=2 V zly =y

The next theorems describe the interaction between | (and 1), addition,
and multiplication.

Distributivity of + and - over | and 1
(15.60) Distributivity: ¢+ (z | y) = (c+2z) | (c+ )
c+(@Ty) = (c+2)T(c+y)
(15.61) Distributivity: ¢>0 = c:(z | y) = (c-z) | (c-y)
c20 = c(zTy) = (cz) T (c'y)

(15.62) Distributivity: ¢ <0 cr(xTy) = (coz) | (cy)
c<0 = c(zly) = (cx) T (cry)

¢

PROVING THEOREMS ABOUT |

Because of the similarity in the definitions of | and T, the theorems (and
their proofs) for 1 are similar to those for | . Therefore, we deal only with
theorems concerning | .

In order to prove Symmetry (15.54), z | y = y | =, we need to be able
to manipulate equations of the form z = z | y. Theorem (15.47) and its
obvious counterpart, both repeated here, provide help.

a=b = (Vzl:2<a = z<b)
a=b = (Vzl:22a = 22>b)
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By (15.47) with a,b:=z | y,y | =, we have
zly=ylz = Vzl:z2<z]ly = z<ylzx

Hence, symmetry can be proved by proving that the RHS of this equiv-
alence is a theorem. To prove the RHS, we prove that the body of the
quantification holds for arbitrary z:

z<zly
= (Definition (15.53))
z<zx AN z<y
(Symmetry of A (3.36))
z<y AN z<x
= (Definition (15.53), with z,y:=y,z)
z<ylz

Hence, we have proved that | is symmetric.

Next, we prove the first theorem of (15.57), z |y <z A z ]y <y.
The point to note about (15.57) is that it is the RHS of the body of (15.53),
with the substitution z:=xz | y. We proceed as follows.

zly <z AN zly<y
= ((15.53), with z:=z | y)
zly<zly —Reflexivity (15.46)

QUANTIFICATION FOR | AND |

Operators | and T over the integers are symmetric and associative, so they
are examples of operator x of Sec. 8.2. That is, we can write quantifications

(15.63) (lilR:E) and (1ilR:E)

to express the minimum and maximum of the values found by evaluating
E with i ranging over values that satisfy R. For example, (| i 10<1i <
10 : bfz]) is the minimum of the array elements b[0],...,b[10].

Formulas (15.63) satisfy general laws of quantification (8.14)—(8.21). Note
also that | and | are idempotent, so Range split for idempotent % (8.18)
holds for them. However, | and T do not have identities in all ordered
domains. Therefore, they do not satisfy Empty-range (8.13), and when
using range-split axioms, no range should be false .2

2 In some cases, | and 7 have identities. For example, if the set under con-
sideration is the natural numbers, then the identity of T is 0, but | has no
identity.
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In addition, we have the following distributive laws. Theorems (15.70)
say that the minimum of a set is no larger than any of its elements and
that the maximum is no smaller than its elements.

Distributive properties of | and 7

(15.64) Distributivity of + over |: Provided -occurs(‘z’,‘E’),
(3z1:R) = E+({zIR:P)=(lzIR:E+ P)

(15.65) Distributivity of + over 1: Provided —occurs(‘z’,‘E’),
(3z1:R) = E+(Tz|R:P)=(1zIR:E+P)

(15.66) Distributivity of - over |: Provided —occurs(‘c’,'E’),
(Hzl:R)ANE>0= E-(lzIR:P)=(lz|R:E-P)

(15.67) Distributivity of - over 7: Provided —occurs(‘z’,‘E’),
Bzl:RAANE>0= E-lzIR:P)=(1z|R: E-P)

(15.68) Distributivity of | over T: Provided —occurs(‘z’,‘E’),
E|(1z1R:P) = (1z|R:E|P)

(15.69) Distributivity of T over |: Provided —occurs(‘z’,‘E’),
E1(lzIR:P)=(lzIR:ETP)

(15.70) Provided —occurs(‘z’,‘E’),
Rlz:=FE] = E=E1(lzlIR:x)
Rlz:=FE] = E=E|(1z|R:x)

15.3 Exploring absolutes

Consider any ordered domain. For z in that domain, we can define the
absolute value of z, written abs.z, by

(15.71) abs.x = z 1 —z

For example, abs.5 =5 and abs(—5) = 5. Note how this definition avoids
case analysis, which is used in the usual definition of abs:

abs.z = if £ <0 then —z else x

Because abs is defined in terms of T, all properties of abs can be derived
from the properties of 7. We list below a few properties of abs.
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Theorems for absolute value

(15.72) abs.x = abs(—x)

(15.73) Triangle inequality: abs(z +y) < abs.x + abs.y
(15.74) abs(abs.x) = abs.x

(15.75) abs(z-y) = abs.x-abs.y

(15.76) —(abs.x + abs.y) < x +y < abs.x + abs.y

15.4 Divisibility, common divisors, and primes

We now restrict our attention to the integers. Throughout this section,
variables a,b,c,d are of type Z, unless otherwise stated.

The equation 5-x = 10 has the integral solution = = 2, but the equation
5.2 = 11 has no integral solution —no integer z satisfies it. If an equation
c-x = b with integer coefficients b and ¢ has an integral solution, we say
that b is divisible by ¢. We introduce relation c¢|b with meaning “c
divides b”, or “b is divisible by ¢”. Operator | has the same precedence
as = and is viewed as a conjunctional operator. Formally, | is defined for
integer operands as follows.

(15.77) ¢|b = (3dl:c-d=0b)

Some properties of relation | are captured in the following theorems.

Theorems concerning divisibility

(15.78) c|ec

(15.79) ¢|0

(15.80) 1|b

(1581) ¢|]l > ¢c=1Ve=-1
(15.82) dlc Ac|lb = d|b

(15.83) blcAclb=b=cVb=—c
(15.84) blc = blc-d

(15.85) blc = b-d|c-d

(15.86) 1<bAblc = =(b](c+1))
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Given natural numbers b and ¢, ¢ # 0, we conventionally think of
dividing b by c¢ to yield a quotient ¢ and remainder r. We express this
property without using division /, which we have not formally defined, in
the following theorem.

(15.87) Theorem. Given integers b,c with ¢ # 0, there exist (unique)
integers ¢ and r such that

b=qc+r where 0 <r <c.
Proof. We prove the existence of ¢ and r by giving an algorithm to com-
pute them. In fact, we already gave such an algorithm for the case b > 0

and ¢ > 0 on page 239. We repeat the algorithm here; the other cases are
left to the reader.

(15.88) {Q: b>0 A ¢>0}
g, := 0,b;
{invariant P: b=gq-c+r A 0<r}
{bound function : r}
dor>c—oq,r:=¢q+1,r—cod
{R: b=gqgc+r NO<r<c} O

(15.89) Corollary. For given b,c, the values ¢ and 7 of Theorem (15.87)

are unique.

We define operators +~ and mod for operands b and ¢, ¢#0, by
(1590) b>c=q, bmodc=r, where b=g:c+r and 0<r<ec.
(Operators <+ and mod have the same precedence as -.) This means
that
(1591) b=c-(b=+c) + bmodc  (for c#0).

THE GREATEST COMMON DIVISOR

The greatest common divisor b ged ¢ of integers b and ¢ that are not

both zero is the greatest integer that divides both.

(15.92) bgede=(1d1d|bAd|c:d) (for b,c not both 0)
O0ged0=0

The first line of (15.92) does not define 0 gcd 0; since all integers divide
0, 0 has no maximum divisor. We define 0 gecd 0 to be 0, so that ged is
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a total function over Z x Z. Infix operator gcd has the same precedence
as multiplication —see the precedence table on the inside front cover.

Here are examples of ged: 1 ged 5 =1, 0ged 5=5, 24 ged 30 =6,
and —24gcd30=—-24gcd ~30=24gcd —30=6.

The greatest common divisor is used in reducing a fraction to lowest
terms: to reduce p/q to lowest terms, divide p and ¢q by their ged.
Thus,

24 24/6 4
15. — === 11 30 ged 24 =6).
(15.93) 30~ 30/6 " (reca gce )

The least common multiple blem ¢ of b and ¢ is the smallest positive

integer that is a multiple of both b and c:

(15.94) blemec= (| k:Z* | blk Aclk:k)  (for b#0 and c#0)
blemc=0  (for b=0 or ¢=0)

For example, 1lem6=—-1lem 6 =6, 31lem 9 =9, and 12 lcm 18 =
36 . The least common multiple b lcm c¢ is used when adding fractions
with denominators b and c¢. For example,

5 5 15 10 25
15. —t—=—+ == — 11 121lcm 18 = .
(15.95) 12+ 18 36+ 6 = 36 (reca. cm 18 =36)
There is an obvious similarity in the definitions of gcd and lem . We prove

later, when we have the tools, that b-c= (bged ¢):(blemc) .

For the moment, however, let us turn our attention to the greatest com-
mon divisor. We have the following properties of ged .

Properties of gcd

(15.96) Symmetry: bgcdc=cged b

(15.97) Associativity : (bged ¢) ged d = b ged (c ged d)
(15.98) bged b= abs.b

(15.99) Zero: 1gedb=1

(15.100) 0 ged b = abs.b

(15.101) b ged ¢ = (abs.b) ged (abs.c)

(15.102) bged c=bged (b+c) =bged (b—¢)
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Properties of gcd (continued)

(15.103)b=a-c+d = bgedc=cgedd

(15.104) Distributivity : 0 <d = d-(bged c) = (d-b) ged (d-¢)

Property (15.101) indicates that we can reduce the problem of finding (or
analyzing in some way) the gcd of two integers to the problem of finding
the gecd of two natural numbers. So from now on, we restrict ourselves to
the case that b and c¢ are natural numbers.

Property (15.103) is particularly important, because it will be used sev-
eral times later on. So be sure you understand it. It rests on the fact that,
if the antecedent b = a-c+ d holds, then any integer that divides b and
¢ also divides ¢ and d, and vice versa.

(15.105) Definition. Natural numbers b and c¢ are relatively prime,
denoted® by b L ¢, if their ged is 1: bLlc = bgede=1.

For example, 4 1. 33 holds, since the only positive divisor of 4 and 33 is
1, but 4 L 34 does not, since 2 divides both 4 and 34.

We now present an algorithm for finding the greatest common divisor of
two positive integers b > 0 and ¢ > 0. This algorithm is called Fuclid’s
algorithm, in honor of Euclid, who presented it over 2,000 years ago (see
Historical note 15.1).

{Q:0<b AN O<c}

z,y:=b,c;

{invariant P: x gedy=bgedc A 0<z A 0<y}

{bound function: z T y}

doz#y— fx>y—zi=z—y
ly>z—>y=y-=
fi

od

{R:z=y=bgedc}

‘We prove the correctness of this algorithm as follows.

o Initialization x,y :=b,c truthifies invariant P .
e Upon termination, x = y; together with the invariant, this yields

z ged z = b ged ¢, and property (15.98) of ged gives result R.

3 The notation b L ¢ is not standard in mathematics. Graham et al. [16] call
for its introduction, saying that its use makes many formulas clearer.
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HISTORICAL NOTE 15.1. EucLip (ABouT 300 B.C.)

Little is known about the life of Euclid. He did teach in his own school in
Alexandria at the time of Ptolemy I. Euclid is best known for writing Elements,
a text consisting of 13 books that taught geometry and the theory of numbers.
Elements incorporates many discoveries made by other people, and Euclid
is viewed mainly as a compilator and expositor —but a great one. In fact,
Elements is one of the most successful scientific books, ever: for over 2,000
years, geometry was learned only from Euclid’s Elements.

Elements develops geometry through a series of definitions, explanations,
axioms, and theorems and their proofs. It is the first book to follow this de-
ductive method, recognized as the basic method in mathematics ever since.
Since the development of algebra, which was unknown at the time of Euclid,
the formulation and theory of geometry has changed radically, and Euclid’s
postulates are no longer widely used. Well, 2,000 years is enough for any book
to be a best seller. We will be happy if this text lasts 20!

e Each iteration decreases the bound function, and the bound function
is bounded below by 0. Hence, the algorithm terminates.

o FKach iteration maintains loop invariant P . To show this, we should
show that in each case £ >y and = < y, execution of the repetend
maintains P . We show only the case x > y, because the other is
similar. In the case x > y, we have to prove

{PANz>y} z:=xz—y {P}

According to Assignment introduction (10.2) on page 182, we can
prove this by proving

PAz>y = Plz:=z—y|

We assume the antecedent and prove the consequent.

Plz =z — y]
(Definition of P ; Textual substitution)
(zr—y)gedy=bgedc A O0<z—y A O<y
= (Assumption z > y; Conjunct 0 <y of P))
(zx—y)gedy=bgedc A true A true
= (Identity of A (3.39))
(r—y)gedy=bgedc
(z=1-y+ (xz—y), so, by (15.103),
rgedy=yged(z—-y))
rgedy =bged ¢ —First conjunct in assumption P

At each iteration, Euclid’s algorithm subtracts the smaller of the two
values from the larger. This algorithm is slower than need be, and we now
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develop a faster one. Consider equation (15.91):

b=c(b+c) + bmodc (for ¢ #£0).
Theorem (15.103) instantiated with a,d := b+ ¢,b mod ¢ is
(15.106) b=c-(b+c)+bmod ¢ = bged ¢ =cged (b mod c)

Since (15.91) is the antecedent of (15.106), we conclude that the consequent
b ged ¢ = ¢ ged (b mod ¢) is valid as well. Therefore, we can write the
following, which could be viewed as an inductive definition of ged —note
that ¢ > b mod c, so that the recursion is suitably defined.

(15.107) bged 0= b
bged ¢ = cged (b mod ¢) for ¢>0

This inductive definition could be viewed as a recursive algorithm, or we
can write the following iterative version.

{Q:0<b A 0<¢}

T,y :=b,c

{invariant P: zgedy=bgedec A 0<z A 0<y}
{bound function : y}

do0#y— z,y:=y,z mody od

{R:z=bgcdc}

We prove the correctness of this algorithm as follows.

e Initialization z,y := b, c truthifies invariant P .

e Upon termination, y = 0; together with the invariant, this yields
z ged 0 = b ged ¢, and Identity of ged (15.100) gives result R.

e Each iteration decreases bound function y (since z mod y < y),
and the bound function is bounded below by 0. Hence, the algorithm
terminates.

e FEach iteration maintains P —this can be proved using the property
bgedc=cged (bmodc).

Surprisingly, this algorithm takes the most time when b and ¢ are con-
secutive Fibonacci numbers! (Another interesting connection between gcd
and 7 is discussed in Historical note 15.2.) The number of iterations of
this loop has been shown to be bounded above by * [4.81log4(b T ¢)—.32] .

4 The ceiling of real number x , written [z] , is the smallest integer i that is
at least z . For example, [2.9] =3, [3] =3, and [3.1] =4.

Similarly, the floor of x, written |x|, is the largest integer that is at most
z. Thus, |29] =2, [3] =3,and [3.1] =3.
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HISTORICAL NOTE 15.2. PERCENTAGE OF RELATIVELY PRIME PAIRS

If you choose two positive integers at random, the chance that they will be
relatively prime is 6/w> —a startling relation between =, the ratio of the
circumference of the circle to its diameter, and primes. This fact was proved
by E. Cesaro in 1881. The proof requires stating precisely what “random”
means and also requires some mathematics that is beyond the scope of this
text. However, we can give the idea here (see [26] for a full proof).

Let p be the probability that b ged ¢ = 1. For any positive integer d,
consider the probability that b gcd ¢ = d . This happens when b is a multiple
of d, c is a multiple of d, and (b/d) ged (¢/d)=1.

The probability that d divides b is 1/d. Therefore, the probability that
bged c=4d is (1/d)-(1/d)-p, i.e. p/d*. Summing these probabilities over
all possible values of d yields

1 1 1
= <d: 2y = p- ...
1 (2d11<d:p/d°) p-(1+=>+ +1 +-00)

The summation is known to have the value 7%/6,s0 p=6/7>.

Hence, this algorithm is logarithmic in the size of b and c. The analysis
of the running time falls outside the scope of this text —see pp. 316-33 of
[26].

The following theorem will be useful later; it says that witnesses z and
y exist that satisfy the equation z-b+y-c=bged c.

(15.108) (Fz,yl: z-b+y-c=bgedc) (forall b,e:N)
Proof. The proof of (15.108) is by induction on ¢. We prove (Vc|: P.c)

where P.c is (Vbl: (3z,yl: z-b+y+c = bged c)) . In each case, we exhibit
the necessary z and y.

Base case ¢=0. Choose x =1 and y=0.

Inductive case ¢ > 0. We assume inductive hypotheses P.i for 0 <i < ¢
and prove P.c. That is, for arbitrary b, we prove

(15.109) (Fz,yl: z-b+y-c=bged c)

Since 0 < b mod ¢ < ¢ is valid (see (15.90) and (15.91)), the inductive
hypothesis indicates that there exist witnesses &,y that satisfy

(15.110) Z-c + 9+ (b mod ¢) = ¢ ged (b mod ¢)

We play with the RHS of the body of (15.109) until we get it into a shape
that allows us to determine what to choose for = and y.

bgedc
= {(15.107))
c ged (b mod c)
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((15.110))
Z+c+ ¢-(bmod c)
= ((15.91) yields bmod c=b— (b= c)+c)
Zect+g(b—(b+c)c)
= (Arithmetic)
Zee+gb—g-(b+c)c
= (Arithmetic)
gb+@—-g-(b+0)c

Comparing the last expression with the LHS of (15.109), we see that = = §
and y =% —§-(b+c) are the witnesses that substantiate (15.109). 0O

It is clear that any divisor of b gcd ¢ divides b and c¢. Expression
(15.108) tells us also that any divisor of b and ¢ is also a divisor of
b ged ¢, and we have

(15.111) k|b A k|c = k|(bgedc)

PRIME NUMBERS

A non-zero integer p > 1 is prime if the only positive integers that divide
p are 1 and p; otherwise, p is composite.

