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CAPITUL

Requisitos previos

No hay requisitos previos formales para este capitulo; se recomienda al lector estudiarlo-
cuidadosamente y seguir el desarrollo de todos los ejemplos.

En este capitulo se proporciona algunas de las herramientas basicas de las matematicas
discretas. Comienza con los conjuntos, subconjuntos y sus operaciones, nociones que quiza
ya sean conocidas por usted. En seguida trata de las sucesiones y utiliza esquemas tanto
explicitos como recursivos. Luego se revisan algunas de las propiedades basicas de la
divisibilidad de los enteros y, por altimo, se ve las matrices y sus operaciones. Esto propor-
ciona el ambiente de fondo necesario para iniciar la exploracion de las estructuras matema-

ticas.

1.1. Conjuntos'y subconjuntos

Conjuntos

Un conjunteo ¢s un grupo o coleccion de objetos, a los que se conoce como elementos o
miembros del mismo. Por ejemplo, la coleccién de todas las sillas de madera, la coleccion
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de todos los pajaros negros de una pata, o la coleccion de los niimeros reales comprendidos
entre cero y uno, son, cada uno, un conjunto. Bien definido, significa simplemente que es
posible decidir si un objeto dado pertenece o no a la coleccién. Casi todos los objetos mate-
maticos, antes que todo, son conjuntos, independientemente de otras propiedades adiciona-
les que puedan poseer. Asi, la teoria de los conjuntos es, en cierto sentido, el cimiento sobre
el que se construye practicamente todas las matematicas. A pesar de esto, dicha teoria (por
lo menos la de la clase informal que se necesita) es ficil de aprender y de usar.

Una forma de describir un conjunto con un nimero finito de elementos, es hacer una
lista de los elementos del conjunto y encerrarla entre llaves. Asi, el conjunto de todos los
enteros positivos menores que 4, puede escribirse asi

{1, 2, 3}. ¢))]

No es importante el orden en que se ponga en la lista los elementos del conjunto. Asi,
{1,3,2},{3,2,1}, {3, 1,2}, {2, 1,3} y {2, 3, 1} son todos representaciones del conjunto
que se da en (1). Ademas, puede hacerse caso omiso de los elementos repetidos en la lista de
elementos de un conjunto. Asi {1, 3,2, 3, 1} es otra representacién del conjunto dado en (1).

Se emplea letras maytisculas, como 4, B, C para designar los conjuntos, y letras mi-
nisculas, como a, b, ¢, x, y, z, ¢ para designar los miembros (o elementos) de los conjuntos.

Para indicar que x es un elemento del conjunto 4, se escribex € 4. También se indica
el hecho de que x no es un elemento de A4, escribiendo x ¢ A.

Ejemplo1. Sead={1,3,5 7} Entoncesle 4,3¢ A, pero2 ¢ A. L 2

En ocasiones no es conveniente o es imposible describir un conjunto por medio de una
lista de todos sus elementos. Otra manera util de definir un conjunto, es especificando una pro-
piedad que los elementos del conjunto tengan en comun. Se utiliza la notacién P(x) para
denotar una oracidn o enunciado P relativo al objeto variable x. El objeto definido por P(x),
escrito en la forma {x | P(x)}, es simplemente la coleccién de todos los objetos x para los
cuales P es sensible y cierto. Por ejemplo, {x | x es un entero positivo menor que 4} es el
conjunto {1, 2, 3} descrito en (1) mediante el listado de sus elementos.

Ejemplo 2. El conjunto formado por todas las letras de la palabra “byte” puede denotarse
por {h, v, 1, e} o por {x | xes una letra de la palabra “byte”}. L4

Ejemplo 3. Aqui se presenta varios conjuntos y sus respectivas notaciones, que seran
usadas en todo este libro.

(a) Z7= {x | x es un entero positivo}.

En consecuencia, Z ' esta formado por los nimeros usados paracontar: 1,2,3, .. ..
(b) N= {x | x es un entero positivo}.

En consecuencia, N esta formado por los enteros positivos: 0, 1,2, .. ..
(¢} Z={x | xcsunentero;}.

Lii Cotisccucinia, £ wold fuiinadu pui wdus ios caictos, ..., =3, 2, 1.0.1.2.53. ...
(d) — {a 1 2 e un nbmero real}.
(&) Elconjunto que no tiene clementos se denota por { } o por el simbolo @ y se denomi-
na conjunto vacio. .

Ejemplo 4. Como el cuadrado de un nimero real es siempre no negativo, {x | x es un
numero real y x> = — |} = (. .

s P

[P

RIS T BRI g e

u

P Sirshs WiETOOS 1ty
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Se dice que un conjunto es completamente conocido cuando se conoce todos sus
miembros. Se dice asi, que dos conjuntos 4 y B son iguales si tienen los mismos elementos,

y se escribe 4 = B.
Ejemplo 5. Si 4= {1,2,3} y B= {x | x es un entero positivo y x* < 12}, entonces

A=8B. ¢
Ejemplo 6. SiA={BASIC,PASCAL, ADA} yB= {ADA, BASIC, PASCAL}, entonces
A=B. 2
Subconjuntos

Si cada elemento de 4 es también un elemento de B, es decir, si siempre que x € 4 ocurre
que x € B, se dice que 4 es un subconjunto de B o que 4 estd contenido en B, y se escribe
A c B. Si 4 no es un subconjunto de B, se escribe 4 & B. (Véase la figura 1.1.)

OL

AcB AgB
Figura 1.1

A los diagramas como los que aparecen en la figura 1.1, empleados para mostrar
relaciones entre conjuntos, se los llama diagramas de Venn, en honor del légico britanico
John Venn. Los diagramas de Venn seran de mucha utilidad en la seccion 1.2,

Ejemplo 7. Se tiene que Z* < Z. Por otra parte, si O denota el conjunto de todos los
nGimeros racionales, entonces Z < Q. *

Ejemplo8. Seand=1{1,2,3,4,5,6},8=1{2,4,5},y C={L,2,3,4,5}. Entonces,
BcA,BcCyCc A Sinembargo, 4 ¢ B,A ¢ CyC ¢ B. ¢

Ejemplo9. SiA esun conjunto cualquiera, 4 ¢ 4. Es decir, todo conjunto es un subconjunto

de si mismo. ¢

Ejemplo 10. Sea A un conjuntoy sea B= {4, {4}}. Entonces, como Ay {4} son elemep-
tos de B, se tiene que 4 € By {4} € B. Se desprende que {4} ¢ By {{4}} < B. Sin
embargo, no es cierto que 4 < B. ¢

»

Para un conjunto cualquiera 4, como no hay elementos de &J que no estén en A, se
tienc que & < 4. (Esto se vera de nuevo en la seccion 2.1.)

Es facil ver que 4 = B si y solamente si 4 < By B  A. (Esto se demuestra en la
seccion 2.3.)

Se puede expresar la conclusion de que la coleccion de todas las cosas, 0 sea de tOfi(?,
no puede considerarse como un conjunto sin destruir la estructura logica de %as mateman:
cas. Para evitar éste y otros problemas de los que no es necesario ocuparse aqui, s€ §upond’ra
que para cada caso que se presenta existe un conjunto universal U (que puede variar segun
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el caso) que contiene todos los objetos para los que tiene sentido la discusion del caso. Para
cualquier otro conjunto que se mencione en la presentacion, se supondra automaticamente
que es un subconjunto de U. Por tanto, si se est4 tratando de los nimeros reales y se mencio-
na los conjuntos 4 y B, entonces se supondré que 4 y B deben ser conjuntos de nimeros
reales, no matrices, ni circuitos electronicos ni monos de laboratorio. En la mayoria de los
problemas, se vera de inmediato la existencia de un conjunto universal U por el plantea-
miento del problema. En los diagramas de Venn, el conjunto universal U se denotara por un

rectangulo, mientras que los conjuntos dentro de U seran denotados por circulos, como
aparece en la figura 1.2.

Figura 1.2

Se dice que un conjunto A4 es finito si tiene » elementos distintos, siendo n € N. En
este caso, a n se le llama cardinalidad de 4 y se designa por [A]. Por tanto, los conjuntos
de los ejemplos 1, 2,4, 5 y 6 son finitos. A un conjunto que no es finito se lo llama infinito.
Los conjuntos presentados en los ejemplos 3 (excepto &) y 7 son conjuntos infinitos.

Si 4 es un conjunto, el conjunto de todos los subconjuntos de 4 se denomina conjun-
to potencia de 4 y se designa por P(4).

Ejemplo 11. Sead = {1,2,3}. Entonces P(4) esta formado por los siguientes subconjuntos
de 4: { }, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, y {1, 2, 3} (es decir 4). En una seccidn
posterior, se contara el nimero de subconjuntos que puede tener un conjunto. L4

GRUPO DE EJERCICIOS 1.1

1.

Identifique cada uno de los siguientes casos como 5

verdadero o falso.

Scad=1{1,2,4, 4, b, ¢} Identifique cada uno de los 4. En cada parte, forme un conjunto haciendo una lista
siguientes casos como verdadero o falso de sus clementos.
(a)2€4 (b)y3€ A4 () c&E A (2) El conjunto de todos los enteros positivos que
(dygeA (e){}g A HAeA son menores que diez
M) xlxe ZyxX <12}
. Sead = {x | x es un niimero real y x < 6}.

- En cada parte, escriba el conjunto en la forma {x |
P(x)}, en donde P(x) es una propiedad que describe

(a) 3€6 A4 (hy 6E A (c) S5& 4 los elementos del conjunto.
(d) 8& A (€) 3t A (1) 34¢ A (a) {2.4.6.8, 10} (b) {a,c, i 0, uj
(c) {1,8,27,64,125} (dy {2, -1,0.1,2}
En cada parte, haga un conjunto con las letras de
cada palabra haciendo una lista de los elementos del 6. Sead={l,2,3,4,5} ;Cuales de los siguientes

conjunto.
(a) AARDVARK
(¢) MISSISSIPPI

conjuntos son iguales a 47
@) {4,1,2,3,5} (b) {2,3,4} (¢) {1,2,3,4,5, 6}
A{d) {x | xesunenteroyx* < 25}

(b) BOOK

.

T W 1 AT SR

> nmm

© emmERg e g

v & L 4

() {x | x es un entero positivo y x = .5}
() {x | x es un nimero racional positivo y x < 5}

7. ;Cuales de los siguientes conjuntos son conjuntos
vacios? i -
(a) {x | x es un niimero real y x - 1=0}
(b) {x | x es unnimero realy x* + 1 = 0}
(¢) {x | x es un niimero real y x*=-9}
(d) {x | x esunnumero realy x=2x+ 1}
() {x | x esun nimerorealy x =x + 1}

8. Haga una lista de todos los subconjuntos de {a, b}.

9. Haga una lista de todos los subconjuntos de
{BASIC, PASCAL, ADA}.

10. Haga una lista de todos los subconjuntos de { }.

11. Sead={l1,2,5,8, 11}. Identifique cada uno de los
siguientes casos como verdadero o falso.

(a) {5,1}C A (b) 8,1} A
V(o) {1.8,2,11,5) ¢ A ?fj)) {?}%fx ,
6l T A c
23 %1?} G}E% (h) A C{11,2,5.1,8,4}

12. Sead = {x | xesunenteroy x’ < 16}.
1dentifique cada uno de los siguientes casos como
verdadero o falso.
(a) {0,1,2,3}C A
() {tcA
(d) {x | xesunenteroy [x| <4} c 4
(e) AC {3, -2, -10, 1,2,3}

(b) {(-3.-2.-1c4

13. SeanAd =1}, B=1{1,a,2,b,¢}, C=1{b ¢},
D=1a by, yE=1{1,a,2,b,¢, d}. Para cada partc,
sustituya el simbolo (Jpor = o & para dar un
enunciado verdadero.

(a) AElB (b)@EJAw
(dy COE (e)y DEEIC

(c) BOC
() BOE

14. En cada parte, encuentre ¢l conjunto de cardinalidad

1.2. Operaciones con conjuntos

15.

16.

17.

18.

19.

Secccién 1.2 Operaciones con conjuntos D

més pequefia que contenga los conjuntos dados
como subconjuntos.

(a) {a,b,c},{a, d e f), (b, c e g}

(0) {L24L{1,3L2 (o) {1.4}{b.2)

Utilice el diagrama de Venn de la figura 1.3 para
identificar cada uno de los siguientes casos como
verdadero o falso.

v j g
ACB~ () BCAY ()CCB
EznggB ‘»,'i eyxeA, ((HyeB.
U
D
Figura 1.3

(a) Si 4 = {3, 7}, encuentre P(4).
(b) ;Quées | 4|7 (c) ;Qué es P(4)?

(a) Si 4 = {3, 7,2}, encuentre P(4).
(b) ;Quées | 4]?(c) (Qué es P(4)?

Dibuje un diagrama de Venn que represente estas

relaciones.
(a) AcB.AcC. B CyCI B
(by xe 4,xe B,xg C,ve B.ve C.yve A4

Describa todas las relaciones entre subconjuntos que
existan para los conjuntos dados en el ejemplo 3.

. Demuestrc que si 4 € By B < C, entonces 4 < C.

1 i i 1 -onjuntos dados
En esta seccion se analizard varias operaciones que permiten combinar conj

para formar nuevos conjuntos. Estas operacioncs, ana

fogas a las operaciones conocidas que

i j ¢ : licaciones e
se efectia con los niimeros reales, jugaran un papel clave en las numerosas ap

ideas siguientes.
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Si 4 'y B son conjuntos, se define su unién como el conjunto formado por todos los
elementos que pertenecen a 4 0 a By se denota por 4 \U B. Asi,

AU B={x|xe Aobien,xe B}.

Debe observarse quexe 4\ Bsixe 4oxe B, obien x pertenece a ambos, 4 y B.
Ejemplo1. Seand=1{a b,c, e f}yB={b,d,r,s}. Encuentre 4 \U B.

Solucién: Como A \U B esta formado por todos los elementos que pertenecen ya sea
adoaB, A\UB={a b c defrs}. ¢

Puede ilustrarse la unién de dos conjuntos con un diagrama de Venn, como sigue. Si4
y B son los conjuntos dados en la figura 1.4(a), entonces 4 \ B es el conjunto representado
por la regién sombreada de la figura 1.4(b).

A B

(a) (b) AUB
Figura 1.4

Si4 y B son conjuntos, se define suinterseccion como el conjunto formado por todos |

los elementos que pertenecen a ambos conjuntos, 4 y B, y se designa por 4 (M B. En conse-
cuencia, AYB={x | xe Ayxe B}.

Ejemplo 2. Seand=1{a b, c e f},B={b e fr s}, yC={a t u v}. Encuentre 4 B,
AMNC yBNC

Solucion:  Los elementos b, ey fson los inicos que pertenecen a ambos conjuntos, 4y

B, demodo queAM B={b, e, f }. De modo semejante, 4 (M C= {a}. No hay elementos

que pertenezcan a los dos conjuntos, By C, de modo que BAYC= { 1. ¢

Cuando dos conjuntos no tienen elementos comunes, como By C en el ejemplo 2, se
denominan conjuntoes disjuntos.

Se puede ilustrar la interseccién de dos conjuntos con un diagrama de Venn, como

sigue. Si 4y B son los conjuntos dados en la figura 1.5(a), entonces 4 () B es el conjunto v

representado por la regién sombreada de la figura 1.5(b). La figura 1.6 muestra un diagrama
de Venn para dos conjuntos disjuntos.

Las operaciones de union ¢ interseccion pueden definirse para tres o mas conjuntos de
manera obvia.

AVUBUC={x|xe 4;0,xe B;o,xe C}

ANBNC={x|xe 4;y,xe B;y,xe C}.

Seccién 1.2 Operaciones con conjuntos 7

U U

(a) (b) ANB

OO

Figura 1.6

Figura 1.5

La region sombreada de la figura 1.7(b) es la union de los conjuptos A, B.}f Cque aparecen
en la figura 1.7(a), y la regién sombreada de lafigura 1.7(c) es la mt.erseccwn fie los conjun-
tos 4, By C. Notese que la figura 1.7(a) no dice nada acerca de poqbles relaciones entre': los
conjuntos, pero que si deja margen para todas las relaciones posibles. En ’generalz si A4,
4,, ..., A, son subconjuntos de U, entonces 4, U4, U+ \U 4, se denotara por U, 4,
y, 4, (M A, (M - - () 4, se denotara por Mi-i A,

Ejemplo3. Sead= {1,2,3,4,5,7},B={1, 3,8,9},yC=1{1,3,6,8}. EptoncesAmB
M C es el conjunto de elementos que pertenecen a 4, By C. En consecuencia AMBM f?
={1,3}.

Si 4 y B son dos conjuntos, se define el complemento de B con respecto de A como
el conjunto de todos los elementos que pertenecen a A pero no a B, y se denota por 4 — B.
En consecuencia,

A—B={x|xe A y,x¢& B}.
Ejemplo 4. SeanAd={a b c}yB={b c d e} Entoncesd — B= {ayyB—A={d e}. *
SiA y B son los conjuntos de la figura 1.8(a), entoncesAd - ByB - A estan represen-
tados por las regiones sombreadas de las figuras 1.8(b) y 1.8(c), respectivamente.

Si U es un conjunto universal que contiene a4, entonces U — A se denomina comple-
mento de A y se designapor 4. Asi 4 = {x|xg 4}.

Ejemplo 5. Seand4 = {x | xesunenteroy x <4}y U= Z. Entonces 4 = {x | xes 1in
entero y x > 4}.
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U
(a) (b) AUBUC
U
() AnBnC
Figura 1.7
U U
A
(a) {b)
U
A
(c)
Figura 1.8

— b
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Si 4 es el conjunto de la figura 1.9, su complemento es la regién sombreada en esa
figura.

RREONEHERSE

Figura 1.9

Si Ay B son dos conjuntos, se define su diferencia simétrica como el conjunto de
todos los elementos que pertenecen a 4 0 a B, pero no a ambos, A y B, y se designa por 4 @
B. Asi,

A@B={x|(xe Ayxg B),o(xe Byxg A)}.
Ejemplo 6. Seand={a b,c,d}yB={a c e [ g} EntoncesA® B=1{bd e f g}

Si A4y B son como se indica en la figura 1.10(a), su diferencia simétrica es la region
sombreada que aparece en la figura 1.10(b). Es facil ver que

A@B=(A-B)U(B - A).

U U

(a) (b)A bR

Figura 1.10

Propiedades algebraicas de las operaciones con conjuntos

Las operaciones con conjuntos quu sv acabu de definir satisfacen muchas propiedades
algebraicas, algunas de las cuales son similares a las propiedades algebraicas que satisfacen
los numeros reales y sus operaciones. Todas las propiedades principales anotadas aqui pue-
den ser demostradas por medio de las definiciones dadas y las reglas de la logica. Se presen-
tara la demostracion de algunas de las propiedades y se dejara las demostraciones restantes
como ejercicios para el lector. Los diagramas de Venn son utiles a menudo para sugerir o
justificar el método de demostracion.



10 Capitulo |

Conceptos fundamentales

Teorema 1.  Las operaciones definidas para realizarse con conjuntos satisfacen las
siguientes propiedades.

Propiedades conmutativas
1. AUB=BUA
2.ANB=BNA
Propiedades asociativas
J.AUBUO =(AUB)UC
4 ANBNCO)=ANBNC
Propiedades distributivas
5..ANBUC)=ANBUMNODC
6. AUMBNC)=(AUB)N(AUC)

Propiedades idempotentes

7. AUA=A
8. ANA=A
Propiedades del complemento
9. A=A
10 AUA=U
IL.ANA=y
2. =U
13. U={}
4. AUB=ANB
15 ANB=AUB Las propiedades 14 y 15 son conocidas como
leyes de De Morgan.
Propiedades de un conjunto universal
l6. AUU=U
17 ANU=A4

Fropiedades del conjunto vacio
8B AUZ=A4 o AU|[}=4
19.ANn@=C o An{}={)

Demostracion:  Se demostrara aqui la propiedad 14 y se dejara las demostraciones
de las propiedades restantes al lector. Un estilo coman de demostracién para enuncia-
dos relativos a conjuntos, consiste en escoger un elemento en uno de los conjuntos y
ver lo que se sabe acerca de éste. Supongase quexe A4\ B . Entonces se sabe que
x¢ AU B, de maneraquex¢ 4 yxg¢ B.(;Por qué?) Esto significaquexe 4 M B
(¢por qué?), de modo que cada elemento de AU B pertenecea 4 (M B . En conse-
cuencia A\ B < A M B. Reciprocamente, supdngase quexe A (M B . Enton-
cesxg Ay xg B (;por qué?), de modo que x & 4 U B, lo cual significa que x €

4 B. En consecuencia, cada elementode 4 (M B también pertenecea 4\ B,
y 4 B ¢ A\UB. Ahorase observaque A\UB = 4 M & . ®

El principio de adicién

Supodngase ahora que 4 y B son conjuntos finitos de un conjunto universal {. Con frecuen-
cia es til tener una formula para {4 \J B|, la cardinalidad de la unién. Si4 y B son conjun-
tos disjuntos, es decir, si 4 (1 B=(J, entonces cada elemento de 4 \U B aparece ya sea en 4
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o en B, pero no en ambos; por lo tanto, | A\U B| = [4| + | B|. Si4 y B se superponen, como
se muestra en la figura 1.11, entonces los elementos de 4 (M B pertenecen a ambos conjun-
tos, y lasuma [ 4| + | B| cuenta estos elementos dos veces. Para corregir este doble conteo,
seresta |4/ B|. Como consecuencia, se tiene el siguiente teorema, al que se denomina a
veces principio de adicion. Debido a lo que aparece en la figura 1.11, se conoce también
a éste como principio de inclusion-exclusion.

ANnB

Figura 1.11

Teorema 2. Si Ay B son conjuntos finitos, entonces |[A\J B|=14|+|B| — |[AMB|. ®
Ejemplo7. . SeanAd={a, b, ¢, d e} y B={c, e, f, h, k, m}. Verifique el teorema 2.

Solucion: Setieneque A \UB={a, b, ¢, d e fh k,m}yAdM B={c e}.
También, (4] =5,|B|=6,|A\UB| =9,y |AM B| =2.Entonces |4| + |B| — |4
MB|=5+6—2,0sea9,yel teorema 2 esta verificado. ]

Si 4 y B son conjuntos disjuntos, 4 (Y B=y |4 M B| = 0, de manera que la
formula del teorema 2 se convierte ahora en |4 \J B| = |4| + |B]. Este caso especial
puede enunciarse en una forma que resulta util para una variedad de situaciones de conteo.

El principio de adicién para conjuntos disjuntos
Si un trabajo o tarea 7, puede efectuarse exactamente de n maneras, y una tarea 7, puede

efectuarse exactamente de m maneras, el nimero de formas de realizar la tarea T o la tarea

T,esn+m.
La situacion para tres conjuntos es un poco mas complicada, como se muestra en la
figura 1.12. Puede enunciarse en principio de adicion para tres conjuntos sin lugar a dudas.

ANB

) san

&

ANC
BN C

Figura 1.12

Teorema 3. Scan A, By C conjuntos finitos. Entonces, |A\JB\J C| =|4| + |B| + |C|
~AMNB| = |BNC| - AN CI +1ANYBMC). L4

Ejemplo 8. Sean A=1{a b, c, d e}, B=1{a b e g ht,yC=1{bd e g h k m n}.
Verifique el teorema 3. :
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Solucion: Setieneque A\JB\UC={a, b c d e g h k m, n}, AN B={a b, e}, 5. ((2:310;;1% B (b) AUC © AUD 11. ;;ilesr(l:;ﬁ%e los siguientes casos como verdaderos o
AMC={bd e}, BNNC={b,e g h},yAM BM C= {b, e}, de manera que | 4] (d)BUC () ANC (f) AND () xEANBNC . (b)yEAUBUC
=5,|B|=5,C|=8,|[AUBUC|=10,|4MB|=3,]|4MNC| =3, |BNC] = (&) BN C (hy cnbD (iA-B (c) zEANC » (dveBNnC
y lIAMYBM C| =2. En consecuencia, |4| + |B| + |C| — [ANMB| — |BNC| - () B—A (k) C-D o C
[AMNCI+|ANBMNC|=5+5+8~3—-3—4+2 0sea, 10,y el teorema 3 estd (m) A (n) A®B (o) COD 12. Describa la regién sombreada que aparece en la
verificado. : ¢ (p) BAC figura 1.14 por medio de uniones ¢ intersecciones de
los conjuntos 4, By C. (Hay varias descripciones
Ejemplo 9. Una compafiia de computadoras tiene que contratar 25 programadores para 6. Calcﬁle DOSi_bles-)
manejar trabajos de programacién de sistemas y 40 programadores para programas de apli- Eg)) P Lri fBUUCC) 8; 34 nUBB?mCD N
cacion. De los que se contrate, se espera que diez realicen trabajos de ambos tipos. ;Cuantos () AUB & ANB ‘
programadores deberan contratarse? ; (g BUCUD (h)BNCND ‘
. j, i) AUA HANA
Solucion: Sean A el conjunto de programadores de sistemas contratados y B, el (k) AUA HAN(CuU D) "‘
conjunto de programadores de aplicaciones que se contrate. La compaiiia debe tener : \

10. El numero de programadores que debe |
(4] + [B] — |4 U BJ. Asi pues, la

4] =25y |B| =40,y |AMN B| =
contratarse es |4 \J B, pero |4 U B| =

En los ejercicios 7y 8,sean U= {a, b, ¢, d, e, f, g, h},
i A=lacfg}B={a e}, B={a e},yC={b h}.

compafiia debe contratar 25 + 40 — 10, o sea, 55 programadores. *
' N 7. Calcgle _ Figura 1.14
Ejemplo 10. Se ha emprendido un estudio sobre los métodos de viaje con trasbordo. A (a) A (b) B (c) AUB .
cada participante en la encuesta se le pidi6 que marcara AUTOBUS, TREN o AUTOMOVIL i (d AnB (&) U (fy A- B 13. Sean 4, By C conjuntos finitos con | 4| =6, |B| =8,
segun fuera el medio principal de transporte empleado para ir al trabajo. Se [?ermitié aceptar [Cl=6,14UBUC| =11, [ANB| =3, |4N
mas de una respuesta. Los resultados obtenidos fueron los siguientes AUTOBUS, 30 personas; s 8. Caleule _ _ Cl =2,y IBONC| =5.Encuentre |[AMBM C.
TREN, 35 personas; AUTOMOVIL, 100 personas; AUTOBUS y TREN, 15 personas; AUTO- | (3) 2—;‘2? (b) f; U % (? g Ufc‘ . |
BUS y AUTOMOVIL, 15 personas; TREN y AUTOMOVIL, 20 personas; y los tres medios, 5 (d) () 4@ 0 B® 14. Verifique el tcorema 2 para los siguients conjuntos.
i A=1{1,2,3,4},B ={2,3,5,6,
personas. ,Cudntas personas llenaron el cuestionario de la encuesta? | 9. Sea Uel conjunto de los nimeros reales, 4 = {x | x Ef))) o }1 >3 41- b §5 >3 9;
es una solucién de x* — 1 =0}, y B={—1, 4}. A ) :
Solucion:  Sean B, T'y A los conjuntos de personas que marcaron AUTOBUS, TREN y Calcule Eg)) ’: EZ [1; ﬁ Z’ ;f éi {f{a’f’sf’ tgu}}l L1}
AUTOMOVIL, respectivamente. Se sabe que |B| =30, | T| =35, |4| = 100, |BN T (a) A4 (b) B () AUB & -] hode b po;i%w; > é}
=15 1BMAI=15 T A1 =20,y [BIYTM A| =5. Portanto, |B| + | T} + | 4] — (d)ANB B={x | x es un entero tal que 2 < x < 5}
[BINT! = |BOYA| = ITMAI+ BTN Al =30+35+100— 15~ 15— 20+ o ' 0 A= ix ixesunenteropmmvoyr<|6}
5,0sea, 120, es |4 \U B\U €1, el namero de personas que respondieron. ¢ Para los ejercicios 10y 11, consultese la figura 1.13. B = {x | x cs un entero negativo y x* << 25}
U 15. Si4y B son conjuntos disjuntos tales que | A U B
GRUPO DE EJERCICIOS 1.2 = 141, ;qué debera ser verdadero acerca de B?
p 16. Verifique el teorema 3 para los siguientes conjuntos:
En los ejercicios 1 al 4, sea U= {a, b, c,d e f g h, 3. Calcule Q’ ou (a) A =la.b,c.de}.B={defghik)
k},A={a b c gl B={defg}C={acf}y (@ AUBUC (b)) ANBNC . C={a,cdek,rs,i
D={f h k}. (©ANBUCG () AUBNC (b) A ={1.2.3,4.5.6). B = {2.4.7,8,9),
(¢) AUB (H ANB . 3 C=1{1,2,4,7,10,12}
1. Calcule (¢) A= {x| xesun entero positivo < 8},
(a) AUB by Bu ¢ (cy A 4 Caleule . B~ {v! xcsunentero tal que 2 = x =< 4,
(d)y BND (¢)A -B (h A (1) AU (by AU U (c) BUB Figura 1.13 C= {x | x ¢s un entero tal que x* < 16}
(8) A®B (h)y A®C cuD I
A9 (d cni (e) CUD hcenb 17. En un estudio que se hizo con 260 estudiantes de
2. Calcule 10. Identifique los siguientes casos como verdaderos o universidad, se obtuvo los siguicntes datos:
(a) AuUuD (b) BUD (cycnD En los ejercicios 5y 6, sean U= {1,2,3,4,5,6,7, falsos. cBUC 64 habian tomado un curso de matematicas,
(dyAnNnD (&) B-C (t) B 8,91,4=1{1,2,4,6,8},8=1{2,4,5,9},C={x1x (a) yEANB (g) * GEE C 94 habian tomado un curso de ciencia de la
(g C—B (hy C®D es un entero positivoy x> < 16}, y D= {7, 8}. () weBNC (d) u computacion,
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58 habian tomado un curso de administracion de
empresas,

28 habian tomado un curso de matematicas y uno
de administracioén de empresas,

26 habian tomado un curso de matemdticas y un
curso de ciencias de la computacion,

22 habian tomado un curso de ciencias de la
computacién y un curso de administracion de
empresas, y

14 habian tomado los tres tipos de cursos.

(a) (Cuantos estudiantes cuyos registros fueron
revisados no habian tomado ninguno de los tres
tipos de cursos?

(b) De los estudiantes cuyos registros fueron
estudiados, jcuantos habian tomado s6lo un
curso de ciencias de computacion?

18. Una encuesta de 500 televidentes dio como resultado
la siguiente informacion: 285 veian juegos de futbol;
195, juegos de hockey; 115, juegos de basquetbol; 45
seguian los juegos de futbol y de basquetbol; 70
preferian los juegos de futbol y hockey, 50 observa-
ban los juegos de hockey y basquetbol, y 50 no veian
ninguna de las tres clases de juegos.

(a) ¢Cuantas de las personas encuestadas observa-
ban las tres clases de juegos?

(b) ;Cuantas personas veian sélo uno de los
deportes?

19. En un experimento de psicologia, los sujetos en
estudio fueron clasificados de acuerdo con el tipo de
cuerpo y el género, como sigue:

Endomorio Ectomorfo Mesomorfo
Masculino 72 54 36
Femenino 62 64 38

1.3. Sucesiones

20.

21.

22,

23.

24.

26.

217.

28.

29.

30.

(a) ¢Cuantos sujetos habia del género masculino?

(b) ¢(Cuantos sujetos eran ectomorfos?

(¢) ¢Cuantos sujetos eran o del género femenino o
endomorfos?

(d) ¢(Cuantos sujetos no eran del género masculino
y mesomorfos? _

(e) ¢Cuantos sujetos eran del género masculino, o
ectomorfos o mesomorfos?

Demuestre que 4 c 4 \U B.

Demuestre que A M B C 4.

(a) Dibuje un diagrama de Venn para representar la

situacion Cc Ay Cc B.

(b) Demuestre quesi Cc 4y C < B, entonces C <
AUB.

(a) Dibuje un diagrama de Venn para representar la

situacion4 c Cy Bc C.

(b) Demuestre que si 4 = Cy B < C, entonces 4 \J
BcC.

Demuestre que 4 — 4 =&,

Demuestreque 4 ~ B=A( B .

Demuestre que 4 — (4 — B) ¢ B.

SiA U B=4UC, ;debe ser B = C? Explique.

SiAM B=AM C, ;debe ser B = C? Explique.

Demuestre que siA c By Cc D, entonces 4\ C
cBUDyAMNCcBMND.

(Cuandoes 4 — B=B — A? Explique.

Algunos de los conjuntos mas importantes se originan en relacion con las sucesiones. Una
sucesion es simplemente una lista de objetos dispuestos en orden: un primer elemento,
segundo elemento, tercer elemento, y asi sucesivamente. La lista puede finalizar después de
n pasos, n € N, o puede continuar indefinidamente. En el primer caso, se dice que la suce-
sion es finita, y en el segundo caso, que la sucesion es infinita. Los elementos pueden ser
todos diferentes, o puede haber algunos repetidos.

Ejemplo 1. Lasucesion 1,0,0,1,0, 1,0,0, 1, 1, 1 es una sucesién finita con elementos
repetidos. El digito cero, por ejemplo, aparece como elemento segundo, tercero, quinto,

séptimo y octavo de la sucesion.

¢

|

Ejemplo 2. Lalista3,8,13, 18,23, ... esunasucesion infinita. Los tres puntos que tiene
la expresion significan “y asf sucesivamer’ete"’;?é”s\decir, que continta el patrén estableci
por estos primeros elementos. “. -

Ejemplo 3. Otrasucesioninfinitaes1,4,9,16,25,. .., lalista de los cuadrados de todos

los enteros positivos.

Puede ocurrir que la forma en que continie una sucesion no quede muy clara por los
primeros términos, si éstos son pocos. También, puede ser util contar con una notacion
compacta para describir una sucesion. Hay dos clases de férmulas que se emplea comun-
mente para describir sucesiones. En el ejemplo 2, una descripcién natural de la sucesion es
que los términos sucesivos se forman agregando 5 al término anterior. St se emplea un
subindice para indicar la posicion de un término en la sucesion, puede describirse la suce-
sién del ejemplo 2 como a, =3, a,=a, _,+ 5,2 < n <, A una férmula como ésta, que se

Seccién 1.3

Sucesiones
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4

R 4

¢

do

refiere al término anterior para definir el siguiente término, se la llama recursiva o recu-
rrente. Toda férmula recursiva debe tener un punto de partida.

Por otra parte, en el ejemplo 3 es facil describir un término usando sélo su niimero de
posicion. En la posicion de orden n es el cuadrado de n; b, = n?, 1< n <o, A las formulas
de este tipo se las llama explicitas, porque indican exactamente qué valor tiene cualquier

término en particular.

Ejemplo 4. Laférmularecursivac,=5,¢,=2c,_,2< n=< 6, define la sucesion finita 5,

10, 20, 40, 80, 160. *
Ejemplo 5. La sucesion infinita 3, 7, 11, 15, 19, 23, . . . puede definirse por la formula
recursivad, =3,d,=d, ,+4. ¢

Ejemplo 6. La formula explicitas, =(— 4)", 1 =< n <, describe la sucesion infinita — 4,

16, — 64,256, . ...

Ejemplo 7. La sucesion finita 87, 82, 77, 72, 67 puede definirse por la férmula explicita,

£,=92 —5n, l=n<>5.

Ejempio 8. Una palabra inglesa ordinaria como “sturdy” puede considerarse como la

sucesion finita
s,t,u,r,d,y

formada por letras del alfabeto inglés ordinario.

En ejemplos como el nimero 8, es comin omitir las comas y escribir la palabra en la
forma acostumbrada, si no se presta esto a confusion. De modo similar, hasta una palabra
sin significado como “abacabed™ puede considerarse como una sucesion finita de longitud

A, Las stucesiones de ietras 1 ottos simbolos, escritas sin las coinas, son tambicn Hamadas

cadenas.

Ejemplo 9. Una cadena infinita como abababab. . . puede considerarse como la sucesion

infinitaa, b, a, b, a, b, .. ..

Ejemplo 10. La oraciéon “ahora es la hora de la prueba” puede considerarse como

.

¢

.
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una sucesion finita de palabras espafiolas: ahora, es, la, hora, de, la, prueba. En este
caso, los elementos de la sucesion son también palabras de longitud variable, por lo
que no se podria simplemente omitir las comas. Se acostumbra usar espacios en vez de
comas en este caso. .

El conjunto correspondiente a una sucesion es simplemente el conjunto de todos
los elementos distintos de la sucesion. Debe observarse que una caracteristica esencial de
una sucesion es el orden que ocupan en la lista los elementos. Sin embargo, el orden en que
se enliste los elementos de un conjunto carece en absoluto de significado.

Ejemplo 11
(a) El conjunto correspondiente a la sucesion del ejemplo 3 es {1, 4,9, 16, 25, . . . }
(b) El conjunto correspondiente a la sucesion del ejemplo 9 es simplemente {a, b}. ¢

El concepto de sucesion es importante en la ciencia de la computacién, en donde
a una sucesion se la llama en ocasiones arreglo lineal o lista. Se hara una distincidon
simple pero util entre una sucesién y un arreglo y se usard una notacion ligeramente
diferente. Si se tiene una sucesion S: s, s, 55, . . ., s€ piensa en todos los elementos de
§ como completamente determinados. El elemento s, por ejemplo, es algin elemento
fijo de S, localizado en la posicion cuatro. Por otra parte, si se cambia cualquiera de los
elementos s, se tiene una nueva sucesién y probablemente se la llamara de alguna
manera diferente de S. Asi, si se comienza con la sucesién finita §: 0, 1,2,3,2, 1, 1 y
se cambia el 3 por un 4, para obtener 0, 1,2, 4, 2, 1, |, se pensaria en ésta como en una
sucesion diferente, por ejemplo S’.

Un arreglo, en cambio, puede considerarse como una sucesion de posiciones, como la
que se presenta en la figura 1.15 formada por casillas o cajas. Las posiciones forman una
lista finita o infinita, dependiendo del tamafio deseado del arreglo. Los elementos de algin
conjunto pueden ser asignados a las posiciones del arreglo S. El elemento asignado a la
posicion n serd denotado por S[n]. y a la sucesion S 1], S[2]S[3], . . . se la lamaréa sucesién
de valores del arreglo S. El punto por observar es que S se considera como un objeto bien
definido, aun cuando a algunas de las posiciones no se les haya asignado valores o si se
cambia algunos valores durante la discusién. En lo que sigue se muestra un uso de los
arreglos.

St S12] S13]

Ordenacion S0 [ I I T P |

Figura 1.15

Funciones caracteristicas

Un concepto muy Gtil para los conjuntos es la funcion caracteristica. Las tunciones serdn
estudiadas en la seccion 5.1, pero por ahora se podra avanzar por intuicion y contemplar una
funcion en un conjunto como una regla que asigna cierto “valor™ a cada elemento del con-
junto. Si 4 es un subconjunto de un conjunto universal U, la funcion caracteristica f, de 4
se define como sigue:

1 L e e

Smgease s awn -

LTS

ST AT T TR B

Wb e e+ -
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1 six € 4
£ =10 six e

Se puede sumar y multiplicar las funciones caracteristicas, en vista de que sus valores
son numeros, y estas operaciones ayudan en ocasiones a demostrar teoremas relativos a
propiedades de los subconjuntos.

Teorema 1. Las funciones caracteristicas de los subconjuntos satisfacen las propiedades
siguientes:
(@) fins=Sif5 es decir, £y~ 5(x) = f(X) f5(x) para todos los valores de x.
(0) faus=Fi+Ts = fufs es decir, f,  5(x) = f4(x) + f5(x) — fi(x) fo(x) para todos los
valores de x.
(©) fiws=Ja+[s— 2fafs esdecir, fio5(x) = f3(x) + f5(x) — 2f(x) fo(x) para todos los

valores de x.

Demostracion:  (a) f(x) fz(x) es igual a 1 si y solamente si ambas f,{x) y f4(x) son
iguales a 1, y esto ocurre si y solamente si x estd en 4 y x esta en B, es decir, si x esta
en AN B. Comof,fyes 1 en 4N By 0 en otro caso, debe ser f; ~ 5.

(b) Sixe A4, entonces f,(x) =1, por tanto f(x) + fz(x) — fi(x) f(x) = 1 + f(x) — fo(x)
= 1. De modo semejante, cuandox € B, f,(x) +f3(x) — f4(x) f5(x) = 1. Sixnoestaen 4 ni
en B, entonces f,(x) y fz(x) son 0, por lo que f,(x) + f(x) — f{x)f5(x) = 0. En conse-
cuencia, f; +f; — fifzes 1 en 4 U By 0 de lo contrario, por lo cual debe ser f, 5.

(c) Se deja la demostracién de (c) como ejercicio. ®

Representacion en computadora de conjuntos y subconjuntos

Las funciones caracteristicas tienen otro uso mas en la representacion de conjuntos en una
computadora. Para representar un conjunto en una computadora, debe disponerse los ele-
mentos del conjunto en una sucesion. La sucesion particular seleccionada no tiene impor-
tancia alguna. Cuando se hace la lista del conjunto 4 = {a, b, ¢, . . ., r}, normaimente no se
supone orden alguno en particular de los elementos que hay en 4. Sc identificard por ahora
el conjunto 4 con la sucesiona, b, ¢, ..., r

Cuando un conjunto universal U es finito, como por ejemplo, U= {x, x5, . ., x,}y4
es un subconjunto de U, entonces la funcidn caracteristica f; asigna 1 a un elemento x, que
pertenece a 4 y 0 a un elemento x, que no pertenece a A. Asi f; puede ser representada por
una sucesion de ceros y unos de longitud .

Ejemplo12. SeaU={1,2,3,4,5,6},4={1.2},8=1{2,4,6},yC=14,5,6}. Entoncc§
£(x) tiene valor | cuando x es | o 2 y cualquier otro valor si tiene valor 0. Por tanto, f,
corresponde a la sucesion 1. 1, 0, 0, 0, 0. De modo semejante, la sucesion finita 0, 1,0, 1,0,
I representaa f, v 0.0 00111 representa a f . L4

Cualquier conjunto con 1 elementos puede ordenarse en una sucesion de longitud 7.
de manera que cada uno de sus subconjuntos corresponda a una sucesion de ceros y unos fk‘
longitud nn, para representar la funcion caracteristica de ese subconjunto. Este hechf) permite
represeiar ui conjunto universal en una computadora como un arreglo 4 de longitud . La
asignacion de un cero o un uno a cada posicion A [£] del arreglo especifica un subconjunto

unico de U.
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Ejemplo 13. SeaU={a, b, e g h1s w}. La ordenacion de longitud 8 que aparece en la
figura 1.16 representa a U, ya que 4 [k] = | para 1=<k=<38
Si S= {a, ¢ r, w}, entonces

)1 six1,3,6,8
s =10 six2,4,57
rl1 1yl
Figura 1.16
Por tanto, el arreglo de la figura 1.17 representa el subconjunto S. *

itlol1jojo1t1ty041

Figura 1.17

Un conjunto se denomina numerablesi es el conjunto correspondiente a alguna suce-
sién. Informalmente esto significa que los miembros del conjunto pueden ser dispuestos en
una lista, con un primero, segundo, tercero, . . ., elemento, y el conjunto puede, por tanto,
numerarse o contarse. Se demostraré en la seccion 2.4 que todos los conjuntos finitos son nu-
merables. Sin embargo, no todos los conjuntos infinitos lo son. Al conjunto que no es nume-
rable se lo llama no numerable.

El ejemplo mas accesible de un conjunto no numerable es el conjunto de todos los
nameros reales que pueden representarse por una decimal infinita de la forma 0.a,a,a;. . .,
endondea,esunenteroy 0= a,< 9. Ahorase demostrara que este conjunto es no numerable.
Se demostrara este resultado por contradiccion; es decir, se demostrara que la numerabilidad
de este conjunto implica una situacién imposible. (Se verd con mas detenimiento la demos-
tracién por contradiccion en el capitulo 2.)

Sup6ngase que el conjunto de todos los decimales 0.a,a,a; - * - es numerable. Enton-
ces se podria formar la siguiente lista (sucesion) que contuviera todos estos decimales:

d, = 0.a,a,a5 -+~

dy = 0.bboby -

[,
[
i

= 0.ci005 7 -

Cada uno de nuestros decimales infinitos debe aparecer en alglin lugar de esta lista. Se
establecera una contradiccion construyendo un decimal infinito de este tipo que no esté en
la lista. Construya ahora un namero X COmMo sigue: x = 0xxx; -, endondex es I siq, =
2 delo contrario v, es 20 v. = 1 s1h, = 2 delo contrariox, = 2., = 1 sicy ~ 2, de lo contrario
¥, - 2. Resulta claro que este proceso puede continuarse indefinidamente. El nimero resul-
tante x es un decimal infinito que consta de unos y doses pero, por su construccion x difiere
de cada namero de 1a lista en alguna posicion. En consecuencia, x no estd en la lista, lo cual
resulta ser una contradiccién de acuerdo con la suposicion formulada. Por tanto, indepen-
dientemente de la forma en que se construya la lista, hay algun ntmero real de la forma
0.xX,X; - - - que no estd en la lista. Y de la misma forma, puede demostrarse que el conjunto

de los nimeros racionales es numerable.
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Cadenas y expresiones regulares

Dado un conjunto 4, se puede construir el conjunto 4* formado por todas las sucesiones
finitas de los elementos de 4. Con frecuencia, el conjunto 4 no es un conjunto de niimeros,
sino algin conjunto de simbolos. En este caso, a 4 se la llama alfabeto, y a las sucesiones
finitas que forman 4* se las llama palabras procedentes de A, o en ocasiones cadenasde 4.
Para este caso en particular, al escribir las sucesiones que hay en 4* no se usan comas. Se
supone que 4* contiene a la sucesion vacia o cadena vacia, que no contiene simbolos, y se
designa a esta cadena por A. Esta cadena sera (til en los capitulos 7y 8.

Ejemplo 14. Sead={a, b, c, ..., z}, elalfabeto inglés usual. Entonces A* esta formado por
todas las palabras ordinarias, tales como ape, sequence, antidisestablishmentarianism, y asi
sucesivamente, también por “palabras” tales como yxaloble, zigadongdong, cya, y pqrst. Todas
las sucesiones finitas procedentes de A estan en A*, sea que tengan o no significado. *

Siw, =s8,558; " 8,y W, = Loty -+ I son elementos de A* para algiin conjunto 4, se
define la concatenacién de w, y w, como la sucesions;s,s; - - 5,4,t:t; - - * ;. La concatenacion
de w, con w, se escribe como w, - w, y es otro elemento de 4*. Nétese que si w pertenece a
A*, entoncesw- A =w, y A - w=w. Esta propiedad es conveniente y es una de las principa-
les razones para definir la cadena vacia A.

Ejemplo 15. SeaA = {John, Sam, Jane, swims, runs, well, quickly, slowly}. Entonces A*
contiene oraciones reales como “Jane swims quickly” y “Sam runs well”, a la vez que ora-
ciones sin sentido tales como “Well swims Jane slowly John.” Aqui se separa los elementos
de cada sucesién con espacios. ¢

La idea de una formula recursiva para una oracion es util también en escenarios mas
generales. En los lenguajes formales y las maquinas de estado finito que son analizadas en
el capitulo 9, el concepto de expresiones regulares desempefia un papel importante, y las
expresiones regulares son definidas de manera recursiva. Una expresion regular sobre A
es una cadena construida a partir de los elementos de A y los simbolos (,),V, *, A, de
acuerdo con la siguiente definicion.

REIL. El simbolo A es una expresion regular.

RE2. Sixe 4, el simbolo x es una expresion regular.

RE3. Si a y 3 son expresiones regulares, entonces la expresion af es regular.
RE4. Si ay B son expresiones regulares, entonces la expresion (a V' f3) es regular.
RES. Si « es una expresion regular, entonces la expresion (a)* es regular.

Debe notarse aqui que RE1 y RE2 proporcionan expresiones regulares iniciales. Las
otras partes de la definicion son usadas repetitivamente para definir en forma sucesiva con-
juntos mas grandes de expresiones regulares a partir de los ya definidos. En consecuencia,
la definicion es recursiva.

Convencionalmente, si la expresion regular « consta de un solo simbolo x, en donde
Ve A, 0siacomicnza y termina con parentesis, entonces se escribe (@)* simplemente comno
o*. Cuando no resulte confuso, se hard referencia a una expresion regular sobre 4 simpie-
mente como una expresion regular (omitiendo lu referencia o ).

Ejemplo 16. Sca A = {0, 1}. Demuestre que las siguientes expresiones son todas expre-
siones regulares sobre 4.
(a) 0%(0 V 1)* (b) 00%(0 V 1)*1 (c) (01)*(01 V 1%)
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Solucién: (a) Por RE2, 0y 1 son expresiones regulares. En consecuencia (0V 1) es
regular por RE4, y por tanto 0* y (0 V 1)* son regulares por RES (y la convencidn
mencionada anteriormente). Por tltimo, se ve que 0*(0 V 1)* es regular por RE3.

{b) Se sabe que 0, 1, y 0*(0 V 1)* son todas regulares. En consecuencia, usando
RE3 dos veces, 00*(0 V 1)*1 debe ser regular.

(c) Por RE3, 01 es una expresion regular. Como 1* es regular, (01 V 1*) es regular
por RE4, y (01)* es regular por RES. Entonces la regularidad de (01)*(01 V 1%*) se
desprende de RE3. ¢

Asociado con cada expresion regular sobre 4 hay un subconjunto correspondiente de
A*. A tales conjuntos se los llama subconjuntos regulares de 4* o solamente conjuntos
regulares si no se necesita referencia alguna a 4. Para calcular el conjunto regular corres-
pondiente a una expresion regular, se utilizan las siguientes reglas de correspondencia.

1. Laexpresidon A corresponde al conjunto {A}, en donde A es la cadena vacia
en A*.

2. Sixe 4, entonces la expresion regular x corresponde al conjunto {x}.

3. Siay Bson expresiones regulares correspondientes a los subconjuntos M y N de
A*, entonces af3 corresponde aM - N= {s -t | se Myte N}.En consecuencia,
M - N es el conjunto de todas las concatenaciones de cadenas que hay en M con
cadenas de V. '

4. Silas expresiones regulares a y 3 corresponden a los subconjuntos My N de A%,
entonces «a V B corresponde a M U N.

5. Si la expresion regular « corresponde al subconjunto M de 4*, entonces (a)*
corresponde al conjunto M*. Notese que M es un conjunto de cadenas proceden-
tes de 4. Los elementos de M* son sucesiones finitas de tales cadenas y en conse-
cuencia pueden ser interpretadas ellas mismas como cadenas de A. Notese tam-
bién que siempre se tiene A € M*.

Ejemplo 17. Sea A = {a, b, c}. Entonces la expresion regular a* corresponde al conjunto
de todas las sucesiones finitas de a5, tales como aaa, aaaaaaa, y asi sucesivamente. La
expresion regulara(h V c) corresponde al conjunto {ah, ac} < A*. Finalmente, la expresion
regular ah(hc)* corresponde al conjunto de todas las cadenas que comienzan conab y luego
repiten los simbolos bc n veces, en donde » = 0. Este conjunto incluye las cadenas ab,
abbcbe, abbcbebebce, y asi sucesivamente. ¢

Ejemplo 18. Sead = {0, 1}. Encuentre los conjuntos regulares correspondientes a las tres
expresiones regulares del ejemplo 16.

Solucion:  (a) El conjunto correspondiente a 0*(0 V 1)* consta de todas las sucesio-
nes de ceros y unos. En consecuencia. el conjunto es A*.

(b) La expresidén 00*(0 V 1)*I corresponde al conjunto de todas las sucesiones de
CETos y unos que comienzan con por lo menos un 0 y terminan con por lo menos un 1.

(c) La expresion (01)*(01 V 1*) corresponde al conjunto de todas las sucesio-
nes de ceros y unos que, o repiten la cadena 01 un total de n = 1 veces, o comien-
zan con un total de n = 0 repeticiones de 01 y terminan con algin niimero £ = 0
de unos. Este conjunto incluye, por ejemplo, las cadenas 1111, 01, 010101,
0101010111111, y O11. ¢
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GRUPO DE EJERCICIOS 1.3

En los ejercicios 1 al 4, dé el conjunto correspon-
diente a la sucesion.

.2,1,2,1,2,1,2,1
. 0,2,4,6,8,10,...
. aabbccddee - - - 7z

. abbccedddd

. Dé tres sucesiones diferentes que tengan {x, y, z}

como un conjunto correspondiente.

Dé tres sucesiones diferentes que tengan
{1,2,3,...} como un conjunto correspondiente.

En los ejercicios T al 10, escriba los cuatro prime-
ros términos (comience con n = 1) de la sucesion
cuyo término general se da.

7.

10.

En los cjercicios 1V al 16, escriba una formula para
el término de orden n de la sucesion. Identifique su

a,=5"

h,=3n"+2n -6

¢, =23¢,=¢, ,+ L3
dy— 3d, = -2 + 1

no

formula como recursiva o explicita.

1.

[.3.5.7.. ..
0.3.8. 15,2435, ..
| 1 1 1
A
"
no2no2an0
A T R R
L §
3 3-8 T6 S 4

17.

18.

19.

20.

21.

22.

23.

24.

e
s

26.

Scceion 1.3 Sucesiones 2 1

Escriba una formula explicita para la sucesion 2, 5,
811, 14,17,.... ~ .~ : S
Escriba una Téormula recursiva para la sucesion 2, 5,
7,12,19,31,.... -, ¢ )

Sea 4 = {x | xes un niimero real y 0 < x < 1},// .

B = {x | x es un nimero real y x* + | = 0},
C=i{x|x=4mme Z},D={{x,3) | xesuna-
palabra inglesa cuya longitud es 3}, y E={x | xe Z
y x* < 100}. Identifique cada conjunto como finito,
numerable o no numerable.

Sea 4 = {ab, bc, ba}. En cada parte, diga si la
cadena pertencce a 4%,

(a) ababab (b) abc

(d) abbcbaba (e) bcabbab

(c) abba
(f) abbbcba

Scan U= {FORTRAN, PASCAL, ADA, COBOL,
LISP, BASIC, C'", FORTH}, B = {C'", BASIC,
ADA}, C= {PASCAL, ADA,LISP,C™}, D=
{FORTRAN, PASCAL, ADA, BASIC, FORTH}, y
E = {PASCAL, ADA, COBOL, LISP, C""}. En cada
uno de los siguientes casos, represente el conjunto
dado por un arreglo de ceros y unos.

(@) BUC (b)) CND (¢c) BN(DNE)
(d) BUE (e) CN(BUE)

Seal/={(h d e ghkmnl B-iht.C= g

m,ont,yD=1{d k n}

(a) (Queesf, (h)?

(b) (Qué cs f{e)?

(¢) Lbncuentre las sucestones de longitud ¥ que
corresponden a fg, fo v 15

(d) Represente BAJC.CUI D v Y Dpor
arreglos de ceros y unos.

Demuestre ¢l tcorema [(c¢).

Usando funciones caracteristicas, demuestre que
(ADBDC 4D BDO).

Sea o o<w by Demuestre gue las siguientes

capiestones son regulares sobre .
(a) a v Dab)a X b d)
hyw - b at o)

(©) ({a*h N )%V X ab*)

Sca A4 — {a, b, ¢}. En cada parte sc enhista una
cadena en 4* y una expresion regular sobre 4. En
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cada caso, diga si la cadena de la izquierda pertene- 3. SiXesunnumero Sy Xesunmiltiplode ¥, ¥ Teorema 2. Sean a, by c numeros enteros.

ce o no al conjunto regular correspondiente a la es un niimero S. (a) Sialbyalc entoncesa| (b+c).

expresion regular de la derecha. Describa el conjunto de los nimeros S. (b) Sialbyal c endondeb>c, entoncesa | (b — c).
k |k .

(a) ac a*b*c N . (c) Sialboal c entoncesa | be.

(b) abcc (abc V ¢)* 29. Sea F una funcion definida por todos los enteros no (d) Sialbyb|c entoncesalc

(¢) aaabc ((a\V b)YV c)* negativos por medio de la siguiente definicion
(d) ac (a*b V ¢) recursiva:

(¢} abab (aby* Demostracion: (a)Sia | bya | ¢, entonces b = k,a 'y ¢ = k,a para algunos enteros
a C

no negativos k; y k,. Portantob+c=(k, + k)aya | (b+c).

(b) Esta puede demostrarse exactamente en la misma forma que la parte (a).

(¢) Como en la parte (a), se tiene b =k,a o ¢ = k,a. Entonces o bc = kjac o be = k,ab,
de manera que en cualquiera de los dos casos bc¢ es un multiplode ay a | be.

(d)Sia | byb | c setieneb=kjayc= kb, portanto ¢ = kb = k(k,a) = (kk)a y
portantoa | c. P

F(0) = 0, F(1) =1,
F(N+2)=2FN)+ FIN+1), N=0
Escriba los primeros seis valores de F; es decir,
escriba los valores de F(N) para N=0, 1, 2, 3, 4, 5.

27. Se define nimeros T en forma recursiva como sigue:
1. 0 esunntimero 7.
2. SiXesunnimero T, X+ 3 es un nimero 7.

Describa ¢l conjunto de los niimeros 7. - .
J s 30. Sea G una funcién definida para todos los enteros no

negativos por la siguiente definicidn recursiva:
1. 8 esunniumero S. . G(0) = 1’2 G(1) =2,
2. SiXesunnimero Sy Y es un multiplo de X, GIN+2) =GN+ GIN+1), N=0

entonces Y es un nimero S. Escriba los primeros cinco valores de G.

28. Defina un niimero S por: Un nimerop > 1 en Z * se llama primo si los tnicos enteros positivos que dividen ap

sonpyl.

Ejemplo 2. Losnumeros2,3,5,7, 11y 13 son primos, mientras que 4, 10, 16 y 21 sonno
primos. L 4

Es facil escribir un grupo de pasos, o un algoritme', para determinar si un entero
positivo n > | es un numero primo. Primero, se verifica sin es 2. Sin > 2, se podria dividir
n entre todo entero comprendido entre 2 y n — 1, y si ninguno de éstos es un divisor de #,

1.4. Division en los enteros

Ahora se analizard algunos resultados que se necesitaran mas adelante, acerca de la divisién |

y factorizacion en los enteros no negativos. Sim y n son enteros no negativos y n no es cero,

puede escribirse en una grafica los multiplos enteros no negativos de #, en la mitad del |

renglon, y localizarse m como en la figura 1.18. Si m es multiplo de n, por decir, m = gn,
entonces se puede escribir m = gn + 1, en donde r es 0. Por otra parte (como se ilustra en la
figura 1.18), sim no es miltiplo de n, seagn el primer multiplo de # situado a la izquierda de
my sear igualam — gn. Entonces r es la distancia de gn a m, por lo que claramente 0 <7 <
n, y una vez mas se tiene m = gn + r. Se enuncia estas observaciones como teorema.

nm

(6] n 2n Ggh ¢(q + 1)n
L 1 1 [ 5 i e
-
- r
Figura 1.18

Teorema 1. Sin # 0y m son enteros no negativos, puede escribirse m = qn + r para

algunos enteros no negativos q y r con 0 << r < n. Ademds, sélo hay una manera de

hacer esto. ®

i.jemplo i
tay Sines3ymes 1o, entonces 16 =5(3)+ |, portantogesSyres .
(b)Y Sines 10y mes 3, entonces 3 = 0(10) + 3, por tanto g es 0y r es 3. ¢

St la r del teorema 1 es cero, de manera que m sea un multiplo de », se escribe n | m,
lo cual se lee “n divide a m”. Si m no es multiplo de 1, se escribe n | m, lo cual se lee “x no
divide a m”. Se demuestra ahora algunas propiedades simples de divisibilidad.

entonces 7 es primo. Para hacer mas eficiente el proceso, se observa que simk =n, entonces
o m o k es menor que o igual a Jn . Esto significa que si # no es primo, tiene un divisor k
que satisface la desigualdad 1 <k =< Jn , de manera que solo se necesita probar por diviso-
res comprendidos en este intervalo. También, si n tiene cualquier nimero par como divisor,
debe tener a 2 como divisor. En consecuencia, después de verificar la divisibilidad entre 2,
se puede saltar todos los enteros pares.

Algoritmo para probar si un entero N > 1 es primo:

Paso 1. Verifique si Nes 2. Si lo es, N es primo. Si no lo es, prosiga con el

Paso 2. Verifique si 2 | N. Si esto es afirmativo, NV no es primo; de lo contrario, prosiga al

Paso 3. Calcule el entero mas pequefio K << JN. Luego

Paso 4. Verifique si D | N, en donde D es cualquier nimero impar tal que 1 <D < K.
SiD | N, entonces N no es primo; de lo contrario, N es primo.

La prueba para saber si un entero es primo es una tarea comuin para computadoras. El
algoritmo que se acaba de ver es demasiado ineficiente para nimeros muy grandes, pero hay
muchos otros algoritmos para probar si un entero es o no primo.

Teorema 3. Toudo cntero positivo n - 1 puede escribirse en forma unicd como

1 ; . oo . P .
11,“‘1)2A ~oplLendonde p, < py o~ -~ p,son primos distintos que dividen a n, y las
k son enteros positivos que dan el nimero de veces que ocurre cada primo como fac-
tor de n. L J

Se omite la demostracion del teorema 3, pero se presenta varias ilustraciones.

''Sc explicara los algoritmos cn ¢l apéndice A.
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Ejemplo 3

()9=3-3=3
(b)24=8-3=2.2.2-3=2%.3
()30 =2-3.5

Maximo comin divisor

Sia, bykestinenZ* yk | a, k| b, se dice que k es un divisor comin de ay b. Sid es el
mayor de estos k, a d se le llama mdximo comiin divisor, 0 MCD, de ¢ y b,y se escribed =
MCD(a, b). Este nimero tiene algunas propiedades interesantes. Puede escribirse como una
combinacion de a y b, y no sélo es més grande que todos los demds divisores comunes, sino
que es también multiplo de cada uno de éstos.

Teorema 4. Sidesel MCD(aq, b), entonces
(a) d=sa+1tbparaalgunos enteros s y t (éstos no son ambos DPOSItivos).
(b) Sic es cualquier otro divisor comiin de a y b, entonces ¢ | d.

Demostracion:  Sea x el entero positivo mas pequefio que puede escribirse como sa
+ tb para algunos enteros s y 1, y sea ¢ un divisor comiin de a yb.Comoc |ayc|b,
se sabe por el teorema 2 que ¢ | x, de manera que ¢ < x. Si se puede demostrar que x
es un divisor comtn de a y b, sera éste entonces el maximo comun divisor de a yb,y
ambas partes del teorema habran quedado demostradas. Por el teorema La=gx+r
con 0 < r <. Resolviendo parar, se tiene r=a — gx=a — g(sa+thy=a ~ gsa —
qtb = (1 — gs)a+ (—qt)b. Sirno es cero, entonces como » < x yresmultiplodeay
multiplo de b, constituira una contradiccion al hecho de que x sea el nitmero positivo
mas pequefio, que es la suma de los multiplos de a y b. En consecuencia, » debe ser 0
y x | a. De la misma manera puede demostrarse que x | b,y esto completa la demos-
tracion. ®

Supdngase ahora que a, by d esténen Z ' y que d es un divisor coman de « y b,
que es maltiplo de todos los demas divisores comunes de y b. Entonces d es el maxi-
mo comun divisor de a y b. Este resultado y el teorema 4(b) tienen el resultado si-
guiente: Supongase quea,hy destanen /7 '. El enterod es el maximo comun divisor de
a 'y b siy solamente si

.. dlayd]|b
2. Siempre que ocurra que ¢ | ay ¢ | b, entonces ¢ L d

Ejemplo 4
(a) Los divisores comunes de 12y 30 son 2, 3y 6. por lo queel MCD (12,30) =6y 6=
130 (-2 12

by Resuita daro que ciivic i vy 1 que b resprimoy LD 9s v el fector puede
verificar que |- 2517« ( 5)-9s, ¢
Stel MCDta. by = 1. como en el cjemplo 4¢h), se dice que ¢y b son primos re-

lativos.
Una interrogante que queda es la de como calcular en general, el MCD en forma
conveniente. La aplicacion repetida del teorema 1 proporciona la clave para hacer csto.

b
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Se presenta ahora un procedimiento conocido como el algoritmo euclidianoe, para
determinar el MCD(a, b). Supdngase que a > b > 0 (de lo contrario, intercambie a y b).
Entonces, por el teorema 1, es posible escribir

a=kb+r, endondek yr estinenZ’y0<r <b. 1

Ahora el teorema 2 dice que sin divide aa y b, debe dividirar,, ya que r, =a — & b. De modo

similar, si n divide ab y a r,, debe dividir a a. Se ve que los divisores comunes de a y b son

los mismos que los divisores comunes de by r,, de manera que MCD(a, b) = MCD(b, r)).
Se contintia ahora usando el teorema 1, como sigue:

divida b entre r,: b=k, +r, 0=r,<n
divida r; entre r;: ry = kyr, +rs 0=r,<r,
divida r, entre ry: Py =k 1, 0=r,<r4
: (2)
dividar, _,entrer,_ ;1 Fp o =K1 T Fy 0=r,<r,_4
dividar,_,entrer,: 7, 1 =k, o171y 0=r, ., <r,

Como a>b>r >r,>r,>r,> - el residuo tendra que llegar a ser cero, por lo que en

algtin punto se obtendrd r,, , = 0. ' .
Se demuestra ahora que r, = MCD(a, b). Se observé previamente que

MCD(a, b) = MCD(b, r)).
Repitiendo este argumento con by ry, se ve que
MCD(d, r,) = MCD(#, 1,).
Al continuar, se tiene
MCD(a, b) = MCD(b, r,) = MCD(#r,, 1) =" - - = MCD(r, _, 7,)

Como r, _, =k, , \», se ve que MCD(r, _ ,, r,) = r,. Por tanto, r, = MCD(a, b).

Ejemplo 5. Seana 190y b 34. Entonces, usando el algoritmo euclidiano,

se divide 190 entre 34: 190=5-34+20

se divide 34 entre 20: 34=1-20+ 14
se divide 20 entre 14: 20=1-14+6
se divide 14 entre 6: 14=2-6+2
’ se divide 6 entre 2: 6=3-2+0.
de manera quc ¢l MCD(190, 34) es 2, ¢l ultimo de los divisores. 14

4 N A R [
En el teorema 4(a), se observo que si d = MCD(q, b), puede encontrarse enterols s y1
tales que d = sa + th. Los enteros sy f pueden ser encontrados como sigue. Resuelva la
penultima ecuacion en (2) para r,,:
r=rn*2——knrnfl' (3)

n
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Resuelva ahora la antepentitima en (2), r, _,=k,_, r,_,+7,_,, parar, _ "

Sustituya esta expresion en (3):

Fp =T~ kn[rn—B - kn—lrn—Z]‘
Continte trabajando, de abajo a arriba, con las ecuaciones en (2) y (1), sustituyendo a r; por

una expresion que contenga a r;,_; y a r,_, para llegar finalmente a una expresion que sélo
contengaaay b.

Ejemplo 6. (a)Seana =190y b =34 como en el ejemplo 5. Entonces

MCD(190, 34) =2 = 14 — 2(6)

=14 — 2[20 — 1(14)] 6=20-1-14
= 3(14) - 2(20)
= 3[34 - 1(20)] — 2(20) 14=34-1-20

= 3(34) — 5(190 — 5- (34))
= 28(34) — 5(190).
Por tanto, s = —5 y = 28. Nétese que la clave estd en efectuar las operaciones aritméticas

solo parcialmente.
(b) Sean a = 108 y b = 60. Entonces

20=190-5-34

MCD(108, 60)= 12 = 60 — 1(48)
=60 — 1[108  1(60)]
= 2(60) — 108.

48 =108 ~1:60

Portantos = —1y¢=2. L 4
Teorema 5. SiavbestanenZ*, entonces MCD(a, b) = MCD(b, b + a).

Demostracion:  Sicdivideaay b, divide tambiéna b = a, por el teorema 2. Como
a=b—(b—a)=-—b+(b+a),se ve, también por el teorema 2, que un divisor comun
debyb * adivide tambiénaa y b. Como a y b tienen los mismos divisores comunes
que by b * a, deben tener el mismo méaximo comun divisor. ®

Minimo comin multiplo

Stw by hestanend 'Ly u i Ab hose dice que i es un maltiplo comin de o yh. A lakmas
pequena de éstas, a la que se llamard ¢, se Ia denomina minimo comun multiplo o MCM,
deayb,yseescribec - MCM(q, b). Bl siguiente resultado muestra que se puede obtener el
minimo comuan multiplo a partir del méximo comun divisor, por lo cual no se necesita un
procedimiento aparte para determinarlo.

Teorema 6.  Siay b son dos enteros positivos, entonces MCD(a, b) - MCM(a, b) = ab.

P ————

e e
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Demostracion:  Seanp,p,, .. .,p;todos los factores primos dea o de b. Entonces se

puede escribir

a=pipy--pi y b=phph...ph

en donde algunos de los a; y b; pueden ser cero. Se desprende entonces que

MCD(G, b) — plmin(a‘, b,)pzmin(az, by -pkmin(ak, b)

MCM(CI b) — plméx(al, bl)pzméx(az, by ~pkméx(ak, by
s .

Por tanto

MCD(a, b) - MCM(q, b) = p;’x +b|p;z +by e pit +by
= PP - (0hpy - b

= ab.
Ejemplo 7. Sean a =540y b =504, Factorizando a y b en primos, se obtiene

a=540=2"-3'-5yb=504=2"327.

En consecuencia, todos los nimeros primos que son factores de @ o de b son p, =2, p, =3,
p3=5yp,=7 Entoncesa=2?-3-5"-7"y h=2%-32-5° 7' Entonces se tiene

MCD(540 504) — 2min(2,3) . 3min(3,2) . Smin(l,O) . 7min(0, 1)
:22‘32‘50‘70
=22.3 o 36

También,

MCM(540 504) — 2m£\x(2.3) . 3méx(3,2> R 5m;’x>\(l,()‘) . 7me3x(0.l)
=2.3.5.7" o 7560.

Entonces MCD(540, 504) - MCM(540, 504) = 36 - 7560 = 272, 160 = 540 - 504. Para
verificar, también puede calcularse el MCD(540, 504) por el algoritmo euclidiano y obtenerse
el mismo resultado. *

Sia # 0y b son enteros no negativos, el teorema 1 nos dice que se puede escribir b =
ga+r, 0=r <a. En ocasiones el residuo » es mas importante que el cociente . Nbtese que
0=.r<a.

Fjemplo 8. Siahora marca el reio) ias 4. (que hora sera 101 horas después?
Solucion: Seana 12y h 4101, 0 sea, 10S. Entonces se tiene que 105=38 - 12
+ 9. El residuo 9 contesta la pregunta. Dentro de 101 horas serdn las 9. *

: , . _ . . «
En este caso, a a se la denomina médule y se escribe b = r (mdd a), léase “b es
congruente con » modulo a.”
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Ejemplo 9

(a) 29=4(mdéd5),yaque29=5-5+4.

(b) 172=7(méd 11),yaque 172=15-11+7.

(¢) 3=3(mdd6),yaque3=0-6+3. ¢

Notese que si b = r (mdd a), entonces 0 << r <qa, y b — r es multiplo de a; es decir, a
dividead — r.

Para cadane Z°*, se define una funcién f,, la funcion mod-n, como sigue: Si z es un
entero no negativo, entonces f,(z) =r, en dondez = r (mdéd n) y 0<< r < n. (Nuevamente, las
funciones son definidas formalmente en la seccién 5.1, pero, como en la seccién 1.3, es

necesario pensar en una funcion solamente como una regla que asigna algin “valor” a cada

miembro de un conjunto.)

Ejemplo 10
(@) fy(14)=2,porque 14=4-3+2y 14 =2 mbd 3.
(b) £(153)=6 .

Versiones en seudocodigos

Una alternativa para expresar un algoritmo en espafiol ordinario, como previamente se
hizo en esta seccion, es expresarlo en algo asi como un lenguaje de computadora. En todo
este libro se usa un lenguaje en seudocédigo, que se describe completamente en el apén-
dice A. Aqui se proporciona versiones en seudocddigos para un algoritmo que determina
sl un enterc es primo y para un algoritmo que calcula el méaximo coman divisor de dos
enteros.

En el seudocédigo para el algoritmo que se emplea para determinar si un ente-
ro es primo, se supone la existencia de las funciones SQR e INT, en donde SQR(N)
regresa el maximo entero que no excede a JN e INT(X) regresa el maximo entero
que no excede a X. Por ejemplo, SQR(10) = 3, SQR(25) = 5, INT(7.124) = 7, e
INT(8) = &.

SUBROUTINE PRIML (V)
I. IF (N - 2) THEN
a. PRINT (‘PRIMF")
b. RETURN
2. ELSE
a. IF (N2 = INT(N/2)) THEN
1. PRINT ("NOT PRIME")

2. RETURN
b. ELSE
' FOR D STHRU SORNYBY 2
a IF(ND INTOND Y THEN
I, PRINT (*NOT PRIMF")
2. RETURN
2. PRINT (PRIMEL")
3. RETURN

JE LA SUBRUTINA PRIMO

—

FIN

e

¥ T
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Lo siguiente proporciona un programa de seudocddigo para determinar el maximo
comun divisor de dos enteros positivos. Este procedimiento es diferente del algoritmo
euclidiano, pero en el capitulo 2 se vera como demostrar que este algoritmo sirve en efecto
para determinar el maximo comun divisor.

FUNCTION MCD(X, Y)
1. WHILE (X # Y)
a. IF (X> ¥) THEN

L XeX—Y
b. ELSE
LYY —X
1. RETURN (X)

FIN DE LA FUNCION MCD

Ejemplo 11. Utilice el seudocodigo para el MCD a fin de calcular el maximo comun
divisor de 190 y 34 (ejemplo 5).

Solucion: lLatablal.1dalosvaloresde X, ¥, X — ¥, o Y — Xal recorrer el programa.
Tabla 1.1
X Y X-Y Y-X
190 34 156
156 34 122
122 34 88
88 34 54
54 34 20
20 34 14
20 14 6
6 14 8
6 8 2
6 2 4
4 2 2
2 2
Como el ultimo valor de X es 2, el maximo comun divisor de 190 y 34 es 2. *
GRUPO DE EJERCICIOS 1.4
En los ejercicios 1 al 4, para los enteros dados m v 5. HEseriba cada entero como un producto de potencias
nescriba mocomo g tr coin = r <, de primos (como en el leorema 3).
- ] (a) 828 (b) 1666 (¢) 1781
Lom=200n=23 2. m =64 n =37 (d) 1125 (@) 107

om =3 n=22

4. m =48 n=12
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En los ejercicios 6 al 9, determine el maximo comun
divisor d de los enteros a y b, y escriba d como
sa+ th.

6. a=60,b=100 7.a=45b=33
8.a=34,b=58 9.a=77,b=128

En los ejercicios 10 al 13, encuentre el minimo
comun multiplo de los enteros.

10. 72,108 11. 150,70

12. 175,245 13. 32,27

14. Sifes la funcion mod-7, calcule cada una de las

siguientes.
(@) F(A7)  (b) f(48)  (c) f(1207)
(d) f(130)  (e) f(93) (f) f(169)

15. Si g es la funcion méd-6, resuelva cada una de las
siguientes funciones.

(a) gln) =3 (b) gn) =1

16. Sean a y b dos enteros. Demuestre que si p es un
primoy p | ab, entonces p | aop | b. (Sugerencia:
Sip [ a, entonces 1 = MCD(q, p); use el teorema 4
para escribir 1 = sa + p.)

1.5. Matrices

18.

19.

20.

21.

22.

23.

24.

25.

Demuestre que si MCD(q, ¢) = 1 y ¢ | ab, entonces
clb

Demuestre que si MCD(a, ¢)=1,a | m,yc | m,
entonces ac | m. (Sugerencia: Use el gjercicio 17.)

Demuestre que si d = MCD(aq, b); al|byyc|d,
entonces ac | bd.

Demuestre que MCD(ca, cb) = ¢ MCD(q, b).
Demuestre que MCM(aq, ab) = ab.

Demuestre que si MCD(q, b) = 1, entonces MCM(aq,
b)=ab.

Sea ¢ = MCM(aq, b). Demuestre quesia | ky b | &,
entonces ¢ | k.

Demuestre que si a y b son enteros positivos tales
quea | byb | a, entonces a = b.

Sean ¢ un entero y p un entero positivo. Demuestre
que sip | a, entonces p = MCD(a, p).

Una matriz es un arreglo rectangular de nimeros dispuestos en m renglones horizontales y

i columnas verticales:

El renglén i-ésimo de A es [a,

“d,), | =< i< m,yla columna j-ésima de A es

ai,
Uaj . C . .
T << <<n Sedice que A esm por n_escrito comom X n. Stm—n se dice que A
a,,;
es una matriz cuadrada de orden n y que los nimeros a,, a,,, . . . , a,, forman la diagonal

principal de A. Se hace referencia al nimero . que estd en el renglon / y en la columna j
de A, como el elemento i, j de A o0 como la entrada (7, j) de A, y a menudo se escribe (1)

como A = [q,].

1 s A WS

WL e AT,
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Ejemplo 1. Sean

Entonces Aes2 X 3cona;,;=3yay=2,Bes2 X 2conb, =4,Ces1 X4, Des3 X 1,y
Ees3 X 3. 1 4

Una matriz cuadrada A = [a,] para la cual cada entrada fuera de la diagonal principal
es cero, es decir, a; = 0 para / # j, se llama matriz diagonal.

Ejemplo 2. Cada una de las siguientes es una matriz diagonal.

2 0 0
4 0
F: — —
[03], G=[o -3 ol
0 0 5 R

Las matrices tienen muchas aplicaciones en la ciencia de la computacién, que se vera
en el estudio de relaciones y gréaficas. En este punto se presenta la siguiente aplicacién
simple que muestra como puede usarse las matrices para desplegar datos en forma tabular.

Ejemplo 3. La matriz siguiente da las distancias por aerolinea entre las ciudades indica-
das.
Londres Madrid Nueva York Tokio

Londres 0 785 3469 5959
Madrid 785 0 3593 6706
Nueva York 3469 3593 0 6757
Tokio 5959 6706 6757 0

4

Se dice que dos matricesm X n A =[a,] y B=[b,] sonigualessia,=b, 1 <i<m,
I < j = n, es decir, si los elementos correspondientes son iguales.

2 -3 -1 2 x -1

Ejemplod. SiA=|9 5 21yB=|y 5 2 1, entonces A = B siy solamente
4 -4 6 4 -4 z

six”—fB.vVZO,y::é. ¢

SiA ={a,]y B={bh,]son matrices m X n, entonces la suma de A y B es la matriz C
=[e,J quesedefinepore,=a, +h 1 <<i<Tm | <7 ;< n [Fsdecir, C se obtiene sumando
los elementos correspondientes de A y B.

Ejemplo 5. Sean A= o4 -l yB= 4 >3 Entonces
5 0 -2 0 -3 2
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3+4 4+5 -1+31 7 9 2 .
540 0+ (-3 —2+2 5 -3 0]

Observe que la suma de las matrices A y B se define solamente cuando A y B tienen -
el mismo niimero de renglones y columnas. Se conviene escribir A + B solamente cuando

estd definida la suma. ‘
A una matriz cuyas entradas sean todas cero se la llama matriz cero y se designa

por 0. -

Avn-|

Ejemplo 6. Cada una de las siguientes es una matriz cero.
0 0 0 0 0 O
0 0 0 0 0 .
Los siguientes teoremas dan algunas propiedades basicas de la adicion de matrices; se

omite las demostraciones.

Teorema 1
(a)A+B =B+ A.
(b)(A+B)+C:A+(B+C).
(DA +0=0+A=A. g

Si A ={a,] es unamatrizm X p, y B=[b,] es una matriz p X n, entonces el producto

de A 'y B, designado por AB, es la matriz C = [c;] m X n definida por

C; = agbyy + apby + - +a,b,, l=si=m1=j=n 2)

Srrie e W e D

Se va a explicar (2) con mas detalle. Los elementos a;;, a,,, . . . , a,, forman el renglén i de A,

y los elementos by, by, . .., b, forman la columna j de B. Entonces (2) establece que para

cualesquiera i y j el elemento ¢; de C = AB puede calcularse de la siguiente manera (véase
la figura 1.19).

1. Scleccione el renglonide Ay la columnaj de B, y coloquelas una al lado de la otra.
2. Multiplique las entradas correspondientes y sume todos los productos.

3 1
_4} yB=1|-2 2 |. Entonces
3

5 -3
AR 03T =2 = =4S 2D+ ()2 + (—4)(—3‘»}
MR+ A2+ )6y (D) + 2)2) + 3)(=3)

20 20
14 -4 .

Un arreglo de dimensién dos es una modificacion de la idea de matriz, de la misma
manera que un arreglo lineal es una modificacion de la idea de sucesion. Por un arreglo A,

VW WY R e T gw e

[ V8]

2
Ejemplo7. Sean A= L

.

M e wom vz 2 w1t
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a1y %12 Ap
— — r— a—
1121 022 a2p bll b12 [N blj bln Cll C12 P Cln
b21 b22 - sz PN b2n 021 C22 PN C2n
4 9p p ¢
J
bpl bp2 R bpj RN bpn Cul w2 V- Com
Amt “m2 amp
Y Y
41 |- > by
ap |- > b2 ..
2 17 Multiplique los ele-
+ | mentos correspondien-
tes y sume los resulta-
dos para formar ¢;
4 |e————— bpj
Figura 1.19

m X n se entendera una matriz A de posiciones, m X n. Se puede asignar numeros a estas
posiciones més adelante, hacer cambios posteriores en estas asignaciones, y todavia referir-
se a este arreglo como A. Este es un modelo para almacenamiento bidimensional de infor-
macién en una computadora. El niimero que se asigne al renglon / y a la columna ;j de un
arreglo A se designara por A[j, j].

Como se vio con anterioridad, las propiedades de la adicion de matrices se parecen
a las propiedades conocidas para la adicion de los nimeros reales. Sin embargo, algunas de
las propiedades de la multiplicacion de matrices no se parecen a las de la multiplicacién
de los numeros reales. Primero, observe que, si A es unamatrizm X py B es una matriz
p X n, entonces puede calcularse AB y es una matriz m X n. En cuanto a BA, existen las
siguientes cuatro posibilidades:

1. BA puede no estar definida; es posible tener n # m.

2. BA puede estar definida y entonces BA es p X p, mientras que ABesm X myp
# m. En consecuencia. AB y BA no son iguales.

AB y BA pueden ser ambas del mismo tamafio, pero no iguales como matrices.
AB - BA.

P VY]

Se decide, como antes, escribir AB solamente cuando esta definido el producto.
I -1
-

- r

4 -5
. Entonces AB = | ,J
[71 3

Ejemplo 8. Sean A =

(%)

* e
k) A,| g

{2 L
2



34

Capitulo 1

Conceptos fundamentales

Las propiedades basicas de la multiplicacion de matrices son dadas por medio del
siguiente teorema.

Teorema 2
(a) A(BC) = (AB)C.
(b) A(B + C) = AB + AC.
(c) (A + B)C = AC + BC.

La matriz diagonal n X n

10 -+ 0
0 1 0
L=1. ;

cuyos elementos diagonales son todos 1; se denomina matriz identidad de ordenn. Si A es
una matriz m X n, es facil verificar que I, A = AI, = A. Si A esunamatriza X n,y p es un
entero positivo, se define

AP=AA--A vy A'=1,
M
factores p

Sip y g son enteros no negativos, puede demostrarse las siguientes leyes de exponentes para
matrices:

APAY=APT y  (AP) = A,

Observe que la regla (AB)? = A’B ? no es valida para matrices cuadradas. Sin embargo, si
AB = BA, entonces (AB)? = A’B”.

Si A =[a,] es una matriz m X n, entonces la matrizn X m A”=[a]], en donde a; =

a;, 1 <i<m,1<j=<n,sellama latranspuesta de A. En consecuencia, la transpuesta de
A se obtiene intercambiando los renglones y las columnas de A.

3 4 5 26
Ejemplo 9. SeanA=[2 -3 5}yB= 2 -1 0 |. Entonces A= =3 1 |y
6 13 1 6 -2 53
3 2 1
B/'=|4 -1 6}. .
5 0 -2

El siguiente teorema resume las propiedades basicas de la operacion de transpuesta.

Feorema 3. Si A v B son matrices, entonces

(a) (A")! = A.
(b) (A +B) =A"+ B
(c) (AB) = B'A', °

Una matriz A = [g,] se denomina simétrica si AT = A. En consecuencia, si A es
simétrica, debe ser una matriz cuadrada. Es facil demostrar que A es simétrica si 'y solamen-
te si a; = a;,. Es decir, A es simétrica si y solamente si las entradas de A son simétricas con

o - ————

A e e

by v ey o

Seccion 1.5 Matrices 35

respecto de la diagonal principal de A.

1 2 -3 1 2 -3
Ejemplo10. SiA=| 2 4 5lyB=)2 4 0 |, entonces A es simétrica
-3 5 6 3 2
y B no es simétrica. 'Y

Operaciones con matrices booleanas

Una matriz booleana es una matriz m X » cuyas entradas son ya sea cero o uno. Se definira
ahora tres operaciones con matrices booleanas que tienen aplicaciones ttiles en el capitulo 4.

Sean A = [q;] y B = [b;] matrices booleanas m X n. Se define AV B=C=[c], la
unién de A y B, por

I sig; = 1ob; =1
%0 i a;; y b,; son ambos 0.

y AN B=D={d)], la conjuncién de A y B, por

di/':

1 sia;; y b, son ambos 1
0 sig; = 00b,;= 0.

Notese que estas operaciones son solo posibles cuando A y B tienen el mismo tamario,
precisamente como en el caso de la adiciéon de matrices. En vez de sumar los elementos
correspondientes de A y B, para calcular las entradas del resultado, se examina simplemente
los elementos correspondientes para los patrones particulares.

I 0 1 1 1 0

) 0 I 1 I 0 1
Ejemplo 11. Sean A = L1 o yB= 0 o0 1
0 0 0 1 1 0

(a) Calcule A V B. (b) Calcule A A B.

Solucion: (a) Sea A V B = [c,]. Entonces, como a,; y by, son ambos 0, se observa
que ¢,; = 0. En todos los demds casos. yasea g, 0 b, es 1. de manera que ¢, es también
1. En consecuencia,

AVB=
»
0
(b Nert A N B = | Botonces como g, v hysonambos Tody = 10V como day y by
son ambos 1. ¢, ~ 1. kntodos los demas casos, ya sea a, 0 b, es ), de manera que d; = 0. En
CONsCCUCTivid,
I 0 0
0 0 1
ANB = .
0 0 O R
0 0 0
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Finalmente, supongase que A = [g;] es una matriz booleana m X py B = [b,] es una
matriz booleana p X n. Nétese que la condicion sobre los tamafios de A y B es exactamente
la condicién que se necesita para formar la matriz producto AB. Ahora se definira otra clase
de producto.

El producto booleano de A y B, que se designa por A ® B, es la matriz booleana
m X n C = [c;] que se define por '

1
Cy~ 0

Esta multiplicacién es similar a la multiplicacién ordinaria de matrices. La férmula anterior
establece que para cualquier valor de /'y j, puede calcularse el elemento c;de C=A © Bde
la siguiente manera (véase la figura 1.20 y comparese ésta con la figura 1.19),

sia, = lybkj = ] paraalgunak, 1<k<p

de lo contrario.

1. Seleccione el rengldn i de A y la columnaj de B, y pongalas una al lado deotra.

2. Compare las entradas correspondientes. Basta con que un par de entradas corres-
pondientes conste de dos unos, para que ¢, = 1. Si no es éste el caso, entonces
c;=0.

i

a)

%) by by e by by 12t Cip

by, Cp € e Oy

o1 bp:, bpj bpn €l Sm2 T S

Y
&

A

Si de cualquier par de
» | entradas correspondien-
tes ambas son iguales a
1, entonces ¢; = 1; de lo
contrario ¢, =0

alp -

Y

bpj

Figura 1.20

Se puede efectuar facilmente las comparaciones indicadas y las verificaciones para
cada posicién del producto booleano. Asi, por lo menos para los seres humanos, el calculo
de los elementos que hay en A © B es considerablemente maés facil que el calculo de los
elementos que hay en AB.

[

i ET NN

GRUPO DE EJERCICIOS 1.5

1. ScanA =
14

() QU es g .y,
(M Juéeshy b7
(c) {,QUé CS ()3, O, ¢33

2
S

2

Ejemplo 12.

Teorema 4.

é 5] 3
—;' .B=1-21y
e 2} { 4}

Sean A =

(= =

Solucion:

I
1
1
0

yB=

|
0
1

Seccion 1.5

0 0 O
Il
S

0. Calcule A ® B.
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Sea A ® B=[¢;]. Entonces e, = 1, ya que el renglon 1 de A y la columna

1 de B tienen cada uno un 1 como primera entrada. De modo semejante, e\, =1, ya que
a, =1y b.,=1;esdecir, el primer renglon de A y la segunda columna de B tienen un
1 en la segunda posicion. De manera semejante se ve que e,; = 1. Por otra parte, ¢, =
0, en vista de que el rengfon 1 de A y la columna 4 de B no tienen “unos” comunes en
ninguna posicién. Procediendo de esta manera, se obtiene

AOB=

1 1

1
11
1 0

1

— =

0

—_ O O

*

Elsiguiente teorema, cuya demostracion se deja como ejercicio, resume las propieda-

1. (a) AVB=BVA.
(b) AAB=BAA.

2. (a) (AVB)VC=AV(BVC).
(b) (AABYAC = A A (BAC).

des basicas de las operaciones con matrices booleanas que se acaba de definir.

3. (a) AANBVYVC)=(AAB)V(AACQ).
(b) AV (BAC)=(AVB)A(AVC)
L (ADB)2C~AC (B2C).

[

)

(d) Haga una lista de los elementos de fa diagonal

principal de C.

2. ;Cudles de las siguicntes son matrices diagonales?

{a) A

(¢) C~—

(dy D -

(¢) E =

0

0
0
0

3 3 0
():' (b)) B=10 -2
0 0
0 0
0 0
00
o
i { l
0 2 |
4
0 0
4 0
0 4

Si A, By C son matrices booleanas de tamaiios compatibles, se tiene
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a+b c+d 4 6
3.8 _g a-bl" 10 2 |-encuentrea, b, cyd.

G[a+2s 2a-b] [4 -2
Woced c-2d4|7|a -3

cyd.

J, encuentre q, b,

En los ejercicios 5 al 10, supéngase que

fo.

12,

0 1
2 1 3
A=
[4 1 —z]’B L2y
2 3
1 -2 3
CJ4 2 s,D:[_j ﬂ
3 1 2
[3 2 -1
-2 3
E=|5 4—3,yF=[45].
o 1 2

En caso de ser posible, calcule cada una de las
siguientes.

(a) C+E (b) AB y BA

(c) CB+F (d) AB + DF

En caso de ser posible, calcule cada una de las
siguientes.

(a) A(BD)y (AB)D

(b) A(C+E)y AC + AE

(c) FD+ AB

En caso de ser posible, calcule cada una de las
siguientes.

(a) EB+FA
(¢) (F+ DA

(b) A(B+ D)y AB + AD
(d) AC + DE

En caso de ser posible, calcule cada una de las
siguientes.

(a) A"y (A"Y
(c) (AB)' 'y B'A’

(B)(C+E) yC'+E’
(d) (B'C)+ A

En caso de ser posible, calcule cada una dc las
siguientes.

(@) A‘D+F) § -
(c) (B"+ A)C

(b)(BC)'y C'B’
(d) (D' + E)F

Catcute P .

Sea A una matriz m X a. Demuestre que I, A = Al
= A.

A -1 2]
ScanA[3 _5 yB= 3 4J.Demuestre

que AB # BA.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

2R

24,

3 0 0
SeaA=10 -2 0
0 0 4

(a) Calcule A®, (b) (Qué es A*?

Demuestre que A0 = 0 para cualquier matriz A.
Demuestre que I7 =1,

(a) Demuestre que si A tiene un renglén de ceros,
entonces AB tiene un renglon correspondiente
de ceros.

(b) Demuestre que si B tiene una columna de ceros,
entonces AB tiene una columna correspondiente
de ceros.

Demuestre que la columna/ del producto de
matrices AB es igual al producto matricial AB, en
donde B, es la columna/ de B.

Si 0 es la matriz cero 2 X 2, determine dos matrices
2X2,AyB,conA#0yB# 0, tales que AB = 0.

0 1
SiA= (il 0} , demuestre que A*=1,.

Determine todas las matrices 2 X 2 A = {O a:’
b ¢

tales que A2 =1,.

Sean A y B matrices simétricas.
(a) Demuestre que A + B es también simétrica.
(b) (s AB también simétrica?

Sca A una matriz n X n.
(a) Demuestre que AA”y A”A son simétricas.
(b) Demuestre que A + A” es simétrica.

Demupestre el teorema 3 [Sugerencia: Para la parte
(). demuestre que el elemento /, / de (AB)' es igual

al elemento i, jde B'A’ |

En cada parte, calculc AV B,A A By A ® Bpara
tas matrices dadas A y B.
111
0 1

1 0
(a) A = [O 1].

s

e e T v g

i T ey e

e T T,

(b) A =

(c) A=

(d) A =

(e) A=

(f) A=

25. (a) Demuestre que A V A=A,
(b) Demuestre que AN\ A=A,

fd O = O

O -

o

ol
ol s
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(a) Demuestre que AVB=BV A.
(b) Demuestre que AAB=BA A.

(a) Demuestre que AV (BV C)=(AV B) V C.
(b) Demuestre que AA (BAC)=(AAB)A C.
(c) Demuestre que A® (B® C)=(A®B)® C.

1 11
11, B=[0 0 1 28. (a) Demuestre que AAN(BV C)=(AAB)V
0] [1 0 1] (AAC).
(b) Demuestre que AV BAC)=(AV B)A
1] 0 1 1] (AVC).
Of, B=y1120 29. Sean A =[a,] y B = [b,] dos matrices n X n, y
0] | 1 l_J supongase que C = [c,] representa a AB. Demuestre
_ _ _ que si kesun entero y & | a; para todos los valores
1 1 1 de i, j, entonces k | c; para todos los valores de i, /.
1], B=|1 1 1
1 1 0 0 30. Seap unniimero primoconp>2,yscan Ay B

matrices cuyas entradas sean todas enteros.
Supongase que p divide a todas las entradas de A + B
y a todas las entradas de A — B. Demuestre que p
divide a todas las entradas de A y a todas las
entradas de B.

1.6. Estructuras matematicas

Una situacion que se ha visto varias veces en este capitulo, y que se vera muchas mas en
capitulos posteriores, es la siguiente. Se define una nueva clase de objeto matemético, por
ejemplo, un conjunto o una matriz. Entonces se introduce notacion para representar el nue-
vo tipo de objeto, y se describe una manera para determinar si dos objetos son o no lo
mismo. Por lo general, el siguiente tema consiste en formas para clasificar los objetos del
nuevo tipo, como por ejemplo, en finitos o infinitos para los conjuntos, y en booleanas o
simétricas para las matrices. Luego se definen operaciones para examinar los objetos y las
propiedades de dichas operaciones.

Una serie de objetos con la definicion de las operaciones que se realizan con éstos y
las propiedades que las acomparfian, forma una estructura matematica o un sistema mate-
matico. En este libro se estudia Ginicamente las estructuras matematicas discretas.

Ejemplo 1. [ a coleccion de los conjuntos con las operaciones de uniédn, interseccién y
complemento, y las propiedades relacionadas, es una estructura matematica (discreta). Se
denota esta estructura por [conjuntos, \J, M, 7]. ¢

Ejemplo 2. La coleccion de las matrices 3 X 3 con las operaciones de adicion, mul-
tiplicacidn y transpuesta es una estructura matematica que se denota por [matrices 3 X
3’ +9 *, T]' .
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Una propiedad importante que no se ha identificado antes es la de cerradura. Una
estructura es cerrada con respecto de una operacion si esa operacion produce siempre otro i
miembro de la coleccion de objetos.

Ejemplo 3. La estructura [matrices 5 X 5, +, *, 7] es cerrada con respecto de la adicion,
porque la suma de dos matrices 5 X 5 es otra matriz 5 X 5. : L

N T T L.

Ejemplo 4. La estructura [enteros impares, +, *] no es cerrada con respecto de la adicion.
La suma de dos enteros impares es un entero par. Esta estructura tiene la propiedad de
cerradura para la multiplicacién, ya que el producto de dos nimeros impares es un nimero
impar. ¢

Una operacién que combina dos objetos es una operacién binaria. Una operacion
que requiere s0lo un objeto es una operacion unaria. Las operaciones binarias tienen a
menudo propiedades similares, como se vio con anterioridad.

Ejemplo §

(a) La interseccion de conjuntos es una operacion binaria, en vista de que combina dos |
conjuntos para producir un nuevo conjunto. !

(b) La produccion de la transpuesta de una matriz es una operacion unaria. ¢!

A las propiedades comunes se les ha dado nombres. Por ejemplo, si el orden de los
objetos no afecta el resultado de una operacion binaria, se dice que la operacion es con-
mutativa. Es decir, si x (0 y = y [J x, en donde [J es alguna operacion binaria, [ es !

conmutativa.

Ejemplo 6
(a) Launiony la conjuncion para matrices booleanas son operaciones conmutativas.
AVB=BVAyAAB=BAA.
(b) La multiplicacion ordinaria de matrices no es una operacion conmutativa. AB # BA.
*

Notese que cuande se dice que una operacion binaria tiene una propiedad, eso signi-
fica que el enunciado de la propiedad es verdadero cuando se usa la operacidn con cuales-

quiera de los objetos de la estructura. St existe aunque sea un caso en que el enunciado no

sea verdadero, la operacion no tiene esa propiedad.
Sildes una operacion binaria, entonces [_] es asociativa, es decir, tiene la propiedad
*

v

asociativa si :
i

xOwUOz=xOwO2).

Ejemplo 7. Laumon de conjuntos es una operacton asociativa, ya que (1 By C
A\ (B Q) siempre es verdadera. *

Siuna estructura matemitica tiene dos operaciones binarias, porejemplo [y .7, una
propiedad distributiva tiene ¢l siguiente esquema:

xO(V)=xOy)yVxdz).

Scccién 1.6 Estructuras matematicas 4 1

Ejemplo 8
(a) Yfa se conoce bien la propiedad distributiva para los numeros reales; si q. p Y ¢ so
3 > n
numeros reales, entonces @ - (b + ¢)=a-b+a-c Notese que, debido a que existe e]

acuerfio en l’a an.tmetlca de los niimeros reales de multiplicar antes de sumar. no
necesita paréntesis en el lado derecho. e

(b) Laestructura [conjuntos, U, M, 7] tiene dos propiedades distributivas.

AU(BNC)=(AUBN(AUC)

AN(BUO) =(ANB)UANC). .

N .Varslas de las estructuras revisadas tienen una operacion unaria y dos operaciones
Inarias. Surge la pregunta de si para tales estructuras las leyes de De Morgan son propieda-

des del sistema. Si la operacid i i
. acion unaria es * y las operaciones binari
narias son
las leyes de De Morgan son Y entonces

GOy =x*V/p* y (e V y)* =x* [ p*.
Ejemplo 9
(a) Co‘r}w se vio en l'a seccion 1.2, los conjuntos satisfacen las leyes de De Morgan para
o union, interseccion y complemento: (A B)= 4 \U B y(AUB)= 4N B
La estructura [niimeros reales, +. * 1 no satisfa .
, %, ce las |
e \/; \f as leyes de De Morgan, ya qie

1 Una qstructura con una operacion binaria [] puede contener un objeto distinguido, e
con la propiedad x [J e =e U x=x. A eselallama identidad para []. En realidad, una
tdentidad para una operacién debe ser Gnica. ’

Teorema 1.  Si e es una identidad para una operacion binaria [, entonces e es iinica

Demostracion:  Supéngase que otro objeto i tiene también la propiedad de identi-
dad, de manera que x Ui=iJx=x. Entoncese[]; = ¢, pero como e es una identidad
para D., ide= e ] [=1 En consecuencia i = e. Existe cuando mucho un objeto con
la propiedad de identidad para [ ], ®

E.Jremplo 10.. Para la estructura [matrices n < n, +, *, ‘.1, es la identidad para multiplica-
c1on de matrices, y la matriz cero »# X 5 es la identidad para adicién de matrices. ¢

. St una operacion binaria (] tiene una identidad ¢, sedice que y es una [ J-inversa de x
six[y=yOx=e.

?‘e(')rema 2. Si[Jes una operacion asociativa vxtiene una [ J-inversa v, entonces v es
unica. " '

Demostracion:  Supongas is ]
acion.  SupOngase que existe otra [ -inversa para x, por ejemplo z. Enton-

es (- My =pl .. R ! N — . . iy

ceszMIM My =eDyoyy 20000 23T Como Ljes asociativa, (z [ x)

Oy=z0(x (1), y portanto y = z. °
Ejemplo 11

(a) En la estructura [matrices 3 X 3, +, * 7], cada matriz A = [a,] tiene una +-inversa, o
inversa aditiva, —A = [—a,./]. '
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(b) Enla estructura [enteros, +, *], s6lo los enteros 1 y —1 tienen inversos multiplica-

tivos. ¢

Ejemplo 12. Sean [, \/ y * las operaciones que se define para el conjunto {0, 1} por

medio de las tablas siguientes:

-

ojo 1 vVIio 1 x* | x
olo 1 010 0 01
111 0 110 1 110

Asi1[J0=1,0V1=0y1*=0.

Determine si cada uno de los siguientes casos es verdadero para [{0,1}, [, </, * 1.
(a) [ es conmutativa.

(b) \/ es asociativa.

(c) Lasleyes de De Morgan son vélidas.

(d) Son vilidas dos propiedades distributivas para la estructura.

Solucién:  (a) El enunciadox [y =y [1x debe ser verdadero para todas las opciones
de x y y. Aqui hay solo un caso por verificar: (Es 0 [J 1 =1 [] 0 verdadera? Como
ambas 0 (] 1y 1 (JOson 1, []es conmutativa.

(Y

i S SO

(b) Se deja como ejercicio verificar los ocho casos posibles. Véase el ejercicio 4(b).

0*VOr=1V1=1
OOn*=1*=0 0*V1*=1V0=0
A01)*=0*=1 1#*V1*=0V0=0.
El Gltimo par muestra que las leyes de De Morgan no son validas en esta estructura.
(d) Una propiedad distributiva posible es x (1 (y V 2) = (x I ») ¥V (x O 2).

(c) (000)* =0%=1

Debe verificarse todos los casos posibles. En la tabla 1.2 se muestra una forma de ‘

organizar esto.

Tabla 1.2
xyz|yVz | xO@V) |xOy | xOz | OV ExDO2)
000 0 0 0 0 0
001 0 0 0 | 0
010 0 0 1 0 0
011 1 1 I 1 1
100 0 1 1 1 1
101 0 1 1 0 0
110 0 1 0 1 0
111 1 0 0 0 0
(A) (B)

Cono as cotuminas (A) y (B) no sunidénticas, usta posible propiedad distributiva no
es vahida en esta estructura. La verificacion para la otra propiedad distributiva es el

cjercicio S. ¢

En secciones posteriores, resultarda Gtil considerar las estructuras matematicas

como objetos y clasificarlas atendiendo a las propiedades asociadas con sus operaciones. -

amrer

GRUPO DE EJERCICIOS 1.6

1. Diga si en cada parte la estructura tiene o no la
propiedad de cerradura con respecto de la operacién.

(a) [conjuntos, \J, M, 7] uniodn

(b} [conjuntos, \J, M, 7] complemento
(c) [matrices 4 X 4, +,*, 7] multiplicacion
(d) [matrices 3 X 5, +, *, 7] transpuesta

2. Diga si en cada parte la estructura tiene o no la
propiedad de cerradura con respecto de la operacion.
(a) [enteros, +, —, *, +] division
(b) [4* concatenaci6n] concatenacion

(c) [matrices booleanas n X n, V, A, 7] conjuncién.

(d) [ntimeros primos, +, *] adicién
3. Demuestre que © es una operacién conmutativa para
conjuntos.

4. Por medio de las definiciones del ejemplo 12, (a)
demuestre que [] es asociativa. (b) Demuestre que
\/ es asociativa.

5. Por medio de las definiciones del ejemplo 12,
determine si sigue siendo valida la otra propiedad
distributiva posible.

6. Porporcione el elemento identidad, si existe alguno,
para cada operacién binaria en la estructura dada.
(a) [nimeros reales, +, *, \[ ]
(b) [conjuntos, \J, M, '}
(c) [{0, 1}, 0, \/, *] como son definidos en el
ejemplo 12
(d) [subconjuntos de un conjunto finito 4, ®, —]

7. D¢ el elemento identidad, si existe alguno, para cada
operacidn binaria en la estructura [matrices
booleanas 5 X 5, V, A\, ®}.

En los ejercicios 8 al 14, use la estructura S =
[matrices diagonales n X n, +, *, 7].

8. Demuestre que S es cerrada con respecto de la
adicion.

»

IDEAS CLAVE PARA REPASO

® Conjunto: una coleccion de objetos bien definida.

® (J (conjunto vacio): el conjunto sin elementos.

® Conjuntos iguales: conjuntos con los mismos ele-
mentos.

43

Ideas clave para repaso

9. Demuestre que S es cerrada con respecto de la
multiplicacion.

10. Demuestre que S es cerrada con respecto de la
operacién de transpuesta.

11, ;Tiene S una identidad para la adicion? Si es asi
;cudl es?

12. ;Tiene S una identidad para la multiplicacién? Si es
asi jcudl es?

13. Sea A una matriz diagonal n X n. Describa la
inversa aditiva de A.

14. Sea A una matriz diagonal # X n. Describa la
inversa multiplicativa de A,

En los ejercicios 15 al 20, use la estructurq R =[M,
+,*, "], en donde M es el conjunto de matrices de Ia

a 0
forma [0 OJ ; a es un numero real.

15. Demuestre que R es cerrada con respecto de la
adicion.

16. Demuestre que R es cerrada con respecto de la
multiplicacién.

17. Demuestre que R es cerrada con respecto de la
operacién de transpuesta.

18. ;Tiene R una identidad para la adicion? Si es asi
;eudl es?

