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Prologo

La teoria de conjuntos se encuentra en los fundamentos de la matemdtica, que, explicita o impli-
citamente, en todas sus ramas, utiliza conceptos de la citada teoria, tales como los de funcién y
relacidn.

Este texto, que no es un tratado riguroso, axiomadtico, de la teoria de conjuntos, se divide en tres
partes, de tal manera que, sin perturbar la exposicién légica de los conceptos, resulta tanto mas wtil
como texto o como libro de consulta, a distintos niveles. La Parte I contiene una introduccién a las ope-
raciones elementales con conjuntos y un estudio detallado de los conceptos de funcidn y de relacion.
La Parte IT desarrolla la teoria de los niimeros cardinales y de los ordinales, a la manera clasica de Cantor;
trata también de los conjuntos parcialmenté ordenados y del axioma de eleccién ¥ sus equivalentes,
incluyendo el lema de Zorn. La Parte 111 abarca temas que, por lo comin, se presentan asociados a la
teoria elemental de conjuntos.

, Naturalmente, la exposicién peculiar de ciertos temas acusa la influencia de las preferencias del
autor; asi, por ejemplo, introduce las funciones antes que las relaciones. y no las define al principio
como conjuntos de pares ordenados. Cada capitulo comienza con enunciados claros de oportunas de-
finiciones, principios y teoremas, junto con material aclaratorio y descriptivo; a esto sigue una rela-
cién de problemas de creciente dificultad, unos resueltos y otros solo enunciados. Los primeros ilus-
tran y amplian la teoria, poniendo de relieve aquellos detalles sin los cuales el estudiante se siente cons-
tantemente en terreno inseguro y que a la vez dan lugar a la repeticion de los principios bésicos, tan
esencial para el aprendizaje eficaz. Numerosas demostraciones de teoremas y de consecuencias de los
resultados fundamentales quedan incluidas en muchos de los problemas resueltos. Los enunciados
suponen una revisidn completa del material de cada capitulo.

Se estudian aqui muchos de los aspectos que no pueden abarcarse en el programa de [a mayoria
de los primeros cursos, con el propdsito de hacer el libro més variado, para que sea mas (til su consulta
y para estimular un ulterior interés en los temas.

Damos a continuacion la referencia de los textos que sugerimos para consulta. Los de Halmos y
Kamke se recomiendan especialmente como lectura auxiliar en la Parte IJ.

Bourbaki, N., Theorie des Ensembles, Hermann, Paris, 1958

Halmos, P. R., Naive Set Theory, Van Nostrand, 1960

Hausdorff, F., Ser Theory, Chelsea, 1957

Kamke, E., Theory of Sets, Dover, 1950

Kuratowski, C., Introduction to Set Theory and Topology, Addison-Wesley, 1962
Natanson, 1. P., Theory of Functions of 'a Real Variable, Caps. 1, 2, 14, Ungar, 1955

Deseo aprovechar esta oportunidad para agradecer a muchos de mis amigos y colegas sus valiosas
sugerencias y la revision-critica del manuscrito. Hago extensivo mi agradecimiento, de manera particu-
lar, al personal de la Schaum Publishing Company por su excelente colaboracion.

Seymour Lipschutz

[ Ju \h? J u} I.
L
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Nota del traductor

El lenguaje de las matematicas se internacionaliza cada vez mas, haciéndose mas preciso, mas exacto
y menos propenso a ambigiiedades. El simbolismo perfeccionado y la nomenclatura, aceptados por
todos, hardn realidad muy pronto el que se pueda leer un texto matematico sin apenas conocer la lengua
de expresion de su autor.

Por esto, y buscando justamente la precision, ha parecido aconsejable modificar ligeramente la
nomenclatura y notacion de este libro en su version espafiola, poniéndolas mds acordes con lo que hoy
es d¢ uso mas autorizado y universal. Asi, por ejemplo, se introducen las expresiones «inyectiva» y «so-
breyectiva», para designar las funciones que antes se llamaban «en» y «sobre», en su desafortunada
traduccion del inglés. Las sobredichas expresiones ya se van adoptando universalmente ; Van der Waerden
las emplea en la séptima edicion de su Algebra (1966); McLane y Birkhof las introducen en su libro de
Algebra (1967).

Para evitar sentidos equivocos de un mismo vocablo, se ha optado, definitivamente, por llamar
«reciproca» a la funcién que ain muchos llaman inversa, con manifiesta impropiedad; inverso, se ha
reservado para el simétrico multiplicativo. Se adoptan asimismo los nombres «mayorante» y «mino-
rante», para lo que se denominaba antes cota superior o cota inferior, respectivamente.

En cuanto a los simbolos, solo se ha cambiado la notacién de los intervalos abiertos: Ja, 5['y no
{a, b), que es ambigua —se confundiria con par de elementos (a, b}—; la del conjunto R, de los nime-
ros reales (no R¥, inttilmente recargada). No parece ‘adecuado utilizar igual tipografia para las rela-
ciones que son conjuntos de pares, y para los conjuntos corrientes; asi que se ha preferido la inglesa &
y no R, que es lo que obligaba al uso del signo volado para denotar los reales.

No hay para qué distinguir entre «conjuntos enumerables» (infinitos) y «contables» (finitos), pues
los finitos son siempre partes de conjuntos enumerables y, por tanto, son enumerables. Hoy se tiende
aconsiderar «enumerable» como sinonimo de «infinito», con la propiedad de ser enumerable ; asi, Garsoux,
Analyse (1968).
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Parte I: Teoria elemental
de conjuntos

Capitulo 1

~ Conjuntos y subconjuntos
CONJUNTOS

El concepto de conjunto es fundamental en todas las ramas de la matematica. Intuitivamente, un
conjunto es una lista, coleccién o clase de objetos bien definidos, objetos que, como se verd en los ejem-
plos, pueden ser cualesquiera: nimeros, personas, letras, rios, etc. Estos objetos se llaman efementos
o miembros del conjunto.

Si bien los conjuntos se estudian como entidades abstractas, enumeremos diez cjemplos par-
ticulares de conjuntos.

Ejemplo 1-1: Los numeros 1, 3, 7 y 10.
Ejemplo 1-2: La
Ejemplo 1-3: Las vocales del alfabeto: a, e, 1, o, u.
Ejemplo 1-4:  Las personas que habitan la Tierra.
Ejemplo 1-5: Los estudiantes Tomas, Ricardo y Enrique.
Ejemplo 1-6: Los estudianies ausentes de la escuela.
Ejemplo 1-7: Los paises Inglaterra, Francia ¥ Dinamarca.
Ejemplo 1-8:  Las ciudades capitales de Europa.

Ejemplo 1-9: Los nimeros 2, 4, 6. &, ...

Ejemplo 1-10: Los rios de los Estados Unidos.

soluciones de la ecuacion ¥* — 3x — 2 = 0.

w

W B

@

Nétese que los conjuntos de los ejemplos impares vienen definidos, o sea presentados, enumeran-
do de hecho sus elementos, y que los conjuntos de los ejemplos pares se dehnen enunciando propieda-
des, o sea reglas, que deciden s1 un objeto particula. es o no elemento del conjunto.

NOTACION
Es usual denotar los conjuntos por letras mayusculas

A: BXp ¥
Los elementos de los conjuntos se representan por letras mintsculas
A, B NN e

Al definir un conjunto por la efectiva enumeracion de sus elementos, por ejemplo. el 4, gue consiste
en los numeros L, 3, 7 y 10. se escribe

A={1.37 10

separando los elementos por comas y encerrandolos entre llaves | |. Esta es la lamada forma tabular

de un conjunto. Pero si se define un conjunto enunciando propiedades que deben tener sus elementos

como, por ejemplo, ¢l B, conjunto de todos los nlimeros paies. entonces se emplea una letra, por lo
o

general x, para representar un elemento cualquiera y se escribe

B = {x| x s par
lo que se lee «B s ¢l conjunto de los nimeros x tales que x es parn. Se dice que ésta es la form_a
de definicién por comprension o constructiva de un conjunto. Téngase en cuenta que la barra vertical «|»
se lee «tales que». '
Para aclarar el empleo de la anterior notacion, se escriben de nuevo los conjuntos de los Ejemplos 1-1
al 1-10, designando los conjuntos por 4,, A;. ..., A, respectivamente.
1



2 CONJUNTOS Y SUBCONJUNTOS _ [CAP. 1

Ejemplo 2-1: A, = {1, 3, 7. 10}.

Ejemplo 2-2: A4, = {x|x* - 3x—2 =0}

Ejemplo 2-3;: A, {a, e, 1, 0, ul.

Ejemplo 24: 4, = [x|x esuna persona que habita en la Tierra}.
Ejemplo 2-5: A, = {Tomas, Ricardo Enrique].

Ejemplo 2-6: A; = {x|xesestudiante y x esta ausente de la escuela}.
Ejemplo 2-7: A, = {Inglaterra, Francia, Dinamarca}.
Ejemplo 2-8: 4; = {x|x es una ciudad capital y x estd en Europa).

Ejemplo 2-9: A4, = {2, 4 6, 8, ...}
Ejemplo 2-10: 4,, = {x|x es un rio y x estd en los Estados Unidos).

S1 un objeto x es elemento de un conjunto A, es decir, si 4 contiene a x como uno de sus clemen-
tos, se escribe
xe A
que se puede leer también «x pertenece a A» 0 «x estd en 4». Si por el contrario, urobjeto x no es ele-
mento de un conjunto 4, es decir, si 4 no contiene a x entre sus elementos. se escribe

xg A
Es costumbre en los escritos matematicos poner una linea vertical «|» u oblicua «/» tachando un simbo-
lo para indicar io opuesto o la negacién del significado del simbolo. _

Ejemplo 3-1: Si 4 = {a, ¢, i, 0, u}, entonces ac A4, hEA, ec 4. 4
Ejemplo 3-2: Si B = {x|x es par}, entonces 3¢ R, 68, H¢B, 14eB.

CONJUNTOS FINITOS E INFINITOS

Los conjuntos pueden ser finitos o infinites. Intuitivamente, un conjunto es finito si consta de un
cierto nimero de elementos distintos, es decir, si al contar los diferentes elementos del conjunto el pro-
ceso de contar puede acabar. Si no, el conjunto es infinito. Posteriormente se dara una definicidn precisa
de conjuntos infinito y finito.

Ejemplo 4-1: Si M es el conjunto de los dias de la sermana, entonces M es finito.

Ejemplo 4-2: Si N = {2, 4, 6, 8, ...}, N es infinito,

Ejemplo 4-3: Si P = {x | x es un rio de la Tierra}, P es también finito aunque sea dificil contar los rios del
mundo. =

=

IGUALDAD DE CONJUNTOS

El conjunto 4 es igual al conjunto B si ambos tienen los mismos clementos, es decir, si cada ele-
mento que pertenece a A pertenece también a B y si cada elemento que pertenece a B pertenece tam-
bién a 4. Se denota la igualdad de los conjuntos 4 y B por

A=8

Ejemplo 5-1: Sean 4 = {1,2,3,4} y B= [3,1. 4,2} Entonces 4 = B, esdecir, {1,2 3.4} = {3 1.4, 2},
pues cada uno de los elementos 1, 2, 3 v 4 de A pertenece a B y cada uno de los cle-
mentos 3, 1, 4 y 2 de B pertenece a A. Obsérvese, por tanto. que un conjunto no cambia al
reordenar sus clementos.

Ejemplo 5-2: Sean C = {5,6,5, 7}y D = {7,5,7, 6}. Entonces C = D, es decir. {5.6.5,7) = |7,5.7. 6L,
ya que cada elemento de C pertenece 4 D y que cada elemento de D pertenece a . Notese
que un conjunto no cambia si se repiten sus elementos. Asi que el conjunto {5, 6. 7} es igual
al Cyal D.

Ejemplo 5-3: Sean £ = {x|x* —3x= -2}, F={2, 1} vG={1. 2, 2, 1}. Resulta £=F =G. ~



CaP. 1] CONJUNTOS Y SUBCONJUNTOS 3

CONJUNTO VACIO

Conviene introducir el concepto de conjunto vacio, es decir, de un conjunto que carece de elementos.
Este conjunto se suele llamar conjunto nulo. Aqui diremos de un conjunto semejante que es vacio y se
le denotard por el simbolo ¢F.

Ejemplo 6-1: Si A es el conjunto de personas vivientes mayores de 200 afios, 4 es vacio segin las estadis-
ticas conocidas.
Ejemplo 6-2: Sea B = {x|x® = 4, x es impar}. B es entonces un conjunto vacio.

SUBCONJUNTOS

Si todo elemento-de un conjunto A es también elemento de un conjunto B, entonces se dice que
A es un subconjunto de B, Mas claro: 4 es un subconjunto de B si x £ A implica x & B. Se denota esta
relacién escribiendo

ACB

que también se puede leer «A estd contenido en B».

Ejemple 7-1: El conjunto C = {1, 3, 5} es un subconjunto del D= {3, 4, 3, 2, 1}, ya que todo nimero II,
3 y 5 de C pertenece también a D.

Ejemplo 7-2: El conjunto £ = {2, 4, 6} es un subconjunto del F = {6, 2, 4}, pues cada numero 2, 4 y 6 que
pertenece a E pertenece también a F. Obsérvese en particular que £ = F. De la misma ma-
nera se puede mostrar que todo conjunto es subconjunto de si mismo.

Ejemplo 7-3: Sean G = {x|x es par}, es-decir, G = {2, 4, 6, 8, ...} y F = {x | x.es potencia entera po-
sitiva de 2}, es decir, F = {2, 4, 8, 16,'..:}. Entonces F(C G, o sea que F estd conte-
nido en G.- = K

Con la anterior definicion de subconjunto se puede dar de otra manera la definicién de la igualdad
de dos conjuntos:
Definicién 1-1: Dos conjuntos 4 y -B son iguales, 4. = B, si, y solo si, ACBy BCA.

Si A es un subconjunto de B, s¢ puede escribir también

BOA
que s¢ lee «B es un superconjunto de 4» o «B contiene a A». Y se escribe, ademas,
ACB o B4

si 4 no es subconjunte de B.
Para concluir, se tiene:

Observacién 1-1: El conjunto vacio (J se considera subconjunto de todo conjunto.
Observacion 1-2: Si 4 no es subconjunto de B, es decir, si 4 ( B, entonces hay por lo menos un ele-
mento de 4 que no es elemento de B.

SUBCONJUNTO PROPIO

Puesto que todo conjunto 4 es un subconjunto de si mismo, se dird que B es un subconjunto propio
de A si, en primer lugar, B es un subconjunto de A y, en segundo lugar, B no es igual a 4. M4s breve-
mente, B es un subconjunto propio de A si

BCA y B+ A4

En algunos libros «B es un subconjunto de 4» se denota por
B(C A
y «B es un subconjunto propio de A» se denota por
: e = BC 4

Aqui se seguird la notacion ya vista que no distingue entre subconjunto y subconjunto propio.



4 CONJUNTOS Y SUBCONJUNTOS [CAP. 1

COMPARABILIDAD

Dos conjuntos A y B se dicen compurables si

ACB o BCHA

esto es, si uno de los conjuntos es subconjunto del otro. En cambio, dos conjuntos 4 y B se dicen no
comparables si
Ad B y Bl A4

Notese que si 4 no es comparable con B, entonces hay en 4 un elemento que no esta en B y hay tam-
bién en B un elemento que no esta en A.

Ejemplo 8-1; Sean A = {a. b} y B = [u. b, ¢|. Entonces 4 cs comparable con B, pues A ¢s un subcan-
junto de B.

Ejemplo 8-2: Si C = la, b} y D = b ¢, d}. C y D no son comparables, pues ae C y a€D y cx D
yieC

TEOREMA Y DEMOSTRACION

En matematicas puede demostrarse la verdad de muchas afirmaciones mediante suposiciones y
definiciones previas. De hecho, la esencia de las matemdticas consiste en teoremas y sus demostracio-
nes. Demostremos nuestro primer

Teorema 1-1: Si 4 es un subconjunto de B y B es un subconjunto de C, entonces A es un subconjun-
lo de C, esto es,

AC By BC Cimplican 4 CC

Demostracion, (Téngase en cuenta que debemos demostrar que todo elemento de A es también
un clemento de C.) Sea x un elemento de 4, esto es, x & A. Como A4 ¢s un subconjunto de B, x perte-
nece también a B, es decir, x £ B. Pero, por hipotesis, B (C C; por tanto, todo clemento de B, en el cual
esta x. es un elemento de €. Hemos demostrado que x e A implica x ¢ C. En consecuencia, por de-
finicion, 4 C C.