Throughout this section, the identifier p, sometimes subscripted (e.g. p2 ),
denotes a prime number. The first eleven prime numbers are

2,3,5,7,11,13,17, 19, 23, 29, 31

An important consequence can be drawn from the existence of z and y
satisfying expression (15.108) above.

(15.112) Theorem. For p a prime, p|b-c = p|bV p|c.

Proof. The theorem can be rewritten as p|b-c A =(p|b) = plc. We
assume the antecedent and prove the consequent. Since p is a prime, from
the assumption —(p|b) we conclude that the only common divisors of
p and b are +£1, so b gcd p = 1. Therefore, by (15.108), there exist
witnesses ¢ and y that satisfy

zb+yp=1

= (Multiply both sides by c¢; Multiplicative identity (15.4))
z+bctypc=c

=  (Assumption p|b-c; p|y-p-c by Defof |)
ple O

The argument used to prove Theorem (15.112) can also be used to prove
the following generalization concerning relatively prime numbers.
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HISTORICAL NOTE 15.3. THE FASCINATING PRIME NUMBERS

The basic theory of primes and composites was known to Euclid, who proved
(15.112), as well as the existence of an infinite number of primes. Eratosthenes,
some 50 years later, gave his algorithm for computing all primes, the Sieve of
Eratosthenes. It goes like this. Write down the sequence of odd positive integers
greater than 1. Then cross out every third integer, every fifth integer, and so
on. At each step, choose the first number that has not yet been crossed out as
the next prime, and cross out all multiples of it.

Just before 1900, it was proved that for each n, the number of primes less
than n is approximately n/(Ilnn) for n large, so there are approximately
72,382 primes less than 1,000,000 (we now know there are exactly 78,498). It
is also known that the gaps between successive primes can be arbitrarily large,
but relatively little is known about the behavior of these gaps.

In the 17th century, Father Marin Mersenne studied integers of the form
27 —1 (for p a prime). They are now called Mersenne numbers; some are
prime and some are not. This study was continued by many others, without
computers —imagine trying to find the factors of a number like 227 — 1,
which has approximately 40 decimal digits, without a computer! Computers
made primality testing easier. In 1952, a computer found that the Mersenne
numbers were primes for p = 521, 607, 1,279, 2,203, and 2,281. However, that
was just the start. In 1984, the largest known Mersenne prime was 2216091 _1
At 75 characters per line and 60 lines on a page, its 65,050-digit decimal
representation would take over 7 double-sided pages. Larger primes have been
found since then.

To the layman, a lot of math (like primality testing and factoring large
numbers) may seem a frivolous waste of time. However, this research often
pays off unexpectedly years later. Factoring and primality testing have become
important because of the need to make electronic communications secure (see
Historical note 14.2). In 1978, a cryptosystem was developed based on the fact
that it is easy to multiply two large numbers together but very difficult to
factor the result into primes. Even for computers, if large enough integers are
chosen, the task is intractable. So, what used to be an esoteric playground for
mathematicians has become applicable research.

(15.113) Theorem. b L ¢ A ¢|(b-d) = c|d.

Prime numbers are important because they are the basic building blocks
for the positive integers. This fact is embodied in the

(15.114) Fundamental Theorem of Arithmetic. Every positive integer
n can be written in a unique way as a product of primes:

n=pg*..."Pm-1 WherepOS“‘Spm—l-

Proof. The proof is by induction on n.
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Base case: 1 is the product of zero primes: 1= (Il | false : p;) .

Inductive case. We assume, as the inductive hypothesis, that the theorem
holds for all positive integers less than n, where n > 1, and we prove the
theorem for n. Two cases arise: n is prime and n is composite.

Case n is prime. Then n is a product of itself.

Case n is composite. Then n = b-c for some positive integers b and
¢, which are both less than n. By the inductive hypothesis, b and
¢ can be written as products of primes: say b = pg* ... -pr—1 and
c=¢qg*... qx_1. Therefore, n =bc=pg* ... Pr_1°Go* .- *Qx—1 -
Due to symmetry and associativity of multiplication, the primes in
the RHS can be ordered to the required factorization of n.

The proof that the factorization of composite n is unique is given in
Lemma (15.115). O

(15.115) Lemma. The factorization of primes is unique (up to reordering
of the factors).

Proof. The proof is by induction; we prove (Vn | 1 < n : P.n), where
inductive hypothesis P.n is “the prime factorization of n is unique”.

Base case. The product (IT: | false : p;) =1 is unique.

Inductive case. We assume the theorem holds for positive integers less
than n, where n > 1, and prove it true for n. Suppose

n=po*-..."Pm-1=4q0" ---"qh-1
where pg <+ <pm—1 and g <--- < qp1

and the p; and g; are primes. We prove below that py = g . Then, by
Cancellation (15.7), p1*...*Pm—1 = q1° ... qr—1 and, by the inductive
hypothesis, the representation of this integer is unique, so m = h and
P1=4q1,.--;Ph-1 = qh-1-

We now prove pg = qo . We have,

POt .- *Pm—1=4qo" ---*qh—1 —the assumption
= (Def. (15.77), with ¢,b,d :==po,q0---qh—-1,P1---Pm—1)
polgo - *qnr-1
= {((15.112) —py is prime)
polge  (for some k)
= (Assumption that py and g are primes)
po=gqr (for some k)
= (@< q)
Po 2 qo
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By a similar argument, pg < qo, so, by antisymmetry of <, pg=¢qo. O

We now prove that there are an infinite number of primes, using the
same idea that Euclid used in his proof long long ago.

(15.116) Theorem. There are an infinite number of primes.

Proof. For any natural number &k, we give an algorithm to construct the
first k+ 1 primes, in order. The first prime is 2. Now assume that the
smallest k primes pg,p1,-..,Pk—1, in order, have been constructed. We
show how to construct prime pj . Consider the integer

(15.117) M =po*p1+...*pk—1+1

By (15.86) and the fact that each p; divides M —1, none of the p; divides
M . Hence, there is a prime bigger than py_; that divides M (it could be
M itself). Choose for py the smallest prime in (pg—1 +1)..M . O

CONGRUENCES

In the U.S., we use a 12-hour clock, so that after 12 (noon or midnight)
comes 1 again. Thus, in describing hours, we throw away multiples of 12. If
we began counting hours on the first day of the year, we would equate the
hours 2, 14 (which is 2PM), 26 (2AM the next day), 38 (2PM the next
day), etc. We call two integers congruent modulo 12 if they differ by an
integral multiple of 12. Many Europeans use a 24-hour clock: they count
hours modulo 24.

(15.118) Definition. Integers b and c are congruent modulo m , written
b= c,iff m|(c—1b). Relation = is called congruence,®and m
is called the modulus of the congruence. We read b Z ¢ as “b is

congruent mod m to ¢” or “b and c¢ are congruent mod m”.

A first property to note is that Z is an equivalence relation —it is
reflexive, symmetric, and transitive (the proof is left to the reader.) In

addition, operator = satisfies a number of properties that are similar to
those of =.

® The standard notation for b Z ¢ is b = ¢ (mod m). We do not use this
standard because = already plays a role in our propositional calculus.
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Congruence theorems

(15.119) Alternative definition of Z :

bZc = bmodm=cmodm
(15.120) Addition: bZ¢ = b+dZc+d
(15.121) Negation: bZc = —bZ —¢
(15.122) Multiplication: b=¢ = b-dZc-d
(15.123) Powers: bZc = " Z " (for n>0)
(15.124) Cancellation: d L m = (b-dZc'd = bZ¢)
(15.125) Cancellation: b:d =%c:d = bZc (for d>0)
(15.126) d L m = (3zl:d-z Zb)

(156.127) dLlm = (dz2bAdyZb=2z2y)

Theorem (15.119) provides an alternative definition of congruence. The
rest of the theorems show that Z enjoys many, but not all, of the proper-
ties of = . For example, Cancellation (15.7) does not hold in full generality
—compare (15.7) with (15.122). The implication in (15.122) does not go
in the other direction, as the following counterexample shows: 4:2 £ 1.2
does not imply 4 £ 1. The cancellation of the 2 does not work because 2
is a factor of modulus 6. Theorem (15.124) provides a weaker cancellation
law, while theorem (15.125) indicates we can cancel if we cancel in the
modulus as well.

Theorem (15.126) gives conditions under which there is a solution z
to the equation d-x 2 b, while (15.127) says that all solutions to it are
congruent mod m .

Many other theorems hold concerning congruences, and congruences have
many applications; we are only providing a brief overview of the concept.
We leave the proofs of all but one of these theorems to the reader. Here is
a proof of theorem (15.119), which is based on the fact that dividing b by
m leaves a unique remainder.

We prove (15.119), by mutual implication.

LHS = RHS. The LHS is equivalent to the fact that there is a witness d
that satisfies d-m = ¢ — b. We assume the LHS and prove the antecedent.
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cmod m
((15.91))
c—m-(c+m)
= (Assumption d-m =c—b)
dm+b—m-((d-m+b) +m)
= (Arithmetic)
b—m-(b+m)
= ((15.91))
bmodm

RHS = LHS.

b mod m = c mod m

= ((15.91), twice)
b—(b+m)m=c—(c+m)m

= (Arithmetic)
b—c=(b+m-—-c+m)m

= (Definition of | (15.77))
m|(b—c)

= (Definition (15.118))
bZc¢

15.5 Common representations of natural numbers

There are many ways to represent the natural numbers 0,1,2,.... Three
age-old representations are depicted in Table 15.1

TABLE 15.1. PRIMITIVE REPRESENTATIONS OF THE NATURAL NUMBERS

integer tally encoded tally roman number

I
II
| 111
| v
\%
| VI
I VII
Il VIII
| IX

111
(1]
T
T
I

= O © oIS U WNH~O

—

FEEEEES

| XI
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Column 2 represents the integer n by n strokes |. Column 3 uses an
improvement that allows one to see more easily how many strokes there
are. Column 4 contains the roman numerals. Note that there is no repre-
sentation of 0 in the roman-numeral system. The tally systems, on the
other hand, have a representation for 0: the absence of strokes.

Actually, column 1 itself uses a representation of the integers: the decimal
representation. This representation is so ubiquitous that we tend to think
of this column as being the integers. Nevertheless, it is just one among
many representations. In the decimal representation di_;i...d1dp of n,
the d; are called digits. The d; satisfy the following properties.

0<d;<10 for0<i<k
n=(2il0<i<k:d;-10%

Digit dy is the least-significant digit and di_; is the most-significant
digit. Note that the natural number 0 can be represented by any sequence
of 0’s, including the empty sequence (i.e. with k=0).

The decimal system uses ten different symbols: 0,1,2,3,4,5,6,7,8,9.
Here, 10 is called the base of the number system, so the decimal system
is the base-10 system. For any integer b, 2 < b, we can use the base b
system to represent the natural numbers. The first 19 natural numbers in
several different bases are given in Table 15.2.

The binary system (base 2) is used heavily in computers because it is
easy to use an electronic signal to represent a binary unit, or bi¢, 0 or 1 —
see Sec. 5.2. The octal system (base 8) ¢ and hexadecimal system (base 16)
are also used because integers have shorter representations in them and the
translation between them and binary is trivial. For example, to translate
from octal to binary, just replace each octal unit by its binary equivalent
—e.g. 733 = 1110115 . Note how we indicate the base using a subscript.

For an integer b, 2 < b, the base b representation of a natural number
n is a sequence of “b-units” dg_1...d1dy where the b-units d, satisfy

(15.128) 0<d; <b for 0<i<k
n=(Sil0<i<k:d;b)
Given the base b representation of n, it is easy to compute 7 ; simply
calculate the sum given in (15.128).

We now present an algorithm that, given n > 0 and a base b, produces
the base b representation of n . Thus, the algorithm stores values in integer
variable k and array d[0..k — 1] to truthify (15.128).

8 Why send a Christmas card on Halloween? Because DEC 25 = OCT 31.
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k,z:=0,n;

doz >0 — z,dk] ==z + b,z mod b;
k=k+1

od

The invariant of the loop of the algorithm is

P:0<k NO<Lz A
(Vil0<i<k:0<d[i]<b) A
n=zb*+(Ti]0<i<k:d[i-b)

It is easy to see that P is truthified by the initialization, that upon
termination the result holds, and that the loop terminates (each iteration
decreases * and z is bounded below by 0). It is also easy to see that the
first three conjuncts are maintained by the repetend.

We now prove that the last conjunct P4 (say) of P is maintained by
the repetend. The key to this proof is theorem (15.91), which we rewrite
here with the variables we will be needing:

(15.129) z=(z+b):b + cmodb  (for b#0).

TABLE 15.2. NATURAL NUMBERS IN DIFFERENT BASES
binary  ternary octal decimal  hexadecimal
(base 2) (base 3) (base 8) (base 10) (base 186)
0 0 0 0 0
1 1 1 1 1
10 2 2 2 2
11 10 3 3 3
100 11 4 4 4
101 12 5 5 5
110 20 6 6 6
111 21 7 7 7
1000 22 10 8 8
1001 100 11 9 9
1010 101 12 10 A
1011 102 13 11 B
1100 110 14 12 C
1101 111 15 13 D
1110 112 16 14 E
1111 120 17 15 F
10000 121 20 16 10
10001 122 21 17 11
10010 200 22 18 12
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To see that P4 is maintained by the repetend, annotate the repetend
with assertions as follows.

{P}

{A1: n=((z+b)-b+z mod b)-bF +
(Zil10<i<k:d[i]-b)}

z,d[k] := z + b,z mod b;

{A2: n=(z-b+d[k])-bF + (Ti10<i<k:d[i]-b")}

{P4[k .=k + 1]}
k:=k+1
{P4}

Implication P = Al follows from (15.129). The Hoare triple {A1l}
z,dlk] :== <+ b,z mod b {A2} is valid because Al is A2 with z and
d[k] replaced by = +b and z mod b. A2 = P4[k := k + 1] is shown
below. And {P4k:=k+ 1]} k:=k + 1 {P4} follows by definition of the
assignment. Here, now, is the proof of A2 = P4[k:=k+1].

Pk ==k +1]
= (Definition of P4 and textual substitution)
n=z-F1 +(Til0<i<k+1:d[i]-b)
= (Split off term (8.23))
n=x-b**1 +dk]-bF + (T 310 <i<k:d[i]-b)
= (Factor out b*)
n=(z-b+dk]) b+ (Til0<i<k:ds]-b)

A REPRESENTATION OF THE POSITIVE INTEGERS

The Fundamental Theorem of Arithmetic can be restated to give another
representation of the positive integers: Any positive integer n can be writ-
ten uniquely in the form

(15.130) n= (IIp | p a prime : p"?) (each n, > 0).
For example, 126 = 2-32-7, so for 126 we have
126 = 2'.32.59.71.119.13%-170- . ..

The RHS of (15.130) is a product of infinitely many primes, but for any
given n, all but a finite number of exponents are 0, so the corresponding
factors are 1. Therefore, we can view it as a finite product instead of an
infinite product. Suppose we list the primes by size, pg,p1,ps,..., with pg
being the smallest. Then, for any positive integer n, we can think of the
sequence of exponents in the RHS of (15.130) as a representation W of n.
For example, we have 126 = (1,2,0,1,0,0,...). This gives us a different
number system for positive integers. It is easy to see that multiplying two
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positive integers is done in this number system by adding their representa-
tions —where addition for these representations is done component-wise.
For example,

126-2 = (2,2,0,1,0,0,...) = (1,2,0,1,0,0,...) + (1,0,0,0,...).

Let b denote the representation of b, and let Bp denote the exponent of p
in the unique factorization of b. Then the first four theorems below follow
directly from this representation.

Theorems on representation of positive integers

(15.131) (b-c), = b,+¢, (for all primes p)
(15.132) blc = (Vpl:b, <)

(15.133) (bgedc), = b, | ¢ (for all primes p)
(15.134) (blemc), = b, 1¢, (for all primes p)

(15.135) b-c=(bgedc)-(bleme¢) (for natural numbers b,c)

Theorem (15.135) provides the relationship between ged and lem.
We prove it as follows. For b = 0 or ¢ = 0, (15.135) follows from
blem 0 = 0. To prove (15.135) in the case b > 0 and ¢ > 0, we have
to show that the corresponding components of the representations of b-c
and (bged c)-(blcm ¢) are equal. For any prime p, we have

(b-c)p
= ((15.131)
by +
=  (Oneof by, ©, is the min; the other the max)
(bp 1) + (bp | )
= ((15.133); (15.134))
(bged ¢)p + (blem ),
= {(15.131))
((bged ¢)-(blem ¢)),

Exercises for Chapter 15

15.1 Prove that the set of numbers a + b-v/5 for a,b in Z form an integral
domain (except for Cancellation (15.7), which holds but is harder to prove).
Assume that the reals and integers are integral domains.
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15.2 Prove that if (i) O is a left identity of + and (ii) + is symmetric, then 0
is a right identity of + .

15.3 Prove that if (i) 1 is a left identity of - and (ii) - is symmetric, then 1
is a right identity of - .

15.4 Prove that Right distributivity (15.5), (b+c)+a =b-a+ c-a, follows from
associativity and symmetry of + and - and Left distributivity (15.5), a-(b+
¢c)=a'b+ta-c.

15.5 Prove Unique identity theorems (15.10).

15.6 Prove theorem (15.11), ab=0 = a =0V b= 0. Hint: Use mutual
implication. Because of the disjunction in the RHS, both of the proofs may require
a case analysis.