19. ;Tiene R una identidad para la multiplicacion? Si es
asi jcudl es?

20. Sea A un elemento de M. Describa la inversa de la
adicion para A.

® A< B (4 esun subconjunto de B): Todo elemento
de 4 es un clemento de B.

® | 4| (cardinalidad de 4): el nimero de elementos
de 4.
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Conjunto infinito: véase la pagina 4.

P(A) (conjunto potencia de 4): Conjunto de todos
los subconjuntos de 4.

AU B (uniénde 4y B): {x | xe A4, obien,xe B}.
AM B (interseccion de A y B): {x | xe Ayxe B}.
Conjuntos disjuntos: dos conjuntos sin elementos
en comun.

A — B (complemento de B con respecto de 4): {x |
xe Ayxeg B}.

A (complemento de 4): {x | x# A}.
Propiedades algebraicas de las operaciones con
conjuntos: véase la pagina 9.

Teorema (el principio de adicion): Si 4 y B son
conjuntos finitos, entonces |4 \J B| = |4] + |B|
~ 1AM B|.

Teorema (el principio de adicién de tres conjun-
tos): Si 4, By C son conjuntos finitos, entonces

'AUB UCi= A +iB +|C|l-]ANB
- ANC - BNC +]|ANBNC|

Sucesién: lista de objetos en un orden definido.
Férmula recursiva: una formula que utiliza térmi-
nos previamente definidos.

Formula explicita: una férmula que no utiliza tér-
minos previamente definidos.

Arreglo lineal: véase la pagina 16.

Funcion caracteristica de un conjunto A4:

‘ [1 six eAd
S0 ®SMeA

Conjunto numerable: un conjunto que correspon-
de auna sucesion.

Palabra: sucesion finita de elementos de 4.
Expresion regular: véase la pagina 19.

Teorema: Si n # 0y m son enteros no negativos,
puede escribirse m = gn + r para algunos enteros
no negativos ¢ y r con 0= r <n. Ademas, sélo hay
una forma de hacer esto.

MO S NOCD hystd ra.d i bovdesel
divisor comun mas grande de a y b.

Teorema: Si d es MCD(a. ). entonces

(a) « —sa v th para algunos enteros s y .

(by Siciayc b entoncesc | d

Primos relativos: dos enterosa y b con MCD{(a, b)
=1

Algoritmo euclidiano: método usado para deter-
minar el MCD(aq, b); véase la pagina 25.

MCM(a, b): c=MCM(q, b)siaic blc ycesel
multiplo comin mas pequefio de a y b.

MCD(q, b) - MCM(a, b) = ab.

Funcién mod-n: f,(z) = r, en donde z = r (mod n).
Matriz: un arreglo rectangular de niimeros.
Tamafio de una matriz: A es m X n si tiene m ren-
glones y n columnas.

Matriz diagonal: una matriz cuadrada con ceros en
las entradas que no estan en la diagonal principal.
Matrices iguales: matrices del mismo tamafio cu-
yas entradas correspondientes son iguales.

A + B: la matriz obtenida sumando las entradas
correspondientes de A y B.

Matriz cero: una matriz cuyas entradas son todas
igual a cero.

AB: véase la pagina 32.

I, (matriz identidad): una matriz cuadrada con unos
en la diagonal y ceros en las demads partes.

AT la matriz obtenida de A por intercambio de ren-
glones y columnas de A.

Matriz simétrica: A7 = A.

Arreglo de dimension dos: véase la pagina 32.
Matriz booleana: una matriz cuyas entradas son ya
sea uno o cero.

AV B: véase la pagina 35.

A A B: véase la pagina 35.

A © B: véase la pagina 36.

Propiedades de las operaciones en matrices boolea-
nas: véase la pagina 37.

Estructura matematica: una serie de objetos con
operaciones definidas sobre los mismos y las pro-
piedades acompafiantes.

Operacién binaria: una operacion que combina dos
objetos.

Operacién unaria: una operacion que requiere solo
de un objeto.

Propiedad de cerradura: cada aplicacion de la ope-
racion produce otro objeto en la coleccion,

Propiedad asociativa, (4 1vye o — (el 1)
Leves de De Morgan: (x [ 1% - 1% 0 3% v @
= vk

Identidad para {J: un elemento ¢ tal quexLje —¢

L x = x para todas las x que hay en la estructura.
[(J-inverso de x: un elemento i tal quex L]y =y ]
v = ¢, en donde e cs la identidad para [,

S——

EJERCICIOS
DE CODIFICACION

i Para cadauno de los siguientes casos, escriba el pro-
grama o la subrutina que se pide, en seudocédigo
(como se describe en el apéndice A) o en un lenguaje
¢ de programacion que usted conozca. Pruebe su codi-
go ya sea con papel y ldpiz, o ejecutandolo en una
L computadora.

En los ejercicios 1 al 3, suponga que Ay B son
conjuntos finitos de enteros. Escriba una subrutina
para calcular el conjunto especificado.

1.LAUB

2.ANB

P 3. A4-B

Ejercicios de codificacion 45

4. Considere la sucesion definida en formarecursiva
por N

g0y =1 g1)=-1
g(n) = 3g(n — 1) — 2g(n — 2)

(a) Escriba una subrutina que imprima los pri-
meros 20 términos de la sucesion.

(b) Escriba una subrutina que imprima los pri-
meros n términos de la sucesion. El usuario
debe ser capaz de proporcionar el valor de n
en la subrutina.

5. Escriba una subrutina para determinar el minimo
comun multiplo de dos enteros positivos.



-Sewcion 2.1 Propesicioncs y operacionces logicas 47 .
Ejemplo 1. ;Cuales de las siguientes son proposiciones?
(a) La Tierra es redonda. ‘
(b) 2+3=5
(¢) ¢(Habla usted inglés? t
(d) 3—x=5 '
{e) Tome dos aspirinas.
(f) La temperatura en la superficie del planeta Venus es 800°F.
(g) EI Sol saldra mafiana.

CAPiIiTULO

Solucion

(a) y (b) son proposiciones que afirman algo verdadero.

(¢) es una pregunta, por lo cual no es proposicion.

(d) es una afirmacion declarativa, pero no una proposicion, ya que es verdadera o
falsa dependiendo del valor de x.

(e) no es proposicion; es una orden.

(f) esunaoracién declarativa cuya verdad o falsedad no se conoce hasta la fecha; sin
embargo, es posible determinar si es verdadera o falsa, por lo cual si es una pro-

posicion.
(g) es una proposicion, verdadera o falsa, aunque no ambas cosas; no obstante, se
tendria que esperar hasta mafiana para saber si fue verdadera o falsa. ¢

Conectivos logicos y proposiciones compuestas

En matematicas, las letrasx, 3, z, . . . denotan, a menudo, variables que pueden ser reempla-
zadas por nimeros reales, y estas variables pueden combinarse con las operaciones comu-
nes +, X, —,y . Enlogicy, las letras p, ¢, £, . . . denotan variables propositivas, es decir,
variables que pueden ser reemplazadas por proposiciones. Asi se puede escribir p: El Sol
esta brillando hoy. ¢: Hace frio. Las proposiciones o variables propositivas pueden combi-
narse por medio de conectivos logicos para obtener proposiciones compuestas. Por ¢jem-
Requisit() previ(): Cap]'tu]() 1 plo, se puede combinar las proposiciones anteriores con el conectivo y para tormar Ja propo-
sicion compuesta p v g: Ei Sol esta brillando v hace trio. El valor de verdad de una proposi-

Logica es la disciplina que trata de los métodos de razonamiento. En un nivel elemental, la cion compuesta depende solamente de los valores de verdad de las proposiciones que se

l6gica proporciona reglas y técnicas para determinar si es o no valido un argumento dado. El
razonamiento l0gico sc emplea en matematicas para demostrar teoremas; en ciencias de la
computacion, para verificar si son o no correctos los programas y para demostrar teoremas;
en las ciencias fisicas y naturales, para sacar conclusiones de experimentos, y en las ciencias i
sociales y en la vida cotidiana, para resolver una multitud de problemas. Ciertamente, se usa

en forma constante el razonamiento 16gico. En este capitulo se analiza algunas de las ideas °

bisicis

estén combinando y de los tipos de conectivos que se atilice. A continuacion, se vera tos
conectivos méas importantes.

Sip es una proposicion, lanegacion de p es la proposicion no p, denotada por ~p. Asi
~p es la proposicion “no cs ¢l caso de p.” De esta definicion se desprende que sip s verda-
dera, entonces ~p s falsa, y si p es falsa, ~p es verdadera. El valor de verdad de ~p relativo
ap se daen latabla 2.1, A una tabla como ésta, que da los valores de verdad de una propo-
sicion compuesta en tuncion de sus partes componentes. se la Hama tabla de verdad

.« . . ;e Tabla 2.1
2.1. Proposiciones y operaciones logicas -
I |4/7’7

Una proposicion o enunciado es una oracién que declara que algo es verdadero o falso, T F

vl

pero no ambas cosas.
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Estrictamente hablando, #o no es un conectivo, en vista de que no une dos proposiciones, y
~p 1o es en realidad una proposicion compuesta. Sin embargo, 7o es una operacioén unaria
para la coleccion de proposiciones, y ~p €s una proposicion si p lo es.

Ejemplo 2. D¢ la negacion de las siguientes proposiciones.
(@) p:2+3>1 (b) ¢: Hace frio.

Solucion:

(a) ~p:2+3noesmayorque 1. Es decir,~p: 2+ 3= 1. Como p es verdadera en este
caso, ~p es falsa.

(b) ~g: No es el caso de que haga frio. Mas simplemente, ~g: No hace frio. ¢

Si p y g son proposiciones, la conjuncion de p y g es la proposicion compuesta “p y
q”, denotada por p A g. El conectivo y se denota por el simbolo A. En el lenguaje de la
seccion 1.6, y es una operacion binaria sobre el conjunto de proposiciones. La proposicion
compuestap A g es verdadera cuando ambas, p y ¢, son verdaderas; de lo contrario, es falsa.
Los valores de verdad dep A g en términos de los valores de verdad de p y ¢ son proporcio-
nados en la tabla de verdad que aparece en la tabla 2.2. Obsérvese que para dar la tabla de
verdad de p A ¢ se necesita considerar cuatro casos posibles. Esto se desprende del hecho
de que cada una de las proposiciones p y ¢ puede ser verdadera o falsa.

Tabla 2.2
p ql p/\q
T T} T
T F F
F T’ F
F F| F

Ejemplo 3. Forme la conjuncién de p y ¢ para cada uno de los siguientes casos.

(a)  p: Esta nevando. g: Tengo frio.
(hy p 23 g: —~5>—8
{¢) p: Esta nevando. q:3<5

Solucion

(a) PG Esta nevando y tengo frio.

(b) pPAg: 2<3y~—5>-8

(c) pPAg: Estd nevandoy 3 < 5. ¢

T Oonpdo Yo minestra que on 1ogica. a diferencia de lo que ocurre en ol habla coti- -
Jita, cx posdble anie dos proposiciones que no guarden relacion alguna por medio del

conectivo v,

Sty g son proposiciones, la disyuncion de p y ¢ es [u proposicion compuesta “p 0
¢, designada por p Vg, El conectivo o se denota por el simbolo V. La proposicion com-
puesta p Vv ¢ es verdadera 1 por 1o nienos una de las proposiciones p o ¢ es verdadera; serd
falsa cuando ambas proposiciones p v ¢ sean falsas. Los valores de p V ¢ son proporciona-
dos en la tabla de verdad que aparece en la tabla 2.3,
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Tabla 2.3

o A
Ao -
mo o <

Ejemplo 4. Forme la disyuncion de p y g para cada uno de los siguientes casos.
(a) p: 2 esun entero positivo. g: /2 esun niimero racional.
b)) p:2+3#5 g: Londres es la capital de Francia.

Solucion

(a) pV g:2esunentero positivoo /2 esun niimero racional. Como p es verdadera,
la disyuncién p V g es verdadera, aun cuando g sea falsa.

(b) pV q:2+3 # 50 Londres es la capital de Francia. Como ambas proposiciones
py g son falsas, p V q es falsa. L4

El ejemplo 4(b) demuestra que en la légica, a diferencia de lo que sucede en el habla
ordinaria, es posible unir dos proposiciones totalmente faltas de relacidn por el conectivo o.

El conectivo o es més complicado que el conectivo y porque se emplea de dos formas
diferentes. Supongase que alguien dice: “Fui en automévil a mi trabajo o tomé el tren para
ir a mi trabajo.” En esta proposicién compuesta se tiene la disyuncién de las proposiciones
p: “Fui en automdvil a mi trabajo” y ¢: “Tomé el tren para ir a mi trabajo.” Por supuesto,
ocurri6 exactamente una de las dos posibilidades. No podrias haber ocurrido ambas, por lo
cual el conectivo o se estd usando en un sentido excluyente. Por otra parte, considérese la
disyuncion "Pasé matematicas o reprobé francés.” En este caso, ocurrid por lo menos una de
las dos posibilidades. Empero, podrian haber ocurrido ambas, por lo que el conectivo o se
estd usando en un sentido inclusivo. En matematicas y en ciencias de la computacién, con-
vencionalmente se usa el conectivo o siempre en sentido inclusivo.

Cuantificadores

En la seccion 1.1, se definieron conjuntos especificando una propiedad P(x) que tienen en
comin los elementos del conjunto. Asi, un elemento de {x | P(x)} es un objeto ¢ para el cual
la proposicion P(r) es verdadera. A una oracion de esta naturaleza P(x) se la llama predica-
do, porque en esparfiol la propiedad es gramaticalmente un predicado. P(x) se denomina
tambi¢n funcion proposicional, porque cada seleccion dey da lugar a una proposicion P(x)
que es o verdadera o falsa.

v oot

[HE Y F T S
LU ON Td OFdC o v €8 uh €nieio

Ejemplo 5. Scad = {1} uncntero menor gue 8. Aqul
menoraie 8 71 apropiedad comiin es “esun entero menoer que R Como PO es verdadera.

e A ¢

La cuantificacion universal de un predicado P(x) es la proposicion “Para todos los
valores dex, P(x) es verdadera™. Se supone que solo se considera los valores de.x que tengan
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sentido en P(x). Si se desea restringir los valores de x, se puede escribir, por ejemplo,
Vx = 00 Vne Z Lacuantificacion universal de P(x) se denota por Vx P( ) Al simbolo ¥
se lo llama cuantificador universal.

Ejemplo 6

(a) La oracién P(x): — (—x) = x es un predicado que tiene sentido para los numeros reales
x. La cuantificacién universal de P(x), Vx P(x), es una proposicion verdadera, porque
para todos los numeros reales — (—x) = x.

(b) Sea Q(x): x + 1 <4. Entonces Vx = 0 Q(x) es una proposicion falsa, porque Q(5) no es
verdadera. 4

La cuantificacion universal puede expresarse también en espafiol como “para todax”,
“toda x” o “para cualquier x”.

Un predicado puede contener diversas variables. La cuantificacion universal puede
aplicarse a cada una de las variables. Por ejemplo, una propiedad conmutativa puede expre-
sarse como Vx Vy x [Jy =y [ x. El orden en que se considere los cuantificadores universa-
les no cambia el valor de verdad. Con frecuencia, hay proposiciones matematicas que con-
tienen cuantificaciones universales implicitas, como por ejemplo, en el teorema 1, la sec-
cion 1.2.

En algunas situaciones s6lo se requiere que haya por lo menos un valor para el cual
sea verdadero el predicado. La cuantificacion existencial de un predicado P(x) es la propo-
sicion “Existe un valor de x para el cual P(x) es verdadera.” La cuantificacion existencial de
P(x) se denota 3 x P(x). El simbolo 3 se llama cuantificador existencial. Se puede incluir
restricciones en el cuantificador, como por ejemplo, 3 x > 0.

Ejemplo 7

(a) Sea Q(x): x+ 1 <4. La cuantificacion existencial de Q(x), Ix Q(x), es una proposicion
verdadera, porque Q(2) es una proposicion verdadera.

(b) La proposicion 3y v + 2 = v es falsa. No hay valor alguno de v para el cual la funcién
proposicional y + 2 = y produzca una proposicion verdadera. .

3«

El 3x puede leerse también como “hay una x”, ““hay alguna x”, “existe una x”, o “hay
por lo menos una x”.

La cuantificacién existencial puede aplicarse a diversas variables en un predicado, y
el orden en que se considera las cuantificaciones no afecta el valor de verdad. Para un
predicado con diversas variables, puede aplicarse tanto la cuantificacion universal como la

existencial. En este caso el orden si es importante.

Fjemplo 8. Sean Ay B matrices n X n.

(2) Laproposicion YA IB (A + BY =1 «elee “porcada A hayuna Btalque A+ B -1 7
Para una A dada, A = [g,], defina B = [b Jcomosigue: b, =1 —a | <i<nybh =
—a i F L l=i=n, 1< j<n Fntonce\ A+B=1y se ha demostrado que VA IB
(A " B) =1 es una proposicion verdadera.

(b) 3IBVA (A +B)=1 eslaproposicion “hay una B tal que para todas lasA. A+ B=1"".
Esta proposicion es falsa; ninguna B sola tiene esta propiedad para todas las A.

(¢) 3B VA (A + B)= A es verdadera. ;Cual es el valor para B que hace verdadera esta
proposicion? *
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Sea p: Vx P(x). La negacion de p es falsa cuando p es verdadera, y verdadera cuando
p es falsa. Para que p sea falsa, debe haber por lo menos un valor de x para el cual P(x) sea
falsa. En consecuencia, p es falsa si 3x ~P(x) es verdadera. Por otra parte, si 3x ~P(x) es fal-
sa, entonces para cada x, ~P(x) es falsa, por lo que P(x) es verdadera; es decir, Vx P(x) es
verdadera. Esto demuestra que la negacion de p es 3x ~P(x).

R e

emyrer

Ejemplo 9

(a) Sea p: Para todos los enteros positivos n, n* + 41n + 41 es un nimero primo. Entonces
~p: Hay por lo menos un entero positivo » para el cual »* + 41n + 41 no es primo.
(b) Sea g: Hay algln entero & para el cual 12 = 3%. Entonces ~q: Para todos los enteros £,

12 # 3k.

GRUPO DE EJERCICIOS 2.1

1. ;Cuales de las siguientes son proposiciones?
(a) ¢(Es 2 un nimero positivo?
®) X*+x+1=0
(¢) Estudie logica.
(d) Habra nieve en enero.

(e) Si se caen los precios de las acciones, perderé

dinero.

2. Dé la negacion de cada una de las siguientes
proposiciones.
(@) 2+7<11
(b) 2 es un entero par y 8 es un entero impar.
(c) Llovera mafiana o nevard mafiana.
(d) Siusted va en auto, entonces yo caminaré,

3. En cada uno de los siguientes casos, forme la
conjuncién y la disyuncion de p y q.
(a)y p:3+1<5
(b) p: Soy rico.
{¢) p: Voy air en mi auto.

q: Soy feliz.

4. Determine la verdad o falsedad de cada una de las

proposiciones siguientes.

(a) 2 <3y 3 esun entero positivo.

(b) 2 = 3y 3 es un entero positivo.
(c) 2 <3y 3no es un entero positivo.
{(d) 2 = 3 y 3 no ¢s un entero positivo.

S. Determine la verdad o talsedad de cada una de las

proposiciones siguicntes.

(a) 2 <3 o0 3 esun entero positivo.
(b) 2 = 3 0 3 es un entero positivo.
(c) 2 <30 2no esun entero positivo.
(d) 2 = 3 no es un entero positivo.

g:7=3%x6

g: Llegaré tarde.

¢

(Cual de las siguientes proposiciones es la
negacion de la proposicion “2 es pary —3 es
negativo”?

(a) 2espary —3 es no negativo.

(b) 2 es impary —3 es no negativo.

(c) 2 esparo —3 es no negativo.

(d) 2 esimpar 0o —3 es no negativo.

(Cual de las siguientes proposiciones es la
negacion de la proposiciéon “2 es par o —3 es
negativo”?

(a) 2 espar o —3 es no negativo.

(b) 2 es impar 0 —3 es no negativo.

(¢) 2espary —3 esno negativo.

(d) 2 es impar y —3 es no negativo.

En los ejercicios 8 y 9 utilice p. Hoy es lunes; q: El
pasto esta mojado; y r: El plato se fue con la
cuchara.

8. Escriba cada una de las siguientes proposiciones en

términos de p, g,  y conectivos logicos.

(a) Hoy es lunes y el plato no se fue con la
cuchara.

(b) O el pasto estd mojado u hoy es lunes.

(¢) Hoy no es lunes y el pasto esta seco.

(d) Kl plato se tue con la cuchara, pero el pasto
esta mojado.

Escriba una oracion que corresponda a cada una de
las siguientes proposiciones.
(@ ~rNg

)~V

(by~¢ Vp
DpV~r
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En los ejercicios 10 al 15, utilice P(x): x es par, Q(x): x

es un numero primo; y R (x, y): x + y es par. Las variakFles

X y y representan enteros.

10. Escriba una oracién que corresponda a cada una de

las siguientes proposiciones.

(a) VxP (x) (b) Ix Q (x)

15. Determine el valor de verdad de cada proposicién en
los ejercicios 10 al 13.

16. Haga una tabla de verdad para cada una de las
siguientes proposiciones.

@ (~pAqVp O PVgV-~q

17. Haga una tabla de verdad para cada una de las
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En logica se emplea la implicacion en un sentido mucho mas débil. Decir que la
proposicién compuesta p — g es verdadera, simplemente afirma que si p es verdadera, se
encontrara entonces que g también es verdadera. En otras palabras, p — ¢ dice solamente
que no se tendra una p verdadera y una g falsa al mismo tiempo. No dice que p “ocasiond” a
g en el sentido usual. La tabla 2.4 describe los valores de verdad de p — ¢ en términos de los
valores de verdad de p y de g. Debe notarse que p — ¢ se considera falsa solamente si p es
verdadera y g es falsa. En particular, si p es falsa, entonces p — g es verdadera para cual-
quier g. Este hecho se describe algunas veces por la proposicion, “Una hipétesis falsa impli-

11. Escrib 16 e da a cad d igui ici ) r v . . L
1as;c;g;\;:?egr;rc(;gzs?;oggsrr espon aunade Zlguz;nss I;r;)\pfswlones' by (o VDA ~r ca cualquier conclusién”. Esta proposicion es confusa, ya que parece decir que si la hipote-
(@) VxIyR(x, y) (b) 3x Yy R(x, ) 7 sis es falsa, la conclusion debe ser verdadera, lo cual es obviamente tonto. De modo similar,
Para los ejercicios 18 al 20, defina p ¥ g como una sigq es verdadera, entoncesp — g serd verdadera para cualquier proposiciénp. La implicacion
12, Escriba una oracién que corresponda a cada una de proposicion verdadera si no son verdaderas ni p ni q. “Si2+2 =35, entonces yo soy el rey de Inglaterra” es verdadera, 51mp1eme.nte porquep: 2 +
las siguientes proposiciones. 2 =5 es falsa, por lo que no es el caso de que p sea verdadera y g sea falsa simultaneamente.
(a) ¥Vx (~Q(x)) (b) 3y (~P()
Tabla 2.4
13. Escriba una oracién que corresponda a cada una de —_—
las siguientes proposiciones. 14 9| P9
(a) ~(3x P(x)) (b) ~(Vx Q(x)) T T T
T F F
14. Escriba cada una de las siguientes proposiciones en 18. Haga una tabla de verdad para (p 4 9) L r. F T T
términos de P(x), Q(x), R(x, y), conectivos logicos, y
cuantificadores. 19. Haga una tabla de verdad para (p 4 ¢) A (p v 7). F F T

(a) Todo entero es un niimero impar.
(b) La suma de dos enteros cualesquiera es un
numero par.

2.2. Proposiciones condicionales

20. Haga una tabla de verdad para (p 4 ¢) ¥ (» 4 ).

En el habla cotidiana, y en matematicas, cada una de las expresiones siguientes es una
forma equivalente de la proposicién condicional p — q: p implica a g; ¢, sip; p solamente si
g; p es una condicion suficiente para ¢; g es una condicion necesaria para p.

Sip — g es una implicacién, entonces lareciproca de p — ¢ es la implicacion g — p,
y la contrapositiva de p — ¢ es la implicacion ~g — ~p.

Ejemplo 2. D¢ lareciprocay la contrapositiva de la implicacion “*Si estd lloviendo, enton-

C€S yO me mojo

Sipy g son proposiciones, a la proposicion compuesta si p entonces ¢, designada por p —
¢, se la llama proposiciéon condicional, o implicacion. A la proposicion p se la [lama ante-
cedente o hipétesis, y a la proposicion g se ia llama consecuente o conclusién. El conectivo
si .. . entonces se denota por el simbolo —.

Solucion:  Se tiene p: Esta lloviendo; y ¢: Yo me mojo. La reciproca es g — p: St yo
nie mojo, entonces esta lloviendo. La contraposttiva es ~¢ — ~p: S1 yo 110 e mojo.
entonces no esta lfoviendo. L2

Ejemplo 1. Escriba la implicacion p — ¢ para cada una de las siguientes proposiciones. Si py ¢ son proposiciones, a la proposicion compuesta p sty solo si g. denotada por

(a) p: Tengo hambre. q: Comer¢. p <> ¢, se la llama equivalencia o bicondicional. El conectivo si v sélo si se denota por el
(b) p: Esta nevando. q:3+5=8 simbolo «>. Se proporciona los valores de verdad de p «»> ¢ enlatabla 2.5, Observe quep ¢ ¢
es verdadera solo cuando ambas, p y ¢, son verdaderas o cuando ambas p y ¢ son falsas. La

Solucion equivalencia p <> ¢ puede también enunciarse como p es una condicion necesaria y sufi-

(a) Sitengo hambre, entonces comeré. ciente para q.

(b} Sicstdnevando, entonces 3 0 5 8. .

[E————

El ejemplo 1(b) muestra que en ldgica se usa proposiciones condicionales en un sen-

I Pe=r g
tido mas general que el acostumbrado. Asi, cuando se dice “si p entonces ¢”, se esta supo- IYA TI : T -
niendo tacitamente que hay una relacién de causa y efecto entre p y ¢. Es decir, nunca se | I J‘ ¥
usaria la proposicion del ejemplo 1(b) en lenguaje ordinario, en vista de que no hay manera I T £
de lograr que la proposicion p pueda tener algiin efecto sobre la proposicion g. i FlooT

|




54  Capitulo 2

Logica

Ejemplo 3. (Es la siguiente equivalencia una proposicion verdadera? 3 > 2 si y s6lo si
0<3 -2

Solucidn:  Sea p la proposicion 3 > 2 y seaq la proposicién 0 <3 — 2. Como ambas,
Py q, son verdaderas, se concluye que p <> g es verdadera. L4

En general, una proposicién compuesta puede tener muchas partes componentes, siendo
cada una de éstas una proposicion por si misma, representada por alguna variable propor-
cional. La proposicién s: p — (g A (p — r)) contiene tres proposiciones, p, q yr,cada una
de las cuales puede, en forma independiente, ser verdadera o falsa. Hay en total 2°, 0 sea 8
posibles combinaciones de valores de verdad parap, ¢ y 7, y la tabla de verdad para s debe
indicar la verdad o falsedad de s en todos estos casos. Si una proposicién compuesta s
contiene n proposiciones componentes, habra necesidad de tener 2” renglones en la tabla de
verdad para 5. (En la seccion 3.1 se ve la forma de contar las posibilidades en tales casos.)
Esta tabla de verdad puede construirse sisteméticamente de la siguiente manera.

Paso 1. Las primeras n columnas de la tabla estdn marcadas por las variables proposicionales
componentes. Se incluye columnas adicionales para todas las combinaciones interme-
dias de las variables, y esto culmina en una columna para la proposicién completa.

Paso 2. Bajo cada uno de los primeros n encabezados, se ha anotado las 2" posibles n-uplas
de valores de verdad para las n proposiciones componentes.

Paso 3. Para cada rengldn se calcula, en secuencia, todos los valores de verdad restantes.

Ejemplo 4. Calcule la tabla de verdad de la proposicién (p — ) <> (~g — ~p). La tabla
2.6 se ha construido siguiendo los pasos 1, 2 y 3. Los numeros de la parte inferior de las
columnas muestran el orden en que estan construidos.

Tabla 2.6
P q‘Pﬁq!Nqﬁwf“ﬂ%~p'WHqH%%q%\m
T'w T 1F)F i i T
T r! r ‘T‘F I | g
F T T F T I T
F el ot 17| T | T
) @ 3 4) (5)

Una proposicion que es verdadera para todos los valores posibles de sus variables
propositivas se denomma tautologia. A una proposicion que siempre es falsi sc la Hama
contradiceion o talacia. y 1 una proposicion que puede ser o verdadera o falsa, dependien-
do de los valores de verdad de sus variables propositivas, se la llama contingencia.

Ejemplo 5

(a) La proposicion del ejemplo 4 es una tautologia.

(b) La proposicion p A ~p es una falacia. (Verifique esto.)

(¢) La proposicién (p — g) A (p V g) es una contingencia. *

T T TV St
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Se ha definido ahora una nueva estructura matematica con dos operaciones binarias y
una operacion unaria [proposiciones, A, V, ~]. No tiene sentido decir que dos proposicio-
nes son iguales, por lo que en lugar de esto se afirma que p y ¢ son légicamente equivalen-
tes, o simplemente equivalentes, si p <> g es una tautologia. Cuando se demuestra que una
equivalencia es una tautologia, esto significa que sus dos partes componentes son siempre al
mismo tiempo o verdaderas o falsas para cualesquiera valores de las variables propositivas.
En consecuencia los dos lados son simplemente maneras diferentes de construir la misma
proposicién y pueden ser consideradas como “iguales.” Se denota que p es equivalente a q
por p = q. Ahora se puede adaptar nuestras propiedades para operaciones para decir que
esta estructura tiene una propiedad si usando equivalentes en lugar de igualdad se obtiene
una proposicién verdadera.

Ejemplo 6. Laoperacion binaria V tiene la propiedad conmutativa; es decir,p V ¢ = ¢ V p.
La tabla de verdad (tabla 2.7) para (p V gq) <> (¢ V p) muestra que la proposicién es una
tautologia.

Tabla 2.7

<

pva | avr | bV e @V

-3

V
T
T
T
F

T |
3| R
-

¢

Otra manera de usar una tabla de verdad para determinar si dos proposiciones son
equivalentes es construir una columna para cada proposiciéon y comparar éstas para ver si
son idénticas. En el ejemplo 6 las columnas tercera y cuarta son idénticas, y esto garantizard
que las proposiciones que representan son equivalentes.

La formacion de p — ¢ a partir de p ¥ g es otra operacion binaria para proposiciones,
pero puede expresarse en términos de las operaciones de la seccion 2.1.

Ejemplo 7. La proposicién condicional p — ¢ es equivalente a (~p) V ¢. Las columnas
(1) y (3) de la tabla 2.8 muestran que, para cualesquiera valores de verdaddepy g, p —> gy
(~p) V g tienen los mismos valores de verdad.

Tabla 2.8

Py ﬂﬂq] wi vy

T T T F T

, I F F F F
F T T T | T

t bt | [ l 1

! C! .

th () {

.

La estructura [proposiciones, A, V, ~] tiene muchas de las propiedades que [conjun-

N
tos, \A, 7Y, ]

Teorema 1. Las operaciones para proposiciones tienen las siguientes propiedades.
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Propiedades conmutativas
Lpvg=q\p
2.pNg=q/\p

Propiedades asociativas
3 pv@vn=p@Evevr
4. pN@NAN=p@ENgNr

Propiedades distributivas
PVE@NAN=@Vv O NQp\r)
6.pN@@vn=@NgvpAr)

Propiedades idempotentes

17.pNvp=p

8. pA\p=p
Propiedades de negacion

9. ~(~p)=p

10. ~(p v/ q) = (~p) N (~q)
11. ~(p \ q) = (~p) \/ (~q) 10y 11 son las leyes de De Morgan.

Demostracion:  Se ha demostrado la propiedad 1 en el ejemplo 6. Las propiedades
restantes pueden ser demostradas de la misma manera y se deja como ejercicio al
lector. °

La operacion de implicacion tiene también varias propiedades importantes.

Teorema 2
(@)@ —->q9) ={~p) V9
®) P -9 =((~q9) > ~p)
(©) (p & q)=((p—>q)\(qg—p))
(d)~(p->g)=@N~q)
) ~peoq)=(pN~9 V(g ~p)
Demostracion:  La parte (a) se demostré en el ejemplo 7 y la parte (b) en el ejemplo
4. Notese que la parte (b) dice que una proposiciéon condicional es equivalente a su
contrapositiva.

La parte (d) da una version alternativa para la negacion de una proposicion condi-
cional. Esto podria demostrarse usando tablas de verdad, pero también es posible
hacerlo aprovechando hechos demostrados previamente. Como w9 =(-p)Vag),
la negacién de p — g debe ser equivalente a ~((~p) V g). Por las leyes de
De Morgan, ~((~p) V ¢) = (~{~p)) A (~q) o p N\ (~q). En consecuencia ~(p—oq) =
N (~9)).

Las partes restantes del teorema 2 quedan como ejercicios. L

El teorema 3 establece dos resultados de la seccion 2.1 y otras varias propiedades para
los cuantificadores universal v existeneial

R

Teorema 3
(a)  (Va P(y)) = 3x Py
(b) ~(Ix ~P(x)) = Vx P(x)
(¢) Jx (P(x) - O(x)) = Vx P(x) - Ix Q(x)
(d) 3x P(x) = Vx Q(x) = Vx (P(x) - Q(x))
(e) Ix (P(x) v Q(v)) = 3x P(x)\/ Ix Q(x)
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(8) (Vx P(x)) V (Vx Q(x))) = Vx (P(x) V Q(x)) es una tautologia.
(h) 3x (P(x) A Q(x)) = 3x P(x) A 3x Q(x) es una tautologia. ™

El teorema siguiente da varias implicaciones importantes que son tautologias. Se hara
un extenso uso de éstas en la demostracion de resultados en matematicas y ciencias de la
computacion, y seran ilustradas en la seccion 2.3.

Teorema 4. Cada una de las siguientes proposiciones es una tautologia.
(@) p/Nq)—p ® (pNg)>q
p—=>@Va (d)g-=>@Va
() ~p>(p—9) () ~p—-q)—>p
& wANP—oq9) g M) (~pN(pVq)—>q
@B (¢ Np-g)->~p (o9 N@Gg->n)->@—7) °

GRUPO DE EJERCICIOS 2.2

En los ejercicios 1 y 2 use los siguientes datos: p: Estoy
despierto; q: Trabajo duramente; r: Suefio con mi hogar.

(d) Sitengo tiempo y no estoy demasiado cansado,
entonces iré a la tienda.

(e) Si tengo suficiente dinero, entonces compraré un

1. Escriba cada una de las siguientes proposiciones en automovil y compraré una casa.

términos de p, g, r y de palabras de union logicas.

(a) Estoy despierto implica que trabajo duramente. 4. Enuncie la contrapositiva de cada implicacion del
(b) Suefio con mi hogar solamente si estoy ejercicio 3.
despierto.
(c) Trabajar duramente me basta para estar 5. Determine el valor de verdad para cada una de las
despierto. siguientes proposiciones.

(a) Si2 es par, entonces Nueva York tiene una
poblacion grande.

(b) Si 2 es par, entonces Nueva York tiene una
poblacion pequeria.

{c) Si2 es impar, entonces Nueva York ticne una
poblacién grande.

(d) Si 2 es impar, entonces Nueva York tiene una
poblacion pequeria.

(d) Me es necesario estar despierto para no sofiar
con mi hogar.

2. Escriba cada una de las siguientes proposiciones en

términos de p, g, r y de palabras de unién logicas.

(a) No estoy despierto si y s6lo si suefio con mi
hogar.

(b) Si suefio con mi hogar, entonces estoy despierto
y trabajo duramente.

(c) No trabajo duramente sélo si estoy despierto y
no suefio con mi hogar.

(d) No estar despierto y soitando con mi hogar me
basta para trabajar duramente.

En los ejercicios 6 v 7, sean p, q v r las siguientes
proposiciones: p: Estudiaré estructuras discretas; q: Iré a
un cine; r: Estoy de buen humor.

3. Tnuncie la reciproca de cada una de las siguientes 6. [Dscriba las siguicntes proposiciones en términos de
4, ry de conectivos logicos.

implicaciones.
(a) Sino estoy de buen humor, entonces ir¢ a un

(a) Si2+ 2 =4, entonces yo no soy la reina de

Inglaterra. cine,
(b) Sino soy Presidente de los Estados Unidos, (b) No iré a un cine y estudiaré estructuras
entonces caminaré a mi trabajo. discretas.
(c) Siya se me hizo tarde, entonces no tomé el tren (c) Iré a un cine solo si no estudio estructuras
discretas.

para mi trabajo.
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(d) Si no estudio estructuras discretas, entonces no
estoy de buen humor.

7. Escriba oraciones que correspondan a las siguientes
proposiciones.
@ (~p)Ng)—>r (®) r=(pvq)
© (=nN->U~a)vp) () @NEp)er

8. Construya tablas de verdad para determinar si cada
una de las siguientes proposiciones es una tautolo-
gia, una contingencia o una falacia.

(@) p/A\~p (®) p—>(g-p)
() 4> (q—p) (d) ¢/ (~q /\p)
() (4 Ap)\v(@/N~p) () (p/Ng)—p
(& p—@Np)

9. Sip — g es falsa, jpuede determinar el valor de
verdad de (~(p /\ ¢)) = ¢? Explique su respuesta.

10. Sip — g es verdadera, puede determinar el valor de
verdad de (~p) V (p — ¢)? Explique su respuesta.

11. Utilice la definicién de p { ¢ dada en el ejercicio 18
en la seccion 2.1 y demuestre que ((p ¥ p) 4 (g 4 ¢))
es equivalente a p N\ g.

12. Escriba la negacion de cada una de las siguientes
proposiciones.
(a) Hace mal tiempo y no iré a trabajar.
(b) Si Carolina no esta enferma, entonces va a la
excursion; ella la va a pasar bien.
(¢) Yo no ganar¢ ¢l juego o no entraré en la
competencia.

2.3. Métodos de demostracion

13.

14.

16.

17.

18.

19.

20.

Considere la siguiente proposicion condicional: p: Si
la inundacién destruye mi casa o el fuego destruye
mi casa, entonces mi compafiia de seguros me
pagara.

(a) (Cudl de las siguientes proposiciones es la

reciproca de p? .

(b) (Cuadl de las siguientes proposiciones es la

contrapositiva de p?

(i) Si mi compafiia de seguros me paga,
entonces la inundacion destruye mi casa o el
fuego destruye mi casa.

(ii) Si mi compafiia de seguros me paga,
entonces la inundacidn destruye mi casa y el
fuego destruye mi casa.

(ii1) Si mi compaiiia de seguros no me paga,
entonces la inundacién no destruye mi casa
o el fuego no destruye mi casa.

(iv) Si mi compafiia de seguros no me paga,
entonces la inundacion no destruye mi casa
y el fuego no destruye mi casa.

Demuestre el teorema 1, parte 6.

Demuestre el teorema 1, parte 11.
Demuestre el teorema 2, parte (e).
Demuestre el teorema 4, parte (a).
Demuestre el teorema 4, parte (d).
Demuestre el teorema 4, parte (g).

Demuestre el teorema 4, parte (j).

Algunos métodos de demostracion que ya se ha utilizado son demostraciones directas re-
sueltas por medio de elementos genéricos, definiciones y hechos demostrados con anterio-
ridad, asi como demostraciones por casos, como, por ejemplo, el examen de todas las situa-
ciones posibles de valores de verdad en una tabla de verdad. A continuacién se vera los
métodos de demostracion con mayor detalle.

Stuna imphicacion p — g es una tautologia, en donde p y ¢ pueden ser proposiciones
compuestas en las que intervenga cualquier numero de variables propositivas, se dice queq
se desprende légicamente de p. Supdngase que una implicacion de la forma

(py Npy N p,) =g

es una tautologia. Entonces esta implicacion es verdadera sin importar los valores de verdad
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de cualquiera de sus componentes. En este caso, se dice que g se desprende légicamente de
P> Py - - - P, Cuando g se desprende logicamente de p, p,, . . . p, se escribe

Py
P2

Pn
g
en donde el simbolo.". significa por lo tanto. Esto significa que si se sabe que p, €s verdade-
ra, p, es verdadera, . . ., y p, es verdadera, entonces se sabe que ¢ es verdadera.
Practicamente todos los teoremas matematicos estan compuestos por implicaciones

del tipo

(pi Ap,/N--Np,)—q.

Las p, son llamadas hipétesis o premisas, y ¢ es llamada conclusién. “Demostrar el teore-
ma” significa demostrar que la implicacion es una tautologia. Notese que no se esté tratando
de demostrar que g (la conclusion) es verdadera, sino solamente que g sera verdadera si
todas las p, son verdaderas. Por esta razon, las demostraciones matematicas comienzan a
menudo con la proposicion “supongase quep,, p,, . . ., y p, son verdaderas” y concluyen con
la proposicion “por lo tanto, g es verdadera”. La demostracion no demuestra que g sea ver-
dadera, sino simplemente demuestra que ¢ tiene que ser verdadera si las p, son todas verda-
deras.

Los argumentos basados en tautologias representan métodos de razonamiento univer-
salmente correctos. Su validez depende solamente de la forma de las proposiciones que
intervienen y no de los valores de verdad de las variables que contienen. A estos argumentos
se les llama reglas de inferencia. Los distintos pasos de la demostracién matematica de un
teorema deben desprenderse del uso de diversas reglas de inferencia, y la demostracién
matematica de un teorema debe comenzar con la hipotesis, proseguir con los distintos pa-
sos, justificado cada uno por alguna regla de inferencia, y llegar a la conclusion.

Ejemplo 1. De acuerdo con el teorema 4(j), seccion 2.2, (p > ) A (g > 1)) = (p = 7)
es una tautologia. En consecuencia, el argumento

P9
=r

P OoT
es universalmente valido, y por tanto es una regla de inferencia. ¢

e
Fjemplo 2. Fsvalido el siguiente argumenta?

St nvierte usted en el mercado de valores, entonces se hara rico.

Stose hace usted rico, entonces serd feliz.

Si usted invierte en el mercado de valores, entonces sera feliz.

Solucion:  Elargumento es de la forma dada en el ejemplo 1; por tanto, el argumento
es valido aunque la conclusion pueda ser falsa. 14
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Ejemplo 3. Latautologia (p © ¢g) <> ((p = g) A (¢ — p)) es el teorema 2(c), seccion 2.2,
En consecuencia, los siguientes argumentos son validos.

P9
pod g-p
cpoNa—=p) S : *

Algunos teoremas mateméticos son equivalencias; es decir, son de la forma p <> q.
Por lo general son enunciados p si y solamente sig. Por el ejemplo 3, la demostracion de tal
teorema es logicamente equivalente a la demostracion de ambas p — gy ¢ - p, y éstaes
casi siempre la manera en que se demuestra las equivalencias. Primero se supone que p es ver-
dadera, y se demuestra que g debe entonces ser verdadera; en seguida se supone que g es
verdadera y se demuestra que p debe ser entonces verdadera.

Una regla de inferencia muy importante es

4
]
" q.
Es decir, p es verdadera, y p — g es verdadera, de manera que g es verdadera. Esto se

desprende del teorema 4(g), seccion 2.2.
Los educadores clasicos dieron nombres latinos a algunas reglas de inferencia. El
teorema 4(g) se menciona como ¢l modus ponens o, en forma aproximada, el método de

afirmacion.
Ejemplo 4. ;Es valido el siguiente argumento?

Fumar es saludable.
Si fumar es saludable, entonces los cigarrillos son recetados por los médicos.

Los cigarrillos son recetados por los médicos.

Solucion: El argumento es valido pueste que es de la forma modus ponens. Sin
embargo, la conclusion es falsa. Observe que la primera premisa, p: fumar es saluda-
ble, es falsa. La segunda premisa, p — ¢, entonces es verdadera y la conjuncién de las
dos premisas, (p A (p — ¢)), es falsa. ¢

Ejemplo 5. [ Es vilido el siguiente argumento?

Si bajan los impuestos. entonces se eleva el ingreso.
El ingreso se eleva.

Los impuestos bajan.

Solucion:  Sean p: los impuestos bajan; y ¢: el ingreso se eleva. Entonces el argu-
mento es de la forma

o2 :
4] !
.

Supéngase que p — g y ¢ son ambas verdaderas. Ahora p — ¢ puede ser verdadera
aun cuando p sea falsa. Entonces la conclusion p es falsa. Por tanto el argumento no
es valido. Otro enfoque para responder a esta pregunta es verificar si la proposicion

i
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((p = 9) A g) implica logicamente a la proposicion p. Una tabla de verdad muestra
que no es éste el caso. (Verifique.) S

Una importante técnica de demostracion conocida como el método indirecto se des-
prende de la tautologia (p — g) > ((~g) — (~p)). Esta establece, como se mencioné previa-
mente, que una implicacion es equivalente a su contrapositiva. Asi, para demostrar p—q
indirectamente, se supone que g es falsa (la proposicién ~¢q) y se demuestra que p es enton-
ces falsa (la proposicion ~p).

Ejemplo 6. Sea n un entero. Demuestre que si n* es impar, entonces 7 es impar.

Solucion:  Sean p: n’ es impar y g: n es impar. Se tiene que demostrar que p—>qges
verdadera. En vez de esto, se demuestra la contrapositiva, ~g — ~p. Asi, suponga que
n no es impar, de manera que entonces es par. Entonces n = 2k, en donde k es un
entero. Se tiene n® = (2k)? = 4k = 2(2k?), de manera que n? es par. Se demuestra asi que
s n es par, entonces n* es par, la cual es la contrapositiva de la proposicién dada. Por
tanto, la proposicién dada ha quedado demostrada. *

Otra técnica importante de demostracion es la demostracién por contradiccién. Este
método se basa en la tautologia ((p — ¢) A (~q)) = (~p). En consecuencia, la regla de
inferencia

pP—9q
~q
~p

es valida. En términos simples, ésta establece que, si una proposicion p implica una propo-
sicion falsa g, entonces p debe ser falsa. Esta se aplica 2 menudo en caso de que g sea una
falacia o contradiccion, es decir, una proposicion que siempre sea falsa. Se tiene un ejemplo
al tomar a g como la contradiccion 7 A (~r). En consecuencia, cualquier proposicion que
implique una contradiccién debe ser falsa. Para poder usar la demostracion por contradic-
cidn, supongase que se desea demostrar que tna proposicion g se desprende 16gicamente de
las proposiciones p,, p,, . . ., p,. Suponga, como una hipétesis extra, que ~¢ es verdadera (es
decir, que g es falsa) y quep,, p,, . . ., p, son también verdaderas. Si esta hipotesis ampliada
p, NP, N\ AN p A (~q) implica una contradiccién, entonces por lo menos una de las
proposicionesp,, p., ..., p, , ~q debe ser falsa. Esto significa que si todas las p. son verdade-
ras, entonces ~¢ debe ser falsa; por tanto ¢ debe ser verdadera. En consecuencia, g se des-
prendedep,p, ....p, Esta es ia demostracion por contradiccion.

Ejemplo 7. Demuestre que no hay nimero racional alguno p/g cuyo cuadrado sea 2. En

otras palabras, demuestre que J2 es irracional.

Solucion:  Esta proposicion es una buena candidata para demostracién por contradic-
- €idn, porque no se podria verificar todos los posibles nimeros racionales para demostrar
que ninguno tiene in cuadrado de 2. Supdngase (p/)? = 2 para algunos enterosp y ¢, que
No tenen factores comunes. St ia eteecton ongmal de p/g no esta en sus terminos mas
simples, se puede reemplazar con su forma equivalente de términos mas simples. Enton-
cos = 2y, por tanto g7 es par Lsto implica que pes par, ya que el cuadrado de un
niimero impar es impar. Entonces p = 2» para algin entero n. Se ve que 2¢° = p* = (2n)?
— 47, de manera que ¢* — 207, En consecuencia ¢° es par, y por tanto ¢ es par. Se tiene
ahora que ambas, p y g son pares y por tanto tienen un factor comun de 2. Esta es una
contradiccion a la suposicion. En consecuencia, la suposicion debe ser falsa. L
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Se ha presentado varias reglas de inferencia y equivalencias 16gicas que corresponden
a técnicas de demostracion validas. Para demostrar un teorema de la forma (tipica) (p, A p,
A +-Ap)—>q,secomienza con lahipotesisp,, p,, . - . ,p, y se demuestra que se desprende
algin resultado 7, logicamente. Después, usando p, p,, . .., p,, 7}, s¢ demuestra que se
desprende logicamente algiina otra proposicion r,. Se contintia este proceso, produciendo
proposiciones intermedias r, 7, . . ., r,, llamadas pasos de la demostracién, hasta que se
demuestre, por fin, que se desprende logicamente la conclusion g de p, p,, ..., p,, s 1,
. . Cada paso logico debe ser justificado por alguna técnica de prueba valida basada
sobre las reglas de inferencia que se han desarrollado, o sobre algunas otras reglas que
provengan de implicaciones tautologicas que no hayan sido analizadas. En cualquier etapa,
se puede reemplazar una proposicién que necesite ser derivada por su proposicion
contrapositiva o cualquiera otra forma equivalente.
En la practica, la construccion de demostraciones es un arte y debe aprenderse, en
parte, de la observacion y la experiencia. La eleccion de los pasos intermedios y métodos
para derivarlos es una actividad creativa que no puede describirse con precision.

Ejemplo 8. Seanm y n enteros. Demuestre que n” = m?siy solamentesim=nom= —n,

Solucién: Sevaa analizar la demostracidén como ha sido presentada. Supongase que
p es el predicadon® =m?, g es el predicadom = n, y r es el predicadom = —n. Entonces
se desea demostrar ¢l teorema p <> (g V r). Se sabe, por analisis previos, que en vez
de hacer esto se puede demostrar que s: p — (¢ V ) y t:(g V r) —> p son verdaderas,
En consecuencia se supone que ya sea g: m = n 0 r: m = —n es verdadera. Si g e
verdadera, entonces m? = n?, y si r es verdadera, entonces m’> = (—n)*= n?, de modo
que en cualquier casop es verdadera. Se ha demostrado, por lo tanto, que la implicacion
t: (g V r) —> p es verdadera.

Ahora se tiene que demostrar que s: p —> (¢ V r) es verdadera; es decir, st
supone p y se trata de demostrar ya sea g o r. Si p es verdadera, entonces n° = m?, de
modo que m? — n? = 0. Pero m* — n* = (m — n)(m + n). Si r, es la proposicion
intermedia (m — n)(m + 1) = 0, se ha demostrado que p — r, es verdadera. Ahora se
demuestra quer, — (g V r) es verdadera demostrando que la contrapositiva, ~(q V)
— (~r,) es verdadera. Ahora ~(¢ V r) es equivalente a (~¢) N\ (~r), de modo que s¢
demuestra que (~¢) A () —> (-)). En consecuencia, si (- g):rm # ny ¢ rym # —n
son verdaderas; entonces (m - #) # 0y (m t n) # 0, de manera que (i - n)(m +n)
# 0y r es falsa. Se ha demostrado. por tanto. que », — (g V r) es verdadera. Por
Gltimo, de la verdad de p — r, y r, — (¢ V ). puede concluirse que p — (g V r) e
verdadera, y que el caso estd terminado. ¢

Por lo general no se analiza las demostraciones en esta forma tan detallada. Se ha
hecho Gnicamente para ilustrar que las demostraciones son pensadas uniendo, a manera de
pieras, equivalencias y pasos validos resultantes de reglas de inferencia. B1 detalle con que

s demactecian se realice depende deb tipo de personn aue se espern ane B fen 4
S O
Come observacion final, se recuerda al lector gue nehios feoremias matemiteos signifie

can realmente que Ta proposicion es verdadera para todos los objetos de un cierto tipo. /\IgunaSE
veees esto no es evidente. Por tanto, ¢l teorema del ejemplo 8 realmente establece que, pard
todos los enteros m y i, n> = n* sty solo sin = n o n = —n. De modo semejante. la proposicion
“Sixyrson nimetos reales, y v # v, entoncesy < 103 <" es una proposicion acerca de todos
fos nameros reales vy v. Para demostrar un teorema de esta naturaleza, hay que asegurarse de
que los pasos de la demostracion sean vélidos para todo nimero real. No podria suponerse, pof
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ejemplo, que x sea 2 ni quey sea 7 ni J3 .Esto explica por qué las demostraciones comienzan
por seleccionar un elemento genérico, denotado por una variable. Por otra parte, se sabe, por la
seccion 2.2, que la negacion de una proposicion de la forma Vx P(x) es 3x ~P(x), por lo que se
necesita solamente encontrar un solo ejemplo cuando la proposicion es falsa.

Ejemplo 9. Demuestre o refute la proposicidén que expresa que six y y son nimeros rea-
les, (2 =y") & (x =y).

Solucién:  La proposicion puede expresarse de nuevo en la forma Vx Vy R(x, y).
En consecuencia, para demostrar este resultado, se necesitaria proporcionar pasos,
cada uno de los cuales seria verdadera para todas las x y y. Para refutar este resulta-
do, s6lo se necesita encontrar un ejemplo para el cual la implicacion sea falsa. Como
(—3)* = 3%, pero —3 # 3, el resultado es falso. A tal ejemplo se lo llama
contraejemplo, y cualquier otro contragjemplo serviria para el caso. ¢

En resumen, si una proposicién afirma que una propiedad es valida para todos los
objetos de un cierto tipo, entonces, para demostrarlo, se debe seguir pasos que sean validos
para todos los objetos de ese tipo y que no hagan referencia a alglin objeto en particular.
Para refutar tal proposicion, sélo se necesita demostrar un contraejemplo, es decir, un objeto
o grupo de objetos en particular para el cual no sea valida la afirmacion.

GRUPO DE EJERCICIOS 2.3

En los ejercicios 1 al 7, establezca si el argumento dado 6. Me volveré famoso o seré escritor.
es valido o no. Si es vdlido, identifique la tautologia o No seré escritor.
tautologias en que se basa. .
g q ". Me volveré¢ famoso.
1. Sivoy en auto a mi trabajo, entonces llegaré cansado e :
No oxtoy cansado cuandcj) [’} . ﬁ : : 7. Silo intento con ahinco y tengo talento, me
ans c ego a mi trabajo. - -
g ) convertiré en musico.
. Yo no voy en auto a mi trabajo. Si me convierto en musico, entonces scré feliz.
. Sino voy a ser feliz, entonces no intentaré ¢
) ) ) ) . , s entaré con
2. Sivoyen auto a mi trabajo, entonces llegaré cansado. .
) ahinco o no tengo talento.
Yo llego cansado a mi trabajo. -
. Yo voy en auto a mi trabajo. 8. (a) Demucstre que la suma de dos nmeros pares cs
- par.
3. Sivoyen auto a mi trabajo, entonces legaré cansado. (b) Demuestre que la suma de dos nimeros impares
Yo no voy en auto a mi trabajo. es par.
". No llegaré cansado. -
9. (a) Demuestre que la estructura [enteros pares, +, %]
4, St VO Ul adto a np ll'ah‘d_;n CHIONCES Teegre cansado o wiiiadd wuin iespiclo de
Yo voy.en aulo a mi trabajo, {by Demiuestic que fa esiructura {enteros impares,
+. *1 s cerrada con respecto de *
Me Vol\trt_i MOS0 0 NO ME CoNVertir en escritor 10, Demuestre que o7 es par sty s6lo si # es par.
Me convertiré ¢n escritor.
. Me volver¢ famoso. I1. Demuestre que 4 =BsiysolosiAcByBc A
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12.

13.

14.

15.

Logica

Sean 4 y B subconjuntos de un conjunto univer- 16. Demuestre o refute: que 3 | (n* — n) para todo entero

sal U. Demuestre que 4 < B si y solamente si

B c 4.

Demuestre que

(a) 4 < B es una condicidn necesaria y suficiente
para4d\U B=B.

positivo n.
17. Demuestre o refute: Vx x* > x2.

18. Demuestre que la suma de dos nimeros primos, cada
uno mayor que 2, no es un nimero primo.

(b) A < B es una condicion necesaria y suficiente

para A\ B=A.

Demuestre o refute: #n> + 41n + 41 es un nimero

19. Demuestre que si dos renglones son cada un
perpendicular con respecto de un tercer renglon
contenido en el plano, entonces los dos renglones
son paralelos.

primo para todo entero .

Demuestre o refute: la suma de cinco enteros
consecutivos cualesquiera es divisible entre 5.

20. Demuestre que si x es un niimero racional y y es un
nlimero irracional, entonces x + y es un niimero
irracional.

2.4. Induccion matematica

Se analizard aqui otra técnica de demostracion. Supéngase que la proposicién que se va a
demostrar puede ponerse en la forma Vn = n, P(n), en donde n, es algin entero fijo. Es
decir, suponga que se desea demostrar que P(n) es verdadera para todos los valores de n >
n,. El resultado siguiente muestra como puede hacerse esto. Supongase que (a) P(n) es
verdadera y (b) si P(k) es verdadera para algunos valores de £ = n,, entonces P(k + 1) debe
ser también verdadera. Entonces P(n) es verdadera para todos los valores de n = n,. A este
resultado se le llama principio de induccién matematica. En consecuencia, para demostrar la
verdad de una proposicion Vn = n, P(n) usando el principio de la induccién matematica, se
debe comenzar por demostrar directamente que la primera proposicién P(n ) es verdadera. A
éste se lo conoce como pase base de la induccion y es, por lo general, muy facil.

Luego se tiene que demostrar que P(k) — P(k + 1) es una tautologia para cualquier
seleccion de k= 1. Como el inico caso en que una implicacion es falsa es si el antecedente
es verdadero y el consecuente es falso, este paso suele hacerse demostrando que, si P(k)
fuera verdadera, entonces P(k + 1) tendria que ser también verdadera. Nétese que esto no es
lo mismo que suponer que P(k) es verdadera para alg(in valor de k. A este paso se le 1lama
paso de induccién, y por lo general se requiere algo de esfuerzo para demostrar que la
implicacion es siempre verdadera.

Ejemplo 1. Demuestre por induccién matemética, que para todos los valores de n = 1,

nn+1)
[+2+43++n="—"—""
2
. nn+1) )
Solucion: SeaP(n)elpredicade ! + 2+ 3+ -+ p— 5 Ln este ejemplo,

n, =1

Paso sase.  Primero se debe demostrar que P(1) es verdadera. P(i) es la proposicién

(1)

5 la cual es claramente verdadera.

_
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PAso DEINDUCCION.  Se debe demostrar ahora que parak = 1, si P(k) es verdadera, entonces
P(k + 1) también debe ser verdadera. Se supone que para algtin valor fijok=>1,

_k(k+1)
k———2 . 1)

1+24+3+--+
Abhora se desea demostrar la verdad de P(k + 1):

1+2+3+~-+(k+1)=(k+1)((I;+1)+1).

El primer miembro de P(k + 1) puede escribirse como 1 +2+3 +--- + k + (k+ 1),y
se tiene

k(k + 1
A+2+3+-+k)+(k+1) :—(*7)+(k+1) Usando (1) para reem-

2 plazaal+2+---+k
= (k + 1)[1; + 1:’ Factorizando

_(k+ 1)(k+2)
2
= (k+ D(k+1) + 1). El segundo
2 miembro de P(k + 1)

Se ha demostrado asi que el primer miembro de P(k + 1) es igual al segundo miembro de
P(k + 1). Por el principio de la induccién matematica, se sigue que P(n) es verdadera para
todos los valores de n = 1. ¢

Ejemplo2. Seand, A, A,,...,4 nconjuntos cualesquiera. Se demuestra por induccion
matematica que

(UA,) -A .
=1 / i=1

(Esta es una version extendida de una de las leyes de De Morgan.) Sea P(n) el predicado que
hace valido la igualdad para cualesquiera n conjuntos. Queda demostrado, por induccion
matematica que, para todos los n = 1, P(n) es verdadera.

Paso Base.  P(1) es la proposicion 4 , = A, lo cual obviamente es verdadero.
PASO DE INDUCCION.  Si P(k) es verdadera para cualesquiera & conjuntos, entonces el primer
“miembro de

(ki \
P(k+1)is(U A,.) =AUA U --UAUA,.,

[

Propicdad asociativa
de U

UAI()UAIHI

=(A]UA, U - UA) N A, LeydeDeMorganpara
1 2 K k

dos conjuntos
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Usando P(k)

D=

(N7)na

1

i

k+1_
- N4
i=]1

En consecuencia, la implicacién P(k) — P(k + 1) es una tautologia, y por el principio de
induccién matematica, P(n) es verdadera para todas las n = 1. L

Ejemplo 3. Se demuestra por induccién matematica que cualquier conjunto finito no va-
cfo es numerable; es decir, que puede disponerse en forma de lista.

Sea P(n) el predicado que indica que si 4 es un conjunto cualquiera con |4} =n = 1,
entonces 4 es numerable. (Véase el capitulo 1 para definiciones.)

Paso Base.  Aqui n es 1, de manera que se considera que 4 sea cualquier conjunto de un
elemento, por ejemplo 4 = {x}. En este caso x forma una secuencia por s{ misma cuyo
conjunto es 4, por lo cual P(1) es verdadera.

PAso DEINDUCCION.  Se quiere usar la proposicion de que si4 es un conjunto cualquiera conk
elementos, entonces A es numerable. Escoja ahora cualquier conjunto B con k + 1 elemen-
tos y tome cualquier elemento x en B. Como B — {x} es un conjunto con k elementos, la
hipotesis de induccion P(k) dice que hay una secuenciax,, x,, . . . ,X,conB — {x} comosu
conjunto correspondiente. La secuencia x;, x,, . . ., X,, x tiene entonces a B como conjunto
correspondiente, por lo que B es numerable. Como B puede ser cualquier conjunto conk +
1 elementos, P(k + 1) es verdadera si P(k) lo es. En consecuencia, por €l principio de la
induccion matematica, P(r) es verdadera para todos los valores de n = 1. ¢

Al demostrar resultados por induccidn, no debe comenzarse por suponer que P(k + 1)
es verdadera e intentar manipular este resultado hasta que llegue a una proposicion verdade-
ra. Este es un uso incorrecto del principio de la induccién matematica, es una equivocacion
comun.

Existe una conexion natural entre recursion e induccion, porque los objetos que son
definidos recursivamente utilizan a menudo una secuencia natural en su definicién. La
induccion es con frecuencia el mejor camino, tal vez el Unico, para demostrar resultados
acerca de objetos definidos recursivamente.

Ejemplo 4. Considérese la definicion siguiente de la funcion factorial: 11 = 1, n! = n(n -
1)!, n> 1. Supdngase que se desea demostrar para todos los valoresden = 1, n! =277, Se
procederd por induccion matematica. Sea P(n): n! =2"~'. Aquin es 1.

Paso Base.  P(1)es la proposicion 1! = 2° Como 1! es 1, esta proposicion es verdadera.

Pasaprnprecion Se quiere demostrar que Ph) — Ptk + 1) es una rautologm Sera una
tautologia si Pek) verdadera garantiza que Ptk + 1) es verdadera Supongase que &' =
2* "' parak = 1. Entonces. por la definicion recursiva, el primer miembro de P(k + 1) es

(k + )= (k+ 1)k!

= (k + 24! Usando P(k)
=2 x 2k k+1=2 yaquek=1
=2~ Segundo miembro de P(k + 1)

T———"—y
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En consecuencia P(k + 1) es verdadera. Por el principio de la induccion matematica, se
concluye que P(n) es verdadera para todos los valores de n = 1. .

El ejemplo siguiente muestra una manera en la cual puede ser util la induccién en la
programacion de computadoras. El seudocédigo que se emplea en éste y en los ejemplos

siguientes se describe en el apéndice A.

Ejemplo 5.  Considérese la siguiente funcién dada en seudocodigo.

FUNCTION CUAD(4)
1. C«0
2. D0
3. WHILE(D # A)
a. C«C+A
b. D«D+1
4. RETURN(C)
FIN DE LA FUNCION CUAD.

El nombre de la funcion, CUAD, sugiere que calcula el cuadrado de 4. El paso 3b muestra
que A debe ser un entero positivo para que el ciclo termine. Unos cuantos tanteos con valo-
res particulares de 4 proporcionaran evidencia de que la funcién si efectiia esta tarea. Sin
embargo, supéngase que ahora se quiere demostrar que CUAD siempre calcula el cuadrado
del entero positivo 4, sin importar qué tan grande pueda ser 4. Se dara una demostracién por
induccién matematica. Para cada entero n = 0, sean C,y D, los valores de las variables C'y
D, respectivamente, después de pasar por el ciclo WHILE # veces. En particular, C y D,
representan los valores de las variables antes de iniciarse el ciclo. Sea P(n) el predicado C,
=4 X D . Se demostrara por induccidn que Vn = 0 P(n) es verdadera. Aquinges0.

Paso Base.  P(0) es la proposiciéon C; = 4 X D, 1a cual es verdadera, ya que el valor de
ambas, C'y D es cero “después” de que el cero pasa por el ciclo WHILE.

Paso de iINnpuccioN.  Se debe usar ahora
P(k):C, = A X D, (2)

para demostrar que P(k + 1): C, =4 X D, . . Después de pasar por el ciclo, C se
incrementa por 4, y D se incrementa por 1, de manera que C..,=C+A4yD, =D +1.

primer miembrode P(k+ 1) C, ., = C, + A
= A XD, + A Usando (?) para reemplazar ¢,
— A X {D, + 1) Tactorizando
AM D, .. Segundo miembro de
P(k+ 1)

Por el principio de la induccion matematica, se desprende que mientras ocurra el ciclo C =
4 X D . El ciclo debe terminar. (;Por qué?) Cuando termina el ciclo o lazo, D = A4, de
manera que C=4 X A4, o sea 4%, y éste es el valor regresado por la funciéon CUAD. .
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El ejemplo 5 ilustra el uso de una invariante de ciclo o de bucle, una relacion entre
variables que persiste a través de todas las iteraciones del ciclo. Esta técnica para demostrar
que los ciclos y programas hacen lo que se afirma que hacen es una parte importante de la
teoria de la verificacidn de algoritmos. En el ejemplo 5, es claro que el ciclo termina sides
un entero positivo, pero para casos mas complejos, esto puede demostrarse también por
induccion.

Ejemplo 6. Utilice la técnica del ejemplo 5 para demostrar que el programa en seudocodigo
que se da en la seccion 1.4 calcula el maximo comun divisor de dos enteros positivos.

Solucién: Véase el seudocodigo que se dio con anterioridad.

FUNCTION GCD(X, Y)
1. WHILE (X #Y)
a. IF (X >Y)THEN

1. XeX-Y
b. ELSE
1. YeY—-X
2. RETURN (X)
FIN DE LA FUNCION MCD

Se afirma que si X'y Y son enteros positivos, entonces MCD regresa el MCD (X, Y). Para
demostrar esto, sean Xy Y, los valores de X'y ¥ después de que n = 0 pasa por el lazo
WHILE. Se afirma que P(n): MCD(X, Y)) = MCD (X, Y) es verdadera para todos los
valores de n = 0, y se demuestra esto por induccién matematica. Aqui 7, es 0.

Paso Base. X, = X, Y, =Y, ya que éstos son los valores de las variables antes de que
comience el ciclo; en consecuencia P(0) es la proposicion MCD(X,, ¥) = MCD(X, 1),
la cual es verdadera.

Paso pE INDUCCION.  Considere ahora el primer miembro de P(k + 1), es decir, MCD(X, , ,,
Y,,,). Después de que k + 1 pasa por elciclo,yaseaX, =X, yY, =Y, —Xo0X, =
X — Y yY, =Y. Entonces, si P(k): MCD(X,, Y) = MCD(X, Y) es verdadera, se tiene
por el teorema 5, seccion 1.4, que MCD(X, Y,,)=MCD(X, ¥)= MCD(X, Y). En
consecuencia, por el principio de la induccién matematica, P(n) es verdadera para to-
dos los valores de 7 = 0. La condicién de salida para el ciclo es X =Y,y se tiene
MCD(X, Y ) = X . Por tanto, la funcion siempre regresa el valor del MCD(X, ¥). ¢

GRUPO DE EJERCICIOS 2.4

En los ejercicios 1 al 12, demuestre que la propo- e esaorn e

sicién es verdadera por medio de induccion mate- n2n + H2n - 1)

mdtica. )
3.1+21+23+...+2n:2u»111

L2+4+6+--+2n=nn+1

4.5+10+15+~--+5n=—5”(”2+ )
s, 12+22+32+‘..+n2:”(”+l)(2”+1)
6
6. 13+23’+33+--~+n3=—"2(”+1)2
4

7.1+5+9+ - +@n—-3)=n2n - 1)

8. 1+a+a2+...+an~1:a,,,,il
a-—1
9. a+ar+ar2+~-.+ar"*1:,a(%,:f,,)’
- r
para r # 1
10. 1 +2"<3",paran22
11. n < 2" paran > |
2
12. 1+2+3+--.+n<(2”;])

13. Demuestre por induccion matemética, que st un
conjunto A tiene n elementos, entonces P(A4) tiene 27
clementos.

14. Demuestre por induccién matematica, que 3 | (n* —
1) para todo entero positivo .

15, Demuestre por induccion matenatica, yue st 4,
A, , A son n conjuntos cualesquiera, entonces

-5

16. Demuestre por induccidon matemdtica, que siAI,A,, e

Ay Bsonn+ 1 conjuntos cualesquicera, entonees

i

i

(U AN - LA B

Demnostic por induc i

4y B son n conjuntos cualesquiera, entonees

((”]A,)u B= (A UB).

Scccion 2.4 Induccidon matematica 69

18. Sea P(n) la proposicién 2 | 2n - 1).
(a) Demuestre que P(k) — P(k + 1) es una tautologia.
(b) Demuestre que no existe entero » para el cual
P(#n) sea verdadera.
(c¢) ¢(Contradicen los resultados de las partes (a) y
(b) el principio de la induccion matemética?
Explique.

En los ejercicios 19 al 23, demuestre la proposicion
dada acerca de las matrices.

19. (A, + A+ -+ A) =AT+ AT+ + A7

20. (AA, --A) = ATA!

n—1t

e AZAY
21 A’A7 = A2

22. (AZ)n — AZn

23. Secan A y B matrices cuadradas. Si AB = BA,
entonces (AB)" = A"B”, paran = 1.

24. Utilice induccién para demostrar que si p es un
numero primo y p | @’ para n = |, entonces p | a.

25. Demuestre que st MCD(q, b) = 1, entonces MCD
(a", b") = 1 para todos los valores de n > 1.
(Sugerencia: Utilice el ejercicio 24.)

26. (a) Encuentre cl entero positivo mds pequeiio #,, tal
que 24> nj .
(b) Demuestre que 2¢ > i~ para todos los valores de
n=n,

FEn los ejercicios 277 al 30, demuestre que el
algoritmo dado, usado correctamente, produce el
resultado establecido utilizando induccion matema-
tica para demostrar que la velacion indicada es una
invariante de rizo y verificando los valores cuando
deja de producirse el enlazamiento. Todas las
variables representan enteros 1o negativos.

27. SUBROUTINE COMP(X. Y. Z)

. Z« X

A S U

. WHILE (W -0
A e/ Y
b, We- W - |

4. RETURN

FIN DE 1.A SUBRUTINA COMP
CALCULA: Z=X+ VY
INVARIANTE DECICLO: (Y X M)+ Z=X+}°
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28. SUBROUTINE DIFF (X,Y; Z)

1. Z« X
2. WeY
3. WHILE (W > 0)
a. Z«7Z-—-1
b WeW-1
4. RETURN

FIN DE LA SUBRUTINA DIFF
CALCULA: Z=X-7Y
INVARIANTE DE CICLO: X — Z+ W =Y

29. SUBROUTINE EXP2(N, M; R)

1. R«1

2. K& 2M

3. WHILE (X > 0)
a. R« RxN
b. K« K—1

4. RETURN

FIN DE LA SUBRUTINA EXP2
CALCULA: R=N*
INVARIANTE DE CICLO: R X N¥= N

IDEAS CLAVE PARA REPASO

® Proposicion o enunciado: Oracion declarativa que
es verdadera o falsa, pero no ambas.

® Variable propositiva: Letra que denota una propo-
sicion.

® Proposicion compuesta: proposicion que se obtie-
ne combinando dos o mas proposiciones por me-
dio de un conectivo logico.

® Conectivos logicos: “no” (~), “y” (A), “0” (V), si
entonces (—), si y solamente si (<)

® Conjuncion:p A g @y q).

@ Disyuncién: p V g (p 0 g).

® Predicado (funcion propositiva): una oracion de la
forma P(x).

® Cuantificacién universal: Vx P(x) [Para todos los
valores de x, P(x) es verdadera.]

® Cuantificacion existencial 4x P(x) [Existe una x
tal que P(x) es verdadera. ]

® Proposicion condicional o implicacion: p — g (si
p entonces q); p es el antecedente o hipdtesis y g es
la consecuente o conclusion.

® Reciprocadep — g1 g > p.

Contrapositivade p — g: ~q = ~p.

® Equivalencia: p <> q.

30. SUBROUTINE POWER(X, Y; Z)

1. Z« 0

2. WY

3. WHILE (W > 0)
a. Z«7Z+X
b WeW-1

4, WeY -1

5. Ue«Z

6. WHILE (W > 0)
a. L« Z+U
b WeW-1

4. RETURN

FIN DE LA SUBRUTINA POWER
CALCULA: Z=X X }?

INVARIANTE DE CICLO (primer ciclo):
ZHXX W =XX7Y

INVARIANTE DE CICLO (segundo ciclo):
Z+HXXYXW=X+71

(Sugerencia: Utilice el valor de Z al final del primer
ciclo y utilice el que se tiene en el ciclo 2.)

Tautologia: una proposicion que es verdadera para
todos los valores posibles de sus variables propo-
sitivas.
Falacia: una proposicién que es falsa para todos
los valores posibles de sus variables propositivas.
Contingencia: una proposicion que puede ser
verdadera a falsa, dependiendo de los valores
de verdad de sus variables propositivas.
Proposiciones logicamente equivalentespyq: p =g
Métodos de demostracion:
g se desprende logicamente de p: véase la pagi-
na 58. .
Reglas de inferencia: véase la pagina 59.
Modus ponens: véase la pagina 60.
M¢étodo indirecto: véase la pagina 61.
Demostracion por contradiceion: véase la pagi-
na 61.
Contraejemplo: caso que refuta un teorema o pro-
posicion.
Principio de induccién matematica: Sea n un en-
tero fijo. Supéngase que para cada entero n = n,
se tiene una proposicion P(n). Supdngase que (a)
P(n,) es verdadera y (b) si P(k) entonces Pk + 1)

es una tautologia para cada valor de k = n,. Enton-
ces el principio de la induccién matemdtica esta-
blece que P(n) es verdadera para todos los valores
den=n,

EJERCICIOS DE CODIFICACION

Para cada uno de los siguientes, escriba el progra-

ma o subrutina que se solicita, en seudocodigo 3.
(como se describe en el apéndice A) 0 en un

lenguaje de programacion que usted conozca.

Pruebe su codigo ya sea usando papel y ldpiz, o
gjecutdndolo en una computadora. 4.

1. [Escriba un programa que imprima una tabla de
verdad para p A ~q.

2. Escriba un programa que imprima una tabla de
verdad para (p V q) = r.

Ejercicios de codificacion 71

® Invariante de ciclo: una proposicion que es verda-
dera antes y después de cada pasada por un ciclo o
bucle de programacién.

Escriba un programa que imprima una tabla de
verdad para cualquier funcién propositiva de
dos variables.

Escriba una subrutina EQUIVALENTE que
determine si dos expresiones ldgicas son
equivalentes.

Escriba una subrutina que determine si una
expresion logica es una tautologia, una contin-
gencia o una falacia.
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Demostracion: Cada eleccion de método para realizar T, dara lugar a una manera
diferente de efectuar la secuencia de trabajos. Existen #, de estos métodos, y para
cada uno de ellos puede elegirse n, maneras de llevar a cabo T5. Asi, en total, habra
n,n, maneras de efectuar la sucesion T, 7, Véase la figura 3.1 en caso de que n, sea 3
y 1, sea 4. L

YR

Posibles maneras de realizar Iatarea 1 Posibles maneras de realizar la tarea 2

CAPITULO

Posibles maneras de efectuar la tarea 1, y luego la tarea 2 en sucesion

Figura 3.1

En ocasiones, ¢l teorema 1 es llamado principio de multiplicacién del conteo. (Se
sugiere compararlo cuidadosamente con el principio de adicion del conteo de la seccién
1.2.) Es facil extender el alcance del principio de multiplicacion, como sigue:
ReqUISltO previ(): Capitulo 1 Teorema 2. Suponguse que se va d efectuar, en sucesion, los irabajos T\, Ty, ..., Ti. Si T,
puede realizarse de n, maneras, y para cada una de estas maneras T, puede hacerse de n,
maneras, v para cada una de estas n,n, maneras de realizar T, T, en sucesion, T; puede lle-
varse a cabo de ny maneras, y asi sucesivamente, entonces la secuencia T\T, - - - T, puede
efectuarse de exactamente nyn, * * ° n Maneras.

Lis téenicas de conteo son impotlantes en matematicas y en las ciencias de la computacién
p:njivcul:mncmo en el anilisis de algoritmos. En Lo seceidn 1.2, se introdujo ¢l principio dej
adicion. En este capitulo se presenta otras técnicas de conteo, en forma particular las que se
cmpIAeu para las permutaciones y combinaciones, y se considera dos aplicaciones de conteo,
¢l principio de casillas y la probabilidad. Ademas, se analiza relaciones de recurrencia otrz;
herramienta para el analisis de programas de computadora. ’

Demostracion:  Este resultado puede demostrarse por medio del principio de
induccién matematica sobre 4. .

Ejemplo 1. Un identificador de etiqueta para un programa de computadora, consta de
una letra seguida por tres digitos. Si se permite repeticiones ;cudntos identificadores distin-

QP

3.1. Permutaciones

tos de etiqueta sera posible tener?

SNk secdon y en muchos otios 1emas. Soiucton. Hay 26 posibilidades para lu leua inicial y 10 posibilidades para cada
- : uno de los tres digitos. En consecuencia, por el principio extendido de la multiplica-
Teorema 1. Supongase que va a cjectuarse dos trabajos, 1, v T en secuencia. Si T, cion, hay 26 X 10 x 10 x 10, 0 sea, 26 ,000 identificadores posibles de etiqueta. ¢
puede realizarse de ny maneras, v para cada una de estas maneras T };11('(/(’ Hevarse a cabo

de nomancras, entonces la secuencia T\ T, puede efectuarse en nny maneras. Ejemplo 2. Sea 4 un conjunto con n elementos. ;Cuantos subconjuntos tiene A7

P ]
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Solucion:  Se sabe, por la seccion 1.3, que cada subconjunto de 4 esta determinado
por su funcién caracteristica, y si 4 tiene » elementos, esta funcién puede describirse
como un arreglo de ceros y unos, de longitud n. El primer elemento del arreglo puede
llenarse de dos maneras (con un 0 o con un 1), y esto es igualmente cierto para todos
los elementos subsecuentes. En consecuencia, por el principio extendldo de la multi-
plicaci6n, hay

2:2...2=2"
——
n factores

maneras de formar el arreglo, y por lo tanto 2" subconjuntos de A. *

Dirijase la atencion al siguiente problema de conteo. Sea A cualquier conjunto de n-

elementos, y supongase que 1 < r << n.

Problema 1. ;Cudntas secuencias diferentes, cada una de longitud », puede formarse
utilizando elementos de A4 si

(a) ¢pueden repetirse elementos en la secuencia?

(b) todos los elementos en la secuencia deben ser distintos? _
Se observa en primera instancia, que puede formarse cualquier secuencia de longitud »
llenando r casillas en orden de izquierda a derecha con elementos de 4. En el caso (a) puede
usarse copias de los elementos de 4.

Casillal Casilla2 Casilla 3 Casilla r — 1 Casillar

Sean T\ el trabajo “llenar casilla 17, 7, el trabajo “llenar casilla 2”, y asi sucesivamen-
te. Entonces el trabajo combinado 7,7, - - - T, representa la formacién de la secuencia.

Caso (a). 7, puede efectuarse de n maneras, ya que puede copiarse cualquier elemen-»
to de 4 para la primera posicion de la secuencia. Lo mismo ocurre para cada uno de los
trabajos 75, T, . . ., T,. Entonces, por el principio extendido de la multiplicacion, el niimero
de secuencias que puede formarse es

nens- ~-°n:n".

~——
r factorcs

Se ha comprobado, por tanto, el resultado siguiente.

Teorema 3. Sea A un conjunto de n elementos y | < r << n. Entonces, el mimero de secuen-

cias de longitud r que puede formarse con elementos de A, permitiendo repeticiones, esn”. ® |

Ejemplo 3. ;Cuéntas “palabras” de tres letras puede formarse a partir de letras del con-
junto {a, b, v. z} si se permite repetir letras?

Solucion.  Eneste cason es 4y res 3. de manera que el nimero de tales palabras es
4%, es decir, 64, por el teorema 3. ¢

Considérese ahora el caso (b) del problema 1. En este caso también T, puede efectuar-
se de n maneras, en vista de que puede escogerse cualquier elemento de A para la primera
posicion. Cualquiera que sea el elemento que se escoja, solo quedan (n — 1) elementos, de
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manera que T, puede realizarse de (n — 1) maneras, y asi sucesivamente, hasta que finalmen-
te 7, puede efectuarse de (n ~ (» — 1)), o (n — r + 1) maneras. En consecuencia, por ¢l
principio extendido de la multiplicacién, una secuencia de r elementos distintos tomados de
A puede formarse de n(n — 1)(n — 2) - - - (n — r+ 1) maneras.

A una secuencia de r elementos distintos de 4 suele llamarsela permutacién de A4
tomados r a la vez. Esta terminologia es normal o esténdar, y por ello se esta adoptando,
aunque sea confusa. Una mejor terminologia podria ser una “permutacién de r elementos
escogidos de A”. Muchas secuencias de interés son permutaciones de alglin conjunto de »
objetos, tomados  a la vez. El analisis anterior muestra que el nimero de tales secuencias
depende sdlo de ny r, y no de 4. Este niimero se escribe a menudo P, y se denomina
numero de permutaciones de # objetos tomados » a la vez. Asi se acaba de demostrar el
resultado siguiente.

Teoremad. S§il=<r=n, entonces P, el numero de permutaciones de n objetos tomados
ralavez,esn-(n—1)-(n —2)- s(n=r+1). °

Ejemplo 4. Sea 4 el conjunto {1, 2, 3, 4}. Entonces las secuencias 124, 421, 341 y 243
son algunas permutaciones de A tomando 3 elementos a la vez. Las secuencias 12, 43, 31,
24 y 21 son ejemplos de diferentes permutaciones de 4, tomando dos elementos a la vez.
Por el teorema 4, el nimero total de permutaciones de 4, tomando tres elementos a la vez es
4P3,0sea,4-3-2,024. El nimero total de permutaciones de 4 tomados dos a la vez, es ,P,,
osead-3,012. ¢

Cuando r = n, se esta contando los distintos arreglos de los elementos de 4, con | 4 |
= n, en secuencias de longitud ». Una secuencia de esta naturaleza se llama permutacién
de 4. (En el capitulo 5 se emplea el término permutacion en forma ligeramente diferente
para aumentar su utilidad.) El nimero de permutaciones de 4 es asi ,P, 0 sea,n - (n — 1) - (n
— 2y 2 - 1,sin 2 |. Este nimero también se escribe en la forma n! y se lee n factorial.
Ambas, Py n! son funciones integradas en muchas calculadoras.

Ejemplo 5. Sead el conjunto {a, b, c}. Entonces, las permutaciones posibles de 4 son las
secuencias abc, ach, bac, beca, cab v cha. 2

St se conviene en definir 0! igual a [, entonces para cada i 2 0 se ve que el nimero de
permutaciones de n objetos es n!. Sin 2 0y 1 = r < n, se puede dar ahora una forma mas
compacta para ,/, como sigue.

P=n-(n-1)y-n—-2)---(n-r+1)

Hoor

n-n-—NhH---(n—r+1)-(n—r): (n-r—l) 2.1
b (n—r)- (nf-r-1)
. n!
Ejemplo 6. Supongase que .1 ¢s un conpunto formado por fas 52 cartas de una baraja

ordinaria de juego. Supongase ademas que se baraja todas las cartas y que se toma una
mano de cmco cartas. Una lista de fas cartas de esta mano, cn el orden en que fueron
tomadas, es una permutacién de 4, tomada en cinco clementos a la vez. Algunos ejemplos
serian AC, 3D, 51, 2C, JE; 2C, 3C, 5C, QC, KD; JC, D, JE, 4C. 4C, y 3D, 2C, AC, JE, 5C.
Nétese que las manos primera y Gltima son las mismas, pero representan diferentes
permutaciones, en vista de que fueron tomadas en un orden diferente. El nimero de
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permutacioneg de 4, tomando cinco a la vez es ,Ps= & 05251 -50-49-48 ¢
311,875,200. Este es el nimero de manos de cinco cartas que se puede sacar si se considera

el orden en que fueron tomadas. ¢

Ejemplo 7. Si 4 es el conjunto en el ejemplo 5, entonces n es 3, y el nimero de

permutaciones de 4 es 3! 0 6. En consecuencia, todas las permutaciones de 4 estan enlistadas,

en el ejemplo 5, como se afirmo. *
Ejemplo 8. ;Cuantas “palabras” de tres letras distintas puede formarse con las letras de la -
palabra MAST?
Solucié El nf] P 4 # -
olucion: n = 590
umero es ,P; @-3°n 024, 2

En el ejemplo 8, si la palabra hubiera sido MASS, ,P, contaria como distintas algunas
permutaciones que no pueden distinguirse. Por ejemplo, si se marca las dos S como S yS,
entonces S;AS, y S,AS, son 2 de las 24 permutaciones contadas; pero sin marca, éstas son

la misma “palabra”. Hay un caso més por considerar, las permutaciones con repeticiones
limitadas.

Ejemplo 9. ;Cudntas permutaciones distintas puede hacerse con las letras de la palabra
BANANA?

Solucion:  Se comienza por rotular las A y las N para poder distinguirlas temporal-
mente. Para las letras B, A, N,, A,, N,, A,, hay 6!, 0 sea 120 permutaciones. Algunas
dfa estas permutaciones son idénticas, excepto por el orden en que aparecen las N, por
ejemplo, A;A,A;BN|N, y A A,A,BN,N,. De hecho, puede enlistarse las 120

permutaciones en pares cuyos miembros difieran solamente en el orden de las dos N. -

Esto significa que si se suprime los rotulos de las N, s6lo quedan %, es decir, 60
permutaciones distinguibles. Razonando de manera similar, se ve que éstas pueden
ser agrupadas en conjuntos de 3!, o sea de 6, que difieran solamente por el orden de las
tres A. Por ejemplo, un conjunto de 6 consta de BNNA,A,A,, BNNA AA,,
BNNA,A A;, BNNAAJA|, BNNASA A, y BNNALALA,. Suprimiendo las etiquetas
se convertirian estas 6 cn la permutacion anica BNNAAA. En consecuencia, hay 66Q,
o sea 10 permutaciones distinguibles de las letras BANANA. ¢

El siguiente teorema describe la situacion general para permutaciones con repeticio-
nes limitadas.

Teorema S. £/ mimero de permutaciones distinguibles que puede formarse a partir de
una coleccion de n objetos, en la que el primer objeto aparece k, veces, el segundo objeto
/\’w veees: v (l\'l‘ SHCeEeSIvamente os ‘

n! 2

ktkyt k) B

Ejemplo 10. El m'm}ero de “palabras” distinguibles que puede formarse con las {etras de
MISSISSIPPL es 1, 414151, €s decir, 34 650. .

GRUPO DE EJERCICIOS 3.1

10.

Una clave de admisién de un banco consta de dos
letras del alfabeto seguidas por dos digitos. ;Cudntas
claves diferentes hay?

En un experimento psicoldgico, una persona debe
acomodar en hilera un cuadrado, un cubo, un
¢circulo, un triangulo y un pentagono. ;Cuantos
acomodos diferentes son posibles?

Se lanza al aire una moneda cuatro veces y se
registra el resultado de cada lanzamiento. ;Cuéntas
secuencias diferentes de cara y cruz son posibles?

Un ment de opciones incluye una sopa, un platillo
fuerte, un postre y una bebida. Suponga que un
cliente puede hacer su eleccion entre cuatro sopas,
cinco platillos fuertes, tres postres y dos bebidas.
¢.Cuantos mentis diferentes puede seleccionarse?

Un dado legal de seis caras es lanzado cuatro veces,
y se anota los niimeros obtenidos en una secuencia.
;Cuéntas secuencias diferentes hay?

Calcule cada uno de los siguientes casos.
(a) 4P, (b) o5 (©) P,
(d) nPn i (C) nRz 2 (f) nt le -1

(Cuéntas permutaciones hay de cada uno de los
siguientes conjuntos?

(a) {r.s.tuf
(by {1.2,3,4.5}
(c) {a.h . 1.2.3. ¢}

Para cada conjunto 4, cncuentre el nimero de
permutaciones de .1 tomando los clementos ra la
vez.

(a) A ={1,2.3,4,5.6,7,r=3

by A ~Ha,b,c.d,e, fyr—2

(¢) A= {x|xcsunecnteroyx’ <16}, r=4

.De cudntas maneras plieden seis hombres y scis

Hidjeres aetitarse e tinea si

() cualquier persona pucde sentarse on seguida de
cualquicr otra?

(bt los hombres y fas mugeres deben ocupar asientos

alternados?

Encuentre ¢l nimero de permutaciones diferentes de
las letras de la palabra GROUP.

12.

13.

14.

is.

16.

18.

19.

Seccion 3.1 Permutaciones 77

(Cuantos acomodos diferentes de las letras de la
palabra BOUGHT puede formarse si las vocales
deben conservarse juntas?

(a) Encuentre el nimero de permutaciones
distinguibles de las letras de BOOLEAN.

(b) Encuentre el nimero de permutaciones
distinguibles de las letras de PASCAL.

(a) Encuentre el nimero de permutaciones
distinguibles de las letras de ASSOCIATIVE.

(b) Encuentre el nimero de permutaciones
distinguibles de las letras de REQUIREMENTS.

(De cuantas maneras pueden sentarse siete personas
en un circulo?

Se va a usar un librero para exhibir seis nuevos
libros. Supdngase que hay ocho libros de ciencia de
computacién y cinco libros franceses de donde
escoger. Si se decide exhibir cuatro libros de ciencia
de computacion y dos libros franceses, y se pide
mantener juntos los libros de cada tema ;cuadntos
acomodos diferentes es posible hacer?

Sc lanzan tres dados legales de seis caras y se anotan
los numeros que aparecen ¢n las caras superiores
como lanzamientos triples. ;Cuantos reportes
diferentes son posibles?

Demuestre que -, (P, = P,

La mayoria de las versiones de Pascal permite
formar nombres de variables de ocho letras o
digitos, con la condicion de que el primer caracter
debe ser una letra. ;Cuantos nombres de variables
de ocho caracteres son posibles?

Actualmente, los codigos de area telefonicos son de
tres digitos, pero el digito intermedio debe ser 0 o 1.
Los eadigos cuyos tltimos dos digitos son | estan
stendo usados para otros tines, por gemplo, 911
Con estas condiciones (cuantos codigos de drea hay

disponibles?

:Cuantos numeros de Seguridad Social (IEU) puede
asignarse en cualquier tiempo dado? Identifique las
suposiciones que haya hecho.
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Combinaciones

El principio de multiplicacién y los métodos de conteo para permutaciones son aplicados
todos a situaciones en las que interesa el orden. En esta seccidn se vera algunos problemag
de conteo en los que no interesa el orden.

Problema2. Sea4 cualquier conjunto den elementosy 1 << » << n. ; Cuantos subconjuntog
diferentes de A4 existen, cada uno con r elementos?

El nombre tradicional para un subconjunto de r elementos de un conjunto 4 de »
elementos es una combinacion de 4, tomando los elementos r a la vez.

Ejemplo 1. Sead={l,2,3,4}. Las siguientes son todas combinaciones distintas de 4, con,
sus elementos tomados tresalavez: 4, = {1,2,3},4,={1,2,4},4,={1,3,4},y4,={2,3,4}.
Noétese que éstos son subconjuntos, no secuencias. Por lotanto, 4, = {2,1,3} = {2,3,1} =
{1,3,2} = {3, 1,2} = {3, 2, 1}. En ofras palabras, cuando se trata de combinaciones, a diferen.
cia de las permutaciones, el orden de los elementos carece de importancia., ¢
Ny
Ejemplo 2. Sea 4 el conjunto de las 52 cartas de una baraja ordinaria para juego. Enton.’
ces una combinacion de 4, tomando cinco cartas a la vez, es s6lo una mano de cinco cartas,
independientemente de la forma en que hayan sido dadas. ¢

Se quiere contar ahora el nimero de subconjuntos de » elementos de un conjunto 4 de
n elementos. L.a manera mas facil de lograrlo es usando lo que ya se sabe acerca de las
permutaciones. Observe que cada permutacion de los elementos de 4, tomados r a la vez,
puede formarse efectuando las dos tareas siguientes en secuencia.

Tarea 1. Escoja un subconjunto B de 4 que contenga » elementos.
Tarea 2. Escoja una permutacion particular de B.

Se esta tratando de calcular el nimero de maneras de escoger B. Se llamari a este
nimero C. Entonces la tarea 1 puede efectuarse de C maneras, y la tarea 2 puede realizarse
de r! maneras. En consecuencia, el nimero total de maneras de efectuar ambas tareas es, por
el principio de la multiplicacion, C - 1. Pero también es ,P,. Por tanto

n!
C-pl=p = )
r nor (n _r)!

Por lo tanto,

n!
rt(n—r!
Se ha demostrado asi el siguiente resultado.
Teorema 1. Sca .1 un conjunto con | A - n, vsca | =< v < n Eutonces el nimero de

comhbinaciones de los elemoentos de 4 tomadosr a lavez os deciv. el mimero de subconjuntos
de r elementos de A, es

n!
Min—nt )

Scccion'3.2  CombinseIoRes™ ™
gi) f B ‘ R (‘5 )&
Notese una vez mas que el numero de com.bmaq ones de A, tomando 105 elementos -

a la vez, no depende de A4, sino solamente de n y /. Este niimero se escribe a menudb"éf)
se denomina el niimero de combinacionesidb H/dﬂf}etzOs tomados r a la vez. Se tiene ! 341

— - ¥

Este calculo puede hacerse directamente en muchas calculadoras.

Ejemplo 3. Calcule el nimero de manos distintas, de cinco cartas, que se puede dar to-
mandolas de una baraja de 52 cartas.

Solucion:  Este nimero es ,C; = 5‘27, , 0 sea, 2,598,960, porque el orden en que se
den las cartas es irrelevante. Compare este niimero con el que se calculd en la seccion
3.1, ejemplo 6. ¢

En el estudio de las permutaciones, se consideraron casos en los que se permitian
repeticiones. Véase ahora un caso de este tipo para combinaciones.

Considérese la situacion siguiente. Una estacion de radio ofrece un premio de tres
discos compactos de la lista de los diez de mayor éxito. La seleccion de los discos se deja al
ganador y se permite repeticiones. El orden en que se haga las selecciones es irrelevante.
Para determinar el niimero de maneras en que los ganadores del premio pueden hacer sus
selecciones, se utiliza una técnica de resolucion de problemas que ya se ha usado antes; se
modela la situacién con una que ya se sabe ¢omo manejar.

Supongase que las selecciones son registradas por el sistema de correo de voz de la
estacion. Después de identificarse apropiadamente, se pregunta a una ganadora acerca de
cada una de las 10 mejores selecciones en orden. En cada paso, sc le pide que oprima 1 si
ella quiere ese disco compacto y 2 para continuar con la seleccion siguiente. kIl | puede
oprimirse una segunda o una tercera vez para ordenar una segunda o tercera copia de una
seleccion antes de oprimir el 2 para continuar. Cuando se ha registrado un total de tres unos,
se detiene ¢l proceso y el sistema le dice a la persona que Hama que le serdan envados [os dis-
cos seleccionados. Se tiene que hacer una grabacion para cada una de estas lamadas. Un
disco de la grabacion sera una secuencia de unos y doses. Es claro que habra tres unos en la
secuencia. Una secuencia puede contener hasta nueve doses, por ejemplo, si ¢l ganador
rehisa fos primeros nueve discos y escoge tres copias del disco numero 10, Nuestro modelo
para contar el namero de maneras en que un ganador puede escoger sus tres discos es el
siguiente. Cada seleccion de tres discos puede representarse por un arreglo que contenga
tres unos y nueve doses o espacios en blanco, es decir, un total de 12 celdas. Algunos
registros de grabacion posibles son 222122122221 (seleccionando los niimeros 4, 6, 10).
1211 hbbbbhbb (sclccci(mzmdo cl namero l v dm‘ copizm del namero 7) y 222222222111
defarreglo que contengan unos es o virone etarreotio trene 2o oo sea ) L‘cld:l\', Vot

orden en que se haga esta sefeccion no importa.

Teorema 2. Supdnguse que se va a hacer kselecciones deon elementos sin tomai en
consideracion ol orden s que se perniien repeticiones, suponicndo por lo menos h copias de
cada uno de los nelementos. Elmimero de maneras en que puede hacerse estas selecciones
es gl bt

in
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Ejemplo 4. ;De cuantas maneras puede escoger el gaxllador de‘up premio tres discos com-
pactos de la lista de los diez de mayor €xito, si se permite repeticiones?

Solucion: Aquines 10ykes3. Porel teorema 2, hay 4,5 ,C; o sea ,C; maneras

de hacer las selecciones. El ganador del premio puede hacer la seleccion de 22.0

maneras.

En general, cuando interesa el orden, se cuenta el numero de secuencias o
permutaciones, y cuando no interesa el orden, se cuenta el nimero de subconjuntos o com-
binaciones. ‘ o

Algunos problemas requieren que el conteo de permutaciones y cornbmacmne§ se
combine y se complemente por el uso directo del principio de la adicion o de la multipli-

cacion.

Ejemplo 5. Supdngase que una clave vélida de acceso a una computadora esta formada
por siete caracteres, el primero de los cuales es una letra escogida del conjunto {A,B,C,D,
E, F, G}, y que los seis caracteres restantes son letras escogidas del alfabeto o un d1g1t0

(Cuantas claves diferentes son posibles?

Una clave puede construirse efectuando las tareas T, y T, en secuencia.

Solucion:
Tarea T,: Escoja una letra de iniciacion del conjunto dado. . N
Tarea T,: Escoja una secuencia de letras y digitos. Se permite repeticiones.

La tarea T, puede efectuarse de ,C, maneras. Puesto que hay 26 letras y 10 digit.os que
pueden ser escogidos para cada uno de los seis ?aracteres rfstantes y, en vista de
que se permite repeticiones. la tarea T, puede realizarse en 36°, o sea, 2,176.,782,336
maneras. Por el principio de la multiplicacion, hay 7 - 2176782336, o sea
15,237,476,352 claves diferentes. ¢

Ejemplo 6. Cuantos comités diferentes de sicte personas pucde formarse, si cada cqu:e
i j i ible de 20 mujeres. v 4 hombres de un conjunto
debe tener 3 mujeres de un conjunta disponible de 2 fi 3

disponibie de 30 hombres?

Solucion:
tes en sucesion:

En este caso puede formarse un comité realizando las dos tareas siguien-

Tarea !:
Tarea 2

Escoja 3 mujeres det conjunto de 20 mujeres.
Fsenia 4 hambres del conmnto de ) hombres

Agui no importa el orden en que se seleccione los individuos. por lo que simplemepte
estaremos contando el numero de subconjuntos posibles. Asi, la tarea 1 puede etec-
tuarse de ,,C. 0 sea de 1140 maneras, v la tarea 2 puede realizarse de ,,C, 0 sea de
27,405 maneras. Por el principio de multiplicacion, hay (1140) (27405) o sea
31,241,700 comités diferentes. ¢

0

GRUPO DE EJERCICIOS 3.2

Calcule cada una de las siguientes combinaciones. 10
(a) ¢4 (b) ,C4 (©) 16Cs

(d) nCn -1 (e) nCn -2 (f) n+ I‘Cn -

b

.C

"=y

Demuestre que ,C. =
11.

¢ De cudntas maneras puede seleccionarse un comité -

de tres miembros de facultad y dos estudiantes,

tomédndolos de siete miembros de facultad y ocho

estudiantes?

;De cudntas maneras puede darse una mano de 6
cartas si se tiene una baraja de 52 cartas? 12,
En un cierto colegio, la oficina de alojamientos ha
decidido nombrar, para cada piso, un consejero
residente masculino y uno femenino. ;Cuantos pares
diferentes de consejeros puede seleccionarse para un
cdificio de sicte pisos, de 12 candidatos del sexo
masculino y 15 del sexo femenino?

13.

14.

Un fabricante de microcomputadoras que esta

preparando una camparia de publicidad, esta conside-

rando seis revistas, tres periddicos, dos estaciones de

television y cuatro estaciones de radio. ;| De cudntas

maneras puede difundirse seis anuncios si

(a) los scis deben ser hechos en revistas?

(b) dos deben aparecer en revistas, dos en periddi-
€os, uno en television y uno por radio?

(Cudntas manos diferentes de § cartas con 5 cartas
rojas v 3 negras puede repartirse de una baraja de 52
cartas’?

(a) Encuentre ol ntimero de subconjuntos de cada
tamano posible de un conjunto que contienc
cuatro elementos.

(b) Encuentre ¢l niimero de subconjuntos de cada
tamanio posible pdra un conjunto que contiene i
clementos.

16.

Ui unnc conticne 15 bolas, S de Tas cuales son rajas
¥ Tson negras. (Do cuantas maneris puede
Owogeiae S bolas de manera que

(@) Tas S sean rojas?

(Y K 3 scan negras?

(C) 2 sean rojas v 3 sean negras?

() 3 sean rojas v 2 sean negras?

Seccion 3.2
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Combinaciones

¢(De cudntas maneras puede seleccionarse un comité
de 6 personas de un conjunto de 10, si una de las
personas debe ser nombrada como presidente del
comité?

Un certificado de obsequio de una libreria local
permite al poseedor escoger 6 libros de la lista
combinada de 10 libros de ficcion de los de mayor
venta y 10 libros de temas formales también de los
de mayor venta. ;De cuantas maneras diferentes
puede hacerse la seleccion de 6 libros?

El plan de alimentos del colegio permite a cada
estudiante escoger tres piezas de fruta cada dfa. Las
frutas disponibles son manzanas, platanos, duraznos
peras y ciruelas. jPor cuantos dias puede un
estudiante hacer una seleccion diferente?

]

Demuestre que ,, C, = ,C, _, + .C..

(a) ¢ De cuantas maneras puede un estudiante

escoger 8 de 10 preguntas para contestar en un

examen?

(b) (De cuantas maneras puede un estudiante
escoger 8 de 10 preguntas para contestar en un
examen st las primeras 3 preguntas deben ser
contestadas?

Se lanza al aire cinco monedas legales y s¢ registra

los resultados.

(a) (Cuantas sceuencias diferentes de caras v cruces
son postbles?

(b Cudntas de las secuencias de Ia parte (a) tienen
exactamente una cara registrada?

(¢) (Cuantas de las secuencias de 1a parte (a) tienen
cxactamente tres caras registradas?

Sc lanza tres dados legales de sers caras y se registra

los nlimeros que aparceen en las caras superiores.

(a) (Cudntas secuencias registradas diferentes son
posibles?

(o 1 . :

R AN I ST R TR T e
AMCHIC Uit acs”
(¢} Cudntos de Tos revistros de Ta parte (a)

contienen exactamente dos cuatros?

Sisse lanza n monedas legales v se registra los
resultados, (cudntas
(a) sccuencias de registro son posibles?
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(b) secuencias contienen exactamente tres cruces, 19. ;De cuantas maneras puede usted escoger tres de
suponiendo n > 3? siete libros de ficcién y dos de seis libros de temas
(¢) secuencias contienen exactamente k caras, formales para llevar consigo en sus vacaciones?

suponiendo n > k?
20. Para manejar en carretera durante sus vacaciones, va

18. Si se lanza n dados legales de seis caras y se anota a escoger usted 6 de las 35 casetes de rock de su
los niimeros que aparecen en las caras supetiores, coleccion, 3 de las 22 casetes de musica clésica y 1
jcuantas de las 8 casetes de musica romantica. ;De cuéntas
(a) secuencias de registro son posibles? maneras puede hacer usted sus selecciones?

(b) secuencias contienen exactamente un seis?
(c) secuencias contienen exactamente cuatro doses,
suponiendo n > 4?

3.3. Principio de las casillas

En esta seccién se introduce otra técnica de demostracion, en la cual se utiliza los métodos
de conteo que han sido estudiados.

Teorema 1 (El principio de las casillas). Si se asigna n objetos a m casillas, y m < n,
entonces por lo menos una casilla contiene dos o mas objetos.

Demostracion: Considere las m casillas marcadas con los nimeros 1 a m y los n
objetos con los nimeros 1 an. Ahora, comenzando con el objeto 1, asigne cada objeto
en orden a la casilla de igual niimero. Esto asigna tantos objetos como es posible a
casillas individuales, pero como m < n, hay n — m objetos a los que todavia no se ha
asignado una casilla. A una casilla por lo menos tendrd que asignarsele un segundo
objeto. ]

Este teorema informal, que suena casi trivial, es facil de usar y tiene un poder inespe-
rado en la demostracion de consecuencias interesantes.

Ejemplo 1. Si se escoge ocho personas aleatoriamente de algun conjunto, por lo menos
dos de ellas habran nacido el mismo dia de la semana. Aqui cada persona (objeto) se asigna
al dia de la semana (casilla) en que naci6 él o ella. Como hay ocho personas y solamente
siete dias de la semana, el principio de las casillas dice que por lo menos dos personas
deberén asignarse al mismo dia de la semana. ¢

Observe usted que el principio de las casillas proporciona una prueba de existencia;
debe haber un objeto u objetos con una cierta caracteristica. En el ejemplo 1, esta caracte-
ristica es haber nacido en el mismo dia de la semana. El principio de las casillas garantiza
que hay por lo menos dos personas con esta caracteristica, pero no da informacion sobre
la identificacién de estas personas. Solo queda garantizada su existencia. En contraste, una
prueba constructiva garantiza la existencia de un objeto u objetos que tengan una cier-
ta caracteristica, construyendo realmente tal objeto u objetos. Por ejemplo, se podria de-
mostrar que, dados dos nlimeros racionales p y ¢, existe un nimero racional entre ellos, si s
demuestra que £=% esta comprendido entre p y g.