CONJUNTOS DE CONJUNTOS

Ocurre ¢ veces que 1os elementos de un conjunto son a su vez conjuntos; por ejemplo, el conjunto
de todos los subconjuntos de A. Para evitar decir «conjuntos de conjuntos», se suele decir «famiba de
conjuntos» o «clase de conjuntoss. En tales casos y para evitar confusiones, se emplean letras inglesas

ol oo

para designar familias o clases de conjuntos, ya que las mayusculas denotan sus clementos.
Ejemplo 9-1: En geometria es corriente hablar de «familias de rectass o «famihas de curvas», pues rectas
y curvas ya son cllas mismas conjuntos de puntos.
Ejemplo 9-2: El conjunto {2, 3. 2!, 5. 6!} es una familia de conjuntos. Sus clementos son los conjun-
tos A28 [ 5 15060
En teoria es posible que un conjunto tenga entre sus elementos algunos que sean a su vez conjuntos
y otros gue no lo scan. pero en las aplicaciones de la teoria de conjuntos este caso s¢ presenta rara vez.

Ejemplo 9-3: Sea 4 = (2. {1, 3,.4, {2, 5]]. 4 no es. pues, una familia de conjuntos; algunos elementos
de A son conjuntos y otros no.

CONJUNTO UNIVERSAL

En toda aplicacién de la teoria de conjuntos todos los conjuntos que se consideran serdn muy pro-
bablemente subconjuntos de un mismo conjunto dado. Este conjunto se llamard conjunto universal
o universo del discurso y se denotara por U
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Ejemplo 10-1: En geometria plana el conjunto universal es el de.todos los puntos del plano.

Ejemplo 10-2: En los estudios sobre poblacién humana el conjunto universal es el de todas las gentes del
mundo.

CONJUNTO POTENCIA
La familia de todos los subconjuntos de un conjunto S se llama conjunto potencia de S. Se le de-

signa por

25
Ejemplo 11-1: Si M = {a, b}, entonces
2% = {{a, b}, {a}. {t}, @)
Ejemplo 11-2: 8i T = {4; 7, 8}, entonces ]
2T={T. {4, 73 {478}, {7, 8}, {43, {7}, {3},!3}

Si un conjunto S es finito, digamos que S tenga » elementos, entonces ¢l conjunto potencia de §
tendra 2" elementos, como se puede demostrar. Esta es una razon para llamar conjunto de potencia
de S la clase de los subéonjuntos de S y para denotarla por. 25

CONJUNTOS DISJUNTOS

= Si dos conjuntos 4 y B no tienen elementos comunes, es decir, si ningiin elemento de 4 estd en B
y si ningtn elemento 'de B estd en 4, se dice que 4 y B’son disjuntos.

Ejemplo 12-1: Sean A = {1,3, 7,8} y B={2,4,7,9}; 4 y B no son disjuntos entouoes pues 7 estd en
ambos conjuntos, o seaque Tc¢ 4y 7¢°B.

Ejemplo 12-2: Sean A el conjunto de los niimeros positivos y B el de los nimeros negativos. Entonces 4
y B son disjuntos, pues ningiin niimero es positivo y negativo.

Ejemplo 12-3: Si E={x, y, z} y F={r, 5, t}, E y F son disjuntos.

DIAGRAMAS DE VENN-EULER

Se logra ilustrar de manera sencilla e instructiva las relaciones entre conjuntos mediante los lla-
mados diagramas de Venn-Euler, o de Venn, simplemente, que representan un con_]unto con un irea
plana, por lo general delimitada por un c1rculo

Ejemplo 13-1: Supéngase A C By 4 + B. Entonces 4 y B se describen con uno de los diagramas:

Ejemplo 13-2: Si A y B no son comparables se les puede representar por el diagrama de la derecha si son
disjuntos o por el de la izquierda si no lo son,

&) ol
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Fjemplo 13-3: Sean 4 = {a.b. cv d',-. y B = {c.d. e. f}. Se ilustran estos conjuntos con un diagrama de Venn
de la forma )

s

DIAGRAMAS LINEALES
Otra manera 1til e instructiva para ilustrar las relaciones entre conjuntos es el empleo de los lla-
mados diagramas lineales. Si 4 C B, se escribe entonces B mids arriba que A4 y se les conecta por un

segmento
B

|

SiAC By BCC. se pone”
o

—iC}

w—

Ejemplo 14-1: Scan A = {a}, B = b} y C'= |a, b}. El diagrama lineal de 4. B ¥ C es entonces

x, v, w). Aqui el diagrama lineal de X,

Ejemplo 14-2: Sean X = (x). ¥ = {x. 0} Z = {x. 02y W=
Y. Zy Wes.

DESARROLLO AXIOMATICO DE LA TEORIA DE CONJUNTOS

En un desarrollo axiomatico de una rama de las matematicas, se comienza por:
(1) Términos no definidos.
(2) Relaciones no definidas.
(3) Axiomas que relacionan los términos no definidos y las relaciones no definidas.
Entonces se desarrollan teoremas basados en los axiomas y definiciones.

Ejemple 15-1: En un desarrollo axiomatico de la geometria plana euclidiana:
(1) «puntos» y «rectas» son (Erminos o definidos,
(2) «punto en una recta» o, lo que cs equivalente, «recta que contiene un puntor, es una
relacion no definida,
{3) Dos de los axiomas son:
Axioma 1: Dos puntas distintos estin sobre una y misma recta.
Avioma 2: Dos rectas distintas no pueden tener mas de un punto comdn.
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En un desarrollo axiomatico de la teoria de conjuntos:

(1) «Elemento» y «conjunto» son términos no definidos.
(2) «Pertenencia de un clemento a un conjunto» es la relacién no definida.
(3) Dos de los axiomas son:

Axioma de extensién: Dos conjuntos 4 y B son iguales si. y solamente si, todo elemento de A4
pertenece a B y todo elemento de B pertenece a A.
Axioma de especificacién: Sea P(x) una afirmacidn y sea 4 un conjunto. Existe entonces un con-
junto

B={a|aeA, Pla) es cierta)

Aqui, P(x) es un enunciado en una variable, para la cual P(a) es verdadero o falso con a g A. Por
ejemplo, P(x) podria ser el enunciado «x® = 4» 0 «x ¢s un miembro de las Naciones Unidas»

Hay otros axiomas que no se enuncian aqui porque los axiomas tocan con conceptos que se estu-
diaran luego. Y, por otra parte, como aqui se trata la teoria de conjuntos sobre todo intuitivamente,
en especial en la Parte I, nos abstendremos de hacer mas consideraciones sobre el desarrollo axiomatico
de la teoria de conjuntos.

Problemas resueltos

NOTACION

1. Escribir las afirmaciones siguientes en notacién conjuntista:
(1) x no pertenece a 4. (4) F no es subconjunto de G.
(2) R es superconjunto de S. (5) H no incluye 4 D.

(3) d es elemento de E.
Solucion:

(M xéA QVRDS, Q) deE. (4 FE G (5) H D D.

2. SiAd={x|2x=6}yb=3 jesb=A7

Solucion:
A es un conjunto que consta del unico elemento 3, es decir, 4 = {3}. El nimero 3 es elemento de A,
pero no es igual a A. Hay una fundamental diferencia entre un elemento x y el conjunto |x).

3. Sea M = {r, s, t}. Es decir, M consta de los elementos r, s y 7. Digase cudles de las afirmaciones
$0m correctas o Incorrectas. Si dlguna es incorrecta, decir por qué.

(@) reM (b)) rCM (c){rleM (d) {rlCM

Solucion:

{a) Correcta.

() Incorrecta. El simbolo C debe estar entre dos conjuntos, pues indica que un conjunto es subconjunto del
otro. Asi que r'C M es incorréetd por ser’r un eleménto de M, no un subconjunto.

{¢)  Incorrecta. El simbolo £ vincula un objeto a un conjunto, pues indica que el objeto es elemento del conjun-
to. Asi que |r} £-M es incorrecta, ya que {r} es un subconjunto de M, no un clemento de M.

{d) Correcta. ¢ . =
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Enunciar con palabras y luego escribir en forma tabular:
(1) A={x]|x*=4}

2) B={x|x-2=5} :

(3) C = {x|x es positivo, x es negativo}.

(4) D = {x|x es una letra de la palabra «correcton»}.

Solucién:

(1) Se lee «A es el conjunto de los x tales que x al cuadrado es igual a cuatro». Los tunicos nimeros que eleva-
dos al cuadrado dan cuatroson 2y —2; asi que 4 = {2, —2}.

{2) S8elee «Besel conjunto de los x tales que x menos 2 es igual a 5». La unica solucion es 7, de modo que B = {7}.

{3) Se lee «C es el conjunto de los x tales que x es positivo y x es negativon. No hay ningiin numero que
sea positivo y negativo, asi que C es vacio, es decir, C = .

{4) Se lee «D es el conjunto de los x tales que x es una letra de la palabra correcton. Las letras indicadas son
c, 0,1, eyt;asi pues, D=1{c, o, 1, g t}.

Escribir estos conjuntos en una forma constructiva:

(1) El A4 que consiste de las letras g, b, ¢, d y e.

2) El B=1{2,4,68, ...}

(3) El conjunto € de todos los paises de las Naciones Unidas.
(4) El conjunto D = {3}.

(5) Sea E los presidentes Truman, Eisenhower y Kennedy.

Solucion:

Notese en primer lugar que la descripcion de un conjunto, o sea su forma constructiva, no es necesariamen-
te unica. Lo tinico que se requiere es que toda descripeion defina el mismo conjunto. Se dan aqui algunas de las
muchas respuestas posibles a este problema.

{1) A = {x|xestd antes de fen el alfabeio}
= {x | x es una de las primeras cinco letras del alfabeto}.

{2) B = {x|xespary positivo}.

(3) C = {x|xesun pais, x estd en las Naciones Unidas}.

@) D={x|x—2=1}={x|2x =6}

(5) E = {x|x fue presidente después de Franklin D. Roosevelt}.

CONJUNTOS FINITOS E INFINITOS

6.

¢Cuadles conjuntos son finitos?

(1) Los meses del afio. (4) {x|x es par}.
(2) {1, 2, 3, ...,99, 100}. P20 By e b
(3) Las gentes que viven en la tierra.

Solucién:

Los tres primeros conjuntos son finitos. Aunque pueda ser fisicamente imposible contar el numero de per-

sonas que hay en la Tierra, el conjunto es ciertamente finito. Los dos Gltimos conjuntos son infinitos. Si se tratara

de contar los nimeros pares jamdas se llegaria al fin.

IGUALDAD DE CONJUNTOS

7.

¢Cudles de estos conjuntos son iguales: {r, , s}, {5, t, r, s}, {t. 5, 1, r}, {5, 1, 5, 1}?
Solucion:

Son todos iguales entre si. Obsérvese que el orden o la repeticion no cambia un conjunto.
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8.

¢Cuales de estos conjuntos son iguales?

(1) {x|x es una letra en la palabra «tocatan}.
(2) Las letras de la palabra «tacto».

(3) {x|x es una letra de la palabra «cota»}.
(4) Las letras a, ¢, o, t.

Solucion:

Escribiendo los conjuntos en forma tabular es facil averiguar si son o no iguales. Una vez escritos los cua-
tro conjuntos en forma tabular se ve que todos son iguales al conjunto {a, ¢, o, t}.

CONJUNTO VACIO

9. (Cudl de estas palabras es distinta de las otras y por qué?: (1) vacio, (2) cero, (3) nulo.
Solucion:
La primera y la tercera se refieren al conjunto sin elementos; la palabra cero se refiere a un nimero par-
ticular v es, por tanto, la palabra diferente.
10. Entre los conjuntos que siguen, jcudles son diferentes?: gy, {9}’ {7}
Selucion: f
_Cada uno es diferente d‘? los otrc{s. El conjynto 10} cmjlu'ene un ?lemento, el niimero cero. El conjunto ¢
no tiene ellementos, cs_cI conjunto vacio. El conjunto {7} tiene también un elemento que es el conjunto vacio:
es un conjunto de conjuntos.
11, ;Cudles de estos conjuntos son vacios? \
(1) A= {x|x es una letra anterior %aen el alfabem}.ﬂé (3) C={x]|x+#x}. ¥
(2) B={x x2=9y2x=4}.\/—"}j 4) D={x|o+8=8}
Solucidn: ~ Z A
(1) Como a es la primera letra del alfabeto, el conjunto A carece de elementos; por tanto, 4 = .
{2) No hay numero que satisfaga a ambas ecuaciones x2 = 9 y 2x = 4; asi que B es también vacio.
{3) Se da por sentado que todo objeto es él mismo, de modo que C es vacio. Tanto es asi que algunos libros
definen de esta manera el conjunto vacio, es decir,
@ ={x|x#x
(4) El nuimero cero satisface a la ecuacién x + 8§ = 8, asi que D consta del elemento cero. Por tanto, D no es
vacio.
SUBCONJUNTOS
12. Dado 4 = {x, y; z}, jcudntos subconjuntos hay en A y cudles son?
Solucion:
Haciendo la lista de todos los subconjuntos posibles de 4 resultan ser: {x. y. z}, {1 z}, {x, z}. {x. ], [x].
{¥}. {z} y el conjunto vacio . Hay ocho subconjuntos en A.
13. Definir los siguientes conjuntos de figuras del plano euclidiano:

O = {x|x es un cuadrilatero}. H = {x|x es un rombo}.
R = {x|x es un rectangulo}. § = {x|x es un cuadrado}.

Decir qué conjuntos son subconjuntos propios de los otros.
Solucién:

Como un cuadrado tiene 4 dngulos rectos, es un rectdngulo; y como tienc 4 lados iguales, es un rombo; y
puesto que tiene 4 lados, es un cuadrildtero. Segin eso S C @, S C R, §(C H, es decir, S es un subconjunto
de los otros tres. Y, ademds, como hay rectdngulos, rombos y cuadriliteros que no son cuadrados, resulta ser
S un subconjunto propio de los otros tres. De manera andloga se ve que R es un subconjunto propio de Q.
que A es un subconjunto propio de (. No hay otras relaciones entre los conjuntos.
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(Tiene todo conjunto un subconjunto propio?

Solucion:

El conjunto vacio & no tiene subconjunto propio. Cualquier otro conjunto tiene al ¢ como subconjunto
propio. En algunos libros no se llama subconjunto propio al ~onjunto vacio: y entonces los conjuntos que tie-
nen un solo elemento no tendrian un subconjunto propio.

Demostrar: Si 4 es un subconjunto del conjunto vacie 7. entonces 4 = (.
Solucion:

El conjunto vacio gJ es subconjumé de cualqurer conjunto: en parucular. (F C A. Por hipdtesis, 4 C .
De modo que, por la Definicion 1-1, 4 = &.

iCémo se demuestra que un conjunto 4 no es un subcomjunto de otro conjunto B? Demos-
trar que A = {2, 3, 4, 5} no es un subconjunto de B = {x | x es par}.
Solucion:

Hay que demostrar que hay al menos un clemento de A que o esta en B. Como 3¢ 4 y 3¢ B, se ve
que A no es un subconjunto de B, o sea que 4 (C B. Notese que no s necesario saber si hay o no otros
elementos de 4 que no estén en B.

Sean V ='{d}, W = {¢,d}, X = {a. b, ¢}, ¥ = {a, b} y Z = {a, b, d}. Establecer la verdad o fal-
sedad de las siguientes afirmaciones:

(1) YcXxX~ 3 W=z~ (5) vqY (T) VcX~ ©) X=w <
2) Whv - (4) ZoV - (6) ZDX . (8) YCZ~ (10) WcY ./
Solucién:

(1) Como todo elemento de Y es elemento de X, resulta que ¥ C X es verdadera.