15.7 Prove the following theorems ( a,b,c,d are arbitrary elements of D).

(a) (a+b)-(c+d)=ac+bc+ad+bd
(b) a-(b+c)'d=a*bd+a-cd

15.8 Prove theorem (15.15), z+a=0 = z=—a.

15.9 Prove theorem (15.16), —a=—-b = a=b.

15.10 Prove theorem (15.17), —(—a) =a.

15.11 Prove theorem (15.18), —0=0.

15.12 Prove theorem (15.19), —(a +b) = (—a) + (-b) .

15.13 Prove theorem (15.20), —a = (—1)-a.

15.14 Prove theorem (15.21), (—a)-b=a-(-b).

15.15 Prove theorem (15.22), a-(—b) = —(a-b) .

15.16 Prove theorem (15.24), a —0=a.

15.17 Prove theorem (15.25), (a —b)+ (c—~d)=(a+¢c)—(b+d).
15.18 Prove theorem (15.26), (a —b) — (c—d)=(a+d) — (b+c).
15.19 Prove theorem (15.27), (a —b)-(c—d) = (a-c+b-d) — (a*d+ b-c) .
15.20 Prove theorem (15.28), a—b=c—d = a+d=b+c.
15.21 Prove theorem (15.29), (a —b)-c=a-c—~b-c.

15.22 Prove (b—a)+(c—b)=c—a.

15.23 Use theorems (15.29) and earlier to prove (—1)-(-1)=1.

15.24 Let D consist only of 0 and 1, let multiplication - be defined as usual
on this set, and let addition be defined as usual except that 1+ 1 = 0. Prove
that D is an integral domain.

15.25 Let D contain only O,let 1 =0, and let 04+ 0=0-0 = 0. Is this an
integral domain? If not, why not?
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Exercises on ordered domains

In these exercises, you may use the hint ” Arithmetic” for relations involving
addition and subtraction of elements of an integral domain.

15.26 Prove (15.35), pos.a = (pos.b = pos(a-b)).

15.27 Prove Positive elements (15.40), pos.b = 0<b.

15.28 Prove Transitivity (15.41b).

15.29 Prove Transitivity (15.41c).

15.30 Prove Transitivity (15.41d).

15.31 Prove Monotonicity (15.42), a <b = a+d<b+d.

15.32 Prove Monotonicity (15.43), 0<d = (a<b = a-d <b-d).

15.33 Prove Trichotomy (15.44), (a<b = a=b =a>b) A ~(a<bAa=
bAa>bh).

15.34 Prove Antisymmetry (15.45), a <bAb<a = a=5b.
15.35 Prove Reflexivity (15.46), a < a.

15.36 Prove theorem (15.47), a = b (Vz:D1: 2z <a = 2z <b). Use
mutual implication. The proof of LHS = RHS can be done by starting with the
antecedent, using reflexivity of A, and then instantiating twice and simplifying.

15.37 Prove the following additional properties of the arithmetic relations on an
ordered domain (for arbitrary b,c,d in the ordered domain).

(a) b—c<b—d = ¢c>d

) b<0 = (bre>bd = c<d)
(¢) 0<dAbd<cd = b<ec
(d) d+d+d=0=d=0

() b<c = b-b-b<crcc

15.38 Show that aa—-a*b+b:b>0 for D an ordered domain.

15.39 Prove theorem (8.24), b<c¢<d = (b<i<d = b<i<eVe<Li<d),
on page 152.

Exercises on minimum and maximum

In these exercises, you may use the hint “Arithmetic” for relations involving
addition, subtraction, and multiplication of elements of an integral domain.

15.40 Prove Associativity of | (15.55), (z ly) l 2z =z | (y | 2).
15.41 Prove Idempotency of | (15.56), z | z = z.

15.42 Prove (15.58), <y = x|y = z. A possible first step is to use the
theorem b=c = b<c A ¢<b.
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15.43 Prove (15.59), x |y = = V z |y = y. This is most easily done using
(15.58)

15.44 Prove Distributivity of 4 over |, (15.60), c+(z | y) = (c+z) | (ct¥),
using (15.47).

15.45 Prove Distributivity of < over |, (1561), ¢ >0 = c'(z}y) =
(crz) | (c*y).
15.46 Prove Distributivity of « over T, (15.62), ¢ <0 = c'(zTy) =
(crz) | (c'y).
15.47 Prove (15.70): Provided —occurs(‘z’,‘E’),

Rz:=FE] = E=E1(lz|R:x)

15.48 Write down the general laws (8.14)—(8.21) and (8.18), but particularized
for * being the operator | .

15.49 The California problem. Consider a nonempty set of couples (each com-
prising a male and a female). The oldest male is the same age as the oldest female.
If two of the original couples swap partners temporarily, the younger members of
the two new pairs are the same age. Prove that the partners of each couple are
the same age. Hint: The key to solving this problem without case analysis is to
formalize the situation properly.

Exercises on absolutes

In these exercises, you may use the hint “Arithmetic” for relations involving
addition, subtraction, and multiplication of elements of an integral domain.

15.50 Prove theorem (15.72), abs.z = abs(—z) .

15.51 Prove Triangle inequality (15.73), abs(z + y) < abs.x + abs.y.
15.52 Prove theorem (15.74), abs(abs.z) = abs.xz .

15.53 Prove theorem (15.75), abs(z-y) = abs.x-abs.y.

15.54 Prove theorem (15.76), —(abs.z + abs.y) <z +y < abs.x + abs.y .

Exercises on operator Divides

In these exercises, you may use the hint “Arithmetic” for relations involving
addition, subtraction, and multiplication of elements of an integral domain.

15.55 Prove theorem (15.78), c|c.

15.56 Prove theorem (15.79), ¢|0.

15.57 Prove theorem (15.80), 1|b.

15.58 Prove theorem (15.81), ¢|1 = ¢c=1V c¢= —1.
15.59 Prove theorem (15.82), d|c A ¢|b = d|b.
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15.60 Prove theorem (15.83), b|c Ac|b = b=cV b= —c.
15.61 Prove theorem

)s

15.84), blc = b|c-d.
), ble = b-d|c-d.
),

(

(
15.62 Prove theorem (15.85
15.63 Prove theorem (15.86), 1 <b A b|c = —(b|(c+1)).
15.64 Prove b|c = b| —c.

15.65 Prove that if d|b and d|c then d|(b+c).
15.66 Prove that if b# 0 and d|b, then abs.d < abs.b.

15.67 Complete the proof of theorem (15.87) by showing that the theorem holds
for negative integers as well as positive integers. Do this by extending algorithm
(15.88) to apply to negative as well as positive integers.

15.68 Prove Corollary (15.89).

Exercises on greatest common divisors

15.69 Prove Symmetry (15.96), bgedc=cged b.

15.70 Prove Associativity (15.97), (bged ¢) ged d =bged (cged d) .

15.71 Prove (15.98), bged b = abs.b.

15.72 Prove Zero (15.99), 1gedb=1.

15.73 Prove (15.100), 0 gcd b = abs.b.

15.74 Prove (15.101), b ged ¢ = (abs.b) ged (abs.c) .

15.75 Prove (15.102), bgedc=bged (b+c) =bged (b—c).

15.76 Prove (15.103), b=a-c+d = (bged c=cged d).

15.77 Prove Distributivity (15.104), 0 <d = d-(bgedc) = (d-b) ged (d-¢).
15.78 What is nged (n+1),for n >07

15.79 Extend Euclid’s algorithm (page 318) to find the greatest common divisor
of any two integers.

15.80 Suppose the conditional statement if z >y - z:=z—-y Jy>z - y:=
y —z fi of Euclid’s algorithm (page 318) is replaced by

T, Yy:=x T y_xlya"rly
Prove that the algorithm still truthifies R.

15.81 Here are two ways to compute the gcd of three integers. (i) Extend
the iterative algorithm that follows inductive definition (15.107) for computing
b ged ¢ to compute the ged of three integers, all together. (ii) Use that iterative
algorithm twice, using ged(b, ¢,d) = b ged (¢ ged d) . Which do you prefer, and
for what reasons?
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15.82 Prove that if b is positive and composite, then it has a divisor d that
satisfies 1 < d? <b.

15.83 Prove that if b L ¢, then (b—c) ged (b+c¢) equals 1 or 2.

Exercises on primes

15.84 Prove Theorem (15.113), b L ¢ A ¢|(b*d) = c|d.

Exercises on congruences

In these exercises, you may use the hint “Arithmetic” for relations involving
addition, subtraction, and multiplication of elements of an integral domain.

15.85 Prove that congruence relation = is an equivalence relation.
15.86 Prove Addition (15.120), 62 ¢ = b+dZc+d.
15.87 Prove Negation (15.121), bZc¢c = —-bZ —ec.

15.88 Prove Multiplication (15.122), bZ ¢ = b-dZc-d.

15.89 Prove Powers (15.123), bZ ¢ = bd" Zc" (for n>0).

15.90 Prove Cancellation (15.124), d L m = (b-dZc-d = bZ¢).
15.91 Prove Cancellation (15.125), bd "=*c-d = bZ ¢ (for d > 0).
15.92 Prove theorem (15.126), d L m = (Jzl:d-zZb).

15.93 Prove theorem (15.127), d L m = (d*z Zb A d-yZb = z2y).



Chapter 16

Combinatorial Analysis

his chapter concerns combinatorial analysis: the branch of mathemat-
T ics that deals with permutations of a set or bag and combinations of
a set. These ideas lead to binomial coefficients and the Binomial theorem.
The first two sections of this chapter introduce the theory, with just enough
examples to make clear the points being made. The third section illustrates
the power of the theory through a variety of examples.

16.1 Rules of counting

RULES OF SUM AND PRODUCT

Three basic rules used in counting are the rule of sum, rule of product, and
rule of difference. Stated in terms of sets and their cross products, these
rules are straightforward.

(16.1) Rule of sum. The size of the union of n (finite) pairwise disjoint
sets is the sum of their sizes.
(Vi|0§i<j<n:5'iﬂ$j=(0) =
#HUI10<i<n:5)=(Zi10<i<n:#S)

(16.2) Rule of product. The size of the cross product of n sets is the
product of their sizes.
#(S()X XSn_l)Z(HZ | OSZ'<’I’LZ#Si)

(16.3) Rule of difference. The size of a set with a subset of it removed
is the size of the set minus the size of the subset.
TCS = #5—-#T =#(5-T)

Applying these rules in concrete situations requires identifying the sets
involved. Here is an example. Suppose a child can draw 4 different faces
(a set of size 4) and 2 different hats (a set of size 2). Then the rule of
sum tells us the child can draw 6 different faces or hats, and the rule of
product tells us that the child can draw 4.2 = 8 different combinations of
faces with hats on them.

As another example, we calculate the number of different license plates
if each license plate is to contain three letters followed by two digits. This

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993
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number is the size of the cross product of three sets with 26 elements each
and two sets with 10 elements each, or, according to the rule of product,
26-26-26-10-10.

PERMUTATIONS OF A SET

A permutation of a set of elements (or of a sequence of elements) is a linear
ordering of the elements. For example, two permutations of the set {5,4,1}
are 1,45 and 1,5,4. A permutation of a sequence of letters is called an
anagram. An anagram of TUESDAY NOVEMBER THIRD, the day of the
1992 American presidential elections, is MANY VOTED BUSH RETIRED.

How many different permutations of a set of n elements are there? For
the first element of the permutation, we choose from a set of n elements.
For the second element of the permutation, we choose from the set of
n —1 remaining elements. For the third, n —2, and so on. Thus, there are
n+(n—1)-(n—2)----1, or n!, different permutations.

Sometimes, we want to construct a permutation of only r (say) of the
n items. Such an r-permutation of a set of size n can be constructed
as follows. For the first element, choose from n elements; for the second,
from the 7 — 1 remaining elements, ..., and for the last, from n —r+1
elements. Thus, there are

nn—1)---+(n—r+1)
= (Multiply numerator and denominator by (n —r)!)

n*(n=1)*---*(n—r+l)* (n—r)* (n—r—1)°---°1
(n—r)*(n—r—1)°---°1

= (Definition of n! and (n —r)!)
n!/(n—r)!

different permutations. This number occurs frequently enough to give it a
name.

(16.4) P(n,r)=n!/(n—r)!

(16.5) Theorem. The number of r-permutations of a set of size n equals
P(n,r).

We have: P(n,0)=1, P(n,1)=n, P(n,n—1)=n!,and P(n,n)=n!.
(Remember that 0! =1.)

For example, the number of 3-permutations of the 4-letter word BYTE
is P(4,3), which is 4!/(4 — 3)! = 4! = 24. The number of 2-permutations
of BYTE is P(4,2) = 4!/(4 — 2)! = 4-3 = 12. These 2-permutations are:
BY, BT, BE, YB, YT, YE, TB, TY, TE, EB, EY, and ET. There is one
0-permutation, the empty sequence; note that P(n,0) =1.
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PERMUTATIONS WITH REPETITION OF A SET

Consider forming an r-permutation of a set but allowing each element to be
used more than once. Such a permutation is called an r-permutation with
repetition. For example, here are all the 2-permutations with repetition
of the letters in SON: SS, SO, SN, OS, OO, ON, NS, NO, NN. Given a
set of size n, in constructing an r-permutation with repetition, for each
element we have m choices. The following theorem follows trivially from
this observation and the rule of product.

(16.6) Theorem. The number of r-permutations with repetition of a set
of size n is n".

PERMUTATIONS OF A BAG

There will be fewer permutations of a bag than of a set of the same size,
because the bag may have equal elements and because the transposition
of equal elements in a permutation does not yield a different permutation.
To illustrate the difference, we list below all the permutations of the set
{S,0,N} and the bag {M,O,M]}. Although the set and the bag are the
same size, the set has more permutations.

SON, SNO, OSN, ONS, NSO, NOS
MOM, MMO, OMM

The following theorem gives the number of permutations of a bag. Note
that if the bag is really a set (i.e. each of the elements occurs once), the
formula is equivalent to the number of permutations of a set.

(16.7) Theorem. The number of permutations of a bag of size n with

k distinct elements occurring nq,no,...,ng times is
n!
n1!-n2!- T -nk!

Proof. We prove the theorem by induction on k&, the number of distinct
elements in the bag.

Base case k = 0. The bag is empty, so there is 1 permutation: the empty
sequence. The numerator of the fraction of the theorem is 0!, whichis 1.
The denominator is a product of & = 0 values, which is also 1. Hence the
expression reduces to 1/1 =1, and the theorem holds.

Inductive case. Assume the inductive hypothesis that the theorem holds
for a bag B with n elements that consist of distinct elements e; occur-
ring n; times, 1 < ¢ < k, and prove that the theorem holds for a bag
constructed by adding ng4;1 copies of a new value exy1 to B. For the
moment, assume that these copies of er; are distinct and add them one
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at a time to B . The first copy can be inserted into each permutation in
n+1 different places, the second in n+2 different places, and so on, giving

(n+ngg1)s -+ (n+1) n!

nilemgle o oomy!

that is,

(n + ng41)!

16. _
( 68) n1!-n2!-----nk!

?

different permutations. (For example, to the bag {O} with the single per-
mutation O, adding two copies of M yields the permutations M;M-0,
M_M;0, M;0OM;, MyOM;, OM;Mz, OM;M; .)

Since the mgy1 copies of ex+1 have been considered distinct, some per-
mutations are counted more than once. Consider two permutations to be
equivalent if removing the distinction between the copies of eyy; makes
the permutations the same, and partition the permutations into equivalence
classes. (In the example given above, M;M;0, MaM;O are in the same
equivalence class and represent the permutation MMO .) Since there are
ng4+1! permutations of ng41 distinct elements, each equivalence class con-
tains ngy1! permutations. Therefore, to find the number of permutations,
divide (16.8) by ng4+1!. O

As an example, we compute the number of permutations of the letters in
the word MISSISSIPPI. There are 11 letters. M occurs 1 time; I, 4 times;
S, 4 times; and P, 2 times. Therefore, the number of permutations is

11!

Teaargl - 4650

COMBINATIONS OF A SET

An r-combination of a set is a subset of size r . A permutation is a sequence;
a combination is a set.

For example, the 2-permutations of the set consisting of the letters in
SOHN are

SO, SH, SN, OH, ON, OS, HN, HS, HO, NS, NO, NH
while the 2-combinations are
{s,0},{s,H},{S,N},{O,H}, {O,N}, {H,N}

We now derive a formula for the number of r-combinations of a set of size
n . For this purpose, the following notation will come in handy.
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(16.9) Definition. The binomial coefficient (7:) , which is read as “n
choose 77, is defined by

(n)zr_'(L'_ (for 0<r<n)

T ‘(n—r)!

We have: (3) =1, (}) =n, (,",) =n,and (7) = 1. The reason for the

term binomial coefficient will become clear later, on page 346.

The r-permutations of a set of size n can be generated by first gen-
erating the r-combinations and then generating the permutations of each
r-combination —i.e. to construct an r-permutation, first choose the r el-
ements to be used and then construct a permutation of them. Since each
r-combination has r! permutations, we have P(n,r)=r!-(7):

(16.10) Theorem. The number of r-combinations of n elements is (7) .

For example, suppose a student has to answer 6 of 9 questions on an
exam. The number of ways in which this obligation can be discharged is

9 9! 9:8-7
(6) R W i

We can relate the number of r-combinations of a set of size n to the
number of permutations of a certain bag. Consider Theorem (16.7) for the
case of a bag with only two distinct elements. Thus, ns = n —n;, and
the formula of the theorem reduces to E,—(Z'_—m—), = (771) . Comparing this
case to Theorem (16.10) gives the following theorem.

(16.11) Theorem. The number (7) of r-combinations of a set of size n
equals the number of permutations of a bag that contains r copies
of one object and n — r copies of another.