Para usar el principio de las casillas, se debe identificar los objetos y las casillast

4
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(categorias de la caracteristica deseada), y poder contar el nimero de objetos y el na-
mero de casillas.

Ejemplo 2. Demuestre que si se escoge cinco nimeros cualesquiera del 1 al 8, entonces
dos de éstos sumaran 9.

Solucién: Construya cuatro conjuntos diferentes, cada uno con dos nimeros que
sumen 9 de la siguiente manera: 4, = {1, 8},4,= {2, 7},4;={3,6},4,= {4,5}. Cada
uno de los cinco nimeros escogidos debe pertenecer a uno de estos conjuntos. Como
s6lo hay cuatro conjuntos, el principio de casillas dice que dos de los nimeros esco-
gidos pertenecen al mismo conjunto. Estos nimeros suman 9. ¢

Ejemplo 3. Demuestre que si se escoge 11 niimeros cualesquiera del conjunto {1, 2, ...,
20}, entonces uno de ellos serd multiplo de otro.

Solucién: Todo entero positivo n puede escribirse como n = 2'm, en donde m es
impar y &k > 0. Esto puede verse simplemente descomponiendo en factores todas las
potencias de 2 (si las hay) tomadas de n. En este caso, se llamard m a la parte impar de
n. Si se escoge 11 nameros del conjunto {1, 2, . . ., 20}, entonces dos de ellos deben
tener la misma parte impar. Esto se desprende del principio de las casillas, puesto que
hay 11 niimeros (objetos), pero solamente 10 nimeros impares comprendidos entre |
y 20 (casillas) que pueden ser partes impares de estos nimeros.

Sean 1, y n, dos nimeros escogidos con la misma parte impar. Se debe tener n, =
2%um y n, = 2*2m, para algunos k, y k,. Si k, = k,, entonces #, es un multiplo de #n,; de
lo contrario, n, es un multiplo de n,.

Ejemplo 4. Considérese la region que se ilustra en la figura 3.2. Esta limitada o circunda-
da por un hexagono regular cuyos lados tienen longitud de | unidad. Demuestre que si se
escoge siete puntos cualesquiera en esta regidn, entonces dos de éstos deberan estar a una
separacion no mayor que [ unidad.

Solucion:  Divida la region en seis triangulos equilateros, como se muestra en la
figura 3.3. St se escoge siete puntos en la region, se puede asignar cada uno de ellos
a un triangulo que lo contenga. Si el punto pertenece a varios tridngulos, asignelo
arbitrariamente a uno de ellos. Entonces los siete puntos estan asignados a seis regio-
nes triangulares, de modo que por el principio de las casillas por lo menos dos puntos
deben pertenecer a la misma region. Entre estos dos no puede haber una separacion
mayor que | unidad. ¢

6 2
Ns /\3/
4

Figura 3.2 Figura 3.3

Ejemplo 5. 20 miembros de una liga de boliche usan unas camisas numeradas del 1 al 20.
Cuando se escoge cualesquiera 3 de estos miembros para formar un equipo, se emplea la
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suma de sus nimeros como nimero de codigo para el equipo. Demuestre que si se seleccio-
na 8 de cualesquiera de los 20, entonces de estos 8 se puede formar por lo menos dos
equipos diferentes que tengan el mismo nimero de codigo.

Solucién: De los 8 jugadores de boliche seleccionados, puede formarse un total de
sCs, 0 sea, 56 equipos diferentes. Estos jugaran el papel de objetos. El niimero de ¢o-

digo de equipo mas grande posible es 18 + 19 + 20, o sea, 57, y el mas pequefio

posible es 1 +2 + 3, o sea 6. En consecuencia, solo los 52 nimeros de codigo (casi-
llas) comprendidos entre 6 y 57 inclusive, estan disponibles para los 56 equipos posi-
bles. Por el principio de las casillas, por lo menos dos equipos tendran el mismo
namero de codigo. ¢

Principio de las casillas ampliado

Debe observarse que si hay m casillas y mas de 2m objetos, entonces tres o mas objetos
tendran que ser asignados a por lo menos una de las casillas. (Considere la distribucion més
uniforme de casillas que usted pueda hacer.) En general, si el namero de objetos es mucho
mayor que el nimero de casillas, puede volverse a enunciar el teorema | para dar una
conclusion de mayor fuerza.

Véase primero algo acerca de la notacion. Sin y m son enteros positivos, entonces Ln/
m ] representa el entero mas grande menor que o igual al nimero racional n/m. En conse-
cuencia, [3/2] es 1, 19/4] es 2,y L6/3]es 2.

Teorema 2 (El principio de las casillas ampliado). Si se asigna n objetos a m casillas,
entonces una de las casillas debe contener por lo menos L(n — 1Yml+1 objetos.

Demostracién (por contradiccién):  Si cada casilla contiene no mas del(n — 1)/m]
objetos, entonces hay como méximom - (n — \Yml<m - (n — [}/m=n — 1 objetos
en total. Esto contradice las suposiciones, de modo que una de las casillas debe conte-
ner por lo menos Lin — DYm]+ 1 objetos. °

Ejemplo 6. Véase una extension del ejemplo 1. Demuestre que si se selecciona 30 perso-
nas cualesquiera, entonces se puede escoger un subconjunto de 5 tal que las 5 hayan nacido
el mismo dia de la semana.

Solucion:  Asigne cada persona al dia de la semana en que ella o él haya nacido.
Entonces se esta asignando 30 personas a 7 casillas. Por el principio de casillas am-
pliado, con n =30y m = 7, por lo menos (30 — 1)/7] + 1, 0 sea 5 de las personas
deben de haber nacido en el mismo dia de la semana. L4

Ejemplo 7. Demuestre que si 30 diccionarios de una biblioteca contienen un total de
61,327 paginas, entonces uno de los diccionarios debe tener por lo menos 2045 paginas.

Solucién:  Supéngase que las paginas son los objetos y los diccionarios, las casillas.
Asigne cada pagina al diccionario en el cual aparezca. Entonces, por el principio de
casillas ampliado, un diccionario debe contener por lo menos | 61,326/30 ]+ 1, o sea,
2045 paginas. ¢

GRUPO DE EJERCICIOS 3.3

1. Sise retnen 13 personas en un salon, demuestre que
por lo menos 2 de ellas deben de tener su cumplea-
fios en ¢l mismo mes.

2. Demuestre que si se escoge siete numeros del 1 al
12, dos de ellos sumaran 13.
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no se le cobrara mas que $1.75. Demuestre que,
aunque las diferentes selecciones pueden tener un
costo diferente, debe haber por lo menos dos
maneras diferentes de escoger, de manera que el
costo sea ¢l mismo para ambas selecciones.

9. Sila tienda del ejercicio 8 permite repeticiones en
3. Sea Tun tridgngulo equilatero cuyos lados son de las selecciones, demuestre que debe haber por lo
fongitud de 1 unidad. Demuestre que si se escogen menos 10 maneras de hacer selecciones diferentes
cinco puntos cualesquiera que se encuentren sobre o que tengan el mismo costo.
dentro del triangulo, entre dos de ellos existira una
separacion no mayor que » unidad. 10. Demuestre que debe haber por lo menos 90 maneras de
escoger seis niimeros del 1 al 15, de modo que todas las
4. Demuestre que si se escoge ocho enteros positivos selecciones al sumarse den el mismo resultado.
cualesquiera, dos de ellos tendran e] mismo residuo
al ser divididos entre 7. 11. ;Cuantos amigos debe tener usted para garantizar
que por lo menos cinco de ellos tengan su cumplea-
5. Demuestre que si se emplea siete colores para pintar fios en el mismo mes?
50 bicicletas, por lo menos 8 bicicletas seran del
mismo color. 12. Demuestre que si se selecciona cinco puntos en un
cuadrado cuyos lados midan | pulgada de largo, por
6. Hay diez personas voluntarias para formar un comit¢ lo menos dos de los puntos deben estar separados
de tres personas. Cada comité de tres que puede por no mas de \/5 pulgadas.
formarse de estos 10 nombres, se escribe en una
hojita de papel, haciendo una hojita para cada 13. Demuestre que si se escoge 14 nimeros cualesquiera
comité posible, y se pone las hojitas, dobladas, en del 1 al 25, uno de ellos es mutltiplo de otro.
10 sombreros. Demuestre que por 1o menos un
sombrero contiene 12 o mas hojitas de papel. 14. Sobre una mesa se coloca veinte tarjetas numeradas
del 1 al 20, con la cara hacia abajo. Las tarjetas son
7. Secis amigos descubren que tienen un total de $21.61 scleccionadas una a la vez y voltcadas hasta haber
entre todos para ir al cine. Demuestre que uno o mas escogido 10 de ellas. St dos de las tarjetas suman 21,
de cllos debe tener por lo menos $3.61. ¢l jugador picrde. ( Es posible ganar este juego?
8. Una tienda ticne una venta de promocion para 12 15. Supdngase que se ha cambiado ¢l juego del ejercicio

tipos de barras de dulee. Un cliente puede escoger
una barra de cualquicra de cinco tipos diferentes, y

3.4. Elementos de probabilidad

14, y que se debe escoger 12 cattas. (B posible
ganar cste jucgo?

Onra area en i que son importantes las téenicas de conteo es fa teorta de probabiitdades. Bo
estin seccion se presenta una breve mtroduccion a ta probabridad.

Muchos experimentos no dan exactamente los mismos resultados cuando son efectua-
dos repetidas veces. Por ejemplo, al lanzar una moneda, no hay ninguna seguridad de que se
obtendra cara o cruz, y si se lanza un dado, no hay manera de saber cudl de Jos seis nameros
posibles ha de quedar hacia arriba. Los experimentos de este tipo son ltamados
probabilisticos, en contraste con los experimentos deterministicos o deterministas, cuyo
resultado es siempre el mismo.
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Espacios muestrales

Un conjunto 4 formado por todos los resultados de un experimento se denomina espacio
muestral del experimento. Con un experimento dado, se puede asociar, a menudo, mas de
un espacio muestral, dependiendo de lo que el observador elija registrar como resultado.

Ejemplo 1. Supodngase que se lanza al aire una moneda de 5 centavos y una de un cuarto
de dolar. Se describe tres posibles espacios muestrales que pueden ser asociados con este
experimento.

1. Siel observador decide registrar como resultado el ntimero de caras observadas,
el espacio muestral es 4 = {0, 1, 2}.

2. St el observador decide registrar la secuencia de caras (H) y de cruces (T) que
observa, anotando en lista el resultado de la de 5 centavos primero, y luego el del
cuarto de dolar, entonces el espacio muestral es 4 = {HH, HT, TH, TT}.

3. Si el observador decide registrar el hecho de que las monedas coincidan en la
cara que cae (M) o que no coincidan (N), entonces el espacio muestral es A4 =
{M, N}. ' *

Se ve en consecuencia que, ademds de describir el experimento, se debe indicar exac-
tamente lo que el observador desee registrar. Entonces, el conjunto de todos los resultados
de este tipo se convierte en el espacio muestral para el experimento.

Un espacio muestral puede contener un namero finito o infinito de resultados.

Ejemplo 2. Determine el espacio muestral para un experimento que consiste en lanzar
dos veces un dado de seis caras, y el registro de la secuencia de nimeros que aparezcan en
la cara superior del dado después de cada lanzamiento.

Solucion:  Un resultado del experimento puede representarse por un par ordenado
de nlimeros (1, m), en donde 1y m pueden ser 1,2, 3,4, 506. En consecuencia, el
espacio 4 muestral contiene 6 X 6, 0 sea 36 elementos (por el principio de la multipli-
cacion),

Ejemplo 3. Un experimento consiste cn sacar tres moncdas en sucesion de una caja que
contiene cuatro centavos y cinco monedas de diez centavos. v registrar la secuencia de
resultados. Determine el espacio muestral de este experimento.

Solucion:  Unresultado puede registrarse como una secuencia de longitud 3 construida
con las letras P (centavo) y D (décimo). En consecuencia, el espacio muestral 4 es

{PPP. PPD. PDP, PDD. DPP, DPD, DDP, DDD} 4

Eventos

Se dice que un enunciado acerca del resultado de un experimento, que para un resultado
particular puede ser verdadero o falso, describe un evento. Asi, para el ejemplo 2, los enun-
ciados “Cada uno de los nimeros registrados es menor que 3” y “La suma de los nameros
registrados es 4” describirian eventos. El evento descrito por un enunciado se toma como el

Scecion 3.4 Elementos de probabilidad 87

conjunto de todos los resultados para los cuales el enunciado es verdadero. Con esta inter-
pretacion, cualquier evento puede considerarse como un subconjunto del espacio muestral.
Asi el evento E descrito por el primer enunciado es £ = {(1, 1), (1, 2), (2, 1), (2, 2)}. De
modo semejante, el evento F descrito por el segundo enunciado es F'= {(1, 3), (2, 2), (3, 1)}.

Ejemplo 4. Considérese el experimento del ejemplo 2. Determine los eventos descritos
por cada uno de los siguientes enunciados.

(a) La suma de los niimeros que aparecen en las caras superiores es 8.

(b) La suma de los nimeros que aparecen en las caras superiores es por lo menos 10,

Solucion: (a) El evento consta de todos los pares ordenados cuya suma es 8. En
consecuencia, €l evento es {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

(b) El evento consta de todos los pares ordenados cuya suma sea 10, 11 0 12. En
consecuencia, el evento es {(4, 6), (5, 5), (5, 6), (6, 4), (6, 5), (6, 6)}. ¢

Si A4 es un espacio muestral de un experimento, entonces 4 mismo es un evento cono-
cido como evento seguro, y al subconjunto vacio de 4 se le llama evento imposible.

Puesto que los eventos son conjuntos, pueden ser combinados aplicando las opera-
ciones de unidn, interseccion y complementacion para formar nuevos eventos. El espacio
muestral A4 es el conjunto universal para estos eventos. Asi, si £y F son eventos, se puede
formar los nuevos eventos £E\J F, EM E y E. ;Qué significan estos nuevos eventos en
términos del experimento? Un resultado del experimento pertenece a £ \UJ F cuando éste
pertenece a £ o a F (o a ambos). En otras palabras, el evento £ \U F ocurre exactamente
cuando ocurre E o F. De modo similar, el evento E (M F ocurre si y solamente si ocurren
ambos, £ y F. Finalmente, £ ocurre si y solamente si no ocurre £.

Ejemplo 5. Considérese el experimento de lanzar un dado y registrar el niimero que
aparece en la cara superior. Sea £ el evento de que el numero es par, y sea F el evento de
que el nimero es primo. Entonces £= {2, 4,6} y F'= {2, 3, 5}. El evento de que el nime-
ro que aparezca sea o par o primo es £E\U F={2,3,4, 5, 6}. El evento de que el nimero
que aparezca sea un numero par es £ () F = {2}. Finalmente, el evento de que el nime-
ro que aparezca no sea pares £ = {1, 3,5}, y el evento de que el nimero que aparezca no
sea primo es F = {1,4, 6}. ¢

Se dice que los eventos £ y F son mutuamente excluyentes o disjuntos si £/ F
= { }. Si E'y F son eventos mutuamente excluyentes, entonces £y F no pueden ocurrir
ambos al mismo tiempo; st ocurre £, entonces no ocurre £, y si ocurre F, entonces no ocurre
E.SiE\, E,, ..., E, todos son eventos, entonces se dice que estos conjuntos son mutuamen-
te excluyentes, o disjuntos, si cada par de ellos es mutuamente excluyente. Una vez mds,
esto significa que cuando maés puede ocurrir uno de los eventos en cualquier resultado dado
del experimento

Asignacion de probabilidades a eventos

En teoria de probabilidades, se supone que a cada evento E se le ha asignado un m’lmero p
(£) llamado probabilidad del evento E. Véase ahora las probabilidades. Se va a investigar
formas en que puede asignarse dichos nimeros, las propiedades que deben satisfacer y el
significado que puede darseles.
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El nimero p (E) refleja la evaluacién de la probabilidad de que oc,urra el g;entoei.eSEn
forma mas precisa, supongase que el experimento subyacente se efectiia repe‘uE a:o\r/l o 1);
que, después de n de tales realizaciones, el c?vento E ha OC}Jrrxdo ng Veces. r‘l) onees
fraccion fp = ng/n_a la que se llama frecuencia de ocurrencia de E en n ensay ,1 S o
medida de la probabilidad de que ocurra E. Cuando se j&@gna la prob’ablhdad_ p(E)a v
to E, significa que, segin lo que se conoce, la fraccion f tendera cada Yez conASi )ias
cercania a un cierto nimero al volverse més grande n, y que p (E).es este nmero. Asl, o
probabilidades pueden ser consideradas como fr§cuen01as 1dea1}zadas de ocxiirrer;mi N
eventos, a las cuales habréan de tender las frecuencias de ocurrencia reales cuando el ¢ p

rimento se realice repetidamente.

5 i liza 2000 veces; la frecuencia de ocu-
Ejemplo 6. Supongase que un experimento se rea ;laf
rrjencig £, de un evento E se registra después de 100, 500, 1000 y 2000 intentos, y la tabla

3.1 resume los resultados.

Tabla 3.1

Numero de repeticiones

del experimento ng fr=ngn
-
100 48 0.48
500 259 0.518
1000 496 0.496
2000 1002 0.501

; ; 1, 18 ,

Con base en esta tabla, se ve que la frecuencia f, tiende a 5 al aumentarn. Podria argumf.:gtdrs.e,

/ : i i irse unt ncia
por tanto, que p(E) debe hacerse igual a L Por otra parte, podria requerirse una evi e

). En todo caso, esta clase de evidencta nunca

. | ) .
¢ : 3 : .omo valor a p(E

mayor antes de asigna® , com , > de evidencia |
puede “probar” que p(E)es ! g6lo sirve para hacer de ésta una suposicion plausible. L4
eventos han de representar frecuencias

Si las probabilidades asignadas a los distintos
ha expuesto, entonces o pucden ser

significativas de ocurrencia de los mismos, como se ‘ e 10 pueden =2

asignadas de una manera totalmente arbitraria. Tienen que satisfacer ciertas condic 1 .
) ) . . o . o ; . o d C s e-

Primero, como cada frecuenciaf, debe satisfacer las desigualdades de 0= /= 1, cs simp

mente razonable suponer que

Pl 0= p(E)=<1 para todo evento £ de A.

: be i1 eada ey feada resuiado perieiees asii,y 1o
fambién, puesio gque el evento debe ocurrir cada ver fead {

puede ocurrir ¢l cvento . se supone que
P2 pd) 1y pE@)=0

‘| 1ELE - son eventos ¢ xcluyentes, entonces
Finalmente, si £, Es, . . ., E son eventos mutuamente € y

= "y N I Y  FY
ukuuen - e + g, Ty

Scccién 3.4 Elementos de probabilidad 89

ya que solo uno de estos eventos puede ocurrir a la vez. Si se divide ambos miembros de esta
ecuacion entre #, se observa que las frecuencias de ocurrencia deben satisfacer una ecuacién
similar. Por lo tanto se supone que

P3: p(E,UE,U--UE,)=p(E)+pE)+-+plE)

en todos los casos en que los eventos sean mutuamente excluyentes. Si el espacio muestral
es finito y las probabilidades estan asignadas a todos los eventos de tal manera que P1, P2
y P3 se satisfagan siempre, entonces se cuenta con un espacio de probabilidad. A P1, P2y
P3 se les [lama axiomas para un espacio de probabilidad.

Es importante comprender que, matematicamente, no se emplea el espacio de
probabilidad; el unico uso es el que se hace por los axiomas de probabilidad P1, P2
y P3. La teoria de la probabilidad comienza con todas las probabilidades asignadas y
luego investiga las consecuencias de estas probabilidades y las relaciones entre las
mismas. No se hace mencién alguna de la forma en que fueron asignadas las probabi-
lidades. Sin embargo, las conclusiones matematicas seran Utiles en una situacién real
solamente si las probabilidades asignadas reflejan lo que realmente ocurre en esa si-
tuacion.

La experimentacion no es la tnica forma de determinar probabilidades razonables
para eventos. A veces, los axiomas de probabilidad pueden proporcionar argumentos 16gi-
cos para escoger ciertas probabilidades.

Ejemplo 7. Considérese el experimento de lanzar una moneda y anotar si resultan
caras o cruces. Considérese los eventos £: salen caras y £ salen cruces. L.a mecanica
del lanzamiento no es controlable al detalle. En consecuencia, si la moneda no tiene
algun defecto que pudiera desbalancearla, puede afirmarse que tienen igual probabili-
dad de ocurrir £ y F. Existe una simetria en la situacion que hace imposible preferir un
resultado respecto del otro. Este argumento permite calcular las probabilidades que
deben tener £y F.

Se ha supuesto que p(£) = p(F), y es claro que £y F son eventos mutuamente
excluyentes y 4 = £\ F Asi, usando las propiedades P2 y P3, se observa que

1 = p(4) = p(E) + p(F) = 2p(E), en vista de que p(E) = p(F).

Esto demuestra que p(£) = ;— = p(F). Con frecuencia puede asignarse probabilidades
apropiadas a eventos, combinando la simetria de situaciones con los axiomas de pro-
babilidad. ¢

Por (iltimo, se demostrara que el problema de asignar probabilidades a eventos puede
reducirse a la consideracion de los casos mas simples. Sea 4 un espacio de probabilidad. Se
supone que A es fintto, es decin, A4 = {v a0 v b Fintonces cada evento {a;}, que conste
de solo un resulado. se denoming evento elemental. Para simplificar, se escribird p, =
pix,}). Entonces p, se llama probabilidad elemental correspondiente al resultado x,.
Como los eventos elementales son mutuamente excluyentes y su union es 4, los axiomas de
probabilidad dicen que

EPl: 0<p,< 1, paratodoslos valoresdek
EP2 p]+p2+.‘.+pnzl'
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Si F es un evento cualquiera en 4, por ejemplo £ = {x;, X, - - - xim}’ entonces se puede
escribir £= {x;} (RN AR U {x; }. Esto significa, por el axioma P2, que p(E) =p; +
J 25 En consecuencia, si se conoce las probabilidades elementales, puede calcular-

se la probabilidad de cualquier evento E.

Ejemplo 8. Supdngase que un experimento tiene un espacio muestral 4 = {1, 2, 3,4,5,6}
y que se ha determinado las probabilidades elementales, que son como sigue:

P = 1’2’ P, = 172 Ps— 3’ Pas = 6 Ps = Z» Pe = 12‘
Sea E el evento “El resultado de un namero par”. Calcule p(E).
1

Solucion: Puestoque E={2,4, 6}, se observa que p(EY=pr+patPe™ % te™t *1]7 0
;. De manera similar, puede determinarse la probabilidad de cualquier evento en A

Se ve asi, que el problema de asignar probabilidades a todos los eventos de manera
congruente puede reducirse al problema de encontrar NAmeros py, Pa, - - - » Pn QU satisfagan a
EP1 y EP2. Una vez mas, matematicamente hablando, no hay otras restricciones sobre las py.
Sin embargo, si la estructura matematica que resulta se requiere que sea 0til para una situacion
particular, entonces las p, deben reflejar el comportamiento real que ocurre en esa situacion.

Resultados igualmente probables

Supdngase que tienen iguales probabilidades de ocurrir todos los resultados en un espacio
muestral finito 4. Esta es, desde luego, una suposicion y por tanto no puede comprobarse.
Se haria una suposicion de esta naturaleza si la evidencia experimental o la simetria indi-
caran su pertinencia en una situacion particular (vease el ejemplo 7). En realidad, estas
situaciones son bastante comunes. Se acostumbra usar algo de terminologia adicional. En
ocasiones, los experimentos implican la eleccion de un objeto, en una forma no determinista,
de alguna coleccion. Si se hace la seleccion de tal manera que todos los objetos tengan
igual probabilidad de ser escogidos, se dice que se ha hecho una seleceion aleatoria o que
se ha escogido un objeto al azar de 1a coleccion. A menudo se usara esta terminologia
para especificar ejemplos dec experimentos con resultados igualmente probables.
Supéngase que |4 =n'y que estos 71 resultados sean igualmente probables. Entonces las
probabilidades elementales son todas iguales, y como deben sumar 1, esto significa que ca-
da probabilidad elemental cs 1/n. Ahora sea £ un evento que contiene & resultados, por ejem-
ploF = {x,. x5, ... .ox, . Puesto que todas las probabilidades elementales son 1/a, se debe tener
! ! 1 k

H ! 4 - -
PUE) noono

Losumandos
Como k = |E], s¢ tiene el siguiente principio: Si todos los resultados son igualmente proba-
bles. entonces para cada evento £
|Ej numero total de resultados en L2

plEY= — = e e
| Al namero total de resultados

ﬂ
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En , .
este caso, el calculo de probabilidades se reduce a contar nimeros de element
0s en

coniu . . .
j nt(?s. Por esta razdn, los métodos de conteo analizados en las secciones anteri
este capitulo son bastante ttiles. eriores de

J "
. > 1
E elnplo 9 ESCO a 4 cartas al azar de una bala'a legal de 52 cartas chal cs la p] Obab

Solucion: i
lucion: Los resultados de este experimento son manos de 4 cartas; cada una tiene
b

izg’/uales probabilidades de ser escogida. El nimero de manos de 4 cartas es ,C,, 0 sea
0,725. Sea E el evento de que todas las cartas sean reyes. El evento £ constzie:;e s6lo

un resultado. En consecuencia = 55 55% ;
! P(E) = 553 755, 0 sea aproximadamente
Este es un evento sumamente improbable. 0‘00000369;1 ’

Ejemplo 10. Una caja contiene seis bolas rojas y cuatro bolas verdes. De la caja se toma

cuatro bOlaS al azar. (,Cual €s la T b lh € que do y
p 8] ab dad d d d
; q s de laS bO]aS que se ha a tomado

Solucién: , ,
cion: El nimero total de resultados es el nimero de maneras de seleccionar

cuatrto ogjetos de entre diez, sin considerar el orden. Este es ,,C,, 0 sea 210. Ahora el
eve j ‘

nto £, de que dos de las bolas sean rojas y dos sean verdes, puede concebirse
como el resuitado de efectuar dos tareas en sucesion ;

Tarea I: ESCOJ:a dos bolas rojas de las seis bolas rojas de la caja.
Tarea 2:  Escoja dos bolas verdes de las cuatro bolas verdes de la caja.

Latarea 1 puede ha
cersede (5, 08
Latarea | pucde hace 6, 0 sea 15 maneras, y la tarea 2 de ,C,, 0 sea 6 maneras.
, el evento £ puede ocurrir en 15 - 6 sean 90 mane ¢ =
5 ras, y por lo tanto, p(E) =
210 7 7 .4
Ejempl i
r] ltp 0 ld]. ,Un dado legal de seis caras es lanzado tres veces y se anota la secuencia
esu 5. ¢ Cual es ili olo ‘
: ante de numeros. (Cual es la probabilidad del evento £ de que o los tres nimeros sean
iguales o de que ninguno de ellos sea un 4?
Solucion:  Pues 3
mez tuon. X Ibuesto que se supone que el dado es legal, todos los resultados son igual-
! nte prlo a les. Primero, se calcula el nimero total de resultados del experimento
,S ‘, ; . N T 1 1ty .
te es el nimero de secuencias de longitud 3. permitiendo repeticiones, que puede
. tr > « ; M ”
gor;txuxrse partiendo del conjunto {1, 2, 3, 4, 5, 6}. Este namero es 6°, 0 sea 216
e Sovper M S 3 ) .
. vem]o E no puede describirse como el resultado de efectuar dos tareas sucesivas
mo e ibi ‘ :
como n le ejemplo 10. Se puede, empero, escribir £ como la unién de dos eventos
1( s simples. Sea Eel evento de que los tres nimeros registrados sean iguales, y sea G
, . ’ )
. ;3) eventg de' que ninguno de los nimeros registrados sea un 4. Entonces £=F\U G
or el principio de adicidn fteorema 2. seccion 1 2V IFUJ Gl = |F1+1GL — |[FM ('I.
S R E : A P T ! .
. Py soio sers resuitados en jos que fos niumeros songuales, de modo que 17 es 6
<l evento (s consta de todas las secuencias de longitud 5 e le t¢ apa
[ evento € ¢ todas las secuencias de longitud 3 que se puede formar a partir
e coljunto b

28 S
AT T I B P P S ORI - H
A (,‘[ L5060 I consecuencia (Goes 57, 0 sea 125, Finalmente, ¢l
eve | VG consta de todas las secuencias para las cuales los tres nimeros son
ivuales v o A e PR : .
bu; ¢s y ninguno es 4. Resulta claro que hay cinco maneras de que csto ocurra, de
m 7| es incipt icid :

0 olqzu(:a |gm GJ es 5. Usando el principio de adicion, |E| = |F\U G|=6+125 = 5
0 sea . En consecuencia, se tien = 12667 ’

s s ep(F) =
g PEY= 516012 4
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Ejemplo 12. Considérese de nuevo el experimento del ejemplo 10, sacando 4 bolas al
azar de una caja que contiene seis bolas rojas y cuatro bolas verdes.

(a)
(b)

Si E es el evento en que no mas de dos de las bolas sean rojas, calcule la probabilidad

de E. . B
Si F es el evento de que no mas de tres de las bolas sean rojas, calcule lav probabilidad

deF.

Solucién: (a) Aqui E puede descomponerse como la unién de‘ eventos mutuamente
excluyentes. Sea E, el evento de que ninguna de las bolas escggldas searoja, sea k, el
evento de que exactamente una de las bolas escogidas sea roja, y sea E, el evento de
que exactamente dos de las bolas escogidas sean rojas. Entonces Eq, E, yE2 son
mutuamente excluyentes y E = E,\J E; U E;. Usando el principio de la adicion dos
veces, |E| = |Eq| + |E)| + |E,|. Sininguna de las bolas es roja, entonces las cuatro deben
ser verdes. Como solo hay cuatro bolas verdes en la caja, sélo hay una manera de que
ocurra el evento E,. En consecuencia, |Eq| = 1. Si una bola es roja, entonces 1as otras
tres deben ser verdes. Para hacer tal eleccion, se debe escoger una bola roja de un
conjunto de seis, y luego tres bolas verdes de un conjunto de cuatro. En consecuen-
cia. el niimero de resultados en E; es (;C))(4C5) 0 sea 24.

fixactamente de la misma manera, se puede demostrar que el nimero de resultados
en E, es (;C,)(;C,) o sea 90. Entonces [E| =1 +24+90, 0sea l15. Por otra parte, el

ntimero total de maneras para tomar cuatro bolas de la caja es ,C;, 0 sea 210, de

115 , 23
modo que p(E) = 575 ° 42~

(b) Se podria calcular |F] de la misma manera que se calcula.|E1 en la parte (a?,
descomponiendo F en cuatro eventos mutuamente excluyentes. Sin embargo, el and-
lisis seria atn mas largo que el de la parte (a). En lugar de desarrollarlo, se opta por
ilustrar otro enfoque que con frecuencia es atil.

Sea F el evento complementario de . Como F'y F son mutuamente ex’cluyentes
y su union es el espacio muestral, se debe tener p(F) + p( F.) =1. Esta formula es
valida para cualquier evento £y se utiliza cuando es mas facil de analizar el evento
complementario. Tal es el caso aqui, en vistade que F esel evento de que todas las b(?-
las escogidas sean rojas. Estas cuatro bolas rojas puedenlqser e‘scogldag dg las seis
bolas rojas en (C, 0 sea 15 mancras, demodoquep( F )= 7, 0 Esto significa qie

R

Py =1 00y

GRUPO DE EJERCICIOS 34

En los ejercicios 1 al 6, describa el espacio 3.

muestral relacionado.

1. Enuna clase de 10 estadiantes, ol inntructor registea

¢l namero de alumnos presentes en un dia dado.

2. Una moneda es lanzada tres veees al aire y se
registra la secucncia de caras y cruces.

Una compaiiia de investigacion de mercados realiza
un estudio en el que se clasitica a Tas personas de

ceoeedo con i omentes caractensticas

Giénero: masculino (m).o temenino (/)
Nivel de mgresos: bajo (7). mtermedio aito ()

Fumador: st (v). no (1)

Se seleceiona una persona al azar y se clasifica de

acucrdo con lo anterior.

4. Se selecciona dos letras simultaneamente al azar de

I1.

entre las letras a, b, ¢, d. »

Una urna de plata y otra de cobre contienen bolas
azules, rojas y verdes. Se escoge una umna al azar y
luego se toma una bola al azar de esta urna.

Una caja contiene 12 objetos, 4 de los cuales estan
defectuosos. Se toma al azar un objeto y no se
repone. Asi se continila, hasta haber sacado los
cuatro objetos defectuosos. Se registra el nimero
total de objetos tomados de la caja.

(a) Supdngase que el espacio muestral de un
experimento es {1, 2, 3}. Determine todos los
eventos posibles.

(b) Sea S un espacio muestral que contiene »
elementos. ;Cuantos eventos hay para el
experimento asociado?

Un experimento consiste en lanzar un dado y

registrar el nimero de la cara superior.

Determine cada uno de los eventos siguientes.

(a) E: El nimero obtenido es por lo menos 4.

(b) F: El nimero obtenido es menor que 3.

(¢) G: El nimero obtenido es divisible entre 3 o es
primo.

De una baraja normal s¢ toma una carta al azar. Sean
E, F'y G los siguientes eventos.

F: La carta es negra.
£ La carta e¢s un diamante.

(;: l.a carta es un as.

Describa los eventos siguientes mediante oraciones

completas. B
(a) FUG (h) ENG () ENG
(d) FUFUG () FUF UG

Se lanza dos veces un dado y se anota en secuencia
los numeros que aparecen en las caras superiores.
Dectermine los clementos en cada uno de los eventos
dados ’

tar Por o menos uno de los numeros es un 3.

tb) Por lo menos uno de los numeros ¢s un 8.

(¢) La suma de os nameros es menor que 7.

(d) La suma de ios nummeros ¢s imayor que 8.

Sc tanza un dado y se registra e nlimero que aparece
en la cara superior. Sean E, F'y G los siguicntes
cventos.
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E: El nimero es por lo menos 3.
F: El nimero es cuando mas 3.

G: El nimero es divisible entre 2.

(a) {Son E y F mutuamente excluyentes? Justifique
su respuesta.

(b) (Son F'y G mutuamente excluyentes? Justifique
su respuesta.

(c) ;Es E\U F el evento seguro? Justifique su
respuesta.

(d) (Es E( F el evento imposible? Justifique su
respuesta.

12. Sea E un evento para un experimento con espacio
muestral 4. Demuestre que
(a) E\U E es el evento seguro.
(b) E/M E es el evento imposible.

13. Un equipo médico clasifica a las personas de
acuerdo con las siguientes caracteristicas.
Habitos de bebida: bebe (d), se abstiene (a)
Nivel de ingresos: bajo (), intermedio (m), alto
(u)

Habitos de fumar: fumador (s), no fumador (n)

Sean E, F'y G los siguientes cventos.

E: Una persona bebe.
F: El nivel de ingresos de una persona es bajo.

G: Una persona fuma.

Haga una lista de los elementos de cada uno de los

siguientes eventos.

(a) EUF (b) ENF (c) (EUGYNF

i4. Sea S— {1, 2, 3,4,5, 0} ¢l espacio muestral de un
experimento. v scan

E={.3.45. F={3, G=#

(a) Calculeloseventos EN\UFE EMNEyY F.
(b) Calcule los siguientes eventos: E\J Fy F
MG

En los ejercicios 15 v 16, haga una lista de los

ceanitos Jlomonddes para Joxperimento dado.
15, Se scleeciona una vocal al azar del conjunto de
todas las vocales {a, ¢, 1, 0, uj.

16. Sc toma una carta al azar de una baraja legal, y se
registra si la carta es un trébol, espada, diamante o
corazon.
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- A
17. Al lanzar un cierto dado defectuoso, los nimeros del 24. Una mujer tiene cinco pares de guantes e,n un 3.5. RelaCiOHCS de l‘ecurrencia i “
| al 6 aparecerdn en la cara superior con las cajon. Si escoge dos 8113““315 al azar ;Qué . .
- il i S tes sean d¢ un ~ : -
o babilidades: probabilidad existe de que los guan o ) ) g . . ‘
siguientes pro mismo par? Las definiciones recursivas de sucesiones de-la seccion 1.3 son ejemplos de relacianes de. .. -
2 3 i = 4 .= 3 recurrencia. Cuando €l problema es encontrar una férmula explicita para una sucesion defi-
Pi= g P27 P37 g P47 g 25. Supongase que se lanza un dado legal y que se anota nida por recurrencia, la férmula recursiva es [lamada relacion recurrente. Debe recordarse
. = 4 Do = 2 el nimero que aparcce en su cara superior. Sean E, F que para definir una sucesion de forma recursiva, una formula recursiva debe ir acompafia-
5718 Y618 y G los siguientes eventos. da de informacién acerca del comienzo de la sucesion. A esta informacién se la llama con-
Determine la probabilidad de que . dicién o condiciones iniciales para la sucesion.
(a) aparezca en la cara superior un numero impar. E:{1,2,3,5), F{2,4), G:{1,4,6).

(b) aparezca en la cara superior un nNUMEro primo.

5enl Ejemplo 1. a) La relacion de recurrencia g, = a, | + 3 con a, = 4 define de manera
(c) aparezca un nimero menor que > en la cara

. Calcule la probabilidad del evento que se indica. recursiva la sucesion 4, 7, 10, 13, . . . . La condicion inicial es a, = 4.
N EUF (b) ENF (c) ENF (b) La relacién de recurrencia f, = f, ., + f, _,, f; = f» = 1, define la sucesion de
) : 3 en la cara (2) =D = . : n T Tl iT ) )
(d) aparezca un nimero mayor que 3 ¢ (d) EUG (e) EUG (f)y ENF . Fibonacci 1, 1,2, 3, 5,8, 13, 21, . ... Las condiciones iniciales son f; = 1 yf=1. ¢
Superlor. ‘ ;
18. Repita ¢l ejercicio 17 suponicndo que el dado no 26. Supongase que sc lanza dos dados y que se anota los Las relacionc.as. de recurrencia aparecen de forma natural en muchos problemas de
esté defectuoso. nUmeros que aparecen en sus caras superiores. ;Cudl conteo y en el andlisis de problemas de programacién.
cs la probabilidad de que
19. Supongase que £y [7son eventos mutuamen'e (a) se obtenga un 47 ‘ Ejemplo 2. Supdngase que se desea hacer un impreso de todas las sucesiones de n ele-
excluyentes, tales que p(Ey = 0.3 y p(F) = 0.4. (b) se obtenga un nimero primo? mentos que se puede hacer a partir del conjunto {1, 2, 3, . .., n}. Un enfoque a este
Determinc la probabilidad de que (¢) la suma de los nmeros sea menor que 57 problema es proceder de manera recursiva como sigue.
(a) no ocurra E. (b) ocurran E'y F. (d) la suma de los nimeros sea por lo menos 7?

(¢) ocurran Lo I

, PASO 1. Haga una lista de todas las sucesiones que pueda formarse a partir de {1, 2, 3, . .
(d) no ocurra E o no ocurra F. 27. Supéngase que se toma dos ca?as ?1 azart')dte).;l‘;lad ) a1
baraja legal de 52 cartas. ;Cual cs la probabilidad de ) y . '
20. Considérese un experimento con espacio muestral que Jambzs cartas sean menores que 10y de que P/\b(l) 2. ?i;a Cadfdbiucesmn del paso 1, inserte # en su oportunidad enrcada uno de los n
= 1x,. Xou ¥y X4} para el cual ninguna de ellas sea roja? L-xgarets isponibles (enel frente,- en el extremo y entre cada par de nimeros de la suce-
si6n), imprima el resultado, y elimine ».
- 3 . = ! 28. Supbngase que se saca tres bolas al azar de una urna
Py=g 2T T Ty que contienc sicte bolas rojas y cinco bolas negras. El nlimero de acciones de insertar-imprimir-eliminar es el niimero de sucesiones de # ele-
Calcule la probabilidad de que mentos. También claramente es n veces el numero de sucesiones producidas en el paso 1.
Determine fa probabilidad del evento dado. (a) las tres bolas scan rojas. [*n consecuencia, sc tiene
(a) F {25 (b)y F— fyoasayl (b) por lo menos dos bolas sean negras.
(¢) cuando mucho dos bolas SCAn Nearas. namero de secuencias de # elementos = 1 < (numero de secuencias (2 1)),
21, lay cuatro candidatos para presidente, A, B, CyD (d) por lo menos una bola sca roga
Supéngase que A tiene el doble de I’Y"bz‘bilidadcs _ . Esto da una férmula recursiva para el ndmero de secuencias de # elementos. (Cual es la
de ser elegido que By B es tres veees mas probable 29. Un canasto conticne tres manzanas, cmceo pla- condicion inicial? ¢ N
que C,y Cy D tienen igual probabilidad de ser 1anos, cuatro naranjas y scis peras. Sc toma una ‘ at!
clegidos. (Cual es la probabilidad de ser clecto que fruta al azar de este canasto. Caleule la probabili- o ) o N o
tiene cada uno de los candidatos? dad de que . Una tecnica para encontrar una formula explicita para la sucesidon definida por una
(@) $C CSCOja Una Manzana o una pera. relacion de recurrencia es el analisis hacia atras (o andlisis de regreso), como se ilustra en
22. i1 resultado de un cierto juego de azar ¢s un entero (b) la fruta cscogida no sea una naranja. \ el cje,mplo sigutente,
del tal 5 Los enteros 1,2 v 3 tienen igual probabi-
D du ovuiin, y Jos ohitores P S thnen fnmbatn 30, U dade tonad o lanende e e ' “jemplo 30 oo dorcourronoing, w0, Yoena, o 2define lasucesion 2,
izudles probabilidades de ocurrir. La probabihidad de Vicuentie fa probabibidad de que fow tres numeros 5.8 Sc cfectla un andlisis hacia atras at valor de g, sustituvendo ta definicion de
que el resultado sea mavor que 2es { - Determine Ja resultantes /1 1 voadd sucesivamente hactos fener un esguema claro
probabilidad de cada resultado posible. (a) meluyan exactamente dos treses,
(b)Y formen una secuencid creciente.
23, Una moneda fegal os lanzada cinco veees al aire. (¢) incluyan por to menos un 3. . a,=a, ;| *+3 obien a, =a, |+ 3
Cual es la probabitidad de obtener tres caras y dos () i”d.“y“” a lo mas un 3. _ (a” L 3) 43 —a, ,+ 7.3
cruces”? (¢) no tcluyan treses. _ ((a” - 3 +3) 43 —a, + 3.3
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En algin momento, este proceso producira

a4,=a, (.t (n—1)-3

=a,+(n—-1)-3
=2+{n-1-3
Una férmula explicita para la sucesion es a, = 2 + (n — 1)3. Verifique esto. L4

Ejemplo 4. Haga un andlisis hacia atrds para encontrar una férmula explicita para la
sucesion definida por la relacién de recurrencia b, = 2b, _ | + 1 con condicién inicial b, = 7.

Solucion: Se comienza por sustituir la definicién del término anterior en la formula

de definicién.
b,=2b,_,+1

=2012b, ,+1)+1
=2[2(2b,_, + 1) + 1] +1
=2, ;+4+2+1
=2%,_;+2%2+2"+ 1.
Esta presentandose un esquema con estas reexpresiones de b,. (Nota: No hay reglas
establecidas para la manera de volver a escribir estas expresiones y puede ser necesa-
ria una cierta cantidad de experimentacion.) El andlisis hacia atras terminara en

by =2"""b, oy t2" T T 2242+ ]
=2"""p, +2"" '~ 1 Utilizando el ejercicio 3, seccion 2.4
— 7 . Zn 1 + 2/1 I __ 1 ’

Dos reglas 0tiles de suma han quedado demostradas en los ejercicios de la seccidn
2.4. Son transcritas de nuevo para usarlas en esta seccion.

SI: 1+a+a*+a*+-+ag" 1=

§2: 1+2+3+---+n=

El andlisis hacia atrds puede no revelar un esquema explicito para la sucesion definida
por una relacion de recurrencia. Se proporcionard, ahora, una técnica mas general para re-
solver una relacion de recurrencia. Primero, se da una definicion. Una relacion de recurrencia
es una relacion lineal homogénea de grado & si es de la forma

a,=ra, tra, o+ rna, o, endonde las r son constantes.

Ejemplo §

(a) Larelacion ¢, =(—2)c, ., es una relacion de recurrencia lineal homogénea de grado 1.

(b) Larelacidna, =a, , + 3 no es una relacion de recurrencia lineal homogénea.

(¢) Larelacién de recurrencia f, = f, _, + f, _, es una relacion lineal homogénea de
grado 2.
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(d) Larelacion de recurrencia g, = g2, + g, _, no es una relacién linea] homo-
génea. S

, Para una relacion de recurrencia lineal homogénea de grado k, a, = ra, _ Lt ra,
+o+rna, ,sellama al polinomio asociado de grado &, x *=rx * "'+ px 24 4y
su ecuacion caracteristica. Las raices de la ecuacion caracteristica desempefian un papel
clave en la formula explicita para la sucesion definida por la relacidn de recurrencia y las
condiciones iniciales. Si bien el problema puede resolverse en general, se proporciona un
teorema para el grado 2 solamente. En este caso es comtin escribir la ecuacion caracteristica
como x> — rix — r,=0.

Teorema 1

(@) Sila ecuacion caracteristica x* — rix — r,= 0 de la relacion de recurrencia a,=
na, -+ ra,_, tiene dos raices distintas, s,y s,, entonces a, = us! + Vs, , en
donde uy v dependen de las condiciones iniciales, es la formula explicita parala
sucesion.

(b) Sila ecuacion caracteristica x* — r;x — r, =0 tiene una sola raiz s, entonces la
Jformula explicita es a, = us" + vns", en donde u y v dependen de las condiciones
iniciales.

Demostracion:  (a) Supéngase que s? — r.s, — r, =0, 57 — rs; —r=0,ya,=us
+ vsy, paran > 1. Se demuestra, entonces, que esta definicién de a, define la misma
sucesion quea, =ra, _, +ra, _,. Primero, se observa que u y v han sido escogidas de
tal manera que @, = us, + vs, y @, = us} + vs; y las condiciones iniciales quedan
satisfechas. Entonces

— h n
a, = us' + vs} Descomponga s7 y s2.

— e =22 n-2.2 3 i
usy “s7+ vsy %2 Sustituya por 57 y s?.
— no 2 -2
us’ (]’151 T 1)t st rs, +ry)
= n- -2 : -
=rnust Fnust T 4+ rest b+ ryvsh 2
— 4 n- - - —
riusyT + vsy T 4 or(usT T + vstT2)
_— .
W, +ra, . Use las definiciones de
a, . va, .
(b) Esta parte puede demostrarse en forma similar. ®

Ejemplo 6. Encuentre una formula explicita para la sucesion definida por ¢, = 3¢
2¢, _, con las condiciones iniciales ¢, =5y ¢, = 3.

n=1

© Solucién:  La relacién de recurrencia ¢, = 3¢, ., — 2¢, ,es una relacion lineal
homogeénea de erado 2 Su ecuacion asociada es v = 3y — 2 Valviendo a escribir ésta
como . = 3v -+ 2 — 0, se observa que hay dos raices, 1y 2.kl teorema | dice que se

puede encontrar 1 y v de manera que ¢, = u( 1)+ v(2) y ¢, = 1( 1) +1(2)%. Resolviendo
este sistema 2 X 2 se obtiene que wes 7y ves —1.

Por el teorema 1, se obtiene ¢, =7 - 1"+ (—1) - 2" 0 sea, ¢, =7 — 2". Notese que
usandoc¢, =3¢, — 2¢, 5, con las condiciones iniciales ¢, = 5 y ¢, = 3, se obtiene 5,

3, = by —9 como los primeros cuatro términos de la sucesion. La formulac, =7 — 2~
da lugar también a 5, 3, —1 y —9 como los primeros cuatro términos. ¢
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Ejemplo7. Resuelvalarelacionde recurrenciad, =2d, _

lesd,=1.5yd,=3.

— d, _, con condiciones inicia-

Solucién: La ecuacidn asociada para esta relacion lineal homogénea es X = 2x+1
= (. Esta ecuacion tiene una raiz (multiple), 1 . En consecuencia, por el teorema 1(b),
d, =u(1)" +vn(1)". Usando esta formula y las condiciones inicialesd, = 1.5 =u +v(1)
y d, =3 =u + v(2), se encuentra que u es 0yves 1.5 Entonces d, = 1.5n. L4

La sucesion de Fibonacci del ejemplo 1(b) es una sucesion muy conocida; se necesito
doscientos afios para encontrar su formula explicita.

Ejemplo 8. La sucesién de Fibonacci s define como una relacion dg recurren,cia lineal
homogénea de grado 2, de manera que, por el teorema 1, son necesarias las raices de la
ecuacion caracteristica para describir la formula explicita para la sucesion. Def, =f, - +
f_,yfi=/,=1,setiene 2 — x — 1 =0. Utilizando la férmula cuadratica para obtener las

raices, se encuentra s; =
Se resuelven las ecuaciones

1=u[1+2\/§j+v(

= 1445 y S, = l:[ﬁ Queda por determinar las u y v del teorema 1.
2

1-45 _(1+\/§)2 (1-\/5)2
— )Yt M T )

! -L _ La formula explicita para la

Para las condiciones iniciales dadas, u es e yves —

sucesion de Fibonacci es

GRUPO DE EJERCICIOS 3.5

En los ejercicios | al 6, identifique la relacion de
recurrencia dada como lineal homogénea o no. Si la
relacion es lineal homogéneu, indique su grado.

1. a,=25a,_,

2. b,=-3b,.,—2b,
3¢,=2%,_,

4. d, = nd,

5. ¢,=5, [ +3

6' gn: g41+gn/2

n

En los ejercicios T al 12, utilice la técnica del
andlisis hacia atrds a fin de encontrar una férmula

explicita para la sucesion definida por la relacion
de recurrencia y la o las condiciones iniciales.
7. a,=25a, ,a =4

T
il
wn
=

8.

9. ¢ =c,.,+tn =4

10. d, = —1.1d,_,, d, =5
Il.¢,—¢, | —2.¢, =40
12. En T Ny - 15 81 7 6

En los ejercicios 13 al 18, resuelva cada una de las
relaciones de recurrencia.

13.a,=4a, ;+5a, 5 a =2, ;= 6

14. b, = —3b,_, = 2b,_,, by=-2,b,=4
15. ¢, = —6¢,_, — 9, _,, ¢, =25, ¢, =47
16. d,=4d,_, —4d,_,, d, =1, d,=7

17. ¢, =2¢,_,, ¢,= V2, e,=6

18. En = 2gn*1 - 2gn*2’ 8 = l’ & = 4

IDEAS CLAVE PARA REPASO

Teorema (principio de multiplicacién del conteo):
Supdngase que debe efectuarse dos tareas, 7, y
T,sucesivamente. Si T puede efectuarse de n,
maneras y para cada una de estas maneras, 7,

‘puede realizarse de n, maneras, entonces la suce-

sién T, T, puede efectuarse en n,n, maneras.
Teorema (principio extendido de la multiplica-
cion): véase la pagina 73.

Teorema: Sea 4 un conjunto con n elementos y
1 < r < n. Entonces el niimero de sucesiones de
longitud » que puede formarse con n elementos
de A4, permitiendo repeticiones, es n'".
Permutacién de n objetos tomados » a la vez
(I < r =< n): una sucesion de longitud r for-
mada de elementos distintos.

Teorema: Si | << r < p, entonces ,P,, el nimero
de permutaciones de n objetos tomados r a la vez,
esn-m—1D - (m—2) - (n—r+1)osea

il

YR
Y(’Z:n;l)utaci()n: un arreglo de n elementos de un
conjunto 4 en una sucesion de longitud s
Teorema: El nimero de permutaciones distingui-
bles que puede formarse a partir de una colec-
¢ion de n objetos en donde el primer objeto apa-
rece k, veces, el segundo objeto k, veces, y asi
sucesivamente, es 4.
Combinacion de n objetos tomados r a la vez: un
subconjunto de r elementos tomados de un con-
junto con 11 clementos.
Teorema: Sea 4 un conjuntocon |4 =nvsea 1l <
r < n. Entonces ,C,, el nimero de combinacio-
nes de los elementos de 4, tomados 7 a la vez, es

n!
ri{n—ryt.

Teorema: Supoéngase que se va a hacer k selec-

- 19.

20.

Ideas clave para repaso 929

Desarrolle una formula explicita general para una
relacion de recurrencia no homogénea de la forma
a,=ra,_; *+s, endonde ry s son constantes.

Confirme que la formula explicita del ejemplo 8
produce la sucesion de Fibonacci dada en el ejemplo
1(b) al calcular los primeros cinco términos de la
sucesion.

ciones de n objetos sin considerar el orden y que
se permite repeticiones, suponiendo por lo me-
nos k copias de cada uno de los n objetos. El ni-
mero de maneras en que puede hacerse estas se-
lecciones es (, ., - ,C.

El principio de las casillas: véase la pagina 82.
El principio de las casillas extendido: véase la
péagina 84.

Espacio muestral: el conjunto de todos los resul-
tados de un experimento.

Evento: un subconjunto del espacio muestral.
Evento seguro: un evento que ocurrira con segu-
ridad.

Evento imposible: el subconjunto vacio del es-
pacio muestral.

Eventos mutuamente excluyentes: dos eventos
cualesquiera Ey Fcon EM F = { },

[+ 1a frecuencia de ocurrencia del evento £ en n

intentos.

P(E): la probabilidad del evento E.

Espacio de probabilidad: véase la pagina 89.
Evento elemental: un evento que consta de un solo
resultado.

Seleccion aleatoria: véase la pagina 90.
Relacion de recurrencia: una féormula recursiva
para una sucesion.

Condiciones iniciales: informacidn acerca del
comienze de ouna sueesion definida de manera
recursiva.

Relacion lineal homogénea de grado &: una rela-
cion de recurrencia de la forma

Uy, =N, | TR, > +ooeot TGy -k

en donde las 7, son constantes.
Ecuacién caracteristica: véase la pagina 97.



100

EJERCICIOS DE CODIFICACION

Capitulo 3 Conteo

Para cada uno de los siguientes casos, escriba el pro-
grama o la subrutina que se solicita en seudocodigo
(como se describe en el apéndice A) 0 en un lenguaje
de programacién que usted conozca. Pruebe su codi-
go ya sea con una prueba de escritorio o con una
ejecucion en computadora.

1.

Escriba una subrutina que acepte dos enteros po-
sitivos ny ry, si ¥ = n, Iegrese el namero de
permutaciones de  objetos tomados  a la vez.

Escriba un programa que tenga como entrada
enteros positivos ny ry,si r <n, imprima las
permutaciones de 1, 2,3, ..., 7 tomadas r a la
vez.

3.

Escriba una subrutina que acepte dos enteros po-
sitivos ny ry, si ¥ < n, regrese el nimero de
combinaciones de n objetos tomados 7 a la vez.

Escriba un programa que tenga como entrada los
enteros positivos n y , y, si ¥ < n, imprima las
combinaciones de 1,2, 3, ..., ntomados rala
vez.

(a) Escriba una subrutina recursiva que con en-
trada k imprima los primeros k-numeros de
Fibonacci.

(b) Escriba una subrutina no recursiva que con
entrada k imprima el k-ésimo nimero de
Fibonacci.
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Requisitos previos: Capitulos 1y 2

Las relaciones entre personds, ndimeros, conjuntos y muchas otras entidades pueden forma-
lizarse en la idea de una rclacion binaria. Enoeste capitulo se desarrolla ¢l concepto de
relacion hinaria, v <e estudia varios métodos geométricos v algebraicos para representar
tales objetos. También se estudia una variedad de propiedades que una relacion binaria
puede poseer, y se proporciona importantes ejemplos, como las relaciones de equivalencia.
Poi Gltimo, s¢ presenta varios tipos de manipulaciones algebraicas Gtiles que puede realizar-
se en las relaciones binarias. Estas manipulaciones son analizadas tanto desde el punto de
\ ist;’l teorico como del computacional.

4.1. Conjuntos producta v particionces
Conjuntys producto

Un par ordenado (o pareja ordenada) (v, b) es un listado de los objetos a 'y b en un orden
prescrita, donde @ aparece en primer término y b, en segundo. En consecuencia, un par
ordenado (o parcja ordenada) simplemente es una secuencia de longitud 2. A partir del



Relaciones y digrafos

analisis anterior de las secuencias (véase la seccion 1.3), se desprende que los pares ordena-
dos (a,, b)) y (a5, b,) son iguales si y solamente sia, = a, y b, = b,.

. Si Ay B son dos conjuntos no vacios, se define el conjunto producto o producto
cartesiano 4 X B como el conjunto de todos losr pares ordenados (a, b) conae Aybe 3 Asi,

AXB={(a,b)lac A y be B}.
Ejemplo 1. Sean
A=1{1,2,3} y B={rs},
entonces
AXB={(1,r,1,s),(2,1),(2,5),(3,r), (3,5}

Observe que los elementos de A X B pueden ser dispuestos en forma tabular conveniente

como se muestra en la figura 4.1. L 4

W
A r R

1 a1,n (1, 5)

2 2,1 2,5

3 3,1 3,5
Figura 4.1

Ejemplo 2. Si Ay Bsoncomo en el ejemplo 1, entonces
B X A={(r.1)(s.1).(n2).(5.2).(r.3).(s,3)}. .

De los ejemplos 1 y 2. se ve que 4 X B no necesita ser igual a B X 4.

Teorema 1. Para dos conjuntos finitos no vacios cualesquierad y B,| 4 X B =] 4 [1B1l .

Demostracion:  Supéngase que |4] = m y |B| = n. Para formar un par ordenado
(o parcja ordenada) (a. b), a€ Ay be B, se debe realizar dos tareas sucesivas. La
tarca | consiste en escoger un primer elemento del conjunto 4, y la tarea 2, en escoger
un segundo elemento de B. Hay m maneras de efectuar la tarea 1 y »n maneras de
efectuar la tarea 2; por tanto, por el principio de la multiplicacion (vease la seccion
3.1), existen m X n maneras de formar un par ordenado (o pareja ordenada) (a, b). En
otras palabras, | 4 X B|=m-n=]4||B|. )

Ejemplo 3. Si 4= B= -, el conjunto de todos los niimeros reales, entonces =~ X 7,
también denotado por 2. es el conjunto de todos los puntos del plano. El par ordenado
o parega ordenaday (o M) da las coordenadas de un punto del plano. ¢

Ejemplo4. Unacompariade investigacion de mercados clasitfica a una persona de acuer-

do con los siguientes dos criterios:

Género: masculino (m); femenino (/)
Maximo nivel de educacion terminado: escuela primaria (e);
secundaria {/1); universidad (c); posgrado (g)
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SeanS={m, f} yL={e, h, c, g}. Entonces, el conjunto producto S X L contiene todas
las categorias en las que se clasifica la poblacién. En consecuencia, la clasificacién . 2
representa una mujer que ha terminado alguna especializacién, es decir, un posgrado I’{g
ocho categorias en este esquema de clasificacidn. ' iy

Ahora se define el producto cartesiano de tres o mas conjuntos vacios generalizando
la definicion anterior del producto cartesiano de dos conjuntos. Es decir, el producto
cartesiano 4, X 4, X - - - X 4,, de los conjuntos no vacios 4,, 4, . . . , 4, es el conjunto de
tgdas las m-uplas ordenadas (a,, a,, . . . ,a,,), endondea,e 4, i=1,2,...,m.En consecuen-
cia

Ay XA, X XA, ={(a,ay...,a4,) | ae A,i=1,2,... m}.

I*;Jem[?lo 5 Una compafiia de programas de computacion proporciona las tres caracteris-
ticas siguientes para cada programa que vende:

Lenguaje: FORTRAN ( f); PASCAL ( p); LISP (/)
Memoria: 2 megas (2); 4 megas (4); 8 megas (8)
Sistema operativo: UNIX (u); DOS (d)

Sea‘L ={p 1}, M={2,4,8} y O= {u, d }. Entonces el producto cartesiano L X M
>,< O contiene todas las categorias que describen un programa. Hay 3 - 3 - 2 0 sea 18 catego-
rias en este esquema de clasificacion. ¢

. Procediendo de manera similar a la que se siguié para demostrar el teorema 1, usando
el p.rmcipio de multiplicaciéon ampliado, se puede demostrar que si 4, tiene #, elementos
A, tiene n, elementos, . . ., y 4, tiene n,, elementos, entonces 4, X 4, X -+ - X 4 tienc;
n, - n, - n, elementos. ) !

Particiones

Una pgrtwmn 0 conjunto cociente de un conjunto no vacio 4 es una coleccién P de
subconjuntos no vacios de 4 tales que

. 1. Cada elemento de A pertenece a uno de los conjuntos en ‘.
2. Sid;y A, sonelementos distintos de P, entonces 4, (M 4, = 5.

L.os Conjuqtqs que hay en'’)’se llaman bloques o celdas de la particion. La figura 4.2
muestra una particion J — {A,, Ay, A;, Ay, As, A,, A4} de A en siete bloques.

Ejemplo 6. Sea
A - {aqbwc’dwevf’g’h}'
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Figura 4.2

Considérense los siguientes subconjuntos de A:

A, =la,b,c, d}“&‘,” A, ={a,c e f, g hl. A;={a,ceglh

A, = {b,d], A = {f, h].

Entonces {4,, 4,) no es una particion ya que 4, () A, # J. También, {4, A5} no es
una particion, en vista de que e € A4,y ¢ € A;. La coleccion = {4;, A, A5} es una
particion de 4. ¢
Ejemplo 7. Considérese el conjunto 4 de todos los empleados de General Motors. Si se
forma subconjuntos de 4 agrupando en cada subconjunto a todos los empleados que tienen
exactamente el mismo salario, se obtiene una particion de 4. Cada empleado pertenecerd
a exactamente un subconjunto. L4
Ejemplo 8. Sean

7 = conjunto de todos los enteros,

A, = conjunto de todos Tos enteros pares, v

t - conpunto de todos tos enteros impares

Entonces {1, <21 es una particion de 7. ¢
Puesto que todos los miembros de una particion de un conjunto. son subconjuntos de

A, se ve que la particidn es un subconjunto de 7(4). ¢l conjunto potencia de A. Es decir,
puede considerarse las particiones como clases particulares de subconjuntos de £P(4).

GRUPO DE EJERCICIOS 4.1

1. En cada parte, encuentre x o y de manera que el
enunciado sea verdadero.
(a) (x,3) = (4.3)
(b) (a,3y) = (a,9)
(c) 3x+1,2) = (7,2)
(d) (C**,PASCAL) = (y,x)

- 2. En cada parte, encuentre x o y de manera que el

enunciado sea verdadero.

(a) (4x,6) = (16,y)

(b) 2x—3,3y —-1)=(5,5)

(© (¥,25) = (49,y)  (d) (x,y) = (%))

-3, Sean 4= {a, b} yB={4,5, 6}. Haga una lista de

los elementos en
(a) AXB (b) BXx A
(c) AXA (d) BXB

4. Sean A = {Fine, Yang} y B = {presidente, vicepresi-
dente, secretario, tesorero}. Dé cada uno de los tres
€asos siguientes.
(a) AXB (b)y BxX A (c) AXA

5. Un experimento de genética clasifica las moscas de
las frutas de acuerdo con los dos siguientes criterios:

Género: masculino (m), femenino (/)
Alas extendidas: cortas (s), medianas (m), largas (/)
(a) (Cuéntas categorias hay en este esquema de
clasificacion?
(b) Haga una lista de todas las categorias de este
esquema de clasificacion.

6. Un fabricante de automoviles hace tres tipos
diferentes de chasis (o armazon del auto) y dos tipos
de motores.

Tipo de armazon: sedan (s), coupé (c), vagoneta (v)
Tipo de motor: de gas (g), diesel (d)
Elabore una lista de todos los modelos posibles de
autos.

T. SiA={a b c}, B={1,2},y C={# *}, anote en
una lista todos los elerfientos de 4 X B X (.

8. N1 4 tene res elementos v B tiene i1 = | elementos,
utilice la induccion matematica para demostrar que
0B 3

9. Sid=!alacselnimeroreal} y B= {1, 2,3}, haga
un csquema de cada uno de los siguientes casos en
¢l plano cartesiano.

(a) AXB (b) BXA

- 10.

11.

- 12,

14.

15.

16.

17.

18.

20.
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Sid={alaesunnimerorealy —2<a=< 3}y
B={b|besunnumerorealy | =< b =< 5} hagaun
esquema de cada uno de los siguientes casos en el
plano cartesiano.
(a) AXB (b) BXA

Demuestre que si 4, tiene #, elementos, 4, tiene n,
elementos, y 4; tiene n; elementos, entonces 4, X 4,
X A, tiene n, - n, - n, elementos.

SidcCyBcD,demuestreque 4 X B C X D.

Seand = {1,2,3,4,5,6,7,8,9, 10} y

A =1{123,4, A, ={567),

Ay, = {4,579}, A,= {4,810},

As = {8,9,10], A, =1{1,2,3,6,8,10}.
(Cuales de las siguientes son particiones de 4?
(a) {4;,4;, A5} (b) {A, A3 A4}

(c) {As Ay (d) {Ay A3 Ay

Si 4, es el conjunto de los enteros positivos y 4, es
el conjunto de todos los enteros negativos, jes {4,
A,} una particion de Z? Explique su conclusion.

SiB=1{0,3,6,9,...}, escriba una particiéon de B
que contenga

(a) dos subconjuntos infinitos.

(b) tres subconjuntos infinitos.

Haga una lista con todas las particiones de 4 = {1, 2, 3}.

Haga una lista con todas las particiones de B = {a, b,
e d}.

El nimero de particiones de un conjunto con n
clementos en & subconjuntos satisface la relacion de
recurrencia

Sn,ky=Sn -1 k—1)+k-S(n—-1,k)

con condiciones iniciales S(n, 1) = S(n, n) = 1.
Encuentre el nimero de particiones de un conjunto con
cuatro clementos en dos subconjuntos, ¢s decir, S(4,2).
Compare su resultado con los resultados del

ST
cjerciclo 17,

Scan 4, Boy C subconjuntos de U Demuestre que

AXBUO) =X BJMA X CO).

Utilice los conjuntos 4 = {1,2,4},B=1{2,5,7}y
C={1,3,7)} para investigarsi4 X (B YC)=(4 X
B)Y(M (4 X (). Explique sus conclusiones.
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4.2. Relaciones y digrafos

Relaciones

La nocién de una relacién entre dos conjuntos de objetos es bastante comun e intuitivamente
clara (més adelante se daré una definicién formal). Si 4 es el conjunto de todos los seres
humanos masculinos vivos y B es el conjunto de todos los seres humanos femeninos vivos,
entonces la relacion P (padre) puede definirse entre 4 y B. Asi,sixe Ayye B,entoncesx
esta relacionada con y por la relacién P si x es el padre dey, y se escribe x P y. Debido a que
aqui interesa el orden, se hace referencia a P como a una relacion de Aa Bj Se podria
considerar también las relaciones H y M de 4 a B suponiendo que x H y signifique que x es
un hijo de y, y que x M y signifique que x sea el marido de y.

Si 4 es el conjunto de todos los nimeros reales, hay muchas relaciones de uso comun
de 4 a A. Un ejemplo es la relacién “menor que”, la cual suele denotarse por <, de modo que
x est4 relacionada con y six <y, y las demas relaciones de orden >, < y =. Se ve que una re-
lacién se describe a menudo verbalmente y puede denotarse por un nombre conocido o un
simbolo. El problema que se tiene con este enfoque es que se necesita analizar cualquier
relacién posible de un conjunto abstracto a otro. La mayoria de estas relaciones no tiene una
descripcion verbal simple ni un nombre o simbolo conocido que recuerde su naturaleza o
sus propiedddes. Por otra parte, suele ser dificil, y en ocasiones casi imposible, dar algunas
demostraciones precisas de las propiedades que satisface una relacién, si se tiene que tener
una descripcion verbal de la misma.

Para salvar este problema, observe que lo tnico que realmente interesa acerca de una
relacion es que se sepa con precision cudles elementos de A estan relacionados con cudles
elementos de B. Asi, supongase que 4 = {1,2,3,4} y que Res la relacion de 4 a A4. Si se sabe
que IR2,1R3,1R4,2R3,2R 4,y 3R 4, entonces se sabe todo lo que se necesita saber acerca
de R. En realidad, R es la relacién conocida <, “menor que” pero no se necesita saber esto. Seria
suficiente con que se diera la lista anterior de pares relacionados. En consecuencia, se puede
decir que R es totalmente conocida si se conoce todos los pares relacionados con R. Se podria
escribir entonces R = {(1, 2), (1. 3), (1, 4. (2, 3), (2.4),(3,4)}, en vista de que R es esencial-
mente igual a o estd completamente especificada por este conjunto de pares ordenados. Cada
par ordenado (o pareja ordenada) especifica que su primer elemento esta relacionado con su
segundo clemento, y se supone que se da, por lo menos en principio, todas las partes relaciona-
das posibles. Este método de especificar una relacién no requiere ningtin simbolo o descripcion
especial y por tanto es adecuado para cualquier relacion que exista entre dos conjuntos cuales-
quiera. Notese que desde este punto de vista, una relacién de 4 a B simplemente es un subconjunto
de A4 % B (que da los pares relacionados), y, reciprocamente. cualquier conjunto 4 X B puede
considerarse una relacion, aun cuando sea una relacion no conocida para la cual no se tenga
nombre ni descripeion alternativa. Se escoge este enfoque para definir relaciones.

Sean A y B conjuntos no vacios. Unarelacion R de AaBesun subconjunto de 4 X B.
SiR - Byvita bre Rosedice qued esta relacionada con b por R, y sc escribe también
a R SEa no esta relacionada con b por R, se eseribe ¢ R b Con frecuencia, Ay B son
jguales. kn este caso, se dice a menudo que R < A X A es una relacion sobre /A, en lugar de
una refacion de 4 a 4.

Las relaciones son sumamente importantes en matematicas y sus aplicaciones. No es
una exageracion decir que el 90 por ciento de lo que se estudia en el resto de este hbro se
referird a algan tipo de objeto que puede considerarse como una relacién. Véase a continua-
cidn algunos ejemplos.
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Ejemplo 1. Sea
A={1,2,3} y B={rs}.
Entonces
R=1{(1,n,(259.G,n)

es una relacion de 4 a B. S

Ejemplo 2. Sean 4 y B conjuntos de niimeros reales. Se define la siguiente relacion R de
(igualdad) de 4 a B:

aRb siysolosi a=b. ..

Ejemplo 3. Sea
A=1{1,2,3,4,5).
Defina la siguiente relacién R (menor que) en 4:
aRb siysdlosi a<b.

Entonces
R ={(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5), (4. 5)}. .

Ejemplo 4. Sea 4= Z", el conjunto de todos los enteros positivos. Defina la siguiente
relacion R en 4:

aRb siysolosiadividea b.
Fntonces 4 R 12, pero 5 R 7. ¢

Ejemplo 5. Sea 4 el conjunto de toda la gente del mundo. Se define la siguiente relacion
R sobre A: a R b siy slo si hay una secuencia ay, ay, . . . , a, de personas tales que g, =4, a,
=bya,., conocea,i=1,2,...,n(ndependerddeay b). *

Ejemplo 6. Sea 4 =", el conjunto de todos los niimeros reales. Se define la siguiente
relacién R en 4:

xRv stvsolosi  xvyvsatisfacen la ecuacion -1
El conjunto R consta de todos los puntos que estan sobre la elipse de la figura 4.3. L4
Ejemplo 7. Sea A el conjunto de todas las entradas posibles a un programa dado de
computadora, y sea B el conjunto de todos los resultados posibles del mismo programa.

Defina la siguiente relacién R de 4 a B: a R b si y solo si b es el resultado producido por el
programa cuando se use la entrada a. ¢
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©,3)

(-2,0) 2,9

Y
=

0,-3)

Figura 4.3

Ejemplo 8. Seca

A = el conjunto de todas las lineas contenidas en el plano.

Defina la siguiente relacion R en A:
I,RI, siysolo si [, esparalelaals,
¢
en donde /, y [, son lineas contenidas en el plano.

i i ' € . Le a4l
ea da servicio a cinco ciudades ¢, ¢, €5 G Y Cs La tabla

i inea aér , o Cac
Ejemplo 9. Una line onsecuencia, el costo del viajedec, acs

muestra el costo (en dolares) del viaj‘e Fie c,ac. Enc e
es $100, mientras que el costo del viajede ¢ a2 €8 $200.

Tabla 4.1
o Cy Cs
100 150 200
200 160 220
190 250
120 150
200 150

Ahora se define la siguiente relacion R sobre el conjunto de ciudades 4 = {c,, Cyy €3, Cay
csh:c; R ¢;siy solo si el costo de ir de ¢; a ¢; es menor o igual a 180 dolares. Determine R.

Solucidn: Larelacién R es el subconjunto de 4 X 4 formado por todas las ciudades
(¢, ¢;), en donde el costo del viaje de c; a ¢; es menor o igual a 180 délares. Por tanto

R =
{(c}, cy), (1, €3), (¢, c4)s (€2 ¢4), (€3, €1), (€35 ), (€4, €3), (€45 C5), (€5, €)), (c5,¢4)). @

Conjuntos que surgen de las relaciones

Sea R c A4 X B una relacion de 4 a B. Se va a definir ahora varios conjuntos importantes y
utiles relacionados con R.

El dominio de R, denotado por Dom(R), es el conjunto de elementos de A4 que estan
relacionados con algiin elemento de B. En otras palabras, Dom(R), un subconjunto de 4, es
el conjunto de todos los primeros elementos de los pares que forman R. De modo similar, se
define el rango de R, designado por Ran(R), como el conjunto de elementos de B que son
segundos elementos de los pares de R, es decir, todos los elementos de B que estan relacio-
nados con algin elemento de 4.

Los elementos de 4 que no estan en Dom(R) no estan involucrados en la relacion R de
manera alguna. Esto es cierto también para los elementos de B que no estén en el rango, Ran

®).

Ejemplo 10. SiR es la relacion definida en el ejemplo 1, entonces Dom(R) = 4 y Ran(R)
=B. 14

Ejemplo 11. SiR es larelacion que se dio en el ejemplo 3, entonces Dom(R) = {1,2, 3,4}
y Ran(R) = {2, 3,4, 5}. L4

Ejemplo 12. Sea R la relacién del ejemplo 6. Entonces Dom(R) = [—2, 2] y Ran(R) =
[—3, 3].Nétese que estos conjuntos han sido dados en notacion de intervalos. .

SiResunarelacionde 4 a By x € 4, se define R(x), el conjunto relativo en R de x,
como el conjunto de todas las y de B con la propiedad de que x esta relacionada en R con y.
Asi, en simbolos,

R(x) = {y € Blx Ry}

De modo semejante, st 4, € A4, entonces R(4,), el conjunto relativo en R de 4,, es el
conjunto de todas las y de B con la propiedad de que x esta retacionada en R con y para
alguna x de 4,. Es decir,

R(A4))={ye B|x RyparaalgunaxdeA,}.
Por las definiciones anteriores, se ve que R (4,) es la union de los conjuntos R (x), en donde
xc 1,. Los conjuntos R(x) desempefian un papel importante en el estudio de muchos tipos
de relaciones.
Fjemplo 13, Sea 4= fa b . d! vsea R= $a. a). (a. P). (h. ), (c. o). (d. o). (e b)Y
Entonces R(a) = {a, b}, R(b) = {c}. y si 4, = {c¢, d}, entonces R(A4,) = {a, b, c}. *
Ejemplo 14. Sea K larelacion del ejemplo 6,y seaxe . Six R ypara algunay, entonces

x4 +y*/9= 1. Se ve que six no esta en el rango ( —2, 2), entonces ningunay puede satisfacer
la ecuacion anterior, ya que x*/4 > 1. En consecuencia, en este caso, R(x) =. Six = — 2,
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entonces x/4 = 1, de manera que x sélo puede estar relacionada con 0. En consecuencia,
R(—2) = {0}. De modo similar, R(2) = {0}. Finalmente, si =2 <x <2y x Ry, entonces se
debe tenery = /9 — (9x*/4) oy=9— (9x?/4) , como se ve al resolver la ecuacion x/4 +
1219 = 1, de modo que R(x) = { \/§ Z(9x%/4) , — |J9 — (9x?/4) }. En consecuencia, por ejem-
plo, R(1)= {33 )2, — (3 J3)/2}. , ¢

El siguiente teorema muestra el comportamiento de los conjuntos relativos en Ren
relacién con las operaciones basicas de los conjuntos.

Teorema 1. Sea R la relacion de A a B, y sean A, y A, subconjuntos de A. Entonces

(a) Sid, C A4, entonces R(4;) S R(4y).
(b) R(A; U Ay = R(A) U R(A,).
(c) R(A; N Ay C R(A) N R(A,).

Demostracion: (a) Siye R(4)), entonces x R y para algunax e A,. Como 4, C 4,
x e A,. En consecuencia, y € R(4,), lo cual demuestra la parte (a).

(b) Siye R(4, U 4,), entonces por definicion x R y para alguna x de 4, \J 4,. Si
x esta en A,, entonces, como x R y, se debe tener y e R(A4;). Por el mismo argumento,
six esta en 4,, entoncesy € R(4,). En cualquiera de los dos casos,y e R(4 DU R(A4,).
En consecuencia, se ha demostrado que R(A4, U A4,) © R(A4) U R(4,).

Reciprocamente, como 4, < (4, \U 4,), la parte (a) dice que R(4;) < R(4, U 4,).
De modo similar, R(4,) € R(4, \U 4,). En consecuencia, R(4,) U R(4,) € R4, U
A,), y por lo tanto la parte (b) es verdadera.

(¢)Sive R(A, M 4,), entonces, para alguna x de 4, (M A,, x R y. Como x estd en
ambos conjuntos 4, y 4,, se desprende que y esta en ambos R(4,) y R(4,); es decir, y
€ R(A,) ) R(4,). En consecuencia, la parte (c) es verdadera. ®

Obsérvese que el teorema 1(c¢) no afirma que haya igualdad de conjuntos. Véase el
ejercicio 16 para las condiciones en las cuales los dos conjuntos son iguales. En el ejemplo
siguiente, se verd que no siempre permanece Como valida la igualdad.

Ejemplo 15. Sean 4 - Z, Re<™ A, =10, 1,21y 4, = {9, 13}. Eatonces R(A,) csta
tormado por todos los enteros 1 tales que 0= n, 0l =m0 2 < 5. En consecuencia R(A4,) =
10, 1,2, . ..}. De modo semejante, R(4,) = {9, 10, 11, .. 21, de modo que R(4,) M R(A4,) =
19, 10, 11, .. .}. Por otra parte, A, M A, =D en consecuencia, R(A, (M 4,) = . Esto

demuestra que el contenido del teorema 1(¢) no es siempre una igualdad. L4

Ejemplo 16. Sean 4 = {1.2, by B v o paginy considere la retacion R = {(1, x),
(1) (200 (2.0, (2o (300 SQean 4, — {1.2Y v A, = {2,3}. Entonces, R(4)) = Iy, z
pogl VR  hwpogorviobn consecucicia R4 'S RGEY B Comoelt, Vg doseve
que R4, 1) Ret) - Bocomose enuncia en el teoreia 1), Tambien, RUID YR ) =
ey o RG2E) O RGE, MY Ay, demodo gue eneste caso la igualdad no es vilida para cl

contenido del teorema 1(c). ¢

Resulta atil y facilmente observable que los conjuntos R(«), para ¢ en A, deter-
minan completamente una relacion R. Este hecho es enunciado con precision en ¢l
siguiente teorema.
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;Ie‘eorema 2. Sean Ry Srelaciones de A a B. Si R(a) = S(a) para todas las a de A, entonces
=S ’

Demostracion:  Si a R b, entonces b € R(a). Por lo tanto, b € S(a)y a S b. Un
argumento completamente similar muestra que, si a S b, entonces a R b. En conse-
cuencia, R = S. ®

La matriz de una relacion

Es posible representar una relacidn entre dos conjuntos finitos con una matriz de la siguien-
te manera. Si4 = {a,, a,, s a,y yB={b,, b, ...,b,} son conjuntos finitos que contienen
myn elementos, respectivamente, v R es una relacion de 4 a B, se representa R por la ma-
triz m X n Mg = [m,], la cual se define por

1 si(a,,b)eR
0 si(a,.b)e R

La m.atrlz M, se llama matriz de R. A menudo M, proporciona una manera facil de verifi-
car si R tiene una propiedad dada.

Ejemplo 17. Sea R la relacién que se definié en el ejemplo 1. Entonces la matriz de R es
il
M, =10

o = O

A lainversa, dados los conjuntos 4 y Beon | A | =nr y | B|=n, una matrizm X i cuyas
entradas son ceros v unos, determina una relacion, como se ilustra en el cjemplo siguiente.

Ejemplo 18. Considere la matriz

1 0 0 1
M-=10 1 1 0
I 0 1t 0

Como M es 3 X 4, se hace
A= tanasnad oy B yb bbbyt

Fntonces («. b)ye R siy solamente sim, = 1. EEn consecuencia.

”

R Ha b)) Aa . b)) an by Aun D) Aan b)) (an b)) ¢
Digrafos

S 1 Oy Wi comunto tinto y A es una rekacion sobre AL tambien se puede representar £
graficamente como sigue. Trace un pequetio circulo para cada elemento de 4y marque el
circulo con el elemento correspondiente de 4. A estos circulos se los Hama vértices. Trace
una flecha. a la que se llama lado (arco). del vértice @, al vértice g, s1y solamente sia, R a,.
La representacion grafica resultante de R se llama grafica dirigida o digrafo de R. ’
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sobre A, los lados o arcos del digrafo de R

rti te a los
corresponden exactamente a los pares de R, y los vértices corresponden exactameélmétrica
1 Etos del conjunto 4. En ocasiones, cuando se desea acentuar la naturaleza ge netrca
eleme . . . zeom
de alguna propiedad de R, se puede hacer referencia a los pares mismos de R co

értices.
arcos y a los elementos de R como vert

En consecuencia, si R es una relacion

Ejemplo 19. Sean

A =1{1,2,3,4}
R = (1, 1), (1,2), (2, D, (2,2), (2.3). (2.:4), 3,4, (4. D}

i ¢
Entonces el digrafo de R es como s¢ ilustra en la figura 4.4.
Figura 4.4
ela-

5 ertices ina unar
Una coleccion de vértices con lados entre algunos de los vertices determi

cion de manera natural.

Ejemplo 20. Lacucntre 14 relacién determinada por la figura 4.5.

[ = —( 3 )
N M A
Figura 4.5
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Solucién:  Como a; R a; si y solamente si hay un lado de g, a a,, se tiene

I

R={(1,1),(1,3),(2,3),(3,2),(3,3), (4, 3)). ¢

En este libro, los digrafos no son sino representaciones geométricas de relaciones, y
cualquier enunciado que se haga acerca de un digrafo es, en realidad, un enunciado acerca
de la relacion correspondiente. Esto es especialmente importante para teoremas y sus de-
mostraciones. En algunos casos, es mas facil o mas claro enunciar un resultado en términos
graficos, pero una demostracion siempre se referird a la relacion subyacente. El lector debe
estar consciente de que algunos autores consideran mas objetos generales como digrafos,
por ejemplo, permitiendo que haya varios arcos entre los mismos vértices.

Un concepto importante para las relaciones es el que inspira la forma visual de los
digrafos. Si R es una relacion sobre un conjunto 4 y a € A4, entonces el grado interno de g
(relativo a la relacion R) es el nimero de b € A4 tal que (b, a) € R. El grado externo de « es
el nimero de b € A tal que (a, b) € R.

Esto significa, en términos del digrafo de R, que el grado interno de un vértice es el
numero de arcos que terminan en el vértice. El grado externo de un vértice es el nimero de
arcos que salen del vértice. Notese que el grado externo de a es [R(a)).

Ejemplo 21.  Considérese el digrafo de la figura 4.4. El vértice | tiene grado interno 3 y
grado externo 2. Considérese también el digrafo que aparece en la figura 4.5. El vértice 3
tiene grado interno 4 y grado externo 2, mientras el vértice 4 tiene grado interno 0 y grado
externo 1. ]

Ejemplo 22. Scad = {a, b, ¢ d |,y sca R larclacion sobre A que tiene la matriz

I 0 0 0
M 0 1 0 0
My =
1 1.0
0 1 0 1
Construya eldigrafo de R,y haga una lista de los grados internos y grados cateiiios Jde todos

los vértices.

Solucion:  El digrafo de R se ilustra en la figura 4.6. La tabla siguiente proporciona
los grados internos v los externos de todos los vértices.

»

‘s

Grados mternos 1 2

Grrados externos
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b
A
@ox
d
Figura 4.6
Ejemplo 23. Sea A = {1,4,5},ysea R 1a relacion qu
figura 4.7. Encuentre M;v R
L

Figura 4.7

i
0
1

Solucion:

1
1

M, =

o - ©

.

Si R ¢s una refacion SODIC uln vt
de RaBes RO (B X B).
Ejemplo 24. Sea A=ta b.codefty R=
Sea B = {ua, b, ¢}. Entonces

BXB= {(a,a),(a,b),(a.c),

yla

R = {(1.4),(1,5), (4,1), (4,4), (5,4), (5,9}

ato v Resun subconjunto de A, lare

(b, a). (b, b). (b, ). (c.a). (¢, b). (¢- O}

restriccion de Ra B es {(a, a), (a, o), (b, ©)}-

e da el digrafo que aparece €n la

¢
striccion

i(a, a), (a, ©), (b, €), (4, ©), (b, €), (¢, )}

.

GRUPO DE EJERCICIOS 4.2

1. (a) Para larelacion R definida en el ejemplo 4,
icudles de los siguientes pares ordenados
pertenecen a R?

(i) (2,3) (i) (0,8)
(iv) (6,18) (v) (~6,24)

(iii) (1,3)
i) (8,0)

(b) Para la relacién R definida en el ejemplo 6,
;cudles de los siguientes pares ordenados
pertenece a R?

@ 20 ()02
(iv) (0,0) (v) (1,32V3)

(iii) (0,3)
(vi) (0,0)

En los ejercicios 2 al 10, determine el dominio,
rango, matriz, y, cuando A = B, el digrafo de la
relacion R.

2. A=lab,cd), B=1{1,2,3}, R={(a,1),(a?2),
(b,1),(c,2),(d, 1)}

3. A = {IBM, COMPAQ, Dell, Gateway, Zenith},
B = {750C, PS60, 450SV, 4/33§, 5258X,
466V, 486SL )
R = {(IBM, 750C), (Dell, 466V),
(COMPAQ, 450SV), (Gateway, PS60)}

© 4, A=1{1,2.3.4},B=1{1,4,6,8,9};aRbsiysolosi

b=a.
5. 4=1{1,2.3,4 8 =B;aRbsiysolosia=b.

6. 4 - 11,2,
alth.

3,4.80. B~ {1,4,6.91:a R hsiysolosi

7. A=11,2.3.4,6}=B,aRbsiysolosiaes
maltiplo de b.

8. A=11,2,3,4,5=B,aRbsiysblosia<b.

VB T12,4,6,8); a R bsiy solosi

0, 41234 8- B.aRbsivsolosia+ h<<9.

1. Sea 4 =7 los enteros positivos. y R la relacion
detinida por a R b sty sélo siexiste una ken Z 7 de
modo que a = b* (k depende de a y b). (Cuales de los
siguicntes pares ordenados pertenecen a R?
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(a) (4,16) () (1,7)
(d) 3.3 (e) (2,8)

12. Sea A = £, Considere la siguiente relacién R en 4;
a R b siy s6lo si 2a + 3b = 6. Determine Dom(R) y
Ran(R).

(©) 8,2
() (2.32)

13. Sea A4 = . Considere la siguiente relacién R en 4;
a R b siy sélosi a® + ° = 25. Determine Dom(R) y
Ran(R).

14. Sea R la relacion definida en el ejemplo 6. Determi-
ne R(4,) para cada uno de los siguientes.
(@) A, ={1.8} (b)) A, =345 (A4, =1{}

15. Sea R la relacién definida en el ejercicio 7. Determi-
ne cada uno de los siguientes.

(@) R(3) (b)R(6)  (c) R({2,4,6})

16. Sea R una relacion de 4 a B. Demuestre que para
todos los subconjuntos 4, y 4, de 4.

R(A4, M 4,) = R(4)) (M R(A4,) si y solamente si R(a)
(MY R(b) = { } para cualquier a, b distinta en 4.

17. Sea A = . Dé una descripcién de la relacién R
especificada por la region sombreada de la figura
4.8

y
A
©,2) (3,2)
> X
3.0
Figura 4.8

18. Si A tiene 1 elementos y B tiene m elementos,
(cudntas relaciones diferentes hay de 4 a B?
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En los ejercicios 19y 20, dé la relacién R definida
en A y su digrafo.

19. Sead={1,2,3,4)yMg =

_-o o =
oo - =
O m O
o - o

20. Sead=1{a, b, ¢, d, e}

0
0
11
0
0

«
E
|
- o ©
o o= OO
o - o = O
oo = O

En los ejercicios 21y 22, proporcione la.relacién
determinada por el digrafoy dé su matriz.

/
o

21.

Figura 4.9

22.

Figura 4.10

23. (a) Para el digrafo del ejercicio 21, proporcione el

grado interno y el grado externo de cada\. vértice.
(b) Para el digrafo del ejercicio 22, proporcmn,e c}l
grado interno y el grado externo de cada vértice.

SeanAd = {1,2,3,4,5,6, 7} yR= {(1, 2), (.1, 4),
(2,3), (2,5, (3, 6), (4, )} Calcule la restriccion
de R a B para el subconjunto de 4 dado.

(a) B = {1,2,4,5}

(b) B = {2,3,4,6}

25. Sea S el conjunto producto {1, 2, 3} X {a, b}.

(Cuéntas relaciones hay en S?

4.3. Trayectorias en relacionesy digrafos

Supongase que R es unare

de a a b es una secuencia finita 7 @, X, Xy, + -+ s X -

b, tal que

lacion sobre un conjunto 4. Una trayectoria de longitud n en R

., b, que comienza con a y termina con

aRx, X, Rxy oo Xy R b.
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Debe observarse que una trayectoria de longitud » involucra »# + [ elementos de 4, aunque
no sean necesariamente distintos.

Una trayectoria se concibe visualmente con mas facilidad con ayuda del digrafo de la
relacion. Aparece como una trayectoria geométrica o sucesion de arcos en un digrafo de
esta naturaleza, en donde se sigue las direcciones indicadas de los arcos o lados, y de hecho
una trayectoria deriva su nombre de esta representacion. En consecuencia, la longitud
de una trayectoria es el niimero de arcos que hay en la misma, en donde los vértices no
necesitan ser todos distintos.

Ejemplo 1. Considere el digrafo de la figura 4.11. Entonces 7r,: 1, 2, 5, 4, 3 es una trayec-
toria de longitud 4 del vértice 1 al vértice 3, 7r,: 1,2, 5, 1 es una trayectoria de longitud 3 del
vértice 1 a él mismo, y 7;: 2, 2 es una trayectoria de longitud 1 del vértice 2 a si mismo.

¢

(D——
(&)

: O

Figura 4.1

Una trayectoria que comienza y termina en el mismo vértice se llama ciclo. En el
¢jemplo 1, my 7y son ciclos de longitud 3 y 1, respectivamente. Ls claro que las trayecto-
rias de longitud 1 pueden ser identificadas con los pares ordenados (x, v) que pertenecen a R.
Las trayectorias de una relacion R pueden ser usadas para definir nuevas relaciones bastante
utiles. St es un entero posttivo fijo, se define una relacion R sobre 4 como sigue: x R"y
significa que hay una trayectoria de longitud » de x a y en R. También puede definirse una
relacion R” sobre A, suponiendo que x R v signitique que hay alguna trayectoria en K de x
ay. Lalongitud de una trayectoria de esta clase dependera, en general, dex y v. A larelacion
R” se la suele Hlamar relacién de conectividad para R.

Notese que R"(x) consta de todos los vértices que puede alcanzarse desde x por medio
de una trayectoria en R de longitud #. El conjunto R (x) consta de todos los vértices que
puede alcanzarse desde x por alguna trayectoria de R.

Ejemplo 2. Sea 4 el conjunto de todos los seres humanos vivientes, y sea R la relacion de
conocimiento mutuo. Es decir, a R b significa que a y b se conocen entre si. Entonces a R
heienifica que ey A tienen im conocido en comim P general. o #7 A st g conoce a alguien
X, QUICN CONOCE a4 X, . . . ., quien conece @ v, |, quien conoce a b Finalmente, a R b
stenifica que existe alguna cadena de conocidos entre personas que comienza ena y termina
en b. Por ejemplo, es interesante saber (y se desconoce) saber si cada dos estadunidenses
estan relacionados por R”. *

Ejemplo 3. Sca 4 un conjunto de ciudades de EU, y seax R y si hay un vuelo directo de x
a y en por lo menos una linea aérea. Entonces x y v estan relacionadas por R” si uno puede
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reservar un vuelo dex ay que tenga exactamente n — 1 paradas intermedias, y x R” y i uno

puede ir de x a y por avion.
ea R la relacion cuyo digrafo aparece en la figura

4.12. La figura 4.13 muestra el digrafo de la relacion R? sobre 4. Una linea conecta dos
vertices en la figura 4.13 s1'y solo si estan relacionados en R2, es decir, si y solo si hay una
trayectoria de longitud dos conectando esos vértices en la figura 4.12. En consecuencia

Ejemplo 4. Sead=1{1,2,3,4,5, 6}.5

| R*2 puestoque 1R2 y 2R 2
| R*4 puestoque 1R2 y 2R 4
I R*S puestoque 1R2 y 2 RS
2R22 puestoque 2R2 y 2R 2
JR*4 puestoque 2R2 y 2RA4
2R®5 puestoque 2R2 y 2R 5
2R 6 puestoque 2RS y 5 R6
3R25 puestoque 3R4 y 4R 5
4R 6 puestoque 4RS y SR 6.

De modo similar, se puede construir el digrafo de R para cualquier valor de n. ¢

Figura 4.12

Sead = {a, b c d e}y

Ejemplo 5.
R = {(a,a), (a, b), (b, 0), {c, e), (¢, d), (d, e)}.

Calcule (a) R (b) R™.

() k1 digrafo de R aparcce en la figura 414

Solucion:
aR a puestogue d Ra y aRua
G R b puestoque wRa oy od Rb
aR ¢ puestoque aRb y bRc
bR e puestoque bRc y cRe
bR d puestoque bRc y ¢R d
¢R*e puestoque cRd y dRe

i

2 S

e

®
>

o
i
e
)
g.
@]
O
<
Z
o
0

-
Z.
A
@

7,

g

fw}

"49 I.s;

P
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Figura 4.13

ESTLDIANMTES RFFORMISTAS IADEPENDIENTES

©

Figura 4.14

Por tanto

R* = {(a,a), (a.b), (a,c). (b.e). (b,d),(c,e)).

»

b) Para calcular R™, se necesite

- ”(nz Para ¢ lcvuxzr R”, Tc necesita todos los pares ordenados de vértices para los cuales
a avectoria de cualquier longitud det prim

) ] { primer vertice al ¢ i

o e vo e T e al segundo. De acuerdo con la

R -
{(a,a), (a,b),(a.c). (a,d), (a,e). (b, c), (b.d).(b,e), (c,d),(c.e),(d e)}
Por ¢j ” is 4
d01r32;r2310’3(a"1d) e R",en vx:ta de que hay una trayectoria de longitud 3deaad: a, b, c
. modo similar, (a,e) € R”, puesto que hay una trayectoria de longitud 3 dea ae: a’ b’
¢, e asi como una trayectoria de longitud4 dea ae: a, b, c,d, e . ’0’
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j ito A = sea M la
Sea R una relacion sobre un conjunto finito 4 = {ay, Gy - - > A} Y "

matriz # X n que representaa R. Se va a demostrar cOmo la matriz M,

calcularse a partir de M.

Teorema 1. Si R esuna relacion sobre A = {a,, 4y - - -
(véase la seccién 1.5).

2 de R?, puede

£l

,a,}, entonces M= My © M,

s e o
) = =ny efinicion, lai, el j-ésimo elemen
Demostracion:  SeaMg= [m;}y Mg [nAU]. Pord finicion, a8 mna 7 de M,
de M, ® Myes igual a 1 si y solamente st el renglon i de . .R,yk e que
. 1 icid i decir, en la posicion k. £sto st
i la misma posicidn relativa, por , sic .
tlenenla 1 enr; =1 parzf algupa k, 1 = k < n. Por definicion de la matr;zz2 M;, las
m, = y Ko - s . 4, a o
col;ldiciones z/mteriores significan que a; R acy @ Ra; Ep .c’on’se'c(;xerlizla@ . ejs }llgi §
tanto 7, = 1. Se ha demostrado, por lo tanto, que la posicion i, j de My R
if .

a 1 si y solamente si 71 = 1. Esto significa que Mg ® M;=Mjz.

i 2 (el simbo-
Para abreviar, se denota generalmente M, ® M;simplemente como (Mpo (e

lo ® recuerda que éste no € el producto matricial usual).

Ejemplo 6. Scan Ay R lo mismo que en el ejemplo 5. Entonces

1 1.0 0 01
o 0 1 00
M,=|0 0o o 1t 1
0 0 0 0 1
0o 0 0 0 0_
Del analisis anterior, se ve que i
11 0 0 0" 1 1.0 00
o 1t 0 0 o 01 0 O
1
= 0 1 11010 0 0 1
M, =M, OM, = 0o 0
! ‘ " g 0 0 0 1 0o 0 0 0 1
[0 0 00 0 o 0 0 0 0
o1 1 0 0]
o0 o o 1 1
10 0 0 0 1
0 0 0 0 0
0 0 0 0 0]
M M N s .
At catenlar ML direcamente de R*. se obtiene el mismo resultado.
o | | : Cn b ae R calenls i
Pucde verse. pot fos gjemplos Sy 0. qued reitudo U tias facil cateular Boealt ando

M, ® M, en lugar de buscar ¢l digrafo de R para todos 108 vETLiLes Giic pug
v, "

ina trayector a (l(’ ML e g ‘ IRt [S{R{URT ¢ qL \'
y(. ort C ]El L d ) &,U 111 It P C 105 N ¢ o
- €L |) d ¢ A ql S1OS dOSs 1es [ > P
~I »l { ] (,1 et hl(‘( on se (l mue fra lhOrl 1¢ €Y
) ¢ 10 CMUCs (l ) (W Hh\ i ll((le“
/,) ( }\)(.)4 O, pot

gencralizarse.

dan untrse por

M. ®(M,®

N {Onj inito A4, se tiene
I8 elacion sobre wn ¢ ()I{/lll!l()_fllll ,
Teorema 2. DParan =2 siendo R una relac

M, - M, © M, ® - ®M, {(nfactores).

ysea m b,y vy s Y
composicion de 7, y 7, es la trayectoria a, x|, x,,
m, la cual se denota por , © 7. Esta es una trayectoriade a a c.
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Demostracion:

Sea P(n) la afirmacién de que es valido el enunciado anterior para
un entero n = 2.

PASC BASE.  P(2) es verdadero por el teorema 1.

PASO DE INDUCCION.  Se demuestra ahora que si P(k) es verdadero, entonces P(k +

1) es verdadero. Considérese la matriz Mpe+1. Sea Mg+ 1= [x;], Mpe = [y, ], y My
=[m,]. Six; =1, se debe tener una trayectoria de longitud k + 1 de a; a a;. Si se
supone que a, es el vértice que alcanza esta trayectoria precisamente antes del
tltimo vértice a;, entonces hay una trayectoria de longitud & de a; a a,, y una
trayectoria de longitud 1 de a, a a;. En consecuencia, y,, = 1 y m,; = 1, de manera
que Mz © M, tiene un 1 en la posiciéni, j. Puede verse, en forma semejante, que

si My © M, tiene un | en la posicion i, j, entonces x; = 1. Esto significa
que Mpi+1=Mpu © M,
Por induccion,

Pk): Mpuc=M,©®© --- ®© M, (k factores).

por tanto, por sustitucion,

Mpci1=(M; @ -+ @ M) @ M,.

Phk+1)Mpy+1 =M, © - -©OM,©®M, (k+ 1 factores)

y P(k+ 1) es verdadero. En consecuencia, por el principio de la induccidén mate-
matica, P(n) es verdadero para todas las n = 2. Esto demuestra el teorema. Como
antes, se escribe M, ® - - - © M, (n factores) como (My)5. ®

Ahora que se sabe como calcular la matriz de la relacion R” a partir de la matriz de R,
seria conveniente ver como se calcula la matriz de R”. Se procede de la siguiente manera.
Supdngase que R es una relacién sobre un conjunto finito 4, y quexe 4, ye A. Se sabe que
x R y significa que x y y estan conectadas por una trayectoria en R de longitud # para algin
valor de n. En general, n dependera de x y y, pero, es claro que, x R* y si y solamente si x R

yoxR'yoxR yo....SiRySsonrelaciones sobre 4, la relacion R \U S se define por x

(R\UJ S)ysiysolamente six Ryox Sy (Larelacién R \U S se estudiard con mas detalle en

la seccion 4.7.) Entonces el enunciado anterior diceque R“ =R U R U R U - - = UFP_,

R". El lector puede verificar que Mg ¢ = M, V My, y se demostrard esto en la seccidon 4.7.
En consecuencia,

My = Mg \/ Mgz \/ Mgs \/
=MV (MpE\ (M) v/ -

La refacion de alcanzabilidad R* de una relacion R en un conjunto A4 que tiene n

elenrentos se define como sigue: x R* y significa que x =v o que x R* y. La idea es que y es

alcanzable desde a st ya seay s a0 st hay alguna trayectoria de x a b, Se ve facilmente que
M,.
L4

M, V' 1, cindonde I, s T matriz identidad # < 0. Asi, ¢l andlists demuestra que

Me LM (M7 M)

Sea 7, 1 u, X, Xs,...,X,. ,bunatrayectoria en una relacion R de longitudndea a b,

,, ¢ una trayectoria en R de longitud m de b a c. Entonces la

by Y Vae ooy Vi1, ¢ de longitud n +
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Ejemplo 7. Considérese la relacion cuyo digrafo aparece en la figura 4.15y las trayecto-

rias

m:1,2,3 y m,:3,5,6,2,4.

©

Entonces la composicion de m y m, €8 la trayectoria my o m 0 1,2,3,5, 6,2,4de1adde
¢

Figura 4.15

longitud 6.

GRUPO DE EJERCICIOS 4.3

Para los ejercicios 1 al 8, sea R la relacion cuyo
digrafo aparece en la figura 4. 16.

1. Haga una lista de todas las trayectorias de longitud 1.

2. (a) Haga una lista de todas las trayectorias de
longitud 2. que inicien en el vértice 2.
(b) Haga una lista de todas las traycctorias de
fongitud 2.

3. (a) Haga una hista de todas Tas travectorias de
Jongitud 3. que inicien en el veértice 3.
(by Haga una lista de todas las traycctorias de
longitud 3.

O\\

4. Dncuentre un ciclo que comience en ¢l vértice 2.

5. [Encuentre un ciclo que comience en el vértice 6. Figura 4.16

6. Trace el digrafo de R%.
7. Determine Mpa.

8. (a) Determine R™.
(b) Determine M.

Para los ejercicios 9 al 15, sea R la relacicn cuyo
digrafo aparece en la figura 4.17.

9, Haga una lista de todas las trayectorias de longitud
1.

10. (a) Haga una lista de todas las trayectorias de
longitud 2 que inicie en el vértice c.
(b) Encuentre todas las trayectorias de longitud 2.

11. (a) Haga una lista de todas las trayectorias de
longitud 3 que inicie en el vértice a.
(b) Determine todas las trayectorias de longitud 3.

12. (a) Encuentre un ciclo que comience en el vértice c.
(b) Encuentre un ciclo que comience en el vértice d.

13. Dibuje el digrafo de R”.

14. Determine M2,

A

Figura 4.17
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15. (a) Determine Mg,
(b) Determine R™.

16. Sean Ry S las relaciones sobre un conjunto A.
Demuestre que

Mg s = My Vv Mg

17. Sea R una relacion sobre un conjunto 4 que tiene n
elementos. Demuestre que Mg = Mp= V' 1, en
donde I, es la matriz identidad n X n.

En los ejercicios 18 y 19, sea R la relacion cuyo
digrafo aparece en la figura 4.18.

18. Sim :1,2,4,3y m:3,5,6,4, determine la
composicion ;, © 7T;.

19. Sim:1,7,5y m:5,6,7,4,3, determine la
composicion r, © T,

20. Sead ={l,2,3,4,5} vy R larelacién definida por a
R b si y solamente si a < b.
(a) Calcule R’y R,
(b) Complete el siguiente enunciado: a R* b siy
solo si .
(c) Complete el siguiente enunciado: a R bsiv

solo si
T \/\

Figura 4.18

i
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4.4. Propiedades de las relaciones

En muchas aplicaciones de las ciencias de la computacion y las matematicas aplicadas, se trata
con relaciones que hay enun conjunto 4 més que con relaciones de A a B. Por otra patte, estas
relaciones satisfacen, a menudo, ciertas propiedades que s¢ estudiara en esta seccion.

Relaciones reflexivas e jrreflexivas

Una relacién R de un conjunto 4 es reflexiva si (a, @) € R para todos los valoresde a € 4,
es decir, sia R a paratodas lasa € 4. Una relacion R de un conjunto 4 es irreflexivasia R
aparatodaae 4.

Asi, R es reflexiva si cada uno de sus elementos a € 4 estd relacionado consigo mis-
mo y es irreflexiva si ninglin elemento esta relacionado consigo mismo.

Ejemplo 1

(a) SealA={{a,a)jac A}, de modo que A es la relacion de igualdad en el conjunto A.
Entonces A es reflexiva, ya que (a, a)e Aparatodaslasae A.

(b) SeaR={(a,b)e A X Ala # b}, de manera que R sea la relacion de desigualdad en
el conjunto 4. Entonces R es irreflexiva, ya que (a, a) € R para todas lasa e 4.