(2} El tnico elemento de ¥ es d, v 4 también esta en W; asi que W es un superconjunto de ¥ y, por tanto,
WDV es falsa.

(3) ComoacZyag W, W+ Z es verdadera.

(4) Z es un superconjunto de ¥ puesto que el unico elemento de ¥ es elemento de Z; por tanto, Z O Ves
verdadera.

(5) ComodeVydgY, V{ Yes verdadera.

(6) ComoceXyciZ, entonces Z no es un superconjunto.de X, es decir, Z D X es verdadera.

(7) ¥V no es un subconjunto de X, ya que de ¥ y d£ X; por tanto, ¥ (C X es falsa.

(8) Todo elemento de ¥ lo es de Z; luego ¥ ( Z es falsa. i

(9) ComoaeXyag W, X = Wes falsa.

(10) Como ce Wy c¢ Y, Wno es un subconjunto dé Yy, por tanto, W D ¥ es falsa.

Sean Ad={r.s, buv,w}, B={uv,w x,pz},C={s,u p.z}, D={u, v}, E={s, u} y
B o

F = {5}. Séa X un conjunto desconocido. Determinar cudles de los conjuntos 4, B, C, D, E
F pueden ser iguales a X si se dan las informaciones siguientes:

@) XcA. .y XcB @) X¢4 y Xd¢cC

(2) X¢B y XccC (4) XcB y XdcC

Soluacibn:

(1) El dnico conjunto que es subconjunto de 4 y de B és D. C, E y F no son subconjuntos de B porgue
seC, E, Fys¢B

(2) El conjunto X puede ser igual a C, E o F, pues éstos son subconjuntos de C y, como ya se vio, no son sub-
conjuntos de B.

{3) Solo B no es subconjunto de 4 o de C. D y 4 son subconjuntos de A; y C, E y F son subconjuntos de C.
Asique X = B.

(4) Tanto B como D son subconjuntos de B y no lo son de C. Todos los otros conjuntos dejan de cumphir
al menos una de las condiciones. Por tanto, X = Bo X = D.
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19. Sea 4 unsubconjunto de By sea Bun subconjunto de C,esdecir, 4 C ByB C C. Suponiendoa e A,

beB, ceCy, ademas, dg 4, e¢ B, f¢ C, jcuiles afirmaciones seran ciertas?
(eeC, (2)becA, (3)evA, (4)deB, (BlegA, (6) fe A
Solucion )
(1) Por el Teorema 1-1, 4 es un subconjunto de C. Luego a € 4 implica a € C, y la afirmacién es siempre cieria.
(2) Como el elemento b € B puede no ser elemento de A4, la afirmacién es falsa.

(3) El elemento ¢ e C podria ser un elemento de 4; por lo que ¢ ¢ 4 puede no ser verdad.
{4) El elemento 4, que no estd en A4, puede no estar en B; asi que la afirmacién puede no ser cierta.

*(5) ComoeéBydCB, ef A cssiempre verdadera.

(6) Como f¢Cy A CC,[f¢Aessiempre cierta.

DIAGRAMAS LINEALES
20. Hacer un diagrama lineal para los conjuntos A4 = {a, b, ¢}, B={a, b} y C = {a, c}.

¢« 21.

23.

Solucién:
Como A D) B, 4 D Cy By C no son comparables, .se construye asi:

A
B/ \C
Hacer un diagrama lineal de los conjuntos X = {a, b, ¢}, Y={a, b} y Z = {b}.

Solucion:
Aqui Z Ye ¥ X. Queda entonces

¢

¥y no
Z

X\

| y

z/
ya que el segmento de Z a X es redundante porque Z C Y'e ¥ C X ya implican Z C X.
Construir el diagrama de los conjuntos R = {r, s, 1}, S={s} y T= {5, ¢, u}.

Solucidn:
Aqui SC Ry SC T. Y como Ry T no son comparables, se pone

R / T
\ !
Sean O, R, H y S los conjuntos del Problema 13. Hacer un diagrama lineal para estos conjuntos.

Solucion:
Como @ D Ry @ D) H, se construye primero
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. 24. Construir un diagrama lineal para los conjuntos ¥, W, X, Y y Z del Problema 17.

Solucidn:
Como V. Wy V(C Z, sctraza

W\ /Z
v
Come ¥ (C Z, se agrega ¥ al diagrama:
w\ / : \
v b
For dltimo, puesto que ¥ C X, se completa el diagrama como sigue:
W\ / . \ /X
vV ¥

25. Sea S cualquier conjunto. Construir-un diagrama lineal para los conjuntos (J, S y el conjunto
universal U

Seolucion:
Ya que el conjunto vacio &7 es subconjunto de todo conjunto, o sea & C S, se traza
T
9]

Por otra parte, como el conjunto universal U/ es un superconjunto de todo conjunto que incluya al §, se com-

pleta el diagrama como sigue:
U

5
o A = E
PROBLEMAS DIVERSOS AT

26. Considérense las cinco afirmaciones siguientes: (1) 4 C B, (2) 4 DB, (3) A = B, (4) A y B sen
disjuntos, (5) 4 y B no son comparables. ;Cual afirmacion describe mejor cada diagrama de Venn?

& @ Op G

é) (d)
(@) El drea de B es parte del area de A; luego 4 D B.
() Hay puntos cn 4 gue no estan en B, y puntos en B que no cstan en 4; luego 4 y B no son comparables,
Los conjuntos no son disjuntos porque tienen puntos que pertenecen a ambos.
(¢} Aqui los conjuntos son disjuntos, pues no hay ningin punto que esté en los dos conjuntos. Los conjuntos
no son tampoca comparables.
(@) El area de A4 ez patte del drea de B; luego 4 C B.

Solucidn:

27. Examinar el siguiente diagrama lineal de conjuntos 4, B, Cy D’



CAP. 1] CONJUNTOS Y SUBCONIUNTOS 13

29,

31

32

33,

Escribir una afirmacién que relacione cada par de conjuntos del diagrama. Debe haber seis afir-
maciones.
Solucion:

En primer lugar se ve que CC B, D By B ( A, pues estos conjuntos estan unides por segmentos, Por
el Teorema 1-1 se deduce que C C 4 y D C A. Por altimo. los conjuntos C y D no son comparables, ya que
no estdn unidos por una linea ascendente.

Construir diagramas de Venn de los conjuntos 4, B, C y D del diagrama lineal del Pro-
blema 27.
Solucidn:

Hagamos dos diagramas posibles:

W

@

La principal difcrencia entre estos diagramas es que los conjuntos € ¥ D aparecen disjuntos en el segundo dia-
grama. Pero ambos tienen el mismo diagrama lineal,

iQué significa el simbolo {{2, 3}1?
Solucién:
Se frata de un conjunio que tiene un elemento; el conjunto de los clementos 2 v 3. Obsérvese que {2, 3} per-
2,31

tenece a {12, 31} noes un subconjunto de [ {2, 31t Asi que se puede decir gue | es un conjunto de conjuntos.
1 iy 3] (RESR q P [

Dado 4 = {2, {4, 5}, 4}, ;qué afirmaciones son incorrectas y por qué?
(1) (4,3} CA (2] {4,5)cA (3) ({4,5}}CA /

Solucidn:
Los elementos de 4 son 2, 4 ¥ ¢l conjunto {4, 5}. Por tanto, (2) es correcta y (1) es incorrecta. (3) es una afir-

macion correcta porgue ¢l conjunto que consta del tnico elemento [4, 5! es un subconjunto de 4.
3 q 1 J

Dado E = {2, {4, 3}, 4}, iqué afirmaciones son incorrectas y por qué?

(1) 5E  (2) (5)+E (3) {5)CE

Solucién: i I g
Todas son incorrectas. Los elementos de £ son 2, 4 v el conjunto. {4, 5}, por tanto, (1]y (2) son incorrec-
tas. Hay ocho subconjuntos de £y {5} no estd entre ellos, de modo que (3) es incorrecta.

Hallar el conjunto potencia 2° del conjunto S = {3, {1, 4}}.

Solucion:
Observar primero que S conticne dos elementos, 3 y el conjunto {1, 4}. Por tanto, 2% contiene 22 = 4 elemen-
tos: S mismo, ¢! conjunto vacio, {3} y el coyjunto formada por {1. 4} solo. es decir, {{1, 4]}, Mis breve:

28 = {S, {3}, {{L,4}), ¥

En lo que sigue, jqué es lo yue no se define en un desarrollo axiomatico de la teoria de conjuntos?:
{1) conjunto, (2) subconjunto de, (3) disjunto, (4) elemento, (5) es igual a, () pertenece a, (7) su-
perconjunto de.
Solucidn:

Los Gpicos conceptos no definidos en la teoria de conjuntos sun: conjunto, clemento y la relacidn «pertene-
ce an, o sed (1) (4) v (6).
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34. Decmostrar: Sean 4 y B no vacios, estoes. 4 #+ ¢y B &+ . Si 4 y B son disjuntos, entonces 4
y B no son comparables.
Solucion:
Como 4 y B no son vacios, hay elementos ¢ £ A y b e B. Por otra parte, como A y B son disjuntos, ¢ ¢ B
yb¢A Portanto, 4 ¢ By 8 4, es decir, 4 ¥y B no son comparables.
35. Dados A y B no comparables, ;se sigue que 4 y B son disjuntos?
Solucién:
No. Los conjuntos del siguiente diagrama de Venn no son comparables; pero tampoco son disjuntos.
Problemas propuestos
NOTACION
36. Escribir en notacion conjuntista:
(1) R es un superconjunto de T. (5) =z no pertenece a A.
(2) x eselemento de Y. (6) B estd incluido en F.
(3) M no es subconjunto de S. (7) El conjunto vacio.
(4) El conjunto potencia de W. (8) R pertenece a = '
37. Enunciar verbalmente:
{1} A= {x]|xvive en Paris}. (3) € = {x|xes mavor de 21 afios}.
(2) B = {x|x habla danés}. (4) D = {x|xes ciudadano francss}.
38. Escribir en forma tabular:
() P=fx|x*—x—2=0}
(2) @ = {x|xes.una letra de la palabra «calcular»}.
(3) R=x|x*=9x—3=5). {
(4) S = {x | xesuna vocal}.
(5) T = {x|xesunacifra del nimero 2324}
39. Si E = {1, 0}, decir entre las afirmaciones siguientes cudles son correctas o incorrectas.
(1} {0} e E, (2) @& E (3) W0l CE (4)0eE (5 0CE
40. En una exposicién axiomatica de la teoria de conjuntos, decir cudles de estos simbolos representan una relacion

no definida: (1) ¢, (2) &, (3) O.
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SUBCONJUNTOS
41. 51 B = |0, 1, 2}, hallar todos los subconjuntos de B.

42, Si F = {0, {1, 2}}. hallar todos los subconjuntos de F.

43, Sean

A = {2, 34} € ={x| x2*—6z+8 = 0}
B = {x | 2* =4, & cspositivo) D = {z | 'z s par}

Completar las siguientes afirmaciones insertando (C, ) o «nc» (no comparables) entre cada par de conjuntos:

(1) Ao B, (2) Auli€C, {8) Biuy C, (YA LD, (5) B....D,; (6) C....D.

44. Scand = |1.2,..., B. 9L B=12,4,68},C=1{1,3,5729}, D= (34,5 yE={3,5}. {Cudles conjuntos
pueden ser iguales a X dadas las condiciones siguientes?
(1) X y B son disjuntos (3) XCAyXqcC
2) XCDyXL B 4) XCCyX{q 4.

45, Decir si son correctas o incorrectas las siguientes afirmaciones:

(1) Todo subconjunto de un conjunto finito es finito.
(2) Todo subeconjunto de un conjunto infinito es infinito.

PROBLEMAS DIVERSOS

46. Hacer un diagrama lineal de los conjuntos A. B, C y D del Problema 43.
47. Hacer un diagrama lineal de los conjuntos 4, B, C, D y E del Problema 44.

48. Entre las afirmaciones siguientes decir cuales son correctas o incorrectas:

(1) {1,4,3} = {3,4,1} (4) {4rci{4n
(2) {1,3,1,2,3,2) c {1,2,3) (5) @ci{a)r
(3) 44be {{4}}
49. Decir cudles de los siguientes conjuntos son finitos o infinitos:
(L} El conjunto de rectas paralelas al gje x.
(2)  El conjunto de letras del alfabeto.
~ (3) El conjunto de nimeros que son multiplos de 5.
(4) El conjunto de animales que viven en la Tierra.
(5) El conjunto de nameros que son raices de la ecuacion x*® + 42x% — [7x'% — 2% + 19 = 0.
(6) El conjunto de circulos que pasan por el origen (0, 0).
50. Entre las afirmaciones siguientes decir cudl es correcta y cudl incorrecta. Aqui S es un conjunto cualquicra no
vacio, ( i
4 (1) Se2° (2) SC2 (3) {(S}eZ (4) {S)ces

51. Hacer un d:agrama lineal de los conjuntos del siguiente diagrama de Venn,

CB
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36.

37

40.

41.

42.

43.

4.

‘45,

47.

48,

49,

50.

51,

MRIT, M xel, IMES (42", (5284, 6O)BCF. (1) &, (8) Re .

(1
2)
(3)
(4)

MP=42,—1L2)@=1{aclur,BIR=@ @S ={aeiou}l(5T=1{234

Respuestas a los problemas propuestos

CONJUNTOS Y SUBCONJUNTOS

A es el conjunto de los x tales que x vive en Paris.

B es el conjunto de los x tales que x habla danés.
C es el conjunto de los x tales que x e mayor de 21 anos.
D es ¢l conjunto de los x tales que x es ciudadano frances.

(1) incorrecto, (2).incorrecto, (3) correcto, (4) correcto, (3) incorrecto.

El simbolo & representa una relacién no definida.

Hay ocho subconjuntos: B, {0, 1}, {0, 2}, {1, 2}, {0}, {1}, {2}. @.

Hay cuatro subconjuntos: F, {0}, {{1, 2}}, &.

(1) 2,21 D, 3) C, (4} ne, (3) C. (6) C-

(1) C, E. (2) I, E. (3) A, 8. D. (¢) Ninguno.

(1) correcto, (2) incorrecto.

A

D

(1) correcto, (2) correcto, (3) correcto, (4) incorrecto, (5) correcto.
b |

(1) infinito, (2) finito, (3) infinito, (4) finito, (3} finito, (6) infinito.

(1) correcto, (2) incorrecto (3) incorrecto, (4) correcto.

P

S

Q

e

|

R

[CAP. 1



Capitulo 2

Operaciones fundamentales con conjuntos

OPERACIONES CON CONJUNTOS

En aritmeética se suma, resta y multiplica, es decir, a cada par de niimeros x e y se le asigna un '
numero x-+ y llamado suma de x ¢ y, un numero x — y llamado diferencia de x e ¥ ¥ un nimero xy
llamado producto de x e y. Estas asignaciones se llaman operaciones de adicién, sustraccién y multi-
plicacion de nimeros. En este capitulo se van a definir las operaciones de unidn, interseccion y diferencia
de conjuntos, es decir, se van a asignar o-a hacer corresponder nuevos conjuntos a pares de conjuntos
Ay B. En un capitulo posterior se verd que estas operaciones entre conjuntos se comportan de manera
un tanto semejante a la de las anteriores operaciones con niimeros,

UNION

La union de los conjuntos 4 y B es el conjunto de todos los elementos que pertenecen a 4 0 a
B 0 a ambos. Se denota la unién de 4 y B por

AU B
que se lee «A4 unién B».

Ejemplo 1-1: En el diagrama-de Venn de la Figura 2-1, 4 | B aparece rayado, o sea el drea de 4 y el
irea de B.

A1 8 lo ruyado
Fig.2-1

Ejemplo 1-2: Sean S = {a, b, ¢, d} y T = {f, b, d, g}. Entonces
SUT={a.bed/f gl
Ejemple 1-3: Sean P el conjunto de los nimeros reales positivos y Q el conjunto de l0s numeros reales ne-

gativos. P @, unidn de P y (@, consiste en todos los numeros reales exceptuado el
Ccero.