COMBINATIONS WITH REPETITION OF A SET

An r-combination with repetition of a set S of size n is a bag of size r all
of whose elements are in S . An r-combination of a set is a subset of that
set; an r-combination with repetition of a set is a bag, since its elements
need not be distinct. For example, the 2-combinations with repetition of
the letters of SON are the bags

{]S7Sl}a {lsvol}a {]SvNﬂ'7 ‘{]O’Ol}v {Iole}v {]NvNI}

On the other hand, the 2-permutations with repetition of SON are
SS, SO, SN, 05, OO, ON, NS, NO, NN
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We want to find a formula for the number of r-combinations with rep-
etition of a set S of size n. To do so, we reduce the problem of finding
this number to a problem whose solution is known. Let the elements of S
be e1,...,e, . Any r-combination with repetition can be represented by a
permutation of its elements in which all the e;’s come first, then the ey’s,
and so on:

€1,€15...,€1,€2,€2,...€2, ..., €En,€p,...En

Call this the canonical representation of the r-combination. In the canon-
ical representation, if we distinguish the boundaries between distinct ele-
ments using a bar |, then we do not need to use the e; at all; we can
replace them, say, by the symbol z. For example, we show below a per-
mutation with 3 e;’s, 1 ez, no e3’s, and 4 e4’s; and below it, we show
its representation using z for all the e; and | as a separator.

€1 €1 €1 €9 €4 €4 (¥} €4

We have established a one-to-one correspondence between r-combinations
with repetition of a set of size n and permutations of r z’s and n —1
bars. Hence, we have the following.

no. of r-combinations with repetition of a set of size n

(The above one-to-one correspondence)
no. of permutations of » z’s and n — 1 bars

(Theorem (16.7), with n,k,ni,ne :=r+n—1,2,r,n—1)
(n+7r-—1)!

(Definition (16.9))

(Y

We have proved the following theorem.

Il

(16.12) Theorem. The number of r-combinations with repetition of a set
of size n is ("*7').

Here is an application of Theorem (16.12). Suppose 7 businessmen stop
at a fast-food restaurant, where each gets either a burger, a cheeseburger,
or a fishwich. How many different orders are possible? The answer is the
number of 7-combinations with repetition of a set of 3 objects (burger,
cheeseburger, or fishwich). So n of Theorem (16.12) is 3 and r is 7. By

the theorem, the number is (3+;‘1) = % =36.
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THE EQUIVALENCE OF THREE DIFFERENT STATEMENTS

In combinatorial analysis, the following three ways of expressing a certain
number crop up often. It is useful to know that they are the same, because
the set of techniques that can be used to solve any single problem is thus
enlarged.

(16.13) Theorem. The following three numbers are equal.
(a) The number of integer solutions of the equation
1+ x0+--+2x, =7,where 0<z; for 1<i<n.
(b) The number of r-combinations with repetition of a set of size
n.
(¢) The number of ways r identical objects can be distributed
among n different containers.

Proof. We show the equality of (a) and (¢) by giving a one-to-one corre-
spondence between the solutions of (a) and ways of (c). Given a solution
of (a), let container X;, 1 < i < n, contain z; objects. In total, the n
containers contain r objects. Hence, a solution of (a) is mapped into a way
in which r objects can be distributed among n containers. This mapping
is one-to-one and onto, so (a) and (c) are equal.

We now show the equality of (b) and (c). Consider an r-combination with
repetition of the set {z1,...,z,}, where each z, occurs n; times (say)
in the combination. We translate this combination into a distribution of r
identical objects v (say) into n distinct containers X; (say) as follows:
place n; copies of v into container X, for all i. To each such combination
there exists such a distribution, and vice versa. This establishes a one-to-one
correspondence between the r-combinations with repetition of n objects
and the ways of distributing r identical objects among n containers, so
(b) and (c) are equal.

Since (a) = (¢) and (b) = (c), by transitivity (a) = (b). O

16.2 Properties of n choose r

Earlier, we defined the binomial coefficient (:f) = ﬁr—), yfor 0 <r<n.

We now discuss some properties of (:’) .

Theorem (16.14) below follows trivially from () = T,—(Z'_r—), , since the

RHS is symmetric in r and n —r (i.e. replacing r by n —r yields an
equal expression). It is unfortunate that this symmetry is not apparent in
the notation (:‘) . In the literature, this gives rise to the statement and
proof of many theorems that would have been obvious had the symmetry
been recognized and exploited. It would have been better to define, say,
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C(b,c) to be the number 2! of combinations of b+ ¢ objects taken

blec!
b (or c) at a time and to note immediately that C is symmetric in its
arguments. However, the notation (';) is too entrenched in mathematics
to change.

Theorems for n choose r

(16.14) Symmetry : (") = (")

T n—r

(16.15) Absorption: (7) = =-(;7}) (for 0<r<n)
(16.16) Absorption: r-(7) =n-(""]) (for 0<r <nm)
(1617) (n=r)-(7) =n-("7") (for 0<7<n)
(16.18) Addition: (*) = (") + (7)) (for 0<r<n)
(16.19) (""tY =(Sk10<k<n: ("tF) (for 0<mn, 0<r)
(16.20) 2" =(Er10<r<n: (7)) (for 0 < n)

(1621) (3)-() = () (=) (for 0<k<r<n)

Proofs of theorems (16.15)-(16.17) are left as exercises. Theorem (16.17)
is unpleasant to prove by induction, but it can be proved very elegantly
using Symmetry (16.14) and Absorption (16.16).

Theorem (16.18) can be proved in at least three ways. It can be proved by
induction, but two better ways exist. It can be proved most easily by adding
theorems (16.16) and (16.17) together (see Exercise 16.60). Finally, it can
be proved using a combinatorial argument. A combinatorial argument relies
on the interpretation of (7') and P(n,r) as the number of r-combinations
and the number of permutations of a set of size n, instead of simply relying
on the formulas (7) = n!/((r!-(n—r)!) and P(n,r) = n!/(n—7)!. Relying
on such interpretations can sometimes result in shorter proofs. We now give
a combinatorial proof of (16.18).

Proof. Choose some element e of a set S of n elements. Using predicate
C(s,r,S) tomean “s is an r-combination of S”, we calculate the number
of r-combinations of § as follows:

n
T

= (Definition of C(s,r,S))
(ES | C(S,T‘,S) : 1)
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= (true = e¢s V ees)
(Zsl(egsVees)AC(s,rS): 1)
= (Range split)
(Zsle¢s AC(s,r,8):1)+(Eslees A C(s,1,S) : 1)
= {(e¢s = C(s,1,8)=C(s,r, S — {e})
ecs = C(s,1,S)=C(s—{e},r— 1,5 — {e}))
(ZslegsAC(s,r,S—{e}): 1)+
(Zslees AC(s—{e},r—1,5—{e}): 1)
= (Definition of C(s,r,S), twice)
(n 1)+(n 1) 0O

r r—1

Theorem (16.21) can be proved quite simply:

n T
('r‘) ‘ (k:)
= (Definition (16.9), twice)
n! r!
o (n—r) &l (r—k)!
= (Cancel r!; Rearrange)
n!
ks (r—k)!*(n—r)!
= (Multiply numerator and denominator by (n —k)!)
n! (n—k)!
B (n—k)! (r—k?! “(n—r)!

= (Definition (16.9), twice —n —r = (n—k) — (r —k))
n n—k
(2)- (22%)

Theorems (16.19)—(16.21) are three of many identities concerning the
sum and product of binomial coefficients. This is only the beginning of a
rich theory of binomial coefficients, which is not only elegant but useful in
combinatorics and probability theory. One can even define (7) for n a

negative number or real number and r any natural number, which allows
the expression of many more useful identities. See [16] for a full exploration.

FIGURE 16.1. PASCAL’S TRIANGLE

row 0 1

row 1 11

row 2 1 2 1

row 3 1 3 3 1

row 4 1 4 6 41
row 5 1 5 10 10 5 1
row 6 1 6 15 20 15 6 1

Row n has n+ 1 values (’:) for 0<r<mn.
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PASCAL’S TRIANGLE

One interesting way of listing all binomial coefficients ('rl) is Pascal’s trian-
gle of Fig. 16.1, named after Blaise Pascal, who wrote an influential treatise
on the triangle (see Historical note 16.1). Row n of the triangle contains
the n+ 1 values (7),(}),..., (7). This can be seen as follows. The two

sides of the triangle are all 1’s, since (}) = () = 1. Any other element

of the triangle, (:) for 0 < r < n, is the sum of the two values just above
it —since, by theorem (16.18), (*) = ("_1) + (n_l) .

T T r—1
Pascal’s triangle has many surprising properties. For example, consider
the hexagon of values 4,5,15,20,10,6 that surrounds the third element
(10) in row 5:

4 6
5 10 10
15 20

Both ways of multiplying alternate numbers of this hexagon give the same
result: 4:15-10 = 5-20-6 = 600 . This property holds for any such hexagon
of Pascal’s triangle.

THE BINOMIAL THEOREM

Finally, we find out why the number (7) is called a binomial coefficient.
For natural number n and variables = and y, consider multiplying = +y
by itself n times:

(+y)" = @+y)(z+y) - -(x+y)

-
n factors

The expression (z +y)™ is called a binomial, because it is a polynomial in
two variables (z and y ). This binomial can be expanded to

(16.22) (z+9)™ = co*2%y" + cr-z'y" 1 + -+ + cpz"y°
= ZXkl0<k<n: ck-xk-y"'k)

We want to determine the coeflicients ¢ . In order to understand the rule
we use for calculating cj , consider the case n = 3, so that the product is

(z+y)(z+y)(z+y)
= (Distributivity (15.5)
(2 +zy+yz+y?)(z+y)
= (Distributivity (15.5))
@ +zyzty2®+yia)+(@Py+zy +yry+yd)
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HISTORICAL NOTE 16.1. BLAISE PAscAL (1623-1662)

By the age of 12, and before reading Euclid’s FElements (see Historical
note 15.1), Pascal had already proved several of Euclid’s propositions in ge-
ometry. At 16, Pascal wrote a significant work on conic sections, including
what has been called one of the most beautiful theorems in geometry. Pascal
invented and built the first calculating machine, before he was 21, to help his
father in his calculations; along with Fermat, young Pascal created the theory
of probability; and he is well known for his work on the cycloid. No wonder
that Niklaus Wirth named his programming language Pascal.

Yet, Pascal is far better known for his religious and philosophical writings,
and the general reader is more likely to have come across Pascal’s Pensées
and Provincial Letters than his mathematical works. Some think that Pascal
wasted his mathematical genius on too many other things —E.T. Bell calls
him “perhaps the greatest [mathematical] might-have-been in history”.

Pascal was not physically well, and, from the age of 17 to the end of his life,
he suffered from stomach trouble, insomnia and, later, incessant headaches.
This pain and suffering, together with his family’s deeply religious bent, was
enough to turn his views inward. He spent the last 8 years of his life in a
monastery, where much of his philosophical writings were done.

Pascal used probability theory (which he developed) in his own life. Prob-
ability theory deals in expectations. The expectation of a gamble is the value
of the prize multiplied by the probability of winning the prize. In his Pensées,
Pascal argued that the value of eternal happiness to be won by leading a reli-
gious life is infinite. Therefore, no matter how small the probability of winning
eternal happiness, the expectation is infinite (infinity times a positive number,
no matter how small, is infinity), so it pays to lead such a life. Convinced?

= (Collect terms)
22+ 32?2y +3-z-y? + 43

Look at the third formula in this calculation. There are three terms that
equal z2-y, so the final coefficient of z2-y is 3. Each of these terms
comes from choosing an z from two of the original terms (z + y) (which
automatically chooses y from the other term). The coefficient of z3 is
calculated in the same way: it is the number of ways of choosing three z’s
from the three terms, or 1.

In the general case (x+y)™, then, coefficient ¢ is the number of ways
in which k z’s can be chosen from the n available factors (choosing k
z’s automatically chooses n — k y’s). The number of ways of choosing k
elements from n elements is the number of combinations of n objects
taken k at a time, or (Z) Thus, we have proved, in a combinatorial
fashion, the Binomial theorem.
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(16.23) Binomial theorem.! For n >0,
(z+y)" = (Tk10<k<n: (Z)_mk_yn—k)

n=k and " k-y* are equal.

Since () = (,,",) , the coefficients of xk-y
Thus, the coefficients of z° and z™ are equal, as are the coefficients of
z" l.y and z-y™!. Note that the binomial coefficients cy,...,c, of

(z + y)" are the numbers in row n of Pascal’s triangle!

The Binomial theorem can also be proved by induction on n, as shown
in Exercise 16.63. However, the combinatorial proof is shorter and simpler.

16.3 Examples of counting

We now give examples, drawn from a variety of contexts, to illustrate ap-
plications of the theory presented in the previous sections. We begin with
examples concerning the rule of sum and the rule of product and advance
from there.

RULES OF SUM AND PRODUCT

(16.24) Example. The twelfth-grade class has 55 boys and 56 girls. What
is the total number of students in the class, and how many different
possible boy-girl pairs are there?

There are two sets: the boys and the girls. The rule of sum tells us that
there are 111 students. The rule of product tells us that the number of
different pairs is the size of the cross product of the set of boys and the set
of girls, which is 55-56 = 3080 . O

(16.25) Example. Suppose you can pass your language requirement in
College by (i) gaining proficiency in French, German, or Japanese
or (ii) gaining minimal qualification: (take two semesters of French,
German, Japanese, or Italian) and (take two semesters of Korean
or Hindi). (Above, we use parentheses to eliminate any possible
ambiguity.) In how many different ways can the language require-
ment be satisfied?

! We tried to write a historical note on John Binomial but were unable to
find sufficient material. Even Moriarity’s long treatise on Binomial’s theorem,
which won Moriarity the Mathematical Chair at a small university (according to
Sherlock Holmes’s friend Watson [13]), provided little help in our researches.
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The set P of ways in which proficiency can be gained has 3 elements.
Consider the set S of ways in which minimal qualification can be satis-
fied. Each element of S is a pair whose first element is French, German,
Japanese, or Italian and whose second element is Korean or Hindi. The
rule of product asserts that #S = 4:2 = 8. The rule of sum then indi-
cates that the number of ways the language requirement can be satisfied is
#P+#S =11. O

(16.26) Example. One bag contains a red ball and a black ball; a second
bag contains a red ball, a green ball, and a blue ball. A person first
chooses a bag and then selects a ball, at random. In what fraction
of the cases will a red ball be selected?

If the first bag is chosen, then there are 2 possible selections (a red ball

is selected or a black ball is selected). If the second bag is chosen, then

there are 3 possible selections. The rule of sum tells us that there are

2 + 3 = 5 possible selections. In the same way, we see that there are 2

ways of selecting a red ball. Therefore, in 2/5 of the cases, a red ball will

be chosen.

For the reader who knows something about probability, note that this
problem has nothing to do with the probability that a red ball will be
selected. O

(16.27) Example. How many functions f : S — T from S to T are
there for finite sets S and T'7

Let S={s1,.--,8%,}- A function from S to T is constructed by giving

for each s; avalue f.s; in T . For each s;, there are #T different choices.

By the rule of product, there are #T#S different functions from S to T .

O

PERMUTATIONS

(16.28) Example. How many permutations of the letters are there in the
word LIE? BRUIT? CALUMNY? FACETIOUSLY 2 ?

According to Theorem (16.5), the number of permutations of a set of size n
is m!. Therefore, the number of permutations of the letters of LIE is 3! = 6;
of BRUIT, 5! = 120; of CALUMNY, 7! = 5040, of FACETIOUSLY,
11! = 39916800 . O

(16.29) Example. How many one-to-one functions are there from a finite
set S to a finite set T'7

2 Facetiously is unusual in that it has all the vowels q, ¢, 4, 0, u, and yin it, in
order. If you don’t consider y to be a vowel, then facetious will do. Sequoia has
all the vowels except y. Doug Mcllroy treats these problems abstemiously.
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Let S = {s1,...,54g}. Function f is one-to-one (see Def. (14.41)) if it
satisfies x # y = f.x # f.y. Therefore, the sequence f.s1, f.s2,..., f.5xg
has to be a #S5 -permutation of T . The answer is thus the number of such
permutations: P(#T,#5S5). O

(16.30) Example. Besides taking CS courses, a computer science major
has to take a course in each of the following: math, physics, En-
glish, history, art, and music. The order in which the student takes
these requirements does not matter. How many different choices
of order does the student have?

The number of permutations of the 6 topics is 6! = 720. a

(16.31) Example. Three couples sit in one row at the movies. The women
want to sit together and the men want to sit together. In how many
ways may they be seated?

View the men as a single object and the women as a single object. There
are 2! = 2 different permutations of these two objects. For each of these
two permutations, we count the number of ways the men can be seated and
the number of ways the women can be seated; then, by the rule of product,
multiply them. There are 3! = 6 ways of seating the women and 3! = 6
ways of seating the men. This gives 2-6-6 = 72 different ways of seating
the couples. 0.

(16.32) Example. Suppose 6 people are to be seated at a round table.
In how many ways may they be seated?

The number of permutations of the six people is 6! = 720 . However, since
the table is round, one cannot distinguish which person is first, and we
have made that distinction in counting permutations. For any ordering,
there are 6 permutations of the people in that order, not counting who is
first (e.g. ABCDEF, BCDEFA, CDEFAB, DEFABC, EFABCD, FABCDE,
ABCDEF). Hence, we derive the number of ways to be seated by dividing
the number of permutations by 6: 720/6 = 120. a

(16.33) Example. How many permutations of the letters of ALGO-
RITHM have the A and L together (in either order)? How many
have the A and the L separated by at least one letter?