(c) Sead={l,2, 3}, yseaR={(1, 1), (1,2)}. Entonces Rno es reflexiva en vista de que
(2,2 Ry(3,3)¢ R. Ademas, R no es irreflexiva, porque (1,H)e R

(d)  SeaA unconjunto no vacio. SeaR =@ < 4 X 4, larelacion vacia. Entonces R no es
reflexiva, ya que (a, @) € R para toda a € A (el conjunto vacio no tiene elementos).

Sin embargo, R es irreflexiva. ¢

Puede identificarse una relacion reflexiva o irreflexiva por su matriz como sigue. La
matriz de una relacion reflexiva debe tener unos en todos los elementos de su diagonal
principal, mientras que la matriz de una relacion irreflexiva debe tener ceros en todos los
elementos de su diagonal principal.

De modo semejante, se puede caracterizar el digrafo de una relacion reflexiva o
irreflexiva como sigue, Una relacion reflexiva tiene un ciclo de longitud 1 en cada vértice,
micntras que una relacion irreflexiva no tiene ciclos de longitud 1. Otra manera atil de decir
16 mismo utiliza la refacion de igualdad A enun conjunto A : R es reflexiva siysolosidg
R.v R es irreflexiva si'y solo stAMR=0.

Finalmente, pucde notarse que st R es retlexiva en un coujunto A, entonees Dom(R)=
Ran(R) — .

Relaciones simétricas, asimétricas y antisimétricas

Ulna relacion R en un conjunto A €s simétrica si siempre que a R h. entoncees h R a Se
teuprende. ontonces. que R no es simétrica o setiene algunasa y he fcona R h.peroh R

N >

CUrpa relacton X en i conjutiio A O asimctrica o en todos loveasosen aue d R b, sctiene
i «. Se desprende, entonees. que R o os asimdtrica st e tene algunas ay he .dcon
ambasa Rby b R

Una relacion R en un conjunto A €5 antisimétrica si cn todos los casos enqued Rby
i R, se tiene a — b La contrapositiva de esta definicion es que R es antisimetrica sistempre
que a # hoentoncesa R hob R a Sedesprende que Rnoes antisimétrica st se tiene @'y
hend.a+ b.yambasaRbybRa

Dada una relacion R, se querrd determinar cuales propiedades siguen siendo validas
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para R Debe recordarse la siguiente observacion. Una propiedad deja de ser valida en gene
ral, si puede encontrarse una situacion en la que la propiedad no sea valida ¢

Ejemplo 2. Sea A = Z, el conjunto de los enteros, y sea
R ={(a,b)E A X A|a<b}

dem i0 imeétri i
anera que R sea la relacion menor que. (Es R simétrica, asimétrica o antisimétrica?

Solucion:
Simetria: Sia <b, entonces no es verdad que b < a, por tanto R no es simétrica.
Asimetria:  Sia<b, entonces b < a (b es no menor que a), por tanto R es asimétrica.
Antisimetria: St fl 9& b, entonces o bien, a < b 0 b € g, y por tanto R es antisi-
meétrica. 4
Ejemplo 3. Sea 4 un conjunto de personas y sea

R={(x, y)e 4 X A|x esun primo de y}.

Entonces R es una relacion simétrica (verifique).
Ejemplod4. Sead=1{1,2,3,4} ysea

R =1{(1.2),(2,2),(3,4), (4, 1)}.

Egtonces R no es simétrica, en vista de que (1, 2) € R, pero (2, 1) ¢ R. Ademas, R no es
asimétrica, ya que (2, 2) € R. Finalmente, R e isimétri ’ . ;
2 Ro (b )¢ k. , s antisimétrica, porque sia # b, o bien (q, f)

Ejemplo 5. Seca A =Z", el conjunto de los enteros positivos, y sea
R=1{(a b)e 4 X Ajadivideab}.
LR es simétrica, asimétrica o antisimétrica?
Solucion:
Sia| b, no se desprende que b | a, por lo cual R no es simétrica. Por ejemplo, 2 | 3
pero3 | 2. , ’
ix a |:/,b ;3, por ejemplo, entonces a R by b R a, y, por tanto, R no es asimétrica
Stalhyhbia entonces a = h, por tanto K es antisimetri ¢ jercict .
1byh \ s antisimétrica. (Vease el ejercicio 2
la seccion 1.4.) : ) ie
i\h.o’ru scvaa rclagxonur las propiedades simétricas, asimétricas o antisimétricas de
una relacion con las propiedades de su matriz. La matriz M = [m,] de una relacion simétri-
ca satisface la propiedad de que

cim = L entoncesm | = |
Por otra parte, s : '
Por otra parte, s1. a1, — O, entonces s, — i B conseenencia, M., es una matriz tal que cada
par de entradas. simétricamente colocadas en torno de la diagonal principal, son ya sea

ambas 0 0 ambas 1. Se despr = M
bas 0o ambtls 1. Se desprende que M, = M, , de manera que My es una matriz simétrica
(véase la seccion 1.5).

La matriz Mg = [m,] de una relacion asimétrica R satisface la propiedad de que

sim; =1, entoncesm;,=0.
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Si R es asimétrica, se desprende que m,, = 0 para todas las?; es decir, la diagonal principal de

la matriz M, consta en su totalidad de ceros. Esto debe ser verdadero, ya que la propiedad

asimétrica implica que si m, = 1, entonces m; = 0, lo cual es una contradiccion.
Finalmente, la matrizM = [m,] de una relac1on antisimétrica R satisface la propiedad

de que si7 # j, entonces m; = 0om,;=0. v /

Ejemplo 6. Considere las matrices de la figura 4.19, cada una de las cuales es la matriz de
una relacion, como se indica.

Las relaciones R, y R, son simétricas en vista de que las matrices Mg y Mg, son
matrices simétricas. La relacién R, es antisimétrica, ya que ninguna de las posiciones de
Mg, situadas simétricamente fuera de la diagonal contiene unos a la vez. Ambas posiciones
pueden tener ceros; sin embargo, los elementos de la diagonal estan irrestrictos. La relacién
Ry no es asimétrica porque Mg, tiene unos en la diagonal principal.

La relaciéon R, no tiene mnguna de las tres propiedades: Mg no es simétrica. La pre-
sencia de | en la posicion 4, | de M, v101a tanto la asimetria como la antisimetria.

Por ultimo, R, es antisimétrica pero no asimétrica, y R, es ambas cosas, asimétrica y

antisimétrica. ¢
B ]
o 1 1 0
Lot 1 I 0 O
0 0 1 | =M o1 Mg,
b 0 0 1 I_
@ (b)
0O 0 1 1
! b 0O 0 1 0
= M
L 00 0 1 "
0 00 0 0 0
(c) )

M, o My,

(e) (f)
Figura 4.19
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Se va a considerar ahora los digrafos de estos tres tipos de relaciones. Si R es una
relacion asimétrica, entonces el digrafo de R no puede tener simultaneamente un lado (o
arco) del vértice i al vértice/ y otro lado del vérticej al vérticei. Esto es cierto para cualquier
i y para cualquier j, y en particular si i es igual aj. En consecuencia, no puede haber ciclos
de longitud 1, y todos los lados son “calles de un solo sentido”.

Si R es una relacion antisimétrica, entonces para diferentes vértices i y j no puede
haber un lado del vértice i al vértice j y otro del vértice j al vértice i. Cuando i = j, no se
impone condicion alguna. En consecuencia, puede haber ciclos de longitud 1, pero una vez
mas, todos los lados son “de un solo sentido”.

Se va a estudiar los digrafos de las relaciones simétricas con mayor detalle.

El digrafo de una relacion simétrica R tiene la propiedad de que si hay un lado del vértice
i al vértice/, entonces hay un lado del vértice; al vértice i. En consecuencia, si dos vértices estan
conectados por un lado, deben estar siempre conectados en ambas direcciones. Por esta razén,
es posible y bastante util realizar una representacion diferente de una relacion simétrica. Se
conserva los vértices como aparecen en el digrafo, pero si dos vértices a y b estan conectados
por los lados en cada direccién, se reemplaza estos dos lados con un lado no dirigido, es decir,
una “calle de dos sentidos”. Este lado no dirigido es simplemente una linea sencilla sin flechas,
que conecta a y b. El diagrama resultante sera llamado grafica de la relacion simétrica. (A la
palabra grafica se le daré un significado mas general en el capitulo 6.)

Ejemplo 7. Sead = {a b c d e} yseaR larelacién simétrica dada por

R = {(a,b),(b,a),(a,c),(c,a),(b,c) (c,b),
(b.e), (e, b), (e.d),(d.e), (c.d),(d, )}

El digrafo usual de R aparece en la figura 4.20(a), mientras que la figura 4.20(b) muestra
la grafica de R. Nétese que cada lado no dirigido corresponde a dos pares ordenados en la
relacion R. ¢

Un lado no dirigido entre a y b, en la grafica de una relacién simétrica R. corresponde
aun conjunto {a, b} tal que(a, b)e Ry (b, a)e R. En ocasiones también se hard referencia a
dicho conjunto {a, b} como a un lado no dirigido de la relacion Ry se llamarda a ay b
vértices adyacentes.

Sc dira que una relacion simétrica R en un conjunto A es conectada, si hay una trayec-
torta de cualquier elemento de 4 a cualquier otro elemento de 4. Esto significa simplemente

Digrafo de K Graficade R
(a) (b)

Figura 4.20
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‘ (le 'flcaS de dOS
ue la gra ca i la ﬁgura 4.21 se mueStra laS gra

1 1 ;i‘llét!icas La gl‘éﬁca de 1a ﬁgura 4.21(3) es Conectada, mlentraS que a de a
re aciones .

¢
figura 4.21(b) no es conectada.

(2 .

(b)

(a)

Figura 4.21

Relaciones transitivas N |
onjunto 4 €3 transitiva si siempre que seffflene a anz
I i ignifica para

tonces a R ¢. Con frecuencia es conveniente explicar 1.0 qgf: 31gmb . Cpen e
o : i iti en a,

o i erlser no transitiva. Una relacion R en 4 es no transitiva st exis o b i

T e RbybRc peroa R ¢. Sino existen tales a, by c,ento

manera que d :

Se dice que una relacion Renun ¢

i€ i a en el
Sea A = Z, el conjunto de los enteros, y sea R 1a relacion consxdezzdz B
ca R és transitiva, se supone que d RbybRc En consecuen‘% a, R

\ do que a R ¢. Por tanto R es transitiva.

Ejemplo 8. .
ejemplo 2. para ver si
bJ < ¢ Entonces se desprende que @ < ¢, demo

v — L. l . iy 1 .
I8 S1
Sed A Z Y sca Je la IClaCl(m COIlbldeI ddd en Ll € e“lpl(? ‘S ] S R trans tiva

Ejemplo 9. d
> b\ ¢. Se desprende
‘ b R ¢ demodoque dibybi ‘
ién:  Supongase que a R by o d s
igig;:(;z que ap', ¢. Véase el teorema 2(d) de la seccion 1.4. En conse ;
transitiva.

Ejemplo 10. Sead={l,2,3,4} ysea
R = {(1.2),(1.3).(4.2))‘

o,
“b-q K oransitiva. o
\‘ y o endtales qued Rbyb R pero

L

OfCio udesto qu olen clementosu, b
Sofucion.  Pucsto que no exu

4 R ¢, S¢ Cot (‘U}(‘ que R est ansltl\/a.
14 refacl ¢ a sitiva s S S matriz - ‘ tiene ld loplcddd
U ‘ on R s tran wasty 010 St Su M ’n/ 1 p
1 < 2 h R

. _ = ntonces My — I
sim, =1 y My e '

)% tiene un 1 en la

. simplemente que (M ) :
o significa simp 1 en cualquier pos

1 1 inciad
El primer miembro de este enu ign . te aue (7
pogcién i, k. Asi, la transitividad de R significa que st (Mp)e tic

a4
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cion, entonces My debe tener un 1 en la misma posicion. Por tanto, en particular, si (M

2
Ro=
M,, entonces R es transitiva. La inversa no es verdadera.

Ejemplo 11. Sead = {1, 2,3} y sea R la relacién sobre 4 cuya matriz es

11
Mz =0 0 1
10 0
Demuestre que R es transitiva.
Solucién:  Por célculo directo, (M,); = Mg; por lo tanto, R es transitiva. ¢

Para ver lo que la transitividad significa para el digrafo de una relacion, se traduce la
definicién de transitividad a términos geométricos.

Si se considera los vértices particulares a y ¢, las condicionesa R by b R c significan
que hay una trayectoria de longitud 2 en R de a a c. En otras palabras, a R? ¢. Por lo tanto, se
puede reconstruir el enunciado de la definicién de transitividad como sigue: Si a R? ¢, en-
toncesa R c; es decir, R* ¢ R (como subconjuntos de 4 X A). En otras palabras, sia y c estan
conectados por una trayectoria de longitud 2 en R, entonces deben estar conectados por una
trayectoria de longitud 1.

Es posible generalizar ligeramente la caracterizacidn geométrica anterior de
transitividad, de la siguiente manera.

Teorema 1. Una relacion R es transitiva si y solamente si satisface la siguiente propie-

dad: Si hay una trayectoria de longitud mayor que 1 del vértice a al vértice b (hay también
una trayectoria de longitud 1 de a a b). Enunciado en términos algebraicos, R es transitiva
siy solo si R" € R para todas las n = 1.

Demostracion: La demostracion se deja al lector. ®

Sera conveniente tener una reexpresion de algunas de las propiedades anteriores en
términos de conjuntos relacionados en R. Se presenta a continuacion una lista de estos enun-
ciados sin demostracion.

Teorema 2. Sea R una relacion sobre un conjunto 4. Entonces

(a) Reflexividad de R significa que a € R(a) para todas las a en 4.

(b) Simetria de R significa que a € R(b) sty solosibe R(a).

(c) Transitividad de R significa que sibe R(a) y ¢ € R(b), entonces ¢ € R(a). o

GRUPO DE EJERCICIOS 4.4

20 R = {0h 20 013001302, 3.(2.4). (3. 4)}

En los cjercicios | al 8. sea A= 11,2, 3.4},
Determine si la relacion es reflexiva, irreflexiva,

3R = {(L3). (L 1), (3. 1).(1,2).(3.3). (4, 9)]

Simétrica, asimétrica, antisimétrica o transitiva.

4. R = [(1.1).(2.2).(3.3)
LR = {(1.1),(1,2), (2, 1), (2.2).(3.3). (3.4). (4. 3).

(4,4)} 5. R=0
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6. R=AXA

7 R = (12, (1,3, G133 G2, (LD,
4,2), (3, 4))

8. R =((1.3),(4,2).2.H.G. ). 22

sea
En los ejercicios 9y 10 (ﬁgurqs 4.22 y.4’¥.23),
A=1{1,2,3,4,5}. Determine si la relacion R cuyo
digrafo se da es reflexiva, irreﬂexi})a, simétrica,
asimetrica, antisimétrica o transitiva.

9.

Figura 4,22

()
©,

Figura 4.23

Fondos cjercicios Tl sea 4-11,2.3, 41. o
/)ewrm‘inc i la relucion R cuvd mazrty: 'VIK se da es
reflexiva, irreflexiva, simétrica, asimetricd,
antisimétrica o transitiva.

01 0 1 L1 00
L0 11 1 1.0 0
11. o 1 0 0 12. 0o 0 1 1]
1 1.0 0 00 01

En los ejercicios 13 al 22, determine si la r.'elclzcz.on R
en el conjunto A es reflexiva, irreflexiva, simétrica,
asimétrica, antisimétrica o transifiva.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24

25.

A=Z;aRbsiysélosia$b+l. . ]
A=Z*;aRbsiysélosi\a—b\_<_2.
A=Z*;aRbsiysélosia=b"paraalgunake A
A=Z;aRbsin(’)losia+bespar.
A=Z;aRbsiysélosi\a—bl=2.

A = el conjunto de los nimeros reales; a R b st
y solo si a® + b*=4.

A=Z%aRbsiy solo si MCD(a, b)Y = 1: En este,
caso, se dice que a’y b son primos relativos. (Véase
la seccion 1.4 para el MCD))

A = el conjunto de todos los pares ordenz.idos de
nameros reales; (a, b) R{c,d)siy solosia=c.

S={1 2,3,4},A:S><S;(a,b)R(c,d)siysélosi
ad = bc.

A es el conjunto de todas las lineas que hay en el
plano; {; R I, si'y solo si {, es paralela a L.

Sea R la siguiente relacién simétrica en el conjunto
A=11,2,3,475].

R = {(1,2).(2,1). (3, 4). (4 3),(3,5).(5.3)
(4,5).(5,4), 5, 5.

Dibuje la grafica de R.

Sea 4 = ja. b o dyysea R la reiacion simétrica

R = {(a.h).(ha).(u.v).(c.a),(a,d),(rl,a)},
Dibuije la grafica de R.

Considere la grafica de una relacion simétrica R en

A=11,2,3,4,5,6,7} que aparcce en la figura 4.24-
Determine R (haga una lista de todos los pares).

Figura 4.24

26. Considere la grafica de una relacion simétrica R en

27.

28.

A=1{a b, ¢ d e} que aparece en la figura 4.25.
Determine R (haga una lista de todos los pares).

Demuestre que si una relacion sobre un conjunto 4
es transitiva e irreflexiva, entonces es asimétrica.

Demuestre que si una relacién R en un conjunto 4 es
simétrica, entonces la relacion R? también es
simétrica.

4.5. Relaciones de equivalencia
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Figura 4.25

29. Demuestre, por induccién, que si una relacién R en

30.

un conjunto 4 es simétrica, entonces R” es simétrica
paran = 1.

Sea R una relacion no vacia en un conjunto 4.

Supédngase que R es simétrica y transitiva. Demues-
tre que R no es irreflexiva.

Una relacién R en un conjunto 4 se llama relacién de equivalencia si es reflexiva, simétri-

cay transitiva.

Ejemplo 1.
definida como sigue:

Sea 4 el conjunto de todos los tridangulos del plano y sea R la relacion sobre 4

R ={(a, bye A X A | a es congruente con b}.

Es facil ver que R es una relacion de equivalencia.

Ejemplo 2.

Sead={1,2,3,4} yseca

R=1{(1.1),(1,2).{1,3). (2, 1), (2.2). (2. 3). (3. 1. (3. 2). (3. 3), (4, )}.

Es facil veriticar que K es una relacidon de equivalencia.

Ejemplo 3.

L4

Sea 4 = Z, el conjunto de los enteros, y supdngase que se define R pora R b st

v solo st a < b. jEs R una relacion de equivalencia?

Solucion:

Puesto que a == «. R es reflexiva. Sie < b, no necesariamente se siguc

que b <7 a. por lo cual R no es simétrica. Incidentalmente. R es transitiva, porque a < b
y b < ¢ implican que a < ¢. Se ve que R no es una relacion de equivalencia. @

Ejemplo4. Sead=Zysea

R={(a. b)e A X A}a=r(mdd2)yb = r(mdd 2)}.



132 Capitulo4

Relaciones y digrafos

Es decir, a R bsiy solo sia y b dan el mismo residuo, r, al ser divididos entre 2. En este caso,
se escribe a = b (modd 2), léase “a es congruente con b modulo 27,

Demuestre que congruencia médulo 2 es una relacion de equivalencia.

quea=a (méd 2). Por lo tanto R es reflexiva.

Solucién: Primero, €s claro
r(mod2)yb=r (méd 2),

Segundo,sia =b (mdd 2) entonces, por definicion, a =
de modo que b = a (mbdd 2). Res simétrica.

Finalmente, supongase que a = b(mdéd2yyb=c (méd 2). Entonces, a =7 (mod
2), b=r(moéd2),yc=7 (mod 2). Es decir, los tres dan el mismo residuo al ser

divididos entre 2. En consecuencia, a = ¢ (mdd 2). Por consiguiente, congruencia
¢

moéd 2 es una relacion de equivalencia.
Ejemplo 5. Sea A=Zyseane Z *.Se generaliza la relacion definida en el ejemplo 4,
como sigue. Sea

R=1{(a,b)e A X Aja=Db(modn)}.

o si ay b dan el mismo residuo al ser divididos entre 7.

1 ejemplo 4, puede demostrarse que la congruencia
¢

Es decir, a = b (mbdd n) siy 5ol
Procediendo exactamente como en €
médulo n es una relacion de equivalencia.

Relaciones de equivalencia y particiones

El siguiente resultado muestra que si /> es una particion de un conjunto 4 (vease la seccion
4.1), entonces “ppuede usarse para construir una relacién de equivalencia en 4.

Teorema 1. Sea Juna particién de un conjunto A, Recuérdese que a los conjuntos en'Jse
los llama bloques de . Se define la relacion R en A como sigue:

aRbsivsélosiaybson miembros del mismo bloque.
Entonces R os una relacion de equivalencia en A.

Demostracion

(1) Siae A entonces €S claro que a €s
tanto, a R a.

(2) StaRb,entoncesay b estan en

(3) SiaRby bR entoncesa, byc
cansecuencid a R o

ta en el mismo bloque que ella misma; por

el mismo bloque; por tanto bRa.
deben estar todos en el mismo blogue de /. En

alencia. A

es reflexiva, simétrica y transitiva, £ es una retacion de equiy
L 4

Puesto que R
R se la llamara relacion de equivalencia determinada por .0
23}, 1411 de A

5

.3, 4% y considérese la particion J = 4 1,

Ejemplo 6. Sca A =112,
Determine la relacion de equivalencia R en A determinada por -

Solucién: Los bloques de Pson {1,2,3} y {4} Cada elemento de un bloque esth

CmLabL ac e \xlu..»uA’\ v.\.‘x ErREN .
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1 1 A a ti
relac ()l] aq lO con Cada uno de lOS demaS elementos del mISmO bloque SOI nente con
estos elementos. En Consecuencia, en este caso y

L}

R={(1,1),(1,2),(1,3),(2,1),(2.2).(2.3). (3.1).(3.2), (3.3), (4, 4)}. »

SiPe icid 16
oo 1ossb?:;u§:r(§flf;? dedA y R Zs la relacién de equivalencia determinada por
2P pueden ser descritos facilm crmi n
entonces 10 rd ente en términos de R. Si 4
° R(i o de}; 3; aAe A }é(se) vg por definicidén que A, consta de todos los elementos x deI ZS on
: , A, = R(a). En consecuencia, la particion 2P g
aRx ) nse ;2 Pes {R(a)lae A}. En g
memgsd; tzd;))s 10§ conjuntos distintos relacionados en R que tienen su o}rigenpealalbras’l "
o : n lo -
e ivme tor ejemplo, en el ejemplo 6 los bloques {1, 2, 3} y {4} pueden ser descsrif <
) n e,tcomo R(1)y R(4). Por supuesto, {1, 2, 3} podria describirse también cor(l)qs’
! , por tanto, esta manera de representar los bloques no es Gnica °
a con 16 i 1 i “part .
g s ;truccxo’n anterior de relaciones de equivalencia partiendo de particiones e
m Cie " gui;/a li iztiin?z ;e}r:taio a creer que podrian producirse de esta manera pocas rela::ioS
. a. echo es, como se demostrara ahora : .
i : , que todas ions
equlvaSlenCIa en A puede producirse a partir de particiones ! ¢ fas relacionss de
e comienza con el resultado siguiente. C .
e , . Como su demostracion utiliz ¢
la seccion 4.4, el lector podria querer revisar ese teorema. vaclieoremaz de

Lema 1 ;. AS‘ (] {vailencia en un 7/ 12 ) €
4 acio de
ed R una rel n eqguivaler 1 ¢
s ! conju 1o A, _) Sean a € A y/ A

aRb sivsolosi R(a)= R(b).

Demostracion:  Supo ]

: ion: Supongase primero que R(a) = R(b), P

. , Puesto que R es ive

R(hy; por lo tanto, b€ R(a), de manera que a R b ! crelieva.be
A la inversa, supdngase que a R h. Entonces obsérvese que

I, /7E 1{ ) ](16111 ) ¢ d,
((1) [¢] 11C1ON; por 1o tanto, L()ll()R@S\ etrica

2. ae R(b)porelteorema 2 (b) de la seccion 4.4,

Se debe demostrar
. oslre : R - R . .
S 1 ulalluu R(c) = R(bY. Primero, escoja un elemento .y e R(h). Puest
s transitiva, el hee R ) d ; Puesto
Eorema e de | "fdw de que ve Riby, junto con (1) anterior, implica por el
a’ e ia sece , v e :
eseoia v o R(a) (Il‘ ;klumz 44 que v e Ka). bnconseeuencia. K(h) < Kla). Ahora
OsCOd o M) bste hechoe v IS B TTOR AN . . . . - — 128 P <
R, Fn conseet . ¢y el ineise (2) anterfor implican, como antes, Gue 4 <
k ‘ e _ . 5. c
rencia. R(a) < R(H). de modo que se debe tener R R(b) '
(a)}  R(bY. )

Ahora se demuestra el resultado principal

Teorema 2. Sca R una relacion de equivaioncia sobre A,y sea drla col )

. A ‘ v . AL VNea id colece ’ los los

conjuntos distinios refativos Riay para a i A4 Entonces o
‘ ’ . . ¢

Fos i particion de v Roes la

i
P

IY sieoon e s y
Jdoth w e arteiin e debe demostrar s dos

propredades sigurentes:
(o

{b)y St R(a)y R(DH) no son identicos, entonces R(a) () R(b) =12

1
B U fema es un teoren (81 ]
a s TCIUL CUVO pr ; nei
ma cuvo proposito principal os avudar en la demostracion de otro teorema
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Ahora la propiedad (a) es verdadera, ya que a € R(a) por reflexividad de R. Para

demostrar la propiedad (b) se demostrara el siguiente enunciado equivalente:
Si R(a) M R(b) # O, entonces R(a) = R(D).

Para demostrar esto, se supone que ¢ € R(a) (M R(D). Entonces a RcybRc

Como R es simétrica, se tiene que ¢ R b. Entonces a R ¢ y ¢ R b, por lo que, por
transitividad de R, @ R b. El lema 1 dice que R(a) = R(b). Se ha demostrado ahora que
“jes una particion. Por el lema 1sevequea R bsiysolo siay b pertenecen al mismo
bloque de . En consecuencia > determina a R, y el teorema queda demostrado. @

Si R es una relacion de equivalencia en 4, entonces a los conjuntos R(a) tradicional-
mente se los llama clases de equivalencia de R. Algunos autores denotan la clase R(a) por
[a] (véase la seccidn 9.3). La particién? construida en el teorema 2, por lo tanto, consta de
todas las clases de equivalencia deR, y esta particion sera denotada por A/R. Debe recordarse
que a las particiones de 4 se las llama también conjuntos cociente de 4, y la notacién 4/R
recuerda que P es el conjunto cociente de A que esta construido a partirde Ry que determi-

naaR.

Ejemplo 7. SeaR la relacion definida en el ejemplo 2. Determine A/R.

Solucion: Del ejemplo 2 se tiene R(1) = {1,2} = R(2). También, R(3) = {3, 4} =
R(4). Por tanto, A/R = {{1, 2%, {3, 43}, W& ¢

Ejemplo 8. SeaRla relacién de equivalencia definida en el ejemplo 4. Determine A/R.

¢, el conjunto de

Solucién: Primero, R(0)=1.. ., -6, -4,—2,0,2,4,6,8,...
los enteros pares, ya que el residuo es cero al dividir cada uno de estos numeros
entre 2.

R(H={....-5 -3, -1,0,1,3,5,7.... |

el conjunto de los enteros impares, puesto que cada uno da un residuo de 1 al ser

dividido entre 2. Por tanto, A/R consta del conjunto de los enteros pares y el conjunto

de los enteros impares. ¢

De los ejemplos 7y 8 s¢ puede derivar un procedimiento general para determinar las
particiones A/R finitas o numerables. El procedimiento s cOmo sigue:

Paso 1. Escoja cualquier elemento de A v caleule la clase de equivalencia R(a).

PASG 2. SE Ry = 4, escojaun clemento b, no incluido ¢

equivalencia R(h).
PASO 3. Si 4 no es la union de clases de equivalencia previamente calculadas, escoja
entonces un elemento x de -1 que no esté en ninguna de esas clases de equivatencia y
calcule R(x).

PAasO 4. Repita el paso 3 hasta que estén incluidos todos los elementos de A en las clases
de equivalencia calculadas. Si A es numerable, este proceso podria continuar indefini-

P

n Kia). y calcule la clase de
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dam inv :
;,nte. En ese caso, continde hasta que surja un patroén que le permita describi ,
una formula para todas las clases de equivalencia. ibir o dé

GRUPO DE EJERCICIOS 4.5

Enlos ejercicios 1 y2,sea A = {a, b, c}. Determine si
la relacion R, cuya matriz My se proporciona, es una

relacion de equivalencia.

1 0 0]
LM,=10 1 1
0 1 1

(101"

2M,={0 1 0}
[0 0 1

En l(.)S ejercicios 3 y 4 (figuras 4.26 y 4.27), determi-
ne si la relacion R, cuyo digrafo se proporciona es
una relacion de equivalencia.

3.

Figura 4.26

Figura 4.27

En los ejercicios 5 al 12, determine si la relacién R
en el conjunto A es una relacion de equivalencia

5. A={a,b,c,d,R= 4
(d, d), (d, f)} 1R = (. a). (b, a). (b, ). (¢, c),

6. A=1{1,2,3,4,5L R=1{(1,1),(1,2), (1,3), (2,

1),(2,2), 3.1), (2.3). 3, 3). (4.4), 3,2), (5, 5)]

7. A={1,23,4,R={(1,1),(1,2), (2. 1),(22),

G.1),3,3),(1,3), (4, 1), (4,4))

8. 4 = el conjunto de todos los miembros del Software-

of-thﬁ: Month Club; @ R b si y sélo si a y b compran
¢l mismo niimero de programas.

9. A = el conjunto de todos los miembros del Software-

of-thg Month Club; a R b si 'y sélo st a y b compran
los mismos programas.

10. A4 = cl conjunto de toda la gente que esta en la basc

11.

12.

13.

14.

15,

dp datos del Seguro Social; a Rhsiysélosiav b
tienen el mismo apellido. )

A=cl gonjunto de todos los triangulos del plano,
a R b siy solo si a cs semejante a b.

A=7"%X 7" (a, b)) Rlc, dysiysolosib=d

Si {{a, ¢, ¢}, {b, d [}} es una particiéon del conjunto
A =.{a, b. ¢, d, e, [}, determine la relacion de
equivalencia correspondiente R.

Si{{l,3,5}, {2,4}} es una particién del conjunto 4
3 {1.2.3 4,5}, determine la relacion de equivalen-
cid cortespondiente K.

S‘ca :S‘ = §1,2,3. 4,5 yscad =S5 xS Definala

siguiente relaciéon R en 4: (a, b) R(a’, b") si 'y sélo si

ab’ =a'b.

(a) Qcmucstrc que R cs una relacion de equivalen-
cia.

(b) Calcule A/R.
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16. SeaS=1{1,2,3,4} y sea A = § X S. Defina la
relacion siguiente R en A: (a, b) R(a', b siy solo si
atb=a +b"

(a) Demuestre que R es una relaci
cia.
(b) Calcule 4/R.

6n de equivalen-

19.

lencia en 4, entonces R, Y R, esuna relacion de

equivalencia en 4.

Defina una relacion de equivalencia RenZ,cl
conjunto de los enteros, diferente de la usada en los
ejemplos 4 y 8 y cuya particion correspondiente

17.

18. Demuestre que st &,

4.6. Representaci

Una relacion R
aRbybRcimplicanc
reflexiva y circular si y
equivalencia.

en un conjunto A s¢ llama circular si
R a. Demuestre que R ¢s

sélo si es una relacion de 20. Definau
conjunto de

contiene exactamente dos conjuntos infinitos.

na relacion de equivalencia RenZ, el

los enteros, cuya particion correspon-

diente contiene exactamente tres conjuntos infinitos.

y R, son relaciones de equiva-

El método mas directo para almacenar elem
glo lineal. Esto equivale generalmente a pone
de almacenamiento con numeracion consecutiva en
figura 4.28 ilustra este método para cinco elementos
senta un uso eficiente de espacio y proporciona, por
lenguajes de programacion, acceso directo a los
los datos estarian en las localid

6n en computadora de relaciones y digrafos

entos de datos es colocarlos en una lista o arre-
r elementos de datos consecutivos en lugares

la memoria de una computadora. La
dedatos Dy, ..., Ds El método repre-
lo menos al nivel de la mayoria de los

datos. Asi, el arreglo lineal podriaser 4y
ades A[11, 4[21, A[3], A[4], A[5], y se tendria acceso a cual-

quier dato D; proporcionando simplemente su indice I.

Figura 4.28

ogue se tiene con St 1!\610&10 do atma

b1 problema principat §
pucde insertar nuevos datos entre los d
blemente grande de clementos. Por cjemplo. para
figura 4.28 y colocar [entre D, v D se
si hay espacto, y luego asignar £ a A3

Un metodo alternativo para represent
sada, que se muestra en forma esquematica en |
unidad basica de informacion es 1

atos existentes sin
stendria que mover 1.0 HE
ar esta secuencia

4 celda de almacenamiento. Se imagina que ta

CONMICHIe s (Juv 1o ¢
Chcet qllk} moyverun numero [)\)Si'

agregar uiro clemenie /oo ta listade la

1D a A8 v Ds a A6}

s por medio de una lista enla-
a figura +.29. El almacenamicnto de i
les celdas

1
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tienen espaci i i
) simbolﬁs) 0 ;;allra dos Zlementos de informacion. El primero puede ser de datos (nimeros
P Se}l Zla) lsaeglg,un 19 ele_:r’nento es un apuntador (puntero), es decir, un niimero que
e o d(A)ca izacion de la siguiente celda por considerar. En consecuencia, las
ar dispuestas en sucesion : :
. pero los elementos de dat
celdas pued : \ n, atos que representan no
ecesariar tnte gstgran en la misma sucesion. En vez de eso, se descubre la sucgsién corre
o atos §1lgtxlendo los apuntadores de cada elemento al siguiente i
omo se 1lustr :
a en la figura 4.29, se representa la celda de almacenamiento como una

caja con particion . DATOS
apuntadof e e{s ; Dfé;zfQS d[. , con un punto en el lado derecho que representa un
. uja una linea desde cada uno de e ;
. . stos puntos a la celd
e de elda que el a
cor s;zl(’)ndlente designa como el siguiente. El simbolo ® *** significa qu::1 seh puma'dor
0 osE atlos y que no se necesita seguir mas apuntadores ' an fermine
n la practi i :
arcglcs e apra;tlca, puede ponerse a funcionar el concepto de lista enlazada, utilizando dos
o 430 52 ?S’ un arreglo de datos 4 y un arreglo de apuntadores P, como ;e muestra en la
neur de. lal.a 'S?{'W;E ]qge una vez que se ha tenido acceso a los datos de la posicién 4[], el ni
osicion P[i] da, o sefiala, el indice de 4 qu i igui  datos,
ap ] da, , e contiene el siguiente el
1o lape elir q guiente elemento de datos.
. l,a . ssei ;sggxggz]i en la %oswmn A[3], logrando acceder al elemento de datos D
contendria a 5, puesto que el sigui ¢
cntonces | 5. P e el iguiente elemento de datos, D,, est4
situado 1:{%5]. Uz ;ero en alguna posicion de P significa que no existen mas elemenios dz
o es.te " ueilllrd .30, P[é‘l] es cero porque A[4] contiene a Ds, el tltimo elemento de datos
En este § lq at,lse negesﬁa dos arreglos para los datos previamente representados en ur;
directamg (z, y sdlo se tiene acceso en sucesion. En consecuencia, no se puede localizar D
irecta r:nt e(,ismo que se debe ir por los enlaces hasta llegar a esta posicion. La gran venta';
oo Orde olf), empero, es que el orden fisico real de los datos no tiene que ser el misrrJ10
en logico o natural. En el ejemplo anteri
erior, el orden natural
los datos no estan alma , o
cenados de esta manera. Los enl i manera
Im . aces permiten d :
fos dato ’ : pasar de manera natu-
por los datos, sin importar como estén almacenados. Asi es muy facil agregar nuevos

D, 4
D, 3
i1, 5
A P
Dy 0
Dy Dy I

Figura 4.29 Figura 4.30
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elementos en cualquier parte. S.i se qui
extremo del arreglo 4, s€ cambia u r,y 1
en la figura 4.31. Este enfoque puede usarse sin importar qué tan larga se

{a tener una variable a ; ;
Ezrix lealr; figuras 430y 431, START contendria a 2, puesto que D, esta en Al2].

Relaciones y digrafos

ere insertar el elemento E entre D, Y D,, se anexa E al

n apuntador, y se anexa otro apuntador, como s€ muestra
a la lista. Se debe-

dicional START manteniendo el indice del primer elemento de datos.

START

D, 4

D, 3

A D, p 6

Dy 0

Dy 1

E 5
Figura 4.31 -

No importa qué tan grande sea el elemento de datos, dentr.o .de las"hrr:ltzclxl?lr;e; ;itiif
computadora, de manera que 4 podria ser realmente un arreglo p,xdlgu;nm?; ol o una el d(;
El primer renglon contendria varios niimeros con la descmpmgn e pr‘ o o
datos, el segundo describiria el siguiente elemento de datos, y asi sucestvamente.
pueden ser un apuntador a la posicion de lo_s'datos reales. om0 su digrafo

El problema de almacenar informacion para representar una relac o
tiene también dos soluciones similares a las prgsentadas antes para da‘tos :Slrflp e\r. una;;n mer
lugar, se sabe, por la seccidn 4.2, que una réla01on.R en 4 puede represenéarsle ;;Eomonces iz

M,, n X n,sid tienen clementos. La matriz Mg tiene e'mradas que son ol. rones n -
forma directa de representar R en una computadora seria por medio de un arreg

1c1¢ i,s14= = 2), (2,
tenga ceros y unos almacenados en cada posicion. Asi,sid=1{1,2} yR {(1, 1), (1,2), (

2)}, entonces
_ 1 1
Me =10 1

y eotos datos podrian ser representados por un dl’:C}:—’,}O ?idxmc
1] - 1. MAT[L 2] = 1, MAT[2.11- Oy MAT[;, 21 L i iilizala
Un segundo método de almacenamiento de datos para I’Ll%uOl?Ls y bl \nu\u,“c oy
idea de la lista enlazada antes descrita. Para que rcsu(ljtc nlms \1,:(1;(:: :;.elu;;lgl;l:fg el ;j]eci:r "
0. S struira una lista enlazada que contiene 104os os lados afo, es decir,
;Zr;eoigg;g(;gr:de nameros que determinan esos l.aQO.s. Los da'lof pucid?n scr‘ rcgigjzgzi;s
por dos arreglos. TAIL y HEAD, dando el vértice inicial y el vertxc‘e‘tmali're'sg,eg ‘1e necegit;
para todas las flechas. Si se quiere transformar estos datos en una hsta‘ en' alzc(lj a,, ;gi ’Uie;lte
también un arreglo NEXT (siguiente) de apuntadores que partan de cada lado al stg .

nional MAT. en el cual MAT] 1,
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Considérese la relacion cuyo digrafo aparece en la figura 4.32. Los vértices son los
enteros 1 al 6 y de manera arbitraria se numera los lados como se muestra.

Figura 4.32

Si se desea almacenar el digrafo en forma de lista enlazada de manera que el orden légico
coincida con la numeracién de los lados, se puede usar un esquema como el que se ilustra en
la figura 4.33. START contiene a 2, el indice del primer elemento de datos, y al lado (2, 3)
(este lado estd marcado con un [ en la figura 4.32). Este lado est4 almacenado en las segun-
das entradas de TAIL y HEAD, respectivamente. Puesto que NEXT[2] contiene 10, el si-
guiente lado es el que esta situado en la posicion 10 de TAIL y HEAD, es decir (1, 2) (lado
marcado 2 en la figura 4.32).

NEXT[10] contiene a 5, de manera que se va en seguida a la posicion de datos 5, la
cual contiene al lado (5, 4). Este proceso contintia hasta que se llega al lado (3, 6) en la
posicion de datos 7. Este es el tltimo lado, y se indica este hecho al tener que NEXT[7]
contiene 0. Se usa 0 como apuntador, para indicar la inexistencia de mas datos.

Si se sigue el rastro de este proceso, se encontrara los lados exactamente en el orden
que corresponde a su numeracion. Se puede arreglar, de una manera similar, para pasar por
los lados en cualquier orden deseado.

Este esquema y las numerosas variantes equivalentes del mismo tienen desventajas
importantes. En muchos algoritmos, es eficiente localizar un vértice y luego comenzar de
inmediato a investigar los lados que comienzan o terminan con este vértice. En general, esto
no es posible con el mecanismo de almacenamiento que se muestra en la figura 4.33, por lo
cual se proporciona ahora una modificacion del mismo. Se usa un arreglo lineal adicional
VERT que tiene una posicion para cada vértice en el digrafo. Para cada vértice /, VERT[/]
¢s el indice, en TAIL y HEAD, del primer lado que se desea considerar saliendo del vértice
[ {en el digrafo de la figura 4.32, ¢l primer lado podria tomarse como el lado con ef numero
de marca mas pequefio). En consecuencia, VERT, al igual que NEXT, contiene apuntadores
hacia los lados. Para cada vértice /, se debe arreglar los apuntadores de NEXT de mancra
que enlacen todos los lados que salgan de /, que inicie en el lado al que sefiale VERT[/]. En
cada caso, el Gltimo de estos lados se hace seialar a cero. En un sentido, los arreglos de
datos TAIL y HEAD contienen realmente varias listas enlazadas de lados, una lista para
cada vértice.
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START TAIL

"—‘HO\WMMWNN»—

Figura 4.33

HEAD

NO\’—‘O\##U\—‘UJUJ

Este método se ilustraen la figura4.34 para el digrafo
del vértice 1 debe estar almacenado en la

contiene a 10, de modo que el primer lado que sale
décima posicion de datos. Este es el lado (1, 3). Pue
que sale del vértice 1 es (1, 6) situado en la posicion de datos 9. Una ve
sicion de datos 1. Puesto que

llegado al final de los lados que comienzan en el vértice 1. El orden de los

lo cual sefiala hacia el lado (1, 2)enlapo

ha escogido difiere de la numeracion de la figura 4.32.

Se pasa luego a VERT[2] y se obtiene un a
contiene al primer lado que sale del vértice 2, es
dores para visitar todos los lados que vienen des
puede rastrear pasando por los lados (st los hay) que vienen
VERT[4] = 0, lo cual significa que no hay

La figura 4.35 muestra una alternat
lector debe verificar la exactitud del méto

vez mas al lector que la ordenacion
de manera arbitraria.

VERT TAIL
10 1
2 2
4 2
0 3

| 5 5

Ls 3

3
6
1
L 1

Figura 4.34

puntador

lados que comience
iva a la figura 4.34 p
do descrito en la figura 4.35.
de los lados que salen de cada vértice pue

HEAD

2]

W o= o B — W

UIO‘\\]OUJHOO-P

Lo

NEXT

o ]

o N O WO

o - o O~

de la figura4.32. Aqui VERT{1]

sto que NEXT[10] = 9, el siguiente lado
7 mas NEXT[91=1,
NEXT[1]=0, se ha
lados que aqui se

a la posicion 2 en los datos. Este
decir, (2, 3), y se puede seguir los apunta-
de el vértice 2. De modo semejante, s€
de cada vértice. Notese que
n en el vértice 4.

ara describir el digrafo. El
Se le recuerda una

de ser escogida

Scecion 4.6 chrcscntacum cn computadma de lela(:umcs y (hgrafos ' 4 l

VERT TAIL HEAD NEXT
9 1 2 0
3 2 3 0
6 2 1 2
0 3 5 7
5 5 4 0
8 3 4 4
3 6 0
6 1 0
1 6 10
1 3 1
Figura 4.35

Se ve entonces i
e digraf(:lu:ne;x;s;?:n(:sr l?j rr;enos) QOS métodos para almacenar los datos para
una refacion o , un 10 de la matriz de la relacion y otro medi
e almacené rI}lllaytvarlos ,factores que determinan la eleccidn del métodoame e de’
g, Ordenadolseg 0. }}lEI namero total de elementos # que hay en el conjun’tojuelse’usara
ue hay en R o la razén d [ im0 post
e pares ordenad : e este numero a n° (el num Axi i
° az . erom
e e parcs ord ?Sios), y .la‘mformacmn posible que ha de obtenerse de R szmm?i o las
consideract . Un an.alxsls de tales factores determinara cual de 1 y s e
: 1ento es el mejor. Se considerara dos casos © o5 melados de
updngase que 4 = {1, 2 N} .
»2,..., N}, ysea R una relacid i
representada por el y s o P oares oncom et ,
T Con;:iene eaxr:ziglo MAT. Suponga.se que R contiene P pares ordZnados leeMR o
L e z(ljmente P unos. Primero, se va a considerar el problema d aresar
A : , y segundo, el problema de probar si R es transitiva Frers
ara agregar (/, J) a R se realiza el enunciado .

MAT[/.J ] 1.

Esto es sume I
nan SENC > :
nente sencillo con el método de almacenamiento de matriz

CO St 23 g > g
n de] €8¢ a]l()] a el siguiente al oritmo 6[ Cual asigna Rl :SULJI 211 le()l l ( €I d de
v a =

rO) (fdlS ) p ndl@nd q no transitiva. Se I)SGI a quc l I{A :; n I (llbd
6] I 0}, de € O dC uce R S€a 0
Vv O Vv N 01

ALGORITMO TRANS
1. RESULT « T
2. FOR/=1THRUN
a. FORJ=1THRUN

Lo W (MATL[L T — 1) THEN
4 FORK =1 THRU N
I IF(MAT[|/.K} =1 v MAT[/. K] =0) THEN

o a. RESULT « F
FIN DEL ALGORITMO TRANS

Aqui RESULT origi
cion en boue (1) Eolglgfllyjln[;)eme;s T, y se cambia solamente si se encuentra una situa-
, K)e R, pero (I, K) ¢ R (situacion que viola la transitividad).
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Ahora se proporciona un conteo del nimero de pasos que requiere el algoritmo TRANS.
Obsérvese que [ y J corren cada uno de 1 aN. Si(J, J) no estd en R, solo se efectia la prueba
uno “IF MAT[ J]=17,1a cual sera falsa, y el resto del algoritmo no se ejecutard. Puesto
que N> — P pares ordenados no pertenecen a R, s€ tiene N2 — P pasos que debe ejecutarse
para tales elementos. Si(l, J) e R, entonces la prueba “IF MAT (£, J]=1. sera verdaderay
se ejecutaré un ciclo adicional

2. FORK=1THRUN
1. IF (MAT[J, K] = 1 y MAT[/, K] = 0) THEN
a. RESULT « F

de N pasos. Como R contiene P pares ordenados, se tiene PN pasos para tales elementos. En
consecuencia, el nimero total de pasos que requiere el algoritmo TRANS es

T,= PN+ (N* = P).

Supongase que P = kN 2 en donde 0 < k =< 1, puesto que P debe estar entre 0y N°.
Entonces el algoritmo TRANS tiene su prueba por transitividad en

T, = kN* + (1 — k)N?

pasos.
Considérese ahora el mismo digrafo representado por el esquema de lista enlazada,

utilizando VERT, TAIL, HEAD y NEXT. Primero se trabaja en el problema de agregar un
lado (I, J). Se supone que TAIL, HEAD y NEXT tienen posiciones adicionales disponibles
y que el nimero total de lados se cuenta por una variable P. Entonces el siguiente algoritmo
agrega un lado (/, J) a la relacion R.

ALGORITMO ADDEDGE
1. PP+ 1

2. TAIL[P] & [

3. HEADI[P] </

4. NEXT|[P] « VERT{/]

S. VERT[/] < P

FIN DEL ALGORITMO ADDEDGE

La tigura 4.36 muestra la situacion esquematicamente en forma de apuntadores, tanto
antes como después de agregar el lado (/, J). VERT[/] apunta ahora al nuevo lado, y €l
apuntador de ese lado va al lado previamente senalado por VERT[/], es decir (I, J'). Este
método no es demasiado complicado, pero resulta claro que el método de almacenamiento
de matriz tiene la ventaja para la tarea de agregar un lado.

Se considera en seguida el problema de transitividad. Para que las cosas sigan siendo
sencillas, supongase que se dispone de una funcion EDGE(/, /) que tiene el valor T'si (1.J)
esth en K. o de to contrario el valoi IS¢ pide al lector constnr tal funcion en fos jerdicios.
[l siguiente algoritmo hace {a prucba de ransitividad de B con este método de almace-
namiento. Una ves mis, RESULT tendra el valor T si R es transitiva v. de lo contrario,

tendra el valor F.

ALGORITMO NEWTRANS

1. RESULT « T

2. FOR/=1THRUN
a. X« VERT|/]

|

Seccidn 4.6

b. WHILE (X # 0)
1. J«< HEAD[X]
2. Y« VERT[/]
3. WHILE(Y # 0)

a. K« HEAD[Y]
b. TEST « EDGE[/, K]
c. IF (TEST) THEN
1. Y« NEXT[Y]
d. ELSE

1. RESULT « F

2. Y« NEXT[Y]
4. X < NEXT[X]

FIN DEL ALGORITMO NEWTRANS

VERT TAIL HEAD

Y
]
A
P
~

Representacion en computadora de relacionces y digrafos

NEXT

Blank Blank
VERT TAIL HEAD NEXT
S eesrarert—--
*— ! J' *—
Y
/ J ‘

Figura 4.36
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cada vértice 1, busca en todas
éstas por transitividad. Asi,
si hay una trayectoria direct
que ¢l algoritmo TRANS que correspond

NEWTRANS uti
humano de determinar la transitividad de R.

para la prueba de transitividad. Cada uno
que, en promedio, P/N=

Relaciones y digrafos

El lector debe seguir los pasos de este algoritmo con varios ejemplos sencillos. Para
Jas trayectorias de longitud 2 que comiencen en I y verifica
paulatinamente verifica cada trayectoria de longitud 2 para ver
a equivalente. El algoritmo NEWTRANS es un poco mas largo
e al método de almacenamiento de matriz, y €l
liza también la funcion EDGE, pero se asemeja mucho mas al método
Ademas, el NEWTRANS puede ser mas efi-

ciente.
o de pasos que toma el algoritmo NEWTRANS

Se va a analizar el numero promedi
de los P lados comienza en un vértice Gnico, ast

rtice. No es dificil ver que una funcion

EDGE, como la que s¢ necesito antes, puede seguir un promedio de D pasos, puesto que
debe verificar todos 108 Jados que comiencen en un vertice particular. El ciclo principal
FOR del NEWTRANS sera ejecutado N veces, Y cada enunciado subordinado WHILE
promediard alrededor de D ejecuciones. Como el altimo WHILE llama a EDGE cada vez,
se ve que el algoritmo completo promediara alrededor de ND’ pasos de ejecucion. Como
antes, se supone que P = kN % con 0 << k=< 1. Entonces NEWTRANS hace un promedio de

D lados comienzan en el vé

3

kN2 ;

T,=N (_,_) =k'N' pasos.
N

Recuerde que el algoritmo TRANS, utilizando almacenamiento de matriz, requeria alrede-

dorde T, = INY H(1 — kN ? pasos.
Considérese ahora la relacion T,/

almacenamiento enlazado comparado cone€

de matriz para probar R por transitividad. En consecuencia,

T, del nimero promedio de pasos necesarios con
1 nimero de pasos necesarios con almacenamiento

T, kNG B k*N

T, ANYH(D - KN? ‘

I, ANYH( - K NN
k N

decir, cuando hay muchos lados. entonces 7,/ T, es casih,
lista enlazada promedia N veees los pasos del método de
método de almacenamiento de matriz es N

Cuando k es cercana a 1. es
porloque’, = TN,y ¢l método de
almacenamiento de matriz. En consecuencia, el
veces mas rapido que el método de lista enlazada en Ja mayoria de tos casos.

Dor otra parte, sik es muy pequefio, entonces T,/ T, pucde ser casi cero. Esto significa
que si el namero de lados es pequenio en comparacion con N > resulta en promedio, conside-
coblomente mas eficiente probar por (ransitividad en un método de almacenamiento de lista
cnlazada que con Gt de matnz de advacenc.

Por supuesto. se ha hedho una gran simplhiicacion. N todos los pasos wiman el mis-
mo tempo de gjecucion. cada algoritmo que haya que probar por (ransitividad puede
acortarse deteniendo la basqueda cuando se descubre ¢l primer vont acyemplo a la
rransitividad. A pesar de esto. Ja conclusion sigue siendoy erdadera ¢ ilustra el punto impor-
tante de que la seleccion de una estructura de datos pard representar objetos tales como
conjuntos, relaciones y digrafos tiene un efecto importante en la eficiencia con que puede

obtenerse informacion acerca de los objetos.

Scecion 4. i6
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Pricticamente i i
grandes para o6 toldas las relaciones y digrafos de importancia practica son d i
r explorados manualmente. En consecuencia, e! alm ?maSladO
s acenamiento en

computadora de relaciones i n 10 ca de mé
. y la 1mp1a tacién algoritmi s
P o g 1 todos para explorarlos son

GRUPO DE EJERCICIOS 4.6

1.

n

Verifique que el arreglo de lista enlazada de la figura
4.35 describa correctamente el digrafo de la figura

Construya una funcion EDGE(J, J) (en seudocddigo)
que regrese el valor T (verdadero) si el par (i, /) estd
en R,. y el F (falso) de lo contrario. Suponga (’]ue la
relfmc’)n R se da por arreglos VERT, TAIL, HEAD
NEXT, como se describe en esta seccion. ’ ’

Demuestrc que la funcion EDGE del ejercicio 2 se
ejecuta en un promedio de D pasos, siendo D = P/N,
P'es. el numero de lados de R, y N ¢s el nlimero de ’
V?mces de R. (Sugerencia: Suponga que P es el
nimero de lados que van del vértice i al vé‘;tice/
Exprese el niimero total de pasos ejecutados pof.
EDGE para cada par de vértices y luego obtenga el
promedio. Utilice el hechode que %, P, = P.)

Sca‘NUM un arreglo lineal que contiene N enteros
pgsﬂwos, y sea NEXT otro arreglo lineal de la
misma longitud. Supdngase que START es un
apuntador hacia un “primer” entero en NUM, y que
para cada /, NEXT[/] apunta al “siguiente” e;m:ro de
NUM que debe considerarse. St NEXT{/} =0 7
termina la lista. ’

B Esceriba una funcion LOOK (NUM, NEXT

| /\RT, N, K) en seudocodigo para buscar NU,M or
njcdp de ltos apuntadores en NEXT para un cntcrz
I\,' Si se encuentra K, se regresa la posicion de K en
NUM. Si no, LOOK imprime “NO SE ENCON-

A Cualeule K : :
cule Tu matriz M, que dé fa representacion de

, . .
o e ameglos MERTUT

vy NEXT que describan R como una lista enlazada

aparcce en la figura 4.37.

Describa los arreglos VERT, TAIL, HEAD y NEX
estableciendo una representacion de lista en);az d k
de? R, de manera que los lados que salen de cad: :
vemc‘e sean alcanzados en la lista en orden crecient
(relativo a su numeracion de la figura 4.37) e

i=1

Figura 4.37

Considerc los siguientes arrcglos.
VERT - [1.2.6.4]
TAIL = [1.2.2.4. 4.3 401
HEAD = [2.2,3.3,4,4. 1, 3}
NEXT = [8,3,0,5,7.0.0.0]

Est(;s describen una relacion R en el conjunto 4 =
, . S
1,2, 3,41, Caleule el digrafo de Ry la matriz My,

.- PR B X. i o N TS H H i
Los stoutentes arreglos descrben una refacton 7 o

Yoouno reincion sohre

Civoitjuilo o by e domi Yy Caicuie \l\]i_«&\ [S1%
&
R v Ia matriz \lp

RS20 RS AR 5 | e
YELLLE] \D

Pucde enlazar en cualquier forma razonable. VERT =62 8. 7. 101
TAIL = 2,220 201 140 504 5]
o | ) N | | L2020 20 o405
cu 11,2, 3,4 y sea R la refacion cuyo digrato HEAD = [4. 3. 5. 1. 20 3.5, 4 2. 4]
NEXT = [3. [ 4.0, 0.5,.9,0, 0. 0]
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9. Sead=1{1,2,3,4,5} ysea R una relacion sobre 4 10. Sead={a b c d e} ysea R la relacion descrita
tal que por
1 0 010 1 0 0 10
0o 11 00 o 0110
Mg=10 0O 0 1 0 Mg=1{1 1 0 0 1}
1 01 01 o1 0 10
o 1 0 0 1 1 00 01

Construya un
VERT, TAIL,

Construya una representacion de lista enlazada,

a representacion de lista enlazada,
VERT, TAIL, HEAD, NEXT para R.

HEAD, NEXT para la relacion R.

4.7. Manipulacion de relaciones

Igual que puede manipularse 0 trabajarse con los mimeros y formulas aplicando las reglas
del algebra, también puede definirse operaciones que permitan manipular las relaciones.
Con estas operaciones s€ puede cambiar, combinar y refinar relaciones existentes para pro-

ducir otras nuevas.

Sean Ry S las relaciones de un conjunto 4 a un conjunto B. Entonces, si se recuerda que
Ry S son simplemente subconjuntos de 4 X B, es posible usar operaciones de conjuntos en R
y S. Por ejemplo, el complemento de R, R, se menciona como la relacién complementaria.

Por supuesto, es una relacion de 4 a B que puede expresarse simplemente en términos de R:
a Rb siysolosi a R b

También puede formarse la interseccion R Sy la unién R \U S de las relaciones RyS.En
terminos de relaciones, se ve que d (R M S) b significa que a RbyaSh,a(RUYS) b
significaquea R boa S b. Todas las operaciones tebricas de conjuntos pueden ser utilizadas
de esta manera para producir nuevas relaciones. El lector debe tratar de dar una descripcion
relacional de la relacion R ® S (véase la seccion 1.2).

Un tipo diferente de operacion en una relacion R de 4 a Bes la formacion de la
inversa. que suele escribirse R La relacion R~ es una relacion de B a 4 (orden invertido

de R) que se define por
bR 'a siysdlosi aRb.
Por lo anterior, resulta claro que (RH'=R No es dificil ver que Dom(R™") = Ran(R) ¥
Ran(R™") = Dom(R). Se deja estos hechos sencillos como ejercicios.
Ejemplo 1. Sead={1,2,3,4}yB~= fa, b, ¢}. Sean
R = {(L,a). (1, b). (2. b). (2. ). (3.h). (4.a))

1.

S~ {(1.h). (2o 300 SRS

Caleule (a) R; (D) RM S ()R USy (AR

Solucion
(2) Seencuentra primero

AXB= {(1.a),(1,b),(1,C).(2,a),(2. b). (2,¢).(3-a).
(3.b). (3, 0). (4.a). (4.b). (4. ).
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Entonces el complemento de Ren 4 X Bes

R ={(1,¢),(2,a),(3,a),(3,¢), (4,b), (4, c)}.

(b) Se tiene que RN S= {(1, b), 3, b
(C) Se tiene que ’ )’ ( ’ )’ (2, C)}

RUS=1{(1,a),(1,b),(2,b),(2,¢),(3,b),(4,a), (4, b)}.
(d) Puesto que (x, y)e R™'siys6losi(y, x)e R, se tiene
R™'={(a,1),(b, 1), (b,2), (c,2), (b,3), (a,4)}. .

Ejemplo 2. =2 i6
jemplo Sea 4 = 2. Sea R la relacién < (menor o igual a) sobre 4 y sea S (mayor o

i =
igual a) =. Entonces el complemento de R es la relacion > (mayor que), puesto que a £ b
5 a

Sg IﬁC q ea>bD m dOSlmll 1 com ment (<] ;CS NENOr (l]le PH] otra parte
1gn aqu C O ar, el 0 ple cnto d [) 5
RAI — H s =

- S, pueStO que para CuaquICr numero de a y b ( )

. C .
aR‘'b siysblosi bRa siysélosi b=<<a siysolost a=5b

De modo similar, se tiene § ' =R ié
x = R. También, se observa i
RT , que R Ses larelacid i
dadl, pgesto que a (R M S bsiysdlosia<byaz=bsiysolosia iall)Cl(én .
T;a ?,u‘?,ra)’f?, esciertoquea<< bhoa=b seveque RUS=4 X B; es dé i olrini’)para
relacion universal en la cual cualquier a esta relacionada con cualqu;er b . Sis

Ejemplo 3. S =
p ead={a b, ¢ d e} ysean Ry S dos relaciones sobre 4 cuyos digrafos

C()rresp()lldlerltes apaleCCIl €n la ﬁ ura 438 ] ntonces el leCt( )1 lle(le = lll(:a 0S -
g p rl o Slgu1€n

R = {(a.a), (b, b).(a,c),(b,a),(c.b),(c.d),(c,e),(c.a) (d b)
(d,a).(d,e), (e,b), (e,a),{e,d), (e, cﬁ)} .

R "= {(b,a), (e.b).(c,0), (c.d),(d.d).(d,b),(c,b).(d.a), (e e) (e.a)
RN S ={a.b),(b,e),(c,0)}

b

o

Figura 4.38
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Ejemplo 4 Sead = {1,2,3} yseanRYy S relaciones sobre 4. Supongase que las matrices

de Ry Sson
(1 0 1] 0 1 1
M;=]0 1 1 y Mg=|1 1 0
[0 0 0] 0 0
Entonces se puede verificar que
(0 1 0] 100
Mz=|1 0 0} M,.=10 1 0},
(1 1 1] 1 10
0 0 1] 11 1
Mgs=10 1 Of Mps=11 1 1
|0 0 0 0 1 0 ¢

hechos generales. Si se recuerda las operaciones €n ma-

j lo 4 ilustra algunos ec [ '
D nns d : puede demostrarse (ejercicio 27) que siR Yy S son relacto-

trices booleanas de la seccion 1.5,
nes sobre ¢l conjunto 4, entonces
Mgns = Mg A Mg
Mpys = MgV Mg

Mi-1 = (Mp)"

ne el complemento M de M como la

i M es una matriz booleana, s€ defi 0 la
P n M por un 0 y cada 0 por un 1. Asi, st

matriz obtenida a partir de M al reemplazar cada 1 €

1 0 O
M=10 1 1},
1 0 0
entonces
0 1 1
M={1 0 0
0 1 1 .
También puede demostrarse (ejercicio 27) que si R es una relacion sobre un conjunto A,
entonces _
M; = M,
={M,), y como (Mp)'

Se sabe que una refacion shnctrica os una relaciAn R tal que M,

T p !
—MR—x,sevequeRessxmemcasxysolo>1R~R .

i it inaciones de
Ahora se va a demostrar algunas propiedades tiles acerca de las combinaciones

relaciones.

Teorema 1. Supdngase que Ry S son relaciones de A a B.
(a) SiRc S, entonces RicS

(b) SiRcC S, entonces S < R.
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() RNS) '=R'"MS'y(RUS) '=RTUS".
(@ ROH=RUSyRUSH=RMN 3§

Demostracion:  Las partes (b) y (d) son casos especiales de las propiedades genera-
les de los conjuntos demostradas en la seccion 1.2.

Ahora se demuestra la parte (a). Supdngase que R < Sy sea (a, b)e R™'. Entonces
(b, a) € R, de manera que (b, a) € S. Esta, a su vez, implica que (a, b) e S™'. Puesto
que cada elemento de R™' estd en 7', la proposicién queda demostrada.

A continuacion, se va a demostrar la parte (c). Para la primera parte, supéngase que
(a, ye (RM S)'. Entonces (b, a) € R S, de maneraque (b, a)e Ry (b, a)e S.
Esto significa que (¢, b) € R™'y(a, b)e S, de modo que (a, b)e R"'M S ' La
contencion inversa puede demostrarse invirtiendo los pasos. Hay un argumento simi-
lar que funciona para demostrar que (R\U ) '=R U S, °

Las relaciones R y R™' pueden ser empleadas para verificar si R tiene las propieda-
des de relaciones presentadas en la seccion 4.4.

Teorema 2. Sean R y S relaciones sobre un conjunto A.
(a) SiR es reflexiva, también lo es R™".
(b) Si Ry Sson reflexivas, entonces también lo son R(M Sy R\U S.
(¢) R es reflexiva siy solosi R es irreflexiva.

Demostracion:  Sea A la relacion de igualdad sobre 4. Se sabe que R es reflexiva si
y s6lo si A ¢ R. Es claro que, A=A"', de modo que si A R, entonces A=A <R
por el teorema 1, de manera que R™' también es reflexiva. Esto demuestra la parte (a).
Para demostrar la parte (b), se observaque siAc Ry A S, entonces AC RM Sy A
— R\U S. Para demostrar la parte (c¢), se observa que una relacion S es irreflexiva siy
$0lo siSMY A=, Entonces R es reflexivasiy solosi A C RsiysolosiAM R =
siysolosi R esirreflexiva. L)

Ejemplo 5. Sead = {1, 2, 3} yconsidérese las dos relaciones retlexivas

y
S =L D (1 2).(2.2).(3.2). (3. 3)).
Entonces
(a) R "=l Do2. D)3, D (2.2, (3. 0 demodoque Ry R "ambas son reflexivas.
(DY R = (2. 112, ). (3, 1) (3.2 es irreflexiva mientras que R es reflexiva.

|
(oy ROTYS L Tl 2t O A M v RN i 2 32 2003, 2 (A

)
ambuas son redlexivas. ¢

Teorema 3. Sca R una relacion sobre wi conmpunto A1 fatonces
(a) R es simétrica si v solo si R = R .
(b) R es antisimétrica si v solo si ROVR T A
(€) Resasiméicasiysolosi RIYR '=O.
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Demostracion:  La demostracion es directa 'y s€ deja como ejercicio. ®

Teorema 4. Sean Ry S relaciones sobre A.

(a) SiR es simétrica, también losonR™'y R.
(b) SiRy Ssonsimétricas, rambién loson RSy R S.

Demostracion:  SiRes simétrica, R=R™'yen consecuencia (R™) ™' =R= R, o
cual significa que R~' también es simétrica. También, (g, b) € ( R) 'siy solosi(b, a)
e Rsiysolosi(b a)¢ Rsiysolosi(a b)¢ R'=Rsiysolosi(a b)e R, de modo
que Res simétrica y la parte (a) queda demostrada. La demostracion de la parte (b) se
desprende en forma inmediata del teorema 1(c). ®

Ejemplo 6. Sea A=1{1,2,3}y considérese las relaciones simétricas

R = ((1,1),(1.2), (2, 1. (1,3).G. D}

§ = {(1, 1), (1,2),(2, 1), (2,2),(3,3)}

Entonces

(@ R'={(1, 1,20, (1,2), 3. DL (1,3 y R= {(2,2),(2,3), (3,2, G, 3)}; de manera
que R™'y Rson simétricas.

(b)y ROVS={(1, D), (1,2), (2, DYy RUS={(1, D, (1, 2). (L, 3), (2, 1), (2,2, 3. 1, G
3)}, las cuales son simétricas. L

Teorema 5. Scan Ry S relaciones sobre A.
(@) (RMSYc RPN S
(b) SiRySson ransitivas, también lo es RMS.
{c) SiRySson relaciones de equivalencia, tambiénloes RIS,

Demostracion:  Se demuestra la parte (a) geomeétrica
b s1y solo st hay una rayectoria de fongitud 2 que vaya de uaben RM S. Ambos

lados de esta trayectoria s¢ encuentran en Ry en S. de modoquea R*byas “ b, lo
cual implica que a(R* (™ S 7)b. Para demostrar la parte (b). se recordara de la seccion
4.4 que una rclacion T es transitiva si y solo st T T.Si Ry Sson transitivas,
entonces R c R, S < S, por tanto, (RN SY < RIS [por la parte (a)] < RM S, de
modo que R(M Ses (ransitiva. Enseguida se demuestra la parte (c). Las relaciones R
y S son cada una reflexiva, simétricay transitiva. Las mismas propiedades son validas

para R M S por los teoremas 2(b), 4(b) y 5(b), respectivamente. Por tanto R(M Ses

una relacion de equivalencia. L4

S relaciones de ec uivalencia sobre un conjunto finito 4, y sean AR
1 ;
1.5}, Puesto que R (S es und

Fiemplo 7. Svan Ry Siel
y A0S las particiones correspondientes (vease la seccion i
relacion de equivalencia, corresponde a una particion AR 5).
S)en tuncionde A/R Y AiS. Sea
4 V. Entonces ¢ (R(YS) b, de manera que a Rbyal
necen al mismo bloque, por dectr,
significa que W& ¥ Y. Los pasos que hay en este argumento so
W=XMY En consecuencia, se puede calcular directamente la
mando todas las intersecciones posibles de bloques en A/R con blogues en A/S. ¢

mente. Se tiene que a (R Sy

M Sy Aherase describeA/(RM
1 un blogue de (R M §) v supongase quea’y p pertenecen
b. En consecuencia, d'y b perte-
X, de A/R y al mismo bloque, por decir, Y, de A/S. Esto
n reversibles; por lo tanto,
particion A/(R M S) for-

Jd

Scccion 4.7 Manipulacion de relaciones 151
Cerraduras

SiRes 16 j i

es una relacmp sobre un conjunto 4, bien puede ocurrir que R carezca d
propiedades relacionales importantes que se analiz6 en la 16n 4 A de fas
propiedade : ! ites : seccion 4.4, especia

X d, la simetria y la transitividad. Si R no posee una propieda,d ep l'meme 2

gue .edegear agregar a R pares relacionados hasta obtener una relacion . part’lcmar’ N

ropiedad requeri i N aces n
por;;O dud 10q erida. Natgralmente, se quiere agregar el menor nimero de pares : g'?)lla
o qgedse;l necesita encontrar es la relacion mds pequeria R, en A que conts Sl 32,

propiedad que se desea. En ocasi i Loon
. casiones R, no existe. Si exi 16
e e rradura de B oo . Xiste. Si existe una relacion tal como
respecto de la propiedad en cuestion.

Ejemplo 8. ; .,
Eito sl()')l((:s dsuponngSC que R es una relacion sobre un conjunto 4, y que R no es reflexi
puede ocurrir porque algunos pares de la relacion diagonal A no estén en I:XI‘;’;.
. 1’

1 U
R AR A es 18 IelaCl()Il ]e“exlva mas peque} 1a €1 A que contiene a AR € deCl] -
U 5 S s la cerra

Ejemplo 9. : 1

! ibe e[))( i(;t?r Supodngase ahora que R es una relacién sobre 4 que no es simétrica. Enton

e e d;;agrees {x, )%fen R tzles que (y, x) no esté en R. Por supuesto, (3, x) € R™' ae manf:r:z
s ser simétrica se debe agregar todos los deR” ’

que ¢ pares procedentes deR™; i

;ligr;c{rzd_ar RZ} R R~ ‘L Esclaroque RUR ) '=RUR ' como R Ié‘else(:jse?r’ SEI: d?t')e

simétrica mas pequefia que contiene a R; es decir, R\ R™' es la cerradura simétriilar iia(z’on

eR.

Sid={a b, ¢,d} yR=1{(a b),(d
) L b), (b, ©), (a, o), (¢, =
(¢, a), (d, ©)}, asi que la cerradura simétrica de R)es( Dl entonees & b te B

RUR'=
) {(a,b), (b, a).(b,c).(c.b).(a.c).(c.a).(c,d), (d, c)}. ¢
a s a1 A M 15
rodoe Sce}:;d(iu(ria lsgpetrlfca ((iie una relacion R resulta muy facil de imaginar geométricamente
s del digrafo de R se convierten en “calles d 1 '
! : ’ s de dos sentidos” en R\J R '
Lod , lerten s” en R .
Iadosiazuer:cxj, I‘d grfiﬁca.de la cerradura simétrica de R simplemente es el digrafode R ¢ o
cjunpl?ng oL o;bldlrf;ccmnales. Se ilustra en la figura 4.39(a) el digrafo de la relacion ;}(Iiosl
2 > 9. La figura 4.39(b) muestra la grafica de | i i )
a la grafice a cerradura simétrica R\U R~
La cerradura transitiva de 10 ive -
. una relacion R es la relacion transiti :
' dura tran sitiva mas i
contiene a R. Se estudiara la cerradura transitiva en la seccion siguiente PR

Figura 4.39

(a) (b)
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Composicion

Supéngase ahora que 4, By C son conjuntos, R es una relacion de A a B,y Ses larelacion
de B a C. Entonces se puede definir una nueva relacion, la composicién de R y S, que se
escribe S ¢ R. Larelacion S e R es una relacion de 4 a C'y se define de la siguiente manera.
Si g estd en 4 y ¢ estd en C, entonces a(S © R)c siy sblo si para alguna benBsetienca R b
y b S c. En otras palabras, a estd relacionada con ¢ por S © R si se puede ir de a a ¢ en dos
etapas: primero a un vértice intermedio b por la relacion Ry luego de b ac por larelacion S.
La relacién S o R podria concebirse como «g 2 continuacion de R” puesto que representa el
efecto combinado de dos relaciones, primero Ry después S.

Ejemplo 10. Sead = {1, 2,3,41, R=1{(1,2), (1, 1), (1, 3), (2,4),(3,2)},yS= {(1, 4),
(1,3),(2,3), (3, 1), (4, 1)}. Puesto que (1, 2)e Ry(2,3)e S,se debe tener (1,3)e S°R.
De modo semejante, puesto que (1,1)e Ry (1,4)e S,seveque (1,4)e S°R. Prosiguiendo
de esta manera, se encuentra que S ° R={(1,4),(1,3), (1, D, (2, 1), (3, 3)}. ¢

El siguiente resultado muestra cémo calcular conjuntos relativos para la composicion
de dos relaciones.

Teorema 6. Sea R una relaciénde A a By sea S una relacién de B a C. Entonces, si A, es

cualquier subconjunto de A, se tiene
(S R)(A,) = S(R(A}))- ‘
Demostracion:  Siun elemento z € C esta en {S © R)(4,), entonces x(S o R)z para
alguna x en 4,. Por la definicion de composicion, esto significaque x Ry yy Sz
para alguna y en B. En consecuencia v € R(x), de modo que z € S(R(x)). Puesto que
{x} C A,, el teorema I(a) de la seccion 4.2 dice que S(R(x)) € S(R(A))- Deaqui,ze
S(R(A,)), por tanto (S ° R)(4)) & S(R(4,)).
Por el contrario, supéngase que = € S(R(A,)). Entonces z € S(v) para alguna y en
R(4,) y, de modo semejante, v € R(x) para alguna x en 4,. Esto significa que xR y'y
v Sz, de modo quex(Se R)z. Asipuesze (SeR)(d,), portanto S(R(A)) < (S R)YAY.
Esto demuestra el teorema. °
Fjemplo 11.  Sea 4 = {a, b.c} y sean Ry S relaciones sobre A cuyas matrices son
1 0 1 1 0 0
M,=1]1 1 1} My=1{0 1 1
0 1 0 10 1

Se ve por las matrices, que

ta.aye SoR
dare SR
(a,cye SR

(a ave R \ (L d) G por tanto

S.
ia.rve R \ (c.u)o S
{a.cye R y (coc)e S,

por tante
por tanto

e (a. hye So R puesto que, sise tuviera (a@, Y) & Ry(x, bye St matriz

Se ve facilmente qu
sero la matriz. Mg dice que ni (¢, by nt (¢. b)Y es un

M, dice que & tendria gque set ¢ o ¢
elemento de S.

Se ve que el primer renglon de M, zes 1 0 1 Lllector puede demostrar por un

analisis similar que

A
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M., =

O = =
—_ e

Obsérvese que My, , = M, ® M; (verifique).
‘ 4
El ejemplo 11 ilustra un hech i
. o general y util. Sean 4, By C conj s fini
Zé%yanéellsr?entos, respegtlvamente, sea R una relacion de A}; B,y sj:;.gozx?mt(l)s son
debac - Entonces R y S tienen las matrices booleanas M, y M c’on tamafi rospects
nP Py p X m. Puede calcularse, entonces, M, ® M,y e: igual a ;;105 respectt
tambiés;zzc;r/[esio[,rs;:alx‘l{{_: fa,...,a,},B=1{b,... b0 yC=Hey, ..., ¢ }S.OSR1'1pc'>n a
coal o q,:le a,jr , : s= 5], y Mg.p = [1;]. Entonces ;= 1 si y s6lo si (a-:nc )e SOI% ?e
para ot o rrpl) a E:j g(;ma k,(a, b)e Ry (b, ¢)e S. Enotras palabras,lr- - lys - (1)
e = (gren ida entre 1 y p. Esta condicion es idéntica a la conl:(iicién x
. que M, ® M tengaun 1 en posicioni, j, y en consec i L son
. , uencia My, , y My © Mg son
En el caso especial en el 1
que Ry Ssean iguales, se ti °oR=R?
® M,, como se demostro en la seccion 4.3. ¢ e HEneSt Ry Moy =My =M,

Ejemplo 12. j j
jemplo 12.  Se va a volver a trabajar en el ejemplo 10 utilizando matrices. Se ve que

1 1 1 0 0o 0 1 1
0 0 0 1
M, = {0 0 1 0
o1 0o Y MsTI1 0 00
0O 0 0 0 1 0 0 0
Entonces
1 0 1 1
MoMm, =0 000
10 0 1 o)
0 0 0 o

de manera que

Se R ={(1,1).(1,3),(1,4),(2,1).(3.3)}

S, [4“ €asos en 1o ql el numero de re T nados en R .; s€a
COMmMo se encontro antes l S 1€ T pa S O de d

S
gl at lde, el Illet()dO de matrices es ]“uChO mas C()Ilhdble y sistematico y ’

Teo L
rema7. SeanA, B, Cy D conjuntos, R una relacién de A a B, S una relacién de Ba C

y Tuna relacion de C a D. Entonces

»

Ta(SaRY = (T~8)- R

Demostracion:  Las relaci 'y 1'estd
e n.  Las feldclones R. S'y I'estan determinadas por sus matrices booleanas
# Mg r» respectivamente. Como se d Stré : j | A
: se demostrd después del i
e M respectv ‘ pues del ejemplo 11, la matriz
composicion es la matriz producto booleana; es decir, M, ;= M é)
consecuencia ’ o PO M

Myosor) = Mg O M, = (M, © M) O M.
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De modo similar,
=M; 0O (M;O M,).

M7.5).r
eanas es asociativa [véase el gjercicio

Puesto que la multiplicacién de matrices boot
27(c) de la seccion 1.5], se debe tener

(M © Mg) O My = My O (M; O Mp),

y por lo tanto
M. sor) = M(To S)oR*

Entonces
To(S°R) = (T°S)°R

ya que estas relaciones tienen las mismas matrices. [
En general, R° S # S R, como se muestra en el siguiente ejemplo.
Seand = {a, b}, R={(a,a), (b,a), (b, D)}, yS= {(a, b), (b, a), (b, b)}.

Ejemplo 13.
Entonces Se R =

(b, b)}-

{(a, b), (b, a), (b, b)}, mientras que Re §= {(a, a), (a, b), (b, a),
¢

Teorema 8. Sean A, By C tres conjuntos, R una relacién de Aa B,y Suna relacion de B

a C. Entonces (S°R)Y ™' = R 'eSh

Ye (SoR) 'siysolosila,

a bye Ry(h )€ S. Por

y (b, a) € R ‘' es
o

Seance Cyae A Entonces (¢, a
hay una b e B con (
do de que (¢, hye S

Demostracion.
cye SeoR, esdecir, siy solo si
altimo, ésta es equivalente al enuncia

decir, (¢, aye RS

GRUPO DE EJERCICIOS 4.7

an R v S lus relaciones

R (0YRM S ()R

Fn los ejercicios 1y 2, s¢
dadas de A a B. Caleule (2)
S s

LA =B={1L23kR={(1LD.(1L2).23)
GoDES = (2 D3 G 2).(3.3))

(1.0 3R - s hahe i, O (

2004 Qa b B
a.2). (hy 1. (.23 P

TR TR THA N Ha 1)

jos ¢jercicios 3 v 4 sean R v S dos relaciones
espondicntes aparecen en las

() R:(DyRMS: (C)R

En
cuyos digrafos cort

figuras 440441 Cualcule
S S

Figura 4.40

Figura 4.41

En los ejercicios Sv 6, sean 4 ={1,2,3} yB=
{1,2, 3, 4}.. Sean R y S las relaciones de A aB
cuyas matrices son proporcionadas. Calcule

(@ S;MRMNS; RIS (R

1 1 0 1] 01 1 0

5. Mg=10 0 0 1}, Mg=1]1 0 0 1
|1 1 1 -0] |11 0 0

i i i HM kl i i i

6. M, =0 0 0 L|,M;,~-]0 0 0 1
R N L VA

Enlos ejercicios Ty & sean A= 11,2,3,4} v
B R LR R LI S
B= {41, 2, 3% Dadas las matrices My y M de las
relaciones Ry S de A a B, calcule (a) MRA o
(0) My 5: (¢) My-1: (d) M. “

10.

11.

12.
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B 0
M. = 11 o0 1
500 1 of Ms= 10 1}
|1 0 1] 11 1]
[0 1 0] ['1 0 17
0 1 1
M. = {1 0 1
R=lo o 1|0 Ms= 0 1 0
|11 1] [0 1 0]
Sead=B={l,2,3,4}, R={(1, 1), (1, 3), (2, 3),

(G, 1),(4.2),4, 4}, yS=1{(1,2),2,3
3 * 3 b 3 )’ (3’ 1)
(3, 2), (4, 3)}. Calcule (a) M ; (DM C’
R,‘);(() )}SC Icule (a) Rms;( ) rius (©)

Sea4 = {l,2,3,4,5, 6}. Supbngase que

R=1{(1,2),(1,1),(2, 1), (2,2), (3, 3), (4
(5.6), (6, 5), (6, 6)}. y ,3).(4,4),(5,5),

S={(1, 1), (1,2),(1,3), (2, ,(2,2),(2,3
k3 H b b ’ k4 K > )’ (3? 1 >
(3,2),3,3), (4, 6), (4, 4),(6,4), (6, 6), (5, 5))}

son Iag r.elaciones de equivalencia sobre A. Calcule
la particién correspondiente a R () S.

Sead ={a, b, c c{, e} y supéngase que las relacio-
nes de equivalencia R y S detinidas sobre 4 estan
expresadas por ‘

1 1 1 1 ¢
11 1 1 0
My,=(1 1 1 1 0
Lttt 10
00 0 0 1

Caleule ia particion de A correspondiente a R 7 S,
sean A - lac b di B 2 2,30,y C= U A
1. Scan Ry S las siguientes relaciones de 4 a By
de B a C, respectivamente.

R = {(a. 1) (a.2),(b,2),(b,3),(c. 1).(d,3).(d. 2)}
S = {10, (2, A),(3.4), (1,0))
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13.

14.

15.

16.

17.

18.

19.

N

Relacioncs y digrafos

(a) Is (b, A‘) €Se R;.’
(b) Is(c, B) e SeR!
(¢) Calcule SeoR.

=B= j de los numeros reales. Sea
Sean A = B = el conjunto s
R la relacion < (menor que)y Sla relacion ?l(mayor
que). Describa (2) R NS, GRUS @S

Sea A = un conjunto de personas. SeaaR b si 'y solo
si a y b son hermanos; sea a Shsiysolosiaybson
hermanas. Describa R \J S.

Sea A = un conjunto de personas. Sea a.R b ,si y §élo
si a tiene mayor edad que b;seaaShsiystlosia
es hermano de b. Describa R Ms.

Sea A = el conjunto de todas las pe.rsonas que esté.n
en la base de datos de! Seguro Social. Se;i a. Rb msyb
solosiay b reciben los misrpos beneﬁ'cms, sca a.b
siysolosiayb ticnen el mismo apeltido. Describa

RMS.

Sea A = un conjunto de personas. Sea a R bsiy solo
oi a es el padre de b; sea d Shsiysolosiaesla
madre de b. Describa R\J S.

Sca A = {2,3,6,12} yscan Ry Slas rclacione; .

g o Ay Rysiysolosi2](x—ysxSys
siguientes en AT x Ry sty solo i 2 .
yiélo si3i{x — ) Calcule (3) R; (YR M S; ()R
U S (d) S

Sean A = B~ C = ¢l conjunto de los numeros reales.
Scan R y S fas siguientes relaciones de 4 a By de B
a C, respectivamente:

R = {(a.b) |« =2b}
S={b.o)|h =3

{a) (Es(l.5)e ASOR‘?

(b) (Es(2,3)e SeR?

(¢) Describa SoR.

Gy f - 110203040 Sean

R D) 202 30 204 B 4
SG D e 2o 2 by

() cEs il 3ye ReR?
(by (Es(d.3e SoR?
{cy (IEs(l, be R S?
(d) Caleule RoR.
(¢) Caleule Sv R.

21.

(f) CalculeReS.
(g) Calcule Se S.

(a) (Cuales propiedades de las relaciones sobrc? un ,
conjunto 4 son conservadas por 1a Qompos1c1on.
Demuestre su conclusion. .

(b) SiRy Sson relaciones de equi'v,alenma en urll
conjunto 4, jes S o Runa relacx(.)rtx de equivalen-
cia en A7 Demuestre su conclusion.

En los ejercicios 22y 23,sea A=1{1,2, 3-, 4,5}
y sean Mgy M, las matrices de las relaciones
RySenA. Calcule (2) Mg.g; (b) Ms.g; (c) Mg.ss

(d) M. s
22. 1 0 1 11 1 0 0 1 0
o 1 1 0 0 1 01 00
Mﬂl()()lo,MS—l()’OO
i 1 01 00 o 1 1 11
0 1 1 1 1 1 0 0 0 1
23, 1 1 0 0 1 002101
0 0 0 1 0 1 0 0!
M-llOOl,Mq—Olo
! 0 1t 0 1 1 11 0 11
L 0 0 00 1 01 00

25.

(a) SeanRy S relaciones sobre un conjunto A. i};{\
y § son asimétricas, demuestre o refute que
Sy R\U S son asimétricas. . s
(b) Sean Ry S relaciones sobre un conjunto A.
R y S son antisimétricas, derfu%esfre.o refute
que R (M SyR U § son antisimetricas.

Sea R una relacion de A o By sean Sy T relaciones
de B a C. Demucstre o refute.

(1) (SUT)"R=(S° RYU (i]:o R)

My (SN TysR=(5-R)D (T R)

i Loor e R ovoeen Tima relacion
Y AN I N K RS A !

. ”- - R L R -
de B a O Demuosiic que st oo §oentonees ! -
o

y PSS Jaciones sobre un
Demucstre gue st Ry Sson refaciones
conjunto A, entoncees

(@) My .= M, M

Scccién 4.8 Cerradura transitiva y algoritmo de Warshall

(b) Mg 5= Mg\ Mg
(€) Mg = (My)"
(d) Mz = M,

157
29. Sea R una relacién de 4 a B. Dem
(a) Dom(R™") = Ran(R)
(b) Ran(R™") = Dom(R)

uestre que

28. Sean Ry S relaciones sobre un conjunto 4. Demues-

treque (RIS R"(M S” paran = 1. 30. Demuestre el teorema 3.

4.8. Cerradura transitiva y algoritmo de Warshall

Cerradura transitiva

En esta seccion se analizard una construccion que tiene varias interpretaciones y aplicacio-
nes importantes. Supongase que R es una relacion sobre un conjunto 4 y que R no es transitiva.

Se demostrard que la cerradura transitiva de R (véase la seccion 4.7) es precisamente la
relacidn de conectividad R™, definida en la seccion 4.3.

Teorema 1.

Sea R una relacién sobre un conjunto A. Entonces R es la cerradura transitiva
de R.

Demostracion: ~ Se recuerda que sia y b estan en el conjunto 4, entonces a R” b si y

solo si hay una trayectoria en R de a a b. Ahora R” es ciertamente transitiva puesto
que, sia R by b R” ¢, lacomposicion de las trayectorias dea a b y de b a ¢ forman una
trayectoria de @ a ¢ en R, y por tanto a R” ¢. Para demostrar que R” es la relacién
transitiva mas pequefia que contiene a R, se debe demostrar que si S es cualquier
relacion transitivaen 4 y R = S, entonces R*  S. El teorema 1 de la seccidon 4.4 nos
dice que si S es transitiva, entonces S " < S para toda n; es decir, sia y b estan conec-
tadas por una trayectoria de longitud », entoncesa S b. Se sigue que S*=U~*_, §"c
S. También es cierto que si R < S, entonces R = S *, puesto que cualquier trayectoria
en R también es una trayectoria en S. Juntando estos hechos, se ve que siR c Sy S es
transitiva en .4, entonces R™ < S  S. Esto significa que R” es la mas pequefia de
todas las relaciones transitivas en 4 que contienen R. )

Se ve que R” tiene varias interpretaciones. Desde un punto de vista geométrico, se la
llama relacion de conectividad, porque especitica cuales vértices estan conectados (por tra-
yectorias) con otros vertices. St se incluye la relacion A (véase la seccion 4.4), entonces R™
A es larelacion de alcanzabilidad R* (véase la seccion 4.3), suele ser mas util. Por otra
parte, desde el punto de vista algebraico, R™ es la cerradura transitiva de R, como se ha
demostrado en el teorema 1. En esta forma, desempena papeles importantes en la teoria de
las relaciones de equivalencia y en fa teoria de ciertos lenguajes (véase la seccién 10.1).

Ejemplo 1. Sea 4 = {1, 2, 3, 4}, y sea R = {(1, 2), (2, 3), (3, 4), (2, 1)}. Encuentre la
cerradura transitiva de K.

Soiticioi

Mutono b Phdigrafo de R aparece ena figura 442 Pucesto que R7 es la cerradura
transttiva, se puede proceder geométricamente calculando todas las trayectorias.
Se ve que desde ¢l vértice 1 se tiene traycctorias a los vértices 2, 3,4 y 1. Notese
que latrayectoriade 1 a 1 vade 1 a2y a 1. Se ve, de esta manera, que los pares

ordenados (1, 1), (1,2),(1,3) y (1, 4) estan en R”. Partiendo del vértice 2, se tiene
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trayectorias a los vértices 2, 1,3 y 4, por 1o cual los paresordena,do.s 2,0, (,23 2), ! Teorema 2. Sea A un conjunto con |A} = n, y sea R una relacion sobre A. Entonces
(2,3)y (2,4) estan en R*. La Gnica trayectoria que falta va del vértice 3 al vertice R = RUR'U---UR"
4, de modo que se tiene 2.2).0.3) (2.4, (3 4)} En otras palabras, las potencias de R mayores que n no son necesarias para calcular R*.
3),(1,4), (2,1 iy .
={(1. 1. (1.2), (1.3). (1, 4. ( ) Demostracion: SupOngase que ay bestanen 4y que a, X, X,, . . . , X,,, b es una
trayectoria de a a b en R; es decir, (a, x,), (X}, x,), . . ., (x,,, b) estintodasen R. Six, y
2 x; son iguales, por decir, i <j, entonces la trayectoria puede dividirse en tres secciones.

Primero, una trayectoria de a a x,, luego una trayectoria de x; a x,, y finalmente una
trayectoria de x; a b. La trayectoria intermedia es un ciclo, puesto que x; = x;, por lo
» que simplemente se la deja fuera y se pone las primeras dos trayectorias juntas. Esto
™ da una trayectoria mas corta de a a b (véase la figura 4.43).

'd | ° e

- —— —

Figura 4.42

METODO 2. La matriz de R es

0
0 2) (1) . Figura 4.43
1 ,
M, = 0 0 0 |1 Ahora sea a, x,, X,, . . ., x;, b la trayectoria mas corta de e a b. Si a # b, entonces
0 0 0 0 todos los vértices a, x,, X, . . . ,X;, b son distintos. De lo contrario, la discusidn anterior

muestra que se podria encontrar una trayectoria mas corta. En consecuencia, la longi-

ias de M. Asi . . :
otenciz K tud de la trayectoria es como maximo » — 1 (ya que |4| = n). Si a = b, entonces por

Se puede proceder de forma algebraica y se calcula las p

1 0 1 0O 0o 1 0 1 razones similares, los vértices a, x,, X, . . . , X, son distintos, por lo que la longitud de

0o 1 0 1 R 0 1 0 la trayectoria es a lo mas . En otmswpalabms, sia R* b, entonces a R* b, para alguna

(M,\-):\ = 0 0 0 0 S (M) = 0 0 0 0 ko 1<k<nPortantoR =RUR U - - UR" ®
0 0 0 6 o 0 0 0 Los métodos empleados para resolver ¢l ejemplo 1 presentan, cada uno, ciertas difi-

. cultades. El método grafico no es prictico para los conjuntos y relaciones grandes, y no ¢s

U sistematico. El método de matrices puede usarse en general y es suficienfermente sistematico

. 10 L0 1 para ser programado para una computadora, pero es incficiente y, para matrices grandes,

(M) = 0 0 0 0} puede ser prohibitivo por costoso. Por fortuna, se dispone de un algoritmo mas eficiente

0o 0 0 0 para calcular la cerradura transitiva conocida como algoritmo de Warshall, en honor a su

creador, el cual serd descrito a continuacion.
M S171 €8 par, :
Continuando de esta manera, se puede ver que (M) es igual a( 0o p

e jaual a (M) st 17 ¢s impar y mayor que [ Fn consecuencia.

Algoritmo de Warshall

1 1 i
“ ., Sea R unarelactonsebreuncompunto -t o gL ) Sty Ly, esunatrayectort

/
. 1 B S T . i - - - : . ') M . .t Y
« NN - 1R entonees o todos Tas vertices que ne seanx, v v, se los ikina vertices interiores de la
M, M, (M) (M} 0 0 0 en R entong 0 fos ve LF que ny, vy, s 1 vertices (t‘.l
) rayectoria. Ahora, para 12 A =2 a0 se define una matriz booleana W de la siguiente mane-

[0 v v v . W, tene un boen b posicion 4 iy solo st hay tna wayectoria de g ag, en Reuyos
. ; ¢ vértices interiores. si los hay, vienen del conjunto {u,, . a
v esto da fa misma relacion que el método 1. a S.spios 1Y » JURTO oy Q)
- Como cualquier vertice debe venir del conjunto fay, s ..o L 5. 8¢ desprende que la
En el ejemplo 1 no fue necesario considerar todas Tas potencias de R para obtenet n‘mtru W, tieneun | enla posicion’, jsiy solo st alguna trayectoriaen R conectaaa, cona,
” - mpre que el conjunto. 1 sea finito. como se demostrard ahora. En otras palabras, W, = M. Si se define W, como que es My, entonces se tendra una

Fsta observacion es cierta sie
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secuencia Wy, Wi, . .., W, cuyo primer término es M,y cuyo‘ﬁltimo j(érmino es My-. Ahora
se mostrara como calcular cada matriz W, a partir de la matriz anterior W, _ . Entogces se
puede comenzar con lamatrizdeRy proseguir con un paso a la vez I.1asta que;;v desl;ue;i Le n
pasos, se llegue ala matriz de R”. Este prgcedxmlento se llama algorl.tfr‘no de. darls aar, as
matrices W, son diferentes de las potencias de la matriz M, y e.stAa diferencia da lugar a un
ahorro considerable de pasos en el célculo de lg cerradura transitiva de R. o
Supongase que W, =[1;] y W, _,=[s;]. Si zj,-j = 1, entonces debe hast?er1 ur}; it(r:?:cn(;réa
de g; a a;cuyos vértices interiores vengan del conjunto {a, R ak}. ielvé debenk Venis
un vértice interior de esta trayectoria, entonces todos los vertlce§ 1ntenores’ hen ve r
realmente del conjunto {a,, a, . .., &1} de manera que §; = 1.Siag,esun verélce in erul)r
de la trayectoria entonces la situacién es como se ilustra er’1 1? ﬁgura .4.44. or(?ot.ex: a
demostracion del teorema 2, se puede suponer que todosilos vértices interiores son 1s,m. 0S.
En consecuencia a, aparece solo una vez en la tra}fectorla, d§ manera que todos los vértices
interiores de las subtrayectorias 1 y 2 deben venir del conjunto {a,, as, ..., ar -} Esto

significa que s, =1y sy=1.
Subtrayectoria 1

Figura 4.44

Subtrayectoria 2

En consecuencia, £; = 1 si y s6lo si

( s;= lo

(2) sy=lysy;=1
Esta es la base para el algoritmo de Warshall. SiW,_,tieneunlenla po.si‘c’iér-l i,' j entonges, por
(1), también lo tendra W,. Por (2), puede agregarse un nuevo | en la posicion, j de W, siysolo

si la columna k de W, _, tiene un 1 en el renglon iy el renglon kde W, _ tie.ne un lenla
columna /. Por tanto, se tiene el siguiente procedimiento para calcular W, a partir deW, .

PAso 1. Primero transfiera a W, todos los unos de W, ;.

Pasu2. Haga una lista de las posiciones p,, p,, - - -, €N lacolumnakde W, ,,en d(mdec;a
entrada sea 1, y las posiciones ¢,, g5, - . . ,enel renglon k de W, _ ;, en donde la entrada
sea .

PAsO 3. Ponga los unos en todas las posiciones p;, ¢; de W, (si no estan ya alli).

Ejemplo 2. Considere la relacion R que se defini6 en el ejemplo 1. Entonces

fo i 0 U
1 0 1 0
0 0 0 1

0 0 0 0
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Primero se determina W, de manera que k = 1. W, tiene unos en la posicion 2 de la
columna 1y en la posicion 2 del renglon 1. En consecuencia, W, simplemente es W

pe o conun
nuevo | en la posicién 2, 2.

W, =

[ B I ]
[ T T S QN
[ RN e
o o

0

Ahora se calcula W, de manera que £ = 2. Se debe consultar la columna 2 y el renglon
2 de W,. La matriz W, tiene unos en las posiciones 1 y 2 de la columna 2 y las posiciones
1,2y 3 del renglén 2.

En consecuencia, para obtener W,, se debe poner unos en las posiciones dadas por los

pares ordenados (1, 1), (1, 2), (1, 3), (2, 1), (2, 2) y (2, 3) de la matriz W, (si los unos no
estan ya alli). Se observa que

111 0
wo|l 1 Lo
00 0 1
000 0

Prosiguiendo, se observa que la columna 3 de W, tiene unos en las posiciones 1 y2,
y el renglon 3 de W, tiene un 1 en la posicion 4. Para obtener W, se debe poner unos en las
posiciones 1,4y 2, 4 de W,, de manera que

11 1 1
1 1 1 1
w:
37 1o 0 o 1
0 0 0 0

Finalmente, W; tiene unos en las posiciones 1, 2, 3 de la columna 4 y ningiin uno en
el renglén 4, por tanto no se agrega unos nuevos y M. = W, = W,. Asi pues, se ha obteni-
do el mismo resultado que en el ejemplo 1. *

El procedimiento ilustrado en el ejemplo 2 da como resultado el siguiente algoritmo
para calcular la matriz, CERRADURA, de la cerradura transitiva de una relacion R repre-
sentada por la matriz MAT, N X N.

ALGORITMO WARSHALL
1. CLOSURE « MAT
2. FORK =1 THRUN

a. FOR/=1THRUN

l. FORJ = | THRUN
a. CLOSURE [I.J] « CLOSURE [/./]
L ACLOSURL LA}V CLOSURE [K.J))

FIN DEL ALGORITMO WARSHALL

Este algoritmo se establecio para proceder exactamente como se ha delineado previa-
mente. Con un ligero rearreglo de los pasos, se puede volver un poco mds eficiente. Si se
considera la prueba y la linea de asignacion como un paso, entonces el algoritmo WARSHALL




162 Capitulo 4

Relaciones y digrafos

requiere n® pasos en total. El producto booleano de dos matrices booleanas n X 7, Ay
B requiere también n® pasos, puesto que se debe calcular n? entradas, y cada uno de éstos
requiere de n comparaciones. Para calcular todos los productos (Mps, M Do - - Mp)o,
se requiere n’(n — 1) pasos, puesto que ¢ necesitaran — 1 multiplicaciones de matrices. La
formula ‘

Mg = M/ (M3 V-V (Mo, M

si se implementara directamente, requeriria alrededor de n’ pasos sin las uniones finales. En
consecuencia, el algoritmo de Warshall es una mejora significativa sobre el calculo directo
de M- por medio de la formula (1).

Una aplicacion interesante de la cerradura transitiva ocurre en las relaciones de equi-
valencia. En la seccion 4.7 se demostrd que si Ry S son relaciones de equivalencia en un
conjunto A4, entonces R S también es una relacion de equivalenciaen4. La relacion RM S
es la relacion de equivalencia mas grande contenida tanto en R como en S, puesto que es el
subconjunto mas grande de A4 X 4 contenido en ambos, Ry S. Se desea conocer la relacién
de equivalencia mas pequefia que contiene tanto a R como a S. El candidato natural es R \J S,
pero esta relacion no es necesariamente transitiva. La solucion se proporciona en el siguien-

te teorema.

Teorema3. SiRy Ssonrelaciones de equivalencia en un conjunto A, entonces la relacion
de equivalencia mas pequeria que contiene a ambas, Ry S, es (R\J )"

Demostracion: Debe recordarse que A es la relacion de igualdad en A y que una
relacién es reflexiva si'y s6lo si contiene a A. Entonces A < R, A ¢ S puesto que
ambas son reflexivas, de modo que AcRUSC(RUS YR U S)” también es
reflexiva.

Como R y S son simétricas, R =R 'yS=5" demodoque (RUS) =R s
= RUS, yR\ Stambién es simétrica. Por todo esto, todas las trayectorias en R'\U
S son “calles de dos sentidos™, y s€ desprende de las definiciones que (R\J S)” debe
también ser simétrica. Como ya s¢ sabe que (R\J 8)" es transitiva, es una relacion de
equivalencia que contiene a R \UJ S. Es la mas pequefia, porque ningan conjunto mas
pequefio que contenga a R U S puede ser transitivo, por la propia definicion de cerra-
dura transitiva. )
Ejemplo 3. Seand = {1,2,3,4,5}, R={(l, 1), (1,2),2,1),(2,2), (3,3),(3,4),(4,3)
(4,4),(5,9}, yS= {1, 1),(2,2),(3,3),(4,4), (4,5),(5,4),(5,5)}. El lector puede verificar
que ambas, Ry S son relaciones de equivalencia. La particion A/R de 4 correspondiente aR
es {{1,2}, {3,4}, {51}, y la particion 4/S de A correspondiente a S es ({11, {23, {3, {4,
5}}. Encuentre la relacion de equivalencia mas pequefla que contenga a Ry S,y calcule la

particion de 4 que produce.

Solucron:  Se liene gue

L1 0 00 ;0 0 00
110 0 0 01 0 0 0
My=lo 0 1 1 0] ¥ Mg=10 0 1 0 0
00 1 10 00 0 1 1
0 0 0 0 1 000 1 1
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de modo que
1 1 0 0 O
11 0 0 O
Mp,s=MgVM;=10 0 1 1 0
0 0 1 1 1
0 0 0 1 1

. l?ll}((l)ra se calcula M 5 por el algoritmo de Warshall. Primero, W, =M En
guida, se calcula W, de manera que k= 1. Puesto que W, tiene unos en las ;:ssi.cio-

nes 1 y 2 de la columna 1 y en las posiciones 1 y 2 del renglon 1, se encuentra que no
" ~l.l lyenl ict 1 Irenglon 1, trag
ene que afiadirse a W, nuevos unos. En consecuencia
kd

W, = W,

Ahora s
ora se calcula W,, de manera que k= 2. Puesto que W, tiene unos en las posicio-

nes 1 y2delacolumna2yenloslu
gares 1 y 2 delrenglon 2, s :
que agregar nuevos unos a W,. En consecuencia glon 2,se encucntra due nohay

W, =W,

posEiziziiulga, iedcalcula W,, de manera que k = 3. Puesto que W, tiene unos en las
s 3y 4 de la columna 3 y en las posiciones 3 y 4 del renglon 3, se encuent
que no hay que agregar nuevos unos a W,. Por tanto ’ -

W, =W,

Las i
as cosas cambian cuando se calcula W, Como W, tiene unos en las posiciones 3

4y 5delacolumna4d ¢ il
a4 yenlasposiciones 3,4 y 5 del renglon 4, se debe
unos a W, en las posiciones 3, 5y 5, 3. En consecuenc&ia (se debe sgregarnucvos

I 1 0 0 0
1 1 0 0 0
W,=|0 0 1 1 1
00 1 1
0 1 1

El lector puede vertticar que W, = W y por tanto, se tiene

(1. 1) (1.2).(2.1).(2.2).(3.3).(3.4). (3.5). (4.3
(4.4). (4.5).(5.3). (5. 4). (5.5)}. (3.5).(4,3).

Entonces, la particion correspondiente de 4 es (verifique) {11, 2}, {3,4,5}}. &
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GRUPO DE EJERCICIOS 4.8

1. (a) Sead={1,2,3} ysea R={1,1), (.1, 2), (2, 3),
(1,3),3,D.G 2)}. Calcule la matriz M- de la
ce}radura transitiva R por medio de la férmula

M- = MgV (Mp)d vV (Mg)é.
(b) Haga una lista de la relacion R* cuya matriz se

calculo en la parte (a).

16 jercicio 1, calcule la
2. Para la relacion R del ejercicio L .
cerradura transitiva R” por medio del algoritmo de

Warshall.

10n sobre
3. Sead = {a, a, a3, a;, as} Yy sea R una relac

A4 cuya matriz es

1 0 0 1 0
01 ¢ 0 0
M,={0 0 0 1 1]1=W,
1 0 0 0 O
0 1 0 0 1
Calcule W, W,y W, como en el algoritmo de
Warshall.

4. Determine R para la relacion del ejercicio 3.

5. Demuestre que si R es reflexiva y transitiva,
centonces R = R para todas las n.

6. Sca R una relacion sobre un conjunto 4,y sea S.:
R?. Demucstre que sia, he 4, entonces a S bhsiy
s6lo si hay una trayectoriaen Rde a a b que tenga
un namero par de lados.

- 1 -
En los ejercicios T al 10, sea A= {1.2,3,4}. Pafa.
la relacion R cuya matriz se da, determine la m.atru
de la cerradura transitiva por medio del algoritmo

de Warshall.

100 11
| | [

{
My w ol
0 0 0 1
11 0 u
10 0 0
8. Mc=14p o 0 0
0 0 1 0

1 0 0 1
01 10
M=l 1 1 0
1 0 0 1]
0 0 0 1]
1 0 0 1
0. M= |0 o
0 0 1 0]

En los ejercicios 11y 12, sea A= {1, 2,‘3, 4,5y
sean R y S las relaciones de equivaleana en A
cuyas matrices se dan. Calcule la matriz de la
relacion de equivalencia mas pequenia que conlenga
a Ry S,y haga una lista de los elementos de esta

relacion.