La unién 4 y B se puede definir también concisamente asi:
AUB={x|xed o xeB)

Observacién 2-1: Se sigue inmediatamente de la definicion de la unién de dos conjuntos que
AU By B\U A4 son ¢l mismo conjunto, esto es:

AUB=BUA
Observacién 2-2: A4 y B son ambos subconjuntos de 4 \J B, es decir, que:

ACAUB) vy BC(4U B)
17
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En algunos libros la unidn de A y 8 se denota por 4 + B y se la llama suma conjuntista de A y B
o simplemente 4 mas B.

INTERSECCION
La interseccion de los conjuntos A y B es el conjunto de los elementos que son comunes a 4 y B,
esto es, de aquellos elementos que pertenecen a 4 y que también pertenecen a 8. Se denota la intersec-
cion de 4 y B por
AMEB
que se lee «A4 interseccion Bw.

Ejemplo 2-1: En el diagrama de Venn de la Fig. 2-2 se ha rayado 4 (M) B. el drea comin a ambos con-
juntos 4 y B.

1 (M1 B lo ravado
Fig.2-2

Ejemplo 2-2: Sean S = {a. p.c.d] ¥ T = {f. b. 4. g|. Entonces

SNT={bd
Ejemplo 2-3: Sea "= [2, 4. 6. ...} esdecir, los miltplos de 2: ysea W = [3. 6.9, ...}, o scan los mul-
tiplos de 3. Entonces

Vo w = 16,1218, !
La interseccion de 4 y B tambicn se puede definir concisamente asi:

ANB={x|xed xeB}

Aqui la coma tiene el significado de «y».
Observacién 2-3: Se sigue inmediatamente de la definicion de interseccién de dos conjuntos que

AMB=BMA

Observacién 2-4: Cada uno de los conjuntos 4 y B contiene al 4 (M B como subconjunto, es decir.

ANBCA4yANBCE

Observacion 2-5:  Si dos conjuntos A y B no lienen elementos comunes, es decir, si 4 y B son disjun-
tos, entonces la interseccion de 4 vy B es el conjunto vacio, osea A (M B = (.

En algunos libros, sobre todo de probabilidades, la interseccion de 4 y B se denota por AB y se
llama producto conjuntista de A y B o simplemente 4 por B.

DIFERENCIA
_ La diferencia de los conjuntos A y B es el conjunto de elementos que pertenccen a A, pero no a 5.
Se denota la diferencia de 4 v B por

A— B

que se lee «A4 diferencia B» o simplemente «A menos By
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Ejemple 3-1: En el diagrama de Venn de la Fig. 2-3 se ha rayado 4 — B. el drea de 4 que no es par-
le de B.

A — Blo rayado
Fig. 2-3

Ejemplo 3-2: Sean 8 = |a, b, . d) y T = {[.b, d g|. Se tiene:
§—T=la.c}

Ejemplo 3-3: Scan R el conjunto de los numeros reales y @ el conjunto de los numeros racjonalcs.ﬁnton-
ces R — @ cs ¢l conjunto de los nimeros irracionales.

La diferencia de 4 y B se puede también definir concisamente como
A-B={x|xed x¢B)

Observacion 2-6:  El conjunto A contiene al 4 — B como subconjunto, esto es:
(4 -B)C A
Observacién 2-7: Los comjuntos (4 — B), AN By (B — A) son mutuamente disjuntos, es decir, la
interseccion de dos cualesquiera es vacia.

La diferencia de 4 y B se denota a veces por A/B o bien por 4 ~ B,

COMPLEMENTO
El complemento de un conjunto 4 cs el conjunto de elementos que no pertenecen a 4. es decir,
la diferencia del conjunto universal U y del 4. Se denota el complemento de 4 por
. Ar
Ejémplo 4-1: En el diagrama de Venn de la Fig. 2-4 se ha rayado el complemento de 4, o sca el area exte-
rior a A. Se supone gue ¢l conjunto universal I es el drea del rectangulo.

A’ lo rayado
Fig.2-4
Ejemplo 4-2: Suponiendo que el conjunte universal U sea el alfabeto, dado T = {a, b, c}. entonces
T = {dieiferopppst
Ejemplo 4-3: Sea E = {2, 4, 6. ...}. o sca los nimeros pares. Entonces E =1{l,3, 5, ...}, que son los
impares. Aqui se supone que el conjunto universal es el de los nimeros naturales, 1,2, 3, ...
También se puede definir ¢l complemento de 4 concisamente asi:
A = fd | xelU;, ved)
o simplemente: A" = (x| xv¢ A}
Lo que sec establece en seguida resulta directamente de la definicion del complemento de un
conjunto.
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Observacion 2-8: La unién de cualquier conjunto 4 y su complemento 4 es el conjunto universal,
0 sea que -
AUA =U
Por otra parte, el conjunto A4 y su complemento 4’ son disjuntos, es decir,
SANA =g

Observacion 2-9: El complemento del conjunto universal U es ¢l conjunto vacio &, y viceversa, o
sea que:

U= y @=U

Observacion 2-10: El complemento del complcmentd de un conjunto A4 es el conjunto 4 mismo. Mas
breve: ¢ . ;

(47) = 4

La siguiente observacion muestra como la diferencia de dos conjuntos podria ser definida por el
complemento de un conjunto y’la interseccion de dos conjuntos. En efeclo, se tiene la siguiente rela-
cion fundamental:

Observacion 2-11:  La diferencia de 4 y B es igual a la interseccién de 4 y el complemento de
B, 0 sea:
-A—B=AN#F
La demostracion de la Observacion 2-11 se sigue inmediatamente de las definiciones:

A—B={x|xed x¢Bl={x|xed xeB}=ANF

OPERACIONES CON CONJUNTOS COMPARABLES

Las operaciones de union, intersecciéon, diferencia y complemento tienen propiedades sencillas
cuando los conjuntos de que se trata son comparables. Se pueden demostrar los teoremas siguientes.

Teorema 2-1: Ses 4 un subconjunto de B. Entonces la interseccidon de 4 y B es precisamente 4,
es decir:
A C B implica A () B = 4
Teorema 2-2: Sea A un subconjunto de B. Entonces la unidn de 4 y B es precisamente- B, es decir:
AC B implica A JB=8
Teorema 2-3: Sea A un subconjunto de B. Entonces B’ es un subconjunto de A, es decir:
A C B implica B' C A4’

Se ilustra e] Teorema 2-3 con los diagramas de Venn de las Figs. 2-5 y 2-6. Notese que el drea de
B’ estd incluida en la de A",

P =
| — B = a——— A
o) o
o

B lo rayado : A' lo rayado
Fig. 2-5 Fig. 2-6

Teorema 2-4:- Sea A un subconjunto de B. Entonces la unién de 4 y (B — A) es precisamente B,
es decir:

AC B implica 4\ J(B— A)=B
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Problemas resueltos
UNION '

1. En los diagramas de Venn que siguen, rayar 4 union B, o sea 4\ B:

oD @
(a) (c)

) 2 @ *
Solucién;
La unién de 4 y B es el conjunto de todos los elementos que pertenecen a 4 0 a B 0 a ambos. Se rayan
entonces las areas de 4 y de B como sigue:

"

L

(e} (b) ()
A1) B lo rayado

2. Sea A=1{l,2 3 4}, B=1{2, 4,6, 8, y C=1{3 4,5 6}. Hallar (g) A\ UB, (b)) AUC,
(c) B\UC, (d) B\UB.

e

1

Solucion:

Para formar la unién de 4 y B se rednen todos los elementos de 4 con todos los elémentos de B. De
modo que
AuB = {1,2,3,4,6,8}

De igual manera, : AuC = {1,2,3,4,5,86}
BUC = {2,4,6,8,3,5!
BuB = {2,4,6,8) 8
Notese que 81 ) B es precisamente B,

3. Sean 4, By C los conjuntos del Problema 2. Hallar (1) (4 B)\U.C, (2) 4\ J (B C).
Solucién: . {
{1) Se determina primero 4 |J B = {1, 2, 3. 4, 6, 8}. Entonces la unidbn de A \J By Ces

(AUBYJC=1{1,234068 5}
(2) Se determina primero B\ C = {2.4, 6, 8. 3, 5}. Entonces la unién dg. 4 y Bl Ces
AUBUC) ={1,2,3,4,6 8,5}
Natese que (4 U B} U C = A (B C).

4. Sean el conjunto X = {Tomas, Ricardo, Enrique}, el conjunto ¥ = {Tomas, Marcos, Emilio}
¥y Z = {Marcos, Emilio, Eduardo}, Hallar (a) X*U ¥, (b) YU Z, (¢) XU Z.
Solucidn: ’
Para hallar X' Y se hace la lista de los nombres de X con los nombres de ¥; asi
XU ¥ = {Tomis, Ricardo, Enrique, Marcos, Emilio}
Del mismo modo Y U Z = {Tomas, Marcos, Emilio, Eduardo}
X \J Z = {Tomis, Ricardo, Enrigue, Marcos, Emilio, Eduardo}
5. Sean A y B dos conjuntos que no son comparables. Hacer el diagrama lineal de los conjuntos
A, B’y A\JB.
Solucion:
Nétese primeramente, segtin la Observacion 2-2, que 4 y B son ambos subconjuntos de 4 | B, es decir, que
ACAUB) y BC(4\UB)
De acuerdo con esto, ¢l diagrama lineal de 4, By 4} Bes AuB

"
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10.

OPERACIONES FUNDAMENTALES CON CONJUNTOS [CAP. 2
Demostrar la Observacion 2-2: 4 y B son subconjuntos de 4 | J B.
Solucion:
Puesto que A\J 8 = B\ 4 solo se requiere demostrar que 4 es subconjunto de A4 | B, esto es, que
xed implica xe dJ B
Sea x un elemento de A. Se sigue entonces que x es elemento de A o de B, es decir, que xe 4 \J B. Asi
que 4 C (4 B). '
Demostrar: A = 4 | A.
Solucidn:
Segin la Definicion 1-1, hay que demostrar que 4 C (4 \J 4) y que (4 |J 4) C A. Segtin la Observacion 2-2,
A C {AJ A). Sea ahora un x & (4 |J 4). Entonces, segin la definicion de unién. x& 4 o x & 4; asi que x per-
tenece a A. Por tanto, (4 \J A)C A y, por la Definicién 1-1, 4 = (41U 4). /[
Demostrar: U\ J 4 = U, donde ¥ es el conjunto universal.
Solucidn: VoS ¢ ge e i 2
HEHA AL —\ ] &
Por la Observacién 2-2, U C (U1 4). Como todo conjunto es un subconjunto del conjunto universal,
(U A)C Uy la conclusion se sigue de la Definicidn 1-1.
Demostrar: GiJ) A4 = A4,

Solucion:

Por Ja Observacion 2-2, 4 C (4 U F).Seaahoraunxe (4! ). entoncesxs 4o x e 4. Por la definicion
de conjunto vacio, x ¢ (; de modo que x £ A. Se ha demostrado que x £ (4 | &) implica x & 4, es decir, que
(AU @) C A. Por la Definicion 1-1, 4 = @ \J 4.

Demostrar: A4\ JB = (J implica 4 = @ y B= @&.
Solucion:

Por la Observacién 2-2, 4 C (4 U B), es decir, 4 C . Pero @ es subconjunto de todo conjunto; en par-

ticular, @ (C A. Luego, por la Definicién 1-1, 4 = (&. De igual manera s¢ puede demostrar que B = .

\ INTERSECCION

11.

En los diagramas de Venn del Problema 1, rayar la interseccion de 4 y B, esto es, de 4 (N B.
Solucion:

La interseccién de 4 y B consiste en el drea que' es comin tanto a 4 como a B. Para encontrar A M B, se
raya primero 4 con trazos oblicuos hacia la derecha (////) y luego se raya B con trazos oblicuos mclinados a la
izquierda (4\\}) como se ve en [a figura:

“ Entonces 4 (M B es el -drea que tiene los dos yayados. El resultado final, que es 4 M) B, se raya ahora con lineas
horizontales, como sigue: '

£ e

= >, @ =L
o

{a) b (¢) {d)

A M B lo rayado

Notese que 4 () B es vacia en (¢) en que 4 y B son disjuntos.
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12. Sean 4 =11, 2, 3, 4}, B =-{2, 4, 6,8}y C=1{3,4, 5 6}. Hallar (a) AN B, (b) AN C,
© BNC, (@ BNB.
Solucién:

Para formar la interseccion de 4 y B se inscriben todos los elementos comunesa A y ByasiA M 8 = {2, 4}.
De igual manera, 4 N C = {3, 4}, BN C=1{4,6} y BN B ={2 4, 6 8). Notesec que B B es cfectiva-
mente B.

13. Sean 4, B y C los conjuntos del Problema 12. Hallar (a) (AN B)NC, (B) AN BN C).
Solucién:
{a) . 4 (B ={2, 4}. Asi que la interseccién dg {2, 4} con Ces (4 N BY N C = {4},
(b) BM C = {4, 6}. La interseccién de este conjunto con el 4 es {4}, estoes, 4 M (BN C) = {4}.
Notese que (AN B)NC=AN (BN C)
14. Sean A4 y B dos conjuntos no comparables. Hacer el diagrama lineal de 4, By A N B.
Solucidn:
Por la Observacién 2-4, 4 () Bes un subconjunto tanto de A como de B, estoes, (A N B) C Ay(AM B) C B.
De acuerdo con esto se tiene el siguiente diagrama hineal:
A\ B
AnB
15. Demostrar la Observacién 2-4: 4 (" B es un subconjunto de 4 y de B.
Solucion:

Sea x un elemento cualquiera de 4 (7 B. Por definicién de la interseccion, x pertenece a ambos conjuntos
A y B; en particular, x £ 4. Se ha demostrado que x & (4 (M B) implica x € 4, esto es, que (4 M B) C 4. De
igual modo, (4 N B) C B.

16. Demostrar: A M A4 = 4.
Solucidn:

Por Ia Observacion 2-4, (4 4) C A. Sea x un elemento cualquiera de A4, entonces es ob_vio que x perte-
nece a los conjuntos 4 y A, es decir, x pertenece a 4 (1) A. Se demuestra asi que x e A implica x& (4 () 4), es
decir, que 4 {4 (M) 4). Por la Definicién 1-1, 4 N 4 = 4.

17. Demostrar: U 4 = A, donde U es el conjunto universal.
Solucion:

Por la Observacion 2-4, (U (M.A) C A. Sea x un elemento cualquiera de 4. Como U es el conjunto univer-
sal x pertenece también a U. Como x e 4 y x & U, por la definicion de interseccion, x & (I/ () 4). Se ha demos-
trado que x € A4 implica x € (U (M A4), es decir, que se ha demostrado que 4 C (U M) 4). Por la Definicion 1-1,
UM A=A

18. Demostrar: AN T = &.
Solucion:

Por la Observacion 2-4, (4 M @) C &. Pero el conjunto vacio es subconjunto de todo conjunto; en par-

ticular, &f C A N &, Portanto, A N & = &.
DIFERENCIA 2 :
19. Sea 4 ={1,2, 3, 4}, B= {2,4,6, 8 vC=13,4,5, 6}. Hallar (a) (4 — B), (b) (C — A),

(¢) (B—C), @ (B—4), (e) (B— B)
Solucion:

{a) El conjunto 4 — B consiste en los elementos de 4 que no estan en B. Como 4 = 1,2,3,4}y2, 485,
entonces 4 — B = {1, 3}.

(b) Los unicos elementos de € que no estin en 4 son 5y 6; por tanto, C — 4 = {5, 6}.
¢ B—C={2,8. dB—4=1{68}. (e) B—B=(F
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20. En los diagramas de Venn del Problema 1, rayar 4 mcnos B..o sea 4 — B.