Think of AL as a single letter; then (AL)GORITHM has 8 letters, and the
number of permutations is 8! = 40320. Now, there are 2! = 2 permuta-
tions of AL, so the total number of permutations of ALGORITHM with A
and L together and in either order is 240320 = 80640 .

The total number of permutations of ALGORITHM is 9! = 362880, and
80640 of them have the A and the L together. Therefore, 9! — 80640 =
282240 permutations of ALGORITHM have the A and the L separated.[
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PERMUTATIONS OF A BAG

(16.34) Example. A coin is tossed 5 times, landing H (heads) or T (tails)
each time, to form an outcome. One possible outcome is HHTTT.
How many possible outcomes are there? How many outcomes have
1 H? How many outcomes contain at most 1 H?

By the rule of product, there are 2% = 32 possible outcomes. An outcome
with 1 H is a permutation of a bag with 1 H and 4 T’s. By Theorem
(16.7), there are 1,5—'4, = 5 different outcomes with 1 H. Similarly, there
is 0,—5'57 =1 outcome with no H’s. By the rule of sum, there are 5+1 =6
outcomes with at most 1 H. O

(16.35) Example. How many paths are there in the plane from the point
(0,0) to the point (5,4), where each step of the path consists of
moving one unit to the right (R) or one unit up (U)? Two such
paths are shown in Fig. 16.2.

Each such path consists of 5 steps R and 4 steps U, in some order. Hence,
each such path is a permutation of the bag containing 5 R’s and 4 U’s.
The number of such permutations is 4—!9,!3 = 126. O

(16.36) Example. This is an example of a combinatorial proof of a theo-
rem from number theory. Let n = 2k, for some &k, k > 0. Prove
that n!/2F is an integer.

Consider a bag with distinct elements z; for 1 < 4 < k, each of which
occurs twice in the bag. By Theorem (16.7), the number of permutations
of the bag (which is an integer) is (—27% =n!/2k. O

FIGURE 16.2. Two PATHS ON A GRID

y Yy
4 4
3 3
2 2
1 1

X
1 2 3 45 1 2 3 45
(a) RURRRURUU (b) UURRURURR
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COMBINATIONS OF A SET

(16.37) Example. The chair has to select a committee of 5 from a faculty
of 25. How many possibilities are there? How many possibilities
are there if the chair should be on the committee?

The answer is the number of 5-combinations of a set of size 25; by The-
orem (16.10), this is (255) = %’0—, = 53130 . If the chair has to be on the
committee, then the other 4 members are chosen from a set of 24, so the

answer is (244) = 4!2,—42!0! = 10626 . a

(16.38) Example. Suppose Gerry and John insist that they be on exactly
the same committees in a department of 24 . How many ways are
there to choose a committee of 57

Either Gerry and John are on a committee or they are not. We count the
number of possible committees in each case. If Gerry and John are on a
committee, then the other three members are chosen from a set of 22,
so the number of committees is (%) = 1540. Committees of 5 that do
not include Gerry and John are chosen from a set of 22; hence, there are
(252) = 26334 different committees without Gerry and John. By the rule of
sum, the answer is 1540 + 26334 = 27874 . O

(16.39) Example. In a faculty of five men and seven woman, a commit-
tee of 4 with at least one woman is to be formed. How many
possibilities are there?

Here is unsound reasoning. First choose the woman —there are (D =7
possibilities. Then, for the other 3 out of 11 people, there are (131) = 165
possibilities. Hence, by the product rule, there are 7-165 = 1155 different
possible committees.

The problem with this reasoning is that some possibilities are counted
more than once. Suppose Kay is chosen as the first woman and then Tim,
Bob, and Devika are chosen to complete the committee. On the other hand,
Devika could be chosen first, and then Kay, Tim, and Bob could be chosen
to complete the committee. It’s the same committee, but it is counted twice.

One way to count the number of committees is to add together the
values (no. committees with ¢ women) - (no. committees with 4 —4 men),
for 1<i<4:

AN AR

There is an easier way to solve this problem. The total number of com-

mittees is (142) = 495. The number of committees of size 4 without a
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woman is (i) = 5. By the rule of difference, the number of committees
with at least one woman is 495 — 5 —490. O

(16.40) Example. How many subsets does a set of size n have?

By Theorem (16.10), a set of size n has (') subsets of size r. The number
of subsets is therefore (X710 <r < n: (7)), and by theorem (16.20),
this is 2™.

Here is an alternative way of arriving at the solution. Each element is

either in a subset or it is not (two possibilities). By the rule of product,
there are 2™ possibilities. O

APPLYING COMBINATORIAL ANALYSIS TO POKER

A deck of playing cards has 52 cards. There are four suits: spades, hearts,
diamonds, and clubs. In each suit, there are 13 cards of different value: 2,
3,4,5,6,7,8,9, 10, Jack (J), Queen (Q), King (K), and Ace (A). The
basic idea of poker is for players to be given 5 cards from the deck; the
players bet according to whether they expect to have the best hand, and
the player with the best hand wins. “Best” is determined according to the
list of hands given in Table 16.1, with the first hand listed being the best.
Note that there are (552) = 2,598,960 different hands.

In betting, it helps to have a good idea of the chances of a hand being a
winner, and this depends on the chances that someone has a better hand.

TABLE 16.1. POKER HANDS

Royal Flush: The cards 10, J, Q, K, A of one suit.

Straight flush: Five cards from the same suit, in sequence, with an Ace
treated as coming before 2.

Four of a kind: (e.g. four 6’s and one other card.)

Full house: Three cards of one value and two of another (e.g. three Jacks
and two tens).

Flush: Five cards of the same suit (but not a straight or royal flush).

Straight: Five cards from at least two suits, in sequence, with the Ace coming
either before the 2 or after the King.

Three of a kind: Three cards of one value and two other cards of different
values.

Two pair : Two cards of one value, two cards of another value, and a fifth
card of a third.

One pair: Two cards of one value and three other cards of differing value.
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Combinatorial analysis can be used to determine such chances. The key to
solving counting problems in poker is to separate the problem into pieces
that can be solved using our counting techniques.

(16.41) Example. How many different royal flushes are there? Straight
flushes?

In each suit, there is one royal flush: 10, J, Q, K, A. Since there are four
suits, there are four royal flushes. A straight flush is determined by its
highest card, which can have value 5, 6, ..., King. Thus, there are' 9
straight flushes in each suit. Since there are 4 suits, by the rule of sum
there are 9+9+9+9 = 36 straight flushes. The chance of getting a straight
flush or royal flush, then, is only 40 in 2,598,960, or 1 in 64974. O

(16.42) Example. How many different three-of-a-kind hands are there?

We calculate the number of ways to choose the three cards with equal value:

(ways to choose the triple)
(A card is made up of a value and a suit)
(ways to choose the value) - (ways to choose 3 suits)
(There are 13 possible values; there are 4 suits)
13-}
(Arithmetic)
52

We now calculate the number of ways to choose the two other cards.
Their values have to be different from the value of the other three.

(ways to choose the pair with different values)
= (A card is made up of a value and a suit)

(ways to choose 2 values) -

(ways to choose 2 suits with repetition)

(There are 12 possible values; there are 4 suits)
12) 42
(Arithmetic)

1056

The number of three-of-a-kind hands is therefore 52-1056 = 54912 . O
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16.4 The pigeonhole principle

The pigeonhole principle is usually stated as follows. 3

(16.43) If more than n pigeons are placed in n holes, at least one hole
will contain more than one pigeon.

The pigeonhole principle is obvious, and one may wonder what it has to
do with computer science or mathematics. To find out, let us try to place
it in a more abstract setting.

The first point to note is that with more than n pigeons and with n
holes, the average number of pigeons per hole is greater than one. The
second point to note is that the statement “at least one hole contains more
than one pigeon” is equivalent to “the maximum number of pigeons in any
hole is greater than one”.

Therefore, if we abstract away from pigeons and holes and just talk
about a bag S of real numbers (the number of pigeons in each hole), we
can restate the pigeonhole principle more mathematically. Let av.S denote
the average of the elements of bag S and let max.S denote the maximum.
Then the pigeonhole principle is:

(16.44) av.S>1 = max.S>1.

But this form of the principle can be generalized to the following. Provided
S is nonempty,

(16.45) Pigeonhole principle. av.5S < max.S.

It is easy to prove that (16.45) implies (16.44) (see Exercise 16.67) but
the implication in the other direction does not hold. Hence, the generalized
pigeonhole principle is indeed more general. Second, we do not have to
accept the principle as intuitively true, for the proof of (16.45) is very
simple, given the definitions of average and maximum (see Exercise 16.68).

Frequently, the piegeonhole principle is applied to a bag of integers. In
this case, the maximum element in the bag is an integer, but the average
need not be. So, we can claim that the maximum is at least the smallest
integer that is not smaller than the average: 4

(16.46) Pigeonhole principle. [av.5] < max.S.

The rest of this section illustrates applications of the pigeonhole principle.
In each example, the major task is to identify the bag S of numbers that

3 The pigeonhole principle is also called the Dirichlet box principle, after Leje-
une Dirichlet, who first stated it, in the 1800s.
4 See the footnote on page 320 for a definition of the ceiling function, [z] .
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is used in the pigeonhole principle. Once S has been identified, the rest is
easy.

(16.47) Example. Prove that in a room of eight people, at least two of
them have birthdays on the same day of the week.

Let bag S contain, for each day of the week, the number of people in the
room whose birthday is on that day. The number of people is 8 and the
number of days is 7. Therefore,

mazx.S
(Pigeonhole principle (16.46) — S contains integers)
[av.S]
(S has 7 values that sum to 8)
[8/7]
(Definition of ceiling)
2 (]

Il Y

(16.48) Example. A drawer contains ten black and ten white socks. How
many socks must one take out (without looking at their color) to
be sure that a matched pair has been selected?

In choosing two socks, two different-colored ones may be chosen, so at least
three have to be taken out of the drawer. We use the pigeonhole principle
to conclude that three is enough. Let b and ¢ denote the number of black
socks and white socks chosen, so that S = {b,c]} . We have b+c=#S > 3,
and therefore

max.S

> (Pigeonhole principle (16.46) — S contains integers)
[av.S]

> (av.S > 3/2)

[1.5]

(Definition of ceiling)

2

Thus, selecting 3 socks ensures that at least one of b and c is at least 2,
and a matching pair is chosen.

(16.49) Example. Suppose Cornell has 51 computer science courses and
that they are assigned numbers in the range 1..100. Prove that
at least two courses have consecutive numbers.

Let the course numbers be ¢;, for 1 < ¢ < 51. There are 51 distinct

numbers ¢;, so there are 51 distinct numbers ¢; + 1. Each of the 102

numbers ¢; or ¢; + 1 is in the range 1..101. Define bag S by

S =1{il1<4<101:number of ¢; and ¢, + 1 that equal i}.
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The average of the values in S is 102/101, which is greater than 1. Hence,
by the Pigeonhole principle (16.46), the maximum of the values is at least
2. Hence, for some ¢, j, and k we have ¢; = ¢, +1=1. Hence, ¢, and
¢, + 1 are consecutive course numbers. ad

(16.50) Example. Prove that in a group T of 85 people; at least four
have the same initial letter of their last name.

Consider the bag S of 26 natural numbers defined by
{clceA.Z:(EplpeT A p’s last name begins with ¢ : 1)}

The average of the numbers in S is 85/26, which is greater than 3. By
the pigeonhole principle the maximum of the numbers in §' is greater than
3, so it is at least 4. Note that we really need the generalized pigeonhole
principle to solve this problem. O

(16.51) Example. Prove that if 101 integers are selected from the set
T = {1,2,...,200}, then there are two integers such that one
divides the other.

Each selected integer x (say) may be written in the form z = 2F-y,
where 0 < k and y is odd, so that y is one of the 100 odd integers in
{1,2,...,200} . Since 101 integers are selected and there are only 100 dif-
ferent numbers y , by the pigeonhole principle, two of the selected numbers
have the form 2%-y and 27-y for some y, 0 <k < 5. Then 2*-y divides
2 -y. O

Exercises for Chapter 16

16.1 Suppose the campus bookstore has 10 texts on FORTRAN and 25 on Pascal.
How many different FORTRAN or Pascal texts can a student buy? How many
choices are there to choose a pair of FORTRAN-Pascal books?

16.2 Suppose 15 bits are used to describe the address of a memory location in a
computer, each bit being 0 or 1. How many different locations can there be?

16.3 Eight men are auditioning for the lead male role and six women for the lead
female role in a play. How many different choices does the director have to fill
the roles?

16.4 In early versions of the programming language BASIC, a variable name
could be a single letter (A, B, ..., Z) or a single letter followed by a digit (0,
1, ... 9). Determine how many different variable names there are —identify the
rule(s) you use to determine this number.

16.5 Eight Democrats and 7 Republicans are vying for their parties’ nominations
for president. How many different possibilities are there for President? How many
different ways can a Democrat oppose a Republican in the final election?
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16.6 Suppose Ford Taurus cars came in 3 models, 3 engine sizes, 2 transmission
types, and 10 colors. How many distinct Tauruses can be manufactured?

16.7 The fast-food place serves hamburgers with or without mustard, ketchup,
pickles, lettuce, and onions. How many different kinds of hamburgers are there?

16.8 There are five roads from Podunk to Kalamazoo and 3 from Kalamazoo to
Central City. How many different ways are there to drive from Podunk to Central
City?

16.9 One measure of security for a combination lock is the number of possible
combinations. Suppose a combination lock requires selecting three numbers, each
between 1 and 30 (inclusive). How many locks with different combinations can be
made? If the numbers in a combination have to be different, how many different
locks can be made?

16.10 How many nonnegative integers consisting of one to three digits are divis-
ible by 57 Leading zeros are not allowed.

16.11 How many nonnegative integers consisting of one to three different digits
are divisible by 5 ? Leading zeros are not allowed.

16.12 A red die and a black die are thrown. (A die is a cube with six sides,
numbered 1,2,3,4,5,6.) How many different outcomes are there? How many
outcomes sum to 2, 3,or 107

16.13 One bag contains a red, a black, and a white ball; a second bag contains a
red, a black, a green, and a white ball. Suppose a person chooses a bag and then
selects two balls from it, at random. In what fraction of the cases are a red and
a black ball selected, in that order?

16.14 How many different functions are there from the set {sun, no-sun} to
the days of the week?

16.15 How many different functions are there from the days of the week to the
set {sun, no-sun }.

16.16 How many different one-to-one functions are there from the set {sun,
no-sun } to the days of the week?

16.17 How many different one-to-one functions are there from the days of the
week to the set {sun, no-sun}?

16.18 A function f :S — T is partial if f.s need not be defined for all s in
S.If S$ and T are finite, how many partial functions exist from S to T?

Exercises on permutations of a set

16.19 How many permutations are there in each of the following words? LOT,
LUCK, MAYBE, KISMET, DESTINY, RANDOMLY.

16.20 Six friends sit together in a row at the movies. One is a doctor and must
sit on the aisle to allow for easy exit in case of an emergency. How many ways
may the six people be seated?
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16.21 How many permutations of ALGORITHM have the A, the L, and the G
together (in any order)?

16.22 Ten people line up for a photograph. Juris, John, Gerry, and Bob want to
stand together. How many different ways of lining the ten people up are there?

16.23 Write all the 3-permutations of a,b,c,d.

16.24 How many ways can 3 letters from the word ALGORITHM be chosen
and written in a row? Five letters?

16.25 Suppose license plates are constructed using three letters from the word
ITHACA followed by three digits. How many license plates can be constructed if
(a) the letters have to be different, (b) the letters and digits need not be different?

16.26 A palindrome is a sequence of letters that reads the same backwards and
forwards. Assuming there are 26 letters, determine how many palindromes there
are of length 0, 1, 2, 3, and 4. Determine a general formula for the number
of palindromes of length n .

16.27 In how many ways can a test with twenty true-false questions be answered
(assuming all twenty questions are answered)?

16.28 In how many ways can a test with twenty true-false questions be answered
if a student leaves some answers blank?

16.29 How many ways can 8 people be seated around a round table, if rotations
are not considered different? If Mary and John, who are among the 8 people, do
not want to sit together, how many ways are there?

16.30 Prove that P(n,2)+ P(n,1) = n® for n > 2.
16.31 Prove that P(n+1,3) =n® —n for n > 2.
16.32 Prove that P(n+1,2) = P(n,2) +2+P(n,1) for n > 2.

16.33 Prove that P(n + 1,i) = P(n,i) +i-P(n,i — 1) for 1 < i < n. Mathe-
matical induction is not needed; instead, look at the previous exercise.

16.34 Prove that P(n,n) = P(n,n—1) for 1 <n.

Exercises on permutations of a bag

16.35 Determine the number of permutations of the bag consisting of the letters
in the word EEE (a very big-shoe size). Use Theorem (16.7). Then write down
all the permutations. Do the same for the words ERE and EAR.

16.36 For each of the words NOON and MOON, determine the number of per-
mutations of the bag consisting of its letters. Use Theorem (16.7). Then write
down all the permutations.

16.37 A coin is tossed 7 times, each time landing H (heads) or T (tails) to form
a possible outcome. One possible outcome is HHTHHTH.

(a) How many possible outcomes are there?
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(b) How many outcomes have exactly 5 heads?
(c) How many outcomes have at least 6 heads?
(d) How many outcomes have at least 1 head?

16.38 How many different paths are there in the xy plane from (1,5) to (7,10)
if a path consists of steps that go one unit to the right (an increase of 1 in the
z-direction) or one unit up (an increase of one unit in the y-direction)?

16.39 How many different paths are there from (—3,-2,—1) to (3,2,1) if each
step consists of a unit increase in one of the three dimensions?