1 1 1 0 0]
1. 11100
Mp=|1 11 00
00 0 1 1
[0 0 0 1 1]
1T 0 0 0 o'}
01 1 10
M,=|0 1 1 10
01 1 1 0
[0 0 0 0 1]
1 0 0 0 O]
12.

01 1 00
Mg={0 1 1 0 0
00 0 1 1
{_0 0 0 1 1

reoson w0l
| i 0 0
M, Lo 000
o o0 0 1 0
1

L() 0 0 0 i
13. Calcule la particion de 4 que correspop@a a la relacion
de equivalencia encontrada en el ejercicio 11.

14. Calcule la particiéon de 4 que corresponda a la

relacion de equivalencia encontrada en el ¢jercicio
12.

15. Sead={a, b, ¢, d e} y sean Ry § las relaciones
sobre A4 descritas por

1 0 1 0 1
0 0 0 1 0
Mg=|1 0 0 0 0
00 1 1 0
1 01 0 0

IDEAS CLAVE PARA REPASO

® 4 X B (conjunto producto o producto cartesiano):
{(a,b)|lac Ay be B}.

® 14X B =|4||B|

@ Particion o conjunto cociente; véase la pagina 103.

® Relacion de 4 a B: subconjunto de 4 X B.

® Dominio y rango de una relacién: véase la pagina
109.

® Conjuntos relativos R(a), a en A, y R(B), B es un
subconjunto de 4: véase la pagina 109.

® Matriz de una relacidn: véase la pagina 111.

® Digrafo dc una relacion: representacion grafica de
una relacion: véase la pagina 111.

® Trayectoria de longitud 17 de @ a b en una relacion
R:secuencia finita a, vy, vs, ...
XX Rxs, ooy, RO

® 1 R v (R una relacion sobre A): Hay una trayecto-
ria de longitud . de x a vy en R.

® x R7 v (relacion de conectividad para 8. Existe
alguna trayectorinen Rde y a v,

® Teorcma: M, - M, @M, ® - ® M, (n facto-
res).

X, o nhtalquea R

® Propiedades de las relaciones sobre un conjunto
A:
Retlexiva

»

(e Y= R paratoda e

!p,.,_n; N " N .
PRI N Y G Vg, td N LA RIS Y RN Y'Y Y i
Sinictica vao M Kamplica que o are K
‘A\Qilﬂ(‘?!'!g‘\! ‘- /:\: /‘ E.HY—.VE Vooasas e NEREEA

Antisimétrica (a, b)Y € R v (h. a) e R implica
quea  n

(a.b)y e Ry (h ¢)e R implica
quefa, cye R

Transitiva

Ideas clave para rcpaso 165

=

I
SO = =
e
OO = oo
= O O o
[ i ™)

Utilice el algoritmo de Warshall para calcular Ia
cerradura transitiva de R \U §.

® Grafica de una relacion simétrica: véase la pagina
127.

® Vertices adyacentes: véase la pagina 127.

® Relacion de equivalencia: relacion reflexiva, simé-
trica y transitiva.

® Relacion de equivalencia determinada por una par-
ticion: véase la pagina 132.

® Representacion en computadora de la lista enlaza-
da de una relacion: véase la pagina 136.

® 4 R b (complemento de R): a R b si y sOlo st a
R b

® R "“(x.v)e R'sivsolosi(y.x)e R

® RS .RM S: véase la pagina 146.

® M.\ — M, M

® M, =M, \ M,

1 NII\' T ﬂM/c)‘

*M,-M,

® SiRySsonreiaciones de equivalencia, tambien lo
es RS véase la pagina 150.

® R S:vease fa pagina 152

® M, M, ® M véase la pagina 153,

® Teorema: R” es lu relacion transitiva mas pequena
en A4 que contiene a R: véase la pagina 157.

® Jcorema Ny R RUJ R )0

® voornmoae warsi caicain M encientemente:
vease la pagia 139,

® ooconie Sy S sonolaciones de equivalen

craen A (R S) es larelacidn de equivalen-

Cid s pequetia en o que contiene tanto w o

como a 5.
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EJERCICIOS DE CODIFICACION

Para cada uno de los siguientes casos, escriba el pro-
grama o subrutina solicitado en seudocodigo (como
se describe en el apéndice A) o en un lenguaje de pro-
gramacion que usted conozca. Pruebe su codigo ya
sea con una prueba de escritorio o con una corrida
de computadora.

1. Escriba un programa CROSS, con entrada de
enteros positivos m y n y salida, el conjunto
A X B,endonde 4= {1,2,3,...,m}yB=
{1,2,3,...,n}.

2. (a) Escriba una subrutina que tenga como entra-
da la matriz de una relacion y determine si la
relacion es reflexiva.

(b) Escriba una subrutina que tenga como entra-
da la matriz de una relacion y determine si la
relacién es simétrica.

. Escriba un programa que tenga como entrada la

matriz de una relacién y determine si la relacion
es de equivalencia.

. Sean Ry S relaciones representadas por las ma-

trices M,y My, respectivamente. Escriba una
subrutina para obtener la matriz de

(a) RUS.

() RNS.

(¢) R~ S.

. Sea R una relacion representada por la matriz M.

Escriba una subrutina para obtener la matriz de
(a) R
(b) R.
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CAPIiTULO 5

Requisito previo: Capitulo 4

En este capitule, la atencién se enfoca a un tipo especial de relacidn, una funcidn, que
desempefia un papel importante en las matematicas, la ciencia de la computacioén y en mu-
chas aplicaciones. Se define, también, algunas funciones que se utiliza en la ciencia de la

computacion y se examina el crecimiento de las funciones.

1 5.1. Funciones ’

kn esta seecton se detine el termino tuncion, un tipo especial de relacion. Se estudia sus
propiedados Bsicas y fucgo s¢ atadiza varios tipos especiales de funciones. En secciones
posteriores del libro se mostrara algunas aplicaciones importantes de las funciones, por lo
que os indispensable comprender adecuadamente el material de esta seccion.

Sean 4 y B conjuntos no vacios. Una funcién fde 4 a B, que se denota porf: 4 — B,
es una relacién de 4 a B de tal manera que para todas lasa € Dom( f ), f(a) contiene solo un
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elemento de B. N
tradicionalmente

cont
describirse como

también mapeos o transform

como reglas que

5.1). El elemento a s¢ denomina arg,
a el argumento a y también es

funcién par

5.1 es una ilustracion esquematicao g
do, y se utilizara otros diagr
relacion f, el cual normalment

Figura 5.1

Ejemplo 1.

Aqui se tiene

' ada conjunto f
Como cada conjun valor. /1
Observe que el elemento ¢ € B aparece

nados difere

i s A
funcian pue

Fiemplo 2.

1o relacion

Dom(R)

Ejemplo 3. Sca P un pre

produce une

inuara con esta costumbre, ya qu

= 1 = b N
aturalmente, si a no esta en Dom( f), entonc;s f (aLSC?SeS} f( ‘(Z;J): b? S}e
sunto {b} con el elemento by s€ (@)
; CO“J““: n{o i:ausa confusion. Entonces, la relacion f pue(:ide
{(a,f(a))lac Dom(f)}. Las funciones son 1‘lama zzs
aciones debi,do a que pueden ser consideradas gezorpemlcar;l;lr:rz
, (ani Ye B(véaselall
lemento a € A el elemento Unico f(a
n umento de la funcionf,y a f(a)se llarr}a valorfde la
conocido como la imagen de a bajo f. La figura

cion de funcion que se estd emplean-
a de la defimcion de e ln

identifica e
el conjunto de pares

asignan a ca

rafic

amas similares. No deben ser confundidos con el

e no se ilustra.

Qean 4 = {1.2.3. 41y B= fu, b, ¢ d},ysed

f e (2. ). (3.d). (4 o).

S

f(ty =ua
2y = a
f(3) = d
14y = ¢

(1) es un solo valor. fes una tuncion. .
como ¢l segundo clemento de ’ .
on de una funcion, En consecuencia, ur:

dos pares orde-

R ontradice ta definic
s en /. Bstonocol fe una funcian
N \ alor en dos elementos diterentes de A.

de tomar el mismo s

ch et deTeNINe BN T Tdu vy

~ NERRTA L e 200 3
| ' A Larelacid s una funcion con
1} Stoque SeHy T U Lavelacton Re ¢ )
$ o es uha incion pues
.

L2y Ran(ly W

N

ntero ¢ ‘ntrada
acepta un entero como entrada y

ama de ¢ adora que 0 en ‘
orama de computad . como oy
S 7. Intonces P2 determina una relacion fp que s

ntero como salida. Sead - B -

1
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define como sigue: (m, n) € f, significa que n es la salida producida por el programa P
cuando la entrada es m.

Es claro que f; es una funcion, puesto que cualquier entrada particular corresponde a
una salida tnica (los resultados de computadora son reproducibles; es decir, son los mismos
cada vez que se corre el programa). L 4

El ¢jemplo 3 puede generalizarse a un programa con cualquier conjunto 4 de entradas
posibles y el conjunto B de salidas correspondientes. Por lo tanto, en general puede pensarse
en las funciones como relaciones de entrada-salida.

Ejemplo 4. Sead =i el conjunto de todos los niimeros reales,yseap(x) =a,+ax+-- -+
a,x " un polinomio real. Entonces p puede verse como una relacion en 4. Para cada a en ¥
se determina el conjunto relativo p(a) sustituyendo a en el polinomio. Entonces, como todos
los conjuntos relativos p(a) son conocidos, la relacién p esta determinada. Puesto que se
produce un valor Gnico por esta sustitucién, la relacion p es realmente una funcion. .

Si la féormula que define la funcién no tiene sentido para todos los elementos de 4,
entonces se toma el dominio de la funcién como el conjunto de los elementos de A para los
cuales sea vélida la férmula.

En matematicas elementales, la férmula (en el caso del ejemplo 4, el polinomio) suele
confundirse con la funcion que produce. Esto no es un problema, a no ser que el estudiante
espere que exista una formula para cada tipo de funcion.

Supdngase que, en la construccién anterior, se usara una formula que produjera mas
de un elemento en p(x), por ejemplo, p(x) = * v x. Entonces la relacion resultante no seria
una funcion. Por esta razon, en los textos anteriores, a veces a las relaciones, se las llamaba
funciones de valores multiples.

Ejemplo 5. Un digrafo etiquetado es un digrafo en el que los vértices o los lados (o am-
bos) son etiquetados 0 marcados con informacion procedente de un conjunto. Si ¥ es el
conjunto de vértices y L es el conjunto de etiquetas de un digrafo etiquetado, entonces el
etiquetado de V' puede especificarse como una funciénf: ¥ — L. en donde. paracadave V,

Sf(v) es la etiqueta que se desea colocar a v. De modo similar, puede definirse un etiquetado

de los lados £ como una funciong: £ > 7, en donde, para cadac e E, g(e) es la etiqueta que
se desea colocar a e. Un ejemplo de digrafo ctiquetado es un mapa donde los vértices son
etiquetados con los nombres de ciudades v los lados, con las distancias o tiempos de viaje
entre las ciudades. Otro ejemplo es un diagrama de flujo de un programa en el cual los
vertices son etiquetados con los pasos que hay que efectuar en determinado punto del pro-
grama; los lados indican el flujo de una parte a otra del programa. La figura 5.2 muestra un
ejemplo de un digrafo etiquetado. ¢

Ejeniplo 6. Sean 4 = B = Zy supongase que /: 4 — B esta definida por

Tuery — g 4 nar

ac 1

Aqui. como en el ejemplo 4. se define fdando una formula para los valores de £ (a). ¢

Ejemplo 7. Sead=/yseaB =10, 1} Delinasef: 4 — B por

L0 si a es par
fla)y = q) st a es impar.
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Entonces fes una funcion, puesto que cada conjunto f (a) consta de un solo elemento.
A diferencia de la situacion de los ejemplos 4y 6,108 elementos f(a) no estan especificados
por medio de una formula algebraica. En vez de ésta se da una descripcion verbal. ¢

Boston

Worcester
49

Providence

Hartford

New Haven

Figura 5.2

Ejemplo 8. Scadun conjunto arbitrario no vacio. La funcion identidad en 4, designada

por 1, estd definida por

1,(a) = a. ¢
|, es larelacion a la que previamente s¢ Namd A (véase
| subconjunto diagonal de A X A. En el contexto de las
acentia la naturaleza de entrada-salida o fun-

El lector puede observar que
1a seccién 4.4), la cual representa a
funciones, se prefiere la notacion 1, porque
cional de la relacion. Es claro que, siA, ¢ A, entonces 1 (4,)=4,. Supdngase quef:4—>B
y g B— Cson funciones. Entonces la composicionde [y £. 8 o f(véase la seccion 4.7), es
una relacion. Sea a € Dom(g o {). Entonces, por el teorema 6 de la seccion 4.7, (gofNa)=
g(f (@). Come [y g son funciones, f (@) consta de un solo elemento b e B, de modo que g(f
(@) — g(h). Como g también es una funcion, g(b) contiene solo un elemento de C. En
consecuencia, cadi conjunto (g7 f)«), paraaen Dom(e © /), contiene solo un elemento de

¢, de modo que ¢ [es una funcion. Fsto se Huslid oquundz‘.camcmc en la tioura S 3

Ejemplo 9. Scan A B £,y sea el conjunto Jde los enteros pares. Supdnease que f A
S>Byg B—=>C estan defimdas por

fla) = a+ 1

g(b) = 2b.

Determine g © /.
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geof

c=2g(b)
= (g fi(a)

C

Figura 5.3

Solucién.  Se tiene que

(g °a) = g(f(a))
=gla+1)
=2(a +1).

En consec i i S i 1 -
uencia, Slfy g son funciones espemﬁcadas por medio de formulas, enton
k4

cestambién loesgof, yla fébrmula paragef i
ol formal pea o para g ° f se produce sustituyendo la formula para
L4

Tipos especiales de funciones

Sea fun: 16 i i

S A_/s:ziiuencmnfdeA aB. Eptonces se dice que f'esta definida en todas partes si Dom(f)

pue.d,e : gue;e\s slobre si Ran( /) = B. Finalmente, se dice que f'es une a uno si no se
rf(a)=f(a') para dos elementos distintosa ya’ de 4. La definicién d \ :

puede reexpresarse en la siguiente forma equivalente: ST

Sif(ay=f(a'), entoncesa=a’.

Esta ulti s faci i
ma forma es a menudo mas facil de verificar en ejemplos particulares

Ei . ., -
C{jﬁn;;?:'o 10 Considérese la funciéon fdefinida en el ejemplo 1. Puesto que Dom(f) =4, f
sta de }mdg ¢n todas partes. Por otra parte, Ran(f) - {q, ¢, d} # B, I ]
sobre. En vista de que N porlo tanto, fo es
f() = f2) -~ a

se puede concluir que fno es uno a uno
: ¢

Ejemplo 11. Considérese la funcion f i
1. i6n fdefinida en el ¢j ; Cua i
des especiales anteriores, si hay alguna, posee /7 cjemplo 6. (Cudles e faspropiece
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Solucion: Como la formula que define a f tiene sentido para todos los enteros,
Dom(f) - Z = A, y en consecuencia f esta definida en todas partes.
Supongase que

fla) = f(a")
paraay a’ en A. Entonces
atl=a +1

de modo que

Por tanto f es uno a uno. o . oo
Para verfsi fes sobre, sea b un elemento arbitrario de B. ;Puede encontrarse
3

mento a € A4 tal que f(a) = b?

ue
Puesto q A =a+tl
se necesita un elemento a en 4 tal que
a+1=b>b
Por supuesto,
a=>bh-1

A i = B; por
satisfara la ecuacion deseada, puesto que b — 1 esta en 4. De alli que, Ran(f") p.
lo tanto, f es sobre.

= ' = {d,, dy, d3, d,}.
j = B:{b’bZ’ b3},C‘{CI,Cz},yD { 15 U2y U3, s
E lo 12. Sean 4 = {a,, a,, a3}, : i | D=d b i
Ci)en:lil()iérese las siguientes cuatro funciones, de 4 a B, deAdaD,deBaCyDaB,respe
vamente.
(a) f, = {(u). b)) (ay by (as. b!?}.
(b) o = Wy, dy), (4 dy), (a5, d)l.
() fi= {{by, ) (o €a)s (b.}’ Cfl))})'}
d) £, = {(d,. b)) (ds b2). (ds b)Y . ' | )
gj)terxf;ine {s(i(clada)ﬁfnéién estd 0 no uno a uno, si cada funcion esta o no sobre y si cada
e
funcién esta definida en todas partes.

Solucion -
(a) /, esta definida en todas partes, es uno a uno y s sobre.

5 no es sobre.
(b} f»esta definida en todas partes y s uno a uno, pero 10 €s obre
() ;i osta definida en todas partes v es sobre. pero no es uno a u 1 . .
W) fno > ¢ / s sobre.
(0} /, no csta definida en todas partes, no es uno 4 uno y no ¢s suore
L L Ja b
ey e . B IPEN =9 > ’ Om
Sif: .4 —> B es una funcion uno a uno, entonces f asocia a cada elemento a de D "
e L Y se relacion: ssta forma, con un
{ fyunelemento b = f{a) de Ran{ 7). Cada b del Ran( f)se rd.auonla, de cslla fe : ;.1 con v
: : W/ esta razon, a una / de tal naturaleza sc ta llama,
ele > Dom( /). Por esta razon, a una,
solamente un elemento de i sta razon, / de tal nature o lu flama #
. do, biyeccién entre Dom( /)y Ran( £). Si festd también definida en todas pz y
Sobre. ento y : i tre 4y B.
sobre. entonces a [ se la llama correspondencia uno a uno en )

a
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Ejemplo 13. Sea . el conjunto de todas las relacion
dado 4, y sea IT el conjunto de todas las particiones en
funcién f: %R, — IT como sigue. Para cada relacion de eq
la particién de 4 que corresponde a R. La discusion de |
correspondencia uno a uno entre R, y I1.

es de equivalencia en un conjunto
4. Entonces se puede definir una
uivalencia R en 4, sea SR =A/R,
a seccidn 4.5 muestra que fes una

L 4

Funciones invertibles

Se dice que una funcién f: 4 — B es invertible si su relacién inversa, !

> también es una
funcion. El ejemplo siguiente muestra que una funcién no necesariamente

es invertible,
Ejemplo 14. Sea fla funcién del ejemplo 1. Entonces
7= (@, 1),(a,2), (d. 3), (c, 4)}.

Se ve que f ' no es una funcién, puesto quef'(a)= {1,2}.
Con frecuencia se emplea el siguiente teorema.

Teorema 1. Sea f: A — B una funcién.
(a) Entonces [ es una funcion de B a A si y s6lo si fes uno a uno.
(b) Sif~'esuna funcion, entonces la Suncion f7! también es uno a uno.
(¢) /" estd definida en todas partes siy s6lo si fes sobre.
(d) [ "essobresi Y s6lo si festd definida en todas partes.

Demostracion: (a) Se demostrara el siguiente enunciado equivalente.
4 o
J 7 noes una funcién si y sélo st fno es uno a uno.

Supdngase, primero, que /"' no es una funcién. Entonces, para alguna b en B,
/(&) debe contener por lo menos dos elementos distintos, a, y a,. Entonces f(a,) =
b= f(a,), por lo cual fno es uno a uno.

A la inversa, supdngase que /no es uno a uno. Entonces f(a,) =f(a,) = b para dos
elementos distintosa, y a, de 4. En consecuencia,/ '(b) contiene a ambosa
lo que /' no puede ser una tuncion.

(b) Puestoque (/') es la funcion, la parte (a) demuestra que/ ' esunoa uno.

(¢) Serecordara que Dom( /') = Ran( /). En consecuencia, B = Dom( f ) siy
solo si B=Ran( f). En otras palabras, /' esta definida en todas partes st y s6lo sifes
sobre.

(d) Puesto que Ran( f ') = Dom( f), 4 = Dom( f) siy s6lo si 4 =Ran(f ). Es
dectr, festd definida en todas partes si y solo si /' es sobre. ®

1Y a,. por

Come consecuencia innediata del teoremia 1. se observa que si/es una corresponden-
cia de

ciadeunoaunoentred y 58, entonces /' es una correspondencia de uno a uno entre By A.
Notese también que si /1 > B es una funcion uno 4 uno, catonces la ecuacion b — f(aj es
equivalente aa = f '(b).

Ejemplo 15.  Considérese la funcion f definida en el ejemplo 6. Como fest4 definida en
todas partes, es uno a uno y sobre, entonces es una correspondencia uno a uno entre 4 y B.
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- i oentre ByA. ¢
En consecuencia, f'€s invertible, y f ' es una correspondencia uno a un y

. . [\Q ,
E'elllpl() 16. Sea “\k el C()“.u]ll(’ (le los Ilu' meros ]ea‘es y Su] }(ngase (]Uef. l% —> ﬁs‘a
J

definida por £ (x) =x". (Esf invertible?
Debe determinarse si f €s uno a uno. Puesto que
f)=f(=2) =4

a uno. Por tanto /no es invertible. ¢

Solucion:

se llega a la conclusion de que fno es uno

i icid iones. Se
dos utiles que se relacionan con la composicion de funcion

Hay algunos resulta
resumen en el teorema siguiente.

Teorema 2. Seaf:A—B una funcion cualquiera. Entonces

(@) lgof=1.
(®) fols=/

Si fes una correspondencia uno a uno entre AyB, e
(c) flef=14
(d) f"fﬁ1 = g

Demostracion:  (a) (1, ) iy

1 el teorema 2 de la seccion 42, 150f=1. )

Consfbc;le(r}??’ i(;r) =7 (1 (a)) = f(a), para todas las a del Dom(/"), de modo quefel,
4 ; .

ntonces

o f)a) = 15 (a) = f(a), para todas las a del Dom(f'). En

=/

i Como
"es una ¢ S ia uno a uno entre 4y B.
se ahora que f es una correspondenc 0 C Y Pt
ivalente a la ecuaciona =f (h).
bre. esto significa que para todas las

Suponga 2 : ‘
sefialamos antes, la ecuacion b=f(a)esequ
‘ v/ 4 i das partes y son so

uefy/f 'estandefinidasento ries y son sobr 5
3 en 31, y las b en B.A( ()= byf " (fl)]) =a Lmo‘n%es. L comsecuencia
(c) Paratodas lasaend, L fa)=a=/f (fan=( ook g ,

= ol of

(d) Para todas las

AV

= £ (f ~(fef "Y(b). En consccuencia i
henB, 1b)y=b=fU by = (fof Db Encd z

o i oo 1.
B — A funciones tales que g f=1l,vfeg s

X : ¢ anf:A—>Byg i
Teorema 3. () i~ entre Av B, gesuna correspondencia uno a

Entonces [ es una correspondencia uno a uno

uno entre By A, y cada una es la inversa de la ot a. )
(b) Seanf:A—>Byg: B —» C invertibles. Entonces g°f

fleg

Demostracion:

oy invertible, v(gof) =
i

(a) Las supostciones significan que

Scecién 5.1 Funciones 175

En consecuenciag =/ ', de modo que también f= (f~)"' =g, Entonces, comogy
Jsonsobre,/ 'y g~' son sobre, y por tanto /'y g deben estar definidas en todas partes.
Esto demuestra todas las partes de la parte a.

(b) Se sabe que (g° /)" = f ™' o g”!, puesto que esto es cierto para cualquier
relacién. Comog ™"y /™' son funciones por suposicion, también lo es su composicion,
y entonces (g ° /)" es una funcién. En consecuencia, g © f'es invertible. Py

Ejemplo 17. Sead =B =¥, el conjunto de los numeros reales. Supéngase que /= 4 —» B
estd expresada por la férmula

fix)=2x*—-1
y supdngase que g : B — A4 esta expresada por

11
=\/5y+3.
8(y) \/2y :

Demuestre que f'es una biyeccion entre 4 y B, y que g es una biyeccion entre By A.

Solucién: Seanxe Ayy=f(x)=2x>— 1. Entonces é (v + 1) =x% por lo tanto, x =
Y2y + 1 =g() =g(f(x)) = (g°/)(x). En consecuenciag e f= 1,. De modo semejante,
Sf©g=1p de manera que por el teorema 3(a), ambas, /'y g, son biyecciones. ¢

Como lo muestra el ejemplo 17, con frecuencia es mas facil demostrar que una funcion,
tal como f, es uno a uno y sobre construyendo una inversa en vez de proceder directamente.

Por ultimo, se analiza brevemente algunos resultados especiales que son validos cuando
A'y B son conjuntos finitos. Sean4 = {a,,...,q,} yB=1{b,,...,b,},y seafuna funcion de
A hacia B que esta definida en todas partes. Sifes uno a uno, entoncesf(a,),f(a.), . . . ,f(a,)
sonz elementos distintos de B. En consecuencia, debe tenerse todo B, para que ftambién sea
sobre. Por otra parte, sifes sobre, entoncesf(a,). . . ., f(a,) forman todo el conjunto B, y por
tanto deben ser todos diferentes. De ahi que ftambién es uno a uno. Se ha demostrado,
por tanto, lo siguiente:

Teoremad. Scan Ay B dos conjuntos finitos con el mismo niimero de elementos, v sea £
A — B una funcion definida en todas partes.

(a) Sifesunoauno, entonces fes sobre.

(b)Y Sifessobre entonces fes uno a uno. ®

En consecuencia, para conjuntos finitos 4 y B con el mismo niimero de elementos, v parti-
cularmente si 4 = B, s0lo se necesita demostrar que una funcion es uno a uno o gue ¢s sobre
para demostrar que es una biyeccion,

e GRUPO DE EJERCICIOS 5.1

o .
h. pitd lodds das G el E L B

eiftady oy fathn

. o L (;_ ! : H . " D51 Y Y Teatertaringe op G -~ TN oar s T PR S o A A i ,
N I » cada funcion Sean A qd e dy v B i, 2057 Determine si iy Z. Determine stia reiacion K de 4 a £ ¢s una
Lsto demuestra en particular que Ran( £):= By Ran(g) = . de m”“;‘ e xmnci'l f relacion R de 4o R esing t{m«;n'm Siesuna fangcion
St S conseeue ds, . .. . . G etart
Qo o f sptonces a, - O La)) — giftay) ankb . funcion, dé su rango. a) A4 = ¢l conjunto de todos los beneficiarios de
es sobre. Si f({;i) fgaz% ::‘};'uﬂc \-C'(,h:erva que g es uno a uno, por lo gue z\mbdb.i,]; o) R {(t: 0 (/)E SRR (a) T, i‘n e e
- unto a uno. De modo semejante. Serve e Do SR Sh e )l ) redicd 5 tstados S. 2T e
L'\ » son invertibles. Notese que/ 1 esta definida en todas partes puesto que Dom( / (b)Y R (a1 (0. 2) (0 2) (e 1) (d. ) nimero de nueve digitos}, ¢ R bsi b es el
TR y= B. Ahora, st b es cualquier elemento de B. (©) B {a.3).(h.2) (. 1)) nimero del Seguro Social de a.
e | ’ o Bl (! )) = 1 (%’(}))) = g(b). (d) R = {a. 1) (b 1) (e ) (d. 1} (b) 4 = un conjunto de personas de los Estados
. _ 'l"’(b));(’ o fUE(D)) = 1Al
[Nhy = foUg :
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Unidos, B = {x | x es un nimero de nueve
digitos}, a Rbsibesel numero de pasaporte
de a.

En los ejercicios 3 al 6, verifique que la formula da
una funcién de A a B.

3. A=B=27Zf)=a’

4. A=B=Rf(a) =¢

5. A= ,B=1{0,1};seaZel conjunto de los er.'nteros y

) obsérvese que Z < *- . Entonces, para cualquier
namero real @, supoéngase que

0 siag Z
fla) = 41 siae Z

6. A= ,B=7,f(a)=clentero mas grande menor
quc o igual a a.

7. Sead=B=C= ",ysupéngasequef:A—)B,{Zg:B
— (" estan definidas por f(@)=a — 1y g(b)=1b".
Determine
(a) (fo)2)  (b) (g=N)(2)

(© (go ) (D) (fer)x)
(e) (fef)yy () (gog)y)

8. Scad - B=C= ,ysupongascquef:Ad > B,‘g :fi
s ( estan definidas por f(ay=a + Ly ghy=>b" 1 2.
Determine . ’

() ==z e
(¢) (g /)x) (d) (f~g)x)
(e) (f+H») (f) (g 8)v)
9. Tn cada parte sc da los conjuntos 4y By una

funcion de 4 a B. Determine si la funcion es uno
HNO 0 sobre (o ambas cosas 0 ngUNal.

(a) A - i lo5 4 e DL
e 1 (23 (B3
(h) A = [1.2.3:B = {a b c.dl:
f=1{la)Q.a) (3¢}
(¢c) A= % l {} B={xwr wi:

() A=B=2Zfla)=a—1

10. Sea funa funcion de 4 a B. Determine si cada

funcién fes uno a uno y si es sobre.

(a) A=W, B={x|xesreal yx=0};/(a)=lal

) A=RXR,B=R; f((a b)) =a

(c) SeaS={1,2,3},T={a b}. Sean{i =B=
S X Ty supéngase que festéd definida por
fn a)y={(n b, n=1273yf(n b)=(1,a),
n=1,2,3.

(d) A =B=R><R;f((a,b))=(a+b,a—b7)

(e) A=, B={x|xesrealyx=0};f(a)=a

11. Sean/:4—>Byg:B—> A Verifiquesig=/".

(a) A=B=MRf(a)="5",gb)=2b~1
(b) 4= {x|xesrealyx=0};B= {y|yesrealy
yZ—l};f(a)=a2~1,g(b)=,/b+l .
(c) A=B=P(S),en donde S es un conjunto. Si

Xe P(S), seaf(X)=X=g(X).

(d) A=B= {1,2,3,4}2‘/{: {(1,4)7(231)5(3,2)»

(4,3): g = ((1,2),(2.3), (3,4). (4. 1)}

12. Seafuna funcién de 4 a B. Encuentre /.
(a) A={x|xesrealy x= —1}:B = {x|xcsreal

yx =0} f(a)=a+1

(b) A=B=Rfla)=a +1

(c) A=B=Rfla)="5

(dy A=B= {1.2,3.4.5%
F=1{(1.3).(2.2).(3,4), (4.5). (5, D)}

En los ejercicios 13 v 14, sea funa, funcion de .
A= l,.2. 3,44 hacia B = a, b, o, J. Determine
si [V es una funcion.

13. /= {(1,a). (2.a).(3,¢), (4. d)}

4. f={(1.a).(2.c). 3. br. (4. d)}

15. Sead=B=C= vy considérese las funciones

fiA->Byg:B>C definidas por f(a@) =2a + 1,

o(h) = h/3. Veritique ¢l teorema 3(b): (g of) =
roiee

16. S1un compunto A tene 7 clementos jeuantas

funciones hay de b a i

17. Si un conjunto .4 ticne 22 clementos jcuantas

biyeeciones hay de A a 4°

18. Si A ticne 1 elementos y B n clementos jcuantas
funciones hay de 4 a B?

19. Demucstre quesif: 4 > Byg: B — Cson
funciones uno a uno, entonces g o f'es uno a uno.

20. Demuestrcquesif:4 > Byg:B— Cson
funciones sobre, cntonces g o f'cs sobre.

21. Scanf:4-> By g:B — C funcioncs. Demuestre
que si g © f'es uno a uno, entonces f'¢s uno a uno.

22, Seanf: 4 — Byg: B — C funciones. Demuestre
que si g o f'es sobre, entonces g es sobre.

23. Sca A un conjunto, y sea /: A — A una biyeceion,
Para cualquicr entero k = 1, sca f* = fofo---of
(kfactores). ysca/ ™ =f "of o o)

Scceidn 5.2
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(k factores). Defina /* como 1,. Entonces /" esta
definida para todas las n € Z. Para cualquier a € A,
sea Xa, [) = {f"(a) | ne Z}. Demuestre quesia,, a,
€ 4,y Ola, /)M Ola,, [} # D, entonces Olay, f) )
=Olay, ).

Sca /= 4 — B una funcién con dominio y rango
finitos. Supéngase que |Dom(/ )| = n y IRan(/)| = m.
Demuestre que:

(a) Sifesuno auno, entonces m = n.

(b) Sifno es uno a uno, entonces mr < 1.

Scan |4] = |B]=nyseasf: 4 > Buna funcion

definida en todas partes. Demuestre que los tres

cnunciados siguientes son equivalentes:

(a) fesuno auno.

(b) fes sobre.

(¢} fes una correspondencia biunivoca (cs decir, f
€S uNno a uno y sobre).

5.2. Funciones para la ciencia de la computacion

En capitulos anteriores, se ha visto, de manera algo informal. algunas funciones emy

hicadas

cominmente en las aplicaciones de la ciencia de Ja computacion. En esta seccion se revisa

Estas v se define algunas mas.

Ejemplo 1. Sca 4 un subconjunto del conjunto universal (' = N T T
funcion caracteristica de.1 s detine como una funcion de O hacia 7O

T B
por lo sieurente:

{1 : ¢
1 R I H
() 40 Gioe
L
StAd =434, 7.90 v - L2030 10}, entonces / (2} SR C YR B M YA N DRV A 8 )

esta indetmida. bs tacil verificar si /) estd definida on todas partes v es sobre, pero no

CSUNO a4 uno.

*
.
Fiempto 20 Talaseceion Db se definmg ina fanped g e Ponetones o imcdulo). una por
GO T T S T G U s T T O e e ST vl COH_]UH:(‘
IR N S P fyas cuadquies cntero no negativ o puede eseribirse como
i T .. .

[ RS T

stmod ). Cada miembro de Lx familin de funcion.e

NI
IS

ST POTO RO URO G tho,

Ejemplo 3.
esta defimida por £ () — ',

Sea el conjunto de enteros no negativos, B

PRI P CAPT O Al Cia FCRICTON COTHO -
< madulo st definido en todas partes

¢

Z .vsupongase quef ol o8B
4
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Para la version general del principio de las casillas (seccion 3.3) se re'qulere(lia
¢ define para los niimeros racionales como f(g) es ejl entero mas grande
iene aqui un ejemplo de una funcion que no se define

Ejemplo 4.
funcion piso, que s
menor que o igual a g. De nuevo se t
por medio de una formula. Asi

fasy=L1sl=1,  f(=3)= L-3]=-3. ‘ .

plo 4 es la funcién techo, que se define para

j 16n simi la del ejem ar
Ejemplo 5. Una funcion similar a la 3 B o il 4 fine pere

los niimeros racionales como c(q), €S el entero mas peque
se emplea la notacion [ ¢ para c(g). Asi

c(15) =l151=2, (=3 = [-3]=-3. .

nes algebraicas comunes empleadas en la ciencia de la computa-

muchas funcio :
e dos a subconjuntos de los enteros.

¢idn, con frecuencia con dominios restringt

Ejemplo 6 . "
(aj) Crzxalquier polinomio con coeficientes enteros, p, puede usarse para definir una func

en Z como sigue: Sip(x) =aptax ax*+-+tax'yze Z, entonces f (z) es €l valor

de p evaluadoen z.
®) SeaA=B=Z*ysupéngasequef:A —>Be
funci6én exponencial de base 2. Puede usarse otras

sta definida por f (z) = 2°. Se llarpa a f
bases para definir funciones simila-

res.
(c) Sead=B=""Y supongase que
como f,(x) = log,(x), el 10gar1tmp de
computacion, son Gtiles en particular las bases 2 y 10.

f.: A — B esta definida para cada entero positivon > 1

base n de x. En las aplicaciones de la ciencia de la
4

. . o . . ser
En general, las operaciones unarias analizadas en secciones anteriores pueden s
b

HSa(laS ])a]d creat thL,\()]le‘ 1 res ala i ncion del ejemplo 3. LOS CcO lun 0S A y
¢ $ simtlares 1 u n t 12 de 1a
mo Se veracn IOS C)c‘,mpl()s

definicidn de funcién, no necesitan ser conjuntos de nimeros, co

siguientes.

Ejemplo 7 ) ‘ - .
(aj) Sia A un conjunto finito y definaal: A" — Z como [(w) como la longitud de la caden
w (véase la seccion 1.3 para la definicion de 47 y de las czidenas). 1 -
(b) Sea Bunsubconjunto finito del conjunto universal Uy deﬁnapow@) como € con(Jl 5
botencia de B. Entonces pow es una funcion que va de ¥, el conjunto potencia d¢ U,
hacia el conjunto potencia de V. ‘ / o |
(¢) Sead=B=c¢l conjunto de todas las matrices 2 X 2con eptradas de nimeros reales y
sea (M) = M’, la transpuesta de M. Entonces ¢ esta definida en todas partes, €s SO :e
b
y uno a uno.
Las operaciones hinarias también pueden ser usadas para definir funciones. En este
N ‘ id y 3 3T NN /11\\ IATATARTS ad e ;
caso. las functones denmdas tendrai pates ordenados coma entrada
e { I MCD(z,, o). Entonces g es una
(a) ParaloselementosdeZ " X /', definag(z,, z,) como ¢l 222 bnto l.;
funcion de Z ' X Z ' aZ . EFMCD de dos numeros se define en la seccion 1.4 .
(b) De manera similar puede definirse m(zy, z,) como el MCM(z), 2,).

Otro tipo de funcion, una funcion booleana, juega un papel clave en casi todos lo

> . 1A n
programas de computadora. Sea B= {verdadero, falso}. Entonces una funcion que vade u
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conjunto 4 a B se denomina funcién booleana. Los predicados de la seccion 2.1 son ejem-
plos de funciones booleanas.

Ejemplo 9. Sea P(x): x es pary (y): y es impar. Entonces P(4) es verdadero y Q(4) es
falso. El predicado R(x, y): x es par o y es impar es una funcion booleana con dos variables.
Aqui R(3, 4) es falsa y R(6, 4) es verdadera. ¢

Funciones de Hashing

En la seccion 4.6 se present6 dos métodos de almacenamiento de los datos para una relacién o
digrafo en una computadora. En este caso se considerd un problema mas general de
almacenamiento de datos. Supdngase que hay que almacenar y mas adelante examinar un gran
numero de registros de datos, por ejemplo, cuentas de clientes. En general, no se sabe cuantos
registros se tiene que almacenar en un tiempo dado. Esto sugiere que es apropiado el
almacenamiento de lista enlazada, porque el espacio de almacenamiento slo se emplea cuando
se le asigna un registro y no hay espacio de almacenamiento ocioso. Para examinar un registro,
hay que poder encontrarlo; por esto, almacenar los datos en una sola lista enlazada no es prac-
tico porque la busqueda de un elemento puede tomar mucho tiempo (hablando en términos
relativos). Una técnica para manejar tales problemas de almacenamiento es crear un nimero de
listas enlazadas y definir un método para decidir a cual lista ha de enlazarse un nuevo elemento.
Este método determinara también en cudl lista ha de buscarse algin elemento deseado. Un
punto clave es intentar asignar un elemento a una de las listas al azar. (Se recordara, segtin se vio
en la seccion 3.4, que esto significa que cada lista tendra igual probabilidad de ser selecciona-
da.) Esto es, hacer las listas toscamente del mismo tamafio con lo que se invertira, aproximada-
mente, el mismo tiempo de basqueda para cualquier elemento.

Supongase que se debe guardar en memoria los registros de los clientes para una
compailia grande y que se va a guardar la informacion como registros de computadora. En
primer lugar, se asigna a cada cliente un niimero de cuenta tnico de 7 digitos. Un identificador
unico de un registro se llama clave. Por ahora no se considerara exactamente como y qué
mformacion va a almacenarse para cada cuenta de cliente, solo se describira el
almacenamiento de un lugar o posicion en la memoria de la computadora en donde habra de
encontrarse esta informacidn. Para determinar a qué lista debe asignarse un registro en par-
ticular, se crea una funcién de hashing del conjunto de claves al conjunto de los niimeros
de la lista. Las funciones de hashing con frecuencia utilizan una funcién modulo, como se
ilustra en el ejemplo siguiente.

Ejemplo 10.  Supdngase que (aproximadamente) tiene que almacenarse y procesarse 10,000
registros de cuentas de clientes. La computadora de la companiia tiene capacidad para bus-
caren una lista de 100 elementos en un lapso aceptable. Se decide crear 101 listas enlazadas
para almacenamiento, porque si la funcion de hashing funciona bien en la asignacion
“aleatoria™ de registros a las listas, se esperaria ver alrededor de 100 registros por lista. Se
detine ymn fimeion de hashine del conmnro de niimeros de cuenta de 7 digitos al conjunto

L Y PO CONTOY N UL
Ity pemao b I

F'n consecuencia

A(2473871) = 2473871 {maod 101)
8.
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Esto significa que el registro con nimero de cuenta 2473871 serd asignado a la lista 78.
Notese que el rango de  es el conjunto {0, 1,2, ..., 100}. ¢

Debido a que la funcion 4 del ejemplo 10 no es uno a uno, puede asignarse diferentes
ntimeros de cuenta a la misme lista por la funcion de hashing. Si la primera posicion de la
lista 78 ya esta ocupada cuando se va a almacenar el registro de clave 2473871, se dice que
ha ocurrido una colisién. Hay muchos métodos para resolver las colisiones. Uno muy sim-

ple, que sera suficiente para este trabaj

o, consiste en insertar el nuevo registro al final de la

lista existente. Usando este método, cuando se desea encontrar un registro, se mezclard su

clave y se har4 la busqueda en la lista & (clave) en sucesion.
Muchas otras funciones de hashing son adecuadas para esta situacion. Por ejemplo, se

puede descomponer el n
sumar ambos, y luego ap

ademas del niimero de registros por almacenar;
e longitud media, y el tiempo necesario para calcular el nimero de la

s posibles para ser tomados en cuenta. Por razones que
1 modulo que se emplea en la funcion mod debe ser

queda en una lista d

lista para una cuenta, son dos factore
no se analizara en este momento, €

mero de cuenta de 7 digitos en un nimero de 3 digitos y otro de 4,
licar la funcion méd 101. Hay muchos factores por considerar

la velocidad con que puede hacerse la bus-

primo. La determinacion de una buena funcion de hashing para una aplicacion en particular

es una tarea desafiante.

GRUPO DE EJERCICIOS 5.2

1. Sea fla functon mod 10. Calcule
(a) 1 (417) (b) £(38) (¢) £(253)

2. Seafla funcion mod 7. Caleule
(a) f(81) (b) F(316) () £(105T)

In los ejercicios 3 v & use el conjunto universal U
v, b v, 7y la funcion caracteristica para
el subconjunto para calcular los valores de la

funcion solicitada.

3. A =laeiou (a) f,(1) (by f.(»)

(c) fal0)
4, B= {m«n.o.p.q.r.z} (a) fula)
{b) f(m) (ey fulsh

S, aleule cada uno de o aighicnivn

(a) 1 2.78] (hy bR v
(dyl —1731  (e) L21.5]

6. Calcule cada uno de Loy stguientes:
(a) 12781 (by [ 2787 (o) F1dd
(@ 1=1731 (o) [215]

En los ejercicios T3 8, caleule los valores indica-

dos. Observe que si el dominio de estas funciones es

7', entonces cada funcion es la formula explicita

puid und sucesion infinita. Estas sucesiones pieden

<or consideradas como un tipo especial de funcion.

7. finy =3n* =1 fa) f(3) (b) £(17)

ey f(5) () fA2)

8. g(n)y=5-2n (a) g(4) (b) g(14)
(c) g(129)  (d) g(23)

9, Sca fo(m) = 2" Calcule cada uno de los siguicntes:

() f(H (b)) () L5 (D) [,(10)

1y Qen f o = 3 Caleule cada uno de los siguientes:

- /s o3 &
[N [ 11y .0y LR A R \u: r‘!\Q)

1 1 e lelvy = loga(x)

11 Caleule cada uno de los siguientes:
(a) lgloy (b)) [g(128)  (©) lg(512)
(d) lg(1024)

12.

13.

14.

15.

16.

Para cada uno de los siguientes, encuentre el entero
mas grande menor que o igual al valor de la funcion,
y €l entero més pequefio mayor que o igual al valor
de la funcioén.
(a) 1g(10)
(d) 1g(100)

(b) g(25)
(e) 1g(256)

Demuestre que la funcion ¢ del ejemplo 7(c) que
mapea el conjunto de matrices 5 X 5 a si mismo esta
definida en todas partes, es sobre y uno a uno.

(c) g(50)

Sea 4 = {a, b, ¢, d}. Para la funcién / del gjemplo
7(a).

(a) Demuestre que / esta definida en todas partes.
(b) Demuestre que / no €s uno a uno.

(c) Demuestre o refute que / sea sobre.

Sea 4 un conjunto con » elementos, S el conjunto de
las relaciones en A, y M el conjunto de las matrices
booleanas n X n. Defina f: S — M por f(R) = M.
Demuestre que fes una biyeccion entre Sy M.

Sca P la funcion proposicional definida por P(x, y) =
(x V ¥y /A ~ y. Evaltie cada uno de los siguientes
€asos:

(a) P (verdadera, verdadera)

(b) P (falsa, verdadera)

(¢) P (verdadera, falsa)

5.3. Funciones de permutacion
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17. Sea Q 1+a funcion proposicional definida por Q(x): 3
(ye Z7) (xy = 60). Evalle cada uno de los siguien-

tes casos.
(a) O(3)  (b) Q(7)

c -
(d) Q(15) 00
En los ejercicios 18 a 20, utilice la funcion de
hashing h, la cual toma los primeros tres digitos del
numero de cuenta como un ntuimero y los iltimos
cuatro digitos como otro numero, los suma, y luego
aplica la funcion mod 59.

18. Suponga que hay 7500 registros de clientes por
almacenar utilizando esta funcion de hashing.
(a) ¢Cuantas listas enlazadas se requerira para el
almacenamiento de estos registros?
(b) Si se logra una distribucion aproximadamente
uniforme, més 0 menos ;cudntos registros se
almacenara por cada lista enlazada?

19. Determine a cual lista debe agregarse la cuenta de
cliente dada.
(a) 3759273 (b) 7149021 (c) 5167249

20. Determine en cudl lista habra que buscar para
encontrar la cuenta de cliente dada.

(a) 2561384 (b) 6082376 (c) 4984620

En esta seecion se estudia las biyecciones de un conjunto .1 a si mismo. De importan

cia especial es el caso en que A es finito. Las biyecciones en un conjunto finito tienen
una amplia variedad de aplicaciones en las matematicas. ciencia de la computacion v

fisica.

Una biyeccién de un conjunto A a si mismo se denomina permutacion de ..
E‘]em.plo 1. Sead= - ysupbngase que/: A — A esta definida por f(a) = 2a + 1. Puesto
que fes uno a unoy sobre (verifique), resulta que f'es una permutacion de 4. L4

oot for

otamontoae do 4 s 1 )
CISMEnIos G .1y tos valores CO!’TCSandl‘J‘.‘.!CS de la tuncion play, pla)
huncion Nl pla )

stenente forma

;

play) l’(féz)

LY . ’ - R
rhes iy q\!)l;l!l\fx\ Finrtin v oo oo e oveceian on Jose enhista los

L ptayenda

> s a, ) |
pla,)) th
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———————— o3 5 3¢
e
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Debe observarse qué (1) describe completamente a p puesto que da el valor de p para cada
elemento de 4. A menudo se escribe ’

( o @ o a )
p= .
p(a,) play) - play)
Asi, si p es una permutacion de un conjunto finito 4 = {a;, @y, . - - a,}s entonces la
secuencia p(a,), p(ay), - - . » p(a,) es solo un reacomodo de los elementos de A y por tanto

corresponde exactamente a una permutacion de 4 en el sentido de lo mostrado en laseccién 3.1.

Ejemplo 2. Sead = {1,2,3}. Entonces todas las permutaciones de 4 son

Lt 23 123 {1203

A=\ 2 3 Pl o P27 1 3)
(123 N 2 3

P3 s 3 1) P4 3 2 1) ¢

Ejemplo 3. Utilizando las permutaciones del ejemplo 2, calcule (a) p;l; (b) ps° ps-

— N W
N W
e
e

w

|
j——
w =

Solucion: (a) Considerando a p, como una funcidn, se tiene
P, = ((1,3),(2.1), (3. 2)}.

Entonces

pi' ={(3.1).(1,2).(2,3)}
o bien, cuando se escribe en orden creciente del primer componente de cada par orde-

nado, se tiene
pi' = 1(1,2).(2,3), (3. D).

En consecuencia
\

. (1 23
s = P
p4 2 3 1) 13

(b) Lafuncionp,enviala2yp, envia 2 a 3, de modo que p; ¢ p, envia 1 a3.
‘fambién, p,envia 2a 1y pyenvia l a2, de modo que p, ° p, envia 2 a 2. Finalmente
p,envia3al3yp,envialal, de modo que p, o p, envia3 a 1. En consecuencia

12 3
p3op2— 3 2 1 :

Puede verse el proceso de formar p, ° p, como se muestra en la figura 5.4. Observe que
L4

‘I) - 7); =n.

I.a composicion de dos permutaciones es otra permutacion, a la que generalmente se
hace referencia como el producto de estas permutaciones. En el resto de este capitulo,
se seguira conforme esta convencion.

Teorema 1. SiA={a, a, ...,a,} esunconjuntoque contiene n elementos, entonces hay

nl=n-(n—1)---2 1 permutaciones de A.

Demostracion: Este resultado es Cr, secuenci Lteo 1 e Tn con P

g : Q‘" cue Jel teorema 4 de 14

ciendo r = n. ; g % P ¢ ilase‘lv CElo n{}.l
T e

FACIH T S

"

1 2 3 cl b ERDRRT T 2 gl Ly
p30p2 = ¢ o L A el ST SRR USSR S R
2 3 1 2 1 3 @ 2 1
Figura 5.4
Seap’ by, by, . .., b, r elementos distintos del conjunto 4 = {a;, a,, .. ., a,}. La
permutacion p : 4 — A definida por ’ o
p(b)) = b,
p(by) = by
p(br~ I) = br
p(b,) = b,
p(x) = x, sixe 4, xe {b,b, ..., b}
se deno?lina permutacion ciclica de longitud r, o simplemente un ciclo de longitud 7, y se
d§notara por (bﬁ’ by, b,?. No debe confundirse esta terminologia con la que se utiliza para los
ctclos. en un.dlgrafo (sec<':10n 4.3). Los dos conceptos son diferentes y en este libro se utiliza
notaciones ligeramente diferentes. Si los elementos by, b,, . . ., b, estdn dispuestos de manera

uniforme en un circulo, como se ilustra en la figura 5.5, entonces un ciclop de longitud » mueve
estos elementos en el sentido de las manecillas del reloj, de modo que b, es enviada ab,, b, a b
; > 3s
.., b,_yab,yb,ab,. Todos los demas elementos de 4 son dejados fijos por p.

br—l

Figura 5.5

RSN —"
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Ejemplo 4. Sead=1{1,2,3,4, 5}. El ciclo (1,3, 5) denota la permutacic’m
(1 2 3 4 5). .
3 2 5 41 v
Observe que sip=(b, by, -+ > b,) es un ciclo de longitud r, entonces se puede escribir

i i ié ido de las
también p comenzando con cualquier b, 1 < i=7nYy movxendos'e en el Seljlt‘los
manecillas del reloj, como se ilustro en la figura 5.5. En consecuencia, Como G110,

(3,5,8,2) = (5,8, 2,3)=(8,2,3,5) = (2,3,5,8).

Nétese también que la notacion para un ciclo no indica el nimero de element.o,s q(;lei
hay en el conjunto 4. En consecuencia, el ciclo 3,2, 1? 4) podrxa. ser una' permutamoln e
conjunto {1,2,3,4} 0 de {1,2,3,4,5,6,7, 81, Es necesario que se diga explvlcltamente el con-
junto en el éua] se define un ciclo. Se desprende de la definicion, que un ciclo en un conjun-

i iy solo si tacion identidad, 1.

to A es de longitud 1 si y solo sies la permu .

Puesto que los ciclos son permutaciones, s€ puede formar su .producto. Sin §mbargo,
como se demuestra en el gjemplo siguiente, el producto de dos ciclos no necesita ser un
ciclo.

Ejemplo. Sead = {1,2.3,4,5,6}. Caleule (4, 1,3, 9256,y (5.6, %, 13,3

Solucién: Se tiene

1 2 3 4 5 6
13373 2 5 1 4 6
y
: 1 2 3 4 5 6
G6H=1 2 5 4 6 3
I'ntonces
[t 2 3 45 6) (1 4 5 6)
{4.1.3.5)=(5.6.3) - l\3 A s 14 6/Q1 5 16 3
| Z 3 4 5 ()\
i(? > 4 16 i)
Y
- 1 3 4 5 6 1 2 3 4 5 6
(5‘6‘3)”(4‘1‘3‘”:(1 s 406 313 25 1 406
i ? Py
s 2 o 1 4 3
Observe que
(4.1.3.5) (S.08) (563 (AN
i ¢
y que ninguno de los productos es un ciclo.
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Se dice que dos ciclos de un conjunto 4 son disjuntos si ningiin elemento de 4 apare-
ce en ambos ciclos.

Ejemplo 6. Sead={l,2,3,4,5,6}. Entonces los ciclos (1,2, 5} y (3, 4, 6) son disjuntos,
mientras que los ciclos (1, 2, 5) y (2, 4, 6) no lo son. *

No es dificil demostrar que si p, = (a;, @3, . . ., a,) Yy P2 = (b1, by, . .., b,) son ciclos
disjuntos de 4, entonces p, ° p, = p, ° p,. Esto puede verse si se observa que p, afecta sélo a
las a, mientras que p, afecta solo a las b.

Obsérvese ahora un teorema fundamental y, en lugar de ofrecer su demostracién, se
proporcionaré un ejemplo a manera de demostracion.

Teorema 2. Una permutacion de un conjunto finito que no sea la identidad o un ciclo,

puede escribirse como un producto de ciclos disjuntos de longitud = 2. o

Ejemplo 7. Escriba la permutacion

1 23 45 6 7 8
P=l3 4 6 5 2 1 8 7

del conjunto 4 = {1, 2, 3,4, 5, 6,7, 8} como producto de ciclos disjuntos.

Solucion: Se comenzard con 1y se encuentra que p(1)=3,p(3)=6,yp(6)=1,
de manera que se tiene el ciclo (1, 3, 6). Enseguida se escoge el primer elemento
de A que no ha aparecido en un ciclo previo. Se escoge 2, y se tiene p(2) = 4, p(4)
=5,y p(5) = 2, y asi, s obtiene el ciclo (2, 4, 5). Ahora se escoge 7, el primer
elemento de A4 que no haya aparecido en un ciclo anterior. Puesto que p(7) = 8 y

p(8) =7, se obtiene el ciclo (7, 8). Entonces, puede escribirse p como un produc-
to de ciclos disjuntos como

p=(7.8)2(2,4.5)(1,3,6). .

No es dificil demostrar que en ¢l teorema 2, cuando se escribe una permutacién como
nn producta de ciclos disjuntos. el producto es dnico excepto por el orden de los ciclos.

Permutaciones pares e impares
A un ciclo de longitud 2 se lo llama transposicién. Es decir, una transpuesta es un ciclop =
{a,. a,), endonde p(a) = a y pla) —a,

Observe que sip = (a, ) es una transposicion de 4. entonces p o p = 1, la permutacion
wdentidad de

Fodo crelo puede escribinse como un producto de transposiciones. En efecto,

\//1,/11.4..4:’11/; '\.’"i‘.i'//; (b i, Ir) (/)hb_‘)-

ksto puede veriticarse por induccion en r, de la siguiente manera:

PASO BASE.  Sir = 2, entonces el ciclo es s6lo (b, b,), el cual ya tiene la forma correcta.



186 Capitulo 5  Funciones

PASO DE INDUCCION.  Si el resultado es cierto para &, sea (b, by, . . - » b, b, . ;) unciclo de
longitud & + 1. Entonces (by, by, . . ., by bii ) = (b, bri i) © (b,, by, . . ., by), como puede
verificarse al calcular la composicion. Por la hipotesis de induccion, (b, by ..., b)=
(by, ) o (b, by 1) oo (b, by). Al sustituir, (by, by, . . ., by Biat) = (b1, bei ) 0 (b1, by)
o« -+ o (b, by)o (b, by). Esto completa el paso de induccion. Asi, por el principio de
inducciéon matematica, el resultado es valido para todo ciclo. Por ejemplo,

(1,2,3,4,5) = (1,5) o (1,4) = (1,3) = (1, 2).
Se obtiene el siguiente corolario del teorema 2.

Corolario 1.  Toda permutacion de un conjunto finito con al menos dos elementos se pue-
de escribir como un producto de transposiciones. ™

Observe que las transposiciones del corolario 1 no tienen que ser disjuntas.
Ejemplo 8. Escriba la permutacion p del ejemplo 7 como producto de transposiciones.
Solucion:  Se tiene

p = (7.8)0(2.4.5) 0 (1,3.6).

Como se puede escribir
(1,3.6) = (1.6) o (1.3)
(2.4.3) = (2.5) = (2. 4).

se tiene
P (708) ~(2.5) < (2.4) ~ (1.6) o (1.3). ¢
Se ha observado que todo ciclo se puede escribir como producto de transposiciones.
Sin embargo, puede hacerse esto de diversas formas. Por ejemplo,
(i.2.3)=(1.3)o(1.2)
= (2,1~ (2.3)
— (1.3 A (3 ) o (1L3) o (1.2 2 (3.2) o (2.3).

Esto implica que pucde escribirse toda permutacion sobre un conjunto de dos 0 mas elemen-

tos como producto de transposiciones de diversas formas. Sin embargo, ¢l siguiente teore-

ma, ctiya comprobacién se omitird, ordena esta situacion.

Teorema 3. Sise pucde oscr il i porpititacion de wn conjuinto Jino comae prodiucto de

/ 4 : . !

UI RUAEro par de (Fansposiciones, CRIORCes julicd pucde ser escrita como producto deun

PUMCrO 1Mpar de rdinsposiciones, ¥ viceyersd. L
Una permutacion de un conjunto fintto es par si puede ser eserita como producto de

un namero par de transposiciones, y es impar si puede ser escrita como producto de un

nimero impar de transposiciones.
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Ejemplo 9. ;La siguiente permutacion

B~
il
———

p—
BN
n W
~
AN W
w N
—

es par o impar?

Solucién:  Primero se escribe p como un producto de ciclos disjuntos, y se obtiene

p=1(3,56)(1,2,4,7).
A continuacion, se escribe cada uno de los ciclos como producto de transposiciones:
(1,2,4,7)=(1,7) o (1,4) - (1,2)
(3,5,6) = (3,6) 0 (3,5).

Entonces

P=0.6)(35)(1,7)0(1,4)°(1,2).

. Como p es producto de un niimero impar de transposiciones, es una permutacion
mpar. *

. De acuerdo con la definicion de permutaciones pares e impares, se tiene que (ejerci-
cio 14)
(a) Elproducto de dos permutaciones pares es par.
(b) Elproducto de dos permutaciones impares es par.
(c) El producto de una permutacion par y una impar es impar.

Teprema 4. Sea A={a,, a,,...,a,} un conjunto finito con n elementos, n = 2. Entonces
existen n!/2 permutaciones pares y n!/2 permutaciones impares.

DemostraC'ién: Sead, el conjunto de permutaciones pares de 4, y sea B, el conjunto
de permutaciones impares. Se definira una funcién /: 4, — B,, y se mostrara que es
uno a uno y sobre, por lo que 4, y B, tendran el mismo ntimero de elementos.

Como n = 2, se puede elegir una transpuesta particular ¢, de A. Por decir, g, =
(a,_, a,). Se define la funcion /2 4, — B, como

)y =qyep. peEA,

Observe que si p e A,, entonces p es una permutacion par, de modo que ¢, ° p es una
permutacion impar y por lo tanto f(p) € B,. Supéngase ahoraque p, y p, estanen 4, y

Fp) = f(py)
Entonces
Gy~ Dy — 0 P 2)
Ahora se compone cadu fado de fa ccuacion (2) con ¢,
G e gy p) = gyo(gyopa):
de modo que, por la propiedad asociativa,

(4o e q0) o Py = (g ° q) ° P2
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0, como ¢, ° qo = 1,4’

Asi, f'es uno a uno.

Ahora, sea g € B,. Entonces gy
flape q) = 4qo° (go°49)

lo que significa quefe

concluye que 4,y B, tienep e
@, pues ninguna permutact
1,14, B,| = n!. Asi,pore

I’l! = ‘.A” U B,,‘. = An‘

Entonces se tiene

GRUPO DE EJERCICIOS 5.3

1. ;Cuales de las siguientes funciones /@ > SO0
permutaciones de 7
(a) [ s¢ define como ftay=a — L.
(b) fsc define como flay=a.
(¢) /se define como [y = a.
(d) fsc define como J{a) ¢
7 — 7 son

2. ;Cudles de las siguientes funciones i
permutaciones de /7
(a) [se define como fa)—a i 1. i
{b) /se define como /() = (({ -1y
(¢) [se define como flay ~a

(dy <o detine como fad ol

[T

i 3o P T SR P L
Jop o cjercieion S o IS |

Lo a4 s 6
Dy ('Z 1 1 3 6 QJ
o2 3 4 5 6
P \2 31 5 4 6)

=
=
il
e
=
[SURNN S I
t2
¥
—_
[

1A0p1 = 1Aop2
py=Pr

s una funcion sobre. Como
| mismo nimero de e
uede ser par e impar a
| teorema 2 de la seccion 1.2,

oge A,Y

= (gq° q0) ° 4

=109

=q.

fi1A,— B,esunoaunoy sobre, se
lementos. Observe que 4, M B,=
la vez. Ademas, por el teorema

+ ‘Bn — A” m B”‘ - 244”

3. Calcule
@) py' (dy psep
() (poopdeps (d) py-(piopa )

4. Calcule
(a) I’zl
() (pa o) -1

() py ey
@y p.(poopy!

En los ejercicios 5 v 0, sed 4= 11.2,3,4.5.6.7, 84 =

Caleule los productos.

S () (3.5.7.8) (1.3.2)

P T S S PLOUC TR b

n (116

G, va) 1 [ t s
(b (3. 8) -~ (1.2.3.4) (3.5.0.7)
7. Sead  ta b doe g Caleule los productos.

(a) (a.f.g)- (h.c.d.e)
(b) (f.g)= (b f) e da. h.c)

En los ejercicios 8y 9, sea 4= {1,2,3,4,5,6,
7, 8}. Escriba cada permutacion como el producto
de ciclos disjuntos.

swli st 00
LI
9'(a)(12345678)

6 5 7 8 4 3 2 1
T I

10. Scad=1{a, b, c d e [ g}. Escriba cada
permutacion como el producto de ciclos disjuntos.

a b ¢ d e f g
(a)(g b )

a ¢ f e
(b)(g

¢c d e f g)
a b g f ¢
11. Sead = {1,2,3,4,5,6,7,8}. Escriba cada
permutacion como producto de transposiciones.
(a) (2.1.4.5.8.6)
(b) (3.1.6) 0 (4.8.2.5)

N T oA

Enlos cjercicios 12 v 13, sea 4= 1{1,2,3. 4,5,
] : t

6,7, 8). Determine si lu permutacion ¢s par o impar.

' 3
12. (a) (I 2 403 8
4 2 1 6 5 8 7 3
s 3 i 0
o) (1 2345678
7 3 4 2 1 8 6 5

13, (ay (6 42003

(by (do5) G35 3. 200 (40T

14. Demuestre que
(ay Il producto de dos permutactones pares s
par.
(b) El producto de dos permutaciones impares ¢s
par.

15.

16.

17.

18.

19.

Scceién 5.3 Funciones de permutacion = 189

(c) Elproducto de una permutacion par y una impar
es impar.

Sead=1{1,2,3,4,5}.Sean f=(5,2,3) yg=(3, 4,
1) permutaciones de 4. Calcule lo siguiente y
escriba el resultado como producto de ciclos
disjuntos.

(a) fog  (b) flog™

Muestre que si p es una permutacién de un conjunto

finito 4, entonces p* = p © p es una permutacién de
A.

SeanA={1,2,3,4,5,6}y

1 2 3 4 5 06
p=

2 4 3 1 5 6

una permutacion de 4.

(a) Escriba p como producto de ciclos disjuntos.

(b) Calcule p~.

(c) Calcule p*.

(d) Determine el periodo de p; es decir, el menor
entero positivo k tal que p*=1,.

SeanA={1,2,3,4.5,6}y

1 2 3 4 5 6
P 1

una permutacion de 4.

(a) Escriba p como producto de ciclos disjuntos.

(b) Calecule p~'.

(¢) Caleule p7.

(d) Determine ¢l periodo de p:es decir. ¢l menor
entero positivo k tal que p = 1.

(a) Utilice induccion matemadtica para mostrar que
st p es una permutacion de un conjunto finito 4,
entonces ' — pep oo pCS UNa permutacion
de Aparane Z .

Si A es un conjunto finito y p ¢s una
permutacion de A, muestre que p™ = 1, para

(b)

algutid e /]

Qea poung permutacion de un conjunto 4. Defina la
siguiente relacion R sobre A:a R b sty solo si p'(a)
= h para alguna n e /. [p" sc define como la
permutacion identidad y p ” como (p 'y".] Muestre
que R cs una relacion de equivalencia y describa las
clases de cquivalencia.
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5.4. Crecimiento de funciones

En el analisis anterior de la representacion de las relaciongs en una cowpu;a(iorrliié(tzegslzrel
4.6), se observod que uno de los factore§ que determina lg ele(lzm(cim dese etodo o
almacenamiento es la eficiencia en el manejo fie datos. En .el ejemplo donde se e st
una relacion era transitiva, se calculo la cantidad promedlo de pasos necesarli)s r;; e un
algoritmo con la relacién guardada como una matriz y para un algontrpo ,con raOXimada-
guardada como una lista enlazada. Los resultados fuerop que se neces.ltarlzl3 a4p (

3 — kn’ el almacenamiento mediante una matriz y /7" pasos S15¢
mente ki’ + (1 — k)n* pasos con iC ’ ¢ e una iz Y B
utilizaba la lista enlazada, donde la relacion contiene kn' parejas ordenadas. fq. e iane
ra muchos detalles, estas comparaciones burdas proporcionan la informacion suficiente como
para tomar decisiones acerca del almacenamiento.adecuado de los dat?s. Enesta seccm:nze
aplicara algunos conceptos de las secciones anteriores y se establecera la base para un

isis mas i de los algoritmos.

e mlilz Si((;g:t:i(;ai?xe una fuﬁcién crece mas répido’que otra surge de manera natural al
trabajar con funciones. En esta seccion se formalizard este concepto.

b2 g

A 1 = = T
Ejemplo 1. SeaRuna relacion sobre un conjunto 4, con !A\. nylRi=, n. Si se guarda
: i =+ DTntes funcioén que describe (de manera

R como una matriz, entonces t(n)= s 1 +o,nes .una uncion ¢ . : -
aproximada) el namero promedio de pasos necesarios pard determmar st R es trans;}va,
utilizando el algoritmo TRANS (seccion 4.6). Al guardar R con una lista enlazada y 1it1 lea;r
NEWTRANS, el nimero promedio de pasos necesarios €s (aproximadamente) s(n) = g 70".

La tabla 5.1 muestra que s crece mas rapido que 7.

Tabla 5.1
n t(n) s(n)
_1() 550 1250
50 63,750 781,250
100 505,000 12,500,000 .

1 + 2 N Q 141
Sean /'y g funciones cuyos dominios son subconjuntos de Z 7, ln? en‘t‘c‘ms p051t1xos:
Se dice qu;' fes O(g), lo cual se lee fes () mavuscula de g7 v a veces solo “fes O de g7, 81
) s ‘ ¥ ara toda n = k. Sifes es
existen constantes ¢ y & tales que [ f ()] = ¢~ | g(n) | para todan = k. Sifes O(g), entonc

1o crece mas rapido de lo que crece g.

Ejemplo 2. La funcion f(n) = % n+ % n* es O(g) para g(n) = n'. Para ver esto, conside-

rese

t ! s ) .
U RS 5t ! #n S

< I AN sin= 1.

Al elegir | como ¢y | como k, se ha mostrado que | £ () | = ¢+ ¢un | para toda n = kvl

¢
es Og).
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El lector puede ver del ejemplo 2 que se puede elegir de varias formas a ¢, k e incluso
ag. Si|f(n)| = c|g(n)| para toda n = k, entonces se tiene | f(n)] < C - |g(n)| para toda n =
kparatodaC=cy|f(n)| < c-|g(n)| paratodan = K para cualquier K = k. Para la funcién
t del ejemplo 2, ¢ es O(h) para h(n) = dn®, sid = 1, pues [t(n)| < 1 - |g(n)| < |A(n)|. Observe
también que ¢ es O(r(n)) para r(n) = n*, pues %n3 + on* < n’<n'paratodan=>1. Al
analizar los algoritmos, se quiere conocer la funcién simple g de “crecimiento mas lento”
para la que fes O(g).

Es comiin reemplazar g en O(g) con la férmula que define a g. Asi, se escribe que r es
O(n*). Esta notacién se llama O mayuscula.

[y g tienen el mismo orden si fes O(g) y g es O(f).

Ejemplo 3. Sean f(n) = 3n* — 5n” y g(n) = n*, definidas para los enteros positivos z.
Entonces /'y g tienen el mismo orden. En primer lugar,

3nt — 50 < 3n*+ 5K?
< 3n*+ Snf, sin=>1
=8n*,

Seanc=8 yk=1; entonces | f(n)| < ¢ - |g(n)| paratodan = k. Asi,fes O(g). Reciprocamen-
te, n* =3n* — 2n* < 3n* — 5n’ si n = 2. Esto es porque si n = 2, entonces n*> % ,2n?>5y
2#* > 5n. Se utiliza 1 como ¢ y 2 como % para concluir que g es O(f). *

Si f'es O(g) pero g no es O( f), f tiene menor orden que g o f crece mas lento
que g.

Ejemplo 4. La funcion f(n) = n° tiene menor orden que g(n) = n’. Es claro que sin = 1,
entonces n°<< n’. Supéngase que existen ¢ y & tales que n’ << cn’ para todan = k. Se elige N
de modo que N> ky N*> c. Entonces N’<< cN < N? - N, pero esto es una contradiccion.

Por lo tanto, f'es O(g), pero g no es O( f), y ftiene menor orden que g. Esto coincide con la
experiencia, pues n° crece mas lento que n’. 14

Se define una relacién O, theta mayuscula, sobre las funciones cuyos dominios son
subconjuntos de Z * como fO g si y solo si f'y g tienen el mismo orden.

Teorema 1. La relacion © definida anteriormente es una relacion de equivalencia.

Demostracion:  Es claro que O es reflexiva, pues toda funcion tiene el mismo orden
que si misma. Debido a que la definicién de mismo orden considera a fy g de la
misma forma, esta definicion es simétrica y la relacidén O es simétrica.

Para ver que O es transitiva, supongase quefy g tienen el mismo orden. Entonces
existen . v k, tales que If (mM << ¢, -t gln) | para toda n = k.. v que existen ¢, y &, tales
que lg(n)i < ¢, - | f (n)! para toda n = k. SupOngase que g y A tienen el mismo orden;
entonces existen ¢., &, tales que |g(n)l << ¢, - |h(n)} para toda n = k;, y existen ¢, k,
tales que |[h(n)] < ¢, - |g(n)| para toda n = £,.

Entonces | f(m) < ¢, - gl < ¢/(cy - h(m)y sin =k, yn = ky. Asi, | f(m)] =< ¢ 04
“{h(n)| para toda n = maximo de &, y k5.

De manera analoga, |h(n)] < c,c, - | f(n)| para toda n = méaximo de k, y k;. Asi, f
y h tienen el mismo orden y @ es transitiva. ®
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Las clases de equivalencia de © constan de las funciones que tienen el mismo orden.
Se utiliza cualquier funcidn simple en la clase de equivalencia para representgr el orden. de
todas las funciones en esa clase. Una clase © es menor que otra clase 8. si una funcién
representativa de la primera tiene menor orden que una funcion representativa de la segun-
da. Esto significa que las funciones de la primera clase crecen mas lento que lasdela segunda.
La clase © de una funcién proporciona la informacion necesaria para el andlisis de algoritmos.

Ejemplo 5. Todas las funciones que tienen el mismo orden que g(n) = »’ tienen orq?n
©(n*). Los ordenes méas comunes en las aplicaciones de la ciencia de la computacién
son O(1), O(n), O, O(n), O(lg(n)), O(n Ig(n)) y O(2"). En este caso, O(1) representa la
clase de las funciones constantes y /g es la funcion logaritmo en base 2. La figura 5.6 mues-

tra algunas de estas funciones. ¢

\ > y=l)

Figura 5.6

Ejemplo 6. Toda funcion Jogaritmicaf(n) =log,(n) tiene el misrl?gc)(?)rden que g(n) =Ig(n).
Existe una identidad de cambio de base del logaritmo, log,(x) = Ty €N donde log,(b) €3
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una constante. Asi, [logy(n)| < (s, 1/g(m)]y, reciprocamente, |/g(n)] < Ig(b) - [log,(n)|. Por
lo tanto, g es O(f) y fes O(g). IS

A veces es necesario combinar funciones que proporcionen el nimero de pasos nece-
sarios para las partes de un algoritmo, como se hizo en el analisis de TRANS (seccion 4.6),
donde se sumo las funciones, y en el analisis de NEWTRANS, donde se multiplico las
funciones. Existen ciertas reglas generales en relacion con el orden de las clases de equiva-
lencia O que se puede utilizar para determinar la clase de muchas funciones y la clase de la
suma y el producto de funciones ya clasificadas.

Reglas para determinar la clase © de una funcion

1. Las funciones O(1) son constantes y tienen crecimiento nulo, el minimo crecimiento
posible.

2. O(lg(n)) es menor que O(n") si k > 0. Esto significa que la funcion logaritmica crece

mas lento que cualquier funcién potencia con exponente positivo.

O(n") es menor que O(n") si y solosia <b.

O(a") es menor que O(b") siy sdlo sia <b.

5. ©(n") es menor que O(a") para cualquier potencia n* y cualquier a > 1. Esto significa
que cualquier funcién exponencial con base mayor que | crece més rapido que cual-
quier funcion potencia.

6. Sir es distinto de cero, entonces O(rf )= O(f) para cualquier funcion f.

7. Sik es una funcion distinta de cero y O{f) es menor (o igual) que O(g), entonces O(/h)
es menor (o igual) que O(gh).

8. Si O(f) es menor que B(g), entonces O(f + g) = O(g).

B

Ejemplo 7. Determine la clase O de las siguientes funciones.
(a) fln) = 4n* — 60" + 250°

(b) g(n) = lg(n) — 3n
(c) h(n) = 11" +n"

Solucion: () Por las reglas 3, 6 y 8, ¢l grado del polinomio determina lu cluse O de
una funcion polinomial. O(f) = O(n').

(b) Sec utiliza las reglas 2, 6 y & para obtener O(g) = O(n).

(¢) Por las reglas 5y 8, O(h) = O(1.17). *

Ejemplo 8. Utilice las reglas para el ordenamiento de las clases O para ordenar las si-
guientes clases de menor a mayor.

A(n lg(n))  OL000n2 — 1) O®K")  O(1.000.000) O(1.3") O(n + 107)

Sobacicas O 0000900 &ty clase de o funcrones
primera e a fista. Porfas reghis 5 v 8,03 ¢ 107 es menor que 6( 1000n" — 1), pero
mavor que O™ Para determinar Ia posicion de O(n Ig(n)) en la lista. se aplican las
reglas 2 y 7. Estas implican que O(n lg(n)) es menor que O(n’) y mayor que O(n).
La regla 5 dice que O(1.3") es la clase mixima en la lista. En orden, las clases son

O(1.000.000) O O + 107) O(n lg(n)) O000n* — 1) O(1.3").
.

sonstantes, de modo que es b
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La clase © de una funcién que describe el numero de pasos realizados por un al-
goritmo se conoce como el tiempo de €] ecucion del algoritmo. Por ejemplo, el algoritmo
TRANS tiene un tiempo promedio de ejecucion de n®. En general, los algoritmos con
tiempos de ejecuciéon exponenciales no son préacticos, excepto para valores muy pe-
queilos de n.

GRUPO DE EJERCICIOS 5.4

fon) = —15n, fi(n) = lg(lg(n)), fa(n) = 9n"",
fo(n) = nl, fig(n) = n+ Ig(n),
fu(n) = Vn +12n, fio(n) = Ig(nt)

12. Ordene las clases O del ejercicio 11 de menor a
mayor.

En los ejercicios 1 y 2, sea funa funcion que
describe el numero de pasos necesarios para
desarrollar cierto algoritmo. El niimero de elemen-
tos por procesar se representa como n. Para cada
funcion, describa lo que ocurre con el nimero de
pasos si el numero de elementos se duplica.

L (a) f(n) i 10(2)1 (3) fn) i gns 3 En los ejercicios 13 a 18, analice la operacion
EZ)) ; éz ; ; ?’2 1g(n) E f)) ]}((71)) ; 2',, " realizada por la parte dada de seudocddigo y

™

(a) fin) = nlgn) (b) f(n) =100 n*

escriba una funcion que describa el nimero de
pasos necesarios. Proporcione la clase O dela
Sfuncion.

3. Muestre que g(n) = nt es O(n").
13.

—

A1
B«1
3. UNTIL (B > 100)
a. B«2A-2

N

4. Muestre que h(n) =1 +2+3+ -+ nes On).

5. Muestre que f(n) = 8n + Ig(n) es O(n).

b. A«—A+3
6. Muestre que g(n) = m*(Tn — 2) es O(n). 41 Xel
2. Y« 100
7. Muestre que £ (1) - n [g(nn) es O(g) para g(n) = ", 3. WHILE (X < Y)
pero que g no es O(f). 2. Xe X +2
b. Ye3Y
8. Muestre que f(n) = n'® es O(g) para g(n) = 2", pero
que g no es O( ). 15. 1. T« 1
2. X0
9. Muestre que /'y g tienen el mismo orden, para f (n) = 3. WHILE (/ = IY)
St 4n 3y g(n) = a7+ 100n. a. XeX+i
b. I«1+1

19, AMuestre que (v tienen el nsmo orden. para f (1)~

16. i. SUM« O
FOR / = 0 THRU (N
a. SUM e« SUM + 1T

lg(n') y g(n) = log:(om) 1} BY 2

[

11. Determine cuales de las siguientes funciones cstan
en la misma clase ©. Una funcion podria quedar sola 17.
cn una clase.
filn) = Snlg{n), [foln) = on® — 3n + 7,
filn) = 15", fun) = lg(n®), fyn) = 13,463,

Sea A un arreglo de longitud Ny A"un elemento que
se puede guardar en A. En este cjercicio, la funcion
debe describir el nimero promedio de pasos
necesarios para determinar si X esté en A.

e e

|

FUNCTION SEEK(A, X)
1. FOUND « FALSE
2. Ke1
3. WHILE (NOT FOUND) AND (K < N)
a. IF(A[K]= X) THEN
1. FOUND « TRUE

b. ELSE
1. K«K+1
4. RETURN

18. SUBROUTINE MATMUL(A,B,N, M, P, Q;C)

1. IF (M = P) THEN
a. FORI=1THRUN

IDEAS CLAVE PARA REPASO

® Funcién: véase la pagina 167.
® Funcioén identidad, 1,: 1, (a)=a.

Funcion funo a uno de 4 en B: a # a’ implica que
fla) # fla).

Funcion sobre fde A en B: Ran( /) = B.
Biyeccion: funcidon uno a uno y sobre.
Correspondencia uno a uno: funcién sobre, uno a
uno y definida en todo punto.
Sifesunatuncibnde A en B, l,of=f;fc1,=f
Sifes una funcion invertiblede A en B,/ "' o f=1;

JAVARES PR

(gef) "=/ "yl

Funcion booleana £+ Ran( f) < {cierto. falso}
Funcion de hashing: véase la pagina 179.
Funcion de permutacion: una biyeccion de un con-
junto 4 en si mismo.

Teorema: Si A4 es un conjunto con # elementos,
entonces existen ! permutaciones de A.

Ciclo de longitud # (by. bs. . ..
na 183

, b,); véase la pagi-

l'eorema: Una permutacion de un conjunto finite
que no sea la identidad o i ciclo se puede escribir
como un producto de ciclos disjuntos.
Transposicion: un ciclo de longitud 2.

Corolario: Toda permutacion de un conjunto finito
con al menos dos elementos se puede escribir como
producto de transposiciones.

Ideas clave pararepaso 195
1. FORJ=1THRU Q
a. C[,J]«0
b. FOR K =1THRU M
1. C[LJ]eC[LI) +
(A[1,K] X B[K,J])
2. ELSE
a. CALL PRINT CINCOMPATIBLE’)
3. RETURN

FIN DE LA SUBRUTINA MATMUL

19. Demuestre la regla 3.

20. Demuestre laregla 7.

® Permutacion par (impar): aquella que se puede es-

cribir como producto de un nimero par (impar) de
transposiciones.

® Teorema: Si una permutacion de un conjunto fini-

to se puede escribir como producto de un niimero
par de transposiciones, entonces nunca se puede
escribir como producto de un nimero impar de
transposiciones, y reciprocamente.

El producto de:

(a) Dos permutaciones pares es par.

(b) Dos permutaciones impares ¢s par.

(c) Una permutacion par y otra impar cs impar.
Teorema: Si A es un conjunto con nr elementos.
entonces existen n!/2 permutaciones pares y n!/2
permutaciones impares de 4.

O(g) (O mayuscula de g): véase la pagina 191.
fy g del mismo orden: fes O(g) y ges O(f).
Teorema: La relacion O, fO gsiysélost fy g
ticnen ¢l mismo orden, es una relacion de equiva-
fenein

Clase O mimima: vease la pagina 192,

Reglas para determinar la clase O de una tuncion:
véase la pagina 192.

Tiempo de ejecucion de un algoritmo: clase € de
una funcién que describe el numero de pasos reali-
zados por ¢l algoritmo.
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EJERCICIOS DE CODIFICACION

Para cada uno de los siguientes ejercicios, escriba el
programa o subrutina solicitados en seudocddigo
(como se ha descrito en el apéndice A) o en un len-
guaje de programacion que conozca. Verifique su co-
digo con una prueba de escritorio o con una ejecu-
cion en computadora.

1. SeaU={u, u,,...u,} el conjunto universal para
ciertos conjuntos de entradas. Escriba una fun-
cion CHARFCN tal que, dado un conjunto como
entrada, regrese la funcién caracteristica del con-
Jjunto como una sucesion.

CONBYUCE: g,

AT R gy

DONADO PoOR £ -
CENTRO DF ESTUDIANTES

PUIBLO Y AEFYRLIA

i
iim ESTULIANTES RUFORMIS AS  NDLPENDIENTES

. Escriba una funcion TRANSPOSE tal que, dada

una matriz n X n, regrese su transpuesta.

- Escriba un programa que escriba una permutacién

dada como producto de ciclos disjuntos.

. Escriba un programa que escriba una permutacion

dada como producto de transposiciones.

. Utilice el programa del ejercicio 4 como subrutina

en un programa que determine si una permutacion
dada es impar o par.
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Requisitos previos: Capitulos 3y S

6.1. Graficas

La teoria de graficas se inicia con ideas geométricas muy simples y tiene muchas apli-
caciones importantes. En los capitulos 4, 7 y 8 se analizaron algunos usos de las grafi-
cas. En esos capitulos una grafica se asocio con el digrafo de una relacion simétrica.
Al combinar esas ideas con la de funcidn, se puede definir un tipo més general de

srafica que permite utilizar mas de una arista (lado o arco) entre los mismos vértices.

S A A A Sr.!f!t‘t) SeCanne? Camao muhlgr:m)

U grafica G consta de un conjunto finito o de objetos Hamados veértices, un con-
imto finito £ de objetos flamados aristas v una funcién y que asigna a cada arista un
subconjunto v, wi, donde vy wson vértices (que podrian ser iguales). Se escribe G - (), £,
vi cuando se deba entatizar los componentes de (5. S1e es una arista, y yle) = {vwy, se dice
QUE ¢ ©> Ulla diista entre vy wy que e esta determinada por vy w. Los vértices vy i son los
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extremos de e. Si s6lo existe una arista entre v y w, con frecuencia se identifica a e con el
conjunto {v, w}. Esto no causara confusién alguna. Se puede eliminar la restriccidén de que
solo exista una cantidad finita de vértices, pero en este analisis, todas las gréficas tendran un
numero finito de vértices.

Ejemplo 1. Sean V= {1,2,3,4} y E= {e,, e,, €3, €,, es}. Sea y dada por
y(e)) = y(es) = (1,2}, v(e) = 14,3}, v(es) = (1,3}, v(ed) = {2.4).
Entonces G = (¥, E, ) es una grafica. .

Por lo general, las graficas son representadas mediante imagenes que utilizan un pun-
to por cada vértice y una linea por cada arista. G se representa como en la figura 6.1. Es
usual omitir los nombres de las aristas, pues no tienen un significado intrinseco. Ademas, tal
vez se quiera escribir etiquetas que resulten més Utiles sobre las aristas. A veces se omite las
etiquetas sobre los vértices si la informacion grafica es adecuada para el analisis.

Figura 6.1

Con frecuencia, las graficas son utilizadas para registrar informacién acerca de rela-
ciones o conexiones. Una arista entre v; y v; indica una conexidn entre los objetos v; y v. En
una representacion geométrica de una grafica, las conexiones son la informacion mas im-
portante. v por lo general varias imagenes distintas pueden representar la misma gréfica.

Ejemplo 2. Las figuras 6.2 y 6.3 también representan la grafica G dada en el ejemplo 1.

¢
1
3
Figura 6.2 Figura 6.3
1 ;_"T:"l”" CRET HITY Ve iOe oS (‘; Pnnero (i(,' at iS‘(L\ L*HC ‘i(f“c“ a4 CSE V(}I[i\i(‘ COMO exireing.
Una gratica puede contener una arista de un vértice a st mismo; tal arista es un bucie cerra-
do (o lazey, Un bucle corrade contribuye en 2 unidades al grado de un vertice.
Ejemplo 3

(a)  Enlagrafica de la figura 6.4, el vértice 4 tiene grado 2, el vértice B tiene grado 4 y el
vértice D tiene grado 3.
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(b) Enlafigura 6.5, el vértice a tiene grado 4, el vértice e tiene grado 0 y el vértice b tiene

grado 2.
(¢)  Cada vértice de la grafica de la figura 6.6 tiene grado 2. ¢
A B
2 5
E C
3
4
D
[ J

d e 6

Figura 6.4 Figura 6.5 Figura 6.6

Un vértice de grado 0 es un vértice aislade. Dos vértices que determinan una arista
son vértices adyacentes.

Ejemplo 4. En la figura 6.5, el vértice e es un vértice aislado. En la figura 6.5, a y b son
vértices adyacentes; los vértices a y d no son adyacentes. .

Una trayectoria (o camino) en una grafica es una sucesion : v, v,, . . ., v, de
vértices, cada uno adyacente al siguiente, y una eleccién de una arista entre v; y v, ;, de mo-
do que ninguna arista es elegida mas de una vez. En términos geométricos, esto significa
que es posible iniciar en v, y viajar a través de las aristas hasta v, y nunca utilizar la misma
arista dos veces.

Un circuito es una trayectoria que inicia y termina con el mismo vértice. En el capi-
tulo 4 esto fue llamado ciclo de trayectoria; la palabra circuito es més comn en la teoria
general de graficas. Una trayectoria v, v,, . . ., v, €s simple si ningun vértice aparece mas de
una vez. De manera andloga, un circuito v, v,, . . ., ¥, _, v; es simple si los vértices v,,
Vs, ..., Ve i son todos distintos.

Ejemplo §

(a) Una trayectoria en la grafica representada mediante la figura 6.2 es m: 1, 3, 4, 2.

(b) Lastrayectorias en la grafica de la figura 6.4 incluyenam: D, E, B, C, m: A, B, E, D,
Dy my: A, B, A. Observe que en 77, no se especifica la arista entre 4 y B que se utilizé
primero.

Ac)  Algunos ejemplos de trayectorias en la grafica de la figura 6.5 son w2 a, b, ¢, ay 7s
d, ¢, a, a latrayectoria 75 es un circuito.

{d) En la tigura 6.6, la suceston 1, 2, 3, 2 no es una trayectoria, pues la unica arista
existente entre 2 y 3 tendria que recorrerse dos veces.

(¢y Latrayectora 7y ¢, «, b, ¢, d de la tigura 6.5 no es simple. *

Una grafica es conexa si existe una trayectoria de cualquier vértice a otro de la grafi-
ca. En caso contrario, la grafica es disconexa. Si la grafica es disconexa, las diversas partes
conexas son las componentes de la grafica.
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Ejemplo 6. Las graficas de las figuras 6.1 y 6.4 son conexas. Las de las figuras 6.5y 6.6
son disconexas. La grafica de la figura 6.6 tiene dos componentes. ¢

Algunas familias especiales importantes de graficas serdn ttiles como ejemplos en el
momento del anélisis. A continuacion serdn presentadas.

1. Para cada entero n > 1, sea D, la grafica con #n vértices sin aristas. Lafigura 6.7
muestra a D, y Ds. D, es la gréfica discreta de n vértices.

® & e » & o &

D2 DS
Figura 6.7

2. Paracadaenteron > 1, sea K, la grafica con vértices {v,,v,, ..., V,} y conuna arista
{v, v} para cadai, j. En otras palabras, cada vértice de K, esté conectado con cualquier otro
vértice. En la figura 6.8 se muestra K5, K, y K. La grafica K, es la grafica completa de
n vértices. Mas en general, si cada vértice de una grafica tiene el mismo grado que cualquier
otro vértice, la grafica es regular. Las graficas D, también son regulares.

K3 K4 K5
Figura 6.8

3. Para cada entero n > 1, sea L, la grafica con n vértices {v, v,, ..., v,} y con aristas
tvi,v,. )} para | <i<n Semuestra L,y L, en la figura 6.9. L, es la grifica lineal de

vértices.
*—o > ——0—@
L2 L4
Figura 6.9

Ejemplo 7. Todas las graficas K, y [, son conexas, mientras que las graficas /), son
disconexas. De hecho, la grafica D, tiene precisamente n componentes. .

Subgraficas y graficas cociente

Suponga que G (h £,y es una gratica. Elga un subconjunto £ de Lis wostas de 400 an
subconjunto I, de tos vértices en I de modo que B contenga (al menos) todos los extremos
de tas aristas de £, Entonees 1~ ¢, £,y wmbién os una grafica, donde y, oy yrostrin-
gida a las aristas en £, Tal grifica # es una subgrafica de G. Las subgrificas jucgan un
papel importante en el andlisis de las propiedades de las graficas.
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Ejemplo 8. Las graficas de las figuras 6.11, 6.12 y 6.13 son cada una subgrafica de la
grafica de la figura 6.10. .

D C
Figura 6.10

D C

Figura 6.1 Figura 6.12

A B

Ne

G

Figura 6.13
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Una de las subgraficas més importantes es aquella que surge de eliminar una arista y
ningun vértice. Si G = (¥, E, y) es una graficay e ¢ E, entonces se denota G, a la grafica
obtenida al omitir la arista e de E y conservar todos los vértices. Si G es la grafica de la
figura 6.10 y e = {4, B}, entonces G , es la grafica de la figura 6.13.

La segunda construccion importante se define para graficas con aristas multiples.
Suponga que G = (¥, E, ) es dicha grafica y que R es una relacion de equivalencia sobre el
conjunto V. Entonces, se construye la grifica cociente G de la siguiente manera. Los vér-
tices de G* son las clases de equivalencia de ¥ producidas por R (véase la seccion 4.5). Si v
y [w] son las clases de equivalencia de los vértices vy w de G, entonces existe una arista en
G* de [v] a [w] si alglin vértice en [v] esta conectado con algan vértice en {w] en la grafica G.
De manera informal, esto sélo dice que se obtiene GX al fusionar todos los vértices de cada
clase de equivalencia en un Gnico vértice y combinar las aristas que quedan sobrepuestas
mediante tal proceso.

Ejemplo 9. Sea G la gréifica de la figura 6.14 (que no tiene aristas maltiples) y sea R la
relacion de equivalencia sobre ¥ definida por la particién {{4, E, I}, {B, E J}, {C, G, K},
{D, H, L}}. Entonces G" aparece en la figura 6.15.

Si S también es una relacion de equivalencia sobre V definida por la particién { {7, J,
K, L}, {4, E}, {F, B, C}, {D}, {G}, {H}}, entonces la grafica cociente G aparece en la
figura 6.16. *

[A] [B]
D ¢ (D] [l
Figura 6.14 Figura 6.15
A B
[A] (B8]
E F
[ i
/o - N : // ;
I 1 7 AN
[ e N / K
1 TG H \g‘
|D} D C
Figura 6.16 Figura 6.17
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De nuevo, uno de los casos mas importantes surge al utilizar s6lo una arista. Sj ¢ e
una arista entre el vértice vy el vértice w en una grafica G = {¥] E, v}, entonces se considera
larelacion de equivalencia cuya particion consta de {v, w} y {v;}, para cada v, # v, Vv, F w.
Es decir, se une vy w en un vértice y se deja lo demas igual. La gréfica cociente resultante
se denota por G*. Si G es la grafica de la figura 6.14, ye = {I, J}, entonces G es la graficade
la figura 6.17.

GRUPO DE EJERCICIOS 6.1

En los ejercicios 1 al 4, proporcione V, el conjunto 5. Trace una imagen de la grafica G = (V] E, y), donde

de vertices, y E, el conjunto de aristas, para las
grdficas G =(V, E, y) dadas en las figuras 6.18 y

V= {A’ B’ C’ D’ E}! E= {el’ €2, €3, €4, €5, 66}’ Yy y(el)
= Yes) = {4, C}, Yey) = {4, D}, ney) = {E, C},
7(94) = {B’ C}’ y 7(36) = {E’ D}

6.21.
6. Trace una imagen de la grafica G = (V] E, ), donde
L Ak B p V={4,B,C,D,E,F,G, H},E={e, e, ...,e},y
- - Ne) = {4, C}, vle)) = {4, B}, Nes) = {D, C}, Ae,)
C = {B, D}, Yes) = {E, 4}, Aes) = {E, D}, ve;) = {F,
E}, Yey) = {E, G}, y Aey) = {F, G}.
. 7. Proporcione el grado de cada vértice de la figura 6.18.
Figura 6.18
8. Proporcione el grado de cada vértice de la figura 6.20.
2. A
9. Enumere todas las trayectorias que comienzan en 4
en la figura 6.19.
10. Enumere tres circuitos que comiencen en 5 en la
C figura 6.21.
11. Trace la grafica completa de siete vértices.
2. ura 6.19 12. Considere K|, 1a grafica completa de n vértices.
'9 ) ;Cual es el grado de cada vértice?
3. B 13. ;Cuales de las graficas de los ejercicios 1 al 4 son
regulares?
A C 14. Proporcione un ejemplo de una grafica conexa
regular de seis vértices que no sea completa.
Para los ejercicios 15 y 16, utilice la grdfica de la
D figura 6.22.
Figura 6.20
4. 2
T
3 4 5
6 7 c

Figura 6.21

Figura 6.22
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15. Si R es la relacion de equivalencia definida por la 17. SeaR={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),
particién {{a, [}, {e. b, d}, {c}}, determine la (7,7, (8,8), (9,9, (10, 10), (11, 11}, (12, 12),
grafica cociente G¥. (13, 13), (14, 14), (15, 15), (16, 16), (1, 10), (10, 1),
(3, 12), (12, 3), (5, 14), (14, 5), (2, 11), (11, 2),
16. Si R es la relacién de equivalencia definida por la (4, 13), (13, 4), (6, 15), (15, 6), (7, 16), (16, 7),
particion {{a, b}, {e}, {d}, {f c}}, determine la (8,9), (9, 8)}. Trace la grafica cociente G*.

grafica cociente G*.
18. SeaR={(1,1),(2,2),(3,3),(44),(5,5),(6,6),
Para los ejercicios 17 y 18, utilice la grafica de la (7,7, (8, 8), (9, 9), (10, 10), (11, 1), (12, 12), v
figura 6.23. (13, 13), (14, 14), (15, 15), (16, 16),(1,2), (2, 1),
(3,4),(4,3),(5,6),(6,5),(7,8),(8,7), (9, 16),

(16, 9), (10, 1), (11, 10), (12, 13), (13, 12), (14, 15),
(15, 14)}. Trace la grafica cociente G*.

3 11

19. Complete el siguiente enunciado. Toda grafica lineal
de n vértices debe tener _—_ aristas, ]
Explique su respuesta. Figura 6.24

20. ;Cual es el namero total de aristas cn K,, la grafica
Figura 6.23 completa de n vértices? Justifique su respuesta.

6.2. Trayectorias (caminos) y circuitos de Euler

En esta seccion y la siguiente, se analizara una clase amplia de problemas en los cuales se
utiliza la teoria de graficas. En el primer tipo de problema, la tarea es recorrer una trayecto-
ria utilizando cada arista de la grdfica s6lo una vez. Puede ser necesario o no comenzar y A 1 5
terminar en el mismo vértice. Un ejemplo sencillo de esto es el problema comun de trazar Figura 6.25 Figura 6.26
una figura geométrica sin levantar el lapiz del papel.

Una trayectoria en una grafica G es unatrayectoria de Euler si incluye a cada una de
las aristas s6lo una vez. Un cireuito de Euler es una trayectoria de Euler que es ala vez un

circuito Ejemplo 3. Considere el plano de una estructura con tres cuartos, como muestra la figura

6.27.

Ejemplo 1. La figura 6.24 muestra el mapa de las calles de un pequefio barrio. Sc ha
aprobado un reglamento de reciclado, de modo que los responsables de recoger los materia-
les reciclables deben iniciar y terminar cada viaje en la terminal de reciclado. Ellos desean 1
planear la ruta del camion de modo que se cubra todo el barrio y que cada calle se recorra [ — ] { e -“! - ]

s6lo una vez. Se puede construir una grafica de modo que exista un vértice por cada inter-
seccidn y una arista por cada calle entre dos intersecciones cualesquiera. Entonces, el pro-
blema consiste en determinar un circuito de Fuler para esta grafica. ¢ —p i —
i
|

T_ _
| S o——]
[ s}

Ejemplo 2 Sl
(a) Una trayectoria de Euleren la figura 6 25 ce 7 F.D. B4 C. D

(b) Un circuito de Euler en la grafica de la figura 6.26 es m:5,3,2, 1, 3,4, 5. ¢ r«T—.w

Un poco de experimentacion mostrara que no existe un circuito de Luler para la gra-
fica de ta tigura 6.25. También se puede ver que no es posible obtener una trayectoria de D (Fuera)
Fuler para la grafica de la figura 6.6. (; Por que?) Figura 6.27
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Cada cuarto estd unido con los demas cuartos: comparte una pared con ellos y con el exte-
rior a lo largo de cada pared. El problema es el siguiente. ;Es posible comenzar en un cuarto
o en el exterior y dar la vuelta de modo que se pase por cada cuarto sélo una vez? Se puede
formular este diagrama como una grafica, donde cada cuarto y el exterior constituye un
veértice y una arista corresponde a cada puerta. La figura 6.28 muestra una posible grafi-
ca para esta estructura. La traduccion del problema es si existe o no una trayectoria de Euler

para esta grafica. También se resolvera este problema mas adelante. L 4
A B
C
Figura 6.28

En este punto surgen de manera natural dos preguntas. ;jEs posible determinar si exis-
te una trayectoria o circuito de Euler sin encontrarlo en forma explicita? Si debe existir una
trayectoria o circuito de Euler ;existe una forma eficiente de encontrarlo?

Considere de nuevo las graficas del ejemplo 2. En la figura 6.25, la arista {D, E} debe
ser la primera o la ultima en ser visitada, ya que no existe otra forma de ir hacia o salir del
vértice £. Esto significa que si G tiene un vértice de grado 1, no puede existir un circuito de
Euler, y si existe una trayectoria de Euler, ésta tiene que comenzar o terminar en este vértice.
Un argumento similar se aplica a cualquier vértice v de grado impar, por decir, 2n + 1. Se
puede ir hacia una de estas aristas y salir de ella hacia otra n veces, dejando una arista v sin
visitar. Se puede utilizar esta Oltima arista para salir o llegar av, pero no hacer ambas cosas,
de modo que no puede completarse el circuito. Se ha mostrado el primero de los siguientes
resultados.

Teorema 1
(a) Siuna grdfica G tiene un vértice de grado impar, entonces no puede existir un cir-
cuito de Fuler en G.
(b) Si G es una grdfica conexa v todos los vértices tienen grado par, entonces existe un
crrerito de Fuler en (.

Demostracion:  (b) Suponga que existen graficas conexas donde todos los vértices
tienen grado par, pero que no existe un circuito de Euler. Se elige la grafica G de este
tipo, con el menor nimero de aristas. & debe tener mas de un vértice, pues si solo
tuviera un vértice de grado par, es claro que existiria un circuito de Euler. Sea v un
vértice de G. Primero, observe que debe existir un circuito que comience y termine en
v. Como el grado de v es al menos dos y G es conexa, deben existir distintas aristas
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entre v y los vértices a 'y b (que podrian ser el mismo vértice). Como G es conexa,
debe existir una trayectoriaa, v,, v,, . . . , b. Entonces v, a, v,, Vi, ..., b, vesun circuito
que comienza y termina en v. Suponga que 7: v, u, . . ., v es el circuito mas largo
posible que comienza y termina en v. Como G no tiene un circuito de Euler, no se
utiliza todas las aristas G en . Sea G’ la grafica formada al eliminar las aristas de 7
en G. Como 7 es un circuito, al eliminar estas aristas se reduce el grado de cada
vértice en 0 o 2; de modo que G’ también es una grafica donde todos sus vértices
tienen grado par. La gréfica de G podria no ser conexa, pero alguna de sus partes si lo
es. Se elige la parte conexa mas grande de G'. Esta parte debe tener un circuito de
Euler 7' ya que ciertamente tiene menos aristas que G, y se habia elegido G con el
menor numero de aristas y sin un circuito de Euler.

Entonces, 7' contiene a todos los vértices de G o existe algin vértice v que no esta
en 7. Pero v debe ser adyacente a algin v’ en 7, pues G es conexa y la arista {vv'}
es una de las aristas eliminadas: es decir, { v'} es una arista de 7. En cualquier caso,
algiin vértice v’ en 7’ es también vértice de r, y se puede construir un circuito mayor
en G uniendo 7y 7' en v'. Pero esto es una contradiccion, ya que 7 es el maximo
circuito posible en G. Por tanto, no existe tal G. ®

Se ha demostrado que si G tiene vértices de grado impar, no es posible construir un
circuito de Euler para G, pero puede ser posible determinar una trayectoria de Euler. En el
andlisis anterior se observa que un vértice de grado impar debe ser el inicio o el fin de
cualquier trayectoria de Euler posible. Se tiene el signiente teorema.

Teorema 2
(a) Siuna grdfica G tiene mas de dos vértices de grado impar, entonces no puede existir
una trayectoria de Euler en G.
(b) Si G es conexa y tiene exactamente dos vértices de grado impar. entonces existe una
trayectoria de Euler en G. Cualquier travectoria de Euler debe comenzar en un
vértice de grado impar y terminar en el otro.

Demostracion:  (a) Sean vy, v,, v, vértices de grado impar. Cualquier trayectoria de
Fuler posible debe salir (o llegar) a cada uno de los vértices v,, v,, v, sin poder regresar
{0 salir), ya que cada uno de estos vértices tiene grado impar. Uno de estos tres vérti-
ces podria ser el comienzo de la trayectoria de Euler y otro el final, pero esto deja al
tercer vertice en un extremo de una arista sin recorrer. Por tanto, no cxiste una trayec-
toria de Euler.

(b) Seanu y v dos vértices de grado impar. Al agregar la arista {i, v} a G se obtiene
una grafica conexa (' cuyos vértices tienen grado par. Por el teorema 1(b), existe un
circuito de Euler 7’ en G'. Aleliminar {u, v} de 7' se obtiene una trayectoria de Culer
que comienza en u (0 v) y termina en v (o u). [

,
Ejemplo 4., Cudles de las graticas de las fivuras 6 29,6 30 v 631 tienen un circuito de

oo, . P i . s N
Pty wia Udy oo lobia ue aidd [ S R A Y N Y N e (N ST T Y A DY R E T PR IO IS TG G Y T A

Solucton:  (a) bnla figura 6.29. cada uno de los cuatro vértices tiene grado 3: asi. por
fos teoremas 1y 2, no existe un cireutto ni una trayectona de Euler.

(b) La grafica de la figura 6.30 tiene exactamente dos vértices de grado impar. No
existe un circuito de Euler, pero debe existir una trayectoria de Euler.

(c) En la figura 6.31, todos los vértices tienen grado par; asi, la grafica debe tener
un circuito de Euler. ¢
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Figura 6.29 Figura 6.30

Figura 6.3t

Ejemplo 5. Regrese al ejemplo 3. Observe que los cuatro vértices tienen grados 4,4, 5y
7, respectivamente. De modo que puede resolverse el problema mediante el teorema 2; es
decir, existe una trayectoria de Euler. La figura 6.32 muestra una de éstas. .

D
Figura 6 3?

(Fuera)

Los teoremas 1 y 2 son ejemplos de teoremas de existencia. Garantizan la existencia
de un objeto de cierto tipo, pero no proporcionan informacion alguna para obtener el objeto.
El teorema 2(b) muestra un indicio de como proceder. En la figura 6.33, una trayectoria de
Euler debe comenzar (o terminar) en 8 y terminar (o comenzar) en C. Las trayectorias B, 4,
D, C A B CyB, C A B A D, Csondos trayectorias de Euler para esta grafica.
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A B
D C
Figura 6.33

' Se daré ahora un algoritmo para obtener un circuito de Euler para una grafica conexa
sin véx’tices de grado impar. Se necesita una definicién adicional antes de comenzar el
algoritmo. Una arista {v, v;} es un puente en una gréfica conexa de G si al eliminar {v, v,}
se crea una grafica disconexa. Por ejemplo, en la grafica de la figura 6.4, {B, E} els, L;n
puente. ,

Algoritmo de Fleury: Sea G = (¥, E, y) una grafica conexa con todos sus vértices de
grado par.