Solucion:
En cada caso ¢l conjunio 4 — 8 consiste en los elementos de 4 que rlo estan en B, es decir, el drea en 4
que no estd en la de B

ie) (&)
A — 8 lo rayado
Notese que, comoen (), 4 — B = 4 si 4 y Bson digjuntos. Nétese también que. comoen (d). A — 8 = &
514 es subconjunto de B.
21. Dados dos conjuntos 4 y B no comparables, construir el diagrama lineal de los conjuntos
A B (4 - B), (B—- A4), @ v el universal U.
Solucion:
Notar primero, segun la Observacion 2-6, que (4 — B} C Ay que (B — 4) C B,

Como i es subconjunto de todo conjunto y como, por la Observacion 2-7. (4 — B) v (B — 4) no son com-
parahles, se puede trazar primere

A—B\w/ﬂ—fi

Como A {4 — B)y B D (B — A), se anaden 4 y B al diagrama como sigue:

T B
A—B B—4
B
©
Como U contiene a lodo conjunto, se completa el disgrama asi:
U
gl
A
A it B B-A
\\ o S

Si no se incluyers U o ¢f en el disgrama, entonces el diagrama lineal no se cerraria.

22. Demostrar la Observacion 2-6: (4 — B) A,
Solueion:

Sea x cualquier clemento del conjunto 4 — B, Por definicion de diferencia. x£ 4 y x ¢ B: en particular.

X pertenece @ A. Se ha demostrado que v & (4 — 5) implica x & A; es decir, que (4 — B) (C A,
23. Demostrar: (4 — B)M\ 8 = (.
Solucidn:

Sea ¥ pertenecicnte a (4 — B) (Y B. Por la definicion de interseccién. v (4 — B) y x & B. Pero por la de-
finicion de diferencia, x£4 y x¢ B. Como no hay ningin elemento que cumpla x& B y x ¢ B, cntonces
4-BNB=0,

COMPLEMENTO
24. Sean U = {1, 235000 8 9, 4 =1{1,2 3. 4. B=12.4,6,8} y C =13 4, 5 6!. Hallar
(a) A'. (b)Y B (e) (AMCY, (d) (AU B), (&) (A). (/) (B = C).

Solucidn:
(@) Elconjunto 4’ consiste en los elementos que estan en U pero no en 4. Por tanto, 4 = 15, 6.7, 8, 9.
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{h) EIl conjunto de los elementos de U/ que no estanen Bes B' = {1, 3, 5. 7. 9},
() (AMC)={3,4] yentonces (4 NV CY = {1,2. 56,7, 8 9}

{d) (AU B)=Jl,2 3, 4,6 8} yentonces (4 ' B) = {5, 7,9}

(e) A4 =[5 6.7 8 9] yentonces (4) = {1, 2, 3. 4}, es decir, (4') = 4.

(f) (B—C)= {28 yentonees (B — C) =141,3.4,5,6,7,9}

25. Encel diagl:ama de Venn siguiente, ravar (a) B', (b4 U B), (¢) (B — A4), (Idj A M B.

(4 0

Solucidn:
(@) Coma B, complemento de B, consta de los elementos que no estan en 8. se raya el arga exterior a 8,

B lo rayado

(b} Primero se raya el drea 4 iU B; luego, (4 \U B) es el drea exterior a (4 1) B).

A1) B lo rayado (4 B)Y lo rayado

{c) Primero se raya B — A:yasi (B - 4) escl arca exteriora 8 — 4.

% B — 4 1o rayado (B - A} lo rayado

() Primero se raya A4, el drea exterior a 4, con trazos oblicuos inclinados a la derecha (/) y se raya A con
trazos oblicuos inclinados a la izquierda (\\y)), entonces A' (7 B* resulta ser el drea con doble rayado.

A"y B' con doble rayado A (M B lo rayadu

Notese que el drea de (4 | B) esla misma que lade A" () B
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26.

OPERACIONES FUNDAMENTALES CON CONIUNTOS [CAP. 2
Demostrar €l Teorema de De Morgan: (41 B)) = 4" N B'. ~
&= . ,r_\ v ‘: A g - (, o ".- e
Solucion: ‘\i e Er / 41 : el e B

Sea x& (A | B); asi, pues, x no pericnecc a A | B. Portanto, xg 4 y x¢ B, es decir, xe d' ¥ x& B ¥7
por la definicion de interseccion. x pertenccea 4" () B Sc ha demostrado que x e (4 | B) implica x & (A" M 8'),

es decir, que (AU B) C (4N B)

Sea ahora y £ 4’ (M) B'; entonces y perienece a 4" ¢ y perienece a B'. Asi que y ¢4 ¢ v ¢ B y. por tanto,
y¢#A1J B, osea que y&(d U B). Queda demestrado que ye (4’ M B') implica y& (4 B). es decir, que

A"NB)C(4\UBY
Por consiguiente, por la Definicion 1-1. (4 N B) = (4 U B).

PROBLEMAS DIVERSOS

27.

Sean U ={a, b,c.d e}, 4d=1{a. b, d ¥y B={b.d e}. Hallar (a) A\J B. (b} B\ 4. l¢] B
(d)B—A,(e)ANB(NAUB.EIANB.(A)B — A, (H(ANE)(H(AIJB)

Solucion:
(a) La union de A y B consta de los elementos & 4 y los clementos de B. es decir. 4\ B = la. b, d ¢l
(b) La intersecciou de 4 y B consta de los elementos gue son comunes a 4 v B, es decir. A1 B = b dl

{¢) " El complemento de B consta de las letras gue =stanen U pere noen B: asique B = [w. .

(d) El conjunto B — A estd formado por los slementos de Bque no estdn en A. estoes. B — 4 = (¢
() A'={e,elyB=|bde);asiqued N B=le)

) A={a, b dlyB ={a,cliasiquuAUE = la. b.c d}.

(g) A =l{c,e}yB ={a cj;entonces 4 T F = ¢}

(h) B — A = al.

() Segtn (b), A (M B ={b,d):luegold M BY = . c =

(/) Segun{a), A\J B = {a. b, d e}:luego (4 BN = [c].

-En el diagrama de Venn que sigue. rayar (1} A NV BUC), ) (ANB)J(ANC)L 31 4ALUHBMC.

@) (4UB)N (AU Q).

)
XN

&,

(1) Priwero rayar 4 con trazos inclinades a Ia derecha y rayar B |_J C con trazos inclinados a ta izquierda; en-
tonces 4 () (B C) es el drea con doble ravado.

Solucion:

Ay B\ C aparecen rayados 4™ (B C) lo rayado

(2} Primero rayar A4 (" B con trazos inclinados a la derecha ¥ A (M C con trazos inchinados a la izquierda: en-
tonces (4 (M B} L) (4 M C) resulta ser el drea total rayada como se muestra en seguida.
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AM By AMClorayado i (A B (4 M C) lo rayade

Noteseque A (MY (B C)= (AN By (AN C)
(3) Primero se raya 4 con trazos inclinados a la derecha y se raya 8 (™) € con trazos inclinados a la izquierda:
asi resulta ser 4 \J (B (7 C) el Area total rayada,

Ay B Clorayado AU (B M C)lo rayado

(4) Primero se raya 4 | B con trazos inclinados a la derecha y se raya 4 | C con trazos inclinados a la iz-
quierda; (4 \UJ B} M (4 \J) C) es el drea con doble rayado.

41 By 4\ Clorayado

Néteseque A BN O)=(AU BN (AL C)L v =, 5 /A
e & r’i; A }./ A~
29. Demostrar: B — 4 es un subconjunto de A'. - N
X & M
Solucion: ) }\ o
Sea x perteneciente a B — A. Entonces x& By x § 4; por tanto, x es elemento de 4. = = T
Como x ¢ B — A implica x £ 4", B — A es subconjunto de 4. - A €
30. Demostrar: B — A" = B[ A. Koo |5 X B F
. .
Solucion: =l /
B=A! = x| 2B, xfAl} "= Ju] wdB, rfAr = BnAd. ,’_/‘; 4] ’f
Problemas propuestos
31, Sea el conjunto universal U = {a, b. o, d. e, fi gl ysean A = la b e, d el B=lag, e gl yC= b e f g
Hallar:
1y AucC 3 C—-RB (8) A'—-B (T (A—0CY (9) (A - PB
2y BrnA (1) B’ (6) B'wC {B) ' A {10) (A4
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32, Demostrar: Si 4 (| B = &, entonces 4 C B".
33. Enlos diagramas de Venn que siguen, rayar (1) ¥ O\ W, (2) W', (3) W - V, @V UWB) VN W, 6V - W,
;.-" oy
{a) (&)
34. Hacer un diagrama de Venn con tres conjuntos no vacios 4, By C demodo que A, By C tengan las siguientes ca-
racteristicas:
(1) ACB, CcB, AnC =0 (3) AcC, A+C, EnC =0
(2) AcB, C¢B, AnC+=0 (4) Ac(BnC), BcC, C+B, A#C
35. Determinar:
(1) UnA 3 o (5) A'nA (1) UuA (9) AnA
(2) AuA 4) PUA (6) U (8) A’UA (10) @rA.
36. Completar las siguientes afirmaciones insertando . D o nc {no comparables) entre cada, par de conjuntos. Aqui
4y B son conjuntos arbitrarios.
(1) A2 A—p5 x) @3 4. 28B4 (5) A'NCa—p
@ A4.2.4nB 4) A.£AuB © AMSB—A
37. La férmula 4 — B = A (" B’ puede definir la diferencia de dos conjuntos mediante las solas operaciones de
interseccion y complemento. Encontrar una férmula que defina la unién de dos conjuntos, A4 i) B, mediante
estas dos operaciones de interseccién ¥ complemento.
5 - xe A X0
38. Demostrar: A — B es un subconjunto de A | B. P -
3. Demostrar ¢l Teorema 2-1: 4 C Bimplica AN B= 4. = - AY0) ‘6
40. Demostrar: Si 4 ") B = J, entonces B\ A’ = B. Xe h ; X£O
41. Demostrar el Teorema 2-2: A (C B implica A J B = B. X ( B~ O\)
42. Demostrar: 4’ — B' = B — A. w & B Aud. i
43. Demostrar el Teorema 2-3: 4 C B implica B' C A". gl
44. Demostrar: Si 4 M B = ¢J, entonces A\ ) B = B".
45. Demostrar: (A N B) = 4'\J B'.
46. Demostrar el Teorema 2-4: 4 C Bimplica 4\J (B — 4) = B.
Respuestas a los problemas propuestos
i o (31 b, £ (5) if} (M. C={bef g} (9) {b,d,f 0}
(2) {a,c.c} {4) ibd, f} 6} {b,d, f, e g} (8) {a,¢,d} (10) U1
32. Demostracion: Sea x £ A. Como 4 y B son disjuntos, x ¢ B; luego x pertenece a B'. Queda demostrado quexed
implica x € B', es decir, que A C B".
33. (a) (1) (3)

¥y W lo rayado VN W' lo rayado

=

W' lo rayado F' ) W lo rayado F' — KW lo rayado

12)
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by (1) {31 15)
P
SERAN
V' M W lo rayado W — V lo rayado
(4) S{%{"ﬁ_ 16}
=1t —
W' 1o rayado Vi) W lo rayado V' — W lo rayado
4. ) (3)

(]

or Ollo

35 (WA 204 @BU WA B GO MU & U WA (100
3. (1)> (22> (B> (4)c (5 ne (6)nc

37. AUB = (A'nEB).



Capitulo 3

Conjuntos de numeros

CONJUNTOS DE NUMEROS

Aungue la teoria de conjuntos es completamente general, en la matemdtica elemental se encuen-
tran ya conjuntos importantes que son conjuntos de numeros. De particular interés, en especial en el
analisis, es el conjunto de los numeros reales, que se denota por

R

En este capitulo se supone de hecho, al menos que se diga otra cosa, que el conjunto universal es el con-
junto de los nimeros reales. Se revisardn en primer lugar algunas propiedades elementales de los na-
meros reales antes de aplicar los principios fundamentales de la teoria de conjuntos a conjuntos de
ntmeros. El conjunto de los numeros reales con sus propiedades se llama el sistema de los niimeros
reales.

NUMEROS REALES, R

Una de las propiedades mds importantes de los nimeros reales es el poderlos representar por pun-
tos de una linea recta. Como en la Fig. 3-1, se elige un punto llamado origen, para representar el 0, y
otro punto, por lo comun a la derecha, para representar el 1. Resulta asi de manera natural una co-
rrespondencia entre los puntos de la recta y los numeros reales, es decir. que cada punto representa un
nimero real unico y que cada numero real viene representado por un puntoe tnico. Llamando a esta recta
la recta real, podran emplearse uno por otro los conceptos de punto y de numero.

e =2.718...
— } 'z g

. T P Py

Fig: 3-1

Los nimeros a la derecha del 0, o sea al mismo lado que el 1, son los llamados numeros positivos,
y los nimeros a la izquierda del 0 son los llamados mimeros negativos. El 0 mismo no es ni positivo ni
negativo. '

ENTEROS, Z
Los enteros son los numeros reales
e a2 <10, L2 3,
Se denotan los enteros por Z: asi que se escribg
e N S TR 0 A T SO
30
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Propiedad importante de los enteros es que Jon «eerradas» respecto de las operaciones de adicion,
multiplicacion y sustraccion; es decir. que la suma, producto y diferencia de dos enteros es a su vez un
entero. Notese que el cociente de dos enteros, por gjemplo, 3 ¥ 7, no es necesariamente un entero; asi
que los enteros no son cerrados respecto de la operacidon divisidn.

NUMEROS RACIONALES, 0 TIWTOs Q@ Faee

Los numeros racionales son los reales que se pueden expresar como razon de dos enteros. Se de-
nota el conjunto de los nimeros racionales por (), asi que.

Obsérvese que todo entero es un numero racional, ya que, por ejemplo, 5 = 5/1; por tanto, Z es un
subconjunto de (.

Los nameros racionales son cerrados no solo respecto de las operaciones de adicidon, multiplica-
cidn y sustraccidn, sino también respecto de la division (excepto por (). Es decir, que suma, produc-
to, diferencia y cociente (excepto por () de dos ntimeros racionales es un numero racional nue-
vamente.

NUMERQS NATURALES, N

Los numeros namrales son los enteros positivos. Se denota el conjunto de los nimeros natu-
rales por N: asi que:

N=1{12 3 ...}

Los ndmeros naturales fueron el primer sistema de numeros que se formo y se les usaba primor-
dialmente antes para contar. Notense las relaciones siguientes entre los anteriores sistemas de nimeros:

NCZ_QCR
Los numeros naturales son cerrados respecto de las operaciones de adicion y multiplicacién so-
lamente, La diferencia v ¢l cociente de dos nimeros naturiles no es necesariamente un nimero natural.
Los minmeros primos son los naturales p. excluido el 1. que solo son divisibles por 1 y por p misme,
He aqui los primeros nimeros primos: ;
2.3

NUMERQOS IRRACIONALES, Q'

. 3 f =
Los nimeros irracionales son los reales que no son racionales, esto es, el conjunto de los numeros
irracionales es ¢l complemento del conjunto de los nameros racionales @ en los nimeros reales R:
por eso se demotan los ntmeros irracionales por @' Ejemplos de numeros irracionales son

F .".’
o3y T L lE

DIAGRAMA LINEAL DE LOS SISTFMAS NUMERICOS

La Fig. 3-2 siguiente es un diagrama lineal de los distintos conjuntos de ndmeros vistos hasta ahora.
(Para que quede completo, se incluye en el diagrama el conjunto de los nimeros complejos. que son
los de la forma a + Ai, con a v b reales. Obsérvese que ¢l conjunto de los numeros complejos es un su-

perconjunto del conjunto de los numeros reales.)
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[ Nimeros complejos ]

11— Nimeros reales l
‘ Miameros racionales | Numeros irracionales J

L Enteros |

[ Numeros naturales

I Nimeros primos |

l Enteros negauvos l

Fig.3-2

DECIMALES Y NUMEROS REALES

Todo nimero real se puede representar por un «decimal con infinitas cifras». La representacion
decimal de un ntmero racional p/g se encuentra «dividiendo el numerador p por el denominador g».
Si la division dicha se acaba, como en

3/8 = 0,375
se escribe 3/8 = 0,375000. ..
o bien 3/8 = 0,374999 . ..