16.40 A chessboard is an 8 x 8 grid of squares. A rook can move horizontally
or vertically. In how many ways can a rook travel from the upper right corner to
the lower left corner if all its steps are either to the left or down?

16.41 A byte consists of eight bits, each bit beinga 0 ora 1.

(a) How many bytes are there?

(b) How many bytes contain exactly two 0’s ?
(c) Less than two 0’s ?

(d) At least two 0’s?

16.42 How many two-byte (16-bit) strings of 0’s and 1’s contain
(a) seven 1’s?

(b) At least fourteen 1’s?

(c) At least two 1’s?

(d) At most two 1’s?

Exercises on combinations of a set

16.43 An urn contains red-colored numbers 1,2,3,4,5,6, blue-colored numbers
1,2,3,4,5, green-colored numbers 1,2,3,4, and yellow-colored numbers 1,2,3.
How many different combinations of 4 red numbers, 3 blue numbers, 2 green
numbers, and 1 yellow number can be selected from the urn?

16.44 An urn contains red-colored numbers 1,2,3,4,5,6, blue-colored numbers
1,2,3,4,5, green-colored numbers 1,2,3,4, and yellow-colored numbers 1,2,3.
How many different combinations of 1 red number, 2 blue numbers, 3 green
numbers, and 3 yellow numbers can be selected from the urn?

16.45 Sam and Tim, on a faculty of 10, refuse to be on the same committee.
How many five-person committees can be formed?

16.46 A faculty of ten consists of 6 men and 4 women.

(a) How many committees of size 4 can be formed that have at least one man?

(b) How many committees of size 4 can be formed that have at least one
woman?

(c) How many committees of size 4 can be formed that have at least one man
and one woman?

(d) How many committees of two men and two women can be formed?

16.47 The student council consists of eight women and seven men.
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(a) How many committees of 4 contain two women and two men?

(b) How many committees of size 4 have at least one woman?

(c) How many committees of size 4 can be formed that have at least one man
and one woman?

General exercises on permutations and combinations

16.48 How many four-of-a-kind hands are there in poker?
16.49 How many poker hands are full houses?

16.50 How many poker hands are flushes?

16.51 How many poker hands are straights?

16.52 How many poker hands are two-pair hands?

16.53 How many poker hands are one-pair hands?

16.54 How many poker hands contain no pairs and are not flushes or straights
of any kind? Having determined this, make a table of types of hands, the number
of hands of that type, and the chances of being dealt that hand (to the nearest
integer). For example, the chances of getting a straight flush are 1 in 64974 .

16.55 While toasting, each of the n people at a party clink glasses once with
all the others. How many “clinks” are there?

16.56 In how many combinations can the President of the U.S. invite 15 Senators
from different States to the White House? (There are 50 States in the U.S. and
two Senators per State.)

Exercises on (f)

16.57 Prove Absorption (16.15), ('T') ==z ("_1) for 0<r<mn.

r—1

16.58 Prove Absorption (16.16), 7+ (:) =n: ("_1) for 0<r<n.

r—1

16.59 Prove theorem (16.17), (n —r)- (’:) =n- (";1) , for 0 < r < n. Hint:
Apply Absorption (16.16) between two applications of Symmetry (16.14).

16.60 Prove Addition (16.18), (’T’) = (":1) + (::11) for 0 < r < n, by adding
(16.16) and (16.17).

16.61 Prove theorem (16.19), (H'ZH) =(XEk10<k<n: (T:k)) for 0 <
n, 0 < r, by induction using Addition (16.18).

16.62 Prove theorem (16.20), 2" = (Zr | 0 < r < n : (:)) for 0 < n, by
induction using Addition (16.18).

16.63 Prove Binomial theorem (16.23) by induction on 7.
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Exercises on the principle of inclusion/exclusion

This set of exercises concerns the principle of inclusion/exclusion. This principle
is slightly more advanced; hence, its relegation to exercises. Consider a set B of
N objects, and let p = po,...,pr—1 be a list of properties that these objects
might have. For example, a property could be having the color red or being an
even integer. We want to develop a formula for the number of objects that have
none of these properties.

Let g be a subsequence of sequence p. Let N.¢g be the number of elements of
B that have at least the properties in g . For example, N(pop2) is the number of
elements of B that have at least properties po and p3 , while N.p is the number
of elements that have all the properties. Let N be the number of elements of
B that do not have any of the properties of p. Then, we have the following
theorem:

(16.52) N=(Zil0<i<r:

(=1)*+(Zq | ¢ asubsequence of length i of p : N.q))
16.64 Suppose twelve balls are painted as follows: Two are unpainted. Two are
painted red, one is painted white, and one is painted blue. Two are painted red

and white and one is painted white and blue. Three are painted red, white, and
blue.

Let the properties be po = red, p; = white, and p2 = blue. Write down N.q
for all subsequences g of p. Then verify that Theorem (16.52) holds in this case.

16.65 Use Theorem (16.52) to find the number of integers in the range 1..100
that are not divisible by 3 or 5. Note that the number of integers in the range
1..n that are divisible by i is |n/i| . Check your answer by making a list of the
100 integers, crossing out those that are divisible by 3 or 5, and counting the
rest.

16.66 Use Theorem (16.52) to find the number of integers in the range 1..200
that are not divisible by any of the integers 2, 3, and 5.

Exercises on the pigeonhole principle

16.67 Prove that generalized Pigeonhole principle (16.45) implies (16.44).
16.68 Prove generalized Pigeonhole principle (16.45).

16.69 Suppose five distinct integers are selected from the set {1,2,3,4,5,6,7,8}.
Prove that at least one pair that has the sum 9.



Chapter 17

Recurrence Relations

I n Sec. 12.2, we introduced inductive definitions, like the following def-
initions of exponentiation and the Fibonacci numbers.

by =1, by = b-b""? (for n>1)
Fy=0, Fy =1, F,=F, 1+ F, o (fOI‘ 77,22)

We found closed-form expressions for some of these inductive definitions,
but not for others. For example, we found b, = (IIi | 1 <¢<mn:1), but
we did not find a closed-form expression for Fj, . In this chapter, we investi-
gate techniques for finding closed-form expressions for inductive definitions.
We restrict our attention to definitions that can be written as linear recur-
rence relations, or linear difference equations, as they are sometimes called.
We give two “cookbook methods” for finding closed-form expressions of
a large class of linear difference equations. The first method is based on
characteristic polynomials; the second, on generating functions.

17.1 Homogeneous difference equations

For the moment, we deal only with the inductive part of an inductive
definition; the constraints will be dealt with later. ! Consider the recurrence
relation

a0 Tp+a1°Tp—1+ -+ axTp_t =0 (for n>k)
or
(17.1) (Zi10<i<k:a;:zp_)=0 ,
for a function x , where the a; are constants and ag # 0. (Throughout this
chapter, we use z; to denote the application of function = to argument ¢.)

Dividing both sides of (17.1) by ag , we arrive at a form in which ag =1.
All our examples have ag = 1.

Expression (17.1) is called an order-k, homogeneous, linear difference
equation with constant coefficients (HDE, for short). It is called order-k be-
cause it can be viewed as defining x,, in terms of k values xp_1,...,Tp_k .

1 We use the term constraint for a base case, or boundary condition.

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993



364 17. RECURRENCE RELATIONS

It is called homogeneous because its RHS is 0. And, it is called linear be-
cause the exponents of all the x; are 1.

As an example, the relation =, = 2-z,_; (for n > 1) can be written
as an order-1 HDE, with ag =1 and a; = —2:

(172) zp,— 22,1 =0 (for n>1)

An HDE has many solutions. For example, z, =0 (for all n) and z, =
3-2" (for all n) are both solutions of (17.2). A key ingredient for finding
all solutions of HDE (17.1) is its characteristic polynomial

aog N +ar N+ tag At a
or

(17.3) (Zil0<i<k:a;- N7

Comparing (17.1) and (17.3), we see that the characteristic polynomial is
constructed from the LHS of an HDE by replacing function application
ZTn—; by AF7%. For example, the characteristic polynomial for (17.2) is
A—2.

Recall from high-school math that (17.3) with ag # 0 is called a polyno-
mial of degree k in X. The roots of this polynomial are values that, when
substituted for A in (17.3), result in an expression with value 0. A degree
k polynomial (17.3) has k roots, call them r;,...,7rg . Thus, (17.3) can be
written in the form ag-(A —71)- ... (A — 7). Further, if m of the roots
are the same, that root is called a root of multiplicity m . For example, the
polynomial A — 2 has one root, r; = 2, of multiplicity 1. Also, the poly-
nomial A3 —7-)A2+15-1—9 can be rewritten as (A—1)+(A—3)-(A-3).
Therefore, its roots are 1, 3, and 3; 1 is a root of multiplicity 1 and 3
is a root of multiplicity 2. Finally, the roots of a polynomial a-A24b-A+c
are given by the quadratic formula

b+ Vb2 —4-a-c

(17.4) 5

The following theorem describes some solutions of HDE (17.1).

(17.5) Theorem. Let r be any root of characteristic polynomial (17.3)
of HDE (17.1). Then, z, =r™ is a solution of the HDE.

Proof. We substitute r" for x, (for all n) in the LHS of HDE (17.1) and
calculate to show that the LHS equals the RHS (i.e. 0).

(2i10<i<k:a;-r"?)
= (Arithmetic)
(2i10<i<k:a;-rmFk.rk=9)
= (Factor out 7™ %)
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rRU(Bi10<i<k:a;rEY)
= (Textual substitution)
R (17.3)[\ == 7]
= {r is aroot of (17.3))
,,..n—k: -0
= (Arithmetic)
0 a

As an example, order-1 HDE (17.2), z, —2-2,-1 = 0, has characteristic
polynomial X\ — 2, which has the one root r; = 2. Therefore, one solution
of HDE (17.2) is =, = 2" for all n.

If all k& roots of the characteristic polynomial have multiplicity 1, then
Theorem (17.5) yields k solutions to the HDE. However, if some root has
multiplicity greater than 1, then the theorem yields fewer solutions. The
following, more general, theorem yields k solutions no matter what the
multiplicity of the roots. We will use this more general theorem. However,
its proof is best done using calculus and is outside the scope of this text.

(17.6) Theorem. Let r be any root of multiplicity m of characteristic
polynomial (17.3) for HDE (17.1). Then, for each j, 0 < j <m,

zn, =n?-r™ (forall n)
is a solution of the HDE.

Thus, the characteristic equation gives &k solutions of the HDE. We now
show that a linear combination of two solutions is also a solution.

(17.7) Theorem. Let z = sl and z = s2 be two solutions of the HDE.
(This means, for example, that z, = sl, for n > 0.) Then the
function f defined by fn, = b1-sl, + ba-s2, (for n > 0) is also
a solution.

Proof. We substitute f for z in the LHS of HDE (17.1) and calculate to

show that the LHS is 0.

(Zi10<i<k:a;zny)x:=f]
= (Textual substitution)

(Ei l...: a;-* fTLAz)
= (Definition of f)

(ZZ | a;* (b1 'Sln_i + b2 '82n-1>)
= (Distributivity (15.51))

(E il.:bira; 8l,_; +baea; 'SQn_i)
= (Distributivity (8.15))

(Zi l..: by -ai-sln_i) + (Z )...: by -ai-s2n_i)
= (Distributivity of - over ¥ (15.51))

b+ (Xil.ia,slpy) +b2-(Xil..:a;+52,_)
= (Function sl and s2 are solutions of HDE (17.1))
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b1:0+b3-0
= (Arithmetic)
0 O

In the same way, a linear combination of k& solutions is also a solution.
Further, we have the following theorem, which shows how to construct all
solutions of HDE (17.1). (Its proof is beyond the scope of this text.)

(17.8) Theorem. Let z =sl, ..., z = sk be the k solutions of HDE
(17.1) given by Theorem (17.6). Then every solution of the HDE
is a linear combination of the sj’s, i.e. for arbitrary constants b, ,
the function f that is defined as follows is a solution:

fa=Ej11<j<k:bjsjn) (for n>0)

Here is an example of the use of this theorem. We showed above that
the single solution given by Theorem (17.8) of HDE =z, — 2-z,_1 = 0
is £, = 2™ (for n > 0). Therefore, by Theorem (17.8), all closed-form
solutions of this HDE are given by z, = b;+2" (for n > 0), where b; is
an arbitrary constant.

CLOSED-FORM SOLUTIONS OF INDUCTIVE DEFINITIONS

We just showed how to find all solutions of an HDE. Many inductive defini-
tions consist of such an HDE together with one or more constraints. These
constraints help determine one particular solution. Such an inductive defi-
nitions can be solved as follows:

(17.9) Method for solving an inductive definition based on an

HDE.

(a) Rewrite the recurrence relation as an HDE.

(b) Construct the characteristic polynomial of the HDE and find
its roots.

(¢) Find the k solutions of the HDE according to Theorem
(17.6).

(d) Write down the general solution, using Theorem (17.8).

(e) Use the base cases as constraints to determine the desired
particular solution from the general solution.

(17.10) Example. Find a closed-form solution of inductive definition
T0=2, Tp=22p—1 (for n>1).

The recurrence relation of this inductive definition equals the order-1 HDE

Tp—2+Tn_1 = 0. Its characteristic polynomial is A—2, whose single root is

2. By Theorems (17.6) and (17.8), the general solution is z, = b;-2" (for

n > 0). Using the constraint zo = 2, we manipulate the general solution

with n := 0 to calculate b :
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o = b1 . 20
= {Constraint zg = 2)
2=10-2°
= (20 = 1; Arithmetic)
2="0b
Therefore, the closed-form solution is z, = 2"*! (for n > 0). ad

(17.11) Example. A bank pays an annual interest of 6 percent, which
is compounded monthly (that is, each month it pays .5 percent
interest). If Pat starts with an initial deposit of $100, how much
will she have after one year?

Let p, be the amount of money Pat has in the bank after n months, so
po = 100. We have the recurrence relation p, = p,—; + .005-p,,_; (for
n>0), or p, =1.005:p,_1 . We can write this recurrence relation as the
HDE p,, — 1.005°p,—1 = 0. Its characteristic polynomial is A — 1.005,
which has the single root 1.005, so the general solution of the HDE is
prn = by-1.005™ . Substituting the constraint py = 100 into the general
solution yields 100 = b,-1.005° , so b; = 100. Thus, we have calculated
the solution p, = 100-1.005" (for n > 0). After 12 months, Pat has
P12 = 100-1.005'2 = 106.17 dollars. O

(17.12) Example. Find a closed-form solution of the definition of Fi-
bonacci numbers: Fp = 0, Fy = 1, and F, = F,,_1 + F,—»
(for n>2).

The inductive part of this definition can be written as the HDE F,, —

F,_1—F,_3=0 (for n >2). Its characteristic polynomial is A2 —A—1.

Using quadratic formula (17.4), we find the roots of this polynomial and

then write the polynomial as

1+v5 /\_1—\/5

(-2 0- =

)

or (A—¢)-(A—¢) . (Recall from page 225 that ¢ = (1++/5)/2 is the golden
ratio and ¢ is its twin.) Therefore, the roots are vy = ¢ and r3 = ¢. By
Theorem (17.6), two solutions are F, = ¢™ and F, = ¢™. By Theorem

(17.8), the general solution of the HDE is F, = b;-¢™ + by qAS" .

We use the base cases Fy = 0 and F} = 1 to construct the required
particular solution. Substituting 0 for n in the general solution yields

Fo=b1+¢° +by-¢°
(Fo=0; XY=1 (for any X ), twice)
0=0b1-1+b-1
= (Arithmetic)
by = —by
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Similarly, substituting 1 for n we obtain
1=b1+¢+by¢

Solving these two equations for b; and by yields b; = 1/v/5 and by =
—~1/v/5, so a closed-form expression is F, = (¢ — ¢")//5. O

(17.13) Example. Find a closed-form solution of the HDE z, —z,_2 =0
(for n > 2), subject to the constraints z; =2 and z; =4.

The HDE has the characteristic polynomial A? — 1. This polynomial has
roots 1 and —1. Hence, by Theorem (17.6), 1™ and (—1)" are solutions
of the HDE. By Theorem (17.8), the general solution is z, = b;-1" +
by« (—1)". Using constraint z; = 2, we derive the equation 2 = b; — by .
Using constraint z = 4, we derive 4 = by + by+(—1)% = by + by . Solving
these two equations for b; and by, we get by =3 and by = 1. Therefore,
the closed-form solution is z, =3+ (—1)™ for all n > 0. ad

(17.14) Example. Find a closed-form solution of the HDE z,, —2+x,_1+
ZTp—g (for n > 2), subject to the constraints z; =1 and 2o = 2.

The HDE has the characteristic polynomial A2 —2-+ 1. This polynomial
equals (A —1)-(A —1), so it has root 1 with multiplicity 2. According
to Theorem (17.6), 1™ and n-1™ are solutions of the HDE. By Theorem
(17.8), the general solution is =, = by+1" +by*n-1",ie. z, =b; +by'n.
Constraint z; = 1 yields the equation 1 = b; + by ; Constraint zo = 2
yields 2 = by + 2-by . Solving these two equations for b; and by yields
by =0 and by = 1, so the closed-form solution is z,, =n for n > 0. O

DEALING WITH COMPLEX ROOTS

A root of the characteristic polynomial of an HDE may be a complex num-
ber (defined below). We now show how to deal with such roots. We empha-
size immediately that the theory developed thus far holds for these cases
—Theorems (17.6) and (17.8) still provide the theory for solving HDEs.
However, to apply the theory, we need to know how to manipulate complex
numbers. Complex numbers are not central to this text, so our treatment
is brief.