Paso1l. Seelige un miembro v de ¥ como vértice inicial para el circuito. Sea 7 v el inicio
de la trayectoria por construir.

Paso 2. Supf)nga que ya se ha construido 7 v, u, . . ., w. Si en w sélo existe una arista {w,
z}, §e ex?xende TAMm VY, U, ..., w, z Seelimina {w, z} de Ey wde V. Si en w existen
varias a.nstas, se elige una que no sea un puente {w, z}. Extiendamam v u,...,wzy
se elimina {w, z} de E.

Paso 3. Repita el paso 2 hasta que no sobren aristas en £.
Fin del algoritmo

Ejemplo 6. Utilice el algoritmo de Fleury para construir un circuito de Euler para la gra-
fica de la figura 6.34. )

O

—

/.B F
C E
. A G

‘\\ i N .
N NS

R 4

D H

Figura 6.34

Solucién:  Segin el paso 1, se puede comenzar en cualquier parte. Se elige el vértice
A de manera arbitraria. La tabla 6.1 resume los resultados de la aplicacion del paso 2.
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Tabla 6.1

Ruta corriente Arista siguiente Razonamiento

m A {4, B} Sin aristas desde 4 es un puente. Elija una sola.
m A, B {B, C} Sélo una arista desde B permanece.

mA,B,C {C, A} Sin aristas desde C es un puente. Elija una sola.
mT A, B,C, A {4, D} Sin arista desde 4 es un puente. Elija una sola.
m A,B,C,A,D {D, C} Sin arista desde D permanece.

m A,B,C,A,D,C {C,E} Sélo una arista desde C permanece.
mA,B,C,A,D,CE {E, G} Sin arista desde E es un puente. Elija una sola.
mA,B,C,A,D,C,E, G {G, F} {4, G} es un puente. Elija (G, F) o (G, H).

m A B, C,A,D,C,E, G, F {F,E} Soélo una arista de F permanece.

mA B, C,ADCEGFE {E, H} Soélo una arista de E permanece.

mA B, C,A,D,C,E,G F,E.H {H, G} Sélo una arista de H permanece.

mA B, C,AD CEGF,EHG {G, A} So6lo una arista de G permanece.

mAB,C A D,C E G F,E,H G, A

Se ha numerado las aristas de la figura 6.35 en el orden de su eleccion al aplicar el
paso 2. En varios lugares, se podria elegir de distintas formas. En general, si una grafica
tiene un circuito de Euler, seguramente tendra varios circuitos de Euler diferentes. .

12

Figura 6.35

GRUPO DE EJERCICIOS 6.2

L los cjercicios | al 4, indique si la grafica tiene 1. (a) A
un circuito de Euler, una trayectoria de Euler, o
ninguno de éstos. Proporcione las razones de su

03

eleccion.

Figura 6.36

(O B
(o
D E
Figura 6.37
2. (a) B
A C
D
Figura 6.38
1 2
(®)
3 4 5
6 7
Figura 6.39
3. (a)
Figura 6.40

Figura 6.44

SN
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()

Figura 6.41

2

Figura 6.42

(b)

Figura 6.43

En los ejercicios 5 y 6, diga si es posible trazar la
figura sin levantar el ldpiz. Explique su razona-
miento.

N O



212 Capitulo 6  Temas de la teorfa de graficas

Figura 6.45

7. Utilice el algoritmo de Fleury para obtener un

circuito de Euler para la grafica de la figura 6.46.

Figura 6.46

8. Utilice el algoritmo de Fleury para obtener un

circuito de Euler para la grafica de la figura 6.44.

9. Un museo de arte ha ordenado la exposicion que

actualmente presenta en cinco salas, como muestra
la figura 6.47. (Existe alguna forma de recorrer la
exposicion de modo que usted pase por cada puerta

s6lo una vez? En ese caso, trace su recorrido.

1
4! —

| 1
T T
| —
— _L _L
1 T — = J
Figura 6.47

10. En la puerta de una mansion histérica, usted
recibe una copia del plano de la casa (figura

6.48). . Es posible visitar cada cuarto de la casa
pasando por cada puerta solo una vez? Explique

su razonamiento.

<
T

4 1 b——
T —
Figura 6.48

En los ejercicios 11 al 13 (figuras 6.49 a la 6.51),
no es posible construir un circuito de Euler para la
grdfica dada. En cada una de ellas, muestre el
minimo numero de aristas que deberia recorrerse
dos veces para visitar cada arista y regresar al
vértice inicial.

11.

Figura 6.49

Figura 6.50

13.
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14. Utilice el algoritmo de Fleury para determinar un
circuito de Euler para la versién modificada de la
grafica de la figura 6.50. Comience en la esquina

superior izquierda.

15. Utilice el algoritmo de Fleury para determinar un

circuito de Euler para la version modificada de la
grafica de la figura 6.51. Comience en 4.

/

Figura 6.51

6.3. Trayectorias y circuitos hamiltonianos

Ahora se vera a la segunda categoria de problemas de graficas, donde la tarea consiste en
visitar cada vértice solo una vez, con la excepcion del vértice inicial, si éste también debe
ser el iltimo vértice. Por ejemplo, tal trayectoria podria ser util para alguien que deba pro-
porcionar servicio a un conjunto de méquinas expendedoras de manera regular. Se puede
representar cada maquina expendedora mediante un vértice.

Una trayectoria hamiltoniana es aquella que contiene cada vértice solo una vez. Un
circuito hamiltoniano es aquel que contiene cada vértice solo una vez, excepto el primer
vértice, que también es el iltimo. Este tipo de trayectoria recibe el nombre del matematico
Sir William Hamilton, quien desarrollé y comercializé un juego que consistia en una grafica
de madera en forma de dodecaedro regular, con las instrucciones para encontrar lo que se
llama circuito hamiltoniano. La figura 6.52(a) muestra una version plana de este s6lido, con
un circuito hamiltoniano (uno de muchos) mostrado en la figura 6.52(b) mediante los vérti-
ces numerados en forma consecutiva.

(@) (b)

Figura 6.52

Ejemplo 1. Considere la gréfica de la figura 6.53. La trayectoriaa, b, ¢, d, e es una trayec-
toria hamiltoniana, pues contiene cada vértice solo una vez. Sin embargo, no es dificil ver
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que no existe un circuito hamiltoniano para esta grafica. Para la grafica de la figura 6.54, la
trayectoriad, D, C, B, 4 (puede elegirse cualquier arista de B a 4) es un circuito hamiltoniano.
En las figuras 6.55 y 6.56, no es posible tener una trayectoria hamiltoniana. (Verifique esta

afirmacion.) .
d
c e A B
b
a D C
Figura 6.53 Figura 6.54
A B
2 5
E C
3
4
D
1 6
Figura 6.55 Figura 6.56

Ejemplo 2. Cualquier grafica completa K, tiene circuitos hamiltonianos. De hecho, si se

parte de cualquier vértice, puede visitarse todos los demas en forma secuencial yenel orden
deseado. *

Pueden surgir preguntas sobre cuestiones analogas a las correspondientes a las trayec-
torias y circuitos de Euler acerca de las trayectorias y circuitos hamiltonianos. (Es posible
determinar si existe una trayectoria o circuito de Hamilton? Si debe existir una trayectoria o
circuito hamiltoniano ;existe una manera eficiente de determinarlo? Puede parecer sorpren-
dente, considerando los teoremas 1 y 2 de la seccion 6.2, que la primera cuestién acerca de
las trayectorias y circuitos hamiltonianos no haya sido resuelta de manera completa hasta la
fecha. Sin embargo, puede hacerse varias observaciones con base en los ejemplos.

Es claro que los bucles cerrados y las aristas multiples no son muy Gtiles para determi-
nar circuitos hamiltonianos. ya que no puede utihizarse los bucles cerrados, y sélo puede
utilizarse una arista entre cualesquiera dos vértices. Asi, se supondra que cualquier grafica
mencionada no tiene bucles cerrados ni aristas multiples.

Siuna grafica G de n vértices tiene un circuito hamiltoniano, entonces G debe tener al
menos » aristas.

Ahora, se establecerd algunas respuestas parciales, las cuales establecen que si una
grafica G tiene “suficientes” aristas, entonces puede determinarse un circuito hamiltoniano.
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Sea G una grafica conexa con n vértices, n > 2, sin bucles cerrados ni aristas multiples. De
nuevo, éstos son enunciados de existencia; no proporcionan métodos para construir un cir-
cuito hamiltoniano.

Teorema 1. G tiene un circuito hamiltoniano si para cualesquiera dos vérticesuy vde G
que no sean adyacentes, el grado de u mas el grado de v es mayor o igual que n. °

Se omitira la demostracion de este resultado, pero mediante él puede demostrarse lo
siguiente:

Corolario. G tiene un circuito hamiltoniano si cada vértice tiene grado mayor o igual
que n/2.

Demostracion: Lasuma de los grados de cualesquiera dos vértices es al menos 4 + 4
= n, por lo que se satisface la hipétesis del teorema 1. PY

Teorema 2. Sea m el numero de aristas de G. Entonces G tiene un circuito hamiltoniano
sim >} (n* — 3n + 6). (Recuerde que n es el numero de vértices.)

Demostracion: Suponga que u y v son cualesquiera dos vértices no adyacentes de
G. Se escribe deg(u) para el grado de u. Sea H la grafica obtenida al elirr}inar uyv
de G junto con las aristas que tienena u 0 a v como extrerr}os. Entonges H tx,eng n—2
vértices y m — deg(u) — deg(v) aristas (habria que eliminar una arista mas si uyv
fueran adyacentes). El nimero méaximo de aristas que / podria tener es ,, _ 2.Cz (.ve.ase
la seccidn 3.2). Esto sucede cuando existe una arista que conecta a cada pareja distinta
de vértices. Por tanto, el nimero de aristas de H es a lo mas

(n—-2¥n-3)

C, =
n =222 2

1 2
—(n* — 51t 6).
2(
Entonces, se tiene m — deg(u) — deg(v) S.% (n* — 51+ 6). Por lo tanto, deg(u) +
deg(v)z2m — l (n® — 51 + 6). Por la hipétesis del teorema,

1, to, B
deg(u) + deg(v) = i(n‘ —3n+6) - 2(n“ —Sn+6)=n

Asi, el resultado es consecuencia del teorema 1. ®

Ejemplo 3. Los reciprocos de los teoremas anteriores no son vé_lidos; es dpcir, las co,ndl—
ciones dadas son suficientes, pero no necesarias, para la conclusion. Considere la grafica
representada por la figura 6.57. En este caso, n, el m’lmejro de Yéﬁices, es igual a 8, cada
vértice tiene grado 2 y deg{u) + deg(v) = 4 para cada pareja de vértices no adyavcentes uyv.
FI niimero total de aristas también es ® Por tanto, las prermsas del teorema 1 v 2 no son
satisfechas, perc ciertamente existen circuitos hamiltonianos para esta gratica. L4

El problema que se ha considerado tiene algunas variantes imponanteg. [j;n un ¢aso,
las aristas pueden tener pesos que representen una distancia, un cost\f) o algo similar. Entoni
ces el problema es determinar un circuito hamiltoniano (o trayecr:tonrla) tal que la suma tota
de los pesos en la trayectoria sea minima. Por ejemplo, los. vertices podrlan'rt?prese'ntz;r
ciudades; las aristas, lineas de transporte; y el peso de una arista, el costo del viaje hacia la
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arista. Esta version del problema se conoce como el problema del agente viajero. La seccién 6. 9. B
8.5 analiza otra categoria importante de problemas que implica graficas con pesos asigna-
dos a las aristas.
A
H B
Figura 6.63
Figura 6.66
G® oc 9
F D
E
Figura 6.57
GRUPO DE EJERCICIO e o
En los ejercicios 7 al 10 (figuras 6.64 a la 6.67), En los ejercicios 11 al 14, determine un circuito
En los ejercicios | al 6 (figuras 6.58 a la 6.63), 3.1 2 determine un civcuito hamiltoniano para la grdfica hamiltoniano de peso minimo para la grdfica
determine si la grdfica dada tiene un circuito dada. representada en la figura.
hamiltoniano, una trayectoria pero no un circuito ha- 3 5
miltoniano, o ninguno de los dos. Si la grdfica tiene 4 7 1. Figura 6.64
un circuito hamiltoniano, indique el circuito. . o o
B ) D 6 F
1. A B ) 6 7 S
Figura 6.60 5 4
4 .
4 3 3 , E G
3 4
C <
A T c 6 H
D E Figura 6.64 12, Figura 6.65.
Figura 6.58 .
Figura 6.61 8 - 13. Figura 6.66.
2 B ! .
\ : B4, Figuta 6.07.
5. {
A C 15. (a) Determine un circuito hamiltoniano de peso
minimo para la grafica representada en la figura
6.64 si hay que comenzar y terminar en D.
(b) Determine un circuito hamiltoniano de peso
¥ minimo para la grafica representada en la figura

Figura 6.59 Figura 6.62 Figura 6.65 6.65 si hay que comenzar y terminar en F.
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6.4. Coloracion de graficas

Suponga que G = (¥, E, v) es una grafica sin aristas miultiplesy C= {c;, ¢, ..., ¢} es
cualquier conjunto de x “colores”. Cualquier funcién S ¥V — Ces una coloracién de la
grafica G con x colores (o utilizando los colores de C). Para cada vértice v, f(v) es el color
de v. Como por lo general se muestra una imagen de una grafica, se piensa la coloracion de
manera intuitiva pintando cada vértice con un color de C. Sin embargo, los problemas de co-
loracién de graficas tienen varias aplicaciones précticas, donde “color” puede tener casi
cualquier significado. Por ejemplo, si la grafica representa una red de ciudades conectadas
entre si, cada ciudad puede marcarse con el nombre de la linea aérea con més vuelos hacia 'y
desde esa ciudad. En este caso, los vértices son las ciudades y los colores son los nombres de
las lineas aéreas. Posteriormente se vera otros ejemplos.

Una coloracion es propia si cualesquiera dos vértices adyacentes v y w tienen colores
diferentes.

Ejemplo 1.Sea C= {r, w, b, y}, de modo quex=4. La figura 6.68 muestra una grafica G con
una coloracién propia dada por los colores de C en dos formas diferentes, una mediante tres
colores de C'y otra que utiliza los cuatro colores. Se muestra los colores como etiquetas, lo
que ayuda a explicar por qué no se asigna nombres a los vértices. Existen muchas coloraciones
propias de esta grafica con tres o cuatro colores, pero no es dificil notar que esto no se puede
hacer con dos o menos colores. (Experimente usted mismo para convencerse de que esto es
cierto.) *

w r

Figura 6.68

El ntmero minimo de colores necesarios para obtener una coloracién propia de una
grafica G es el ndmero cromatico de G, denotado por x(G). Para la gréfica G de la figura
6.68, ¢l analisis lleva a creer que x(G) = 3.

De los muchos problemas que puede verse como problemas de coloracian de graficas,
une de los mids antiguos Co o pioblctig de la colutacion de Inapas. € onsidere el mapa de la
tigura 6.69.

La coloracion de un mapa es una forma de colorear cada reglon (pais, estado, conda-
do, provincia, etcétera) de modo que no existan dos regiones distintas que compartan una
frontera comin con el misme color. Fl problema de coloracion de un mapa consiste en
determinar el menor niimero de colores que puede utilizarse. Se puede ver este caso como el
problema de coloracion propia de una grafica, de la siguiente manera. Dado un mapa M, se
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construye una grafica G,, con un vértice para cada regién y una arista que conecta cuales-
quiera dos vértices cuyas regiones correspondientes comparten una frontera comtin, Enton-
ces, la coloracion propia de G,, corresponde exactamente a la coloracion de M.

Figura 6.69

Ejemplo 2. Considere el mapa M de la figura 6.69. Entonces G,, estd representada por la
figura 6.70. *

A B D F

C E
Figura 6.70

El problema de coloracion de mapas data de mediados del siglo XI1X y ha sido objeto
activo de investigacion en diversos momentos desde entonces. Se creia que bastaban cuatro
colores para colorear cualquier mapa dibujado en un plano. Fn 1976 se demostr que esta
conjetura era cierta, con la ayuda de calculos realizados sobre casi 2000 configuraciones de
graficas. Aln no existe una demostracion conocida que no dependa de una verificacion por
computadora.

La grafica correspondiente a un mapa es plana, lo que significa que se puede trazar en
un plano sin cruces de aristas, excepto por los vértices. La figura 6.70 ilustra la planaridad
de la gréfica correspondiente al mapa de la figura 6.69. La grafica K no es plana, de modo
que fos problemas de coloracion de graticas son mas generales que los problemas de
coloracion de mapas. bn particular, se vera que se necesitan cinco colores para colorear K.

Los problemas referentes a la coloracion de graficas también surgen de problemas de
conteo.

Ejemplo 3. Se desea guardar 15 diferentes alimentos en recipientes dentro de un (nico
refrigerador. Algunos de ellos pueden conservarse juntos, pero otros alimentos deben guar-
darse por separado. Por ejemplo, las carnes frias y los quesos deben estar separados de las
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carnes blandas y los vegetales. Las manzanas, huevos y cebollas deben estar aislados o se
contaminarian con otros alimentos. La mantequilla, margarina y queso crema pueden ser
guardados juntos, pero deben estar separados de los alimentos con olores muy fuertes. Se
puede construir una gréfica G de la siguiente manera. Se construye un vértice para cada
alimento y se unen dos con una arista si deben ser guardados por separado en el refrigerador.
Entonces x{G) es el nimero minimo de recipientes separados necesarios para guiardar los 15
alimentos en forma adecuada. .

Se puede utilizar un método similar para calcular el nimero minimo de anaqueles de
laboratorio necesarios para almacenar sustancias quimicas si hay que separar las sustancias
que reaccionarian si fueran guardadas una junto a la otra.

Polinomios cromaticos

El problema de calcular x(G) se encuentra intimamente ligado con el problema de calcular
el nimero de coloraciones propias diferentes de una grafica G con un conjunto C = {c),
Cay - . .5 C} de colores.

Si G es una grafica yx > 0 es un entero, sea P,; (x) el nimero de formas de obtener una
coloracion propia de G conx o menos colores. Como P(x) es un niimero definido para cada
x, se observa que P;; es una funcion. Lo que tal vez no sea tan obvio es que P es un polinomio
enx. Se puede mostrar esto en general y se ve claramente en los ejemplos de esta seccién. P
es el polinomio cromatico de G.

Ejemplo 4. Considere la grafica lineal L, definida en la seccion 6.1 y que aparece en la
figura 6.9. Suponga que se tiene x colores. Puede colorearse el primer vértice con cualquier
color. No importa como se haga, se puede colorear el segundo vértice con cualquier color
distinto del elegido para el vértice 1. Por tanto, existen x — 1 opciones para el vértice 2. A
continuacién, se puede colorear el vértice 3 con cualquiera de los x — 1 colores no utiliza-
dos para el vértice 2. Un resultado analogo es valido para el vértice 4. Por el principio de
multiplicacion del conteo (seccion 3.1), el ntmero total de coloraciones propias es x(x —
1. Asi, Py (x) = x(x — by, .

Vease del ejemplo 4 que L0)y=0,7,1)=0,y P, (2) = 2. Por tanto, no existen
cloraciones propias de Ly que utilicen cero colores (obviamente) o un color. y existen dos

que utilizan dos colores. A partir de esto se observa que y(L,) = 2. Esta conexion es valida
en general, por lo que se tiene el siguiente principio.

Si G es una gréifica sin aristas multiples, y P, es el polinomio cromatico de G, enton-
ces x((7) es el menor entero positivo x tal que P, (x) # 0.

Un argumento similar al dado en el ejemplo 4 muestra que para L, n > 1. P, (x) =
AYE DY Asi por el principio anterior, y(l ) — 2 para toda n. !

.

Ejemplo 8. Para cualquier n 2 i, considere fa gritica completa A, defimda en la seccion
6L Suponga que de nuevo se puede atitizar © colores para colorear A ST - i o es
posible obtener una coloracion propia. Asi, sea x > . Se puede colorear el vértice v, con
cualquiera de los x colores. Para el vértice vy, solo restany — 1, ya que vs esta conectado
con v,. Solo se puede colorear a vy conx — 2 colores, ya que v, estd conectado con v, vcon
12y no se puede utilizar de nuevo los colores de v, y v,. De igual manera, solo restan x — 3
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colores para v,, y asi sucesivamente. Utilizando de nuevo el principio de multiplicacién de
conteo, se determina que Py (x) =x{x — 1){(x — 2) - - - (x — n + 1). Esto muestra que \(K,)
=n. Observe que si al menos existen n colores, entonces PK"(x) es el niimero de permutaciones
de x objetos tomados de »n en n (véase la seccién 3.1). .

Suponga que una grafica g no es conexa y que G, y G, son dos componentes de G.
Esto significa que ningan vértice en G, estd conectado con algun vértice en G,. Asi, cual-
quier coloracién de G, se puede aparear con cualquier coloracién de G,. Esto puede exten-
derse a cualquier nimero de componentes, por lo que el principio de multiplicacién de
conteo proporciona el siguiente resultado.

Teorema 1. Si G es una grdfica disconexa con componentes G,, G,, . . . , G,,, entonces

Py(x) = Pg (x)P; (x) - -+ Py (x), el producto de los polinomios cromdticos para cada com-
1 2 m

ponente. ®

Ejemplo 6. SeaG la grafica de la figura 6.6. Entonces G tiene dos componentes, cada una
de las cuales es K;. El polinomio cromético de K; es x(x — 1)(x — 2), x = 3. Asi, por el
teorema 1, P, (x) = x*(x — 1)*(x — 2)°. Se observa que x(G) =3 y que €l nimero de formas
distintas de colorear G mediante tres colores es P;(3) = 36. Si x es 4, entonces el nimero
total de coloraciones propias de G es 4 - 32 - 22 0 576. .

Ejemplo 7. Considere la grafica discreta D, de la seccidn 6.1, con n vértices y sin aristas.
Las n componentes son puntos simples. El polinomioc cromatico de un punto simple es x, de
modo que, por el teorema 1, P, (x) =x". Asi, x(D,) = | como se puede ver también directa-

mente. *

Existe un teorema 1til para calcular polinomios cromaticos mediante las construccio-
nes de subgréficas y graficas cociente de la seccion 6.1. Sea G = {V, £, y) una gréafica sin
aristas multiples, y seace E, es decir, ¢ = {a, b}. Como en laseccion 6.1, sea G, la subgrafica
de G obtenida al eliminar e, y sea G° la grafica cociente de G obtenida al unir los extremos de
e¢. Entonces se obtiene el siguiente resultado.

Teorema 2.  Con la notacion anterior v utilizando x colores.
Pu(x) = £, (x) Fi;-(x)

Demostracion: Considérese todas las coloraciones propias de G,.. Existen dos tipos,
aquellas en que a y b tiene diferentes colores y aquellas en que a y b tienen el mismp
color. Ahora bien, una coloracién del primer tipo es también una coloracién propia
+ para (5, ya que a y b estdn conectadas en G, y esta coloracion les proporciona colores
diferentes. Por otro fado, una colorucion de G ded segundo tipo corresponde a una
coloracion propia de G, De hiecho, comoa y & estin combinados en (¥, deben tener e‘%
mismo color ahi. Los demas vértices de G, tienen las mismas conexiones que en G.
Ast, se ha demostrado que 1’(,“(,\'} —Px) v Puda)yo Puin) -~ 1)‘&»('” = Podx). e

Ejemplo 8. Calcule P, (v) para la gratica ¢ de la tigura 6.71, utilizando la arista ¢.
Entonces G“ es K, y G, tiene dos componentes, una dada por un Gnico punto y la otra,es
K. Porelteorema 1, P (x) =x - x(x — 1)(x — 2) =x*(x — 1){(x — 2),six 2 2. Ademas,
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Pge(x) =x(x — 1)(x — 2). Por tanto, por el teorema 2, se observa que P (x) = x*(x — 1)

(x = 2) —x(x — D)(x ~ 2) ox(x — 1)*(x — 2). Esclaro que P;(1) = P;(2) =0y P (3) = 12.
Esto muestra que y(G) = 3. ¢

A

Figura 6.71

GRUPO DE EJERCICIOS 6.4

En los ejercicics 1 al 4 (figuras 6.72 a la 6.75), 3.
construya una grdfica para el mapa dado como
muestra en el ejemplo 2.
1.
VT
A C
. [va s,
E
[_ pj! RI

! b Figura 6.74
Figura 6.72 4
- NE
UT Cco
2.

|
f |
! i

\ AZ NM

Figura 6.73 Figura 6.75
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En los ejercicios 5 y 6 (figuras 6.76 a la 6.79), 9.
determine el numero cromdtico de la grdfica por
inspeccion.

5. (a) ®

Figura 6.82

10.

Figura 6.76 Figura 6.77

6. (a) (b) v, Vi

Figura 6.83

11. Determine P;y x(G) para la grafica G del mapa del
ejercicio 1.

Figura 6.78 Figura 6.79 12. Determine P; y x(G) para la grafica G del mapa del
gjercicio 3.

En los ejercicios 7 al 10 (figuras 6.80 a la 6.83),

determine el polinomio cromatico P para la

grdfica dada y utilice P para determinar (G).

13. Determine P; y x(G) para la grafica G del mapa
dada en el ejercicio 5(a). ;Confirma el resultado su
respuesta original para ¢l ejercicio 5(a)?

7. 8. .
14. Determine P; y x(G) para la grafica G del mapa del

ejercicio 4. Considere el teorema 2 para resolverlo.

15. Demuestre, mediante induccion matematica, que

Figura 6.80 P ()=x(x— 1Y " . n>1.

Figura 6.81

IDEAS CLAVE PARA REPASO

® Grafica: G =(V, E, ), donde Ves un conjunto fini- ® Trayectoria: lista de vértices, de modo que los vér-
o de objetos, Hamados vértices, £ es un conjunto tices consecutivos detinen aristas v ningnna arista

de objetos, lamados aristas (lados o arcos). y ves se utthiza mas de una vez.

una funcion que astgna a cada arista un subconjunto ® C'ircuito: travectoria que comienza y termina en el
de dos elementos de V. mismo vértice.

® Grado de un vértice: numero de aristas en el vérti- ® Trayectoria o circuito simple: véase la pagina 199
ce. ® (rafica conexa: Existe una trayectoria de cualquier

® Vértices adyacentes: pareja de vértices que defi- vértice a otro.
nen a una arista. ® Subgrafica: véase la pagina 200.
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® Trayectoria (o circuito) de Euler: trayectoria (cir-
cuito) que contiene todas las aristas de la gréfica
so6lo una vez.

® Teorema: (a) Si una grafica G tiene un vértice de
grado impar, entonces no puede existir un circuito
de Euler en G. (b) Si G es una grafica conexa y
todos los vértices tienen grado par, entonces existe
un circuito de Euler en G.

® Teorema: (a) Si una grafica G tiene mas de dos
vértices de grado impar, entonces no puede existir
una trayectoria de Euleren G. (b) Si Ges conexay
tiene exactamente dos vértices de grado impar,
existe una trayectoria de Euler en G.

® Puente: arista cuya eliminacion haria que la grafi-
ca fuera disconexa.

® Algoritmo de Fleury: véase la pagina 209.

® Trayectoria hamiltoniana: trayectoria que incluye
cada vértice de la grafica sdlo una vez.

® Circuito hamiltoniano: circuito que incluye cada
vértice s6lo una vez, excepto el primer vértice, que
también es el altimo.

EJERCICIOS DE CODIFICACION

Para cada uno de los siguientes ejercicios, escriba el
programa o subrutina solicitado en seudocodigo
(como se describe en el apéndice A) o en el lenguaje
de programacion que usted conozca. Verifique su co-
digo, usando lapiz y papel o en una computadora.

En cada uno de estos ejercicios, suponga que se
define una grdfica por G=(V, E, v).

1. Escriba una funcion tal que, dado G y un clemento
vde ¥V, regrese el grado de v.

2. Escriba una subrutina que determine si dos vérti-
ces de G son adyacentes.

Teorema: Sea G una grafica con n vértices, sin cj-
clos ni aristas multiples, n > 2. Si para cualesquie-
ra dos vértices u 'y v de G, el grado de u mas e]
grado de v es al menos n, entonces G tiene un cir-
cuito hamiltoniano.

Teorema: Sea G una grafica con n vértices, sin cj-
clos o aristas multiples, » > 2. Si el nimero de aris-
tas en G es al menos % (n* — 3n+ 6), entonces G
tiene un circuito hamiltoniano.

Coloracién de una grafica utilizando x colores:
véase la pagina 218.

Coloracion propia de una gréfica: Jas aristas adya-
centes tienen colores diferentes.

Numero cromaético de una gréafica G, y(G): el ni-
mero minimo de colores necesarios para una
coloracioén propia de G.

Gréfica plana: grafica que puede trazarse en un
plano sin aristas que se crucen.

Polinomio cromatico de una grafica G, Pg: niime-
ro de coloraciones propias de G en términos del
namero de colores disponibles.

Escriba el cédigo del algoritmo de Fleury.

Escriba una subrutina que tenga como entrada una
lista de vértices de G e informe si la lista define o
no una trayectoria valida que sea una trayectoria
hamiltoniana.

. Modifique el codigo del ejercicio 4 para que la

subrutina sea valida para circuitos hamiltonianos.




CAPiTULIO

Requisito previo: Capitulo 4

En este capitulo se estudia los conjuntos parcialmente ordenados, incluyendo las reticulas y
las algebras booleanas. Estas estructuras son utiles en la teoria de conjuntos, el algebra,
la ordenacion y la busqueda, y, particularmente en el caso de las dlgebras booleanas, en la
construccién de representaciones logicas para los circuitos computacionales.

1.1. Conjuntos parcialmente ordenados

Una relaciéon R en un conjunto A4 es un orden parcial s1 R es reflexiva, antisimétrica y
transitiva. El conjunto 4, junto con el orden parcial R, es un conjunto parcialmente orde-
nado, y se denotara este conjunto por (4, R). Si no existe posibilidad de confusion acerca
del orden parcial, sera posible referirse al conjunto parcialmente ordenado como 4, en vez
de (4, R).
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Ejemplo 1. Sea 4 una coleccion de subconjuntos de un conjunto S. La relacion < de
inclusién de conjuntos es un orden parcial en 4, de modo que (4, C) es un conjunto parcial-
mente ordenado. : .

Ejemplo 2. Sea Z" el conjunto de enteros positivos. La relacion usual < (menor 0 igual
que) es un orden parcial en Z *, como > (mayor o igual que). *

Ejemplo 3. Larelacionde divisibilidad (a R b siy slo sia | b) es un orden parcial en
zZ". *

Ejemplo 4. SeaR, el conjunto de todas las relaciones de equivalencia en un conjunto 4.
ComoT, consta de subconjuntos de 4 X 4, es un conjunto parcialmente ordenado bajo
el orden parcial de contencion de conjuntos. Si Ry S son relaciones de equivalencia en 4,
puede expresarse la misma propiedad en notacién relacional como sigue.

Rc SsiysolosixRy implica x Syparatodax,yen4.

Entonces (,, C) es un conjunto parcialmente ordenado. *
Ejemplo 5. Larelacion <en Z* no es un orden parcial, ya que no es reflexiva. *

Ejemplo 6. Sea R un orden parcial en un conjunto 4, y sea R~ la relacién inversa de R.
Entonces R~' es también un orden parcial. Para ver esto, hay que recordar las caracterizacio-
nes de las propiedades reflexiva, antisimétrica'y transitiva proporcionadas en la seccion 4.4.
Si R tiene estas tres propiedades, entonces A € R, R R™'c Ay R’  R. Se utiliza los
inversos y se obtiene A=A"' c RT,RT'M (R '=RTMRcAy RV c R, asi, por
la seccion 4.4, R~ es reflexiva, antisimétrica y transitiva. Entonces, R™' es también un
orden parcial. El conjunto parcialmente ordenado (4, R™') es el dual del conjunto parcial-
mente ordenado (4, R) y el orden parcial R ! es el dual del orden parcial R. 4

Los ordenes parciales méas conocidos son las relaciones< y>enZy '*. Por estarazén,
cuando se habla en general de un orden parcial R sobre un conjunto 4, se utilizara con
frecuencia los simbolos < y > para R. Esto hace a las propiedades de R mas simples y faciles
de recordar. Asi, el lector puede ver que se utilizara el simbolo < para diversos ordenes
parciales en conjuntos diferentes. Esto no quiere decir que estas relaciones sean todas la
misma o que tienen que ver con la relacion familiar< en Z o i”. Si es absolutamente necesa-
rio distinguir entre los érdenes parciales, también se utilizara simbolos como <,, <', >, 2/,
etcétera, para denotar ordenes parciales.

Se continuara empleando la siguiente convencion. Si (4, <) es un conjunto parcial-
mente ordenado, siempre se utilizara el simbolo 2 para el orden parcial<™", por lo que (4, 2
seréd el conjunto parcialmente ordenado dual. De manera similar, el dual del conjunto par-
cinlmente ordenado (A4, < ) serat4, - v ei dual del conjuitu parcialmente ordenado (B, <’}
serd (B, =), De nuevo, esta convencion recuerda los conjuntos parcialmente ordenados
duales familiares (7, <) y (£, 2), asi coma los conjuntos parcialmente ordenados (", <)y
(,2)

Si (4. <) es un conjunto parcialmente ordenado, los elementos a y b de 4 son compa-
rables si

as<bh o b<a
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Observe que en un conjunto parcialmente ordenado, cada pareja de elementos no necesita
ser comparable. Por ejemplo, considere el conjunto parcialmente ordenado del ejemplo 3

Los.elementos 2y 7 no son comparables, yaque 2 | 7y 7 | 2. Asi la palabra “parcial” en ur;
conjunto parcialmente ordenado significa que algunos elementos podrian no ser compara-
b¥es. Si cada pareja de elementos en un conjunto parcialmente ordenado 4 es comparable, se
dird que A4 es un conjunto linealmente ordenado, y el orden parcial es un orden line;al

También se dice que 4 es una cadena. '

Ejemplo 7. El conjunto parcialmente ordenado del ejemplo 2 es linealmente ordenado. 4

El siguiente teorema resulta 0til en ciertas ocasiones, ya que muestra la forma de

construir un nuevo conjunto parcialmente ordenado a partir de dos conjuntos parcialmente
ordenados dados.

Teorema 1. Si (4, <)y (B, <) son conjuntos parcialmente ordenados, entonces (4 X B, <)
es un conjunto parcialmente ordenado, con el orden parcial < definido por

(a, )< (a', b") sia<a’end y b<b enB.
Observe que se utiliza el simbolo < para denotar tres o6rdenes parciales distintos. El lector

podra determinar con facilidad el orden del que se trate en cualquier momento.

Demostracion: Si(a,b)e A X B,entonces (a,b)<(a,b),yaquea<aenAdyb<b
en B; de ese modo < satisface la propiedad reflexiva en 4 X B. Ahora supongase que
(a,b)<(a’, b)Yy (a',b")<(a,b),dondeaya’ € Ay by b’ e B. Entonces

a<a y ad'<a en A

b<b' y b'<bh en B.

Comp Ay B son conjuntos parcialmente ordenados, la antisimetria de los 6rdenes
parciales en 4 y B implica que

a=a 'y b=0b.

Por lo tanto, < satisface la propiedad antisimétricaen 4 X B
Por Gltimo, supdngase que

(a,b)<(a',b') y (a',b)<(a", b,
donde a,a’,a"€ 4y b, b', b’ e B. Entonces

7

a<a y a <d,

de modo que @ < @”, por la propiedad transitiva del orden parcial en 4. De manera
analoga.
b<h y b LD,
de modo que b < b", por la propiedad transitiva del orden parcial en 8. Por lo tanto,
(u,b) = (0", D).

En consecuencia, la propiedad transitiva es vélida para el orden parcial end X B,y se
concluye que 4 X B es un conjunto parcialmente ordenado. [



228 Capitulo 7

Relaciones y estructuras de orden

El orden parcial < definido anteriormente en el producto cartesiano 4 X B es el orden
parcial producto.

Si (4, <) es un conjunto parcialmente ordenado, se dice quea <bsia< b, peroa # b.
Supdngase ahora que (4, <) y (B, <) son conjuntos parcialmente ordenados. En el teorema 1
se define el orden parcial producto en 4 X B. Se define otro orden parcial Gtil en 4 X B,
denotado por <, como sigue: '

(a,b) < (a',b") sia<a o sia=a' yb<b'.

Este orden es llamado lexicografico, u orden de “diccionario”. El orden de los elementos en
la primera coordenada domina, excepto en el caso de “empates”, cuando la atencién pasa
a la segunda coordenada. Si (4, <) y (B, <) son conjuntos linealmente ordenados, entonces
el orden lexicografico < en 4 X B también es un orden lineal.

Ejemplo 8. Sea 4 =, con el orden usual <. Entonces el plano %= ¥ X i puede tener
un orden [exicografico. La figura 7.1 ilustra esto. Se observa que el plano es ordenado
linealmente por el orden lexicografico. Cada recta vertical tiene el orden usual, y los pun-
tos en una recta son menores que cualesquiera de los puntos en una recta mas a la derecha.

Asi,enlafigura 7.1, p, < py, p; < p3y P2 < Ps ¢
P3
IS
® Py
X
X=X X =Xy
Figura 7.1

bl orden lexicogratico se puede extender taciimente a los productos cartesianos 4, X
AvA o XA, como stgue:

(apoaa . ooya,) = (ar,ay, ar) sty solosi
a<a o
a=dary @< a0
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a=a,;m=a, ..., 4, ;=4a,_, y aq<a.

Asi, la primera coordenada domina, excepto para la igualdad, en cuyo caso se considera la
segunda coordenada. Si de nuevo se cumple la igualdad, se prosigue con la siguiente coor-
denada, y asi sucesivamente.

Ejemplo 9. SeaS={a b,...,z} el alfabeto ordinario, ordenado linealmente en la forma
usual (a < bh,b<c,...,y<z). Entonces, es posible identificar S"=S X S X - -+ X §(n
factores) con el conjunto de todas las palabras de longitud ». El orden lexicografico en §”
tiene la propiedad de que si w, < w, (w;, w,& §"), entonces w, debe preceder a w, en un
diccionario. Este hecho justifica el nombre del orden.

Asi, parque < parte, heno < hipo, alas < olas. Esto Gltimo es valido pues a <
0; el segundo caso se debe a que A = h, e <i; y el primero es cierto, pues p =p, a = a,
r=r k<t *

SiS es un conjunto parcialmente ordenado, es posible extender el orden lexicografico
a S* (véase la seccion 1.3) de la manera siguiente.

Six=aa,  a,yy=bb,---b.estinen S* conn <k, sedicequex < ysi(a,,...
ca,) < (b, ..., b,)enS"bajo el orden lexicografico de S". En otras palabras, se recorta a
la longitud de la palabra mas corta y después se compara.

En el parrafo anterior, se utilizé el hecho de que la n-ada (a,, a,, .., a,)e S",yla
cadena a,a, - -+ a, € S* son realmente la misma sucesion de longitud n, escrita con dos
notaciones diferentes. Las notaciones difieren por razones histéricas, y seran utilizadas de
manera indistinta, segun el contexto.

Ejemplo 10. SeaSi{a b..... z}, ordenado de manera usual. Entonces $* es el conjunto
de todas las “‘palabras™ posibles de cualquier longitud, aunque la palabra puede o no tener
sentido.

Asi, se tiene que

avuda < avudando
en 5%, ya que
wvuda < avuda
en S, Del mismo modo,
aviidame < ayudamos
ya que
aviildame < avudamo
en o Como muestia el gempio
vt L vl

este orden incluye el orden prefijo; es decir, cualguier palabra es mayor que todos sus prefi-

jos (particulas iniciates con significado, de una palabra). Esta es también la forma de pre-

sentar las palabras en el diccionario. Asi, de nuevo se obtiene el orden de diccionario, pero
esta vez para palabras de cualquier longitud finita. ¢
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Como un orden parcial es una relacién, es posible analizar el digrafo de cualquier
orden parcial sobre un conjunto finito. Se encontrara que es posible representar los digrafos
de los ordenes parciales de manera mas sencilla que como se hizo en el caso de las relacio-
nes generales. El siguiente teorema proporciona el primer resultado en esta direccion.

Teorema 2.  El digrafo de un orden parcial no tiene ciclos de longitud mayor que 1.

Demostracion: Suponga que el digrafo del orden parcial < en el conjunto 4 contiene
un ciclo de longitud # > 2. Entonces existen distintos elementos a,, a,, . . . , a,€ A4
tales que

G =a50,=4ay,...,4, | =a,da,=a,.

Por la transitividad del orden parcial, utilizada n — 1 veces, a,< a, Por antisimetria,
a,< a,y a,< a, implican a,= a,, lo cual contradice la hipétesis de que a,, a,, . . . , a,
son distintos. ®

Diagramas de Hasse

Sea 4 un conjunto finito. El teorema 2 ha mostrado que el digrafo de un orden parcial en 4
solo tiene ciclos de longitud 1. De hecho, como un orden parcial es reflexivo, cada vértice
en el digrafo del orden parcial esta contenido en un ciclo de longitud 1. Para simplificar las
cosas, se eliminara todos estos ciclos del digrafo. Asi, el digrafo de la figura 7.2(a) se dibu-
Jjaria como en la figura 7.2(b).

(a) (b)
Figura 7.2
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También se eliminaré las aristas implicadas por la propiedad transitiva. Asi,sia<by
b<c, esto implica que a < c. En este caso, se omite la arista de a a ¢; sin embargo, si se traza
las aristas de a a by de b a c. Por ejemplo, el digrafo de la figura 7.3(a) se trazaria como en
la figura 7.3(b). También se convino en trazar el digrafo de un orden parcial de modo que
todas las aristas apunten hacia arriba, para omitir las flechas de las aristas. Por ultimo, se
reemplaza los circulos que representan a los vértices por puntos. Asi, el diagrama de la
figura 7.4 muestra la forma final del digrafo de la figura 7.2(a). El diagrama resultante de un
orden parcial, mucho més sencillo que su digrafo, es ¢l diagrama de Hasse del orden par-
cial del conjunto parcialmente ordenado. Como el diagrama de Hasse describe completa-
mente el orden parcial asociado, se observara que es una herramienta muy ttil. No confunda
los diagramas de Hasse con las graficas (capitulo 6). Ambos son formas simplificadas de
representar diferentes tipos de digrafos.

®c

(a) (b) ®a
Figura 7.3 Figura 7.4

Ejemplo 11. Sead = {1, 2, 3,4, 12}. Considere el orden parcial de divisibilidad en 4. Es
decir,siaybe A,a< bsiysolosia|b. Trace el diagrama de Hasse del conjunto parcial-
mente ordenado (4, <).

Solucidn: La figura 7.5 muestra el diagrama de Hasse. Para enfatizar la simplicidad
del diagrama de Hasse, en la figura 7.6 se mostrard el digrafo del conjunto parcial-
mente ordenado de la figura 7.5. *

Ejemplo 12. Sea S = {a b, ¢} y A = P(S). Trace el diagrama de Hasse del conjunto
parcialmente ordenado 4 con el orden parcial ¢ (inclusion de conjuntos).

Solucion: Primero se determina 4, y se obtiene
A = {D, {a}. {b}. {c}. {a, b}, la, ¢} {b. ¢} {a. b, ¢}).
Entonces. es posible trazar ¢l diagrama de Hasse como en la figura 7.7. *

Observe que el diagrama de Hasse de un conjunto tinito linealmente ordenado siem-
pre tiene la forma de la figura 7.8.

Es facil ver que si (4, <) es un conjunto parcialmente ordenado y (4, =) es el dual del
conjunto parcialmente ordenado, el diagrama de Hasse para (4, 2) es justamente el diagrama
de Hasse para (4, <), volteado de arriba hacia abajo.
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12
4
2
1
Figura 7.5
(b, c}
{h}

Figura 7.7

Figura 7.6

{a, b, ¢}

{aY ('}

fa}

'Y

®f

Figura 7.8
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Ejemplo 13. La figura 7.9(a) muestra el diagrama de Hasse de un conjunto parcialmente
ordenado (4, <), donde 4 = {a, b, ¢, d, ¢, f}. La figura 7.9(b) muestra el diagrama de Hasse
del conjunto parcialmente ordenado dual (4, =). Observe que, como se mencioné anterior-
mente, cada uno de estos diagramas puede ser construido volteando el otro de arriba hacia
abajo. S

(a) (b)

Figura 7.9

Ordenamiento topoldgico

Si 4 es un conjunto parcialmente ordenado con orden parcial <, a veces se necesita determi-
nar un orden lineal < para el conjunto 4 que sea simplemente una extension del orden
parcial dado, en el sentido de que sia < b, entoncesa < b. El proceso de construccion de un
orden lineal como < es un ordenamiento topolégico. Este problema puede surgir cuando
se tenga que introducir un conjunto parcialmente ordenado finito 4 en una computadora.
Hay que introducir los elementos de A4 en algin orden, y tal vez se quiera introducirlos de
modo que se preserve el orden parcial. Es decir, si a < b, entonces se introduce g antes que
b. Un ordenamiento topoldgico < proporcionara un orden de introduccion de los elementos
que cumplird esta condicion.

Ejemplo 14. Proporcione un ordenamiento topologico para el conjunto parcialmente or-
denado cuyo diagrama de Hasse aparece en la figura 7.10.

Sotucion.  Elorden parcial ~ cuyo diagrama de Hasse aparece en la figura 7.11()
¢s claramente un orden lineal. Es facil ver que cada pareja en € csta también en ¢l
orden <, de modo que < es un ordenamiento topoldgico del orden parcial <. La
figura 7.11(b) y (¢) muestran dos soluciones diterentes a este problema. *

Como muestra el ejemplo 14, existen muchas formas de ordenar topologicamente un
conjunto parcialmente ordenado dado. En la seccién 7.2 se proporcionard un algoritmo para
generar ordenamientos topologicos.
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®of ?f
®f
4o $e
f e
e e
d T b
¢ 8 | 32
# c 8
T ®d
d ? b ? ¢
c
e a ®a ®a
a (a) (b) (c)
Figura 7.10 Figura 7.1

Isomorfismo

Sean (4, <) y (4, <) conjuntos parcialmente ordenados y /1 4 — 4’ una correspondencia
uno a uno entre 4y A'. La funcién fes un isomorfismo de (4, <) en (4', <’} si, para
cualquiera y ben 4,

a<b siysbdlosi f(a)<' f(b).

Si/: A4 — A’ es un isomorfismo, se dice que (4, <) y (4', <') son conjuntos parcialmente
ordenados isomorfoes.

Ejemplo 15. Sea 4 el conjunto Z " de enteros positivos, y sea < el orden parcial usual en
A (véase el ejemplo 2). Sea 4’ el conjunto de enteros positivos pares y sea<’ el orden parcial
usual en 4’. La funciéon f: 4 — A’ dada por

Ha) = 2a

es un isomorfismo de (4, <) a (47, <),

En primer fugar, f'es uno a uno, pues si f(«) = f(b), entonces 2u = 2b, de modo que
« - b. A continuacion, Dom( f ) — A, de modo que f esta definida para todo punto. Por
altimo, st ¢ € A', entonces ¢ = 2a para algina € Z *; por lo que ¢ = f (). Esto muestra que
1 es sobre, por lo cual f'es una correspondencia uno a uno. Por ultimo, sia y b son elementos
de A4, entonces es claro que a < b siy s6lo si 2a < 2b. Asi, fes un isomorfismo. *

Suponga que f: 4 — 4’ es un isomorfismo de un conjunto parcialmente ordenado (4,
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<) a un conjunto parcialmente ordenado (4', <'). Suponga también que B es un subconjunto
de Ay B' = f(B) es el subconjunto correspondiente de A’. Entonces, de la definicién de
isomorfismo, se observa que se cumple el siguiente principio general.

Teorema 3 (Principio de Correspondencia). Silos elementos de B tienen cualquier pro-
piedad que los relaciona entre si o con los demas elementos de A, y si es posible definir esta
propiedad completamente en términos de la velacion <, entonces los elementos de B' deben
poseer exactamente la misma propiedad, definida en términos de <'. PY

Ejemplo 16. Sea (4, <) el conjunto parcialmente ordenado cuyo diagrama de Hasse apa-
rece en la figura 7.12, y suponga que f'es un isomorfismo de (4, <) con algin otro conjunto
parcialmente ordenado (4', <'). Observe primero que d < x para cualquier x en 4 (mas tarde
se dira que tal elemento d es un “elemento minimo” de 4). Entonces el elemento correspon-
diente f(d) en A’ debe satisfacer la propiedad de que f(d) <’ y paratoday en 4’. Como otro
ejemplo, observe que a £ by b £ a. Esta pareja no es comparable en 4. El principio de

correspondencia implica que f'(a) y f(b) no pueden ser comparables en 4'. *
a b
c
d
Figura 7.12

Para un conjunto finito parcialmente ordenado, uno de los objetos definidos comple-
tamente en términos del orden parcial es su diagrama de Hasse. El principio de correspon-
dencia implica que dos conjuntos finitos parcialmente ordenados isomorfos deben tener
diagramas de Hasse idénticos.

Para ser precisos, sean (4, <) y (4', <") conjuntos finitos parcialmente ordenados, f : 4
— A’ una correspondencia uno a uno, y H cualquier diagrama de Hasse de (4, <). Entonces

1. Sifes un isomorfismo y cada etiqueta a de / se reemplaza por f (a), entonces H
sera un diagrama de Hasse para (4', <').

Reciprocamente,

2. SiH esun diagrama de Hasse para (4', <'), al reemplazar cada etiqueta a por f(a),
entonces fes un isomorfismo.

Ejemplo 17. Sean 4= {12 3.6} y<larelacion ! (divide). La figura 7.13(a) muestra un
dragrama de Hasse para (4, s ). Sean A4’ — Plia hyy— o say ihyofa by =" la conten-
cién de conjuntos, <. St se define f 1 4 — A" por

f =2, f2)y=Afal.  f3)={bl, f(6) = la,b},
entonces es facil ver que fes una correspondencia uno a uno. Si cada ctiqueta @ ¢ .4 del

diagrama de Hasse se reemplaza por f(a), la figura 7.13(b) muestra el resultado. Como esto
es claramente un diagrama de Hasse para (4’, <), la funcion f'es un isomorfismo. *
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6

(a)
Figura 7.13

GRUPO DE EJERCICIOS 7.1

1. Determine si la relacion R es un orden parcial en el
conjunto 4.
(a) A=Z,yaRbsiysolosia=2b.
(b) A=Z,yaRbsiysblosib*|a.
(¢) A=Z,yaRbsiysolosia=b"paraalginke
Z'. Observe que & depende de a y b.
(d) A=% yaRbsiysolosia<b.

2. Determine si la relacion R es un orden lineal en el

conjunto A.

(1) A=" ,yaRbsiysolosiac<bh.

(b) A= . yaRbsiysolosia>b.

(c) A = P(S5), donde S es un conjunto. La relacion R
es la inclusion de conjuntos.

(dy 4= X ", y(a, byR(a',b')siysolosia<a’
y b < b, donde < es el orden parcial usual en

3. Enclconjunto 4 = {a, b, ¢}, determine todos los
ordenes parciales < tales que a < b.

4. ;Qué puede decir acerca de la relacién R en un
conjunto A si R es un orden parcial y una relacién de
cquivalencia?

En los cjercicios 5 v 6, determine el diagrama de
Hasse de la relacion R.

S A=1{1,2,3,4,R = {(1,1),(1,2),(2,2),(2,4),
(1,3),(3,3),(3,4), (1,4). (4, 4)}

{a, b}

{a} {b}

(b)

6. A={ab,c,d, e},R={(a,a),(b,b),(cc),(ac),
(c.d),(c,e),(a,d),(d,d), (a,e),(b,c), (b, d),
(b, e). (e, e)}

7. Describa las parejas ordenadas en la relacion
determinada por el diagrama de Hasse sobre el
conjunto 4 de las figuras 7.14 y 7.15.

(ay A=1{1,2,3,4}

4

3
2 1
Figura 7.14

(b) 4=1{1,2,3.4}

¢4

Figura 7.15

‘En los ejercicios 8 y 9, determine el diagrama de

Hasse del orden parcial con el digrafo dado (figu-
ras 7.16 y 7.17).

| Y
SRS

Figura 7.16

Figura 7.17
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10. Determine el diagrama de Hasse de la relacién en
4=1{1,2,3,4, 5} con la matriz que se muestra.

11 1 1 1
01 1 1 1
(a) 0 01 1 1
00 0 1 1
00 0 0 1]
1 0 1 1 17
0 1 1 1 1t
® oo 1 1 1
00 01 0
[0 0 0 0 1]

11. Determine la matriz del orden parcial con el
diagrama de Hasse dado (figuras 7.18 y 7.19).
(a) 2 3 4 5

1
Figura 7.18

() 4 5

1
Figura 7.19

12. SeaA=7"X Z" con el orden lexicografico.
Marque cada uno de los siguientes incisos como
verdadero o falso segin sea el caso.

(a) (2,12) < (5,3) (b) (3,6) <(3,24)
(c) (4,8) < (4,6) (d) (15,92) < (12,3)

En los ejercicios 13y 14, considere el orden parcial
de divisibilidad en el conjunto A. Trace el diagrama
de Hasse del conjunto parcialmente ordenado y de-
termine cudles conjuntos son linealmente ordena-

dos.

13. (a) A = {1,2,3,5,6, 10, 15, 30}
(b) A = {2,4,8, 16,32}
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4. (a) A = [3,6,12,36,72
{1,2,3

72}
(b) A 4,5,6,10,12, 15, 30, 60}

15. Sead ={[_], 4 B. C. E, O, M, P, S} con el orden
alfabético usual, donde ] representa un caracter
“blanco” y [J<xparatodaxe 4.

Acomode lo siguiente en orden lexicografico (como
elementos de 4 X A X 4 X 4).

(2 MOPJ  (b) MOPE

(c) CAP[J (d) MAP[J

(e) BASE (fy ACE

(g) MACE (h) CAPE

En los ejercicios 16 y 17, trace el diagrama de
Hasse de un ordenamiento topologico para el con-
junto parcialmente ordenado dado (figuras 7.20 y
7.21).

16. 8
7
5 6
4
2 3
1
Figura 7.20

Figura 7.21

18.

19.

20.

21.

22,

24.

25.

Si (4, <) es un conjunto parcialmente ordenado y A’
es un subconjunto de 4, muestre que (4, <) es
también un conjunto parcialmente ordenado, donde
<’ es larestriccion de < a 4’.

Muestre que si R es un orden lineal en el conjunto 4,
entonces R™! también es un orden lineal en 4.

Una relacion R en un conjunto 4 es un cuasi-orden
si es transitiva e irreflexiva. Sea 4 = P(S) el conjunto
potencia de un conjunto S, y considere la siguiente
relacion Ren 4: UR T'siy solosi U & T (conten-
¢idn propia). Muestre que R es un cuasi-orden.

Sea 4 = {x | xesunnumerorealy —5 < x < 20}.
Muestre que la relacion usual < es un cuasi-orden
(véase el gjercicio 20) en A4.

Si R es un cuasi-orden en A (véase el ejercicio 20),
muestre que R~ ' también es un cuasi-orden.

SeaB=1{2,3,6,9,12,18,24} ysead =B X B.
Defina la siguiente relacion en 4: (a, b) < (a’, b") si
ysolosiala’yb<b’, donde < es el orden parcial
usual. Muestre que < es un orden parcial.

Scad={1,2.3,5 6,10, 15,30} y considere ¢l
orden parcial < de divisibilidad en 4. Es decir, a < b
significa a | b. Sea A’ == I(S), donde S = {¢, [,g}, el
conjunto parcialmente ordenado con orden parcial

. Muestre que (4, <)y (4’, <) son conjuntos
parcialmente ordenados isomorfos.

Sea 4 = {I, 2,4, 8} y < el orden parcial de
divisibilidad en 4. Sea 4" = {0, 1,2,3} y<' la
relacion usual “menor o igual que” en los enteros.
Muestre que (4. <) v (4", <) son isomorfos.
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7.2. Elementos extremos de conjuntos parcialmente ordenados

Ciertos elementos de un conjunto parcialmente ordenado tienen una importancia particular
para muchas propiedades y aplicaciones de los conjuntos parcialmente ordenados. En esta
seccion se analizara estos elementos, y en secciones posteriores se vera el importante papel
que juegan. En esta seccion se considerard un conjunto parcialmente ordenado (4, <) con
orden parcial <.

Un elemento a € 4 es un elemento méximgjde 4 si no existe un elemento ¢ en A tal
que a < ¢ (véase la seccion 7.1). Un elemento b € 4 es un elemento minimgjde 4 si no
existe un elemento ¢ en 4 tal que ¢ < b.

Esto implica que si (4, <) es un conjunto parcialmente ordenado y (4, >) es su conjun-
to parcialmente ordenado dual, un elementoa € 4 es un elemento maximo de (4, >) si y s6lo
si a es un elemento minimo de (4, <). Ademas, a es un elemento minimo de (4,2)sly
solo si es un elemento maximo de (4, <).

Ejemplo 1. Consicere el conjunto parcialmente ordenado 4 cuyo diagrama de Hasse apa-
rece en la figura 7.22. Los elementos a,, a, y a, son elementos maximos de 4, y los elemen-
tos by, b, y by son elementos minimos. Observe que, como no existe un segmento entre byy

b;, se puede concluir que ni b; < b, ni b, < b;. *
as
aj ap
b, by
b3
Figura 7.22

Ejemplo 2. Sea A el conjunto parcialmente ordenado de nimeros reales no negativos con
el orden parcial usual <. Entonces 0 es un elemento minimo de 4. No cxisten elementos
maximos de 4. L

EUECTTECIRETS FECETET SETNDETIE INPPSUE PRT AU R N R
o oparcialmente ordenade 2 con o viden parcidi usidal = o UCiic

o}
ey

ntos Mmaximos i clementos minimos, L 4
Teorema 1. Sca A un conjunto finito parcialmente ordenado no vacio con orden parcial
< Fntonces 4 tiene al menos un clemento maximary al menos un elemento minimaw

Demostracion:  Seaa cualquier elemento de 4. Si a no es maximo, es posible deter-
minar un elemento g, e A tal que « < a,. Si ¢, no es maximo, puede determinarse un
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elemento a,e 4 tal que a, < a,. Este argumento no puede continuar de manera indefi-
nida, ya que 4 es un conjunto finito. Asi, en cierto momento se obtendra la cadena
finita

a<a, <a,<- -<ap_;<a,

que no puede extenderse. Por lo tanto, no es posible tener a, < b para cualquier b e 4
y a, es un elemento maximo de (4, <).

El mismo argumento dice que el conjunto parcialmente ordenado dual (4, ) tiene un
elemento maximo, de modo que (4, <) tiene un elemento minimo. ®

Puede utilizarse el concepto de elemento minimo para proporcionar un algoritmo que
determine un ordenamiento topolégico de un conjunto finito parcialmente ordenado dado
(4, <). Obsérvese primero que siae AyB=4 — {a}, entonces B es también un conjunto
parcialmente ordenado bajo la restriccion de < a B X B (véase la seccion 4.2). Entonces, se
obtiene el siguiente algoritmo, el cual produce un arreglo lineal ltamado SORT. Supéngase
que SORT esta ordenado segun el indice creciente; es decir, SORT[1] < SORT[2] < - --.
La relacion < en A definida de esta forma es un ordenamiento topolédgico de (4, <).

Algoritmo para determinar un ordenamiento topologico de un conjunto finito parcial-
mente ordenado (4, <).

Paso 1. Se elige un elemento minimo a de 4.

Paso 2. Se hace que a sea la siguiente entrada de SORT y se reemplaza A con 4 — {aj}.
Paso 3. Se repite los pasos 1 y 2 hastaque 4 = { }.

Fin del algoritmo

Ejemplo 4. Sead={a, b, c, d, e}; lafigura 7.23(a) muestra el diagrama de Hasse de un
orden parcial < en 4. Un elemento minimo de este conjunto parcialmente ordenado es el
vértice etiquetado d (también se podria haber elegido ¢). Se coloca ¢ en SORT[l] y en la
figura 7.23(b) se muestra el diagrama de Hasse deA {d}. Un elemento minimo del nuevo
4 es e, de modo que e es ahora SORT[2], y la figura 7.23(¢c) muestra 4 — {e}. Este proceso
continda hasta terminar 4 y llenar SORT. La figura 7.23(f) muestra el arreglo completo
SORT y el diagrama de Hasse del conjunto parcialmente ordenado correspondiente a SORT.
Este es un ordenamiento topologico de (4, €). ¢

Un elemento ¢ = 4 es un elemento maximo de A si x < ¢ para toda x € 4. Un
elemento a € A4 es un elemento minimo de 4 sia < x paratodax e A.

Como antes, un elemento « de (4, <) es un elemento maximo (0 minimo) si'y solo st
es el elemento minimo (o maximo) de (A4, ).

Ejemplo 5. Considere el conjunto parcialmente ordenado definido en el ejemplo 2. En-
tonces 0 es un elemento minimo; no existe un elemento maximo. L4

Ejemplo 6. Sea S — {a h ¢l v considere el conjunto parcialmente ordenado A = P(S)

A)4 . . . PN ] ) N T I .- . . oo Trey catoaery vent iy oy H . ‘ >
derimdo en el cretipio 0 Ao ta stecion o b vuiuiiie Ladie o il slomentos minime de 4,

vel conjunto 8 es un elemento maximo de A ¢
Ejemplo 7. El conjunto parcralmente ordenado Z con el orden parcia usual o uene cle-

mento minimo ni Maximo. ¢

Teorema 2.  Un conjunto parcialmente ordenado tiene a lo mas un clemento maximo y a
lo mas un elemento minimo.
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Demostracion:  Suponga quea y b son elementos maximos de un conjunto parcialmen-
te ordenado 4. Entonces, como b es un elemento maximo, se tiene que a < b. De manera
tanélgga, como a es un elemento méximo, se tiene que b < a. La propiedad antisimétrica
gnphca que a = b. Asi, si el conjunto parcialmente ordenado tiene un elemento maximo

tiene solo un elemento de este tipo. Como este hecho es valido para todos los conjuntos’
parcialmente ordenados, el conjunto parcialmente ordenado dual (4, >) tiene a lo mas un
elemento maximo, de modo que (4, <) también tiene a o mas un elemento minimo. @

a b a b
c c
SORT
d
d e (4
(a) (b)
b a b
o ®
SORT SORT
d e d e c
c
(c) (d)
@ a
®b
SORT SORT
a
L ] d e c b @ d e c b a
(e) P
o d
(f)
Fiqura 7.23

El elemento maximo de un conjunto parcialmente ordenado, si existe, se denota por /

y con frecuencia es Hamado elemento unidad. De manera analoga, el elemento minimo de

un conjunto parcialmente ordenado, si existe, se denota por 0 y con frecuencia se lo Hlama
elemento cero.
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Considere un conjunto parcialmente ordenado 4 y un subconjunto B de 4. Un ele-
mento a € A es una cota superior de Bsib< aparatodabe B.Unelementoae 4 esuna
cota inferior de Bsia< bparatodabe B.

Ejemplo 8. Considere el conjunto parcialmente ordenado 4 = {a, b, ¢, d, e, /. & h},cuyo
diagrama de Hasse aparece en la figura 7.24. Determine todas las cotas superior e inferior de
los siguientes subconjuntos de 4: (a) B,= {a, b}; (b) B,= {c, d, ¢}.

h

a b
Figura 7.24

Solucion
(a) B, no tiene cotas inferiores; sus cotas superiores sonc, d, e, /, gy h.
(b) Las cotas superiores de B, son f, g y /; sus cotas inferiores son ¢, a y b. *

Como muestra el ejemplo 8, un subconjunto B de un conjunto parcialmente ordenado
puede o no tener cotas superiores € inferiores (en 4). Ademas, una cota superior o inferior
de B puede o no pertenecer al propio B.

Sea 4 un conjunto parcialmente ordenado y B un subconjunto de 4. Un elementoa e
A es una minima cota superior (LUB) de B sia es una cota superior de By a < a', siempre
y cuando a’ sea una cota superior de B. Asi,a =LUB (B)sib<aparatodabe B,y sia' e
A es también una cota superior de B, entonces a < a’.

De manera anéloga, un elementoa € A es una maxima cota inferior (GLB) de Bsiaes
una cota inferior de By a' < a, siempre y cuandoa’ sea una cota inferior de B. Asi,a = GLB (B)
sia< bparatodabe B,ysia e A estambién una cota inferior de B, entonces a’ < a.

(‘omo de costumbre. [as cotas superiores en {4. <) corresponden a cotas inferiores en
(4, 2) (para el mismo conjunto de elementos) y las cotas inferiores en (A, <) corresponden a
cotas superiores en (4. 2). También existen enunciados similares validos para las maximas co-
tas inferiores y minimas cotas superiores.

Ejemplo9. SeaA el conjunto parcialmente ordenado del ejemplo 8 con los subconjuntos
B, y B, definidos en ese ejemplo. Determine todas las minimas cotas superiores y todas las
méaximas cotas inferiores de (a) B,; (b) B,.
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l S TP V- “‘"!S!’
Solucion - 5o EEERE A §
. . . : L ' * i

(a) Como B, no tiene cotas inferiores, RO Hene maximas cotas inferiores. Sin j
embargo, | e }

LUB (B % e

(b) Como las cotas inferiores de B, son ¢, a y b, se determina que

GLB (B,) = c.
Las cotas superiores de B, son f; g y h. Como f'y g no son comparables, se concluye
que B, no tiene una minima cota superior. *

Teorema 3. Sea (4, <) un conjunto parcialmente ordenado. Entonces un subconjunto B
de A tiene a lo mds una LUB y a lo mds una GLB.

Demostracion: La demostracion es similar a la del teorema 2. °

Se concluye esta seccion con algunas observaciones acerca de las cotas LUB y GLB
en un conjunto finito parcialmente ordenado 4, para lo cual se utiliza el diagrama de Hasse
deAd.SeaB={b,, b,,...,b,}.Sia=LUB (B), entonces a es el primer vértice que puede ser
alcanzado desde by, b,, . . . , b, mediante trayectorias verticales hacia arriba. De manera
analoga, si a = GLB (B), entonces a es el primer vértice que puede ser alcanzado desde b,,
b,, . .., b, mediante trayectorias verticales hacia abajo.

Ejemplo 10. Sea 4 = {1,2,3,4,5,..., 11} el conjunto parcialmente ordenado cuyo
diagrama de Hasse aparece en la figura 7.25. Determine la LUB yla GLB de B = {6, 7, 10},
si existen.

Solucion:  Se verifico todas las trayectorias hacia arriba desde los vértices 6, 7 y 10
y se determiné que LUB (B) = 10. De manera analoga, al analizar todas las trayecto-

rias hacia abajo desde 6, 7 y 10, se determind que GLB (B) =4. *
11
10
9
8
5
4
2
1

Figura 7.25

El siguiente resultado es una consecuencia inmediata del principio de corresponden-
cia (véase la secciéon 7.1).

Teoremad. Suponga que(A4,<)v(A’',<')son conjuntos parcialmente ordenados isomorfos
bajo el isomorfismo f: A —> A"
(a) Si a es un elemento maximo (minimo) de (A, <), entonces f (a) es un elemento
maximo (minimo) de (4', <').
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(b) Si a es el elemento mdximo (minimo) de (A, <), entonces f (a) es el elemento
mdximo (minimo) de (A', <’

(¢) Si a es una cota superior (cota inferior, minima cota superior, mdxima cota infe-
rior) de un subconjunto B de A, entonces f(a) es una cota superior (cota inferior,
minima cota superior, maxima cota inferior) para el subconjunto f (B) de A'.

(d) Si todo subconjunto de (4, <) tiene una LUB (GLB), entonces todo subconjunto
de (4',<') tiene una LUB (GLB). ®

Ejemplo 11. Muestre que los conjuntos parcialmente ordenados (4, <) y (4', <'), cuyos
diagramas de Hasse aparecen en las figuras 7.26(a) y (b), respectivamente, no son isomorfas.

a a’' b’
b c c'
(@) (b)
Figura 7.26

Solucién: Los dos conjuntos parcialmente ordenados no son isomorfos, ya que (4, <
tiene un elemento maximo a, mientras que (4’, <’) no tiene tal elemento maximo.
También se puede argumentar que no son isomorfos ya que (4, <) no tiene un elemen-
to minimo, mientras que (4’, <') tiene un elemento minimo. ¢

GRUPO DE EJERCICIOS 7.2

En los ejercicios 1 al 4, determine todos los elemen-

2. (a)
tos mdximos y minimos del conjunto parcialmente or- e f
denado.
1. (a) 3 5 d
4
2
1 6 ¢
Figura 7.27
(b) f g b
.b
d e
Figura 7.29
a b c
Figura 7.28

Scccion 7.2

(b) 4 7 5
3 6 3
5
2 8
1 2
Figura 7.33
1 9

Figura 7.30

3. (a) 4= con el orden parcial usual <.
(b) 4={x|xesunnumeroreal y 0 <x <1} conel
orden parcial usual <.

4, (a) A={x|xesunnimerorealy 0 <x <1} conel
orden parcial usual <.
(b) 4=1{2,3,4,6,8, 24, 48} con ¢l orden parcial de
divisibilidad.

En los ejercicios 5 al 8, determine los elementos

maximo y minimo, si existen, del conjunto parcial-
mente ordenado.

5. (a) I
d e
b c

a

Figura 7.31

(b) °

?d

a b
Figura 7.32
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6. (a) 4

(b) 5
4
2 3
1

Figura 7.34

(a) A= {x|xesunnimeroreal y0 <x <1} conel
orden parcial usual <.

(b) A= {x|xesunnimeroreal y 0 <x< 1} con el
orden parcial usual <.

(a) 4A=1{2,4,6,8,12,18,24,36, 72} con el orden
parcial de divisibilidad.

(b)Y A=1{2,3,4.6,12, 18,24, 36} con ¢l orden
parcial de divisibilidad.

En los ejercicios 9 al 18, determine, si existen, (a)
todas las cotas superiores de B; (b) todas las co-
1as inferiores de B; (¢} la minima cota superior de
B; (d) la maxima cota inferior de B.

9.

g h

B={cd e}
Figura 7.35
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10. 4 5 12. 5 8
6
4 9
3 7
1 2
B=1{3,4,6}
1 2 Figura 7.38

B=1{1,2,3,4,5}

Figura 7.36 13. (4, <) es el conjunto parcialmente ordenado del

ejercicio 9; B= {b, h, g}.

14. (a) (4, <) es el conjunto parcialmente ordenado del
ejercicio 12; B = {4, 6, 9}.

11. f (b) (4, <) es el conjunto parcialmente ordenado del
’ ejercicio 12; B={(3, 4, 8}.
15. 4= y < denota el orden parcial usual; B= {x|x
e es un nimero real y 1 <x <2},
16. 4=y < denota el orden parcial usual; B = {x |x
esunnimeroreal y I <x <2},
e
17. A=P({a, b, c})y < denota el orden parcial usual de
contencion; B = P ({a, b}).
c L 18. 4=1{2,3,4,6,8,12,24,48} y < denota el orden
parcial de divisibilidad; B = {4, 6, 12}.
19. Construya c! diagrama dc Hassc de un ordenamiento
be topologico del conjunto parcialmente ordenado cuyo
diagrama de Hasse aparece en la figura 7.35. Utilice
el algoritmo SORT.
a® 20. Construya el diagrama de Hasse de un ordenamiento
topologico del conjunto parcialmente ordenado cuyo
B =1{b c d} diagrama de Hasse aparece en la figura 7.36. Utilice
Figura 7.37 el algoritmo SORT.

7.3. Reticulas

Una reticula es un conjunto parcialmente ordenado (L, <) tal que cada subconjunto {a, b}
de dos elementos tiene un minima cota superior y una méaxima cota inferior. Se denota LUB
({a, b}) comoa V by es llamada unién de a y b. De igual manera, se denota GLB ({a, b})
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mediante @ A\ by se la llama conjuncién de a y b. Con frecuencia, las estructuras de tipo
reticula aparecen en la computacion y las aplicaciones matematicas. Observe que una reticula
€s una estructura matematica como la descrita en la seccién 1.6, con dos operaciones binarias,
unidén y conjuncion.

Ejemplo 1. Sea S un conjunto y sea L = P(S). Como se ha visto, la contencién < es un
orden parcial en L. Sean 4 y B pertenecientes al conjunto parcialmente ordenado L, o).
Entonces 4 V B es el conjunto 4 \U B. Para ver esto, observe que 4 ¢ 4 U B, B cAURB,
y,siAc Cy B c C, entonces 4 U B < C. De manera anéloga, se puede mostrar que el
elemento 4 A Ben (L, <) es el conjunto 4 () B, L es una reticula. ¢

Ejemplo 2. Considere el conjunto parcialmente ordenado (Z *, <), donde paraa yben Z *,
a<bsiysolosia|b. Entonces L es unareticula donde la unién y la conjuncién de a y b son
su minimo comiin multiplo y su méximo comin divisor, respectivamente (véase la seccion
1.4). Es decir,

aVb=MCM(a b) v aANb=MCD(aq,bd). ¢

Ejemplo 3. Sea n un entero positivo y sea D, el conjunto de todos los divisores positivos
de n. Entonces D, es una reticula bajo la relacion de divisibilidad, como en el ejemplo 2.
Asi, sin =20, se tiene Dy, = {1, 2, 4, 5, 10, 20}. La figura 7.39(a) muestra el diagrama de
Hasse de D,,. Sin =30, se tiene D= {1, 2, 3, 5, 6, 10, 15, 30}. La figura 7.39(b) muestra
el diagrama de Hasse de Dy, ¢

20 30

2 5 2 5
1 1
Dy D
(@) (b)
Figura 7.39

Ejemplo 4. ;Cuales de los diagramas de Hasse de la figura 7.40 representan reticulas?
Solucion.  Los diagramas de Hasse ta). (D), (diy (&) iepresentan icticulas. Bl diagiama
(¢) no representa una reticula, ya que V' g no existe. El diagrama (f) no representa
una reticula ya que no existen A ¢ ni bV . El diagrama (g) no representa una
reticula ya que ¢ A d no existe. .

Ejemplo 5. Se ha observado ya en el ejemplo 4 de la seccion 7.1 que el conjunto i, de
todas las relaciones de equivalencia en un conjunto A es un conjunto parcialmente ordenado
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(a)

bajo el orden parcial de contencion de conjuntos. Se puede ahora concluir que i, es una
reticula, donde la conjuncién de las relaciones de equivalencia R y S es su intersecciéon R (M)

S'y su unidén es (R \U S)7, la cerradura transitiva de su union (véase la seccion 4.8). 14
f g
e
- € c d
b d d
b
a b ¢
a
a
(b) (© (d)
f e
e
d e c d
d
b c
a
a
a
(e) ® (2
Figura 7.40

Sea (L, €) un conjunto parcialmente ordenado y sea (L, =) el conjunto parcialmente
ordenado dual. Si (L, €) es una reticula, se puede mostrar que (L, =) también es una reticula.
De hecho, para cualesquieraa y b en L, la minima cota superiordea y b en (L, <) es igual a
la maxima cota inferior de a y b en (L, ). De manera analoga, la maxima cota inferior de ¢
vhen (f o< esieual a fa minima cota superior dea v b en (/.21 St L es un conjunto fintto.
puede observarse con factlidad que esta propiedad es valida. al examinar los diagramas de
Hasse del conjunto parcialmente ordenado v su dual.

Ejemplo 6. Sca S un conjunto y 1. = P(S). Entonces (7., <) es una reticula, y su reticula
dual es (1., 2). donde < esta “contenido en” y o “contiene a”. El analisis anterior a este
ejemplo muestra, entonces, que en el conjunto parcialmente ordenado (L, D), la unién 4 V
B es el conjunto 4 (M B, y la conjuncion 4 A B es ¢l conjunto 4 \J B. ¢
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Teorema 1. Si(L,, <)y (L,, <)son reticulas, entonces (L, <) es una reticula, donde L =L,
X L,, y el orden parcial < de L es el orden parcial producto.

Demostracion:  Se denota la union y la conjuncioén en L, mediante V, y A, respec-
tivamente, y la unién y la conjuncién en L, mediante V, y A, respectivamente. Por el
teorema 1 de la seccidén 7.1, L es un conjunto parcialmente ordenado. Ahora se debe
mostrar que si (a,, by) y (ay, b,) € L, entonces (a, b)) V (a5, b,) y (a,, b)) A (ay, b,)
existen en L. Se deja como un ejercicio verificar que

(a3, 1) \/ (a5, b)) = (a, \/y ay, by \/, by)

(ay, by) N\ (ay, b)) = (a; /\ ap, by /\, by).

Asi, L es una reticula. °

Ejemplo7. Seanl,yL,lasreticulasdelafigura 7.41(a) y (b), respectivamente. Entonces

L=L,X L,es lareticula de la figura 7.41(c). *
(I, L)
I I
I, @ (. b)
ANz <
(01, a) 0y, b)
0, 0,
(01, 0y)
Ll [42 L = Ll X L_:
(a) (b) (¢)
Figura 7.41

Sea (L, <) una reticula. Un subconjunto no vacio S de /. es unasubreticulade L sia V
be SyaAbe Ssiemprequeae Sybe S.

Ejemplo 8. LareticulaD, detodos los divisores positivos de n (véase el ejemplo 3) es una
subreticula de la reticula Z " bajo la relacion de divisibilidad (véase el ejemplo 2) *

Ejemplo 9. Considere la reticula L de la figura 7.42(a). kI subconjunto parctalmente or-
denado S, que aparece en la figura 7.42(b) no es una subreticula de L, ya que o ANbg S, ya
V b¢ S,. El subconjunto parcialmente ordenado S, de la figura 7.42(c) no es una subreticula
de LyaqueaV be S,. Observe, sin embargo, que S, es una reticula cuando se considera
como conjunto parcialmente ordenado en si mismo. El subconjunto parcialmente ordenado
S, de la figura 7.42(d) es una subreticula de L. *
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I I 1
e S /\ e f c
b a b a b a <> b
0 0 0
(@) (b) (©) (d)
Figura 7.42 '
Reticulas isomorfas

Sif: L,— L, es un isomorfismo del conjunto parcialmente ordenado (L,, <,) al conjunto
parcialmente ordenado (L,, <), entonces el teorema 4 de la seccion 7.2 dice que L, es una
reticula si y sélo si L, es una reticula. De hecho, si a y b son elementos de L,, entonces f (a
AB)Y=f@Nf(b)yf(aV b)=f(a)V f(b). Sidos reticulas son isomorfas como conjuntos
parcialmente ordenados, se dice que son reticulas isomorfas.

Ejemplo 10. Sea L lareticula D, y sea L' la reticula P(S) bajo la relaciéon de contencion,
donde S= {a, b}. Estos conjuntos parcialmente ordenados fueron analizados en el ejemplo
16 de la seccion 7.1, donde se muestra que son isomorfos. Asi, como ambos son reticulas,
son reticulas isomorfas. *

Sif: A4 — B es una correspondencia uno a uno de una reticula (4, <) a un conjunto B,
entonces se puede utilizar la funcién f'para definir un orden parcial <’ en B. Si b, y b, estan
en B, entonces b, = f(a,) y b,= f(a,) para ciertos elementos tinicos a, y a, de A.

Se define b, <’ b, (en B) sia, < a, (en A). Si 4 y B son finitos, entonces puede descri-
birse este proceso de manera geométrica, como sigue. Se construye el diagrama de Hasse
para (4, <). Después, se reemplaza cada etiqueta a por ¢l elemento correspondiente f(a) de
B. El resultado es el diagrama de Hasse del orden parcial <’ en B.

Cuando B recibe este orden parcial <’, fes un isomorfismo del conjunto parcialmente
ordenado (4, <) en el conjunto parcialmente ordenado (B, <'). Para ver esto, observe que ya
se ha supuesto que f'es una correspondencia uno a uno. La definicién de <’ establece que,
para cualquiera, y a, end, a,< a, sty sdlosif(a)) ' f(a,). Asi, fes un isomorfismo. Como
(4, ) es una reticula, también fo es (B, <'), y ambas son reticulas isomorfas.

Ejemplo I1.  Si 4 es un conjunto, sea.ft, el conjunto de todas las relaciones de equivalen-
ciaend y seall el conjunto de todas las particiones en 4. En el ejemplo 13 de la seccién 5.1
se construyo una correspondencia uno a uno fde ft, en I1. En el ejemplo 4 de la seccién
7.1 se consideré el orden parcial < enft,. Con este orden parcial se puede construir, utili-
zando f como se explico anteriormente, un orden parcial <’ en I1. Por construccién, si? y
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P, son particiones de 4 y R, y R,, respectivamente, son las relaciones de equivalencia co-
rrespondientes a estas particiones, entonces P < %P significara que R, < R,. Como en el
ejemplo 5 se mostré que (f», <) es una reticula, y se sabe que fes un isomorfismo, esto
implica que (II, <) también es una reticula. En el ejercicio 29 se describié el orden parcial
<' directamente en términos de las propias particiones. .

Propiedades de las reticulas

Antes de demostrar diversas propiedades de las reticulas, hay que recordar el significado de
aVbyaAb.

l. a<aVbyb<aV b;aV besunacotasuperiordeay b.

2. Sitas<cyb<c,entoncesa V b<c;aV beslaminima cota superior de
ayb.

1'.aNb<a yaANb<b;a besunacotainferiorde ay b.

2'.SicLayc<b,entonces c<a;a b;a/ besunamaxima cota inferior de
ayb.

Teorema 2. Sea L una reticula. Entonces paratodaayben L,
(@ aVb=bsiysolosia<h.
M)aAb=asiysolosia<b.
(c)aNb=asiysolosiaV b=b.

Demostracion: (a) SupongaqueaVb=5.Comoa<aV b=p,setiene quea<b.
Reciprocamente, si a < b, entonces, como b < b, b es una cota superior de a y b; de
modo que por la definicion de minima cota superior, se tiene que a V h < bh. Como a
V b es una cota superior, b<a V b,asiaV b=b.

(b) La demostracion es idéntica a la demostracion de la parte (a), y se dejara como
ejercicio al lector.

(¢) La demostracion es consecuencia de las partes (a) y (b). e

Ejemplo 12. Sea L un conjunto linealmente ordenado. Siay be L,entoncesa<bob<
a. El teorema 2 implica que L es una reticula, ya que cada pareja de elementos tiene una
minima cota superior y una maxima cota inferior. ¢

Teorema 3. Sea L una reticula. Entonces
I (@) aVa a
b) aNa—u

2. (a) aVb=bVu

(by anb=bANu

3. @ aV(hVo=@VhVe

by aNnbAc)y=(aND)ANc

Propicdades de idempotencia
Propiedades conmutativas

Propiedades asociativas



252 Capitulo 7

Relaciones y estructuras de orden

4. (@) aV(@Ab)=a

(b) aA(aVb)=a Propiedades de absorcion

Demostracion

1. Las proposiciones son consecuencia de la definiciéon de LUB y GLB.

2. Tanto la definicién de LUB como la de GLB considerana y b en forma simétri-

ca, de lo que se siguen los resultados.

3. (a) Por la definicién de LUB, se tiene quea<aV (bVe)ybVe<aV AV
¢). Ademas,b< bV cyc< bV ¢, de modo que, por transitividad, b< a V (b
Veoyye<aV(bVe) Asi,aV (b V c)es una cota superior de a y b, de
modo que por la definicién de minima cota superior se tiene

av/b=a\/ (bvc).

Como a V (b V c) es una cota superior de a V b y ¢, se obtiene

(avb)ve=a\v(bvo).

De manera andloga, a V (b V ¢) < (a V b) V c. Por la antisimetria de <, se
sigue la propiedad 3(a).
(b) La demostracion es andloga a la demostracién de la parte (a) y se omite.

4. (a) Comoa A b<aya<a,seobservaquea es una cota superior dea A b ya;
asi,a V (a A\ b) < a. Por otro lado, por la definicién de LUB, se tiene que a
<aV(aNb),demodoqueaV (aAb)=a.

(b) La demostracién es analoga a la demostracién de la parte (a) y se omite.
®

La propiedad 3 implica que se puede escribira V (b V ¢) y (a V b) V ¢ sélo como
aV bV ¢,y de manera andloga para a A b A c. Ademas, se puede escribir

LUB({a,, a5 ...,a,}) como a,Vua, V- Vu,
GLB ({ay, a0 0,}) como ayANa, A --Aa,
va que es posible mostrar por induccién que estas uniones y conjunciones son inde-
pendientes de la agrupacion de términos.

Teorema 4. Sea L una reticula. Entonces, para toda a, by c en L,
. Sta< b, entonces

(a) avje=hb /e
(by u v e=b e
a
c<ayc<hsivsdlosic<anh
. Stazbyc<d, entonces

(ay anyeshyd

(b)y aNe=bANd

, 3 st oot NS e
cyh<estysolostaV b

A A

EERVS NV

Demostracion:  La demostracion se deja como ejercicio. ®
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Tipos especiales de reticulas

Una reticula L esta acotada si tiene un elemento maximo / y un elemento minimo ¢ (véase
la seccion 7.2).

Ejemplo 13. Lareticula Z" bajo el orden parcial de divisibilidad, definida en el ejemplo
2, no es una reticula acotada, pues tiene un elemento minimo, el niimero 1, pero no tiene un
elemento méaximo. ¢

Ejemplo 14. La reticula Z bajo el orden parcial < no es acotada, pues no tiene elemento
maximo ni minimo. *

Ejemplo 15. La reticula P(S) de todos los subconjuntos de un conjunto S, definida en el
ejemplo 1, estd acotada. Su elemento méximo es Sy su elemento minimo es &. .

Si L es una reticula acotada, entonces para toda a € 4

O=a=<]
an/yO0=a, aN0O=0
aN/ I =1, alNI=a

Teorema 5. Sea L= {a, a,,...,a,} una reticula finita. Entonces L es acotada.

Demostracion:  El elemento maximo de L es a,V a,V - - - V a,, y su elemento
minimoesa, Aa, A+ Aa,. ®

Una reticula L es distributivasi para cualesquiera elementos ¢, b y ¢ en L, se tiene las
sigulentes propiedades distributivas:

LaN(b \/c)y=(a/\Nb)\/(a/c).
2.aN/ (b/Ne)y=(a\/ b) N\ (avc).

St L no es distributiva, se dice que L es no distributiva.

Se deja como ejercicio mostrar que la propiedad distributiva es valida cuanda cuales-
quiera dos de los elementos @, b y ¢ son iguales o cuando cualquiera de los elementos es 0 o
1. Esta observacion reduce el nimero de casos que se debe revisar para verificar que es
valida alguna propiedad distributiva. Sin embargo, la verificaciéon de una propiedad
distributiva es, por lo general, una tarea tediosa.

Fiemplo to.  Para un comunta S da reticula 205y es distributiva, va que la umon v ia
interseccion (a umon y fa conjuncion, respectivamente) satistacen cada una la propiedad
distributiva. como muestra la seccion 1.2, ¢

Ejemplo 17, Lareticula de ta figura 7.43 es distributiva, como puede verse al verifi-
car tas propiedades distributivas para todas las ternas ordenadas elegidas de los cle-
mentos a, b, ¢y d. L 4
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1 I
b d
“ I
a [ b c a C
0 0 0
() (b)
Figura 7.43 Figura 7.44

Ejemplo 18. Muestre que las reticulas de la figura 7.44 son no distributivas.

Solucion
(a) Se tiene que

aNb\yc)y=alN\I=a
mientras que
(@a\Nb)y\y(@aNc)y=b\/0=h
(b) Observe que
aN{b\yc)y=aNI=a
mientras que
(a\Nb)\/(aNc)y=0\/0=0. .

Las reticulas no distributivas analizadas en el ejemplo 18 son ttiles para mostrar que
una reticula dada es no distributiva, como garantiza el siguiente teorema, cuya demostra-
cion se omitira.

Teorema 6.  Una reticula L es no distributiva si y s6lo si contiene una subreticula isomorfa
a alguna de las dos reticulas del ejemplo 18. °

Puede utilizarse el teorema 6 de manera eficiente mediante la inspeccion del diagrama
de Tasse de /

Sea L una reticula acotada con clemento maximo / y clemento minimo 4, y scaa e 1.
Un elemento a’ ¢ [ es un complemento de a si

alNa =1y aANda =0,
Observe que

0'=1y I'=0.
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Ejemplo 19. La reticula L = P(S) es tal que todo elemento tiene un complemento, ya

que sid € L, entonces su conjunto complemento A tiene las propiedades 4 Vv 7 - S
yAN A =0. .

Ejemplo 20. Cada una de las reticulas de la figura 7.44 tienen la propiedad de que
todo elemento tiene un complemento. El elemento ¢ tiene en ambos casos dos comple-
mentos, a y b. .

Ejemplo 21. Considere las reticulas D,, y D,, analizadas en el ejemplo 3 y que apa-
recen en la figura 7.39. Observe que todo elemento en D, tiene un complemento. Por
ejemplo, sia =5, entonces a’ = 6. Sin embargo, los elementos 2 y 10 en D,, no tienen
complementos. *

Los ejemplos 20 y 21 muestran que un eiemento a de una reticula no necesariamente
tiene un complemento, y podria tener mas de un complemento. Sin embargo, para una reticula
distributiva acotada, la situacidén es mas restrictiva, como muestra el siguiente teorema.

Teorema 7. Sea L una reticula distributiva acotada. Si existe un complemento, es unico.

Demostracién: Seana’y a” complementos del elemento a € L. Entonces

a/a =1, aN/a” =1
alNa' =0, aNa” = 0.

Se utiliza las leyes distributivas para obtener
a’'=a N0 =a N/ (aNa”)=(a"\ya) N\ (a"\/a")

=(ava)N(@\a”)
IN{a'\ya”"y=a \/a".

]

Ademas,
a” =a”"\0=a"\/(aNa’)=(a"\ya) N{a" s a’)
=(aa”YN(a'\/a")

=[N\ {a'\ja")=d" \ja".
v \

Por lo tanto,

Una reticula L es complementada si estd acotada y st todo elemento en L tiene un
complemento.

Ejemplo 22. La reticula L = P(5) es complementada. Observe que, en este caso, cada
clemento de £ tiene un Gnico complemento, 1o que se puede ver en forma directa o mediante
el teorema 7. ¢

Ejemplo 23. Las reticulas analizadas en el ejemplo 20 y que aparecen en la figura 7.44
son complementadas. En este caso, los complementos no son unicos. *
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GRUPO DE EJERCICIOS 7.3

En los ejercicios 1 al 3 (figuras 7.45 a la7.50), deter-
mine si el diagrama de Hasse representa una reticula.

1. (a)

(b) e

2, (a)
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Figura 7.45

¥
d
c

a b
Figura 7.46

g
h f
d ¢
¢
a b

Figura 7.47

(b) g
e f
b c
a
Figura 7.48
3. (a) g
e f
b c
a
Figura 7.49
(b) f
d e
c
b
a
Figura 7.50

4.

(Es una reticula el conjunto 4 = {2, 3, 6, 12, 24, 36,
72}, parcialmente ordenado bajo la relacién de
divisibilidad?

5. SiL,y L, son las reticulas de la figura 7.51, trace el
diagrama de Hasse de L, X L, con el orden parcial

producto.

b b,
a as
L L,

Figura 7.51

6. Sea L = P(S) la reticula de todos los subconjuntos de
un conjunto S bajo la relacion de contencion. Sea
Tun subconjunto de S. Muestre que P(T) es una
subreticula de L.

7. Sea L una reticula y sean a y b elementos de L tales
que ¢ < b. Se define el intervalo [a, 5] como el
conjunto de x € L tales que a < x < b. Demuestre
que [a, b] es una subreticula de L.

8. Muestre que un subconjunto de un conjunto parcial
y linealmente ordenado es una subreticula.

9. Determine todas las subreticulas de D,, que
contienen al menos cinco elementos.

10. Proporcione los diagramas de Hasse de todas las
reticulas no isomorfas con uno, dos, tres, cuatro o

cinco elementos.

11. Muestre que si una reticula acotada tiene dos o mas
clementos, entonces 0 # I.

12. Demuestre el teorema 2(b).

13. Muestre que la reticula Z * bajo ¢l orden parcial
usual < es distributiva.

4 Mucstic quc la reiicula D, oo disttibutiva paia
cualquict #.

15. Muestre que un conjunto parcial y linealmente
ordenado es una reticula distributiva.

16. Muestre que una subreticula de una reticula
distributiva es distributiva
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17. Muestre que si L, y L, son reticulas distributivas,
entonces L = L, X L, también es distributiva, donde
el orden de L es el producto de las érdenes en L, y
L,.

18. (Es distributiva la reticula dual de una reticula
distributiva? Justifique su conclusién.

19. Muestre quesia<(b/\ ¢)paraa,bycenun
conjunto parcialmente ordenado L, entonces a, by ¢
satisfacen las propiedades distributivas de una
reticula.

20. Demuestre que si a y b son elementos en una
reticula distributiva acotada, y si a tiene un
complemento a’, entonces

a/(@/N\by=avyb
a/N(@\/b)y=a/\b

21. . Sea L una reticula distributiva. Muestre que si existe
atalqueaAx=aAyyaV x=aVy,entonces

x=y.

22. Una reticula es modular si, paratodaa,byc,a<c
implicaa V(A c)=@V b)Aec.
(a) Muestre que una reticula distributiva es
modular,
(b) Muestre que la reticula de la figura 7.52 es una
reticula no distributiva que es modular.

1
a C
0
Figura 7.52
23, Deiciminge o compiciento de cada clemento en Dy,.

24. Determine el complemento de cada clemento en
Dl(?S‘

En los ejercicios 25y 26 (figuras 7.53 a 7.56), deter-
mine si cada una de las reticulas es distributiva, com-
plementada, o ambas.
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25. (a) £

a
Figura 7.53

~

(b)

b

S

Figura 7.54

26. (a) @ e (b)
®d

1 ¢

®b

®a
Figura 7.55 Figura 7.56

27. Sea L una reticula acotada, con al menos dos
elementos. Muestre que ningin elemento de L es su
propio complemento.

28. Considere la reticula complementada de la figura
7.57. Proporcione los complementos de cada uno de
los elementos.

€
d
b ®c
a
Figura 7.57

29. Sean%P={4,,4,,...}, = {B,, B,, ...} dos
particiones de un conjunto S. Muestre que & <P,
(véase la definicion en el ejemplo 11) si y solo si
cada 4, esta contenido en algin B,

30. SeaS={a, b, ¢} yL=P(S). Demuestre que (L, <)
es isomorfo a D,.
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7.4. Algebras booleanas finitas

En esta seccidn se analizara cierto tipo de reticulas que tiene muchas aplicaciones en la
ciencia de la computacion. En el ejemplo 6 de la seccion 7.3 se vio que si S es un conjunto,
L =P(S) y c es larelacién usual de contencidn, entonces el conjunto parcialmente ordenado
(L, ©) es una reticula. Estas reticulas tienen muchas propiedades que no son compartidas
por todas las reticulas en general. Por esta razon, es més sencillo trabajar con ellas, y juegan
un papel més importante en diversas aplicaciones.

Se restringira nuestra atencion en las reticulas (P(S), <), donde S es un conjunto fini-
to; se comenzara por determinar todos los ejemplos esencialmente diferentes.

Teorema 1. Si S = {x,xy...,%} 8 =1{,¥s..., ¥} sondos conjuntos finitos
cualesquiera con n elementos, entonces las reticulas (P(S)), ©) y (P(S,), ©) son isomorfas.
En particular, puede trazarse los diagramas de Hasse de estas reticulas de manera idéntica.

Demostracion: Se ordena los conjuntos como en la figura 7.58, de modo que cada
elemento de S se encuentre directamente sobre el elemento en S, con el nimero co-
rrespondiente. Para cada subconjunto 4 de S,, sea f(4) el subconjunto de S, formado
por todos los elementos correspondientes con los elementos de 4. La figura 7.59 muestra
un subconjunto tipico 4 de S, y el subconjunto correspondiente f(4) de S,. Es facil ver
que la funcidnf, descrita antes, es una correspondencia uno a uno de los subconjuntos
de S, a los subconjuntos de S,. También es claro que si4 y B son subconjuntos arbitra-
rios de S, entonces 4 < B si y s6lo si f(4) < f(B). Se omitira los detalles. Asi, las

reticulas (P(S)), ©) y (P(S,), <) son isomorfas. [
A
S1ix X X3 X4 I
Siixg Xy Xp
b T
l | l Sty y2 ¥3 Ya| W
S22 3 Yoo et W f(A)
Figura 7.58 Figura 7.59

Fl punte esencial de este teorema es que la reticula (P(S), <) queda determinada
completamente como conjunto parciaimente ordenado por el numero 15} y no depende de la
naturaleza de los elementos en S.

Ejemplo 1. La figura 7.60(a) y (b) muestra los diagramas de Hasse para las reticulas
(P(SY, ©) y (P(T), <), respectivamente, donde S = {a, b, ¢} y T= {2, 3, 5}. Es claro de la
figura que las dos reticulas son isomorfas. De hecho, se observa que un posible isomorfismo
/S > Testa dado por
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{a, b, c} {2,3,5} 111
{b, ¢} {2, 3} {3, 5} 110 011
{c} {2} {5} 100 001
& & 000
(a) (b) (©
Figura 7.60
f(a}) = {2}, fbh = {34, f(ch = {5}
f(a, b}) = {2,3}, f{b, c}) = {3.5}, f(a. o) = {2,5},
f(a, b, c}) = {2,3,5) f(2)=2. .
Asi,paracadan=0,1,2, ..., s6lo existe un tipo de reticula de la forma (P(S), <).

Esta reticula solo depende de n, no de S, y tiene 2" elementos, como se mostro en el ejemplo
2 de la seccidon 3.1. Recuérdese de la seccion 1.3 que si un conjunto S tiene n elementos,
entonces es posible representar todos los subconjuntos de S mediante sucesiones de longi-
tud n de ceros y unos. Por lo tanto, se puede etiquetar el diagrama de Hasse de una reticula
(P(S), <) mediante tales sucesiones. Al hacer esto, se libera al diagrama de la dependencia
de un conjunto particular S'y se enfatiza el hecho de que so6lo depende de x.

Ejemplo 2. La figura 7.60(c) muestra la forma en que los diagramas de la 7.60(a) y (b)
pueden ser etiquetados mediante sucesiones de ceros y unos. Este etiquetado sirve también
para describir la reticula de la figura 7.60(a) y (b), o igualmente, la reticula (P(S), <) que
surge de cualquier conjunto S con tres elementos. .

Si el diagrama de Hasse de la reticula correspondiente a un conjunto con # elementos
es etiquetado mediante sucesiones de ceros y unos de longitud », como se describid antes,
entonces la reticula resultante se denota B,. Puede describirse de manera directa las propie-
dades del orden parcial en B, como sigue. St x = au, - - - a,y y = bb, - - - b, son dos
elementos de B, entonces

1. x < vty solo st ¢, £ b, (como nlmeros cero o uno) parak - 120, .. .

2. x ANv=cie, ¢, donde ¢, = min {q,, b;}.

3. xVy=dd, - d,donde d,=max {u;, b}.

4. x tiene un complementox’ = zz, - - - z,,donde z, = 1 six; =0y z, —Ostx, = L.

Como puede verse, estos enunciados son ciertos observando que (B,, <) es isomorfo a
(P(S), ©), de modo que cadax y y en B, corresponde a los subconjuntos 4 y B de S. Entonces
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x<y,x/A\y,xVy,yx', definidos anteriormente, corresponden a 4 CB,AMNB, A\UBY 4
(gomplemento del conjunto), respectivamente. (Verifique.) La figura 7.61 muestrg lA
diagramas de Hasse de las reticulas B, paran =0, 1, 2, 3. o8

111
1 11 110 101 011
10 01 100 001
®
0 00
000
n=0 n=1 n=2 n=3
Figura 7.61

Se ha visto que cada reticula (P(S), <) es isomorfa a B, donde n = [S]. Otras reticulas

n

también pueden ser isomorfas con algin B, y por lo tanto tienen todas las propiedades
especiales que posee B,

Ejemplo 3. En el ejemplo 17 de la seccion 7.1 se considerd la reticula D, formada por
todos los divisores enteros positivos de 6 bajo el orden parcial de divisibilidad. En ese
ejemplo se muestra el diagrama de Hasse de D, y ahora se observa que D es isomorta a 5,.
De hecho, f: D, —> B, es un isomorfismo, donde )

f(1) =00,  fQ2)=10. fQR)=0l. f(6)—11. I

Por lo tanto, se ha llegado a la siguiente definicion. Una reticula finita es nn dlgebra
booleana si es isomorfa a B, para alglin entero no negativo n. Asi, cada B, es un alge-
bra booleana, al igual que cada reticula (P(S), ©), donde S es un conjunto finito. El ejemplo
3 muestra que 1, también es un dlgebra booleana.

En esta seccion solo se trabajard con conjuntos parcialmente ordenados finitos. Sin
embargo, para quien tenga curiosidad, se remarca el hecho de que existen conjuntos parcial-
mente ordenados que comparten todas las propiedades importantes de las reticulas (P(S), ©)
(para conguntos infinitos .5, por supuesto), pero que no son 1somortos a alguna de estas
reticulas. Esto refuerza la restriceion de la definicion de algebra booleana al caso tinito, 1o
que basta para las aplicactones que seran presentadas.

Ejemplo4.  Considérese las reticulas Dy, y Dy, de todos los divisores enteros positivos de
20 y 30, respectivamente, bajo el orden parcial de divisibilidad. Estos conjuntos parcial-
mente ordenados fueron presentados en el ejemplo 3 de la seccion 7.3, y se mostro sus
diagramas de Hasse en la figura 7.39. Como D,, tiene cinco elementos y 5 # 2" para cual-
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quier entero n > 0, se concluye que D, no es un aigebra booleana. El conjunto parcialmente
ordenado D, tiene ocho elementos; como 8 = 2*, podria ser un algebra booleana. Al compa-
rar la figura 7.39(b) y la figura 7.61, se observa que Ds, es isomorfo a B;. De hecho, se ve
que la correspondencia uno a uno /= D,, = B; dada por

f(1) = 000, f(2) = 100, f(3) = 010,
f(5) = 001, f(6) = 110, f(10) = 101,
f(15) = 011, f(30) = 111,
es un isomorfismo. Asi, Dy, es un dlgebra booleana. *

Si una reticula finita L no contiene 2" elementos para algin entero no negativo n, se
sabe que L no puede ser un algebra booleana. Si |L] = 27, entonces L podria ser un &lgebra
booleana. Si L es relativamente pequefio, se podria comparar su diagrama de Hasse con el
de B,. De esta forma se vio en el ejemplo 4 que D,, es un algebra booleana. Sin embargo,
esta técnica podria dejar de ser practica si L es grande. En ese caso, se podria mostrar que L
es un algebra booleana construyendo de manera directa un isomorfismo con cierto B,, o de
manera equivalente, con (P(S), <) para algian conjunto finito S. Por ejemplo, supoéngase que
se desea saber si una reticula D, es un dlgebra booleana, y se necesita un método que funcio-
ne sin importar el tamafio de n. El siguiente teorema proporciona una respuesta parcial.

Teorema 2. Sea

nR=pipy Poo

donde los p, son primos distintos. Entonces D, es un dlgebra booleana.

Demostracion: SeaS= {p,,p,,...,p}. Si T Sy ayes el producto de los primos
en 7T, entonces a;| n. Cualquier divisor de »n debe ser de la forma a; para algin
subconjunto T de S (donde a, = 1). El lector puede verificar que si ¥y T son sub-
conjuntos de S, V< T'siy s6lo sia, | ar. Ademas, la demostracion del teorema 6 de la
seccion 1.4 muestraquea, ~=a, N a;=MCD (a,,ap) ya, ,r=a,V a,=MCM (a,,
ar). Asi, la funcion f: P(S) — D, dada por f(T) = a, es un isomorfismo de P(S) a D,.
Como P(S) es un algebra booleana, también D, lo es. ]

Ejemplo5. Como210=2-3-5-7,66=2-3-11y646=2-17-19,el teorema 2 implica
que Dy, D y Dgss son dlgebras booleanas. 4

En otros casos de reticulas L de gran tamano, se podria demostrar que L no es un
algebra booleana mostrando que el orden parcial de L no tiene las propiedades necesarias.
Un algebra booleana es isomorfa a algin B, y por lo tanto con alguna reticula (P(S), ©).
Asi, un dlgebra booleana debe ser una reticula acotada y complementada (véase la seccion
7.3). En otras palabras, tendra un elemento maximo / correspondiente al conjunto Sy un
elemento minimo 0 correspondiente al subconjunto &. Ademds, cada elemento x de L ten-
dra un complemento x'. De acuerdo con el eiemplo 16, 1. debe ser también distributiva. El
principio de correspondencia (véase la seccion 7.1) nos dice entonces que se cumple la
siguiente regla.

Teorema 3 (Regla de sustitucién para algebras booleanas). Cualquier formula que
impliqgue \J o (") o que se cumpla para subconjuntos arbitrarios de un conjunto S sigue
siendo vélida para elementos arbitrarios de un algebra booleana L si N se sustituye por ()
vV por\U. o
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Ejemplo 6. SiL es cualquier algebra booleana yx, y, z estan en L, entonces se cumplen las
siguientes tres propiedades.

1. (XY =x  Propiedad de involucion
2. (xN\yYy=x\y
3 (xVvy) =X Ny

Esto es cierto por la regla de sustitucion para algebras booleanas, pues se sabe que las
férmulas correspondientes

1. (4) = A.
2. (ANB)=AUB.
3.(AUB)=ANB.

] Leyes de De Morgan

son validas para subconjuntos arbitrarios 4 y B de un conjunto S. .

De manera similar, puede enumerarse otras propiedades que deben ser validas en
cualquier algebra booleana por la regla de sustitucion. A continuacién, se hace un resu-
men de todas las propiedades bésicas de un éalgebra booleana (L, <) y, junto a éstas, se
enumera la propiedad correspondiente para subconjuntos de un conjunto S. Se supone que
X, y, z son elementos arbitrarios en L y 4, B, C son subconjuntos arbitrarios de S. Ademas, se
denota los elementos méximo y minimo de L como I y 0, respectivamente.

l. x<ysiysolosixVy=y. 1. Ac BsiysolosiA\UB=58.
2. x<ysiysblosix A y=x. 2'. AcBsiysOlosiAM B=4.
3. (a) x\Vx=nx 3. (a) AUA = A,

(b)y x \Nx = x. (b) ANA=A.
4. (@) xvy=y\ax 4. (a) AUB=BUA.

by x Ny =v/Ax (b ANB=BNA.