Si la division p por ¢ no acaba, se sabe entonces que hay un tramo de cifras que se repite continuamen-
te; por ejemplo:

2/11 = 0,181818 . ..

Ahora bien, lo que caracteriza a los nimeros reales respecto de los decimales, es que en tanto que
los nimeros racionales corresponden precisamente a los decimales en que se repite continuamente un
tramo de cifras, los numeros irracionales corresponden a los otros decimales de infinitas cifras.

DESIGUALDADES

Se introduce el concepto de «orden» en el sistema de los numeros reales por la

Definicion: El numero real a es menor que el nimero real b, lo que se escribe:
a<bh

si b — a es un numero positivo.

Se pueden demostrar las propiedades siguientes de la relacién @ < b. Sean los numeros reales a.
b y c¢; entonces:

P,: Obiena<b oa=bo0b<a

P,: Sia<b,yb<c, cotonces a < c.

Py: Sia<b, entoncesa+c<b+c

P,: Sia< by ces positivo, entonces ac < be.
Py Sia< by c es negativo, entonces be < ac.
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Geométricamente, si a < & el punto a sobre la recta real estd a la izquierda del punto b.
También se indica @ < b por b>a
lo que se lee «b es mayor gue a». Asimismo, se escribe

a=<h o b=a

sia<boa=b, es decir, si a no es mayor que b.

Ejemplo 1-1: 2 < 5; —6=—3y4=4;5> —8§,
Ejemplo 1-2: La notacién x < 5 significa que x es un numero real menor que 5; asi que x estd a la izquier-
da de 5 en la recta real.

La notacién 2 < x < 7 significa 2 < x y x < 7; con lo que x estara entre 2y 7 en la
recta real.

Observacion 3-1: Es de notar que ¢l concepto de orden, o sea la relacion a < b, se define mediante
el concepto de nimero positivo. La propiedad fundamental de los nimeros positi-
vos que se utiliza para demostrar propiedades de la relacidén a < b, es que tales
numeros son cerrados respecto de las operaciones de adicién y multiplicacién, hecho
que, ademas, estd ligado intimamente al de que los nimeros naturales también
son cerrados respecto de las operaciones de adicion y multiplicacién.

Observacién 3-2: Son ciertas las afirmaciones siguientes para a, b y ¢ nimeros reales cualesquiera:

(1) a=a
(2) Sia=5byb =a entonces a = b.
(3) Sia=byb=c entonces @ =c.

VYALOR ABSOLUTO

El valor absoluto de un nimero real x, denotado por 3
||
se define asi: ;
xsix=0
2| = &%
—x'si x<0

es decir, que si x es positivo o cero, entonces |x| es igual a x, y si x es negativo, entonces |x| es
igual a —x. En consecuencia, el valor absoluto de cualquier ‘nimero es siempre no negativo, esto €s,
|x] = 0 para todo x&R.

Desde ¢l punto de vista geométrico, el valor absoluto de x es 1a distancia del punto x de la recta

real al origen, esto es, al punto 0. Asimismo, la distancia entre dos puntos cualesquiera, o sea entre dos
niimeros reales a y b, es |a — b| = [b — 4.

Ejemplo 2-1: |-2| =2, [7|=7, |-n|==n
38| =|-5|=5 [g—3|=I5|=5 [|-3-4=|-7="1
Ejemplo 2-2: La relacién |x| <5

significa que la distancia entre x y el origen es menor que 5, esto es, que x debe estar entre
—5 vy 5 sobre la recta real. Dicho de otro modo:

x]<5 y -3<x<3$§
tienen el mismo significado. De modo anéloge
|x|]=5 y =3=x=35

significan lo mismo.
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INTERVALOS
Examinense los siguientes conjuntos de nimeros:

Ay = (v | 2<x<b)

Ay = (2| 2=g=5)
A = x| 2<z2=35)
A4={;r!2'="x<5}

Nétese que los cuatro conjuntos contienen solamente los puntos que estdn entre 2 y 5 con las excepcio-
nes posibles de 2 y/o 5. Estos conjuntos se llaman intervalos y los niimeros 2 y 5 son los extremos de
cada intervalo. Por otra parte, A, es un intervalo abierto, pues no contiene los extremos: A4, ¢s un infer-
valo cerrado, ya que contiene ambos extremos, y A5 y A, son abierto-cerrado y cerrado-abicrtp, res-
pectivamente.

Se representan grificamente estos conjuntos sobre la recta real como sigue:

} + t } i t t D I ! O :

-5 —~4 -3 -2 -1 0 1 2 3 4 5 6
A

t } t t + t 1 - + + & }

-5 -4 -3 -2 -1 0 1 2 3 4 5 6
A

(]
o @

—b —4 -3 -2 -1 1] 1 2 a 4 &
A

+ 1 + } } } } s } + <D i

-5 —4 -3 -2 -1 0 1 2 3 4 5 8
A,

Obsérvese que en cada diagrama se encierran con un circulo los extremos 2 y 5 y que se repinta el seg-
mento entre los puntos dichos. Cuando un intervalo incluye un extremo, esto se hace ver llenando c
circulo del extremo.

Como los intervalos aparecen con mucha frecuencia en las matematicas, se emplea generalmente
una notacién abreviada para designar intervalos. Por ejemplo, los intervalos anteriores se denotan,
a veces, por

4, =12 5
4, = [2, 5]
Ay =12, 5]
A, =12, 5]

7
Noétese que se usa un corchete al revés para designar un extremo abierto, es decir, un extremo que no
pertenece al intervalo, y que se usa un corchete para designar un extremo cerrado.

PROPIEDADES DE LOS INTERVALOS

Sea .# la familia de todos los intervalos de la recta real. Se incluyen en .# el conjunto vacio & ¥
los puntos a = [a, a]. Tienen entonces los intervalos las propiedades siguientes:

(1) La interscccidon de dos intervalos es un intervalo, es decir:
Ae #, Be # implica A N\ Be.f
(2) La union de dos intervalos no disjuntos es un intervalo, es decir:
Ae S, Be ¥, ANB+ J implica A\ ) Be . J
(3) La diferencia de dos intervalos no comparables es un intervalo, es decir:

Ae #, Be S, AQC B, B A implica 4 — Be #
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Ejemplo 3-1: Scan A = (2,4), B = (3, 8). Entonees

ANEB=(,4), SuUB=1[2 8
A - B=[2 3] B—A=1[4 8§

INTERVALOS INFINITOS

Los conjuntos de la forma

A= [x|z>1)},
B = {z|x=2},
C = {x'xz<3},
D = (x|xz=4],
E = {r|zeR )}

se llaman intervalos infinitos y se les denota también por
A=(1, ©), B=[2, o], C=(-o,3) D=]-w, 4], E=(-m, o)

Sc representan estos intervalos infinitos sobre la recta real como sigue:

L
T T
-4 -3 -2 -1 0 1 2 3 4

B esta repintado

i R | L i L 1 i " L
o + : + 4 } 4 D t

—4 -3 -2 -1 0 1 2 3 4

" estd repintado

4 - : : : + | : -—
| —3 -2 -1 ] 1 2 3 4
Desta  pintado
P . L . + " ; " .
-4 —3 —2 -1 ] 1 2 3 4

E estid repintado

CONJUNTOS ACOTADOS Y NO ACOTADOS

Sea 4 un conjunto de nimeros; se dice que A es un conjunto acotado si A es subconjunto de un
intervalo finito. Una definicidon equivalente de acotacion es
Definicion 3-1: El conjunto 4 es acotado si existe un nimero positivo M, tal que
[x] = M
para todo x& 4. Un conjunte se dice no acotado si no es acotado.
Notese que, entonces, A es un subconjunto del intervalo finito [—-M, M].

Ejemplo 4-1: Sea A4 = {1, 12, 1/3, .,
rrado [0, 1]

Ejemplo 4-2: Sea 4 = {2.4,6.._.}. 4 es un conjunto no acotado.

Ejemplo 4-3: El conjunto A = {7,7 2, —473, 2322, 42} es acotado.

. A es acotado, pues es un subconjunto del intervalo ce-

Observacién 3-3: Si un conjunto A4 es finito, entonces es necesariamente acotado. Si un conjunto es
infinito, puede ser acotado, como en el Ejemplo 4-1, o no acotado, como en ¢l
Ejemplo 4-2.
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Problemas resueltos

CONJUNTOS DE NUMEROS

En los problemas siguientes. R. @, @', Z. Ny P designan, respectivamente, los numeros reales,

racionales, irracionales, enteros, naturales y primos.

1.

3,

Entre lo que sigue, decir qué es verdadero y qué falso.

(1) =T« N (6) —6¢Q (11) V/8e N
2) V2eQ (7) 11¢P (12) V974 ¢ @'
(3) 4¢Z 8) 1eZ (18) —2¢Z
(4) 9¢P 9) V—5¢Q (14) =2 e R
(5) 3re@ (10) 1e R (15) V—4eR
Solucion:

(1) Falso. N solo contiene los enteros positivos; —7 es negativo.

{2) Cierto. ./ /2 no se puede expresar como razon de dos enteros, asi que / /2 no es racional.

(3) Cierto. Z, ¢l conjunto de los enteros, contiene todos los enteros, positivos y negativos.

(4) Falso. 3 divide a 9, asi que 9 no es primo,

(5) Falso, = no es racional ni tampoco 3.

{6) Cierto. Los ntimeros racionales incluyen a los enteros. Asi, —6 = (—6/1).

(7) Cierto. 11 no tiene divisores excepto 11 y 1; asi que 11 es primo.

(8) Falso. 3 no es entero.

(9) Falso. ./ —5 no es un numero real; por tanto, en particular, ne es un numero irracional.
(10) Cierto. 1 es un numero real.

(11) Cierto. Y8 = 2 que es un entero positivo.

(12) Falso. ./9/4 = 3/2 que es racional.

(13) Cierto. Z consta de los enteros positivos y negativos.
(14) Cierto. w es real y también lo es *.

(15) Falso. /-4 = 2i no es real,

Hacer un diagrama lineal de los conjuntos R, N y Q"

Solucién:
N y Q' son ambos subconjuntos de R. Pero N'y Q' no son comparables. Segiin esto, el diagrama lineal s
/R
N Q'

/A cuales de los conjuntos R, 0, O, Z, N y P pertenece cada uno de los niimeros siguientes?

(1) —3/4, (2) 13, (3) /—T.
Solucion:

(1} —3/4€Q, de los nimeros racionales, ya que es la razén de dos enteros —3 y 4. Asimismo, —3/4¢ R, ya
que Q0 C R.

(2) 13 ¢ P, porque los tnicos divisores de 13 son 13 y 1. 13 pertenece también a N, Z, O~y R, pues Pes
subconjunto de cada uno de estos.

(3) f’——? no es un nimero real; asi, pues, no pertenece 4 ninguno de los conjuntos dados.

Dados E = {2,4,6,...}yF={1,3,5, ...}, ison Ey F cerrados respecto de las operaciones de

(1) adicién, (2) multiplicacién?

Solucién:

(1) La suma de dos nimeros pares es par; por tanto, E es cerrado respecto de la operacion adicion. La suma
de dos nimeros impares no ¢s impar; luego F no es cerrado respecto de la operacién de adicion.

(2) El producto de dos niimeros pares es par, y el producto de dos nimeros impares es impar; luego ambos E
y F son cerrados respecto de la operacién multiplicacion.
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De los cenjuntos R, O, Q', Z, N y P, ;cudles no son cerrados respecto de las operaciones de
(1) adicion, (2) sustraccion?

Solucidn: . )

(1) @'y P. Por gjemplo, —\/EEQ’yﬁaQ‘, pero —\/2 + \/_ =0¢Q3ePySelP 03 +5=8¢P

(2) Q', Ny F. Por ggemplo, \/EEQ', pero\/_—\/i=0_¢Q’;3sNyTsN,pem3—7= —4EN; TP
y3deP pero7 —3 =4¢P

DESIGUALDADES Y VALORES ABSOLUTOS

6.

10.

Valiéndose de la notacién, escribir las afirmaciones siguientes:

(I) a es menor que b. (4) a no es menor que b.

(2) @ no es mayor o igual que b. (5) a es mayor o igual que b.
(3) a es menor o igual que b. (6) a no es mayor que b.
Solucion:

Recuérdese que un trazo vertical u oblicuo que atraviesa un signo indica el significado opuesto del signo.
Se escribe:

(1) e<h, (2 akd @)a=b (4 ath (5a=h (6 aPrb.

Insertar entre los siguientes pares de numeros el signo adecuado: <, > o =.

(1) 8.7 .-9 (3) 32.72.7 (5) 32.7..9
2) —4.77.-8 (4) —5.<.3 (6) —7.< .7/2
Solucion:

Se escribe @ < bsi b — aes positivo, a > bsi b — aesnegativoya = bsib — a = 0. Entonces 7

(1) 3>—9, (2) ~4>—8, (3 3>17, 4) —5<3, (5)3=9, (6) —=<w/2

Demostrar: Sia<byb<c, esa<c

Solucion:

Por definicion, @ < & y b < c significan que ¢ — & es positivo y que & — a también lo es. Como la suma
de dos nimeros positivos es positiva,
b—al+c—b=c—a
es positivo. Asi que, por definicion, a < ¢.

Demostrar: Sia < b, entonces a + c < b + ¢,
Solucion:
Obsérvese que
b+c)—(@+c)=b—a

que, por hipdtesis, es positivo. Entonces a + ¢ < b + c.

Escribir las siguientes relaciones geométricas entre ntmeros reales con la notacién de las des-
igualdades:

(1) y esta a la derecha de 8. (3) x estd entre —3 y 7.
(2) z estd a la izquierda de 0. (4) w esta entre 5y 1.
Solucion:

Recuérdese que # < b significa que a estd a la izquierda de 4 sobre la recta real. De acuerdo con esto,
(1) » > 8 o también § < y.
2) z=0.
3) -3 <xyx<7, omas brevemente, —3 < x < 7.
4) 5>wyw>1,obienw <5yl < w Otambién | < w < 5. No es costumbre escribir 5 > w > 1.
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11.

12.

13.

14.

15.

CONJUNTOS DE NUMEROS [CAP. 3

Dar la definicion precisa de la funcién valor absoluto, es decir, definir |x]

Solucion:

z S z=0

Por definicion, |x| = {_z i z<0

Dado x| = 0. Averiguar x.
Selucion:

Tengase en cuenta que el valor absoluto de un nimero es siempre no negativo, es decir, que para todo ni-

mero x, [x| = 0. Por hipbtesis, |x| = 0; por tanto, |x| = 0. Por consiguiente, x = 0.

Calcular:

(1) 13 - 5] (6) |-8] +3-1]

(2) |-3+5] (7) 12 -5 — |4 7]

(3) |-8 - 5] (8) 13+ [~1—4| — 3 - |-8|
(4) [=2|—|-6| (9) |1-2] —|-6]]

(5) 3—17/— -5 (10) |~ -5l |

Solucién:

(1) |8—5] = |~2| = 2

2) |[-3+5 = 2] = 2

(8) |-3-5/ = |-8 = 8

(4) |-2/— -6 = 2—6 = —4¢

(8 [B—T—[-5] = [4| = |-5 = 4—5 = -1

(6) =8|+ |31 = |-8[+ |2 =8+2 = 10

(M) 2—8l-14—7/ = |-3|—|-3) = 3-3 = 0

(8) 13+ |~1—4[—3—|-8 = 134 |-5/—3—|-8 = 134+45—3—8 = 7
®) ||-2l = -6 = [2—8 = j~4| = 4

(10) |—|-5l| = |-5 = 5

Escribir de manera que x quede sola entre los signos de desigualdad:

(1) 8<z-4<8 /4 (8) -9 <3z <12 (5) 3<25—5<1T
2) -1<z+83<2 (4) -6 < —2x<4 6) ~7T<-224+3<5
Solucidn:

(1} Por P;, simese 4 a cada lado de 3 < x — 4 < 8 para tener 7 < x < 12,

(2)
(3)
(4)
(5)

(6)

Por P;, sumar ~3 acadaladode —1 <x +3 <2 para tener —4 < x <« —1,

Por P,, multiplicar cada lado de —9 < 3x < 12 por 1 y se tiene —3 < x < 4,

Por P;. multiplicar cada lado de —6 < —2x <4 por —% invirtiendo las desigualdades, resulta
—2<x <3

Sumar 5 a cada lado de 3 < 2x — 5 < 7 con lo que resulta 8 < 2x < 12. Ahora multiplicando por 4 se
tiene 4 < x < 6.