The roots of a polynomial may involve square roots of negative numbers,
like v/—1 and +/—3. For example, quadratic formula (17.4) has a negative
square root if b? < 4-a-c. As with the square roots of positive numbers,
this new kind of number satisfies (v/z)? =z, so

(V-E)*=-E
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Beyond that, all the usual rules of arithmetic hold. For example, v/—F =
V=1E = v/=1-VE . The value v/—1 has a special status in that it is

given a name: i. Thus, iZ2=—1.

A complex number has the form z + iy, where = and y are real
numbers. Number z is called the real part of x +i-y and y is called the
imaginary part. If y = 0, then the number is real, so the real numbers
are a subset of the complex numbers. The conventional rules of arithmetic
apply. For example,

z+iy + z+iw = (z+2)+i-(y+w)
And, we multiply complex numbers as follows:

(x+iy)(z+i-w)
= (Distributivity)
zo(z+iw)+iy-(z+i-w)
(Distributivity)
zoz+icz-wtiy-z+it-yw
(Symmetry, Associativity; i = —1)
(zez—y-w)+i(z-w+y-2)

A complex number z + i-y can be depicted
as a point in a two-dimensional plane, as illus-
trated in this paragraph. Real part x mea-
sures a distance along the horizontal axis;
imaginary part y, a distance along the ver-
tical axis. As illustrated, the complex number can also be defined by its
magnitude r and its angle o, which satisfy 2

r=+Vz2+y2, tan.a =y/x

The pair (r,«) is called the polar-coordinate representation of the complex
number, and r and « are called polar coordinates. We also have x =
recos.c and y = r-sin.«. Thus,

.. x iy

z+iy=r-(cos.a+i-sin.a)

De Moivre’s theorem comes in handy for manipulating HDEs whose char-
acteristic polynomial has complex roots. We state De Moivre’s theorem
without proof. For n > 0,

(17.15) De Moivre: (cos.a+i-sin.a)" = cos(n-a) +i-sin(n-a)

2 We assume knowledge of trigonometric functions tan, sin, and cos.
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We now illustrate how to deal with complex numbers that arise in solving
HDESs. Most of the calculations are left as exercises.

(17.16) Example. Find a closed-form solution of the inductive definition

z0=0, z3=1, z,=-2,2 (for n>2)
HDE.: Tn+ Tp2=0
Charact. polynomial: A2 +1,0r (A—1i)-(A+1)
Roots r; and ro: iand —i
General solution: Zp = by 1" + by (—1)" = (by + ba-(—1)")-i"

Constraint equation 1: 0= by + by

Constraint equation 2: 1= (b; — by)-i

Constants b; and by: —i/2 and i/2
Closed-form solution:  z,, = (=14 (=1)?)-i"*1/2

The closed-form solution contains the complex number i. One way to
eliminate it is to use case analysis. Another way is to use polar coordinates
and De Moivre’s theorem. In this example, we use the first method; in the
next example, we use the second method. We look at three cases: n + 1
odd, n+ 1 divisible by 4, and n+ 1 divisible by 2 but not by 4. These
cases are chosen in such a way that, in each case, i cancels out of the
closed-form solution.

Case odd(n+1): Here, -1+ (-1)"=-1+1=0,5s0 z, =0.

Case 4|(n+1): Here, n isodd,so —14+(=1)" = —2. Since i* = (i2)? =
(=1)2 = 1, the closed-form expression for z, reduces to z, = —1.

Case 2|(n+1) but 4 f(n+1): Asin the previous case, —1+(—-1)" =
—2. One can also show that i"t! = —1, so the closed-form expression
for z, reducesto z, =1.

Hence, the closed-form solution can be written as

0 if odd(n+1)
Ty = -1 if 4|(n+1)
1 if 2|{(n+1) A4 f(n+1)

So the sequence zg,z1,z2,... s 0,1,0,—-1,0,1,0,—1,... . It is a repeating
sequence, with period 4. O

(17.17) Example. Find a closed-form solution of
Tp = Tp—1 — Tn—2 (for n>2)

under the constraints g =0 and z; =1.
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HDE: Tp — Tp—1+ Tn—2=0

Charact. polynomial: A2 - +1

Root 71 : (1+i-v3)/2 =cos.k +i-sin.3
Root rqo: (1-i-v3)/2 =cos.ZT —i-sin.Z
General solution: Tp =0b1-1} +ba-1y

Constraint equation 1: 0= by + b
Constraint equation 2: 1=1b;- 1+12"/§ + by 1_12' V3

Constants b; and by 1/v/-3, —1/4/-3

The closed-form solution is then

n=0b117 +ba-1}
= {(Above definition of by, b2, 1 and r2)

1

mn:\/—_s(cos +i-sin.5)" — “(cos.§ —i-sin. )"

Py

= (De Moivre’s theorem, twice)
Ty = J%—g-(cos.% +i-sin.25E) —
\/—};——g “(cos. 23T —i-sin. 25T
= (Arithmetic)
Ty = \/L—_s “i-sin. 25
= (i/V=3=i/(V3-1)=1/V3)
T, = % -sin.mgt
The closed-form solution does not refer to i, even though complex numbers

were used in the manipulations that led to the solution. Substituting small
values for n in the closed-form solution, we see that xg,x;,x2,... is

0,1,1,0,—1,-1,0,1,1,0,—1,—1,...

This is a repeating sequence, with period 6. O

17.2 Nonhomogeneous difference equations

A nonhomogeneous difference equation (NDE, for short) has the form
a9 Tn + 01 Tp-1+ -+ 0 Tn_p=fn ({Hor n>k)

or

(17.18) (Xi10<i<k:a;"Tn—i)=fn (for n>k) ,

for some function f over the natural numbers. Comparing HDE (17.1)
to NDE (17.18), we see that an HDE is an NDE for which f, = 0 (for
n>0).



372 17. RECURRENCE RELATIONS

(17.19) Example of an NDE. z, —2:x,_1 = 1 (for n > 1). Here,
fn=1 (for n>0). a

(17.20) Example of an NDE. z, — z,_1 = f, (for n > 1), where
f satisfies f, = fn_1 (for n > 1). Note that f is a constant
function. O

Finding a closed-form solution of an NDE with constraints involves first
finding a general solution of the NDE. In turn, finding a general solution,
will require finding some arbitrary solution p (say) of the NDE —it doesn’t
matter which one. We now show that, at least in some cases, finding an
arbitrary solution can be done fairly easily. We give the method, without
giving the theory behind it.

(17.21) Method for finding an arbitrary solution of an NDE. Sup-
pose function f of the NDE has one of the forms given in the left
column of Table 17.1. Then choose the corresponding trial solution
p in the right column. The ¢; of the trial solution are constant
symbols. To determine their values, substitute the trial solution
into the NDE and calculate.

If f is itself a solution of the HDE-form of the initial NDE and
the calculation does not produce a solution, then, instead of p of
Table 17.1, try the trial solutions given by n-p,, n2-p,, ... .

(17.22) Example. Find some solution of

Tp—2Tp_1 =1 (for n>1)

Here, f, = 1 (for n > 0), so Table 17.1 suggests trying the solution
Pn = ¢o for some constant cg. We substitute p for z and calculate.

(zn — 221 =1)[z =]
(Textual substitution)

Pn—2'pn-1=1

= (Definition of p: p, =co)

TABLE 17.1. TRIAL SOLUTIONS FOR AN NDE
Function f Trial solution p
fo=(Zil0<i<r:Ci+n?) Pn=(Zil10<i<r:¢n?)
fao=@il0<i<r:Ci'n)d” pr=(Zil0<i<r:c-n')-d"

The C; are constants; the ¢; are constant identifiers that denote
values that are to be determined. For example, if f, =5+ 6-n2,
then p, =co+eci'n+c2n?, Co=5, Cir=0,and C2=6.
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Cy — 2'00 =1
= (Rearrange)
Co = -1

Therefore, one solution is z, = p, = —1 (for all n). O

(17.23) Example. Find some solution of
Tp—2°Zp_1=6-n, for n>1

Here, f, =6'n (for n > 0), so Table 17.1 suggests the trial solution p
given by p,, = cg+cy+n. We substitute p for z in the NDE and calculate.

(Tn —2°zp—1 =6-n)[z := p]
= (Textual substitution)
Pn — 2'pn—1 =6-n
= (Definition of p: p, =co+c1°m)
co+ecin—2(cg+ci(n—1))=6-n
= (Rearrange)
2:¢c; —co=(c1 +6)n

For the last equation to hold for all n, both sides must be 0, so ¢; = —6
and ¢y = —12. Hence, one solution of the NDE is z,, = p, = —12 —6-n
(for n>0). g

(17.24) Example. Find some solution of

Tp—2Tp-1=2", (for n>1)

Here, f, = 2™, so Table 17.1 suggests the trial sequence p given by p, =
co+2" (for n > 0). Substituting p for = in the NDE and manipulating
yields

Co'2n —Co'2n =2" 5

which has no solution. The problem is that f, = 2™ is itself a solution of
the NDE. According to Method (17.21), we try the trial solution p given
by p, =co-n-2".

(Tn — 2+ Tp—1 = 2)[z := p|
= (Textual substitution)
Pn —2°pp_1 =27
= (Definition of p: p, =co-n-2")
co-n-2" —2-cp-(n—1)-2n"1 =2n
= (Divide both sides by 2" )
co'n—c(n-1)=1
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= (Arithmetic)
Co — 1

Hence, one solution of the NDE is z, = p, = 2" (for n > 0). O

The following theorem tells us why an arbitrary solution of the NDE is
important in finding a general solution of it.

(17.25) Theorem. Let p be an arbitrary solution of an NDE and let g
be the general solution of the corresponding HDE. Then function
pg defined by pg, = p, + g» (for n > 0) is the general solution
of the NDE.

Proof. We show that pg is a solution by substituting it for z in the LHS
of (17.18) and manipulating to show that it equals the RHS:

(Zi10<i<k:a;Tn_i)|z:=pg]
= (Textual substitution)
(Zi10<i<k:a;*pgn—s)
= (Definition of pg)
(Xi10<i<k:a;(Pn—s + gn—i))
= (Distributivity)
(ZZ 10<i< k:ai-pn_i)—}—(Zi 10<i< k:ai-gn_i)
= (p is one solution of the NDE;
g is a solution of the corresponding HDE)
fan+0
= (Arithmetic)
fn

Hence, pg is a solution. The proof that pg is the general solution is beyond
the scope of this text. O

(17.26) Example. Find a closed-form solution of the inductive definition
x0=3, ZTn—2-p_1=1 (for n>1)

A general solution of the corresponding HDE was determined in Example
(17.10) to be gn = b1-2™ (for n > 0). A solution of the NDE was deter-
mined in Example (17.22) to be p, = —1. Therefore, a general solution of
the NDE is

P9n = Gn +Pn =b1-2" — 1

Using the constraint zo = 3, we get b; = 4, so the closed-form solution is
Ty =4-2" —1. O
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17.3 Generating functions

We present a theory of generating functions for sequences of numbers.
This little theory turns out to be extremely useful in finding closed-form
solutions of inductive definitions. Often, the generating function for an
inductive definition can be shown to be equal to the sum of a few generating
functions of forms given in the theorems mentioned below, and theorem
(17.34) then gives us the generating function for the inductive definition in
a form that lets us read off a closed-form solution.

The generating function G(z) for a finite sequence z = zo, z1, %2,
.., T, _; of real numbers is the polynomial

(17.27) G(2) =(Di 1 0<i < #x: x;-2")

For example, the generating function for the sequence 9,2,4 is 9+ 2-2 +
4-2% . The generating function is not used to evaluate the sum at a given
point z. Think of it instead as a new kind of mathematical entity, whose
main purpose is to give a different representation for a sequence (or a
function over the natural numbers). Thus,

9,2,4 and 9+2-2+4-2°

are simply two different representations for the same sequence. Further-
more, the second representation affords techniques for analyzing and ma-
nipulating sequences, as we shall see.

Although generating functions are defined as sums, it turns out that they
can have very different —and simple— forms. We see this in the following
theorem.

(17.28) Theorem. For n > 0, the generating function for the sequence
of n binomial coefficients (8) , (71‘), e, (Z) is (z+1)™.

Proof. Binomial theorem (16.23) (see page 348) is
@+y)" = (Tk10<k<n:(?)-zk-y" %)

We can use this theorem to compute the generating function by noticing
that the substitution z,y := 2,1 in its RHS yields the desired generating
function:

@+ = (CR10<k<ns () -zby)lmy = 21]
(Textual substitution; 1"7% =1)

(z+1)" = (Zk10<k<n: (Z)zk)
(Definition of G(z))

(z+1)" = G(2) 0

Il
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We now turn to generating functions for infinite sequences. The generat-
ing function G(z) for an infinite sequence g, 21, %2, ... (or function
z whose domain is the natural numbers) is the infinite polynomial

(17.29) G(z) = (Til0<i:x;-2Y)

For example, the generating function for the sequence 2,4,6,8,... is
244246224825 4+... = (Bi10<i:2-(i+1)-2%)

Having introduced a new entity, the generating function, we analyze its
properties. We start off by finding a simple form for a certain sequence.

(17.30) Theorem. For ¢ a constant, ¢ # 0, the generating function G(z)
for the sequence % ct,c?,c3,... is 1/(1—c-2).

Proof. We manipulate the definition of G(z).

G(z)=(Bil0<i:ct2")

= (Subtract 1 from both sides —remember, c®-20 =1)
G(z)—1=(Bill<i:ct2?)

= (Change of dummy (8.22))
G(z)—1=(Ti]0<q: it

= (Factor out c+z from the sum in the RHS)
G(z)—1=c2:(2il0<i:ct2)

= (Definition of G(z))
G(z) —1=c-2-G(z2)

= (Arithmetic)
G(z) =1/(1 —c-2) O

The calculation in this proof illustrates a generally useful technique for
manipulating generating functions. Subtracting the first term of the gen-
erating function in the RHS in the first step allowed a change of dummy
and a factoring step; together, these resulted in the generating function
reappearing in the RHS, and this in turn allowed the summation to be
eliminated completely.

Try this technique in proving the following theorems.
(17.31) Theorem. For ¢ and d constants, the generating function G(z)

for the sequence d-c®,d-ct,d-c?,d-c3,... is d/(1—c*z2).

(17.32) Theorem. For d a constant, the generating function G(z) for
the sequence 0-d,1-d,2-d,3-d,... is d-z/(1 — 2)?.

(17.33) Theorem. The generating function for the sequence z defined
by 2, =n-(n—1) is 2:22/(1 —2)3.
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(17.34) Theorem. Let G(z) be the generating function for the sequence
90,91, 92,--.. Let H(z) be the generating function for the se-
quence hg,hi, ha,.... Then GH(z) = G(2) + H(z) is the gener-
ating function for the sequence gg + ho, g1 + h1,92 + ha,....

We have one final theorem in our theory of generating functions. This
theorem gives the generating function for a function that is defined only
for integers that are at least k, where & is some natural number.

(17.35) Theorem. Let yo,y1,¥2,... be a sequence with generating func-
tion G(z). Let k be a natural number, and let function f be
defined by f; = y;_x for i > k. Then the generating function for
fis 2*-G(2).

Proof. The generating function for f is (¥n | k <n: f,-2"). We manip-
ulate this generating function.

Enlk<n:fn2")
= (Definition of f)
Enlk<n:yg-2")
= {(Change of dummy (8.22))
(En10<n:y, z2"k)
= (Factor out z*)
K (Tn10<n:y, 2")
= {G(z) is the generating function for yg,yi,...)
2%-G(z) a

GENERATING FUNCTIONS FOR HDES

An HDE of form (17.1) defines a sequence zg, #1, ..., so the general
form of the generating function for an HDE is

Gz) = zo+x1-2 +a2-22+... = En10<n:z,-2")

We now show that the generating function for an HDE is a fraction whose
numerator and denominator are polynomials in 2. Such a function is called
a rational function of z. Further, we show how to construct this form of
the generating function. We start with an example of the construction.

(17.36) Example. Construct the rational-function form of the generating
function for HDE z, — z,-2 =0 (for n > 2).

Ty — Tp_2 = 0
{Multiply both sides by 2™ )
Tp2" —xp 92" =0
= (This holds for all n. Since this is an order-2 HDE, sum



378

17. RECURRENCE RELATIONS

both sides from n =2 on.)
Eni2<n:zp2") — Enl2<n:zp_-2")=0
(First sum is G(z) — zp — z1-2; Change of dummy (8.22))
G(z)—x0—1°2 — (En10<n:z,-2""2) =0
(Distributivity —to factor out 2%)
G(z)—xzg—x1°2 — 22-(En10<n:x,-2") =0
(Definition of G(z))
G(z) —xg—11°2 — 22:G(2) =0
(Rearrange terms)
G(z) —22:G(2) = zg +x1°2
(Factor out G(z); divide both sides by 1 — 22)
G(z) = (20 +21°2) /(1 22) 0

The rational-function forms of the generating polynomials for HDEs of
order 1, 2, and 3 are shown in Table 17.2. Thus, finding the rational-function
form for the generating polynomial for a particular HDE of order 1, 2, or 3
is simply a matter of choosing the right formula from this table and sticking
in appropriate values for the a; and x; .

From Table 17.2, you can probably guess what the rational-function form
of the generating polynomial for an order-n HDE is. The proof-construction
of this generating polynomial is not very difficult. The construction follows
that of Example (17.36), and it relies heavily on the rules of manipulation
of quantification that were introduced in Chap. 8, 9, and 15.

(17.37) Theorem. The generating function for HDE (17.1) is

_(Zi10<i<k:a;-2(Enl0<n<k—i:z,2"))
B (2i10<i<k:a;:2%)

G(2)

Proof. We transform HDE (17.1).