S@xviyv)=xVy)Vvae S.(a) AUBUCO) =(AUB)UC.
D) x AN (yNz)y=(xNy) Nz (by AN(BNC(C) =

(ANB)NC.
6. (a) x\/(x Ny)=x 6. (a) AU(ANB)=A.
by xN(xVvy) =ax (b) AN(A U B) =A.
7. 0<x</[paratodaxenL. 7. &0 < A < Sparatodo 4 en P(S).
8. (a) x\/0=x. 8. (a) AUD = A.
(b)y x N0 = 0. by AND =0,
9. (ay xv/I=1 ¥ (a) AUS=S.
(b) x NI =x. by ANS=A.
10 (a) ¢ N (y\/2) = . (ay AN(BUCQC) =
CHAN SRV C SRS} (AN ByuAnC).
(b) x v {y /)= (b Au(BNCQC) =
(A vy) o yo) (AuB)yNAUOQO).
11. Todo elemento x tiene un unico 11, Todo elemento A4 tiene un unico
complemento x’ que satisface complemento 4 que satisface
(a) x\/x =L (a) AUA=S.
(b) x A\ x" = 0. (b)) ANA=0.
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12. (a) 0 = I 12°. (a) @ = S.
by I'=0. (b) S=@.
13. (') = x. 13. (A) = A.

4. (@) xA\yY =x"\/ Y. 14. (a) AN B)=AUB.
®) xvy)y =xNy. (b) (AUB)=ANB.
Asi, se podria mostrar que una reticula L no es un élgebra booleana mostrando que no
posee una o mas de estas propiedades.

I

Ejemplo 7. Muestre que la reticula cuyo diagrama de Hasse aparece en la figura 7.62 no
es un algebra booleana.

1
a f
e
b c
0
Figura 7.62

Solucion: Los elementos a y e son ambos complementos de ¢; es decir, ambos satis-
facen las propiedades 11(a) y 11(b) con respecto del elemento ¢. Pero la propiedad 11
dice que tal elemento es tnico en cualquier dlgebra booleana. Asi, la reticula dada no
puede ser un dlgebra boolcana. ¢

Ejemplo 8. Muestre que si # es un entero positivo y p” | n, donde p es un numero primo.
entonces D, no es un algebra booleana.

Solucién:  Supoéngase que p’ | n de modo que n = p’q para algiin entero positivo ¢.
Como p también es divisor de n, p es un elemento de D,. Asi, por las observaciones
anteriores, si 1, es un algebra booleana, entonces p debe tener un complemento p’.
Fntonces MOCD p p/y= 1 v MCM (p p)=a Porel teorema 6 de la seccron L. pp’
—n, de modo que p’ —wip — pg bsto muesira que MCD (p, pg) — L 1o que ¢s imposi-
ble. pues p v pg tienen a p como divisor comin. Por lo tanto. £, no puede ser un
algebra booleana. *

Si se combina el ejemplo 8 y el tcorema 2, se ve que D, es un dlgebra booleana sty
s6lo sin es el producto de primos distintos, es decir, si 'y s6lo si ningan primo divide an mas
de una vez.
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Ejemplo 9. Sin =40, entonces n=2’-5, de modo que 2 divide a n tres veces. Si n = 75,
entonces n = 3 - 5%, de modo que 5 divide a n dos veces. Asi, D,y y D, no son élgebras
booleanas. ¢

Ahora se resumird lo que ha sido mostrado en relacién con las algebras booleanas.
Puede intentarse demostrar que una reticula L es un algebra booleana examinando su diagrama
de Hasse o construyendo de manera directa un isomorfismo entre L y B, o (P(S), <). Puede
intentarse mostrar que L no es un algebra booleana verificando el niimero de elementos en .
o las propiedades de su orden parcial. Si L es un algebra booleana, entonces es posible
utilizar cualesquiera de las propiedades 1 a 14 para manipular o simplificar expresiones que
impliquen elementos de L. S6lo hay que proceder como si los elementos fuesen subconjuntos
y las manipulaciones fuesen como las que surgen en la teoria de conjuntos.

A partir de este momento se denotaré el dlgebra booleana B, como B. Asi, B s6lo tiene
los dos elementos 0 y 1. A veces es 1til saber que cualquier algebra booleana B, puede ser
descrita en términos de B. El siguiente teorema proporciona esta descripcion.

Teorema 4. Para cualesquiera n 2 1, B, es el producto B X B X - -+ X Bde B, conn
factores, donde B X B X - -+ X B tiene el orden parcial producto.

Demostracion: Por definicidn, B, esta formado por todas las n-adas de ceros y unos;
es decir, todas las rn-adas de elementos de B. Asi, como conjunto, B, es iguala B X B
X+ -+ X B(nfactores). Ademas, six=x,x, - x, Yy =y, », - - ¥, son dos elementos
de B,, entonces se sabe que

n

x<y siysOlosi x, <y, para toda k.

Por lo tanto, B,, identificado con B X B X - - - X B (n factores), tiene el orden parcial
producto. [

GRUPO DE EJERCICIOS 7.4

1.

En los ejercicios | al 10, determine si el conjunto par- 3 ce e 4

cialmente ordenado es un dlgebra booleana. Explique.
b d d

2. g
a f b
e !
c
N

f
d
b
a
Figura 7.63

|
/7\ a®
Dv ¢ Figura 7.65 Figura 7.66

a
Figura 7.64
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S. n 6. 14. Muestre que en un 4lgebra booleana, para cuales-

(e) asb
Figura 7.67 Figura 7.68

16. Muestre que en un 4lgebra booleana, para cuales-

7. b 8. d quieraay b,
(anNb)y\/(aNb)=a.
b c 17. Muestre que en un 4lgebra booleana, para cuales-
quieraay b,
bN(a\/ (@ N\ (b\/ b)) =b.
a a
18. Muestre que en un 4lgebra booleana, para cuales-
Figura 7.69 Figura 7.70 quieraa, byec,
9. Dsgs 10. Dy, (@anbNeyyy(bAc)y=bAc.
11. ;Existen algebras booleanas con tres elementos? 19. Muestre que en un 4lgebra booleana, para cuales-
(Por que si o por qué no? quicraa, byc,
12. Muestre que en un algebra booleana, para cuales- (@ v A ey = vb)Ac.

quiecraay b,a<hsiysblosi b’ <a'.
20. Muestre que en un algebra booleana, para cuales-
13. Mucstre que en un algebra booleana, para cualesquie- quiera a, by ¢, si a < b, entonces
raayb.a=hbsiysolosifaAb)YV (@' Ab)=0. av (b =bA(avy o).

7.5. Funciones de algebras booleanas

Las tablas que enumeran los valores de una funcion fpara todos los elementos de B,, como
la que se muestra en Ja tigura /.71(a), con trecuencia son llamadas tablas de verdad para £,
Fsto se debe a que son similares a las tablas cmpleadas en la logica (véase la seccion 2.1).
Suponga que los x, representan proposiciones, YJ X, Xy, ..., x,) representa un enunciado
compuesto construido a partir de los x,. Si piensa que el valor 0 para un enunciado significa
que el enunciado es falso, y que 1 significa que el enunciado es verdadero, entonces las
tablas, como la de la figura 7.71(a), muestran la forma en que la verdad o falsedad de f'(x,,

Xy, ..., x,) depende de la verdad o falsedad de los enunciados x, que lo componen. Asi, tales

h quieraa, byc,
(a) Sia<b,entoncesaVe<hVe
(b) Sia< b, entoncesa A c<bAc.
f g f 8
15. Muestre que en un 4lgebra booleana, los siguientes
€ enunciados son equivalentes para cualesquiera a y b.
b c (a) anvvb=b
b d d)aNb=a
(©a'vb=1I
(d) aNb =90
a
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Xy | x2 ) ox3 | flxg x x3)
0 0 0 0
0 0 1 1
0 1 0 1
o |1 {1 0 %
1 0 0 1
1 0 1 0 12__» f(xl’ X250, n)
1110 1 : f —
1 1 1 0 .
————]
xn
(a) (b)

Figura 7.71

tablas son llamadas, con frecuencia, tablas de verdad, incluso cuando surgen en areas
distintas de la l6gica, como en las 4lgebras booleanas.

La razén de la importancia de tales funciones es que, como se muestra de manera
esquematica en la figura 7.71(b), pueden ser utilizadas para representar los requisitos de
salida de un circuito para los posibles valores de entrada. Asi, cada X; representa un circuito
de entrada capaz de transportar dos voltajes indicadores (un voltaje para 0 y un voltaje
distinto para 1). La funcidn f representa la respuesta de salida deseada en todos los casos.
Tales requisitos ocurren en la etapa de disefio de los circuitos computacionales combinatorios
y secuenciales.

Observe con cuidado que la especificacion de una funciénf: B, — B s6lo enumera los
requisitos del circuito. No indica coémo cumplir estos requisitos. Una forma importante de
producir funciones de B, a B es mediante el uso de polinomios booleanos, los cuales son
considerados a continuacién.

Polinomios booleanos

Seaxy, Xy, . . ., X, un conjunto de n simbolos o variables. Un polinomio booleano p(x,, x,,
.» X,) en las variables x, se define de manera recursiva como sigue:

l. x,x,...,x,son todos polinomios booleanos.

2. Los simbolos 0 y 1 son polinomios booleanos.

3. Sip(x;, x5 ..., X))y glx;, x5, . .., x,) son dos polinomios booleanos, entonces
también lo son

plxxy . x,) \ qx X, 0 X,)

plx Xy x )N qglx, Xy, ..., x,).

4. Sip(x, x,, ..., x,) es un polinomio booleano, entonces también lo es

’

(pQxp, %z, -, X))
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Por tradicién, (0)’ se denota 0, (1)’ se denota 1’ y (x;) ' se denota xy.
5. No existen polinomios booleanos en las variables x, distintos de los que pueden
ser obtenidos aplicando las reglas 1,2, 3 y 4.

Los polinomios booleanos también reciben el nombre de expresiones booleanas.
Ejemplo 1. Los siguientes son polinomios booleanos en las variables x, y, z.

Py, 2) = (x\Vy) Nz

Py, 2) = (x\V/Y)V (yN1)

Py, ) = (x vV (YN VA (y A1)

Pix,y.2) = (x\/ (Y VDA Nz N (Y v 0)). .

Por lo general, los polinomios comunes en varias variables, como x*y + z*, xy + yz +
xX’y%, X*y® + xz*, etcétera, son interpretados como expresiones que representan calculos
algebraicos con incognitas. Como tales, estan sujetos a las reglas usuales de la aritmética.
Asi, los polinomios x* + 2x + 1 y (x + 1)(x + 1) son considerados equivalentes, al igual que
los polinomios x(xy + yz)(x +z) y x’y + 2x’yz + xyz*, ya que en cada caso se puede convertir
uno en el otro mediante una manipulacién algebraica.

De igual manera, es posible interpretar los polinomios booleanos de manera que re-
presenten calculos booleanos con elementos no especificos de B, es decir, con ceros y unos.
Como tales, estos polinomios estan sujetos a las reglas de la aritmética booleana; es decir, a
las reglas que obedecen A, V' y ' en las dlgebras booleanas. Como en el caso de los polinomios
comunes, dos polinomios booleanos son equivalentes si es posible transformar uno en el
otro con manipulaciones booleanas.

Enlaseccion 5.1 se muestra la forma en que los polinomios ordinarios podrian produ-
cir funciones mediante la sustitucion. Este proceso funciona sin importar que los polinomios
tengan una o mds variables. Asi, el polinomio xy + yz’ produce una funcién f: 11> —» R
haciendo f(x, y, z) = xy + yz’. Por ejemplo, (3, 4, 2) = (3)(4) + (4)(2>) = 44. De manera
similar, los polinomios booleanos que implican » variables producen funciones de B, en B.
Estas funciones booleanas son una generalizacion natural de las presentadas en la seccion
5.2.

Ejemplo 2. Considérese el polinomio booleano

plxy Xy, x3) = (x, /N xy) /() /() A\ xg).

Construya la tabla de verdad para la funcion booleana f': B; — B determinada por este
polinomio booleano.

Solucion:  La funcion booleana f: B, — B se describe sustituyendo las 2° ternas
ordenadas de valores de B en ver de v v v v Ta ficura 772 muestra la tabla de

verdad para la funcién resultante. *

Los polinomios booleanos también pueden ser escritos de manera grafica o esquema-
tica. Si x y y son variables, entonces los polinomios basicos x V y, x A y y x' aparecen de
manera esquematica en la figura 7.73. Cada simbolo tiene lineas para las variables a la
izquierda y una linea a la derecha que representa al polinomio como un todo. El simbolo
parax V y es una compuerta or, el de x A y es una compuerta and y el simbolo parax’ es
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Figuras 7.72

uninversor. Los nombres l6gicos surgen debido a que las tablas de verdad que muestran las
funciones representadas por x V y y x A y son andlogos exactos de la tabla de verdad para
los conectivos “o0” (disyuncidn) e “y” (conjuncion), respectivamente.

l xvy L, xNy o
IO T et
— —

(a) (b) (©
Figura 7.73

Recuerde que se puede utilizar las funciones de B, a B para describir el comporta-
miento deseado de circuitos con » entradas 0 o 1, y una salida 0 o 1. En el caso de las
funciones correspondientes a los polinomios booleanosx V y, x A y y x', puede implantarse
los circuitos deseados; también se utiliza las formas esquematicas de la figura 7.73 para
representar estos circuitos. Al sustituir varias veces V, Ay’ en estas formas esquematicas,
es posible crear una forma esquematica para representar cualquier polinomio booleano. Por
las razones dadas, tales diagramas son los diagramas Iégicos del polinomio.

Ejemplo 3. Seap(x, y,z2) =(x A y) V (¥ A z'). La figura 7.74(a) muestra la tabla de
verdad para la funcion correspondiente f: B, —> B. La figura 7.74(b) muestra ¢l diagrama
légico para p. *

Supdngase que p es un polinomio booleano de n variables, y fes la funcion correspon-
diente de B, a B. Se conoce que fpuede ser pensada como una descripcion del comporta-
miento de un circuito con z entradas y una salida. De la misma forma, el diagrama l6gico de
p se puede ver como una descripcion de la construccion de dicho circuito, al menos en
términos de compuertas or, compuertas and e inversores. Asi, st la funcidn/, que describe el
comportamiento deseado de un circuito, pucde obtenerse de un polinomio booleano p, en-
tonces el diagrama logico para p proporcionard una forma de construir un circuito con tal
comportamiento. En general, muchos polinomios distintos produciran la misma funcion.
Los diagramas logicos de estos polinomios representaran métodos alternativos para cons-
truir el circuito deseado. Es casi imposible sobrestimar la importancia de estos hechos para
el estudio de los circuitos computacionales.
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Figura 7.74

GRUPO DE EJERCICIOS 7.5

1. Considere el polinomio booleano
plx,y. 2y =x N\ (y\v 7).

Si B = {0, 1}, calcule la tabla de verdad de la
funciéon f: By — B definida por p.

2. Considere el polinomio booleano

plx.y.z) = (x Vy) N (z /X)),
Si B= {0, 1}, calculc la tabla de verdad de la
funcién f: B, — B definida por p.

3. Considere el polinomio booleano

Y

px,v.z) — (A (v AN (g )

St B = {0, 1}, calcule la tabla de verdad de la
funcion /1 B, — B definida por p.
4. Considere el polinomio booleano

pO6,y.2) = (x AN y)\/ (XA (v AN 2.

Si B= {0, 1}, calcule la tabla de verdad de la
funcién f: By — B definida por p.

—_—_ 0 OO =00

ANV N

yNz >

En los ejercicios 5 al 8, aplique las reglas de la arit-
mética booleana para mostrar que los polinomios
booleanos dados son equivalentes.

5.

10.

v INE N Y)Y

XNV ONAGVY)): x
R CAVE I FAY (VAN ORAVE I FAY C VA" BEWANSY

N (C AT AV CAVEI U AVA (AR AVAC FAR S

X\/vy

Construya un diagrama légico que implemente la
funcién fde

(a) Llejercicio 1. (b) El cjercicio 2.
Construya un diagrama logico que implemente la
funcion fde

(a) El ejercicio 3. (b) El gjercicio 4.

7.6. Funciones booleanas como polinomios
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booleanos (disefio de circuitos)

En la seccién 7.5 se consideraron funciones de B, a B, donde B es el algebra booleana {0, 1}.
Se observé que tales funciones pueden representar requisitos de entrada/salida para mode-
los de muchos circuitos computacionales practicos. También se sefiald que si la funcion esta
dada por cierta expresion booleana, entonces puede construirse un diagrama 16gico para él
y por lo tanto modelar la implantacion de la funcién. En esta seccion se muestra que todas
las funciones de B, en B estdn dadas por expresiones booleanas, por lo que es posible cons-
truir los diagramas l6gicos para cualquier funcion de este tipo. El analisis ilustra un método
para determinar una expresion booleana que produzca una funcién dada.

Sif:B,— B,seaS(f)={be B,|f(b)=1}. Se tiene entonces el siguiente resultado.

Teorema 1. Seanf,f, v f, tres funciones de B, en B.
(@) Si S(f)=S(f)) \J (1), entonces f(b) = £,(b) V f,(b) para toda b en B.
(b) Si S(f) = S() M S(f,), entonces f(b) = £,(b) A f(b) para toda b en B.
(V y A\ son GLB y LUB, respectivamente, en B.)

Demostracion: (a)Seabe B,.Sibe S(f), entonces, por la definicién de S, f(b)
= 1. Como S(f') = 5(f)) U S(f,), entonces b e S(f,) o be S(f,), o estd en ambos. En
cualquier caso, f,(b) V f,(b) = 1. Ahora, si b ¢ S(f), entonces f(b) = 0. También se
debe tener b ¢ S(f))y b ¢ S(f), de modo que f,(b) = 0y £;(b) = 0. Esto significa que
Ji{D)YV f(by=0. Asi, paratoda b e B,, f(B) =1,(b) V f(b).

(b) Esta parte se demuestra de una manera completamente analoga a la utilizada en

la parte (a). ®
Recuérdese que una tuncionf: B, — B se puede ver como una funcionf(x,, x,, . . . ,x,)
de n variables, cada una de las cuales puede asumir los valores 0 o 1. Si E(x,x,,...,x,)cs

una expresion booleana, entonces la funcidén que produce se genera al sustituir todas las
combinaciones de ceros y unos en fos términos x, de la expresion.

Ejemplo 1. Sea /, : B, — B producida por la expresion E(x, y) = x", y sea fi: B, > B
producida por la expresion E(x, v) =1'. Entonces, las tablas de verdad de 7, v £, aparecen en
la figura 7.75(a) y (b), respectivamente. Sea /: B, — B la funcién cuva tabla de verdad
aparece en la figura 7.75(c). Es claro que S(/') = S(/;) \J S(f), pues f; es igual a 1 en los
elementos (U, 0) y (U, 1) de B,, f, es | en los elementos (0, 0) y (1,0)de B, y fes | en los ele-
mentos (0, 0), (0, 1) y (1, 0) de B,. Porel teorema 1, f=f, V f,, de modo que una expresion

booleana que produce f'es v’ V ', Esto se verifica facilmente.
1
X y , Hilx, y) X y | folx, y) X l v Lf(x. v)
| N T
(\ O | ! v Y i V] i () ‘ i
VI : 0o 0 U
! 0 ‘ 0 ! 3] ! | 0 | |
1 I f 0 I I 0 O R
(a) (b) (c)
Figura 7.75
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No es dificil mostrar que cualquier funcién f: B, — B para la cual S(f) tiene precisa-
mente un elemento es producida por una expresion booleana. La tabla 7.1 muestra la corres-
pondencia entre las funciones de dos variables que son iguales a 1 justo en un elemento y las
expresiones booleanas que producen estas funciones.

Tabla 7.1

S(f)  Expresion que produce f

7

{(0,0)} XNy
{0, )} X'y
(1, 0)} x Ay
{1, 1 x ANy

Ejemplo 2. Seaf: B, — B la funci6n cuya tabla de verdad aparece en la figura 7.76(a).
Esta funcion sélo es igual a 1 en el elemento (0, 1) de B,; es decir, S(Fy= {0, D}. Asi, f(x,
y)=1s6lo cuandox=0yy= 1. Esto también es cierto para la expresion E(x, y)=x"Ay,de
modo que f'es producida por esti expresion.

X y z | flx, vy, 2)
0 0 0 0
x |y | fix,y) ol o 1 0
0 1 0 0
8 (I) (l) 0 1 1 1
1 0 0 0
1 0 0 ) 0 | 0
by o 1o 0
1 1 | 0
(a) (b)
Figura 7.76

La funcién f: By — B cuya tabla de verdad aparece en la figura 7.76(b) tiene S(f)=
10, 1.1)}; es decir, fes igual a | s6lo cuandox =0,y = 1 yz = |. Esto también es cierto para

la expresion booleana x' A y A z, que por lo tanto debe producir af 14
Sihe B, entonces b es una secuencia (¢, ¢, . . ., ¢,) de longitud #, donde cada ¢, es
0o 1. SceaF5) la expresion bocleana y, A Ao A A adende yy -y cuando o, - Ly o

= x; cuando ¢, = 0. Tal expresion es un minitérmino. El ejemplo 2 ilustra el hecho de que
cualquier funcion £: B, — B para la que S( /) es un Gnico elemento de B, es producida por
un minitérmino. De hecho, si S( ) = b}, es facil ver que la expresion minitérmino £,
produce a /. Se tiene entonces el siguiente resultado.
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Teorema 2. Cualquier funcion f: B, — B es producida por una expresion booleana

Demostracién:  Sea S(f)= {b,, b,, . . ., b} y para cada i, sea f; ; B, - B la funcién
definida por

fi(bi) =1 .
fib) =0, sib#b,
Entonces S(f;) = {,}, de modo que S(f) = S¢) U -+ - U S(f) y por el teorema I,
f=HAVAEV--\/ ],

Segun el andlisis anterior, cada f; es producida por el minitérmino E,. Asi, fes
producida por la expresién booleana

Ebl\/Ebz\/"'\/Ebn

y esto concluye la demostracion. ®

Ejemplo 3. Considérese la funcién /: By — B cuya tabla de verdad aparece en la figura
1.77. Como S(f') = {(0, 1, 1), (1, 1, 1)}, el teorema 2 muestra que f'es producida por la
expresion booleana E(x, y, z) = EoiyVE; i w=&'AyANz)V(xAyAz).Sin embargo,
ésta no es la expresion booleana mas sencilla que produce af. Se utilizan las propiedades del
algebra booleana para escribir

EAYNYNV Ay Nz) =@V x)N(y A 2)
=IN(A2)=yANz

Asi, ftambién es producida por la expresion simple y A z. ¢
X ¥ z | flx, v, 2)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 !
1 0 0 0
! 0 1 0
1 1 0 0
1 1 1 1

Figura 7.77

Elproceso de escritura de una funcién como una combinacion “or” de minitérminos y
fasimplificacion de la expresion iesultante se puede sistematizar de varias formas, Ahora se
mostrara un procedimiento grdfico que utiliza 1o que se conoce como mapa de Karnaugh.
Los scres humanos pueden utilizar este procedimiento con las tunciones f: B, - B, si n no
¢s demasiado grande. Se ilustrara el método para n = 2, 3 y 4. 511 es grande o s1 se desea
utilizar un algoritmo programable, son preferibles otras técnicas.

Considérese primero el caso en que 27 = 2, de modo que fes una funcion de dos
variables, por decir, x y 3 En la figura 7.78(a) se muestra una matriz 2 X 2 de cuadrados,
donde cada cuadrado contiene una entrada posible b de B,. En la figura 7.78(b) se ha reem-
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’

S A
00101 xXfx" N y'ix’ Ny
10111 x | x N\ vilx AN y
! RS S
(a) (b)
Figura 7.78

plazado cada entrada b con el minitérmino correspondiente E,. Las etiquetas de los cuadra-
dos en Ia figura 7.78 s6lo sirven como referencia. En el futuro no se mostrara estas etiquetas,
sino que se daré por hecho que el lector recuerda sus posiciones. En la figura 7.78(b) se
observa que la variable x siempre aparece en la primera fila comox’ y siempre aparece en la
segunda fila como x. Se etiqueta estas filas de acuerdo con esto, y se realiza un etiquetado
similar con las columnas.

Ejemplo4. Seaf: B, — Blafuncion cuya tabla de verdad aparece en la figura 7.79(a). En
la figura 7.79(b) se ha ordenado los valores de fen los cuadrados adecuados, y se conservan
las etiquetas de las filas y las columnas. El arreglo resultante de 2 X 2 de ceros y unos es el
mapa de Karnaugh de /. Como S(f) = {(0, 0), (0, 1)}, la expresién correspondiente para f

s AYIVE AW=XAG Vy)=x". *
yooy
x 1y | flxy
x’ 1 1
0 0 1
0 1 1
1 0 0 x 0 0
1 1 0

Tabla de verdad de f Mapa de Karnaugh de f

(a) (b)
Figura 7.79

El resultado del ejemplo 4 es tipico. Cuando los valores 1 de una funcién f: B, —» B
llenan exactamente una fila o columna, la etiqueta de esa fila o columna proporciona la
expresion booleana para f. Por supuesto, ya se sabia que si los valores 1 de fllenan justo un
cuadrado, entonces f es producida por el minitérmino correspondiente. Se puede mostrar
que mientras mas grande sea el rectangulo de valores 1 de f, menor ser4 la expresion para f.
Por tltimo, si los valores 1 de fno estan en un rectangulo, puede descomponerse estos
valores en la union de rectangulos (que pueden traslaparse). Entonces, por ¢l teorema 1, es
posible determinar la expresion booleana para f calculando las expresiones correspondien-
tes a cada rectangulo y combinandolas con V.

Ejemplo 5. Considérese la funcién f: B, — B cuya tabla de verdad aparece en la figura
7.80(a). En la figura 7.80(b) se muestra el mapa de Karnaugh de fy se descompone los
valores 1 en los dos rectangulos indicados. La expresion para la funcién que tiene valores 1
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en el recténgulo horizontal esx’ (verifique esto). La funcién que tiene todos sus valores | en
el rectangulo vertical corresponde a la expresién y’ (verifique). Asi, fcorresponde a la ex-
presionx’ V' y'. En la figura 7.80(c) se muestra una descomposicién diferente de los valores
1 defen rectingulos. Esta descomposicién también es correcta, pero conduce a la expresién
mas complejay’ V (x” A y). Se observa que la descomposicion en rectangulos no es tnica y

que se deberia intentar utilizar los rectangulos mas grandes posibles. *
yooy ooy

x Ly | flay
x’ 1 1 x’ i -

0 0 1 .

0 1 1

1 0 1 x i 0 x 1 0

A 0 et B

(a) (b) (©
Figura 7.80

Ahora, se revisaré el caso de una funcién f: B, — B, que se considera como una
funcion de x, y, z. Se podria proceder como en el caso de dos variables y construir un cubo
de lado 2 que contenga los valores de f. Esto podria funcionar, pero es dificil dibujar y
utilizar figuras tridimensionales, y la idea no se podria generalizar. En vez de esto, se utiliza
un rectangulo de lado 2 X 4. En la figura 7.81(a) y (b) se muestran las entradas (de By) y
minitérminos correspondientes a cada cuadrado de dicho rectangulo.

y y
I‘_‘—A"’_ﬂ r—_A—'ﬁ

XXy N ANy Nl Ny Nzlx Ny Nz’

xdx AV A2 Ay ANl Av ANzl Av A7
J
’
Z
(b)
Figura 7.81
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La region sombreada es y’

(a) (b)

La regidén sombreada es z La region sombreada es 2’

() (d)

La region sombreada es x’ La regién sombreada es x
(e) ®
Figura 7.82

Considérense las areas rectangulares de la figura 7.82. Si los valores 1 para una fun-
cion f: By — B llenan exactamente uno de los rectangulos mostrados, entonces la expresion
booleana para esta funcion es una de las seis expresiones x, y, z, x', ¥, 0 z', como indica la
figura 7.82.

Considérese la situacion de la figura 7.82(a). El teorema 1(a) muestra que es posible
calcular funiendo todos los minitérminos con los cuadrados de la region, mediante el sim-
bolo V. Asi, fes producida por

CAN AT S AVAC AN AT AVACXAR URAT 4 AVACFAS (AR 9

(NN NNV )N (YN 2))
SV SAYCRATS) AVEC AN CAY4))

= (VA (v )

SRR RN IR G Bt

I

Un calculo similar muestra que las otras cinco regiones tienen la etiqueta correcta.

Si se piensa que los extremos izquierdo y derecho de nuestro rectingulo basico se
unen para formar un cilindro, como se muestra en la figura 7.83, puede decirse que las seis
grandes regiones de la figura 7.82 constan de dos columnas adyacentes cualesquiera del
cilindro, o del semicilindro superior o inferior.
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y//\zl
y N\ 7" y' Nz

y Nz
Figura 7.83

Las seis regiones basicas que aparecen en la figura 7.82 son las tnicas donde hay que
considerar las expresiones booleanas correspondientes. Esta es la razon de su uso para eti-
quetar la figura 7.8 1(b) y seran conservadas como etiquetas de todos los mapas de Karnaugh
de funciones de B; a B. El teorema 1(b) dice que, si los valores 1 de una funciénf: B, — B
forman precisamente la interseccion de dos o tres de las seis regiones basicas, entonces es
posible calcular una expresion booleana paraf combinando las expresiones para estas regio-
nes basicas con simbolos A.

Asi, si los valores | de la funcion f'son como se muestra en la figura 7.84(a), entonces
son obtenidos intersecando las regiones que aparecen en la figura 7.82(a) y (d). Por lo tanto,
la expresion booleana para f'es y' A z'. Es posible realizar deducciones similares para las
otras tres columnas. Si los valores 1 de f'son como muestra la figura 7.84(b), es posible
obtenerlos intersecando las regiones de la figura 7.82(c) y (e), de modo que una expresion
booleana parafesz A x'. De manera analoga, es posible calcular la expresion para cualquier
funcion cuyos valores | llenen dos cuadrados adyacentes en forma horizontal. Existen ocho
de tales funciones si de nuevo se considera que el rectangulo forma un cilindro. Asi, se
incluye el caso en que los valores | defson comoen la figura 7.84(c). La expreston booleana
resultante es z' A x'.

Sisc intersecan tres de las regiones basicas y la interseccidon no estd vacia, csta
interseccidon debe ser un Gnico cuadrado, y la expresidon booleana resultante es un
minitérmino. En la figura 7.84(d), los valores | de fforman la interseccion de las tres
regiones de la figura 7.82(a), (¢) y (1). El minitérmino correspondiente es y' Az A x.
Asi, no se tiene que recordar la posicion de los minitérminos en la figura 7.81(b), sino
que se puede reconstruirla.

Se ha visto la forma de calcular una expresion booleana para cualquier funcion f: B,

> B cuayos valores 1 lorman aniectangalo do cuadrados adyacentes (en el cilindro) de
tamano 29 x 2% n =0, 1;m =0, 1.2, Fn general, si ¢l conjunto de valores 1 de /o forman
tal rectinguto. se puede eseribir este conjunte come kyunion de tales rectingulos. Fntonces.
se calcula una expresion booleana para f combinando la expresion asociada a cada rectangu-
lo con simbolos V. Esto es cierto por ef teorema 1{a). El analisis anterior muestra que
mientras mas grandes sean los rectangulos elegidos, més sencilla serd la expresion booleana
resultante.
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y y
— v Y SRS S—
{1 o] o o | 0] 0] o0
x| ol ol o] o x| ol i o] o
2z’ Fal
(© (d)
Figura 7.84

Ejemplo 6. Considérese la funcionfcuya tabla de verdad y mapa de Karnaugh correspon-
dientes aparecen en la figura 7.85. Puede deducirse la colocacion de los unos localizando las
entradas correspondientes en la figura 7.81(a). La figura 7.85(b) muestra una descomposi-
cion de los valores 1 def. Esto permite ver que una expresion booleana parafes (' Az") V
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Ejemplo 7. La figura 7.86 muestra la tabla de verdad y el mapa de Karnaugh correspon-
dientes a una funcién /. La descomposicion en rectangulos que aparece en la figura 7.86(b)
utiliza la idea de que la primera y altima columnas son considerados adyacentes (enrollando
el cilindro). Asi, los simbolos son dejados con los extremos abiertos para indicar que se
unen en un rectangulo 2 X 2 correspondiente az’. La expresion booleana resultante esz' V

(x A y) (verifique). *
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Figura 7.86

Por tltimo, sin mas comentarios, en la figura 7.87 se presenta la distribucién de entra-
das y las etiquetas correspondientes de los rectangulos para el caso de una funcionf: B, >
B, considerada como funcién de x, y, z, y w. De nuevo, se considera la primera y Gltima
columnas como adyacentes, y la primera y Gltima filas como adyacentes, enrollando en
ambos casos; se analiza los rectangulos cuyos lados tienen una longitud dada por cierta
potencia de 2, de modo que la longitud es 1, 2 0 4. Se obtiene la expresion correspondiente
a tales rectangulos intersecando los grandes rectdngulos etiquetados de la figura 7.88.
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proviene del rectangulo de lado 1 X 2 en la esquina superior derecha, y el Gltimo es un
‘ minitérmino correspondiente al cuadrado aislado. *
z’ z z’ z
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x’< x'w
La regién sombreada es 2’ La region sombreada es z La region sombreada es x’ La region sombreada es x 0 1 1 0 0 0 0 0
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Figura 7.89 Figura 7.90
La region sombreada es y La region sombreada es y’ La region sombreada es w La region sombreada es w'
(e ) (® (h) GRUPO DE EJERCICIOS 7.6
Figura 7.88 :
En los ejercicios 1 al 6, construya mapas de Karnaugh 4, £ )
. L ara las funciones con las tablas de verdad dadas. gy |z Yz
Ejemplo 8. La figura 7.89 muestra el mapa de Kamaugh de una funcion f: By — B. Se p Junci
coloca los valores 1 considerando la posicion de las entradas en la figura 7.87(a). Asi, f L N 00710 0
(0101) = 1, £(0001) = 0, etcétera. x |y | ey 00 |1 1
El cuadrado central 2 X 2 representa la expresion booleana w A v (verifique). ol o 1 01 0 }
Las cuatro esquinas forman también un cuadrado de lado 2, pues las orillas derechae 01 0 (]) (1) (1) 0
izquierda, por un lado, y superior ¢ inferior por el otro, son consideradas adyacentes. Desde 170 0 1o 1 0
un punto de vista geométrico, se puede ver que si se enrolla el rectdngulo en forma horizon- 1 { 1 1 1 0 0
tal (obteniendo un cilindro) y luego, en forma vertical, se obtiene un toro o tubo interior. En 2 1 1 1 1
este tubo interior, las cuatro esquinas forman un cuadrado de lado 2 el cual representa la x |y | fixy) 5 ‘
expresion booleana w' A v’ (verifique). x Ly bz | wl] fleyzw
Esto implica que la descomposicion anterior conduce a la expresion booleana 8 (l) g) 0ol 0 0 0 0
(w A y) v (n VAN y) 1 0 1 0 0 0 1 0
1 1 0 0 0 1 0 1
para f. ¢ oo 1 |1
. | few o) ol 1 |o]o 0
Fjemplo 9. FEn la figura 7. 90 aparece el mapa de Karmnaugh de una funcionf: 8, = 8. La y 2y 0 1 0 1 0
descomposicion de vatotes 1 e tectangaios de fados 270 que se tuesiia ¢ a fguia, utiliza 0" 0 U i {0 ! ! not !
de nuevo la propiedad de enroilamiento de las tilas superior ¢ inferior. La expresion resul- 0 0 | i Y ! ! ! f
tante para fos (verifigue) 0 1 0 0 1 0 0 0 v
0 1 1 0 1 0 v} 1 0
(A )y ey s ), 11010 I Fpo 10 v
1 0 1 0 1 0 1 1 1
El primer término proviene del cuadrado 2 X 2 formado al unir el rectangulo 1 X 2 de la 1 1 0 1 1 1 0 0 0
esquina superior izquierda y el rectangulo 1 X 2 de la esquina inferior izquierda. El segundo 1 1 1 0 1 1 0 1 (l)
1 1 1 0
1 1 1 1 1
>
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6. x y b4 w 1 f(x,y,z,w)
0 0 0 0 1
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

En los ejercicios 7 al 14 (figuras 7.91 al 7.98), se pro-
porcionan mapas de Karnaugh de funciones, asi como
una descomposicion de valores 1 en rectangulos. Es-
criba la expresion booleana para estas funciones, que
surgen de los mapas y las descomposiciones rectan-
gulares.
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AT T3 " n IDEAS CLAVE PARA REPASO
® Orden paicial et an conjuiitu: relacion que es -
d 0 0 1 0 flexiva, antisimétrica y transitiva.
® Conjunto parcialmente ordenado: conjunto junto

Figura 7.96

con un orden parcial.

@ Conjunto linealmente ordenado: conjunto parcial-
mente ordenado en donde toda pareja de elemen-
tos es comparable.

Ideas clave para repaso 2 83
En los ejercicios 15 al 20, utilice el método del mapa
de Karnaugh para determinar una expresion booleana
para la funcion f.
15. Sea fla funcién del ejercicio 1.
16. Sea fla funcion del ejercicio 2.
17. Sea f'la funcion del ejercicio 3.

18. Seafla funcién del ejercicio 4.

19. Sea f'la funcion del ejercicio 5.

20. Sea f'la funcién del gjercicio 6.

5 AT ™ T N 1, -
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® TCuicinia. SiA v 5 soiconjuntos parcialinentc vi-
denados, entonces 4 x B es un conjunto parciai-
miente ordenado con el orden parcial producto.

® Dual de un conjunto (4, <): el conjunto parcial-
mente ordenado (4, ), donde 2 denota la inversa
de <.

® Diagrama de Hasse: véase la pagina 231.
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EJERCICIOS DE CODIFICACION

Ordenamiento topoldgico: véase la pagina 233.
Isomorfismo de conjuntos parcialmente ordenados:
véase la pagina 234.
Elemento maximal (minimal) de un conjunto par-
cialmente ordenado: véase la pagina 239.
Teorema: Un conjunto parcialmente ordenado no
vacio, finito, tiene al menos un elemento maximo
y al menos un elemento minimo.
Elemento maximo (minimo) de un conjunto par-
cialmente ordenado A: véase la pagina 240.
Teorema: Un conjunto parcialmente ordenado tie-
ne cuando mucho un elemento maximo y cuando
mucho un elemento minimo.
Cota superior (inferior) del subconjunto B del con-
junto parcialmente ordenado 4: elementoa e A tal
que bza(a< b)paratodab e B.
Minima cota superior (maxima cota inferior) del
subconjunto B del conjunto parcialmente ordena-
doA4:elementoa e A tal quea es una cota superior
(inferior) de By a < a' (a’ £ a), donde a’ es cual-
quier cota superior (inferior) de B. _
Reticula: un conjunto parcialmente ordenado don-
de cada subconjunto con dos elementos tiene una
LUB y una GLB. '
Teorema: Si L, y L, son reticulas, entonces L = L,
X [, es una reticula.
Teorema: Sea L una reticulay a, be L. Entonces
(@) aVb=bsiysolosia<h.
(b) aNnb=uasiysodlosiu<b.
(¢) anNb=asiysdlosiavb=h.
Teorema: Sca L una reticula. Entonces

1.(a) aN/a=ua

(h)y a Noa = a
(a)y anyb=b\/u

(by uNb=bNa
3.(a) av/ (b o) =

(a\/ b))/ ¢
(b)) aN(b/Ne)=
(a /N b)Y /N e

() alaNb)y = a

(hy « L AT

(8%

Paralo siguiente, escriba el programa o subrutina

solicitado en seudocodigo (segiin lo descrito en

el apéndice Ay o en un lenguaje de programa-

® Teorema: Sea L unareticulaya, b,ce L.
1. Sia< b, entonces
(a) avc<bve
(b) anc<bac
2.ascybscsiysolosiavb<e,
c<ayc<bsiysdlosic<anb.
4. Sia< by c<d, entonces
(@ avc<gbvd
(b) anc<hbad
® Reticulas isomorfas: véase la pagina 250.
® Reticula acotada: reticula que tiene un elemento
maximo / y un elemento minimo 0.
® Teorema: Una reticula finita es acotada.
@ Reticula distributiva: reticula que satisface las le-
yes distributivas:

aN(b\/¢c)=(a/Nb)\/ (aN\c),
a\/ (bNcy=(a\/b)/\(a\/c)

® Complemento dea: elementoa’ € L (reticula aco-
tada) tal que

b

ava' =1l 'y anda =0

® Teorema: Sea L una reticula distributiva acotada.
Si existe un complemento, entonces es Gnico.

® Reticula complementada: reticula acotada en la que
cada elemento tiene un complemento.

® Algebra booleana: una reticula isomorfa con (P(S),
<) para algan conjunto finito S.

® Propiedades de un algebra booleana: véase la pa-
gina 263,

® Tablas de verdad: véase la pagina 267.

® Expresion booleana: véase la pagina 268,

® Minitérmino: una expresion booleana de la
forma X, AX, A .. A%, donde cada X, es

,

X, 0 X

® ‘[eorema: Cualquier funcionf B, — B es produci-
da por una expresion booleana.

® Mapa de Karnaugh: véase la pagina 274.

cion que usted conozca. Verifigue su codigo con
papel v lapiz o con una cjeciicion de computa-
dora.

1. Escriba una subrutina que determine si una rela-
cion R representada por su matriz es un orden
parcial.

Para los ejercicios 2 al 4, sea
%) [x, € {0, 1}

B, ={(x, x5, x5...

yx,ye B,

2. Escriba una subrutina que determine six < y.

Ejercicios de codificacion 285

. (a) Escriba una funcién que calcule x A y.

(b) Escriba una funcién que calcule x V y.
(c) Escriba una funcién que calcule x'.

. Escriba una subrutina tal que, dada x, produzca

el minitérmino correspondiente.

. Sea B = {0, 1}. Escriba un programa que impri-

ma una tabla de verdad para la funciénf: B, > B
definida por

p(x,y,2) = (x ANy )/ (y AN (X y)).



Requisito previo: Capitulo 4

8.1. Arboles

En este capitulo se estudiard las relaciones llamadas arboles, asi como sus propiedades y
aplicaciones en los algoritmos computacionales.

'n esta seeeion se estudiard un tipo especial de relacion de excepcional utilidad, con gran
vartedad de aphcaciones en la ciencia de la computacion y que por lo general se representa

maochiante G Lhiaratits efac ralacianae con npl\:yn::.‘!t«; ;\_nr:! 1.'0”5“‘{”{' b:lSCS JC duIOS y

ymbirar eitd 3¢
>Iorar 56t >

s arcas importantes. Son los arboles. a veces

enraizados). por la apariencia de sus digrafos

Sea A un conjunto y 7" una relacion en 4. T es un arbol si existe un vértice v, en A con
fa propiedad de que existe una tinica trayectoria en 7 de v, hacia cualquier otro vértice en A,
pero no existe una trayectoria de v, a v,

Mis adelante se mostrara que el vértice v, descrito en la definicion anterior, es (inico.
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Con frecuencia es llamado raiz del 4rbol 7, y T es entonces un arbol con raiz. Escribase (T,
v,) para denotar un arbol 7 con raiz v,.

Si(7, vo) es un drbol con raiz sobre el conjunto 4, un elemento v de 4 es un vértice en
T. Esta terminologia simplifica el anélisis, ya que con frecuencia sucede que el conjunto
subyacente 4 de T carece de importancia.

Con el fin de que sea més fécil entender la naturaleza de los 4rboles, se proceders a
demostrar algunas propiedades sencillas de éstos.

Teorema 1. Sea (T, vy) un arbol con raiz. Entonces
(a) Noexistenciclosen T.
(b) vyeslaunicaraizenT.
(¢) Cada vértice en T distinto de v, tiene grado interno uno, y v, tiene grado interno
cero.

Demostracion:  (a) Supdngase que existe un ciclog en 7, que comienza y termina en
el vértice v. Por la definicion de drbol, se sabe que v # v, y debe existir una trayectoria
p de vy av. Entonces g ° p (véase la seccion 4.3) es una trayectoria de v, a v diferente
de p, lo cual contradice la definicién de arbol.
(b) Si v; es otraraiz de 7, existe una trayectoriap de vy a v; y una trayectoria g de
Vi a v, (yaque v; es una raiz). Entonces g © p es un ciclo de v, a v;, lo que por
definicion es imposible. Por lo tanto, el vértice v, es la tinica raiz.
(c) Sea wy un vértice en T distinto de v,. Entonces existe una Unica trayectoria v,, .
-+ >V, wy devy aw, en T. Esto significa que (v, w) e T, de modo que w, tiene al menos
grado interno uno. Si el grado interno de w, es mayor que uno, deben existir vértices
w, Y wy distintos tales que (w,, w;) y (ws, w)) se encuentran ambos en 7. Si w, # v, y
ws # v, existen trayectorias p, de v, a w, y p; de v, a wy, por definicion. Entonces (w,,
wy) ° pyy (w3, wy) ° p; son dos trayectorias diferentes de v, a w,, y esto contradice la
definicion de un arbol con raiz v,. Por lo tanto, el grado interno de w, es uno. Se deja
como ejercicio la conclusion de la demostracion si w, = v, 0 wy = v, y mostrar que v,
tiene grado interno cero. [ )

El teorema | resume las propiedades geométricas de un arbol. Con estas propiedades
en mente, es posible analizar la apariencia del digrafo de un arbol tipico.

Primero se traza la raiz v,. Ninguna arista entra a v,, pero pueden salir varias, las
cuales son trazadas hacia abajo. Los vértices terminales de las aristas que comienzan en v,
son los vértices de nivel 1, mientras que v, estd en el nivel 0. También se acostumbra decir
que v, es el padre de estos vértices de nivel 1, y los vértices del nivel 1 son los hijos de vy,
La figura 8.1(a) muestra esto. Cada vértice en el nivel 1 no tiene otras aristas que entren en
€l, por la parte (¢) del teorema I, pero cada uno de estos vértices puede tener aristas que
salgan de €l. Se trazan las anstas que salen de un vértice de nivel | hacia abajo y terminan en
diversos vértices, que estian en el nivel 2. La figura 8.1(b) muestra la situacion en este punto.
En estos niveles también existe una relacion padre-hijo (y en toda pareja consecutiva de
niveles). Por ejemplo, v, es el padre de los tres hijos v,, v, y v,. Por lo general, los hijos de ca-
da uno de los vértices son llamados hermanos.
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Figura 8.1

El proceso anterior continda con tantos niveles como sean necesarios para completar
el digrafo. Si se observa el digrafo de arriba hacia abajo, se entiende por qué a estas relacio-
nes se las llama arboles. El nivel mas grande de un arbol es la altura de éste.

Debe observarse que un arbol puede tener una infinidad de niveles y que cualquier ni-
vel distinto del nive!l 0 puede contener un nimero infinito de vértices. De hecho, cualquier
vértice puede tener una infinidad de hijos. Sin embargo, en este andlisis se supondra que los
arboles tienen un niimero finito de vértices. Asi. los arboles siempre tendran un nivel infe-
rior {con el numero mayor). Los vertices del arbol que no tienen hijos son las hojas del
arbol.

Los vértices de un darbol que se encuentran en cualquier nivel forman snplemente un
conjunto de vértices en A. Sin embargo, por lo general, es itil suponer que los hijos de cada
vértice del arbol estan linealmente ordenados. Asi, si un vértice v tiene cuatro hijos, se
supondré que estan ordenados, por lo que se hara referencia a ellos como el primero, segun-
do, tercero y cuarto hijo de v. Siempre que se trace el digrafo de un arbol, se supondra un
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orden en cada nivel, al disponer los hijos de izquierda a derecha. Un arbol de este tipo es un
arbol ordenado. Por lo general, el orden de los hijos en un 4rbol no se menciona de manera
explicita. Si se necesita el orden, por lo general se realiza cuando surge la necesidad, y suele
especificarse mediante la forma en que se traza el digrafo del 4rbol. Es facil Veril"'lcar las
siguientes propiedades relacionales de los arboles.

Teorema 2.  Sea (T, v,) un drbol con raiz sobre un conjunto A. Entonces
(a) T es irreflexivo.
(b) T es asimétrico.
(¢) Si(a,b)e Ty(b,c)e T, entonces (a,c)¢ T, para toda a, bycenA.

Demostracion: La demostracién queda como ejercicio. °

Ejemplo 1. Sea 4 el conjunto de todas las mujeres hijos de una mujer v,. Se define la
siguiente relacion T'en 4: Si v, y v, son elementos de A4, entonces v, Tv,siysolosiv, es
la madre de v,. La relacién T en 4 es un arbol con raiz v, *

Ejemplo 2‘ SeanA = {vla Vo, V3, V45 Vs, Ves V7, Vg, Vo, V]O} y T: {(VZa VJ)’ (VZ’ Vl)’ (V4, VS)a (v4,
V), (Vss V), (Ver V1), (Va, V), (V3, Vo), (v4, vy)} . Muestre que T'es un arbol con raiz e identifique
ésta.

Solucion:  Como ninguna trayectoria comienza en los vértices v,, v,, vs, VoV Vig,
estos vertices no pueden ser raices de un arbol. No existen trayectorias de los vértices
Ve, V1, V2 Y Vs al vértice vy, por lo que se debe eliminar estos vértices como posibles
raices. Asi, si T es un arbol con raiz, ésta debe ser el vértice v,. Es facil mostrar que
existe una trayectoria de v, hacia cualquier otro vértice. Por ejemplo, la trayectoria v,,
Ve, V1, Vo VA de v, a Vg, Ya que (v, Vo), (vg, V7)Y (v5, V) se encuentran en T. Se traza el
digrafo de 7, comenzando con el vértice v,, con las aristas hacia abajo. La figura 8.2
muestra el resultado. Una rdpida inspeccion de este digrafo muestra que las trayecto-

Figura 8.2
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rias del vértice v, hacia cualquier otro vértice son tnicas, y no existen trayectorias de
v, a v,. Asi, T es un arbol con raiz v,. L J

Si n es un entero positivo, un arbol 7' es un n-arbol (arbol n-ario) si cada vértice tiene
a lo mas » hijos. Si todos los vértices de 7 distintos de las hojas tienen exactamente » hijos,
T es un n-arbol completo. En particular, con frecuencia se dice que un 2-arbol es un drbel
binario, y un 2-arbol completo es un 4rbol binario completo.

Los arboles binarios son muy importantes, ya que existen métodos eficientes para
implementarlos y hacer busquedas en ellos en las computadoras. Se vera algunos de estos
métodos en la seccion 8.3, y también que es posible reorganizar cualquier arbol como un
arbol binario.

Sea (7, v,) un 4rbol con raiz sobre el conjunto 4, y sea v un vértice de 7. Sea B el
conjunto que consta de v y todos sus hijos, es decir, todos los vértices de T que pueden ser
alcanzados mediante una trayectoria que comience en v. Observe que B < 4. Sea T(v) la
restriccion de la relacion T a B; es decir, T (B X B) (véase la seccion 4.2). En otras
palabras, 7(v) es el arbol obtenido de T de la siguiente manera. Se eliminan todos los vérti-
ces que no sean hijos de v y todas las aristas que no comienzan o terminan en un vértice de
este tipo. Se obtiene el siguiente resultado.

Teorema 3. Si (T, v,) es un drbol con raiz y ve T, entonces T(v) también es un arbol con
raiz v. T(v) es el subarbel de T que comienza en v.

Demostracion: Por definicion de T(v), se observa que existe una trayectoria de va
cualquier otro vértice en T(v). Si existe un vértice w en 7{v) tal que existen dos trayec-
torias distintas g y ¢’ de va w y sip es la trayectoria en T de v, a v, entoncesgeop y
q' ° p serian dos trayectorias distintas en 7" de v, a w. Esto es imposible, ya que 7'es un
arbol con raiz v,,. Por lo que cada trayectoria de v hacia otro vértice w en 7(v) debe ser
Unico. Asi, si g es un ciclo en v en T{v), entonces g es también un ciclo en 7. Esto
contradice el teorema 1(a); por lo tanto, g no puede existir. Esto implica que 7(v) es un
arbol conraiz v. ®

Ejemplo 3. Considere el arbol T del ejemplo 2. Este arbol tiene raiz v, y aparece en la
figura 8.2. En la figura 8.3 se ha trazado los subdrboles T(v;), T(v,) y T(v,) de T. ¢

P
; &) ©
A

®» O O @

I(vs) 1(vy) AN
4
() (9

T(ve)

Figura 8.3

GRUPO DE EJERCICIOS 8.1

En los ejercicios 1 al 8, cada relacion R se define en
el conjunto A. En cada caso, determine si R es un
arbol y, de ser asi, encuentre su raiz,

1. A={ab,cde
R = {(a,d), (b, c),(c,a),(d, e))

2. A={a,b,c,d, e

R ={(a, ), (b,e),(c,d), (d,b), (c,a)}
3. A={a,b,c,d,e,f)

R ={(a,b),(c,e), (f.a),(f,c), (f, d)}

4. A ={1,2,3,4,5,6)
R=1{(2,1).(3,4).(52),(6,5), (6,3))

,2,3,4,5, 6}
1),(2,1),(2,3),(3,4),(4,5), (4,6)}

6. A={1,2,3,4,5,6
R =1{(1,2).(1,3),(4,5),(4,6))

V4

Vig

Figura 8.4
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T A={tuv,wxy,z
R = {(t’ u)9 (u’ W), (u’ )C), (u’ V), (v’ Z)’ (V’ Y)}

8 A={uv,wxy,z]
R = {(u> x)» (u’ V)’ (W, V), (xs Z), (x, y)}

En los ejercicios 9 al 13, considere el drbol con raiz
(T, vy) de la figura 8.4.

9. (a) Enumere todos los vértices de nivel 3.
(b) Enumere todas las hojas.

10. (a) ;Cuales son los hermanos de v,?
(b) ;Cudles son los hijos de v,?

11. (a) Calcule el arbol T(v,).
(b) Calcule el arbol T(v,).

12. (a) ;Cual es la altura de (T, v,)?
(b) (Cual es la altura de T(v,)?

(T, vo)
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(b) (Cuadl es la altura maxima para un 4rbol binario
completo sobre S= {a, b, ¢, d, e}?

13. ;Es (T, vy) un n-arbol? En caso de ser asi ;para cual
entero n? ;Es (7, v,) un n-arbol completo? Si lo es
¢para cual entero n?

18. Muestre que st (T, v;) es un arbol con raiz, entonces

14. Demuestre el teorema 2. v, tiene grado interno cero.

15. Sea T un arbol. Suponga que T tiene r vértices y s 19. Muestre que el nimero maximo de vértices en un
aristas. Determine una férmula que relacione r con s. arbol binario de altura nes 2"*' — 1.

16. Trace todos los arboles no ordenados posibles sobre 20. Si T es un n-arbol completo con exactamente tres
el conjunto S = {aq, b, ¢}. niveles, demuestre que el namero de vértices de 7
debeser 1 + kn, donde 2 <k<n+ 1.
17. (a) (Cual es la altura maxima de un arbol sobre S =
{a, b, ¢, d, e}? Explique.

8.2. Arboles etiquetados

A veces es Util etiquetar los vértices o aristas de un digrafo para indicar su uso para un
proposito especifico. Esto es particularmente cierto para muchos usos de los arboles en la
ciencia de la computacién. Ahora se proporcionara varios ejemplos donde los conjuntos de
vértices de los arboles no son importantes, sino que la utilidad del arbol se enfatiza mediante
las etiquetas sobre estos vértices. Asi, se representara los vértices como puntos y se mostra-
ra la etiqueta de cada vértice junto al punto que representa dicho vértice.

Ejemple 1. Considere la expresion algebraica con cada operacién entre paréntesis
B-2Xx))+({(x—-2)—-3+x).

En esta expresion se supone que no es posible realizar operaciones como —, +, X o +
hasta evaluar ambos argumentos; es decir, hasta realizar todos los cdlculos dentro de los
argumentos de la izquierda y de la derecha. Por lo tanto, no ¢s posible realizar la suma
central hasta haber evaluado (3 — (2 X x)) y ((x — 2) — (3 + x)). No es posible realizar la
restacentralen ((x 2) - (3 4 x)) hasta haber evaluado (v~ 2) y (3 1 x), y asi sucesivamen-
te. Es facil ver que cada una de estas expresiones tiene un operador central, que correspon-
de al Gltimo célculo que puede realizarse. Asi, + es central para la expresion principal ante-
rior, — es central para (3 — (2 X x)), y asi sucesivamente. Una importante representacion
grafica de una expresion de este tipo es un arbol binario etiquetado. En este drbol, se etique-
ta ka raiz con el operador central de la expresion principal. Se etiqueta los dos hijos de la raiz
mediante el operador central de las expresiones para los argumentos de la izquierda v dere-
Chidsrespoctivamente, Shun argumento os colistante o variable, onves do sat g caprosion,
oo dtiliza esta constante o variable para etiquetar el vértice descendicnte que corresponde.
Se continua este proceso hasta concluir con la expresion. La figura 8 S muestra el arbol para
ta expresion original de este ejemplo. Para ilustrar aun mas la técnica, la figura 8.6 muestra
el arbol correspondiente a la expresion con cada operacion entre paréntesis

BXA-x) = ((4+T=(y+2)) X7+ x=y)) ¢

Figura 8.5

Figura 8.6

Seccion 8.2 Arboles ctiquetados 293
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El ultimo ejemplo de arbol etiquetado es importante para la implementacion en
computadora de una estructura de datos de tipo arbol. Se comienza con un n-arbol (7, v,).
Cada vértice en T tiene a lo mas » hijos. Imaginese que, potencialmente, cada vértice tiene
exactamente n hijos, ordenados de | a n, pero que puede faltar alguno de los hijos en la
sucesion. Se etiqueta los hijos restantes de acuerdo con la posicién que ocupan en la suce-
sion hipotética. Asi, se etiqueta los hijos de cualquier vértice con distintos nimeros del
conjunto {1,2,...,n}.

Con frecuencia, se dice que un digrafo etiquetado como éste es posicional, y también
se utilizara este término. Observe que los arboles posicionales también son 4rboles ordena-
dos. Al trazar los digrafos de un arbol posicional, se supondra que las posiciones de los n
hijos para cada vértice son ordenados de forma simétrica bajo el vértice, y se coloca en la
posicion adecuada cada hijo realmente existente.

La figura 8.7 muestra el digrafo de un 3-arbol (arbol ternario), donde todas las posi-
ciones reales etiquetadas. Si realmente existe la descendencia 1 de cualquier vértice v, se
traza la arista de v hacia ese hijo inclinada a la izquierda. Se traza el hijo 2 de cualquier
vértice v de manera vertical, hacia abajo de v, cuando exista. De manera similar, se traza los
hijos etiquetados con 3 hacia la derecha. Es claro que no se etiqueta la raiz, ya que no es
un hijo.

El arbol binario poesicional es de particular importancia. En este caso, por razo-
nes obvias, se etiqueta las posiciones de los hijos potenciales como izquierda y dere-
cha, en vez de 1 y 2. La figura 8.8 muestra el digrafo de un 4rbol binario posicional,
donde se etiqueta los hijos como L para izquierda y R para derecha. Los arboles etique-
tados pueden tener varios conjuntos de etiquetas. Por lo general, se omite las etiquetas
izquierda-derecha en un 4rbol binario posicional para enfatizar otras etiquetas ttiles.

Figura 8.7
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Le OR L®
Figura 8.8

Entonces, se indica las posiciones de los hijos mediante la direccion de las aristas,
como en la figura 8.8.

Representacion de los arboles binarios posicionales en computadora

En la seccitn 4.6 se analizé una unidad de almacenamiento de informacion idealizada lla-
mada celda. Una celda tiene dos elementos: los datos (en algin orden) y un apuntador a la
siguiente celda; es decir, se indica la direcciéon donde se localiza la siguiente celda. Una
coleccion de tales celdas, enlazadas mediante sus apuntadores, es una lista enlazada. El
analisis en la seccion 4.6 incluye ambas representaciones graficas de listas enlazadas, y la
implementacion de éstas mediante arreglos.

Se necesita una version extendida de este concepto. una lista doblemente enlazada,
donde cada celda contenga dos apuntadores y un elemento de datos. Se utilizara el simbolo
grafico <: @, @ '» pararepresentar estas nuevas celdas. El espacio central representa
¢l almacenamiento de datos y los dos apuntadores, lamados apuntador izquierdoy apqq—
tador derecho, representados como antes mediante puntos y flechas. Una vez mas, se utili-

. ®
za el simbolo
veces, una lista doblemente enlazada se ordena de modo que cada celda apunte tanto a la
celda siguiente como a la anterior. Esto es muy util si se quiere buscar a traves de un conjun-

para un apuntador, para indicar que no existen datos adicionales. A
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to de elementos de datos en cualquier direccién. Aqui se utiliza las listas doblemente enla-
zadas para algo muy diferente: para representar los arboles binarios etiquetados posiciorales.
Cada celda corresponde a un vértice, y la parte de datos puede contener una etiqueta para el
vértice o un apuntador hacia esa etiqueta. Los apuntadores izquierdo y derecho estaran
dirigidos hacia los vértices hijos izquierdo y derecho, si existen. Si no e)uste alguno de los

hijos, el apuntador correspondiente es ®

Se implementa esta representacién con tres arreglos: LEFT, que contiene los apunta-
dores dirigidos a los hijos de la izquierda; RIGHT, los apuntadores a los hijos de la derecha,
y DATA, con la informacién o las etiquetas relacionadas con cada vértice, o apuntadores
hacia tal informacion. El valor 0, utilizado como apuntador, indica que el hijo correspon-
diente no existe. A las listas enlazadas y a los arreglos se les agrega una entrada inicial que
apunta a la raiz del arbol.

Ejemplo 2. Considérese de nuevo el arbol binario posicional de la figura 8.5. En la figura
8.9(a) se representa este arbol como una lista doblemente enlazada, en forma simbélica. En
la figura 8.9(b) se muestra la implementacién de esta lista mediante tres arreglos (véase
también la seccion 4.6). La primera fila de estos arreglos es un punto de partida, cuyo
apuntador izquierdo apunta a la raiz del arbol. A manera de ejemplo de como interpretar los
tres arreglos, considérese la quinta entrada del arreglo DATA, que es X. La quinta entrada
en LEFT es 6, lo que indica que el hijo izquierdo de X esta en la sexta entrada en DATA,
es decir, 2. De manera similar, la quinta entrada en RIGHT es 7, de modo que el hijo izquier-
do de X es la séptima entrada en DATA, o x. ¢

Ejemplo 3. Ahora considérese el arbol de la figura 8.6. La figura 8.10(a) muestra este
arbol como una lista doblemente enlazada. Como antes, la figura 8.10(b) muestra la
implementacién de esta lista enlazada en tres arreglos. De nuevo, la primera entrada es un
punto de partida cuyo apuntador izquierdo apunta a la raiz del arbol. Se ha enumerado los
vertices de un modo un tanto inusual para mostrar que, si los apuntadores estan correcta-
mente determinados, es posible utilizar cualquier orden en los vértices. .
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Figura 8.9 (cont)
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DATA RIGHT

0
+ 8
— 5
3 0
X 7
2 0
x 0
~ 12
— 11
x 0
2 0
+ 14
3 0
x 0

(b)

oL+ [+

L ] -

= B

e

= Tl Ty

Figura 8.10
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INDICE

© 0 N U R W N —

—_— = =
[\ R =]

13

LEFT DATA RIGHT
7 0
0 3 0
2 X 5
0 1 0
4 - 6
0 x 0
3 + 15
0 4 0
8 + 11
0 7 0
10 - 13
0 y 0
12 + 14
0 2 0
9 x 17
0 7 0
16 + 19
0 x 0

18 + 20
0 y 0
(b)

Figura 8.10 {cont.)

GRUPO DE EJERCICIOS 8.2

FEn los ejercicios 1 al 10, construya el arbol de la ex-
presion algebraica.

LT+06-2)-(k-0-4)
2. (x+ (- (x ) X(B+@2xN)x4)
33— (x (6 X (42 3))))
4 (XN +x)+yv)+ (3~ 1)
5. (2+x)-@2%xx) - (x-2)

6. (11 — (11 X (11 + 11))) + (11 + (11 X 11))

10.

11

L3-@Q@-1-09-H)-2+3+

@+7)

- (x =) (0 X 3) — (z = 4))

(2Xx)y+ (3 —(@dxxN+(x—(3x11)

W+H+-2+~wW2-x+1

Construya los digratos de todos los arboles binarios
posicionales distintos con tres 0 menos lados, y
altura 2.

12. (Cuantos arboles binarios posicionales
distintos existen con altura 27

13. (Cuantos 3-arboles posicionales distintos
existen con altura 27

14. Construya los digrafos de todos los 3-arboles

posicionales distintos con dos o menos lados.

15. A continuacién aparece la representacion de
un 4rbol binario etiquetado posicional me-
diante una lista doblemente enlazada. Cons-
truya el digrafo de este arbol con cada
vértice etiquetado como se indica.

INDICE LEFT DATA RIGHT
o [3] X [o]
2 31 B [
3 o] [E] [
s 2] [© [
s o [Fl [
6 [0 B [4]
7 o] [6] [O]
s [6] [Al [O]
O I R Y B

16. Proporcione los arreglos LEFT, DATA y
RIGHT que describan al arbol de la figura
8.11 como una lista doblemente enlazada.

8.3. Biisqueda en arboles
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10
7 8 5

N :

Figura 8.1

En los ejercicios 17 al 20, proporcione los arreglos
LEFT, DATA y RIGHT que describan al arbol creado
en el ejercicio indicado.

17. Ejercicio 1.
18. Ejercicio 4.
19. Ejercicio 5.

20. Ejercicio 8.

En muchas ocasiones es ttil considerar cada vértice de un arbol T exactamente una vez en
cierto orden especifico. Cada vez que se encuentra cada vértice, tal vez se desee realizar
alguna accién o calculo adecuado para la aplicacion representada por el arbol. Por ejemplo,
si el 4rbol T esta etiquetado, se podria mostrar la etiqueta de cada vértice. Si T es el arbol de
una expresion algebraica, para cada vértice se podria realizar el cilculo indicado por el
operador que etiqueta a cada vértice. La realizacion de las tareas adecuadas en cada vértice
es una visita del vértice. Este es un término conveniente, no especifico, que permite escribir
algoritmos sin detallar lo que constituye una “visita” en cada caso particular.

El proceso de visita de cada vértice de un arbol en cierto orden especifico es una
busqueda en el arbol. En algunos textos, se llama a este proceso caminar o recorrer el
arbol.

Considérense las biisquedas en arboles binarios posicionales. Recuerde que en un
arbol binario posicional, cada vértice tiene dos hijos potenciales. Se denota estos hijos po-
tenciales como v, (el hijo izquierdo) y v (el hijo derecho), donde uno o ambos pueden estar
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ausentes. Si un érbol binario 7' no es posicional, siempre puede ser etiquetado de modo que
se convierta en posicional.

Sea T un 4rbol binario posicional con raiz v. Entonces, si existe vy, el subdrbol T(y,)
(véase la seccion 8.1) es el subarbol izquierdo de T y si existe v, el subéarbol T(vy) es el
subdrbol derecho de 7. :

Observe que si 7(v,) existe, entonces es un 4rbol binario posicional conraizv,, y
de manera analoga, T(v;) es un arbol binario posicional con raiz v,. Esta notacién
permite especificar algoritmos de busqueda de una manera recursiva, natural y poderosa,
Recuerde que los algoritmos recursivos se refieren a si mismos. Primero, se describirg
un método de bisqueda llamado bisqueda en preorden. Por el momento, no se espe-
cificard los detalles de la visita a un vértice de un arbol. Considere el siguiente algoritmo
de blsqueda en un arbol binario posicional T con raiz v.

ArGoritMO PREORDEN

Paso 1. Visitev.

Paso 2. Si existe v;, entonces aplique este algoritmo a (T(vy), vp).
PAso 3. Si existe vy, entonces aplique este algoritmo a (T(vy), vg).
Fin del algoritmo

De manera informal, se observa que una busqueda en preorden de un drbol consta de
tres pasos:

1. Visite la raiz.

2. Busque en el subérbol izquierdo, si éste existe.

3. Busque en el subéarbol derecho, si éste existe.

Ejemplo 1.  Sea T'el arbol binario posicional etiquetado cuyo digrafo aparece en la figura
8.12(a). La raiz de este arbol es el vértice etiquetado con 4. Suponga que, para cualquier
vértice vde 7, la visita de v imprime la etiqueta de v. Ahora aplique el algoritmo de busqueda
en preorden a este 4rbol. Observe primero que si un 4rbol solo tiene un vértice, su raiz,
entonces una busqueda en este arbol solo imprime la etiqueta de la raiz. En la figura 8.12(b)
se ha colocado cuadros alrededor de los subarboles de 7 y numerado estos subédrboles (en la
esquina de los cuadros) para una referencia conveniente.

Segun el algoritmo PREORDEN, aplicado a 7, se visita la raiz y se imprime A, des-
pugs, s¢ busca en el subarbol 1 y luego en el subarbol 7. Al aplicar PREORDEN al subarbol
1, s¢ visita la raiz del subarbol | y se imprime 5; despues, se busca en el subarbol 2,y por
ultimo en el subarbol 4. La bisqueda en el subarbol 2 imprime primero el simbolo C'y des-
pués busca en el subarbol 3. El subdrbol 3 sélo tiene un vértice, por lo que, como se mencio-
no antes, una bisqueda en este arbol proporciona el simbolo D. Hasta este punto, la busque-
da ha producido la cadena ABCD. Observe que se ha interrumpido la busqueda en cada
arbol (excepto el subdrbol 3, que es una hoja de 7)) para aplicar el procedimiento de busque-
daaun subarbol. Asi, no es posible terminar la hiisqueda de 7' con la busqueda en ¢l subarbol
7, siio yue se debe aplicar el procedimiento de busqueda a los subarboles 2 y 4. No es
posible completar la busqueda en el subarbol 2 hasta que se busque en el subdarbol 3, y asi
sucesivamente. La contabilidad originada por estas mterrupciones produce las etiquetas en
el orden deseado, y la recursién es una forma sencilla de espectficar esta contabilidad.

Regresando a la busqueda, se ha completado la bisqueda en el subérbol 2; ahora se
debe buscar en el subarbol 4, ya que éste es el subarbol derecho del arbol 1. Asi, se imprime
L'y se busca en los subarboles 5y 6, en ese orden. Con estas blsquedas se obtiene Fy G,

Scccion 8.3 Busqueda en arboles 301

A
B H
E K
s Y
5 d 6 ¢ | 11
4 8 10
7
(b)

Figura 8.12

Ahora ha terminado la busqueda en el subérbol 1, y se contintia con el subarbol 7. Al aplicar
el mismo procedimiento, puede verse que la busqueda en el subarbol 7 p.rodu.ce ﬁnalmentf:
la cadena HIJKL. Entonces. el resultado de la bisqueda completa en T imprime la cadena

*
ABCDEFGHIJKL.

Ejemplo 2. Considere la expresion con cada operaci("m er.me pgréntesis (g - b)d>< (Ce+r(el_1
+ ¢)). La figura 8.13(a) muestra el digrafo del arbol bmflrlo posicional ethLIfta thl:l e
presenta a esta expresion. Se aplica el procedimiento df? bisqueda F”REORDE a eze ar 12;
como en el ejemplo 1. La figura 8.13(b) muestra los diversos subarboles encorllt-ra 0s en’ ¢
busqueda. Si se procede como en el ejemplo 1 y se supone de nuevo que la visita a v s0
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(a)

2 3 5

(b)

Figura 8.13

imprime la etiqueta de v, se observa que la cadena X — a b+ ¢ + d e es el resultado de la
busqueda. Esta es la forma prefija o polaca de la expresion algebraica dada. Una vez mas,
la numeracion de las cajas en la figura 8.13(b) muestra el orden en que se aplica el algoritmo
PREORDEN a los subarboles. ¢

La forma polaca de una expresion algebraica es interesante, ya que representa la ex-
presion sin ambigiiedades ni necesidad de paréntesis. Para evaluar una expresion en forma
polaca, se procede como sigue. Muévase de izquierda a derecha hasta encontrar una cadena
de la forma Fxy, donde F es el simbolo de una operacion binaria (por decir, +, —, X, y asi
sucesivamente) y x y y son numeros. Se evaliia xFy y se sustituye la respuesta en vez de la
cadena Fxy. Se continara con este procedimiento hasta que solo quede un namero.

Por ejemplo, en la expresion anterior, sean a =6, b=4, c=5,d =2 y e=2.

Secci6n 8.3 - Bisqued-eniriboles .. 3QBrrrri -
GIDTECA

Entonces se debe evaluar X — 64 + 5 + 22. Esto se Ilévad cabo con |a siguiente

sucesion de pasos. Froo JARIO
l. X —64+5+22. VWb -
2. X2+5+22, ya que la primera cadem#rdettipo correcto es —6 4 y6—4=95 =
3. X2+51 reemplazando +~ 22 por2 = 20 1.
4, X26 reemplazando+ 5 1 por5+106.
5. 12 reemplazando X 2 6 por 2 X 6.

Este ejemplo es una de las razones principales para que se dé el nombre de busqueda en
preorden, ya que el simbolo de operacion precede al argumento.

Considérese ahora las siguientes descripciones informales de otros dos procedimien-
tos para realizar una busqueda en un 4rbol binario posicional T con raiz v,

ArcoritMo ENTREORDEN

Paso 1. Busque en el subarbol izquierdo (7(v,), v,), si éste existe.
Paso 2. Visite la raiz v.

Paso 3. Busque en el subarbol derecho (7(vy), vy), si éste existe.
Fin del algoritmo

ArGoritvo POSTORDEN

Paso 1. Busque en el subarbol izquierdo (7(v,), v,), si éste existe.
Paso 2. Busque en el subarbol derecho (T(vy), vy), si éste existe.
Paso 3. Visite laraiz v.

Fin del algoritmo

Como indica el nombre de los algoritmos, éstas son las busquedas entreorden y
postorden, respectivamente. Los nombres indican el momento en que se visita la raiz del
(sub)arbol con respecto del momento en que se visita los subarboles izquierdo y derecho.
De manera informal, en una bisqueda en preorden, ¢l orden es raiz, izquierdo, derecho; para
una busqueda en entreorden, es izquierdo, raiz, derecho; y para una bisqueda en postorden,
es izquierdo, derecho y raiz.

Ejemplo 3. Considere el rbol de la figura 8.12(b) y aplique el algoritmo ENTREORDEN
pararealizar la bliisqueda. Primero, debe buscarse en el subarbol 1. Para csto, hay que buscar
primero en ¢l subdrbol 2, y esto a su vez requiere que sc busque en el subarbol 3. Como
antes, una buisqueda en un arbol con un tnico vértice imprime la etiqueta de éste. Asi. D es
el primer simbolo impreso. La busqueda en el subarbol 2 imprime C'y después se detiene,
pues no existe el subarbol derecho de C. A continuacion se visita la raiz del subarbol 1 y se
imprime B, por lo que se procede a buscar en el subarbol 4, con lo que se obtiene £, £y G,
en ese orden. Después, se visita la raiz de 7, se imprime 4 y se procede a la busqueda en el
subarbol 7. Ellector debe completar el analisis de la busqueda en el subarbol 7 para mostrar
que el subdrbol produce la cadena [JHKL. Asi, la busqueda completa produce la cadena
DCBFEGAIJHRL.

Suponga ahora que se aphea el algortmo POSTORDEN, para buscar en el mismo
arbol. De nuevo, la busqueda en un arbol con un vértice produce la etiqueta de ese vértice.
En general, se debe buscar en el subarbol izquierdo y el derecho de un arbol con raiz v antes
de imprimir la etiqueta de v.

Sise observa de nuevo la figura 8.12(b), s¢ ve que hay que buscar en los subdrboles
y 7 antes de imprimir 4. Se debe buscar en los subarboles 2 y 4 antes de imprimir B, y asi
sucesivamente.
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La busqueda en el subarbol 2 requiere que se busque en el subarbol 3, y D es el primer
simbolo impreso. La busqueda en el subarbol 2 contintia, imprimiendo C. Ahora se busca en
el subdrbol 4 y se obtiene ', G y E. Después, se visita la raiz del subérbol 1 y se imprime B,
Luego se busca en el subarbol 7 y se imprime los simbolos J, /, L, Ky H. Por altimo, se
visita la raiz de T e se imprime A4. Asi, se imprime la cadena DCFGEBJILKHA. *

Ejemplo 4. Ahora se aplicaran las bisquedas en entreorden y en postorden al arbol de Ia
expresion algebraica del ejemplo 2 [véase la figura 8.13(a)]. El uso del algoritmo
ENTREORDEN produce la cadenaa — b X ¢ +d + e. Observe que ésta es precisamente la
expresion con la que se inicia el ejemplo 2, sin los paréntesis. Como los simbolos algebraicos
se encuentran entre sus argumentos, €sta ¢s llamada con frecuencia notacién entrefija, lo
cual explica el nombre de ENTREORDEN. La expresion anterior es ambigua sin parénte-
sis. Podria provenir de la expresiona — (b X ({(c¢ + d) + e)), con lo que se obtendria un arbol
diferente. Asi, no es posible recuperar el arbol a partir de la salida del procedimiento de
busqueda ENTREORDEN, pero se puede mostrar que el arbol es recuperable a partir de la
forma polaca obtenida mediante PREORDEN. Por esto, se prefiere usar la notacion polaca
en general para las aplicaciones de las computadoras, aunque la forma entrefija resulta ser
mas familiar.

El uso del procedimiento de bisqueda POSTORDEN en este arbol produce la cadena
ab — cde + + X. Esta es la forma posfija, polaca inversa o sufija de la expresion. Se
evalia de manera similar a la forma polaca, pero el simbolo del operador esta después de sus
argumentos y noantes. Sia=2,b=1,c=3,d=4ye =2, se evalla la expresion anterior con
los siguientes pasos.

21 =342 ++ X,

1
21342+ 4+ X reemplazando 2 1 —por2 — 1o l.
3

132+ X reemplazando 4 2 + por4 + 202,
4. 15X reemplazando 32 +por3+2 0 5.
508 reemplazando 1 S X por | X 50 5. ¢

La forma polaca imversa también carece de paréntesis, y por medio de ella puede
recuperarse el arbol de la expresion. Se utiliza con mds frecuencia que la forma polaca.

Busqueda en arboles generales

Hasta ahora, solo se ha mostrado la forma de realizar blsquedas en arboles posicionales
binarios. Ahora se mostrari que cualquier arbol ordenado 7' (véase la seccion 8.1) se puede
representar como un drbol posicional binario, el cual, aunque diferente de 7', captura toda la
estructura de éste y se puede utilizar para recuperar 7. Con la descripcion posicional binaria
delarbol, puede aplicarse la representacion computacional v los métodos de blisqueda desa-

E T N TS PR I D U N T IR} e | L
PO [OIN sised

R ! ot ‘
Lo T COTu e SO T w el vedig S s U, jrue e wiidiadiSe

sl eonica on eualguicr drbol (Hnito).

Sean Tundrhelordenado v 4 el contunta de tados Tos vértices Jde 7 Se detine un drbol
posicional binario 8(7) sobre el conjunto de vértices 4, como sigue. Si v e A, entonces, el
hitowzquierdo v, deven BTy esel primer hijo de v en 7. siéste existe. Bl hijo derecho v, de
ven B(7) es el siguiente hermano deven 7 (en el orden dado de los hermanos de 7. si es que
éste existe.

1
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Ejemplo S. La figura 8.14(a) muestra el digrafo de un arbol etiquetado 7. Se supone que
cada conjunto de hermanos esta ordenado de izquierda a derecha, como en el dibujo. Asi,
los hijos del vértice 1, es decir, los vértices 2, 3 y 4, quedan ordenados con el vértice 2 en
primer lugar, el 3, en segundo y el 4, en tercero. De manera similar, el primer hijo del vértice
5 es el vértice 11, el segundo es el vértice 12 y el tercero es el vértice 13.

En la figura 8.14(b) aparece el digrafo del 4rbol posicional binario correspondiente,
B(T). Para obtener la figura 8.14(b), basta trazar una arista izquierda desde cada uno de los

11@ 120 @13

Figura 8.14



306

Capitulo 8

Arboles

vértices v hacia su primer hijo (si v tiene hijos). Después se traza una arista derecha de
cada uno de los vértices v hacia su siguiente hermano (en el orden dado), si v tiene un
siguiente hermano. Asi, la arista izquierda del vértice 2, en la figura 8.14(b), va al vértice
S5, ya que el vértice 5 es el primer hijo del vértice 2 en el 4rbol 7. Ademas, la arista derecha
del vértice 2, en la figura 8.14(b), va hacia el vértice 3, ya que el vértice 3 es el siguiente
hermano en el renglon (entre todos los hijos del vértice 1). Con frecuencia, la répresenta-
cion de B(T) a manera de lista doblemente enlazada se llama representacién en lista
enlazada de T. .

Ejemplo 6. La figura 8.15(a) muestra el digrafo de otro arbol etiquetado, con los herma-
nos ordenados de izquierda a derecha, como se indica. La figura 8.15(b) muestra el digrafo
del arbol correspondiente B(7), y la figura 8.15(c) proporciona una representacion en forma
de arreglo de B(T). Como se ha mencionado, los datos en la figura 8.15(c) son una represen-
tacion en lista enlazada de T. ¢

Versiones en seudocodigo

Los tres algoritmos de blisqueda de esta seccidn tienen versiones directas en seudocodigo,
las cuales son presentadas aqui. En cada caso, se supone que se ha definido con anterioridad
la subrutina VISIT.

SUBROUTINE PREORDER(T, v)
1. CALL VISIT(v)
2.1F (v, exists) THEN

a. CALL PREORDER(T(v,),v,)
3.1F (v, exists) THEN

a. CALL PREORDER(T(vg), vg)
4. RETURN
FIN DE LA SUBRUTINA PREORDEN
SUBROUTINE INORDER(T7.v)
[.IF (v, exists) THEN

a. CALL INORDER(T(v,).v,)
2. CALL VISIT(v)
3.1F (vg exists) THEN

a. CALL INORDER(T(vg), vg)
+. RETURN
FIN DE LA SUBRUTINA ENTREORDEN
SUBROUTINE POSTORDER(T. v)
IF (v, exists) THEN

2 CALL POSTORDER(/(v, ), v, )
2.1F (v, exists) THEN

a. CALL POSTORDER(T(vg). vy)
3. CALL VISIT(v)
4. RETURN
FIN DE LA SUBRUTINA POSTORDEN

Seccién 8.3 Biisqueda en arboles

INDICE LEFT

I 2
2 3
3 6
4 0
5 ()~
6 0‘_
7 0
8 0

Figura 8.15

B(T)
(b)
DATA RIGHT
0
a 0
b 4
c 5
d 0
e | 7
f 8
g 0
©

307
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GRUPO DE EJERCICIOS 8.3

En los ejercicios 1 al 4 (figuras 8.16 a la 8.19) apa- 3. a
recen los digrafos de drboles posicionales binarios
etiguetados. En cada caso, la visita a un nodo impri-
me la etiqueta de ese nodo. Para cada ejercicio, mues-
tre cudl es el resultado de realizar una bisqueda en
preorden del drbol cuyo digrafo se muestra.

L X
e
y Z
8 h J f
Figura 8.18
$ t
u
v
Figura 8.16

Figura 8.19

I~
X

En los ejercicios 5 al 12, la visita a un nodo significa
imprimir la etiqueta del nodo.

- 2 5. Muestre cudl es ¢l resultado de realizar una
blsqueda en entreorden del arbol de la figura 8.16.
6. Mucstic cudl s ol iosultado de tealizar una
+ \. 1 blisqueda o enticorden det @bol de fa Nigura 8,17,
7. Muestre cudl ¢s ¢l resultado de realizar una
busqueda en entreorden del arbol de la figura 8.18.
2 3 8. Muestre cual ¢s el resultado de realizar una

Figura 8.17 busqueda en entreorden del arbol de la figura 8.19.

10.

11.

12.

13.

Muestre cudl es el resultado de realizar una
busqueda en postorden del arbol de la figura 8.16.

Muestre cual es el resultado de realizar una
busqueda en postorden del arbol de la figura 8.17.

Muestre cuél es el resultado de realizar una
busqueda en postorden del arbol de la figura 8.18.

Muestre cual es el resultado de realizar una
busqueda en postorden del arbol de la figura 8.19.

Considere el digrafo del arbol de la figura 8.20 y la

siguiente lista de palabras. Suponga que la visita a
un nodo de este arbol significa imprimir la palabra
correspondiente al miimero que etiqueta ese nodo.
Imprima la frase que se obtiene al realizar una
buasqueda en postorden del arbol.

UNA 7. YO
PURPURA 8. UNA
VEA 9. ESPERO
NUNCA 10. YO
VACA 1. VI
NUNCA 12. QUE

oA

=

Figura 8.20
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En los ejercicios 14 y 15, evaliie la expresion, dada
en notacion polaca o prefija.

14. X — +34-72+12X3—-64

15, = — ><3x><4y+15><2—6y,dondexes2y
yes 3.

En los ejercicios 16 y 17, evaliie la expresion, dada
en notacion polaca inversa o posfija.

16. 432 + —5X42X5X3+ =+

17. x2—-3+23y+—w3 — X +,dondexes7,yes?2
ywes l.

18. Considere el 4rbol etiquetado cuyo digrafo aparece
en la figura 8.21. Trace el digrafo del arbol
posicional binario correspondiente B(T). Etiquete los
vértices de B(T) para mostrar su correspondencia
con los vértices de 7.

®
W

- @
- @

Figura 8.21

>
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19. A continuacién aparece, en forma de arreglo, la
representacion en lista doblemente enlazada de
un arbol etiquetado 7 (no binario). Trace el digrafo
del arbol binario etiquetado B(7T) guardado en los
arreglos, y del arbol etiquetado 7 dado por la
representacion binaria B(T).

INDICE | LEFT | DATA |RIGHT
1 2 0
2 3 a 0
3 4 b 5
4 6 c 7
5 8 d 0
6 0 e 10
7 0 f 0
8 0 g 11
9 0 h 0
10 0 i 9
11 0 j 12
12 0 k 0

. . . N .. Figura 8.22
20. Considere el digrafo del 4rbol binario posicional

etiquetado de la figura 8.22. Si este arbol es la forma
binaria B(T) de algun arbol 7, trace el digrafo del
arbol etiquetado T.

8.4. Arboles no dirigidos

Un arbol no dirigido es la cerradura simétrica de un arbol (véase la seccién 4.7); es decir,
es un arbol con todas sus aristas bidireccionales. Como se acostumbra con las relaciones
simétricas, se representa un arbol no dirigido mediante su grafica, en vez de su digrafo. La
grafica de un arbol no dirigido 7 tendra una tnica linea sin tlechas que une los vértices a y
b siempre que (a, b) y (b, a) pertenezcan a 7' El conjunto {a, b}, donde (a, b) y (b, a) estan
en 7, es una arista no dirigida de T (véase la seccién 4.4). En este caso, los vértices a yb
son vértices adyacentes. Asi, cada arista no dirigida {a, b} corresponde a dos aristas ordi-
narias (a, b) y (b, a). Las lineas en la grafica de un 4rbol no dirigido T corresponden a las
aristas no dirigidas en 7.

Ejemplo 1. ia figura ¥.23(a) muestra la gratica de un arbol no dingido 7. En la figura
8.23(b) y (c), se muestra los digratos de los arboles ordinarios T, y T,, respectivamente,
que tienen a T como cerradura simétrica. Esto muestra que un arbol no dirigido corres-
ponde, en general, a muchos é4rboles dirigidos. Se incluye las etiquetas para mostrar la
correspondencia de los vértices subyacentes en las tres relaciones. Observe que la grafica
de T en la figura 8.23(a) tiene seis lineas (aristas no dirigidas), aunque la relacién T con-
tiene 12 parejas. .
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a
d
C
C .g
d

® L ®

f b e f
(a) (c)
Figura 8.23

Se quiere presentar algunas definiciones alternativas utiles de un arbol no dirigido, y
para esto se necesita algunos comentarios acerca de las relaciones simétricas.

Sea R una relacién simétrica y sea p: v;, vy, . . ., v, una trayectoria en R. Se dice que p
es simple si no existen dos aristas de p correspondientes a la misma arista no dirigida. Si,
ademads, v, es igual a v, (de modo que p sea un ciclo), p es un ciclo simple.

Ejemplo2. La figura 8.24 muestra la grafica de una relacion simétrica R. La trayectoriaa,
b, ¢, e, d es simple, pero la trayectoriaf, e,d, c,d,ano loes, yaqued, cyc,d corresponden
a la misma arista no dirigida. También, f, e, a, d, b, a, [y d, a, b, d son ciclos simples, pero
/s e, d, c, e, fno es un ciclo simple, ya que f, e y e, f corresponden a la misma arista no
dirigida. .

Figura 8.24
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Una relacion simétrica R es aciclica si no contiene ciclos simples. Se puede mostrar
que si R contiene ciclos, entonces contiene un ciclo simple. Recuerde (véase la seccién
4.4) que una relacion simétrica R es conexa si existe una trayectoria en R desde un vértice
hacia cualquier otro vértice.

El siguiente teorema proporciona una util proposicion equivalente a la definicion an-
terior de un arbol no dirigido. '

Teorema 1. Sea R una relacion simétrica en un conjunto A. Entonces las siguientes pro-
posiciones son equivalentes.

(a) R es un arbol no dirigido.

(b) R es conexo y aciclico.

Demostracion: Se demostrard que la parte (a) implica la parte (b), y se omitira la
demostracion de que la parte (b) implica la parte (a). Suponga que R es un arbol no
dirigido, lo que significa que R es la cerradura simétrica de algin arbol Ten 4. Obser-
ve primero que si (a, b) € R, se debe tener (a, b) € T o (b, a) € T. En términos
geométricos, esto significa que cada arista no dirigida en la grafica de R aparece en el
digrafo de 7, dirigida en un sentido o en el otro.

Por contradiccion, se mostrard que R no tiene ciclos simples. Suponga que R
tiene un ciclo simple p: vi, v, . . ., v, v,. Para cada arista (v, v)) enp, se elige la pareja
(viov) 0 (v, v;) que esté en T. El resultado es una figura cerrada con aristas en 7, donde
cada arista debe apuntar en una direccién. Ahora existen tres posibilidades: todas las
flechas apuntan en el sentido de las manecillas del reloj, como en la figura 8.25(a),
todas apuntan en sentido contrario al de las manecillas del reloj o alguna pareja aparece
como en la figura 8.25(b). La figura 8.25(b) es imposible, ya que en un arbol 7, cada
vértice tiene grado interno 1 (véase el teorema 1 de la seccion 8.1). Pero cualquiera de
los otros dos casos implicaria que T tiene un ciclo, lo cual también es imposible. Asi,
la existencia del ciclo p en R lleva a una contradiccidn y por lo tanto es imposible.

También se debe mostrar que R es conexa. Sea v, la raiz del arbol T. Entonces,
siay b sondos vértices en 4, deben existir trayectoriasp de vyaa y g de v, a b, como
en la figura 8.25(c). Ahora, todas las trayectorias en 7' son reversibles en R, de modo
que ¢ ° p~', que aparece en la figura 8.25(d), conecta a con b en R, donde p~' es la
trayectoria inversa de p. Como a y b son arbitrarios, R es conexa, y queda demostrada
la parte (b). [ )

Existen otras caracterizaciones Gtiles de los arboles no dirigidos. Se establecera dos
de ellas sin demostracion en el siguiente teorema.

Teorema 2.  Sea R una relacion simétrica en un conjunto 4. Entonces R es un darbol no
divigido siv ~olo si cualquicra de las siguicnios proposiciones es verduder a.
() R oy aciclica, v si se agresa cualquicr arista no dirisida a R, la nueva relacion no
serda aciclica.
(b) R es conexa, y sise elimina cualquier arista no divigida de R, la nueva velacion no
SCrd conexa. L4

El sigutente teorema ayudara a determinar cierto tipo de arboles.

Vs
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V3
V4 V2
Vi Vi Vi
Y
K , Vn (b)
V7
(a)
Yo
P q

(©) (@
Figura 8.25

Teorema 3. Un dairbol con n véitices ticne n — | aristas.

Demostracion:  Como un arbol es conexo, deben existir al menos 1 — 1 aristas
para conectar los n vértices. Supdngase que existen mas de n — 1 aristas. Entonces
la raiz tiene grado interno 1 o algin otro vértice tiene grado interno al menos 2. Pero

por el teorema 1 de la seccion 8.1, esto es imposible. Asi, existen exactamente n — 1

. [ J
aristas.
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Arboles de expansion de relaciones conexas

Si R es una relacion simétrica conexa sobre un conjunto 4, un arbol 7 en 4 es un arbol de
expansioén para R si T'es un arbol con exactamente los mismos vértices que R y que se puede
obtener de R eliminando algunas aristas de R.

Ejemplo 3. Larelacion simétrica R cuya grafica aparece en la figura 8.26(a) tiene el arbol
T"como arbol de expansion, cuyo digrafo aparece en la figura 8.26(b). También, el arbol 7"
es un arbol de expansion para R, cuyo digrafo es mostrado en la figura 8.26(c). Como R, T’

a a
b c b c
d e d e
f f
Tl
(a) (b)
a a
® 9
A
b c b c
d e d e

¢
f

"

e

(c) (d)
Figura 8.26
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y T" son relaciones en el mismo conjunto 4, se ha etiquetado los vértices para mostrar la
correspondencia de los elementos. Como muestra este ejemplo, los arboles de expansion no
son Uunicos. *

A veces existe interés en un arbol de expansion no dirigide para una relacién simé-
trica conexa R. Este arbol es la cerradura simétrica de un arbol de expansién. La figura
8.26(d) muestra un arbol de expansién no dirigido para R, deducido del arbol de expansién
de la figura 8.26(c). Si R es una relacion complicada que es simétrica y conexa, podria ser
dificil disefiar un esquema para la blisqueda en R; es decir, para visitar cada uno de sus
vértices una vez en cierta forma sistemética. Si R se reduce a un arbol de expansion, puede
utilizarse los algoritmos de bisqueda analizados en la seccion 8.3.

El teorema 2(b) sugiere un algoritmo para determinar un arbol de expansién no dirigi-
do para una relacion R. S6lo hay que eliminar varias aristas no dirigidas de R hasta llegar a
un punto donde la eliminacion de una mas de las aristas no dirigidas produciria una relacion
no conexa. El resultado sera un arbol de expansion no dirigido.

Ejemplo 4. Enlafigura8.27(a), se repite la grafica de la figura 8.26(a). A continuacion se
muestra el resultado de eliminar varias aristas no dirigidas, lo que culmina en la figura
8.27(f), el arbol de expansion no dirigido, acorde con la figura 8.26(d). ¢

Este algoritmo es bueno para relaciones pequefias, cuyas graficas son faciles de trazar.
Para relaciones de mayor tamafio, tal vez guardado en una computadora, el algoritmo es
ineficiente, ya que en cada etapa se debe verificar la conexidad, y esto exige un algoritmo
complicado. Ahora se presentara un método mas eficiente, que ademas produce un arbol de
expansion, en vez de un arbol de expansion no dirigido.

Sea R una relacion en un conjunto 4, y seana,be 4. Sea Ay=A — {a, b}, y A" = 4,
U {a’}, dondea’ es un nuevo elemento que no esté en 4. Defina unarelacion R’ en 4’ como
sigue. Supongaqueu,ve A, u#a',v#a'.Sea(a’,u)e R' siysoélosi(a,u)e Ro(b,u)
€ R.Sea(u,a’ye R'siysolosi(u,a)ye Ro(u,b)e R.PorGltimo, sea (4, v)e R’ siy solo
si (4, v) € R. Se dice que R’ es el resultado de unir los vértices a y b. Esto es similar a la
union de vértices analizada en la seccion 6.1.

Imagine, en el digrafo de R, que los vértices son alfileres, y que las aristas son ligas
elasticas que pueden encogerse hasta la longitud cero. Ahora, acerque fisicamente los alfile-
res a y b, encogiendo la arista entre ellos (st existe), hasta una longitud cero. El digrafo
resultante es el digrato de K’. S1 K es simétrica, se puede realizar la misma operacion en la
grafica de R.

Ejemplo 5. La figura 8.28(a) muestra la grafica de una relacion simétrica R. En la figura
8.28(b) se muestra el resultado de unir los vértices v, y v, en un nuevo vértice v' . En la
figura 8.28(c) se muestra el resultado de unir los vértices v/ y v, de la relacion cuya grafica
aparece en la figura R 2R(b) en un nuevoe vértice vv Obgerve en fa figura 8.28(c) que se ha
combinado fas arstas no dirgidas que estaban presentes entre vy v,y entre v, y v, en una
arista no dirigida. .

La forma algebraica de este proceso de union también es muy importante. Se centrard
la atencion en las relactones simétricas y sus graficas. Gracias a la seccion 4.2, se sabe cOmo
construir la matriz de una relacién R.
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a a a
b c b ¢ b c
d e d e d e
f f f
(a) (b) (©
a a a
® ® ®
b c b c
d € d d €
f f S
(d) (e) ¢
Figura 8.27

Si R es una relacion en A, se hara referencia, temporalmente, a los elementos de A
como vértices de R. Esto facilitara el analisis.

Supongase ahora que se une los vértices a y b de una relacion R en un nuevo vértice a’
que reemplaza a ambos vértices para obtener la relacion R'. Para determinar la matriz de R’
se procede de la siguiente manera.

N

Pasor b Plrenelons represenma el vertice g v el renglon s representa el vértice /. Se reemnla-
zi el renglon £ con L amidn de los renglones 1 v 7. La unton de las dos s-adas de ceros y
unos tiene un | en una posicion precisamente cuando alguna de las dos n-adas tiene un |
CICsd POSICION.

Paso 2. Se reemplaza fa columna 1 por la union de tas columnas i v

Paso 3. Se restaura la diagonal principal con sus valores originales en R.

Paso 4. Se elimina el renglon j y la columna ;.

Vi

V3

Vo
vy

Va
vy
Vg

Vg
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N V’ 7,
0 9 &

Vz V2
Ve
V5 v5 V5
® o
V4 V4 V4
Vg v3 Ve V3
(@) (b) ©
Figura 8.28

Vi

0
0

0
0

Se hace la siguiente observacion con respecto del paso 3. Sie=(a, b)e Ry seunea
y b, entonces e sera un ciclo de longitud 1 ena’. Esta situacion no es la deseable, ya que no
corresponde a “encoger (a, b) hasta cero”. El paso 3 corrige esto.

Ejemplo 6. La figura 8.29 proporciona las matrices para las relaciones simétricas corres-
pondientes cuyas graficas fueron dadas en la figura 8.28. En la figura 8.29(b), se ha unido
los vértices v, y v, en v . Observe que esto se hace considerando la union de los dos prime-
ros renglones e introduciendo el resultado en el renglén 1. Se hace lo mismo para las colum-
nas, después se restaura la diagonal y se elimina el renglén 2 y la columna 2. Si se une los
vértices vy v, en la grafica cuya matriz estd dada en la figura 8.29(b), la grafica resultante

tiene la matriz de la figura 8.29(c). *
Vo Vi Vqa Vs Vg Vo V2 V3o V4 Vs Ve Vo VzooVa Vs Vg
10 0 1 0 1% TR VAN K I N B ¢ vel O 1 T 1
o 1 1 0 0 wil 0 0 0 t 1 vy 10 0 0 0
0O 0 o0 1 1 wl 10 0 0 0 0 vl 00 0 0
0o 0 0 0 0 vwp 100 0 0 O vs] 1 O 0 0O O
0 0 0 0 0 vsp 110 0 0 O wl b0 0 0 0

1 0 0 0 0 vl O 10 0 0 0

P00 0 0] - -

(a) (h) (¢)

Figura 8.29

Ahora puede proporctonarse un aigoritmo para determinar un arbol de expansion para
i relacion simétrica conexa R en el conjunto A - (v v o, v, El método es un caso
especial de un algoritmo llamado algoritmo de Prim. Los pasos son los siguientes:

Paso 1. Seelige un vértice v, de R, y se ordena la matriz de R de modo que el primer renglon
corresponda a v,.
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Paso 2. Se elige un vértice v, de R, tal que (v}, v,) € R, se une v, y v, en un nuevo vértice yr

1
que representa a {v,, v,} y se reemplaza v, por vi. Se calcula la matriz de la relacién
resultante R'. El vértice v; es un vértice unido.

Paso 3. Se repite los pasos 1 y 2 en R’ y en todas las relaciones subsecuentes hasta obtener
una relacion con un Ginico vértice. En cada paso, se mantiene un registro del conjunto de
vértices originales representada por cada vértice unido.

PAso 4. Se construye el rbol de expansion de la siguiente manera. En cada etapa, al unir los
vertices a y b, se elige una arista en R de uno de los vértices originales representados por
a hacia uno de los vértices originales representados por b.

Ejemplo 7.  Se aplica el algoritmo de Prim a la relacion simétrica cuya grafica estd en la
figura 8.30.

a b
c d
Figura 8.30

En la tabla 8.1, se muestra las matrices obtenidas al reducir mediante uniones el con-
Junto original de vértices, hasta obtener un tnico vértice, y en cada etapa se mantiene un
registro del conjunto de vértices originales representados por cada vértice unido, asi como
del nuevo vértice que va a unirse.

Tabla 8.1
Vértices originales Nuevo vértice
representados por por unir (con
Matriz los vértices unidos el primer renglén)
a b ¢ d
a 10 0 1 1
b 10 0 1 1 — ¢
¢ 1 1 0 0
d 1 1 00
a b d
a [0 1 1
b I 0 1 a’ < la. ¢} b
4 L1 1 0

a [(l) ]] o faca bl d

a
a” 0] a” o a.c.d b} —

i
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El primer vértice elegido es a, y se elige c como el vértice por unir cona, ya que existe
un [ en el vértice c en el renglon 1. También se elige la arista (a, ) de la grafica original. En
la segunda etapa, existe un 1 en el vértice b en el renglén 1, por lo que se une b con el vértice
a'. Se elige una arista en la relacion original R a partir de un vértice de {a, c} a b, por decir
(¢, b). En la tercera etapa, se debe unir 4 con el vértice a”. De nuevo, se necesita una arista
en R de un vértice de {a, b, ¢} a d, por decir (a, d). Las aristas seleccionadas (a, ¢), (¢, b) y
(a, d) forman el arbol de expansion para R, el cual aparece en la figura 8.31. Observe que el

primer vértice elegido es la raiz del arbol de expansion construido. ¢
a b
@
c d
Figura 8.31

GRUPO DE EJERCICIOS 8.4

En los ejercicios | al 6 (figuras 8.32 a la8.37), utilice 2. Utilice 5 como la raiz.
el algoritmo de Prim para construir un drbol de ex-
pansioén para la grdfica conexa mostrada. Utilice el 1 2
vértice indicado como la raiz del drbol y trace el
digrafo del drbol de expansion obtenido.
5
1. Utilice e como la raiz. 3 4
Figura 8.33
a
3. Utlice ¢ como la raiz.
b f
a b
¢ e
d c d

Figura 8.32 Figura 8.34
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4. Ultilice 4 como la raiz.

1 5
3 4
2 7
Figura 8.35

5. Utilice e como la raiz.

Figura 8.36
6. Utilice d como la raiz.

b

B p

Q

Figura 8.37

En los cjercicios 7 al 12, construya un drbol de
expansion no dirigido para la grafica conexa G,
climinando aristas. Muestre la grafica del drbol
de expansion no dirigido resultante.

7. Sea G la grafica de la figura 8.32.

8. Sea G la gréfica de la figura 8.33.
9. Sea G la gréfica de la figura 8.34.
10. Sea G la grafica de la figura 8.35.
11. Sea G la grafica de la figura 8.36.‘
12. Sea G la grafica de la figura 8.37.
13. Considere la gréfica conexa de la figura 8.38.

Muestre las graficas de tres arboles de expansién
no dirigidos diferentes.

b e
d
¢ g
Figura 8.38

14. Para la grafica conexa de la figura 8.39, muestre
las graficas de todos los arboles de expansion no
dirigidos.

Figura 8.39

15. Para el rbol no dirigido de la figura 8.40
muestre los digrafos de todos los arboles de
expansion. (Cudntos existen?

|

2
N et

\\ 3 //
4 5
Figura 8.40
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16. Para cada una de las graficas de la figura 8.41 proporcione todos los arboles de expansién.

A, Ay A,

A2 < A3
As A,

(a) (b)
Figura 8.41

17. Para cada una de las graficas de la figura 8.42 ;cuantos arboles de expansion diferentes

existen?
Al A2
A, ./. A3
s y
A 4
A (@) 3 > (b)

Figura 8.42

18. Establezca su conclusion para la figura 8.42(b) como un teorema y demuéstrelo.

8.5. Arboles de expansién minima

En muchas aplicaciones de las relaciones simétricas conexas, la grafica (no dirigida) de la
relacién modela una situacién donde las aristas y los vértices contienen informacion. Una
grafica con pesos es una gréfica donde cada arista esta etiquetada con un valor numérico

que denota su peso.

Ejemplo 1. Un pequefio pueblo mantiene un sistema de veredas para transitar entre las
areas de recreacion en el pueblo. El sistema se modela mediante una grafica con pesos en la

figura 8.43, donde los pesos representan las distancias en kildmetros que hay entre los si-

t108. ¢

Figura 8.43
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Ejemplo 2. Una compafiia de comunicacién investiga el costo de la actualizacién de
las conexiones entre sus estaciones de transmision. La grafica con pesos de la figura
8.44 muestra las estaciones y el costo en millones de délares para la actualizacién de
cada conexion. ¢

Figura 8.44

El peso de una arista (v, v;) es ladistancia entre los vértices v, y v, Un vérticeu es un
vecino mds cercano del vértice vsiu y vson adyacentes y ningiin otro vértice queda unido
con v mediante una arista de menor peso que («, v). Observe que, a diferencia de lo que
sucede en la gramatica, v puede tener mas de un vecino cercano.