Sumar —3 a cada lado de —7 < —2x + 3 < 5 con 1o que se obtiene —10 < —2x < 2. Ahora multipli-
cando por —3 se invierten las desigualdades y resulta —1 < x < 5.

Escribir sin ¢l signo de valor absoluto:

(1)

|z} <8, (2) x—2/ <5 (3) [22+3|<T. <

Solucién: _B=
(1) —3<z<3

(2)
(3)

—b<3—2<E o =<y
~T<2x+3<7 0 ~10<2x<4 0 —b<ar<?
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16. Escribir con el signo de valor absoluto: (1) ~2 < x < 6, (2)4 < x < 10.
Solucidn:

Notese primero que se escribe la desigualdad de modo que un niimero y su negativo aparecen en los extre-
mos de la desigualdad.

(1) Sumar —2 acadaladode —2 < x < 6 y resulta
S A
lo que equivale a
=2 < 4
(2) Sumar —7 a cada lado de 4 < x < 10 y resulta
—F=max—7<3
que equivale a
Jx—7 <3

17. Insertar el simbolo adecuado, = o =, entre los siguientes pares de nimeros:

(1...-7,(2) —2...-9,(3)2%...8, @) 3...7, (5 3%...9, (6) 3%... —11,
Solucion:
Téngase en cuenta que a = b esciertosia < bosia= b, yquca=besciertosia > bosia = b,
(1) l=—7, yaquel > —7.
(2) —2= -9, pues =2 > =9,
(3) Tanto 23 = & como 2° = 8 son ciertos, ya que 2* = &.
4) 3=17, puesto que 3 < 7.
(5) Tanto 3% = 9 como 3? = 9 son ¢iertos, porque 32 = 9.
(6) 3= —11, porgue 3? > —11.

INTERYALOS

18. Escribir los intervalos siguientes en forma constructiva conjuntista:
(1) M=[-3 5 2)S=138, G T=[0,4], 4 w=1]-7 -2]
Solucion:

Recuérdese que el corchete invertido significa que el extremo no pertenece al intervalo; y que el'corchete
significa que el extremo pertenece al intervalo. Asi, pues:

M= {z|-3=z<5)
S ={z| 3<x<8
T =(z] 0=z=4)
W= {z|—7<=z=-8}

19. Representar los intervaios R = ]—1,2], § = [-2,2[, T= 10, [ y W = [1, 3] sobre la recta real.
Solucién:
Para representar R, sefidlese primero cada extremo suyo —1 y 2 con un circulo:

T } + O -+ f I } +
—4 —3 -2 -1 o 1 2 3 4
Como el extremo 2 pertenece a R, repintar el circulo que rodea el 2:
: | 4 D f | —@ } 1
—-q —3 -2 -1 ] 1 2 3 4
Por dltimo, repintese la recta entre Ios extremos:
t ~ t O~ 4 : ®— :
—4 -3 =] -1 0 1 2 3 4

Representacion de B
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20.

21.

CONJUNTOS DE NUMEROS [CAP. 3

De la misma manera,

— - 8- : : ¢ -] ' —
-4 -3 -2 -1 0 1 2 3 4

Representacidn de §

+ } } 4 O O i
—4 —3 -2 -1 1] I 2 3 4

Representacion de T

- + + } i —&- f
—4 -8 -2 =k Q 1 g

o

Representacion de WY

Dados los nimeros reales a y b, a < b, construir el diagrama lineal de los cuatro intervalos Ja. b[,
[a, b], Ja, 6] ¥ [a, B[

Solucidn:
El mntervalo abierto Ja, b[ es un subconjunto de los dos intervalos semiabiertos [a, 6] y Ja, 5] que, a su
vez, son subconjuntos del intervalo cerrado [a, &]. Asi, pues,

f / [CL &l
le. 5]
U

b

\/

Sean A = {x|x<3},B={x|x=2}, C={x|x=1} y D= {x|x > —1}. Representar los
conjuntos sobre la recta real y escribir luege "»s conjuntos en notacién de intervalos.
Solucidn:

Los conjuntos son todos intervalos infinitos. Enciérrese con un circulo el extremo y dibijese una semi-
rrecta dirigida hacia el lado del extremo en que estd el conjunto, como se muestra en seguida:

s , + : ; + : D +
—4 -3 -2 -1 0 1 2 3 4
A
t f t + + t °- ~ '
=4 -3 -2 =1 o 2 3 4
B
o —~ + -k + *— } +
-4 -3 -2 =1 0 1 2 3 4
c
.l : . = : : . + b
-4 -3 —2 -1 3 1 2 3 4
D

Con la notacion de intervalos, los conjuntos sc definen asi: 4 = ]—w, 3[, B={2, o[, C=]-o. 1]y
D = ]-1, oo[ Ndtese que se usa corchete al revés del lado del simbolo de infinito.

OPERACIONES CON INTERYALOS

22

Sean 4 =[-3, I[y B=[-1, 2]

(1) Representar 4 y B sobre la misma recta real.

(2) Mediante (1), representar A \J B, A\ By A — B sobre rectas reales.

(3) Escribir A\ B, AN By A — B en notacion de intervalos.

Solucidin:

(1) Sobre la recta real, rayar 4 con trazos inclinados a la derzcha (////) y rayar B con trazos inclinados a la
izquierda (\\\\):

—4 -3 2

Ay B rayados
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(2) A4 U B contiene los puntos de cada intervalo, esto es,.los puntos rayados en la figura:
——— ! 1 . . ~& f
-4 -3 -2 —1 0 1 2 3
AL B 1o repintado

o

A M B contiene solamente los puntos que estdn tanto en' 4 como en B, o sea los puntos cubiertos con doble
rayado:

1 ; ; & — = { ;
-4 -3 -2 -1 ] 1 b3 3 4

Ay A lo repintado

A — B contiene los puntos de A que no estan en B, o sea los puntos rayados con //// pero fuera del doble
rayado:

(3} Los gréficos anteriores indican que A\ B = [-3,2), ANB=[-1, 1[yd - B= [-3,1[.

¢En qué casos la unién de dos intervalos disjuntos es un intervalo?
Solucién: 3 "

Primeramente, el extremo derecho de uno de los intervalos debe ser el extremo izquierdo del otro. En se-
gundo lugar, en el extremo comim uno de los intervalos debe ser cerrado y el otro abierto. Por ejemplo, sean

M =[-3,4[ y N = [4, 7[. El extremo derecho de M es el extremo izquierdo de N; y M es abierto en 4 en
tanto que N escerradoen & M UN=[-3,7[yMNN = .

Dibujar sobre la recta real y escribir el conjunto que resulta en notacién de intervalos:

(@) {z|2e=-1} N (x| -3<a<2) (d) (x| -2<x=3} U {z|x<l}
(b) {x | x<2) U {z]2=0 (¢) (x| -8=zx=0}n (x| -2<x<3)
(¢) {2 | -3<zx=1} n {z]|x>2)

Solucién:
En cada caso, representar el conjunto de la izquierda con trazos //// y el de la derecha con trazos \\\\.

(a)

£]
(e { 3455555554 % SYriooic B S
—4 -3 -2 -1 0 1 2 3 4
La interseccién es el conjunto vacio, ya que no hay puntos con doble rayado, es decir, no hay ningiin pun-
to que esté en ambos intervalos.
{d)
La unién es el intervalo infinito ]— oo, 3].
(e} 1 5555555 DR RSB GEE S0 +: RRRRNNND— 1

-4 -3 -2 -1 1] 1 2 3 4

La interseccién es el conjunto de puntos con doble rayado, es decir, el conjunto ]—2, 0].
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CONJUNTOS ACOTADOS Y NO ACOTADOS

25.

27.

Decir.cudles de los conjuntos que siguen son acotados o no acotados.

(a) {z | x<3) (d) (x| x es potencia positiva de 2}

& {1,357 ...} (&) 12,5,2,5, ...}

() [2'%, 374, 5,0, 8%) (H {1,-1,1/2,-1/2,1/3, -1/3,1/4, .. .}
Solucién:

{a) Este conjunto no es acotado, pues hay nimeros negativos cuyo valor absoluto es arbitrariamente grande.
De hecho, este conjunto es un intervalo infinito J— oo, 3[, que no puede estar contenido en un intetvalo finito.

(h) Este conjunto, el de los nimeros impares, no es acotado.

{¢) Aungue los numeros de este conjunto son muy grandes, el conjunto es acotado, sin embargo, porque es
finito. Se le puede acotar con el nimero mayor.

(d) El conjunto de las potencias positivas de 2, que son 2, 4, 8, 16, . . ., es un conjunto no acotado.

(e) Como este conjunto contiene solamente los dos numeros 2 y 5, es acotado.

{f) Si bien en este conjunto hay un numero infinito de mimeros, el conjunto es acotado, ya que ciertamente se
contiene en el intervalo [—1, 1].

Si dos conjuntos W'y V son acotados, {qué se puede decir de la unidn y de la interseccion de estos
conjuntos? =
Solucidn:

Tanto la unién come la interseccion de conjuntos acotados son acotadas.

Si dos conjuntos R y S no son acotados, ;jqué se puede decir de la union y de la interseccidn de
estos conjuntos?
Solucidn:

La unién de R y § debe ser no acotada, pero la interseccién de R y § podria ser ya acotada, ya no
acotada. Por ejemplo, si R = ]— =, 3[ ¥ § = [—2, o[, la interseccion de estos intervalos infinitos es el inter-
valo finito y, por tanto, acotado, [—2, 3[. Pero si R = 3, o[ y § = [=2, oo[, la interseccion resulta infinita
y, por tanto, no acotada; es el intervalo ]3, eof.

Problemas propuestos

CONJUNTOS DE NUMEROS

28.

29.

3.

32

Entre lo que sigue decir qué es cierto y qué es falso:

(1) zeQ (8) =3¢ N (5) Te P (1) ~5¢Z (9) 15¢ P (11) 2/3¢ Z
2) 3c Z 4 vV=1e¢9Q 6) VG e N (8) V—3¢R (10) V2 £ Q’ (12) 2¢ Q

Hacer un diagrama lineal de los conjuntos. R, Z, Q' y P.

Entre los conjuntos R, @, 0', Z, N y P, ;cudles no son cerrados respecto de las operaciones de (1) multiplicacion,
(2) division (excepto por 0)?

Dados los conjuntos
A = {z | 2=2% 1N} 12 48,18, oo

B = {z | z=38n neN} {3,6,9,12, ...}
G =i r—8n g gt = oo Go=3 B8 60 0]

i cudles de estos conjuntos son cerrados respecto de la operacion de (1) adicion, (2) sustraccion, (3) multiplicacion?

Entre lo quv sigue, decir qué es (a) siempre cierto, (b) cierto a veces, (c) nunca cierto. Aquiesa # 0y b+ 0,

1) eeZ, be@Q v a—beN, (5) aeP,beP y atbelP.
2) eeP, be@ y abe@. 6) aeN, beQ vy a+be@.
3) aeN,beZ y abelZ. {7y aeZ be@Q y a/beN.
(4) aeN, be @ vy albe@. (8) eeP, beZ y blacQ.
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DESIGUALDADES Y VALORES ABSOLUTOS

33. Escribir las afirmaciones siguientes con la notacion de orden:

{1) x no es mayor que ). (3) r no es menor que y.
(2) El valor absoluto de x es menor que 4. {4) res mayor o igual que t.

34. Entre los siguientes pares de nimeros insertar el simbolo correcto: <, > o =, siendo x un niimero real cual-

quiera.
(1) 5....—8 {3 2¥oned 575 P 7 —=7....4
2) l=l....—3 (4) —7....z/3 16) —jx]....1 i8) ~2....—b

35. Escrbir las relaciones geométricas entre los numeros utilizando la notacion de las desigualdades:
(1) aestd ala derecha de b. (2) x estd a la izquierda de . (3) restientre —Sy —8.

36. Calcular:

(1) 4--17| (4 3] — |5 (7] |3—8|—|2—1]
2y 1-4-1 (5) |2—2l + |6l i8) |1-3] —|-9/|
(3) |—4+7] (6) |=2| + 11 -5l 9) ||12—6 —{1-9||

37, Escribir de modo que x quede sola entre los signos de desigualdad:
{1} =2 < x—3 <4 (8) —12 < 4xr < —§ By —1<2x—3<5H
(2) —5 < x+2 <1 (4) 4 < —2z < 10 (6) -3 <5—2x <7

38, Escribir sin el signo de valor absoluto:
11) [x| = 8, (8) lx—3l < B, (3) [2x+4| < 8.

39. Escribir con el signo de valor absoluto:
(1) —3<xz<9, (2=xr=8, () —T<r<—-L

40. Demostrar P,: 8ia < b y ¢ es negativo, entonces be < ac. (Nora: Se da por sentado que el producto de un ni-
mero negativo ¥ un numero positivo es negativo.)

INTERVALOS
41. Escribir los siguientes intervalos en forma constructiva:
A=[-3.1 B=[12], C=]1-1,3]. D=]-412[.

42, Entre los conjuntos del Problema 41, ;cudl es (1) un intervalo abierto, (2) un intervalo cerrado?
43. Representar los conjuntos del Problema 41 sobre la recta real.
44, Escribir los siguientes intervalos infinitos con la notacién de intervalos:
R=dr|z=2, 8§ =1lr|zx>-1}, T = {xr|x<-3.
45. Representar los conjuntos del Problema 44 sobre la recta real.

46, Sean 4 = [—4,2[, B= ]—1,6[, C = ]—oo, 1]. Hallar y escribir con notacién de intervalos

(1) AUB (3 A—B (5) AUC (1 A—G (9) BUC (
(2) AnB (4 B—A (6) ANC 8) C—A (10) BnC (

CONJUNTOS ACOTADOS Y NO ACOTADOS

47. Escribir cada uno de los siguientes conjuntos en forma tabular y decir cudles son acotados y cudles no acotados.
E = {x | x=(l/n), neN) G = {x!z={) neN
F=iz|z=3,neN} H = (x| zeN, <2576}

48. ;Son las afirmaciones siguientes {a) siempre ciertas, (5) a veces ciertas, (¢) nunca ciertas?

(1) 8i A4 es finito, A es acotado. (3) Si A esun subconjunto de [ —23, 797, A es finito.
(2) Si A es infinito, 4 es acotado. (4) Si A esun subconjunto de [ —23, 79], 4 es no acotado.
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Respuestas a los problemas propuestos

28, (LF, (2 V.3 F, (40 F 50 V. 8) Vo (T VO8LF, (91 F, (1o) V.ID F, (12) V.
29, B
7
!
30, (1) Q'yP (2) Q,Z NyP.
31. (1) ByC. 2y C. (3) 4, ByC.
32, (1) Cierto a veces. (3) Siempre cierto. {5) A veces cierto. (7) A veces cierto.
(2} Nunca cierto. (4) Nunca cierto. (6) Siempre cierto. (8) Siempre cierto.
33 (L) eFy (2 |lr<d4 @) ordy (@) =t
4, (> (2 = WS B B < (s B>
38, y a=hor b<e (2) x<yl ) —B << —H
3% M3 21 @33 -2 BT B6 (M4 B 6 (94
3. ) 1l<e<T (3) —3<x<—2 (6) 1 <ax<4
12y —T<e<—1 (4) =5 < x < -2 B) —1 < r<4
38, (1) ~BTr=8 (2) =5 < x =< 11 M —6<x<2
39, (1) |x—38 <6 (2) |[x—5 =1 (3) r+4[ =<3
40. Como a < b, b — a es positivo. Como ¢ es negativo, el producto (b — a)c = bc ~ ac es también negativo; luego

ac — bc es positivo, es decir, be < ac.

fx | ~1<2=3}

le | —4 <2

H C
! D

42. D es un intervalo abferto y B es un intervalo cerrado.

43, e —————+ ———— D —
-4 -3 -2 -1 0 r e 3oL —4 -3 =2 =1 0 1Eg 3
A lo repintado C lo repintado
; ; + 4 +——— 1 —D—t : ; 4 e [ ——+
-4 -5 =2 =1 0 12 4 -4 -3 =2 -1 0 2 3
B lo repintado D lo repintado
M4, R=]-0.2.5=]1-1L, o[ T=]-= -3
45. et . + $ . 4 -8 1 t
-4 -3 =2 -1 0 1 2 k! 4
R lo repintado
-4 -3 2 2 0 i 2 3 N
S lo repintado
o {D——+ f f t f t +
—4 -3 -2 ~1 0 1 2 3 4
Tlo repimada
46. A\JEB=[-4,6[ ALLC = T=w, 2. B\JC=]-wm,6[.
AN B=]1-1,2. ANC=[—41] BNC=1-11]
A-B=[-" —1]. A-C=]12[. B—C=1]16[
B—A=[26[ C—A=]-m, -4 C—~B=]-m, -1].
47. E={1.1 11 ...}. Acotado. G=1% %% ...} Acotado.
F=13,92781,...]. Noacotado. H=1{1,2,3,...,2574, 2575}. Acotade
48. (1) Siempre cierta. (2) Cicrta a veces. (3) Cierta a veces. (4) Nunca cierta.