Xil0<i<k:a;ixn_)=0
(Multiply both sides by 2™ ; Distributivity, to move
2™ inside; sum over n, k< n)
Enlk<n:(Zil.:a;"zp_i"2"))=0

TABLE 17.2. GENERATING FUNCTIONS FOR HDES OF ORDER 1, 2, AND 3

. _ _ag°x
Order 1: G(z) = —QJ—-&O e
Order 2: G(z) = aog*xo + (a0 1 +a1-20) 2

Order 3: G(z) =

a1z

2
ap+ai*z+az*z
ag o+ (a0 1+ a1°zo) z+ (@ T2+ a1°z1+az* o) 2
2 3
apg+ai1*z+a22"+az*z

2
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(Interchange of dummies (8.19))
ZEil.:Enlk<n:a; xp—+2")) =0
= (Change of dummy (8.22))
Zil..:Enlk—i<n:az,-2"")=0
= (Distributivity —to factor out a;-2*)
(il.:ai2Enlk—i<n:z,-2")=0
= (Definition of G(z))
(Bil.:a;2(Gz) = (En10<n<k—i:z,-2")) =0
= (Distributivity; move term to the RHS)
(Zil.:a;r2G(z)) = (Zil.:a;:2(Zn|..:2,-2"))
= (Distributivity to factor out G(z))
G(2) (Zil.:a;:2") = (Til.:a;°25(Znl..:2py2"))
= (Divide both sides by (i | ..:a;-2%))
Gz) = (2i10<i<k:a;-z'-(Zn| 0<n<k—i:z,-2"))
(2i10<i<k:a;2")
= (For k =4, the sum over n has an empty range)
G(z) = (Zil0<i<k:a;°2"-(Znl10<n<k—i:zy-2"))
(Bil0<i<k:a;2")

Notice that the denominator is just the LHS of the HDE, with z,_; re-
placed by 2¢. O

(17.38) Example. Construct the rational-function form of the generating
function for HDE z, —2-z, =0 (for n >2).

This is an order-2 HDE, with ag = 1, a1 = 0, and a3 = —2. Using
Table 17.2, we find the generating function (zp + z1-2)/(1 —2-22). a

PARTIAL-FRACTION DECOMPOSITION

We now have the rational-function form of the generating function for an
order-k HDE. In this rational function, the numerator is of lower degree
than the denominator. Such a rational function has the following property.
Suppose the denominator can be put in the form

(I-c172) ... (1 —ck-2)
for distinct constants ¢; . Then the rational function can be put in the form

dy d di
1—c1-z+1—cQ-z+ +l—ck-z

for constants d; . This form is called the partial-fraction decomposition of
the rational function. A method for calculating the d; is illustrated by an
example.
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(17.39) Example of a partial-fraction decomposition. Given is

z o + do
1-2)(1-22) 1—2z 1-2-2

To calculate d; , first multiply both sides of the equation by 1—2z:

z _ dz . (1 - Z)
(1-2-2) qt 5
Then, in order to eliminate the term with ds, set z =1 and sim-
plify. This yields # =d;,or dp = —1. Similarly, to calculate
da , multiply both sides of the equation by 1—2-2z,set z to 1/2,
and simplify; this yields ds = 1. O

The neat thing about the partial-fraction decomposition of the generat-
ing function of an inductive definition is that it is often a sum of generating
functions of forms given in Theorems (17.30)-(17.33), so we get a closed-
form expression for each term of the sequence. We now give an example of
the calculation of a closed-form solution of an inductive definition.

(17.40) Example. Construct a closed form solution of

20=0, =2, x,=2'x,_o (for n>2)

Step 0. The recurrence relation is equivalent to the HDE z, — 22,5 =
0. The generating function for this HDE is G(z) = %0_"—;1;25 . Sub-
stituting the constraints zo = 0 and z1 = 2 yields (2-2)/(1—2-2%).

Step 1. Since 1 —2-2% = (1++/2-2)-(1—+/2-2), the generating function

has the partial-fraction decomposition

2z dy dy

= +
1-2:22 1422 1-v2-2

Solving for d; and dy yields dy = —1/4/2 and dy = 1/\/5

Step 2. Using Theorem (17.31) twice, as well as Theorem (17.34), we see
that

Tn = dy-(—V2)" +da- (V2)"  (for n >0).
Substituting for the d; in this formula and simplifying, we get

Ty = (V)" — (-v2)" (for n>0).

V2

For even n, this equation reduces to z, = 0; for odd n, to z, =
2(n+1)/2  Thus, the sequence is 0,2,0,4,0,8,.... O
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The calculation performed in this example may seem like overkill, for
a result that seems obvious, but it illustrates nicely all the steps used in
calculating a closed-form solution. This method can be used as well when
the closed-form solution is not so obvious, as we see later on.

GENERATING FUNCTIONS FOR NDEs

We discuss solving NDEs using generating functions. Consider the NDE
(1741) ap*zpn+ a1 Tp_1+ -+ 0k Tnk=fn (for n>k)

The proof of the following theorem is similar to the proof of Theorem
(17.37) and is left to the reader.

(17.42) Theorem. Let G(z) be the generating function for the homoge-
neous version of (17.41). Let F(z) = (En |k <n: f,-2") be the
generating function for f. Then the generating function for NDE
(17.41) is
F(z)

(Xi10<i<k:a;-2%)

G(z) +

This theorem can be used to solve some functions that are defined using
an NDE, using techniques similar to those used for functions defined using
HDEs. We give a simple example.

(17.43) Example. Find a closed-form solution of
20=3, Tp—xp_1=2 (for n>1).
According to Table 17.2, the generating function of the homogeneous form

of this inductive definition is 3/(1—=z) . Function f is f, =2 (for n > 1),
so its generating function F(z) is

Zz11<n:2-2")
= (Arithmetic —to prepare for use of Split off term)
(Xz11<n:2-2")+2-2
= (Split off term (8.23) —backwards)
(Zz10<n:2:2") -2
()
2/(1 - 2) -
<Ar1thmet1c)
2:-z/(1 - 2)

Therefore, by Theorem (17.42), the generating function for the inductive
definition is
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3, _2-z
IT-z2"(1-2

(Theorem (17.31); Theorem (17.32))
Enl0<n:3:2") + Enl0<n:2-n-2")

(Distributivity)
Enl10<n:(34+2:n)-2")

Therefore, x,, =3 +2'n (for n >0). O
(17.44) Example. Find a closed-form solution of
20=0, 21 =0, o =2,

1if n=3
0if n>3

The sequence xzg,z1,... begins with 0,0,2,5,12,25,52. It is difficult to
guess a closed-form solution. But we can calculate one using our theory of
generating functions. The recurrence relation is given by an NDE. Accord-
ing to Table 17.2, the generating function for the homogeneous form of the
inductive definition is

Tpn—2'Tp_1 —Tp_2+2:Tp—3= {

2-22
1-22—2242-23

Function f is given by the sequence 0,0,0,1,0,0,..., so its generating
function F(z) is z3. Therefore, the generating function for the inductive
definition is
2-22 4 23
1—2-2—2242-25 " 1-2.2—2242:28

(The fractions have a common denominator, so combine;

Factor z from numerator)
. 2.2+ 22

1—22—2242-2°

{Apply partial-fraction decomposition)

Solving for the d; yields d; = —3/2, d2 = —1/6, and ds = 5/3. There-
fore, the part within the parentheses is the generating function for

z

_3_(yr, 52
Yo = 6 3

N

By Theorem (17.35), since this is multiplied by 2!, we have the generating
function for z, (for z > 1) as shown below, and we indicate also that
g = 0:
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3 (-yrt 5.9l
29 =0, x":_E_( é + 3 (for n>0)

Verify that this defines a sequence that begins with 0,0,2,5,12,25,52. [

Exercises for Chapter 17

17.1 Prove that if r is a root of multiplicity m > 1 of characteristic polynomial
(17.3) of HDE (17.1), then z, = n'r"™ is a solution of the HDE. Hint: If r is
root of multiplicity greater than 1 of (17.3), then it is a root of the derivative of
(17.3).

17.2 Find closed-form solutions of the following inductive definitions.

(a) o =6, zn=2-zp_1 (for n>1).

(b) zn =2+2n—1 (for n > 1), with constraint x> =4.
(¢c) zo0=5, xn=5"an-1 (for n>1).

(d) zo=2, zn=—-5zn_1 (for n>1).

(e)

e) z0=5, Tn =32p—1 (for n>1).
(f) zo =4, n =2Tn-1 (for n>1).

17.3 For each of the following HDE’s find a closed-form solution subject to the
given constraints.

(a) Zn =3 Tpn-1+2'2p—2=0, z1=1and z3=1

(b) Zn —3°Tn-1+2°2n_2=0, 21 =3 and z3=9.

(¢) zn+2°Zn-1+2n2=0, x1=3 and z2=0.

(d) zn+4-zn-1+42,2=0, xo=0 and 1 =2.

() zn =3 Zn—1+3Tn—2—2pn—3=0, xo=0, z3=3,and x5 =10.
() zn+2'2pn—1—15'2p,_2=0, 20=0 and z; =1.

(8) #n — 8 xn_1+ 16 2,2 =0, 0 =0 and ;1 = 8.

(h) zn — 3 zp1+3'zn_2—2n3=0, x0=0, z1=0,and z2=1.

17.4 Let z, be the number of subsets of the integers 0..(n — 1) that do not
contain consecutive integers (for 0 < n ). For example, {1,4,6} is such a subset
for n = 7, while {0,1,4,6} is not. Find an inductive definition for z, and,
from it, find a closed-form solution.

17.5 Consider the sequence 0,1,1/2,3/4,5/8,... in which each value z, (ex-
cept the first two) is the average of the preceding two. Find a closed-form solution
for =, .

17.6 Suppose n parking spaces in a row are to be filled completely, with no
empty places. A big car takes two spaces; a compact car takes one. Give an
inductive definition of the number of ways in which the n spaces can be filled.
Find a closed-form solution.

17.7 Find an inductive definition for the number of sequences of zeros, ones, and
twos of length n that do not contain consecutive zeros. Then find a closed-form
solution.
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17.8 A particle starts at position 0 and moves in a particular direction. After
one minute, it has moved 4 inches. Thereafter, the distance it travels during
minute n, for n > 1, is twice the distance it traveled during minute n — 1.
Define inductively the distance d, the particle has traveled after n minutes.
Then find a closed-form solution.

Exercise on dealing with complex roots

17.9 Show that i and —i are the roots of A2 +1.
17.10 Solve the pair of equations 0 = b; +b2 and 1 = b;+i—bs-i for b and

b2 .

17.11 Find closed-form solutions to the following HDE’s.
(@) ©o=0, z1=1, Tp=-2'xH_2 for n>2.
(b) 20=0, z1=1, Tp=—Tn_1—Tn_2 for n>2.

)

) zo=0, z1=1, Tpn=2Tp_1—2'Tp_2 for n>2.
(d) 20=0, z1=1, Tpn=-2'24p-1—22Tp_o for n>2.
) 20=0, z1=1, z,=3'Tpn_1—3:Tp_2 for n>2.
(f) 20=0, z1=1, zpn=-3"Tpn_1—3"2p_y for n>2.

Exercises on NDEs

17.12 Use Method (17.21) to find a particular solution of the following NDEs.
(a) Tn —3°Zn—1=3'n+2.
(b) In — 3'.’1)71_1 =2".
(¢) zn — 3 Tp_1=4-2"+3.
(d) Ty — LTp—1—2°Tp-2=1.
(e) Th —ZTn-1—2'Tp—2=1+n.
(f) Tn+2%pn_1—152,_2=104+6°n.
(&) Tn —4"Tn_1 —4-Tp_2=2".
(h) zn —5'Tp_1+6:Tpn_2=2"n.
() Tn—5'Tn146Tpo=23".
(J) Tn —2'Tp_1 + Tn_2 = 2" .

Exercises on generating functions

17.13 Prove Theorem (17.31).
17.14 Prove Theorem (17.32).
17.15 Prove Theorem (17.33).
17.16 Prove Theorem (17.34).
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17.17 Give the generating functions for the following sequences.
(a) 1,0,0,0,....
(b) 0,0,2,0,0,0,... .
(¢) 0,-2,0,0,0,0,....

17.18 Find a rational-function form of the generating function for the sequence
Zn=n2,for n>0.

17.19 Use Table 17.2 to find the rational-function form of the generating function
for the following HDEs.

(a) 2n —2°2n-1=0.

(b) zn +&n-1=0.

(¢) Zn —Zn-1=0.

(d) zn+5-2n-1=0.

(e) Tn —5xp—1=0.

(f) Fo—Fu_y—Fn5=0.

(8) Tn —2°Tn—1+ZTn-2=0.

(h) zn —Zn_1+ Tn-2=0.

(i) Tn+3 Tn-1+Trn-2=0.

(G) zn+3xn_1—xn_2=0.

(k) Zn —ZTn-1 —Tn—2+2n-3=0.

) zn —Tr-3=0.

17.20 Use the method given on page 380 to find a closed-form solution of the
following inductive definitions.

(@) zo=2, zn —22p1=0for n>1.
(b) zo=4, Tn+2n-1=0 for n>1.
(¢c) zo=4, Tn—2pn-1 =0 for n>1.
(d) zo=2, zn+5xn-1 =0 for n>1.
() To=2, zn —5°Tn-1=0 for n>1.
(f) F0=0, F1=1, Fn—Fn_l—Fn_QIO for TZZQ.
(8) zo=1, z1 =2, zn +3*Tp-1+Tp-2=0 for n>2.
h) zo=1, 21=2, Tn+3°Zn-1—Tn—2=0 for n>2.
(i) zo=1, z21=2, 22 =3,

Tn — Tn—-1 — Tn—2+ Tn_3=0 for n>3.
G) zo=1, 21=2, 22=3, Zpn —Zn_3=0 for n>3.
k) zo=1, z21r=2, 2n —2'CTn-1+ Tn-2=0 for n>2.
D) zo=1,21=2, n—Tp-1+2Zn-2=0 for n>2.
(m) 20=0, z1=1, zpn —2'Zpn—1 —15'2p_2=0,for n > 2.

17.21 Consider the sequence 0,1,1/2,3/4,5/8,... in which each value z, (ex-
cept the first two) is the average of the preceding two. Use generating functions
to find a closed-form solution for z, .

17.22 Prove Theorem (17.42).



Chapter 18

Modern Algebra

odern algebra is the study of the structure of certain sets along with
M operations on them. An algebra is basically a model of a theory,
as discussed near the beginning of Chap. 9. The algebras discussed here
are semigroups, momnoids, groups, and boolean algebras. They are useful
throughout computer science and mathematics. For example, Chap. 8 was
devoted to the study of quantification over an arbitrary abelian monoid.
Semigroups and monoids find application in formal languages, automata
theory, and coding theory. And, one boolean algebra is the standard model
of the propositional calculus. Important in our study is not only the var-
ious algebras but their interrelationship. Thus, we study topics like iso-
morphisms, homomorphisms, and automorphisms of algebras. (Historical
note 18.1 discusses the origin of these words.)

18.1 The structure of algebras

An algebra consists of two components:

e Aset S (say) of elements, called the carrier of the algebra.

e Operators defined on the carrier.

Each operator is a total function of type S™ — S for some m , where m
is called the arity of the operator. The algebra is finite if its carrier S is
finite; otherwise, it is infinite.

Operators of arity 0, called nullary operators, are functions of no argu-
ments. For ease of exposition, we view the nullary operators as constants
in the carrier. For example, we consider 1 to be a function that takes no
arguments and returns the value one. Operators of arity 1 are unary op-
erators; of arity 2, binary operators; of arity 3, ternary operators. (The
conditional expression if b then c else d is a ternary operation). Unary
operators are written in prefix form; binary operators in infix form.

Examples of algebras
(a) The set of even integers and the operator + form an algebra.

(b) The set of even numbers together with the operations multiplication
and division is not an algebra, because division is not a total function

D. Gries et al., A Logical Approach to Discrete Math
© Springer Science+Business Media New York 1993



388 18. MODERN ALGEBRA

HISTORICAL NOTE 18.1. MORPHING AND OTHER WORDS

Some inkling of the meaning of words like isomorphism, homomorphism, and
automorphism can be gained by looking at their Greek roots. In Greek, isos
means equal. The prefix iso is used in many English words, such as isosceles
(having equal legs or sides), isonomic (equal in law or privilege), and isobar
(a line on a weather map connecting places with equal barometric pressure).
Prefix homo comes from the Greek homos, meaning same. We see it used in
homogenized and homosezual, for example. And, prefix auto comes from the
Greek word meaning self, as in autohypnosis and automobile.

Putting these three prefixes together with morphic, which is a combining
form, again from the Greek, meaning having a form or shape, gives isomor-
phism, homomorphism, and automorphism. The change in the shape of the
U.S. car industry in the past fifteen years is not what we mean by an auto-
morphism.

Lately, morph has been used in another context. Programs have been written
that produce a morph of two images: an image that is a combination of the
two images. On the back cover are five morphs of pictures of the two authors.
The first picture is Gries; the second, 70% Gries and 30% Schneider; the third,
50% Gries; the fourth, 30% Gries; and the last, pure Schneider. These morphs
were produced by the Macintosh program Morph.

on the even integers (division by 0 is not defined).

(c) Theset {false,true} and operators V, A, and — is an algebra. This
is a finite algebra, because the set is finite. O

We often want to discuss a class of algebras that have the same proper-
ties. To aid in this discussion, we present algebras in a standard form. For
example, algebra (a) above is described by (S,+), where S is the set of
even integers, and algebra (c) above is described by (B,V,A,-). We use
(S, ®) to denote an algebra with carrier S and list of operators ®.

The signature of an algebra consists of the name of its carrier and the
list of types of its operators. For example, the algebra (B,V, A, =) has the
signature

(B,BxB —B,BxB— BB — B)
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