Ejemplo 3. En la grafica de la figura 8.43, el vértice C es uno de los vecinos mas cercanos
del vértice 4. Ambos vértices £ y G son vecinos mds cercanos de F. *

Un vértice v es un vecino mas cercano de un conjunto de vértices V= {v, v, ...,
v} en una grafica siv es adyacente a algin miembro v, de ¥y ningiin otro vértice adyacente
a un miembro de ¥ estd unido mediante una arista de menor peso que (v, v).

Ejemplo 4. En relacion con la grafica de la figura 8.44, sea V' = {C, E, J}. Entonces el
vértice D es un vecino més cercano de V, ya que (D, E) tiene peso 2.2 y ningiin otro vértice
adyacente a C, E 0 J se une a uno de estos vértices mediante una arista de menor peso.

En las aplicaciones de las graficas con pesos, con frecuencia se necesita determi-
nar un arbol de expansién no dirigido para el cual el peso total de las aristas en el arbol
sea el menor posible. Este 4rbol se conoce como arbol de expansiéon minima. El
algoritmo de Prim (secci6n 8.4) se puede adaptar facilmente para producir un 4rbol de
expansion minima para una grafica con pesos. A continuacion se enunciard el algoritmo
de Prim como si fuera aplicado a una relacian <imétrica conexa, dada por su grafica de
pesos no dirigida.

ALGORITMO DE PrRIM: Sea R una relacion simétrica, conexa con a1 vértices.
Paso 1. Se elige un vértice v, de R. Sea V = vityE={}.

Paso 2. Se elige uno de los vecinos mas cercanos a v, de ¥/ que sea adyacente a v,v,e Vyy
tal que la arista (v, v)) no forme un ciclo con miembros de E. Se agregav,aVy(v,v)akF.

i
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Paso 3. Serepite el paso 2 hasta que |[E| =n — 1. Entonces ¥ contiene los n vértices de R y
E contiene las aristas de un arbol de expansién minima para R.

Fin del algoritmo

En esta version del algoritmo de Prim, se comienza en cualquier vértice de R y se
construye un arbol de expansion minima agregando una arista a un vecino mas cercano del
conjunto de vértices ya unidos, siempre que al agregar esta arista no se forme un ciclo. Esto
es un ejemplo de algoritmo ambicioso. En cada etapa se elige lo “mejor”, con base en las
condiciones locales, en vez de observar la situacion global. Los algoritmos ambiciosos no
siempre producen soluciones dptimas, pero es posible mostrar que en este caso la solucion
es optima.

Teorema 1. El algoritmo de Prim dado arriba produce un drbol de expansién minima
para la relacion.

Demostracién:  Sea T el arbol obtenido mediante el algoritmo de Prim para Ry ¢,,
b, .., %, sus aristas. Suponga que 7 no es un arbol de expansién minima para R.
Entre los arboles de expansion minima de R, sea S uno con la siguiente propiedad:
ti, by . .., t;son aristas en Scon /< n — 1 tan grande como sea posible. Es decir,
ningun arbol de expansién minima de R contiene at, t,, . . ., ¢, t,,,. Ahora considere
S\U {t,,,}. Esta gréfica debe contener un ciclo simple ya que tiene » aristas. La figura
8.45 ilustra esta situacién. Cuando ¢, , fue seleccionada mediante el algoritmo de
Prim, ya sea s; o 5, también estaba disponible para la seleccion, por decir, s;, de modo
que el peso de 1, | es menor o igual que el de s;. Asi S — {s;} U {;,} es un arbol de
expansion minima de R que contiene a #,, 4,, . . ., ¢, £, . Pero esto contradice la
eleccion de 7. Por lo tanto, T es un 4rbol de expansién minima para R. ®

Figura 8.45

Ejemplo 5. El pueblo del ejemplo | planea pavimentar algunas de las veredas de manera
que sirvan para transitar y también para andar en bicicleta. Como una primera etapa, el
pueblo quiere unir todas las dreas recreativas con rutas de bicicleta, de la manera mas bgrata
posible. Si los costos de construccion son iguales en todas las partes del sistema, utilice el
algoritmo de Prim para determinar un plan de pavimentacién.

Solucion:  En relacién con la figura 8.43, si se elige 4 como el primer vértice, el
vecino mds cercano es C, a 2 kilémetros de distancia. Asi (4, C) es la primera arista
elegida. C on respecto del conmunto de vertices {4 ('t R es el vecino mas cercano. v
se puede elegir (4, B) o (B, (') como la siguiente arista. De manera arbitraria, se elige
(8. (). B es un vecino mas cercano para {4, B. '}, pero la inica arista disponible (4,
B) formaria un ciclo, por lo que se debe pasar al siguiente vecino mas cercano y elegir
(C, F)[o(C, E}]. Lafigura 8.46(a) a {¢) muestra los pasos iniciales y la figura 8.46.(,d)
muestra un posible resultado final. La figura 8.46(e) muestra un arbol de expansion
minima, obtenido mediante el algoritmo de Prim comenzando con el vértice £. En
cada caso, las rutas para bicicleta cubririan 21 kilometros. ¢
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(d) (e)
Figura 8.46

Ejemplo 6. Puede determinarse un arbol de expansion minima para la red de comunica-
cion del ejemplo 2 utilizando el algoritmo de Prim, comenzando en cualquier vértice. La
figura 8.47 muestra un 4rbol de expansién minima obtenido partiendo dé /. El costo total de
actualizacion de estas conexiones seria de $20,800,000. *

B

Figura 8.47

Siooma rolacidn on
Langorelacion sn

G COTieRd N e a0 vGiliLos, Chitutices o dlgonunoe de Prim
trene un tiempo de gjecucion Q). (Esto se puede Mejorar un poco.) St K tiene relativa-
mente pocas aristas, podria ser mas eficiente utilizar otro algoritma. Tsto es similar al caso
de determinacion si una relacién es transitiva, come en la seccién 4.6. E] algoritmo de
Kruskal es otro ejemplo de algoritmo ambicioso con ¢! que se obtiene una solucion Optima.

ALGORITMO DE KRUSKAL: Sea R una relacion simétrica, conexa con n vértices yseaS={e,
¢ ., ¢ el conjunto de todas las aristas con pesos de R.
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Paso 1. Seelige una arista e, en S de peso minimo. Sea £'= {e,}. Se reemplaza S por § — {e;}.

Paso 2. Se selecciona una arista e; de menor peso que no forme un ciclo con los miembros
de E. Sereemplaza Econ E\U {¢} yScon S — {e;}.

Paso 3. Se repite el paso 2 hasta que |[E]=#n — 1.
Fin del algoritmo

Como R tiene n vértices, las n — 1 aristas en £ formaran un arbol de expansién. El
proceso de seleccidn en el paso 2 garantiza que éste es un arbol de expansi‘én minima. (Se
omite la demostracién.) En pocas palabras, el tiempo de ejecucion del algoritmo de Kruskal
es O(k Ig(k)), donde k& es el nimero de aristas en R.

Ejemplo 7. La figura 8.48 proporciona un arbol de expansion minimz‘l generado mediante
el algoritmo de Kruskal para las veredas del ejemplo 1. Una secuencia de selecciones de
aristas es (D, F), (D, H), (4, C), (4, B), (E, G), (E, F) y (C, E) para un peso total de 21
kilémetros. Naturalmente, cualquiera de los algoritmos para obtener drboles de expansion
minimos produce arbole$ del mismo peso. Ty

Figura 8.48

Fjemplo 8 Utilice el algoritmo de Kruskal v determine un drbol de expansion minima
para la relacidn dada en la grafica de la figura 8.49.

Solucion: Inicialmente, existen dos aristas de menor peso (B, C) y (£, F). Se eligen
ambas. Después hay tres aristas (1, (O (B, G)Y v (D, E). de peso 12, Todas éstas
pueden ser agregadas sin crear ciclos. La arista (F, () de peso 14 es la arista restante
de menor pese. Alagregar (£, O) se obtiene sets aristas de una gratica de 7 vertiees, de
modo que se ha determinado un arbol de expansion minima, .

Figura 8.49
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En los ejercicios 1 al 6, utilice el algoritmo de Prim
de esta seccién y determine un drbol de expansion
minima para la grdfica conexa indicada. Utilice el
vértice especificado como vértice inicial,

1. Sea G la grafica de la figura 8.43. Comience en F.

2. Sea G la grafica de la figura 8.44. Comience en 4.

3. Sea G la gréfica de la figura 8.49. Comience en G.

4. Sea G la gréfica de la figura 8.50. Comience en E.

5. Sea G la grafica de la figura 8.51. Comience en X.

6. Sea G la grafica de la figura 8.51. Comience en M.
Enlos ejercicios 7 al 9, utilice el algoritmo de Kruskal
y determine un drbol de expansion minima para la

grdfica indicada.

7. Sea G la grafica de la figura 8.44.

8. Sea G la grafica de la figura 8.50.

9. Sea G la grafica de la figura 8.51.

10. Las distancias entre ocho ciudades estan dadas en la
tabla de la pagina 327. Utilice el algoritmo de
Kruskal y determine un arbol de expansién minima
cuyos vértices son las ciudades. ;Cual es la distancia
total para el arbol?

Figura 8.50

A

Figura 8.51
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Abbeville Aiken Allendale Anderson Asheville Athens Atlanta Augusta
Abbeville 69 121 30 113 70 135 63
Aiken 69 52 97 170 117 163 16
Allendale 121 52 149 222 160 206 59
Anderson 30 97 149 92 63 122 93
Asheville 113 170 222 92 155 204 174
Athens 70 117 160 63 155 66 101
Atlanta 135 163 206 122 204 66 147
Augusta 63 16 59 93 174 101 147
11. Suponga que al construir un arbol de expansién 15. Modifique el algoritmo de Prim de esta seccién para

minima se debe incluir una cierta arista. Proporcione
una versiéon modificada del algoritmo de Kruskal
para este caso.

12. Repita el ejercicio 10 con el requisito de que debe
incluirse la ruta de Atlanta a Augusta. ;Cuanto hace
crecer esto al arbol?

13. Modifique el algoritmo de Kruskal para obtener un
arbol de expansion maxima; es decir, uno con la
suma maxima de pesos.

14. Suponga que la grafica de la figura 8.51 representa
los flujos posibles a través de un sistema de tuberias.
Determine un arbol de expansién que proporcione el
flujo méaximo posible en este sistema.

IDEAS CLAVE PARA REPASO

® Arbol: relacion sobre un conjunto finito 4 tal que
existe un vérticev, e 4 con la propiedad de que existe
una Unica trayectoria de v, hacia cualquier otro ver-
tice en 4 y ninguna trayectoria de v, hacia v,.

® Raiz del arbol: vértice v, en la definicidén anterior.

Arbol con raiz (T, v,): arbol T con raiz v,

® Teorema. Sea (7T, v,;) un arbol con raiz. Entonces
{a) NoexistenciclosenT

(b) v, eslaunicaraiz de /.
(¢) Cada vértice en T, distinto de v, tiene grado
Interno uno y i, tiene grado mterno cero.

® Nivel: véase la pagina 287.

Hojas: vértices sin hijos.

® Teorema. Sea 7 un arbol con raiz sobre un conjun-
to A. Entonces

16.

17.

18.

determinar un arbol de expansiéon maxima.

Utilice el algoritmo de Prim modificado del ejercicio
15 para determinar un arbol de expansiéon maxima
para la grafica de la figura 8.51.

En el ejemplo 5 se muestran dos arboles de
expansion minima para la misma grafica. jEn qué
casos tiene una grafica con pesos un unico arbol de
expansion minima? Justifique su respuesta.

Modifique el algoritmo de Prim para determinar un
arbol de expansién maxima, si se debe incluir cierta
arista en el arbol.

(a) Tesirreflexivo.

(b) 1 es asimetrico.

(¢) Si(a,b)e Ty(b,c)e T,entonces(a,c)e T,
paratodaa,bycenA.

n-arbol: arbol donde cada vértice tiene a lo mas »n

hijos.

Arbol binario: 2-arbol.

Tearema Si (7, v ) esun arbol conraizy ve T

entonces f{v} es tambien un arbol con raiz v

T(v): subdrbol de T que comienza en v.

Arbol pusicional binario: véase la pagina 294.

Representacion de los arboles en computadora:

véase la pagina 295.

Busqueda en preorden: véase la pagina 300.

Busqueda en entreorden: véase la pagina 303.
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Busqueda en postorden: véase la pagina 303.
Notaci6n polaca inversa: véase la pagina 304.
Busqueda en arboles generales: véase la pagina 304.
Representacion en lista enlazada de un arbol: véa-
se la pagina 306.

Arbol no dirigido: cerradura simétrica de un 4rbol.
Trayectoria simple: ninguna pareja de aristas co-
rresponden a la misma arista no dirigida.
Relacién simétrica conexa R: existe una trayecto-
ria en R de cualquier vértice a otro vértice.
Teorema: un arbol con 7 vértices tiene 72 — 1 aristas.
Arbol de expansion para una relacién simétrica
conexa R: 4rbol que llega a todos los vértices de R
y cuyas aristas son todas aristas de R.

Para cada uno de los siguientes ejercicios, escriba el
programa o subrutina solicitado en seudocédigo (se-
giin lo descrito en el apéndice A) o en un lenguaje de
programacién que usted conozca. Verifique su cédi-
go con papel y ldpiz o con una ejecucién en compu-
tadora.

1. Utilice los arreglos LEFT, DATA y RIGHT

(seccién 8.2) en un programa para guardar
letras, de modo que un recorrido en postorden
del arbol creado imprima las letras en orden
alfabético.

Escriba un programa tal que su entrada sea un
arbol ordenado y tenga como salida el 4rbol

©

©

@

® ©

Arbol de expansién no dirigido: cerradura Siméty.
ca de un arbol de expansion.

Algoritmo de Prim: véase la pagina 317.

Gréfica con pesos: una grafica cuyas aristag estén
etiquetadas con un valor numérico.

Distancia entre vértices v, y Vi peso de (v, v),
Vecino mds cercano de v: véase la pagina 322,
Arbol de expansién minima: arbol de eXxpansioy
no dirigido donde el peso total de las aristas eg el
menor posible.

Algoritmo de Prim (segunda versién): véase Ia P4~
gina 322.

Algoritmo ambicioso: véase la pagina 323,
Algoritmo de Kruskal: véase la pagina 324,

posicional binario correspondiente (segin lo
descrito en la seccién 8.3).

Escriba una subrutina para realizar la unién de
los vértices descritos en el algoritmo de Prim de
la pagina 317.

Escriba un codigo para la segunda versién del
algoritmo de Prim (seccién 8.5).

. Escriba el codigo para el algoritmo de Kruskal,

CAPITULO

Requisito previe: Capitulo 7

En la seccion 1.6 se presento el concepto de estructura matemdtica. En l(.Js.capitulos poste-
riores se desarroll6 otros tipos de sistemas matematicos, como [proposiciones, A, V, ~],
que no tenian un nombre especifico, o como B,, el dlgebra boolfeana sobre n elemento§, que
si tiene un nombre. En este capitulo se identificardn otros dos tipos de eschturas m’are'ma-
ticas, los semigrupos y los grupos. Se utilizara los semigrupos en el eSI'l,lC!IO delas méaquinas
de estado finito en el capitulo 10. También se desarrollara las ideas ’baswas de la teoria de
grupos, mismas que serdn aplicadas a la teorfa de c6digos en el capitulo 11.

9.1. Repaso de las operaciones binarias

Ya se ha definido las operaciones binarias (véase la seccién 1.6) y en la seccion 5.2 se
observa que es posible utilizar una operacion binaria para definir una fqnmon. Ahorase rea-
lizara el proceso en sentido contrario y se definiré una operacién binaria como una funcion

con ciertas propiedades.
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Una operacién binaria sobre un conjunto A es una funcién definida para todo pupy,
/14 X 4 — A. Observe las propiedades que debe satisfacer una operaci6n binaria:

1. Como Dom(f) = 4 X 4, fasigna un elemento f(a, b) de 4 a cada pareja ordenady
(a,b) en 4 X A. Es decir, la operacién binaria debe estar definida para cada parej
ordenada de elementos de A.

. 2. Como una operacién binaria es una funcién, sélo se asigna un elemento de 4 ,
cada pareja ordenada.

De esta forma se puede decir que una operacién binaria es una regla que asigna a cagdy
pareja ordenada de elementos de 4 un tinico elemento de 4. El lector debe observar que esty
definicién es més restrictiva que la del capitulo 1, pero se ha realizado el cambio para
simplificar el anélisis en este capitulo. A continuacién se vera algunos ejemplos.

Se acostumbra denotar las operaciones binarias mediante un simbolo, como *, en vez
de f, y denotar el elemento asignado a (a, b) como a * b [en vez de *(a, b)]. Se debe
enfatizar que sia y b son elementos en4, entoncesa * be A4; por lo general se describe esta
propiedad diciendo que 4 es cerrade bajo la operacién *.

Ejemplo 1. Sea 4 =Z. Se define a * b como a + b. Entonces * es una operacion binaria
sobre Z. 4

Ejemplo2. Sead=R.Sedefinea * b como a/b. Entonces * no es una operacién binaria,
pues no esta definida para cada pareja de elementos de 4. Por ejemplo, 3 * 0 no esta defini-
da, pues no se puede dividir entre cero. ¢

Ejemplo 3. Sea 4 =Z". Se define a * b como a — b. Entonces * no es una operacion
binaria, pues no asigna un elemento de 4 a cada pareja de elementos de 4; por ejemplo, 2 *
S5¢ A ¢

Ejemplo 4. Sea 4 =Z. Se define a * b como un niimero menor que a 'y b. Entonces * no
es una operacion binaria, pues no asigna un #nico elemento de A4 a cada pareja ordenada de
elementos de 4; por ejemplo, 8 * 6 podria ser 5, 4, 3, 1, etcétera. Asi, en este caso, * seria
una relacion de 4 X 4 en 4, pero no una funcién. ¢

Ejemplo 5. Sea 4 = Z. Se define a * b como max{a, b}. Entonces * es una operacién
binaria; por ejemplo, 2 * 4 =4, -3 * (=5) =3, N

Ejemplo 6. Sea 4 = P(S), para algin conjunto S. Si 'y W son subconjuntos de S, se
define '* W como ¥\U . Entonces * es una operacién binaria sobre 4. Ademas, si se de-
fine V' * W como V(M W, entonces * es otra operacion binaria sobre 4. $

Como muestra el ejemplo 6, es posible definir muchas operaciones binarias sobre el
mismo conjunto.

Ejemplo 7. Sea M el conjunto de todas las matrices booleanas n X 7. Se define A * B

como A V B (véase la seccion 1.5). Entonces * es una operacion binaria. Lo mismo ocurre
para A A B. .9
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Ejemplo 8. Sea L una reticula. Se define @ * b como a A b (la maxima cota inferior de a
y b). Entonces * es una operacion binaria sobre L. Esto también es cierto para a V b (la

minima cota superior de a y b). ¢
Tablas
Sid={a, a,...,a,} esun conjunto finito, es posible definir una operacion binaria sobre

A mediante una tabla como la que aparece en la figura 9.1. La entrada en la posicion i, j
denota ¢l elemento ¢; * g;.

a;

a

Figura 9.1

Ejemplo 9. Sea 4 = {0, 1}. Se define las operaciones binarias V' y A con las tablas
siguientes:

\/|01 /\]01
0 0 1 010 O
11 1 110 1 ¢

SiA = {a, b}, se determinar4 el niimero de operaciones binarias que es posible definir
sobre A. Se puede describir cualquier operacion binaria * en 4 mediante la tabla

Como es posible llenar cada espacio en blanco con el elemento a 0 b, se concluyfj' que
existen 2 - 2+ 2 - 2 = 2% 0 16 formas de completar la tabla. Asi, existen 16 operaciones

binarias sobre 4.

Propiedades de las operaciones binarias

Varias de las propiedades definidas para las operaciones binarias en la seccion 1.6 tienen
una importancia particular en este capitulo. Serén vistas de nuevo a continuacion.
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Una operaci6n binari i s o o e . .
peracion binaria sobre un conjunto 4 es conmutativa si Propiedad asociativa

.a*b*c)y=(a*b)*c
axb=bxg Se define una relacion << sobre 4 como

para todos los elementos a y b en 4.

CNIVERSS

siy solo st=a=

a<b

Muestre que (4, <) es un conjunto parcialmente ordenado, y que para toda a, b en 4,

Ejemplo 10. La operacién binaria de suma en Z (analizada en el ejemplo 1) es conmutativg GLB(a,b)=a*b
. a,b)y=a*b.

¢
Eiemnl I Solucién:  Se debe mostrar que < es reflexiva, antisimétrica y transitiva. Como a =
Jjemplo 11.  La operacion binaria de resta en Z no es conmutativa, pues a* a, entonces a < a para toda a en 4, y < es reflexiva.
2-3%£3-2 R Ahora, supéngase que a < by b < a. Entonces, por definicién y por la propiedad

2,a=a*b=>b*a=b,de modo que a = b. Por lo tanto, < es antisimétrica.

Sia<byb=<c,entoncesa=a*b=a*(b*c)=(a*b)*c=a*c,demodo que
a < cy < es transitiva.

Por tiltimo, se debe mostrar que paratodaay bend,a* b=a A b (laméxima cota
inferior de @ y b con respecto de <). Se tiene quea * b=a* (b * b)=(a* b) * b, de
modo que @ * b < b. De manera anéloga, se puede mostrar que a ¥ b < b, por lo cual
a * b es una cota inferior paraa 'y b. Ahora,sic<ayc=<b,entoncesc=c*ayc=

Una operacion binaria descrita por una tabla es conmutativa si y solo si las entradas
de la tabla son simétricas con respecto de la diagonal principal.

Ejemplo 12. ;Cuéles de las siguientes operaciones binarias sobre A = {a, b, ¢, d} son
conmutativas?

tla b ¢ d *la b c d ¢ * b por definicion. Asl, c=(c *a) * b=c* (a * b), de modo que ¢ < a * b. Esto
ala c b d ala ¢ b d muestra que a * b es la méxima cota inferior de a y b. $
b|b ¢ b a blc d b a
clec d b ¢ c|lb b a ¢
dla a b b dld a ¢ 4 GRUPO DE EJERCICIOS 9.1

(a) (b)

En los ejercicios 1 al 8, determine si la descripcion 10. EnZ, donde a * b es ab.

s .z ( ) . 4
SOiuCZO7L La OpeI acion en (@) no es conmutativa, pues a b €s ¢ y * 3 16 '_r e 2 10)
gl p b aes b La’ de * es una de.SCi lpClOn va lda d una Upe acion

operacion en (b) es conmutativa, pues las entradas de la tabla son simétricas con

respecto de la diagonal principal. N binaria sobre el conjunto. 11. EnR, dondea*besa X [b].
i6n binaria * : 1. En R, donde a * b es ab (la multiplicacién ordina- 12. En el conjunto de nimeros reales distintos de cero
Una operacidn binaria * sob iativa si o : ) T € Cero,
p oore un conjunto 4 es asociativa si ria). donde a * b es a/b.
ax{(bxc)=(a*b)*c .
(b2c)=(axb) 2. EnZ’,dondea™ bes alb. 13. En R, donde a * b es el minimo de a'y b.
para todos los elementos @, b y ¢ en 4. 3. EnZ donde a* bes a.
14. En el conjunto de todas las matrices booleanas n X
Ejemplo 13. La operacién binaria de suma en Z es asociativa. o 4. EnZ",dondea* besa’. n, donde A * Bes A © B (véase la seccién 1.5).
Ejemplo 14. La operacion binaria de resta en Z no es asociativa, pues 5. EnZ",dondea*besa-b. 15. En R, dondea* b es abl3.
2-(3-5)#12-3) -5 é 6. Enﬂj’.,dondea*besa\/g. 16. En R, donde a * b es ab + 2b.
Ejempﬂo 15.  Sea L una reticula. La operacién binaria definida comoa * b=a A b (véase 7. En ¥, donde a * b es el maximo ntmero racional 17. En una reticula A. donde a * b es a \V b.
el ejemplo 8) es conmutativa y asociativa. También satisface la propiedad idempotente a menor que ab.
N a=qa. Tambié i i i :
a. También es cierto un reciproco parcial, como muestra el ejemplo 16. $ g 18. Complete la siguiente tabla de modo que la

Ejemplla 1‘6. Sea * una operacion binaria sobre un conjunto A y supdngase que * satisfa-
ce las siguientes propiedades para cualesquiera a, b, ¢ en 4.

l.a=a*a

Propiedad idempotente
2.a*b=b*qa

Propiedad conmutativa

En Z, donde a * bes2a+ b.

En los ejercicios 9 al 17, determine si la operacidn
binaria * es conmutativa y si es asociativa sobre el
conjunto.

9. EnZ",dondea*besa+b+2.

operacion binaria * sea conmutativa.
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19. Considere la operacion binaria * definida sobre el 22. Sea A un conjunto con » elementos.

conjunto 4 = {a, b, ¢, d} mediante la tabla siguiente.

Calcule

(@) c*dyd*e

(b) b*dyd*b.

©) a*(b*c)y(a*b)*c.

(d) ¢Es * conmutativa? ;Es asociativa?

En los ejercicios 20 y 21, complete la tabla dada de

(a) (Cuéntas operaciones binarias pueden ser
definidas sobre 4?

(b) (Cuéntas operaciones binarias conmutativas
pueden ser definidas sobre 4?

23. Sead = {a, b}.

(a) Cree una tabla para cada una de las 16 operacio-
nes binarias que pueden definirse sobre A.

(b) Utilice la parte (a) para identificar las operacio-

) nes binarias sobre 4 que sean conmutativas,

(c) Utilice la parte (a) para identificar las operacio-
nes binarias sobre 4 que sean asociativas.

(d) Utilice la parte (a) para identificar las operacio-
nes binarias sobre 4 que satisfagan la propiedad
idempotente.

modo que la operacion binaria * sea asociativa.

20.

2L

QU o D-'nl*

QU o U"nl—.\‘-

24. Sea * una operacién binaria sobre un conjunto 4,

a b ¢ d suponiendo que * satisface las propiedades
a b ¢ 4 idempotente, conmutativa y asociativa, como se
b a d c analizé en el ejemplo 16. Defina una relacion <
cd a b sobre 4 como a < b si y s6lo si b= a * b. Muestre
que (4, <) es un conjunto parcialmente ordenado
yque, paratoda ay b, LUB(a, b) =a * b.
b ¢ 25. Describa la forma en que difiere la definicidn de una
2 b ¢ d operacién binaria sobre un conjunto 4 de la definicion
b c d de una operacion binaria dada en la seccién 1.6.
Explique también si una operacién binaria sobre un
dc c d conjunto es 0 no una operacion binaria, segtin la

definicién anterior.

9.2. Semigrupos

En esta seccion se define un sistema matematico sencillo, que consta de un conjunto y una
operacion binaria, y que tiene muchas aplicaciones importantes.

Un semigrupo es un conjunto no vacio S junto con una operacién binaria asociativa
* definida en S. Se denotar el semigrupo como (S, *), o bien, si queda claro cual es la
operacion *, sélo como S. También se hara referencia a @ * b como el producto de a yb.El
semigrupo (S, *) es conmutativo si * es una operacion conmutativa.

Ejemplo 1. Laseccién9.1 implica que (Z, +) es un semigrupo conmutativo. $

Ejemple 2. El conjunto P(S), donde S es un conjunto, junto con la operacién de unién es
un semigrupo conmutativo. &

Ejemple 3. El conjunto Z con la operacion binaria de resta no es un semigrupo, pues la
resta no es asociativa. - o
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Ejemplo4. Sea.Sun conjunto fijo no vacio, y sea S * el conjunto de todas las funciones
J:8—>8.8ify g son elementos de S %, se define f* g como fo g, la composicion. Entonces
* s una operacién binaria sobre S°, y la seccién 4.7 implica que * es asociativa. Por lo
tanto, (S %, *) es un semigrupo. El semigrupo S ° no es conmutativo. ¢

Ejemplo 5. Sea (L, <) una reticula. Se define una operacién binaria en L como g * b = ¢
V b. Entonces L es un semigrupo. ¢

Ejemplo 6. Sead = {a;,a,, ..., a,} un conjunto no vacio. Recuérdese segin lo visto en
la seccidn 1.3 que A* es el conjunto de todas las secuencias finitas de elementos de 4. Es
decir, 4* consta de todas las palabras que es posible formar con el alfabeto 4. Sean « yB
elementos de 4*. Observe que la concatenacion es una operacion binaria - sobre 4*, Re-
cuérdese que sia=a,a,- - - a,y B=byb, - - by, entonces & - f=a,a, " - - abb, - b.Es
facil ver que si a, By 7y son elementos de A*, entonces

a(By)=(a-p)-y

de modo que - es una operacion binaria asociativa y (4%, -) es un semigrupo, llamado
semigrupo libre generado por A. ¢

En un semigrupo (S, *) puede establecerse la siguiente generalizacién de la propie-
dad asociativa; se omitird la demostracién.

Teoremal. Siay,a,,...,a,n=3,sonelementos arbitrarios de un semigrupo, entonces
todos los productos de los elementos a,, a,, . . . , a, que puede formarse insertando parén-
tesis con sentido de manera arbitraria son iguales. @

Siay, ay,. .. ,a,son elementos en un semigrupo (S, *), se escribira su producto como
al*az*”'*an’

sin escribir los paréntesis.

Ejemplo 7. El teorema 1 muestra que los productos
((a, % ay) # ay) * ay, ay * (a, * (a3 * a)), (ay % (ay % a3)) » a,

son todos iguales. ¢
Un elemento e de un semigrupo (S, *) es un elemento identidad si

exa=axe=a

para toda a € S. Como muestra el teorema 1 de la seccidn 1.6, un elemento identidad debe
ser unico.

Ejemplo 8. El niimero 0 es una identidad en el semigrupo (Z, +). 4

Ejemplo 9. El semigrupo (Z, +) no tiene elemento identidad. $

Un monoide es un semigrupo (S, *) que tiene una identidad.
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Ejemplo 10. El semigrupo P(S) definido en el ejemplo 2, tiene la identidad &, pues

PxA=QUA=A=AUB=A+D

para cualquier elemento 4 € P(S). Por lo tanto, P(S) es un monoide. Py

Ejemplo 11.  El semigrupo S ° definido en el ejemplo 4 tiene la identidad 1, pues
1S:glesof:f:fclszf:;<]_5

para cualquier elemento /€ S5, por lo tanto S S es un monoide. 'y

Ejemplo 12. El semigrupo 4* definido en el ejemplo 6 es en realidad un monoide con
identidad A, la secuencia vacia, pues - A=A - o= o para toda v A*, Y

Ejemplo 13. El conjunto de todas las relaciones sobre un conjunto 4 es un monoide bajo
la operacién de composicion. El elemento identidad es la relacién de igualdad A (véase Ia
seccion 4.7). ¢

Sea (S, *) un semigrupo y 7 un subconjunto de S. Si T es cerrado bajo la operacion *
(es decir, a * b e T siempre que a 'y b sean elementos de T), entonces (7, *) es un
subsemigrupo de (S, *). De manera andloga, sea (S, *) un monoide con identidad e, y sea
T'un subconjunto no vacio de S. Si T es cerrado bajo la operacién * y ee T, entonces (T, *)
es un submoneide de (S, *).

Observe que la propiedad asociativa es vélida en cualquier subconjunto de un
semigrupo, de modo que un subsemigrupo (7, *) de un semigrupo (S, *) es en si un semigrupo.
De manera anéloga, un submonoide de un monoide es a su vez un monoide.

Ejemplo 14. Si(S, *) es un semigrupo, entonces (S, *) es un subsemigrupo de (S, *). De
manera similar, sea (S, *) un monoide. Entonces (S, *) es un submonoide de (S, *) y si T'=
{e}, entonces (T, *) es también un submonoide de (S, *). $

Supéngase que (S, *) es un semigrupoy que a € S. Parane Z7, se define las poten-
cias de ¢" de manera recursiva, de la siguiente manera:

Se puede demostrar que si m y n son enteros no negativos, entonces
am % a/z — am+n'
Ejemplo 15
(a) Si(S, *)esunsemigrupo,ae Sy
T=\{d'|i€Z%,
entonces (7, *) es un subsemigrupo de (S, *).
(b) Si(S, *)esunmonoide, ae Sy
T={d'li€Z 0 i=0)

entonces (7, *) es un submonoide de (S, *). ¢
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Ejemplo 16. SiTes el conjunto de los enteros pares, entonces (7, X) es un subsemigrupo
del monoide (Z, X), donde X es la multiplicacién ordinaria, pero no es un submonoide,
pues la identidad de Z, el miimero 1, no pertenece a T. $

Isomorfismo y homomorfismo

En la seccién 7.1 se define un isomorfismo entre dos conjuntos parcialmente ordenados
como una correspondencia biunivoca que preserva las relaciones de orden, que son la ca-
racteristica distintiva de los conjuntos parcialmente ordenados. Ahora se define un
isomorfismo entre dos semigrupos que preserve las operaciones binarias. En general,
un isomorfismo entre dos estructuras matematicas del mismo tipo debe preservar las carac-
teristicas distintivas de las estructuras.

Sean (S, *}y (T, *') dos semigrupos. Una funciénf: § — T es un isomorfismo de
(S, *) en (T, *') si es una correspondencia biunivoca de Sa T, y si

flaxb) = f(a) +" f(b)

paratodaaybensS.

Si f'es un isomorfismo de (S, *) en (7, *'), entonces, como fes una correspondencia
biunivoca, el teorema 1 de la seccion 5.1 implica que f~' existe y es una corresponden-
cia biunivoca de T'aS. Ahora se mostraré que /™' es un isomorfismo de (7, *') en (S, *). Sean
a'y b’ elementos cualesquiera de 7. Como f'es sobre, es posible encontrar elementos a y b
en Stales quef(a)=a’ yf(b)=>'. Entonces, a=/"'(a") y b=7"'(b"). Ahora,

fa b)) = f7H(f(a) = £(b))
=f"(fla=b))
=(f"ef)axd)
=axb=f"!a)«f(b).
Por lo tanto, /™' es un isomorfismo.
Solo se dira que los semigrupos (S, *) y (7, *') son isomorfos y se escribe S = 7.

Para mostrar que los semigrupos (S, *) y (7, *') son isomorfos, se debe utilizar el
siguiente procedimiento:

Paso 1. Se define una funcién f: § — 7 con Dom(f) = S.
Paso 2. Se muestra que f'es biunivoca.
Paso 3. Se muestra que fes sobre.

Paso 4. Se muestra que f(a * b)=f(a) *' f(b).

Ejemplo 17. Sea T el conjunto de todos los enteros pares. Muestre que los semigrupos
(Z,+) y (T, +) son isomorfos.

Solucion

Paso 1. Se define la funcién f: Z — T como f(a) = 2a.
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Paso 2. Ahora se mostrara quefes biunivoca, de la siguiente manera. Supdngase qyq
f(a))=f(a,). Entonces 2a, = 2a,, de modo que 4, =a,. Por lo tanto, fes biunivocy

Paso3. A continuaci6n se mostraré que fes sobre. Supéngase que b es un enterg par
Entonces a=b/2¢e Zy '

fla) =f(b/12) = 2(b/2) = b,

de modo que fes sobre.

Paso 4. Se tiene

fla+b)=2a+b)
=2a +2b = f(a) + f(b).

Porlo taﬁto, (Z,+) y (T, +) son semigrupos isomorfos. 6

En general, resulta casi directo verificar que una funcién dada f:S—>Tesonow
isomorfismo. Sin embargo, por lo general es dificil mostrar que dos Semigrupos son isomorfos,
dado que se debe crear el isomorfismo f.

Como en el caso de los isomorfismos de conjuntos parcialment& ordenados o de
reticulas, cuando dos semigrupos (S, *) y (7, *') son isomorfos, s6lo pueden diferir por la
naturaleza de sus elementos; sus estructuras como semigrupos son idénticas. Si Sy T son
semigrupos finitos, sus operaciones binarias respectivas pueden darse mediante tablas,
Entonces S'y T son isomorfos si es posible reordenar y re-etiquetar los elementos de S de
modo que su tabla coincida con la de T.

Ejemplo 18. SeanS= {a,b,c} y T= {x,y, z}. Es facil verificar que las siguientes tablas
de operaciones dan estructura de semigrupoa Sy 7, respectivamente.

Sea

flay=y

flb) =x

fle) =z
Al reemplazar los elementos en S por sus imigenes y reordenar la tabla, se obtiene, precisa-
mente, la tabla para 7. Asi, §'y T son isomorfos. ¢

Teorema 2. Sean (S, *)y (T, *') monoides con identidades e y ¢, respectivamente. Sea f
S — T un isomorfismo. Entonces f(e)=e'.

Demostracion: Sea b cualquier elemento de 7. Como fes sobre, existe un elemento
a en S'tal que f(a) = b. Entonces
a=axe
b=f(a) =f(axe) =f(a)+ f(e)
= b *' f(e).
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De manera andloga, como a = e * a, b =f(e) *' b. Asi, para cualquierb e T,

b=1bx"f(e) =fle) *' b.

lo que significa que f(e) es una identidad para 7. Esto implica que f(e) = ¢'. @

Si (S, *) y (T, *') son semigrupos tales que S tiene una identidad y T'no, el teorema 2
implica que (S, *) y (7, *') no pueden ser isomorfos.

Ejemplo 19. Sea T el conjunto de los enteros pares y X la multiplicacién ordinaria. En-
tonces los semigrupos (Z, X) y (T, X) no son isomorfos, pues Z tiene una identidad y T'no.
¢

Si se elimina las condiciones de ser biunivoca y sobre en la definicién de un isomor-
fismo de dos semigrupos, se obtiene otro método importante para comparar las estructuras
algebraicas de los dos semigrupos.

Sean (S, *) y (7, *') dos semigrupos. Una funcion definida para todo punto f: S — T
es un homemorfismo de (S, *) en (T, *') si

flaxb)=f(a) *' f(b)
paratoda ay b en S. Ademds, si fes sobre T es una imagen homomorfa de S.

Ejemplo 20. Sea 4 = {0, 1} y considérese los semigrupos (4*, *) y (4, +), donde - es la
operacion de concatenacion y + se define mediante la tabla

+10 1
0]0 1
111 0
Se define la funcién f: 4* — 4 como
fla) = 1 si «tiene un niimero impar de unos
@) = 0  si o tiene un nimero par de unos.

Es fécil verificar que si a y B son elementos arbitrarios de A*, entonces

fle-B) =f(e) +£(B)-

Asf, fes un homomorfismo. La funcién fes sobre, pues

f(0)=0
f=1
pero fno es un isomorfismo, pues no es biunivoca. ¢

La diferencia entre un isomorfismo y un homomorfismo es que un isomorfismo debe
ser biunivoca y sobre. Para un isomorfismo y un homomorfismo, la imagen de un producto
debe ser el producto de las imagenes.

La demostracion del siguiente teorema, que se deja como ejercicio para el lector, es
completamente anéloga a la demostracion del teorema 2.

Teorema 3. Sean (S, *)y (T, *") monoides con identidades e y €', respectivamente. Sea f:
S — T un homomorfismo de (S, *) sobre (T, *'). Entonces f(e)=e'. @
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El teorema 3, junto con los dos teoremas siguientes, muestra que, si un sem
(T, *') es una imagen homomorfa del semigrupo (S, *), entonces T, *
semejanza algebraica con (S, *).

! igrupo
) tiene una gran

Teorema 4.  Sea fun homomorfismo de un semigrupo (S, *) al semigrupo (T, *'). Si §' ¢
un subsemigrupo de (S, *), entonces

F8)={te T|t=1(s) para algins e S'},
la imagen de S' bajo f, es un subsemigrupo de (T, *.

Demostracion:

Sit y t, son elementos arbitrarios de £(S"), entonces existen S1Ys
en S’ tales que :

N

L=f(s) ¥y 4 =1 (sy).

Entonces

L = f(s) # f(s,)
=fls1%8y)
:f(SS)’

donde s; =5, *5,€ §'. Por lo tanto, ¢, *' & f(S").
Asi, £(S") es cerrado bajo la operacién *'. Como la propiedad asociativa es valida
enf(S"), se tiene que f(S") es un subsemigrupo de (7, *N, ]

Teorema S. Si f es un homomorfismo de un semigrupo conmutativo (S, *) sobre un
semigrupo (T, *"), entonces (T, *') también es conmutativo.

Demostracion: Sean t, y t, elementos de 7. Entonces existen $1Y s, en S tales que
L=fls) vy L=1(s).

Por consiguiente,

't = f(s)) ' f(sy)

= f(s; % s)
=flsy 1)
=f(s9) " f(sy)
=1x"t.
Por lo tanto, (7, *') también es conmutativo. )
GRUPO DE EJERCICIOS 9.2
1. Sead = {a, b}. ;Cudles de las tablas siguientes
definen un semigrupo en 4? ;Cuales definen un
monoide en 4?
*|la b «|a b +|la b «|la b xla b *!ab
ala b ala b al|b a ala b ala a al|b b
bla a bib b bla b blb a b|b b bla a
(2) (b) (c) (d) (e) ®

Enlos ejercicios 2 al 12, determine si el conjunto jun-
to con la operacion binaria es un semigrupo, un
monoide o ninguno de los dos. Si es un monoide, es-
pecifique la identidad. Si es un semigrupo o un
monoide, determine si es conmutativo.

2.

10.

11.

12.

13.

14.

Z", donde * se define como la multiplicacion
ordinaria.

Z*, donde a * b se define como max{a, b}.
Z*, donde a * b se define como MCD{a, b}.
Z*, donde a * b se define como a.

Los niimeros reales distintos de cero, donde * es la
multiplicacién ordinaria.

P(S), con S un conjunto, donde * se define como la
interseccion.

Un 4lgebra booleana B, donde a * b se define como
a/\b.

S={1,2,3,6, 12}, donde a * b se define como
MCD(a, b).

$=1{1,2,3,6,9, 18}, donde a * b se define como
MCM(a, b).

Z,dondea*b=a+b-ab.
ab

Los enteros pares, donde a * b se define como .

2

;Cudles de las tablas siguientes definen un
semigrupo?

® l a b ¢ % ' a b ¢

alc b a ala ¢ b

bib ¢ b blc b a

cja b ¢ ctb a ¢
(a) (b)

Complete la tabla siguiente para obtener un
Semigrupo.

15.

16.

17.

18.

19.

20.

22.

23.

24.

25.
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Sea § = {a, b}. Escriba la tabla de operacién para el
semigrupo $°. ¢ Es conmutativo el semigrupo?

Sea §= {a, b}. Escriba la tabla de operacidn para el
semigrupo (P(S), ).

Sea 4 = {a, b, c} y considérese el semigrupo (4%, *),
donde - es la operacion de concatenacion. Si o =
abac, B=cbay y=babc, calcule (a) (e B) - v
®y(ea) @ P a

Demuestre que la interseccion de dos subsemigrupos
de un semigrupo (S, *) es un subsemigrupo de (S, *).

Demuestre que la interseccion de dos submonoides
de un monoide (S, *) es un submonoide de (S, *).

Sea 4 = {0, 1} y considérese el semigrupo (4*, ),
donde - es la operacion de concatenacion. Sea T el
subconjunto de 4* que consta de todas las sucesio-
nes con un nimero impar de unos. (Es (7, ) un
subsemigrupo de (4, -)?

. Sea 4 = {a, b}. ;Existen dos semigrupos (4, *) y (4,

*") que no sean isomorfos?

Un elemento x en un monoide es idempotente si x°
=x* x = x. Muestre que el conjunto de todos los
elementos idempotentes en un monoide conmutativo
S es un submonoide de S.

Sean (S, *)), (S *2) ¥ (S5, *;) semigrupos y /= S, —
S,y g: S, = S; homomorfismos. Demuestre que g
fes un homomorfismo de S, a S;.

Sean (S}, *), (S5, * ') y (S5, ¥ ) semigrupos y f: S, =
S,y g: 8, — S, isomorfismos. Demuestre que g © /'
es un isomorfismo de S, a S;.

Sea R* el conjunto de los niimeros reales positivos.
Muestre que la funcion f: R* — R definida por f(x)
=In x es un isomorfismo del semigrupo (R", X) con
el semigrupo (R, +), donde X y + son la multiplica-
cién y la suma ordinarias, respectivamente.
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9.3, Semigrupos productos y cocientes

En esta seccidn se obtendran nuevos semigrupos a partir de semigrupos existentes.

Teorema 1. Si(S, *)y (T, *") son semigrupos, entonces (S X T, *") es un semigrupo, donde
" se define como (s,, 1) *" (55, 1) = (8, * 53, t; *' ).

Demostracién:  Se deja como ejercicio. ®

El teorema 1 implica de inmediato que si S'y T son monoides con identidades es y ey,
respectivamente, entonces S X T es un monoide con identidad (e, ey).

Ahora se analizara las relaciones de equivalencia en un semigrupo (S, *). Como un
semigrupo no es simplemente un conjunto, ciertas relaciones de equivalencia en un semigrupo
proporcionan informacién adicional acerca de la estructura del semigrupo.

Una relacion de equivalencia R sobre el semigrupo (S, *) es una relacién de con-
gruencia si

aRa' y bRD implicanque (a*b)R(a’ *D").

Ejemplo 1. Considérese el semigrupo (Z,+) y larelacion de equivalencia R en Z definida
por

aRb siysblosi a=b (mébd2).

Recuérdese que esta relacién de equivalencia fue analizada en la seccién 4.5. Observe que
si a'y b proporcionan el mismo residuo al dividirse entre 2, entonces 2 | (a — b). Ahora se
mostrara que ésta es una relacion de congruencia, de la siguiente manera.

Si

a=b (m6d2) y c=d (méd2),

entonces 2 divide a a — b y 2 divide a ¢ — d, de modo que

a-b=2m y c—-d=2n,
donde m y n estan en Z. Al sumar, se obtiene

(@a=b)+(c—d)y=2m+2n

0
(a+c)—(b+d)=2m+n),
de modo que
a+c=b+d. (mdd2).
Por lo tanto, ésta es una relacion de congruencia. é

Ejemplo 2. Sea 4 = {0, 1} y considérese el semigrupo libre (4*, ) generado por 4. Se
define la siguiente relacion sobre 4:

aRB siysélosi ay ptienen el mismo niimero de unos.
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Muestre que R es una relacion de congruencia en (4%, -).

Solucién: Primero se mostrara que R es una relacién de equivalencia. Se tiene que

1. aR aparatoda ae 4*.

2. SiaR B, entonces e y 3 tienen el mismo niimero de unos, de modo que B R «.

3. SiaR By BR v, entonces 'y Btienen el mismo niimero de unos y By 1y tienen el
mismo nimero de unos, de modo que a 'y +y tienen el mismo niimero de unos. Por
lo tanto, @ R 7.

A continuacién se mostraré que R es una relacién de congruencia. Supéngase
quea R’y BR B’ Entonces ay o' tienen el mismo niimero de unos y 8y ' tienen
el mismo mimero de unos. Como el nimero de unos en « - B es la suma de los nime-
ros de unos en ey en 3, se concluye que el niimero de unos en a - 8 es igual al niimero
de unos en ¢’ - B'. Por lo tanto,

(a-BR(-p)
y entonces R es una relacién de congruencia. $

Ejemplo 3. Considérese el semigrupo (Z, +), donde + es la suma ordinaria. Sea f)=x
—x —2. Ahora se definird la siguiente relacién sobre Z:

aRb siysblosi f(a)=f(b).

Se verifica de manera directa que R es una relacién de equivalencia sobre Z. Sin embargo,
R no es una relacién de congruencia, pues se tiene

-1R2  (f(-1)=/(2)=0)

y
~2R3  (f(-2)=f(3) =4)
pero
-3 R5,
yaquef(-3)=10yf(5)=18. ¢

Recuerde de la seccién 4.5 que una relacién de equivalencia R sobre el semigrupo
(S, *) determina una particién de S. Sean [a] = R(a) la clase de equivalencia que contiene a
a'y S/R el conjunto de todas las clases de equivalencia. La notacién [a] es mas tradicional en
este contexto y produce célculos menos confusos.

Teorema 2. Sea R una relacion de congruencia sobre el semigrupo (S, *). Considérese la
relacion ® de SIR X S/R a SIR en la que la pareja ordenada ([a], [b]) se relaciona con
[a * b], donde ay bestinen S.
(@) ® esunafunciéndeS/IR X SIR en SR, y como es usual, denotamos ® ([a], [b])
por[a]l ® [b]. Asi, [a] ® [b] =[a * D].
(b) (S/R, ®) es un semigrupo.

Demostracién: Supdngase que ([a], [6]) = ([a'], [6']). Entoncesa Ra' y b R b', de
modo que debe tenerse a * b Ra’ * b', ya que R es una relacion de congruencia. As,
[a*b]=[a’ *b']; es decir, ® es una funcion. Esto significa que ® es una operacion
binaria sobre S/R.
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A continuacién, se debe verificar si ® es una operacion asociativa. Se tiene que

[l ® (] ® [c]) = [a] ® [b*c]

[a*(*0)]

[(a*b)*c] porla propiedad asociativa de * en S
[a* 5] ® [c]

([a] ® [B]) ® [c]

Por lo tanto, S/R es un semigrupo, llamado semigrupo cociente o semigrupo fa.
tor. Observe que ® es un tipo de “relacién binaria cociente” sobre S/R que se cong-

truye a partir de la relacion binaria original * en S mediante la relacion de congruen-
cia R. ®

Corolario 1.  Sea R una relacion de congruencia sobre el monoide (S, *). Si se define Iy
operacién & en SIR como [a] ® [b] = [a * b], entonces (S/R, ®) es un monoide.

Demostracion:  Sie es laidentidad en (S, *), entonces es facil verificar que [e]esla
identidad en (S/R, ®). ®

Ejemple 4. Considérese la situacién del ejemplo 2. Como R es una relacién de congruen-
cia sobre el monoide S = (4*, -), se concluye que (S/R, ©) es un monoide, donde

[ O8] = [a- B]. ¢

Ejemplo 5. Como ya se sefial6 en la seccién 4.5, se puede repetir el ejemplo 4 de esa

seccién con el entero positivo # en vez de 2. Es decir, se define la siguiente relacién sobre
el semigrupo (Z, +):

aRb siysolosi a=b (mbdn).

Con el mismo método utilizado en el ejemplo 4 de la seccion 4.5, se puede mostrar que R es
una relacién de equivalencia y que, como enel casoden=2,a = b (m6d ) implica que
n|(a->b). Asi, sin es 4, entonces

2=6 (méd4)

y 4 divide a (2 - 6). También quedara como ejercicio para el lector mostrar que = (méd n)
es una relacién de congruencia en Z,

Ahora, sea n =4y calcule las clases de equivalencia determinadas por la relacion de
congruencia = (mdd 4) sobre Z. Se obtiene

[0]={...-8-4,04,812..)=[4]=[8] =
[M={...-7,-3,1,50913. .. })=[5]=[9]=--
2l=1{..,-6,-2,2,6,10,14,...) = [6] = [10] = - -
Bl={..,=-5-1371L15. . }=[7]=[11]=---

Estas son todas las clases de equivalencia distintas que forman el conjunto cociente Z/ =
(m6d 4). Se acostumbra denotar el conjunto cociente Z/ = (méd n) por Z,; Z, es un monoide

con operacién @ e identidad [0]. Ahora se determinaré la tabla de sumar para el semigrupo
Z, con operacién ®.
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© |0 W @ B
oo WoB Bl
mlm @
Pl @B
BB O oo

Se obtienen las entradas de esta tabla de

[a] ®[b] = [a + b].

- mep-n+2a=-6
M@ pBl=01+3]=[4=[0]
LleBl=2+31=[51=[1
Bl@ Bl =[B+3]=[6]=[2]

Se puede mostrar que Z, tiene las 7 clases de equivalencia
(0501102}, [n = 1]
yque

donde 7 es el residuo obtenido al dividir a + b entre n. Asi, sin es 6,

2@ 3] =[5

[B]1@ 51 = [2]

[31@ [3] = [0].

Ahora se examinaré la conexién entre la estructura de un semigrupo (S, *) y el
semigrupo cociente (S/R, ®), donde R es una relacion de congruencia en (S, ).

$

Teorema 3. Sea R una relacién de congruencia sobre un semigrupo (S, *)‘y (S/R, ®) el
semigrupo cociente correspondiente. Entonces la funcion fr : S — SIR definida por

fr(@) = [a]
es un homomorfismo sobre, llamado homomorfismo natural.

Demostracion:  Si[a] € SIR, entonces f; (a) = [a], de modo que f; es una funcién
sobre. Ademas, si a y b son elementos de S, entonces

frlaxb) = [a = b]

= [a] ® [0]
= fa(@) ® f(b),

®
de modo que f; es un homomorfismo.

Teorema 4 (teorema fundamental de los homomorfismos). Seaf:S— Tun hon?omor-
fismo del semigrupo (S, ¥) sobre el semigrupo (T, *"). Sea R la relacién sobre S definida por
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aRbsiysolosif(a)=f(b),paraayb en S Entonces
(2) R es una relacion de congruencia.
(b) (T, *') y el semigrupo cociente (SIR, ® ) son isomorfos.

Demostracion: (a) Se mostraré que R es una relacion de equivalencia. En primer
lugar, a R a paratoda a € S, pues f(a) = f(a). Ahora, si a R b, entonces f@=1(),
de modo que b R a. Por ltimo, sia Rb y b R ¢, entonces f(@)=1(b)yf(B)=f(c), de
modo quef(a) =£(c) y a R c. Por lo tanto, R es una relacién de equivalencia. Ahora,
supéngase que @ R a, y b R b,. Entonces

f@=f@) y f&)=1().

Al multiplicar en T, se obtiene

fla) ¥ f(b) = f(a,) # f(by).
Como f'es un homomorfismo, esta ltima ecuacién puede volverse a escribir como
flaxb) = f(a, * by).
Por lo tanto,
(axb)R(a*b)

¥y R es una relacion de congruencia. )
(b) Ahora, considérese larelacién 7 de S/R a T definida de la siguiente manera:

f=1(la].£(a)) | [a] € SIR}.
Primero se mostrard que f es una funcion. Supéngase que [a] = [a']. Entonces a R
a’, de modo que f(a) =1 (a’), lo que implica que 7 es una funcién. Ahora se puede
escribir f:S/R— T, donde £ ([a]) =f(a) para [a] € S/R.
A continuacién se mostrara que f es biunivoca. Supéngase que f (lah= f ([a'D.
Entonces

f(a) = f(d).

Asi,aRa’, lo que implica que [a] = [a']. Por lo tanto, f es biunivoca.
Ahora se mostrard que f es sobre. Supéngase que b € 7. Como fes sobre, f(a) =
b para algtin elemento a en S. Entonces

fa]) = f(a) = b.

Asi, f essobre.

Por tiltimo,
F([a) ® [b]) = f([a * b))
= f(axb) = f(a) ¥ f(b)
=f({a]) ' f([BD-
Por lo tanto, £ es un isomorfismo. ©

Ejemplo 6. Sea A = {0, 1} y considérese el semigrupo libre 4* generado por 4 bajo la
operacién de concatenacién. Observe que A* es un monoide, con la cadena vacia A como
identidad. Sea N el conjunto de enteros no negativos. Entonces N es un semigrupo bajo la
operacion de suma ordinaria, denotado como (N, +). Se puede verificar ficilmente que

la funcién f: 4* — N dada por
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f(a) = el nimero de unos en a

es un homomorfismo. Sea R la siguiente relacién en 4*:

aRB siysslosi f(a)=f(P).

Es decir, R Bsiysélosiay B tienen la misma cantidad de unos. El teorema 4 implica que
A*/R = Nbajo el isomorfismo f : A*/R — N definido por

f ([@]) =f (@) = el ntmero de unos en a. $

Es posible describir el teorema 4(b) mediante el diagrama de la figura 9.2. En este
caso, f es el homomorfismo natural. Las definiciones de fy y f implican que

ya que

fohe=f
f

§———>rT

1

Iz

S/R
Figura 9.2

(fofr)(a) = f(fe(a))

GRUPO DE EJERCICIOS 9.3

1. Sean (S, *) y (T, *") semigrupos conmutativos.
Muestre que S X T (véase el teorema 1) es también
un semigrupo conmutativo.

2. Sean (S, *) y (T, *') monoides. Muestre que S X T'es
también un monoide. Muestre que la identidad de S
X Tes (eg er).

3. Sean (S, *) y (T, *') semigrupos. Muestre que la
funcion /2 S X T — S dada por

f(s,)=s
es un homomorfismo del semigrupo S X T sobre el
semigrupo S.

= f([a])= f(a).

4. Sean (S, *) y (T, *') semigrupos. Muestre que S X T'
y T X § son semigrupos isomorfos.

En los ejercicios 5 al 14, determine si la relacion R
sobre el semigrupo S es una relacion de congruen-
cia.

5. S=Zbajo la operacién de suma ordinaria; a R bsiy
s6lo si 2 no divide a a - b.

6. S=Zbajo la operacion de suma ordinaria; a R bsiy
solo si a + b es par.
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10.
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14.

15.

16.

17.

Semigrupos y grupos

§ = cualquier semigrupo; a R b si y sélo si a = b.

. §= el conjunto de los nlimeros racionales bajo la

operacién de suma; a/b R c/d siy sélo si ad = bc.

. §=el conjunto de nimeros racionales bajo la

operacién de multiplicacion; a/b R c/d si 'y sélo si ad
= bc.

§=Zbajo la operacién de suma ordinaria; a R bsi y
sélo sia = b (mdd 3).

S=Zbajo la operacién de suma ordinaria; a R b si y
solo si a y b son ambos pares 0 a y b son ambos
nones.

§=Z" bajo Ia operacién de multiplicacion ordinaria;
aRbsiysdlosija-b|<2.

4=1{0, 1} y §=4*, el semigrupo generado por 4
bajo la operacién de concatenacién; « R B si y sélo
si ambos tienen un nimero par de unos o si ambos
tienen un niimero impar de unos.

S§={0, 1} bajo la operacién * definida mediante la
tabla

—_ o | %
[l e )
O =

aRbsiysolosia*a=b*b=b. (Sugerencia:
Observe que si x es cualquier elemento de S,
entonces x * x=0.)

Muestre que la interseccion de dos relaciones de
congruencia sobre un semigrupo es una relacién
de congruencia.

Muestre que la composicién de dos relaciones de
congruencia sobre un semigrupo no necesariamente
es una relacion de congruencia.

Describa el semigrupo cociente para Sy R dado en
el gjercicio 9.

18. Considere el semigrupo S = {a, b, c, d} con la

19.

20.

siguiente tabla de operacion.

Considere la relacién de congruencia R = {(a, a),

(a,b), (b, @), (b, b), (c, ©), (¢, d), (d, ), (d, d)} enS.

(2) Escriba la tabla de operacion del semigrupo
cociente S/R.

(b) Describa el homomorfismo natural f; : S — S/R.

Considere el monoide S = {e, a, b, ¢} conla
siguiente tabla de operacién:

Considere la relacion de congruencia R = {(e, e),

(e, a), (a, €), (a, a), (b, b), (b, ¢), (c, b), (c,c)} en S.

(a) Escriba la tabla de operacién del monoide
cociente S/R.

(b) Describa el homomorfismo natural fr:S— SIR.

Sea 4= {0, |} y considérese el semigrupo libre 4*

generado por 4 bajo la operacién de concatenacion.

Sea NV el semigrupo de enteros no negativos bajo la

operacion de suma ordinaria.

(a) Verifique que la funcién f: 4% — N, definida
como /(a) = el niimero de digitos en «, es un -
homomorfismo.

(b) Sea R la siguiente relacién en 4*: a R Bsiy
s6lo si f (@) = f(B). Muestre que R es una
relacion de congruencia en A*.

(c) Muestre que A*/R y N son isomorfos.
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Seccion 9.4 Grupos

En esta seccion se analizard un tipo particular de monoide, 1lamado grupo, que tiene aplica-
ciones en todas las 4reas donde aparece una simetria. Las aplicaciones de los grupos pue-
den ser encontradas en las matematicas, la fisica y la quimica, asi como en 4reas menos
evidentes como la sociologia. Recientemente, han surgido aplicaciones excitantes de la
teorfa de grupos en campos como la fisica de particulas y la solucién de pasatiempos como
el cubo de Rubik. En este libro se presenta una importante aplicacion de la teorfa de grupos
a los cddigos binarios, en la seccion 11.2.

Un grupe (G, *) es un monoide con identidad e con la propiedad adicional de que
para cada elementoae G existeunelementoa’ e Gtalquea *a’ =a’ * a=e. Asi, un grupo
es un conjunto G junto con una operacién binaria * en G tal que

1. (a*b)*c=a* (b* c)para cualquiera de los elementos a, by cen G.
2. Existe un tnico elemento e en G tal que
a*e=e*a=a paracadaae G.
3. Paracadaae G, existe un elemento a’' € G, llamado inverso de a, tal que

a:ga':a'*aze.

Observe que si (G, *) es un grupo, entonces * es una operacion binaria, de modo que
G debe ser cerrado bajo *; es decir,

a*be G paracualesquiera elementos ¢ y b en G.

Para simplificar la notacion, de aqui en adelante, cuando sélo se esté considerando un
grupo (G, *) y no haya posibilidad de confusién se escribira el producto a * b de los ele-
mentos a y b en el grupo (G, *) solo como ab, y también se hard referencia a (G, *) sélo
como G. :

Un grupo G es abeliano si ab = ba para todos los elementos a y b en G.

Ejemplo 1. El conjunto de todos los enteros Z con la operacién de suma ordinaria es un
grupo abeliano. Sia € Z, entonces un inverso de a es su negativo —a. $

Ejemplo 2. El conjunto Z * bajo la operacién de multiplicacién ordinaria no es un grupo,
pues el elemento 2 en Z ™ no tiene un inverso. Sin embargo, este conjunto, junto con la
operacion dada, es un monoide. é

Ejemplo 3. El conjunto de los nimeros reales distintos de cero bajo la operacién de
multiplicacion ordinaria es un grupo. Un inverso de a # 0 es 1/a. $

Ejemplo 4. Sea G el conjunto de los nameros reales distintos de cero y sea

b ab
kD =-—.
¢ 2

Muestre que (G, *) es un grupo abeliano.
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. . . . T . . N
Solucién: ~ Primero se verifica que * es una operacion binaria. Sia y b son elemeny
’ . . 0
de G, eptonces ab/2 es un namero real distinto de cero ¥ que por tanto pertenece 5 Gs
A continuacidn se verifica la asociatividad. Como '

(axb)=xc (2)c—4

bc

ax(bxc)=ax (7) _ a(bc) _ (ab)c

4 4

la operacién * es asociativa.
El ntimero 2 es la identidad en G, yaquesiae G, entonces
@2 _ _2)(a

2 =qg= 2 =2=*aq.

ax2=

Por dltimo, si a € G, entonces a’ = 4/a es un inverso de a, yaque

4 _ a(4/a) - (4/a)(a) 4
a T2 T4t

2 2

axa =qa=* a=4d *a.

Comoa*b=b*aparatodaayben G, se concluye que G es un grupo abeliano. ¢

Antes Qe presentar més ejemplos de grupos, se desarrollaran varias propiedades im-
portantes satisfechas en cualquier grupo G.

Teorema 1. Sea G un grupo. Cada elemento a en G tiene un imico inverso en G.

Demostracion: Sean a’ y a” inversos de a. Entonces
ad(ad”y=de=4a

7

(@a)a” = ea” = a”.
Por lo tanto, por la asociatividad,
a=a" @

De aqui en adelante, se denotara el inverso de a por a™'. Asi, en un grupo G se tiene
que

Teorema 2. Sea G un grupo y sean a, by ¢ elementos de G. Entonces
(@) ab=ac z:mplica que b= c (propiedad de cancelacién por la izquierda).
(b) ba= caimplica que b= c (propiedad de cancelacién por la derecha).

Demostracion: (a) Supéngase que

ab =ac.
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Al multiplicar ambos lados de esta ecuacién por @™ por la izquierda, se obtiene

a'(ab) = a\(ac)
(@'a)b = (a'a)c por asociatividad
eb = ec por la definicion de un inverso
b=c por la definicién de una identidad
(b) La demostracion es similar a la de la parte (a). i ®

Teorema 3. Sea G un grupo y sean ay b elementos de G. Entonces

(@) @) =a
(b) (@)™ = b7

Demostracion: (a) Se mostrard que a actia como un inverso de a™":

Como el inverso de un elemento es tinico, se concluye que (a™)"' = a.
(b) Se verifica facilmente que

(ab)(p7la)y = ab(b™'a™") =a((bbHa) =a(ea ) =aa" = e
y, de manera analoga,
(b7la"YY(ab) = e,
de modo que
(ab)t=b"la™h

Teorema 4. Sea G un grupo y sean a'y b elementos de G. Entonces
(a) La ecuacién ax = b tiene una unica solucion en G.
(b) La ecuacion ya = b tiene una tinica solucién en G.

Demostracion:  (a) El elemento x = @™'b es una solucién de la ecuacidn ax = b, pues
a(a™'b) = (aa™")b = eb = b.
Supdngase ahora que x, ¥ x, son dos soluciones de la ecuacién ax = b. Entonces
ax,=b y ax,;=b.
Por lo tanto,
ax, = ax,.

El teorema 2 implica que x; = x,.
(b) La demostracion es andloga a la de la parte (a). @

Por el analisis anterior de los monoides, se sabe que si un grupo G tiene un nimero
finito de elementos, entonces es posible proporcionar su operacion binaria mediante una
tabla, que por lo general se llama tabla de multiplicar. La tabla de multiplicar de un grupo
G={a,, a,...,a,} bajo la operacion binaria * debe satisfacer las siguientes propiedades:

1. La fila etiquetada con e debe contener los elementos

a[s az, e 7an
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y la columna etiquetada con e debe contener a los elementos
a
a

a,.
2. Porel teorema 4, cada elemento b del grupo debe aparecer exactamente una vezen
cada fila y columna de la tabla. Asi, cada fila y columna es una permutacién de los

ellementos a,a,,...,a,de Gy cadafila(y cada columna) determina una permutacign
diferente.

Si G es un grupo con un niimero finito de elementos, G es un grupo finito y el orden
de G es el nimero de elementos | G |en G. A continuacin, se determinaré las tablas de
multiplicar de todos los grupos no isomorfos de érdenes 1,2,3y4. -

Si G es un grupo de orden 1, entonces G = {e} y se tiene que ee = e. Ahora, sea G =

{e, a} un grupo de orden 2. Entonces se obtiene una tabla de multiplicar (tabla 9.1) donde
se debe llenar el espacio en blanco.

Tabla 9.1
e a
e e a
a a

Puede ocuparse el espacio con e 0 a. Como no pueden existir repeticiones en las filas ni las
columnas, se debe escribir e en el espacio en blanco. La tabla de multiplicar de Ia tabla 9.2

satisface la propiedad asociativa y las demas propiedades de un grupo, de modo que es la
tabla de multiplicar de un grupo de orden 2.

Tabla 9.2
e a
[4 e a
a a e

Ahora, sea G = {e, a, b} un grupo de orden 3. Se tiene una tabla de multiplicar (tabla
9.3) donde se debe llenar cuatro espacios.

Tabla 9.3 Tabla 9.4
| e a b l e a b
e e a b e e a b
a a a a b e
b b b b e a

Seccion 9.4  Grupos 353

Algunos intentos muestran que solo es posible completar la tabla como se muestra en la
tabla 9.4. Se puede demostrar (pero es una tarea tediosa) que la tabla 9.4 satisface la propie-
dad asociativa y las demds propiedades de un grupo. Asi, es la tabla de multiplicar de un
grupo de orden 3. Observe que los grupos de érdenes 1, 2 y 3 también son abelianos y que
sélo existe un grupo de cada orden, una vez fijas las etiquetas de los elementos.

A continuacién, se tiene un grupo G = {e, a, b, ¢} de orden 4. No es dificil mostrar
que la posible tabla de multiplicar para G se puede completar como se muestra en las tablas
9.5 ala9.8. Se puede mostrar que cada una de estas tablas satisface la propiedad asociativa
y las demas propiedades de un grupo. Asi, existen cuatro posibles tablas de multiplicar para
un grupo de orden 4. De nuevo, observe que un grupo de orden 4 es abeliano. Se regresard
a los grupos de orden 4 al final de esta seccion, donde se vera que sélo existen dos, y no-
cuatro, grupos distintos, no isomorfos, de orden 4.

Tabla 9.5 Tabla 9.6
| € a b c | ¢ a b c
e e a b c e e a b ¢
a a e c b a a e c b
b b c e a b b ¢ a e
c c b a e ¢ ¢ b e a
Tabla 9.7 Tabla 9.8
| e a b c l e a b c
e e a b c e e a b c
a a b c e a a ¢ e b
b b c e a b b e ¢ a
¢ ¢ ¢ a b c c b a e

Ejemplo 5. SeaB={0, 1} y sea+ la operacion definida en B de la siguiente manera:
+]0 1
0(0 1
1110

Entonces B es un grupo. En este grupo, cada elemento es su propio inverso. ¢

Ahora se analizard un ejemplo importante de un grupo.

Ejemplo 6. Considérese el tridngulo equilatero de la figura 9.3, con vértices 1,2 y 3. Una
simetria del triangulo (o de cualquier figura geométrica) es una correspondencia biunivoca
del conjunto de puntos que forman el tridngulo (la figura geométrica) en si mismo que
preserve la distancia entre los puntos adyacentes. Como el tridngulo queda determinado por
sus vértices, una simetria del tridngulo es s6lo una permutacion de los vértices que preserve
la distancia entre los puntos adyacentes. Sean [, [, y /; las bisectrices de los dngulos corres-
pondientes, como muestra la figura 9.3, y sea O su punto de interseccion.
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1 I3 2
Figura 9.3

Ahora se describird las simetrias de este tridngulo. En primer lugar, existe una rotacién en
sentido contrario al de las manecillas del reloj £; del triangulo, en torno de O, conun 4ngulo
de 120°. Entonces se puede escribir f, (véase la seccién 5.3) como la permutacién

f, = 1 23
23y
A continuacién se obtiene una rotacién en sentido contrario al de las manecillas del reloj £,
en torno de O, con un 4ngulo de 240°, que se puede escribir como la permutacién

.1 23
f3_(3 1 2)'

Por iiltimo, existe una rotacién en sentido contrario al de las manecillas del reloj £;, en torno
de O, con un dngulo de 360°, que se puede escribir como la permutacién

1 2 3
fi= :
1 2 3
Por supuesto, también se puede ver af; como el resultado de girar el tridngulo en torno de O
un dngulo de 0°.
También es posible obtener otras tres simetrias del tridngulo, g, g, y g, reflejando

con respecto de las lineas /,, [, y /s, respectivamente. Es posible denotar estas reflexiones
como las siguientes permutaciones:

(1 2 3 (1 23 (1 2 3
1701 3 2 8273 2 1) BT 1 3f
Observe que el conjunto de todas las simetrias del tridngulo queda descrito por el

conjunto de permutaciones del conjunto {1, 2, 3}, estudiado en la seccién 5.3 y denotado
como S;. Asi,

S5 = {fisfor f3 815 82 &3)-

Ahora se puede presentar la operacion *, seguido de, sobre el conjunto S§;, y se obtiene
la tabla de multiplicar de la tabla 9.9.
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Tabla 9.9

fi hi f f?‘a, &1 & 83
b f 5 h 83 &1 &
Ll A H h & & &

83 83 & & 5 3 fi

Se puede obtener cada una de las entradas de esta tabla de dos formas: algebraica o
geométrica. Por ejemplo, suponga que se desea calcular f, * g,. En forma algebraica, se

tiene
12 3 (123 _(1 2 3)_
203 1J°3 2 1/l 3 2 T8

En forma geométrica, se procede como en la figura 9.4. Como la composicién de funciones
siempre es asociativa, se ve que * es una operacioén asociativa sobre S;. Observe que f; es la
identidad en S, y que cada elemento de S; tiene un Unico inverso en S;. Por ejemplo, f;' =
/5. Por lo tanto, S; es un grupo, llamado grupo de simetrias del tridngule. Observe que S,

es el primer ejemplo que se ha dado de un grupo que no es abeliano. $

3 2 2

b h I I3 ls h
0 ~0 [

I3 2 3 Iy 1 1 Iy 3

Tridngulo dado Tridngulo resultante después ~ Triangulo resultante después de apli-
de aplicar f, car g, al tridngulo de la izquierda

Figura 9.4

Ejemplo 7. El conjunto de todas las permutaciones de » elementos es un grupo de
orden n! bajo la operacién de composicién. Este grupo es el grupeo simétrico sobre »
letras y se denota S,. Se ha visto que S; también representa al grupo de simetrias del
triangulo equiltero. ¢

Como en el ejemplo 6, también es posible considerar el grupo de simetrias de un
cuadrado. Sin embargo, puede verse que este grupo es de orden 8, de modo que no coincide
con el grupo S,, cuyo orden es 4! = 24.
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Ejemplo 8. En la seccién 9.3 se analizé el monoide Z,. Ahora se mostrard que Z, eg un
grupo, se la siguiente manera. Sea [a] e Z,. Entonces es posible suponer que 0 < 4 < n.
Ademas, [n—ale Z,, y como

[@®[n~al=[a+n-a] =[] =[0],

se concluye que [1 - a] es el inverso de [a]. Asi, sin es 6, entonces [2] es el inverso de [4].
Observe que Z, es un grupo abeliano. n

A continuacién, se analizar4 los subconjuntos importantes de un grupo. Sea A uy
subconjunto de un grupo G tal que

(8) Laidentidad e de G pertenece a H.
(b) Siay b pertenecen a H, entonces ab e I
(c) Siae H,entonces g™ e H.

Entonces H es un subgrupo de G. La parte (b) dice que H es un subsemigrupo de G. Asi, un
subgrupo de G se puede ver como un subsemigrupo que tiene las propiedades (a) y (c).
Observe que si G es un grupo y A es un subgrupo de G, entonces H también es un

£rupo con respecto de la operacién en G, pues la propiedad asociativa en G también es
vélida en H.

Ejemplo9. SeaGun grupo. Entonces G yH= {e} son subgrupos de G, llamados subgrupos
triviales de G. )

Ejemplo 10. Considérese S,, el grupo de simetrias del tridngulo equildtero, cuya ta-
bla de multiplicar aparece en la tabla 9.9, Es facil verificar que H = {f,, f,, /;} es un
subgrupo de S, ¢

Ejemplo 11. Sea 4, el conjunto de las permutaciones pares (véase la seccién 53)enel
grupo S,. Se puede mostrar, a partir de la definicién de una permutacién par, que 4, es un
subgrupo de S, llamado grupo alternante sobre 7 letras, $

Ejemplo 12. Sea Gun grupoyae G. Como un grupo es un monoide, ya se ha definido
(seccién 9.2) a" para ne Z como aa - - - a (n factores) y a® como e. Si  es un entero

negativo, a™ se define como a’'g” - - - 4! (n factores). Entonces, si 1y m son enteros
arbitrarios, resulta que

nm

aa’ =a

n+m

Es facil mostrar que
H={d]ie z)
es un subgrupo de G. 9

Sean (G, *)y (G', *') dos grupos. Como los grupos también son semigrupos, se puede
considerar los isomorfismos y homomorfismos de (G, ®)en (G, *").

Como un isomorfismo debe ser una funcién biunivoca y sobre, dos grupos cuyos
Ordenes no sean iguales no pueden ser isomorfos.

i
5
£l
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Ejemplo 13. Sea Gel grupo de nimeros reales bajg lasuma, y sea G’ el grupo de nﬁm¢r9i§.-=
reales positivos bajo la multiplicacion. Sea f: G — G’ definida por f (x) = ¢, Ahora se”

: 4 \“ U ;
mostrard que f es un isomorfismo. o ] o . !
Si f(a) = f (b), de modo que ¢ = €”, entoriCes’a= b. Asi, f es biunivoca. Si ce G-

entoncesInce Gy
flne) = e =,
de modo que f'es sobre. Por altimo,
f(a + b) = e = e%" = f(a)f(b).
Por lo tanto, fes un isomorfismo. &

Ejemplo 14. Sea G el grupo simétrico de  letras, y sea G’ el grupo B definido en el
ejemplo 5. Sea f: G — G' definida de la siguiente manera: parap € G,

0 sipe A, (elsubgrupo de permutaciones pares en G)

f(p)={1 sipg 4,
Entonces fes un homomorfismo. &

Ejemplo 15. Sea G el grupo de los enteros bajo la suma y sea G’ el grupo Z, analizado en
el ejemplo 8. Seaf: G — G' definida de la siguiente manera: Sime G, entonce;s f(m)=[r],
donde r es el residuo cuando m se divide entre n. A continuacién se mostrard que f'es un

homomorfismo de G sobre G'.
Sea [r] € Z,. Entonces puede suponerse que 0 < r <, de modo que

r=0-n+r,
lo que significa que el residuo al dividir r entre 1 es r. Por lo tanto,
fr =1

por lo que f'es sobre.
Ahora, sean a y b elementos de G expresados como

a=qn+tr, donde 0 < r, <nyr yq, son enteros M
b=qn+r, donde 0 < r, <nyr,y q, son enteros 2)
de modo que

flo=rl vy f)=[rl
Entonces
flay + f(by = [r] + [r] = [ry + 1a].
Para determinar [r, + ], se necesita el residuo cuando se divide r, + r, entre 1. Se escribe

r+ry=qsn+ry, donde0=<r;<nyr;yg;sonenteros.

Asi,
fla)y + f(b) = [r3].
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Al sumar se obtiene
atb=gn+gn+r+r,
=+ agtgn+r,
de modo que
fla+b)=r +nr]=n]
Por lo tanto,
fla+b)=f(a) + f(b),

lo que implica que f'es un homomorfismo. .
Cuando 7 es 2, f asigna cada entero par a [0] y cada entero impar a [1]. ¢

Teorema 5. Sean (G, *)y (G, *") dos grupos y sea f: G — G' un homomorfismo de G
enG'.

(a) Sieeslaidentidaden Gy e' eslaidentidad en G', entonces f(e) = e'.

(b) Siae G,entoncesf(a™) = (f(a))™.

(c) SiH es un subgrupo de G, entonces

f(H) = (f(h) | h € H)

es un subgrupo de G'.

Demostracion: (a) Sea x = f (e). Entonces
x ¥ x=fle) ¥ fle) = flex e) = fle) = x,

de modo que x *' x = x. Al multiplicar ambos lados por x™ a la derecha, se obtiene

1

x=x¥x¥xl=xexl=¢
Asi,f(e)=¢".

(b) w1
de modo que
f@a*a')=f(e)=¢' por la parte (a)
bien
f@* f(a")=e' yaquefesun homomorfismo.
De igual manera,
fla™) # f(a) = ¢"
Por lo tanto, f(a™") = (f(a))™".

(c) Esto es consecuencia del teorema 4 de la seccion 9.2 y de las partes (a) y (b).
@

Ejemplo 16. Los grupos S,y Zs son ambos de orden 6. Sin embargo, S, no es abeliano
pero Zg si lo es. Por lo tanto, no son isomorfos. Recuerde que un isomorfismo preserva
todas las propiedades definidas en términos de las operaciones de grupo. ¢
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Ejemplo 17. En esta seccién ya se habia determinado cuatro posibles tablas de multipli-
car (las tablas 9.5 a 9.8) para un grupo de orden 4. A continuacion se mostrard que los
grupos con las tablas de multiplicar 9.6, 9.7 y 9.8 son isomorfos, de la manera siguiente.
Sea G={e, a, b, c} el grupo cuya tabla de multiplicar es la tabla 9.6, y sea G' = {¢', o', b/,
c'} el grupo cuya tabla de multiplicar es la tabla 9.7, donde se ha colocado apéstrofos en
cada entrada de esta (iltima tabla. Seaf: G — G’ definida porf(e) =e’,f(a) =b",f(b) =a’,
f(c)=c’. Entonces es posible verificar que, con este cambio de nombres a los elementos, las
dos tablas son idénticas, de modo que los grupos correspondientes son isomorfos. De mane-
ra anéloga, sea G" = {¢", a”, b", c"} el grupo cuya tabla de multiplicar es la tabla 9.8, donde
se ha colocado comillas dobles en cada entrada de esta tltima tabla. Seag : G — G definida
porg(e)=¢", g(a) =c", g(b) =b", g(c) =a". Entonces se puede verificar que, con este cambio
de nombres a los elementos, las dos tablas son idénticas, de modo que los grupos correspon-
dientes son isomorfos. Es decir, los grupos dados por las tablas 9.6, 9.7 y 9.8 son isomorfos.
Ahora, ;como es posible asegurarse de que las tablas 9.5 y 9.6 no producen grupos
isomorfos? Observe que six es cualquier elemento en el grupo determinado por la tabla 9.5,
entonces x*= e. Si los grupos fuesen isomorfos, entonces el grupo determinado por la tabla
9.6 tendrian la misma propiedad. Como no la tiene, se concluye que estos grupos no son
isomorfos. Asi, existen exactamente dos grupos no isomorfos de orden 4.
El grupo con la tabla de multiplicar 9.5 es llamado grupo 4 de Klein y se denota con
V. El grupo con tabla de multiplicar 9.6, 9.7 0 9.8 es Z,, pues al volver a etiquetar los
elementos de Z, se produce esta tabla de multiplicar. $

GRUPO DE EJERCICIOS 9.4

En los ejercicios 1 al 11, determine si el conjunto jun- 8. Los nimeros reales que no son iguales a —1, donde
to con la operacién binaria es un grupo. Si es un gru- a*b=a+b+ab
po, determine si es abeliano, especifique la identidad

y el inverso de un elemento a. 9. El conjunto de enteros impares bajo la operacion de

« s . multiplicacion.
1. Z, donde * es la multiplicacion ordinaria.

10. El conjunto de las matrices m X n bajo la operacion

2. Z,donde * es la resta. *
de suma de matrices.

3. Q, el conjunto de los nlimeros racionales bajo la
operacion de suma. 11. Si S es un conjunto no vacio, el conjunto P(S),
donde 4 * B=A ® B (véase la seccion 1.2).

4. Q, el conjunto de nlimeros racionales bajo la

operacion de multiplicacién. 12. SeaS= {x|xesunnimeroreal yx # 0,x # —1}.
Considere las siguientes funciones f;: S — S, i =1,

5. R, bajo la operacién de multiplicacion. 2,....6

1
- =1- ==
6. B dondea*b=a+b+2. A =x £ o ) x

X

1 1
=10 HO=1-5 f0="7
7. Z*, bajo la operacion de suma.
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13.

14.

16.

17.

18.

19.

Semigrupos y grupos

Muestre que G = {f,, /3, f;, /4, /5, f5} €s un grupo bajo
la operacién de composicién. Proporcione la tabla de

multiplicar de G.

Sea G un grupo con identidad e. Muestre que si
x? = x para algin x en G, entonces x = e.

Muestre que un grupo G es abeliano si y sélo si
(ab)? = a*b? para todos los elementos a y b en G.

. Sea G el grupo definido en el ejemplo 4. Resuelva

las siguientes ecuaciones: (a) 3 *x=4; (b) y * 5 =
2.

Sea G un grupo con identidad e. Muestre que si
a’ ='e para toda a en G, entonces G es abeliano.

Considere ¢l cuadrado de la figura 9.5. Las simetrias
del cuadrado son

4 3

|

1 2
Figura 9.5

Las rotaciones f), f5, 5 ¥ f; con angulos de 0°, 90°,
180° y 270°, respectivamente.

f5Y fs» las reflexiones con respecto de las rectas v y
h, respectivamente.

/1Y /s, las reflexiones con respecto de las diagonales
d, y d,, respectivamente.

Escriba la tabla de multiplicar de D,, el grupo de
simetrias del cuadrado.

Sea G un grupo. Muestre por induccién matemética
que si ab = ba, entonces (ab)' = a"b" parane Z".

Sea G un grupo finito con identidad e, y sea a un
elemento arbitrario de G. Demuestre que existe un
entero no negativo n tal que a" = e.

21,

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Sea G el grupo de enteros bajo la operacién de
suma. ;Cudles de los siguientes subconjuntos de G
son subgrupos de G? (a) el conjunto de todos los
enteros pares; (b) el conjunto de todos los enteros
impares.

¢Es el conjunto de racionales positivos un subgrupo
del grupo de niimeros reales bajo la operacién de
suma?

Sea G el grupo de los enteros distintos de cero bajo
la operacién de multiplicacion, y sea H= {3" | ne
Z}. (Es Hun subgrupo de G?

Sea G el grupo de los enteros bajo la operacion de
suma, y sea H= {3k | ke Z}. ;Es H un subgrupo
de G?

Sea G un grupo abeliano con identidad e y sea
H={x|x*=e}. Muestre que H es un subgrupo
de G.

Sea Gun grupoy sea H= {x|xe Gy xy=yx para
today e G}. Demuestre que H es un subgrupo de G.

Sea Gungrupoy a € G. Se define H,= {x|xe Gy
xa = ax}. Demuestre que H, es un subgrupo de G.

Sea 4, el conjunto de permutaciones pares en S,.
Muestre que 4, es un subgrupo de S,.

Sean H'y K subgrupos de un grupo G.

(2) Demuestre que () X es un subgrupo de G.

(b) Muestre que A \U K no necesariamente es un
subgrupo de G.

Determine todos los subgrupos del grupo dado en el
ejercicio 17.

Sea G un grupo abeliano y # un entero fijo.
Demuestre que la funcién /: G — G definida por /
(a)=a"paraae G esun homomorfismo.

Demuestre que la funcién /(x) = | x| es un
homomorfismo del grupo G de los nimeros reales
distintos de cero bajo la multiplicacion con el grupo
G’ de ntiimeros reales positivos bajo la multiplica-
cion.

32.
33.

34.

36.

9.5. Grupos productos y cocientes

Sea G un grupo con identidad e. Muestre que la
funcién f: G — G definida por /(@) = e para toda a
€ G es un homomorfismo.

Sea G un grupo. Muestre que la funcién f: G — G
dada por f(a) = @* es un homomorfismo si y slo si
G es abeliano. '

Muestre que el grupo del ejercicio 12 es isomorfo a
Ss.

. Muestre que sif: G — G’ es un isomorfismo,

entonces /™ : G’ - G también es un isomorfismo.

Sea S el conjunto de todos los grupos finitos y
definase la siguiente relacién Ren S: GR G’ siy
solo si Gy G’ son isomorfos. Demuestre que R es
una relacion de equivalencia. (Sugerencia: Utilice el
gjercicio 35.)

37.

39.

40.
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Sea G el grupo de los enteros bajo la operacién de
suma, y sea G" el grupo de los enteros pares bajo la
operacién de suma. Muestre que la funcién /: G —
G’ dada por f (@) = 2a es un isomorfismo.

- Sea G un grupo. Muestre que la funcién f: G — G

dada por f(a) = a™" es un isomorfismo si y sélo si G
es abeliano.

Sea G un grupo y a un elemento fijo de G. Muestre
que la funcién f; : G — G definida por f, (x) = axa™,
paraxe G, esun isomorfismo.

Sea G={e,a,d’, &, a*, &’} un grupo bajo la
operacién a'a’ = o', donde i +j = r (méd 6).
Demuestre que G y Z, son isomorfos.

En esta seccidn se obtendré nuevos grupos a partir de otros, utilizando las ideas de producto
y cociente. Como un grupo tiene més estructura que un semigrupo, nuestro resultado serd
mds profundo que los resultados andlogos para semigrupos analizados en la seccién 9.3.

Teorema 1. Si G,y G, son grupos, entonces G = G, X G, es un grupo con la operacion

definida por

(ay, b)) (ay, by) = (a,a,, bb,). ®

Ejemplo 1. Sean G,y G, el grupo Z,. Para simplificar la notacién, se escribira los ele-
mentos de Z, como 0 y 1, respectivamente, en vez de [0] y [1]. Entonces la tabla de
multiplicar de G= G, X G, aparece en la tabla 9.10.

Tabla 9.10 Tabla de multiplicar de Z, X Z,

©0 @) @1 @1
0,0 ©0 (@) @1 d1
1,0 1,0y (0 (T @1
0,1 00 @1 (00 1,0)
1,1 @ @O1) 10 - @©0

Como G es un grupo de orden 4, debe ser isomorfoa Vo a Z, (véase la seccion 9.4),
los timicos grupos de orden 4. Al analizar las tablas de multiplicar, se observa que la funcién
SV = Z, X Z, definida por f (e) = (0, 0), £ (a) = (1, 0), £ (&) = (0, Dyfl)y=(1,1)esun

isomorfismo.

9
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Si se repite el ejemplo 1 con Z, y Z,, se verd que Z, X Z; = Z,. En general, se puede
mostrar que Z,, X Z, = Z,,siy sélo si MCD(m, n) =1, es decir, si y s6lo sim y n son primgg
relativos.

Es claro que es posible extender el teorema 1 para mostrar que si G, G,, . . ., G, son
grupos, entonces G= G, X G, X - - - X G, también es un grupo.

Ejemplo 2. SeaB= {0, 1} el grupo definido en el ejemplo 5 de la seccién 9.4, donde + g¢
define de la siguiente manera:

1
1

— O’-l-

0

0

10

Entonces B"= B X B X - -+ X B (n factores) es un grupo con operacion @ definida por
(xlvva---vxn)@(}’p}’z’---,yn) = (xl +y1’x2 + Yo ovvs Xy +yn)'

La identidad de B" es (0, 0, . . ., 0) y cada elemento es su propio inverso. Este grupo es
esencialmente igual al dlgebra booleana B, definida en la seccion 7.4, pero la operacién
binaria es muy diferente de A y V. ¢

Una relacion de congruencia sobre un grupo es sélo una relacién de congruencia
sobre el grupo, visto como semigrupo. Ahora se analizara las estructuras cociente determi-
nadas por una relacién de congruencia sobre un grupo.

Teorema 2. Sea R una relacion de congruencia sobre el grupo (G, *). Entonces el semi-
grupo (G/R, ®) es un grupo, donde la operacion ® se define en G/R como

[a] ® [b]=[a*b] (véase la seccion9.3).

Demostracién: Como un grupo es un monoide, el corolario 1 de la seccién 9.3
implica que G/R es un monoide. Se necesita saber si cada elemento de G/R tiene un
inverso. Sea [a] € G/R. Entonces [a™']e G/R,y

(@A) @[a]=[a*a”'] = [e].

De modo que [a]™ = [a™"]. Por lo tanto, (G/R, ® ) s un grupo. ’ <)

Como las definiciones de homomorfismo, isomorfismo y congruencia para grupos
solo implican la estructura de semigrupo y monoide, el siguiente corolario es una conse-
cuencia inmediata de los teoremas 3 y 4 de la seccion 9.3.

Corolario 1 ,
(a) Si R es una relacion de congruencia en un grupo G, entonces la funcién fy :
G — GI/R dada por f (a) = [a] es un homomorfismo de grupo.
(b) Sif: G— G’ es un homomorfismo del grupo (G, *) sobre el grupo (G',*") y R es
la relacion definida en G como a R b si 'y sélo si f (a)=f(b), paraay b en G,
entonces

1. R es una relaci’+ de congruencia. B
2. La funciérn. * - IR = G', dada por f ([a]) = f(a), es un isomorfismo del
grupo (G/R, &) sobre el grupo (G', *'). @
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Las relaciones de congruencia sobre los grupos tienen una forma muy especial, que
se desarrollara a continuacién. Sea H un subgrupo de un grupo G,y sea a € G. La clase
izquierda (o clase lateral izquierda) de H en G determinada por a es el conjunto aH = {ah
| & e H}. La clase derecha (o clase lateral derecha) de H en G determinada por a es el
conjunto Ha = {ha | h € H}. Por ultimo, un subgrupo H de G es normal si aH = Ha para
todaaenG.

ADVERTENCIA. Si Ha = aH, esto no implica que parahe H,yae G, ha =ah. Implica que ha
=qh', donde k' es algin elemento en A.

Si H es un subgrupo de G, se necesitan calcular todas las clases izquierdas de H en
G. En primer lugar, supdngase quea € H. Entonces aH < H, ya que H es un subgrupo de G;
ademds, si h e H, entonces h=ah’, donde i’ =a'he H,de modo que H < aH. Asi,siae
H, entonces aH = H. Esto significa que, al determinar todas las clases de H, no se tiene que
calcular aH para a € H, pues siempre sera igual a /.

Ejemplo 3. Sea G el grupo simétrico S, analizado en el ejemplo 6 de la seccion 9.4. El
subconjunto H = {f;, g} es un subgrupo de G. Calcule todas las clases izquierdas distintas
deHen G.

Solucién: Siae H,entonces aH = H. Asi,

fH=gH=H.
Ademés,
LH = {8}
GH = {f;8}
gl = {g.hl = HhH
&H =g/} = LH.
Las clases izquierdas distintas de H en G son H, /. y f3H. ¢

Ejemplo 4. Sean Gy H como en el ejemplo 3. Entonces la clase derecha Hf, = {f,, g;}. En
el ejemplo 3 se vio que ,H = {f;, g,}. Esto implica que A no es un subgrupo normal de G. ¢

Ejemplo 5. Muestre que si G es un grupo abeliano, entonces todo subgrupo de G es un
subgrupo normal.

Solucién: Sea H un subgrupo de Gy sean ae Gy he H. Entonces ha = ah, de
modo que Ha = aH, lo que implica que H es un subgrupo normal de G. ¢

Teorema 3. Sea R una relacién de congruencia en un grupo Gy sea H=[e], la clase de
equivalencia que contiene a la identidad. Entonces H es un subgrupo normal de G y para
cadaae G,[a]l=aH=Ha.

Demostracién: Sean ay b elementos arbitrarios en G. Como R es una relacién de
equivalencia, be [a] siy s6lo si [b] =[a]. Ademas, por el teorema 2 G/R es un grupo.
Por lo tanto, [b] =[a] si y sélo si [e] = [a] '[b] = [a"']. Asi, be [a] siy solo si = [e]
=[a"'b]. Es decir,be [a]siysolosia'be Hobe aH. Esto demuestra que [a] =aH
para cada e G.Puede demostrarse, de manera anéloga, que be [a] siy s6lo siH =
[e] = [b][a]™ = [ba™"]. Esto es equivalente a la proposicion [a] = Ha. Asi, [a] = aH =
Ha, y H es normal. ®
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Al combinar el teorema 3 con el corolario 1, se observa que en este caso, ¢l grupo
cociente G/R consta de todas las clases izquierdas de N = [e]. La operacion en G/R estd dada
por

(aN)(bN) = [a] ® [b] = [ab] = abN

y la funcién f; : G — G/R, definida por f; (a) = aV, es un homomorfismo de G sobre GIR,
Por esta razén, se escribira con frecuencia G/R como G/N.

A continuacion se consideraré la cuestién de si todo subgrupo normal de un grupo G
es la clase de equivalencia de la identidad de G bajo alguna relacion de congruencia.

Teoremad. Sea Nunsubgrupo normal de un grupo G, ysea R la siguiente relacién en G-

aRb siysélosi a'be N.

Entonces
(a) R es una relacion de congruencia en G.
(b) Nes la clase de equivalencia [e] con respecto de R, donde e es la identidad de G.

Demostracion: (a) Seaae G.EntoncesaRa,yaquea'a=ce N, de modo que R
es reflexiva. A continuacion, supdngase que a R b, de modo que a”'b € N. Entonces
(a'by'=b"ae N,porloqued R a. Porlo tanto, R es simétrica. Por tltimo, supéngase
queaRbybRc. Entoncesa”be Nyb'ce N.Entonces (a'b)(b™c)=a"'ce N, de mo-
do quea R c. Por lo tanto, R es transitiva. Asi, R es una relacién de equivalencia en G.

A continuacién, se demostrard que R es una relacién de congruencia en G.
Supéngase quea Rby ¢ Rd. Entonces a™'be Ny c''de N. Como N es normal, Nd =
dN; es decir, para cada n, € N, n,d = dn, para alguna n, € N. En particular, como a™'p
€ N, se tiene que a™'bd = dn, para algin n, € N. Entonces (ac)'bd = (c'a")(bd) =
c(a'b)d = (c'd)n, € N, de modo que ac R bd. Por lo tanto, R es una relacidn de
congruencia sobre G.

(b) Supdngase que x € M. Entonces x'e=x"e N ya que N es un subgrupo, de
modo que x R ey por lo tanto, x € [e]. Asi, N [e]. Reciprocamente, si x € [e],

entonces x R ¢, de modo que x'e=x" € N. Entonces xe Ny [e] = N. Por lo tanto,
N=le]. )

Gracias a los teoremas 3 y 4, se observa que si G es cualquier grupo, entonces las
clases de equivalencia con respecto de una relacién de congruencia en G son siempre
las clases de alglin subgrupo normal de G. Reciprocamente, las clases de cualquier subgrupo
normal de G son precisamente las clases de equivalencia con respecto de alguna relacion de
congruencia en G. Por lo tanto, es posible traducir el corolario | (b) de la siguinte manera:

Sea /un homomorfismo de un grupo (G, *) en un grupo (G, *'), y sea ker(f) el niicleo de
/, definido por

ker(f) ={a € Gf(a) = ¢'}.

Entonces

(a) ker(f) es un subgrupo normal de G.
(b) El grupo cociente G/ker(f) es isomorfo a G'.

Esto es consecuencia del corolario 1 y el teorema 3, pues si R es la relacién de congruencia
sobre G dada por <
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aRb siysolosi f(a)=f(b),

entonces es facil verificar que ker(f) = [e].

Ejemplo 6. Considérese el homomorfismo de Z en Z, definido por

fm) =111,

donder es el residuo al dividirm entre . (Véase el ejemplo 15 de la seccién 9.4.) Determine

ker(f).

Solucion:  El entero m en Z pertenece a ker(f) si y sélo si f (m) = [0]; es decir, si y
s6lo si m es un multiplo de ». Por lo tanto, ker(f) = nZ. &

GRUPO DE EJERCICIOS 9.5

(3]

. Escriba la tabla de multiplicar del grupo Z, X Z;.

Demuestre,que si Gy G’ son grupos abelianos,
entonces ¢ X G’ es un grupo abeliano.

Sean G,y G, dos grupos. Demuestre que G, X G, y
G, X G, son isomorfos.

Sean G, y G, grupos. Muestre que la funcién f: G,
X G, — G, dada porf(a,b)=a,paraae G, ybe
G,, es un homomorfismo.

Determine Ia tabla de multiplicar del grupo cociente
Z/3Z, donde Zjtiene la operacién +.
Uy

\

Sea Z el grupo d\e\ enteros bajo la operacién de suma.

Demuestre que la\funcién f: Z X Z — Z dada por f
(a, b) = a + b es un\homomorfismo.

i
Sea G=Z,. Para caﬁda uno de los siguientes
subgrupos H de G, determine todas las clases
izquierdas de H en G
(2) H = {[0]} (b) H = {[0], [2]}
() H={[0], [1]. [2]. [3))

. Sea G =S,. Para cada uno de los siguientes

subgrupos H de G, determine todas las clases
izquierdas de H en G.

(@) H={f,&l (®) H=1{f,g&l

© H={fufufi) (@ H=(f)

(&) H={f1.fp15 888!

10.

1.

12.

13.

14.

15.

. Sea G = Z;. Para cada uno de los siguientes

subgrupos H de G, determine todas las clases
izquierdas de Hen G.

(a) H = {[0], [4]}

(b) H = {[0], [2], [4], [6])

Sea G el grupo de los niimeros reales distintos de
cero bajo la operacién de multiplicacién y considere
el subgrupo H= {3"|ne Z} de G. Determine todas
las clases izquierdas de Hen G.

Sea Z el grupo de los enteros bajo la operacién de
suma y sea G=Z X Z. Considere el subgrupo H =
{(x,») | x =y} de G. Determine las clases izquierdas
de Hen G.

Sea NV un subgrupo de un grupo Gyseaae G.
Defina

a'Na = {a"'na|n € N}.
Demuestre que N es un subgrupo normal de G si 'y
s6losia'Na=Nparatodaae G.

Sea N un subgrupo de un grupo G. Demuestre que N
es un subgrupo normal de G siy sélo si a'Na c N
paratodaae G.

Determine todos los subgrupos normales de S.

Determine todos los subgrupos normales de D,. (Ver
ejercicio 17 de la seccion 9.4.)
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16. Sea Gungrupoy H= {x|xe Gy xa = ax para toda
a€ G}. Muestre que H es un subgrupo normal de G.

17. Sea H un subgrupo de un grupo G. Demuestre que
toda clase izquierda aH de H tiene el mismo nimero
de elementos que A, mostrando que la funcién f, : H
— aH definida por f, (h) = ah, para he H, es
biunivoca y sobre.

18. Sean H'y K subgrupos normales de G. Muestre que
H (M K es un subgrupo normal de G.

19. Sea G un grupo y H un subgrupo de G. Sea S el
conjunto de las clases izquierdas de Hen G,y sea T
el conjunto de las clases derechas de H en G.
Demuestre que la funcién f: S — T definida por f
(aH) = Ha™' es biunivoca y sobre.

20. Sean G,y G, grupos. Seaf: G, X G, — G, el
homomorfismo de G, X G, en G, dado por f((g,,
2,)) = g,. Calcule ker(f).

IDEAS CLAVE PARA REPASO

© Operacion binaria sobre 4: funciénf: A X 4 — 4
definida en todo punto.

© Operacion binaria conmutativa: a * =5 * a.

© Operacion binaria asociativa: a * (b * ¢) = (a * b)
*c.

© Semigrupo: conjunto no vacio.S junto con una ope-
racién binaria asociativa * definida en S.

© Monoide: semigrupo que tiene una identidad.

@ Subsemigrupo (7, *) de un semigrupo (S, *): T es
un subconjunto no vaciode Sy a * be T siempre
queaybesténenT.

© Submonoide (7, *) de un monoide (S, *): T es un
subconjunto no vaciode S,ec T'ya *be Tsiem-
prequeaybesténenT.

© Isomorfismo: véase la pagina 337.

© Homomorfismo: véase la pagina 339.

® Teorema: Sean (S, *) y (7, *') monoides con iden-
tidades e y €', respectivamente. Sea f: S — T un
isomorfismo. Entonces f'(e) = ¢'.

© Teorema: Si(S, *)y (7, *') son semigrupos, enton-

21.

23.

24.

25.

Sea fun homomorfismo de un grupo G, sobre un
grupo G, y suponga que G, es abeliano. Muestre
que ker(f) contiene a todos los elementos de G, de
la forma aba™'b™', donde a y b son arbitrarios en G,

Sea G un grupo abeliano y N un subgrupo de G.
Demuestre que G/N es un grupo abeliano.

Sea H un subgrupo del grupo finito G y suponga
que sélo existen dos clases izquierdas de Hen G.
Demuestre que A es un subgrupo normal de G.

Sean H'y N subgrupos del grupo G. Demuestre que
si NV es un subgrupo normal de G, entonces H(\ N
es un subgrupo normal de H.

Seaf: G — G’ un homomorfismo de grupos.
Demuestre que f'es biunivoca si y sélo si

ker(f) = {e}.

ces (§ X T, *") es un semigrupo, donde *” se define
como

(51, 8) #" (55, 8) = (51 %55, 8 " 1,).

Relacion de congruencia R sobre el semigrupo (S,
*): relacién de equivalencia R tal que a Ra’ y bR
b" implican que (a * b) R (a’ * b").

Teorema: Sea R una relacion de congruencia sobre
el semigrupo (S, *). Defina la operacién ® enS/R
de la siguiente manera:

[@® 6] = [a * b].
Entonces (S/R, ®) es un semigrupo.
Semigrupo cociente o semigrupo factor S/R: véase
la pagina 344.
Z,: véase la pagina 344,
Teorema (Teorema fundamental de los homomor-
fismos). Seaf: S — T'un homomorfismo del semi-
grupo (S, *) sobre el semigrupo (T, *'). Sea R
la relacion sobre § definida pora R bsi y sélo si

f{a)=f(b), paraay b en S. Entonces
(a) R es una relacion de congruencia.
(b) T es isomorfo a S/R.

© Grupo (G, *): monoide con identidad e tal que para
cadaae Gexistea' € G con lapropiedad de que
a*a'=d" *a=e

© Teorema: Sea G un grupo y seana, b y ¢ elementos
de G. Entonces
(a) ab=ac implica que b = ¢ (propiedad de cance-

lacién por la izquierda).
(b) ba=ca implica que b = ¢ (propiedad de cance-
lacién por la derecha).

© Teorema: Sea G un grupo y sean a y b elementos
de G. Entonces
@@H'=a
() (ab) ™t =b7g7,

© Orden de un grupo G : | G|, el ntimero de elemen-
tos de G.

@ S,: el grupo simétrico de n letras.

© Subgrupo: véase la pégina 356.

© Teorema: Sea R una relacién de congruencia sobre
el grupo (G, *). Entonces el semigrupo (G/R, ®)

EJERCICIOS DE CODIFICACION

Para cada uno de los siguientes ejercicios, escriba el
programa o subrutina solicitado en seudocddigo (se-
gun lo descrito en el apéndice A) o en un lenguaje de
programacion conocido por usted. Verifique su codi-
go mediante una prueba con ldpiz y papel o con una
ejecucion en la computadora.

Sea Z, el grupo definido en la seccidn 9.3.

1. Escriba una funcion SUM que considere dos ele-
mentos de Z,, [x] y [y] y regrese su suma [x] @
[y]. El usuario debe poder introducir una opcién
para n.
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es un grupo, donde la operacion ® se define en
G/R como

[a] ® [b] = [a = b].

Clase izquierda aH de H en G determinada por a:
{ah|he H}.

Subgrupo normal: subgrupo H tal que aH = Ha
paratodaaen G.

Teorema: Sea R una relacién de congruencia en un
grupo Gy sea H=[e], la clase de equivalencia que
contiene a la identidad. Entonces H es un subgrupo
normal de Gy paracadaae G, [a]=aH = Ha.
Teorema: Sea N-un subgrupo normal de un grupo
G, y sea R la siguiente relacién en G-

aRb siysdlosi a'be N.

Entonces

(a) R es una relacion de congruencia en G.

(b) N es la clase de equivalencia [e] con respecto
de R, donde e es la identidad de G.

. Sea H = {[0], [2]}. Escriba una subrutina que

calcule las clases izquierdas de H en Z,

. SeaH= {[0], [2], [4], [6]}. Escriba una subrutina

que calcule las clases derechas de H en Z,.

. Escriba un programa tal que, dada una tabla fini-

ta de operacion, determine si la operacion satis-
face la propiedad asociativa.

. Escriba un prograra tal que, dado un grupo fini-

to Gy un subgrupo H, determine si H es un
subgrupo normal de G.