Capitulo 4

Funciones
DEFINICION DE FUNCION

Si a cada elemento de un conjunto A se le hace corresponder de algiin modo un elemento tnico
de un conjunto B, se dice que esa correspondencia es una funcién. Denotando esta correspondencia
por f, se escribe -

f:A—B
que se lee «f es una funcién de 4 en B». El conjunto A se llama dominio de definiciont de la funcion f,
y B se llama codominio t de /. Por otra parte, si a € 4, el elemento de B que le corresponde a g se llama
imagen de a y se denota bor
i Jla)
que se lee «f de a».
He aqui unos cuantos ejemplos aclaratorios de funciones.

Ejemplo 1-1: Sea f el hacer corresponder a cada numero real su cuadrado, esto es, para cada nimero real
x sea flx) = x. Dominio de definicidn y codominio de f son ambos {os nimeros reales, de
modo que se puede escribir: p Y
3 fiR—-R

La imagen de —3 es 9; se puede escribir también f{—3) =9, 0 f: -3 > 9.

Ejemplo 1-2: Sea fel asignar a cada pais del mundo su ciudad capital. Aqui ¢l dominio de fes el conjunto
de paises del mundo; el codominio de f es el conjunto de ciudades capitales del mundo. La
imagen de Francia es Paris, o sea que f(Francia) = Paris.

Ejemplo 1-3: Sean A = {a, b, ¢, d} y B = {a, b, c}. Definase una funcién f'de A en B por la corresponden-
cia fla) = b, f1b) = ¢, fle) = ¢ y fid) = b. Segin esta definicidn, la imagen por ejemplo
de b es c.

Ejemplo 14: Seca A = {—1, 1}. Sea f la funcion que hace corresponder a cada numero racional de R el
ntimero 1, y a cada numero irracional dé R el nimero —1. Entonces f: R — A, y [ se defini-
ria concisamente: :

| si x es racional
— I 51 x es irraciona

Ejemplo 1-5: Sean 4 = {a, b, c,d} y B = {x, y, z}. y f: A — B la definida por el diagrama

Vg VANS —
+ En lo sucesivo se dird simplementc dominio en vez de dominio de definicion cuando no haya peligro de confusién.

+ La nomenclatura mas generalizada hoy en dia es ésta:

Dados dos conjuntos 4, de «partida», y 8, de «llegada», se llama funcion fde 4 en B, lo que se escribe f: A—+ B, una re-
lacién que vincula a un elemento x & 4 un elemento dnico y € B. Este elemento y ¢ B se dice que «corresponde» al xe 4 y
se llama imagen del x por la funcidn f, cosa que se indica escribiendo y = fi{x). X

El conjunto X de los elementos x £ 4 que tienen imagen en B se llama dominio de definicién de la funcion [y es claro que
X (C A; en caso de ser X = A se dice que la funcion €s una aplicacién de 4 en B.

E! conjunto ¥ de los elementos » & B que son imagen de elementos x & A4 se llama dominio de imdgenes de la funcion fy es cla-
ro que ¥ (C B;si B es un conjunto de nimeros se dice con preferencia que Y es el dominio de valores de f.

Dominio de definicion es, pues, lo que se llama dominio, a secas, en las obras inglesas (domain); y conjunto de llegada
es alli el codominio (co-domain), en tanto que el dominio de imagenes o de valores es el llamado «dmbito» (range) en estos li-
bros. Las funciones inyectivas se decian antes biunivocas (one-one), calificacién hoy abandonada por no corresponder biunivoca
a un sustantivo, lo que si ocurre con inyectiva, que corresponde a inyeccion; las sobreyectivas se llamaban funciones sobre (onto),
con ¢l mismo inconveniente. La nomenclatura expuesta en esta nota es bourbakista y es recomendable por su precision. No obs-
tante, téngase en cuenta lo dicho aqui al leer obras inglesas o alemanas anteriores a 1955. La palabra aplicacion. por ejemplo,
la usan algunos indistintamente con la palabra funcion; otros reservan funcion para las aplicaciones numéricas.

45
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Obsérvese que las funciones de los Ejemplos 1-1 y 1-4 vienen definidas por férmulas caracteristi-
cas. Pero no siempre tiene que ser asi, por lo que se ve en los otros ejemplos. Las reglas de correspon-
dencia que definen las funciones pueden ser diagramas como en el Ejemplo 1-5, pueden ser geograficas
como en el Ejemplo 1-2, o bien, cuando el dominio es finito, la correspondencia puede ser enunciada
para cada elemento del dominio, como ocurre en el Ejem; 1 1-3.

APLICACIONES, OPERADORES, TRANSFORMACIONES

Si A y B son conjuntos en general. no necesariamente conjuntos de nimeros, se dice por lo comun
que una funcion f de 4 en B es una aplicasdn de 4 en B; y la notacion

f:4— B y

se lee entonces «f aplica A en B». Se puede simbolizar también una aplicacion, o funcion. fde 4 en B por
ALEB

o por el diagrama il

.
Si dominio vy codominio de una funcién f son el mismo conjunto, por ejemplo,
fiAd— 4
es frecuente entonces llamar a f operador o transformacion sobre A. Como se verd luego, los operadores
son casos especiales importantes de funciones.

FUNCIONES IGUALES

Si fy g son funciones definidas en el mismo dominio D y si f{u) = gla) para todo a € D, entonces
las funciones ;' y g son iguales y se escribe
=g

Ejemplo 2-1: Sea f(x) = x7, siendo x un nimero real. Sea g(x) = x°, sisndo x un nimero complejo. En-
tonces f no es igual a g, pues tienen dominios diferentes.

Ejemplo 2-2: Sea la funcion fdefinida por el diagrama

Sea ahora una funcion g definida por la formula g(x) = x?, sicndo el dominio de g el con-
junto {1, 2). Entonces f = g, pues ambas tienen el mismo dominio de definicion y tanto f
como g asignan la misma imagen a cada elemento del dominio,

Ejemplo 2-3: Sean f:R —+ Ryg: R — R, Supdngase que festd definida por f(x) = x* y que g lo estd por
2y} = v*. Entonces [y g son funciones iguales, es decir, [ = g. Obsérvese que x ¢ y son sim-
plemente variables mudas en las formulas que definen las funciones.

DOMINIO DE IMAGENES DE UNA FUNCIONY

Sea funa aplicacién de A4 en B, es decir, sea f: 4 — B. No es preciso que todo elemento de B sea
imagen de un elemento de 4. Ahora bien, el conjunto de los elementos de B que son imdgenes de un
elemento de A4 por lo menos, se llama dominio de imagenes T de f. Se simboliza el dominio de imagenes
de f: 4 — B por i

S(4)

Es de observar que f(4) es un subconjunto de B.

Ejemplo 3-1: Sea la funcién f: R — R definida por la formula f{x) = x*. El dominio de imédgenes de [
es el conjunto de los nimeros positives ¥ el cero.

Ejemplo 3-2: Seaf: 4 — B la funcion del Ejemplo 1-3. Entonces f{4) = {b, c}.

+ Cuando el codominio es un conjunto de numeros se dice con preferencia dominio de valores.
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FUNCIONES INYECTIVASY

Sea funa aplicacion de 4 en B. Entonces f se dice inyectiva si elementos distintos de B correspon-
den a elementos-distintos de 4, es decir, si dos elementos distintos de A tienen imdgenes distintas. Dicho
brevemente, f: A — B es inyectiva si f(a) = f(a') implica @ = a’, 0 lo que es lo mismo, si 2 = a’ im-
plica fla) # fla'). :

Ejemplo 4-1: Sea la funcién f: R — R definida por la formula f{x) = x%. f no es inyectiva, pues fi2) =
f{—2)= 4, o sea que dos numeros reales diferentes, 2 y —2, tienen la misma imagen, el ni-
mero 4.

Ejemplo 4-2: Sea la funcién f: R — R definida por la férmula f{x) = x*. f es una aplicacién inyectiva
puesto que los cubos de dos nimeros reales distintos son distintos ellos mismos.

Ejemplo 4-3;: La funcién f que asigna a cada pais del mundo su ciudad capital es inyectiva, ya que paises
distintos tienen capitales diferentes, es decir, ninguna ciudad es la capital de dos paises di-
ferentes.

FUNCIONES SOBREYECTIVAST

Sea funa funcién de A en B. El dominio de imagenes f(4) de la funcién / es un subconjunto de B,
esto es, f{4) (C B. Sif(4) = B, es decir, si todo elemento de B es imagen de al menos un clemento de
A, se dice entonces que «f es una funcion sobreyectiva de A en B» o que fes una funcidn de A sobre B»,
o bien que «f aplica 4 sobre B».

Ejemplo 5-1: Sea la funcién /: R — R definida por la férmula f{x) = x*. f no es sobreyectiva porque los
nimeros negativos no aparecen en el dominio de imagenes de f, esto es, ninglin numero ne-
gativo es cuadrado de un numero real.

Ejemplo 5-2: Sea f: A — 8 la funcién del Ejemplo 1-3. Notese que f(4) = (b, ¢}. Como B = {a, b, cf,
el dominio de imdgenes de f no es igual al codominio, es decir, / no es sobreyectiva.

Ejemplo 5-3: Sea f: A — B la funcién del Ejemplo 1-5. Notese que

fld)y = {eyp.2k = B
esto es, que el dominio de imdgenes de fes igual al codominio B. Asi, pues, faplica 4 sobre
B, o sea que fes una aplicacion sobreyectiva.

FUNCION IDENTICA

Sea 4 un conjunto cualquiera. La funcion f: 4 — A, definida por f{x) = x, o sea la funcién f que
hace corresponder a cada elemento de A el mismo eleinento, se llama funcién idéntica o transformacién
idéntica sobre A. Se la denota por | o también por 1,.

FUNCIONES CONSTANTES

Una funcion fde 4 en B se llama funcién constante si a cada elemento de A se le asigna el mismo
elemento b ¢ B. O dicho de otro modo: f: 4 — B es una funcién constante si el dominio de imagenes
de f consta de un elemento solamente.

Ejemplo 6-1: Sea fla funcion definida por el diagrama '

/ no es entonces una funcién constante, pues ¢l dominio de imagenes consta de los dos ele-

mentos 1y 2.

Ejemplo 6-2: Sea fla funcién definida por el diagrama
[ es una funci6n constante, puesto que 3 se le hace corresponder a todo elemento de 4.

»
t WVeéase nola preliminar,
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Ejemplo 6-3: Sea /: R — R definida por la férmula fix) = 5. [ es una funcion constante, ya que a tado
clemento le corresponde 5.

FUNCION PRODUCTO COMPOSICION

Sea funa funcién de 4 en B y sea g una funcidn de B. el codominio de f, en C, como se ilustra en

seguida:
b g c
f

Sea a £ A4; suimagen f(a) esta en B, que es el dominio de definicion de g. De acuerdo con esto, se puede
encontrar la imagen de f(a) por la aplicacion g, es decir, se puede hallar g(f{a)). Asi sc tiene, pues. que
a cada elemento a € A se hace corresponder un clemento g(f(z)) e C. En otras palabras, se tiene una fun-
cion de 4 en C. Esta nueva funcion se llama funcién producto composicion, o simplemente funcidn pro-
ductot de fy g y se denota por

(gef) o (g
Mas brevemente, si . 4 - By g: B— C, se define una funcion (g-f): A —» C por

lgefla) = g(fla))
Se usa aqui = para significar «igual por definicién». Ahora se puede completar el diagrama:

\
T (g —

Ejemplo 7-1: Seanf: 4 — Byg: B — C definidas por los diagramas

Calculando (g = f) : 4 — C por la definicién:
(0o M) = glfl@) = gly) = ¢
(gofib) = glith)) = glz) = »
(g o fie) = glficl) = glyy = ¢
Notese que la funcion (g = f) es equivalente a wseguir la fechan desde 4 a C en los diagramasy
de las funciones f y g.-
Ejemplo 7-2: A cada numero real hdgasele corresponder por fsu cuadrado, es decir, sea f(x) = x*. Ahora
a cada ntimero real hagasele corresponder por ¢ ese mismo numero mas 3, es decir, sea
. g(x) =.x + 3. Entonces
(f = g)2) flg(2)) = f{5) = 25,
(g o) = glfizh = gi4) = 17
Nétese que las funciones producto (g - f) ¥ (/- g) no son la misma funcion. Calculando una
formula general para estas funciones producto resuita:

]

tfrogie) = flgla)) = A21 3 ~ (w13 = &5+ 6+ 8
(goMe) = gifta)) = glet) = 2 + 3
Observacion 4-1: Sea f: 4 —» B. Entonces
Lagf=Ff 9 fela=Ff
o sea que el producto de cualquier funcion' y la funcidn idéntica es la funcién
misma,

T O funcién compuesta, preferentemente.
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ASOCIATIVIDAD DE PRODUCTOS DE FUNCIONES

Sean f: 4 -+ B,g: B— Cyh:C— D. Entonces, como s¢ muestra en la Fig. 4-1, se pucden for-
mar las funciones producto (g=f): 4 - C, y la he(gef): 4 = D.

hefgef)

Fig. 4-1

Asimismo, como se ilustra en la Fig. 4-2, se puede formar la funcidn producto heg: 8 — D y luego
la funcion (heg)af: 4 = D.

i)

ey - MEEglef . =T

Fig.4-2
Ambas h - (g=f) y (h-g)of son funciones de 4 en D. Un teorema fundamental sobre las funciones
afirma que estas funciones son iguales, a saber:
Teorema 4-1: Scan [:A=B, g:B~-C y I:C—D. Entonces
(hog)of = hofgolf)
En vista de este Teorema 4-1, se puede escribir

hogof:d— D)
sin ninglin paréntesis.

IMAGEN RECIPROCA DE UNA FUNCION O LG A

Sea funa funcion de 4 en B, y sea b £ B. Entonces la imagen reciproca de b, que se denota por
171(b)
consiste en los elementos de 4 que estan aplicados sobre b, esto es, de aquellos elementos de 4 que tienen
a b por imagen. Dicho mas brevemente: si f: A — B, entonces
FUb) = x| xed, f(x) =)
Notese que /' (b) es siempre un subconjunto de A. Se lee /™! «f reciprocan.
Ejemplo 8-1: Sea la funcion f: 4 — B definida por el diagrama

4 »’“’4 B
[l

Entonces /' (x) = {h, ¢}, pues tanto & como ¢ tienen a x por imagen. Asi también,
S~ (») = [a}, ya que solo a se aplica en y. La reciproca de z, /' (), es el conjunto vacio
{7, ya que ningan elemento de 4 se aplica en -

Ejemplo 8-2: Sea f: R — R, siendo R los numeros reales, definida por la formula f{x) = x*. Entonces
SV 4) = {2, —2|, puesto que 4 ¢s la imagen de 2 y de —2 y no hay otro numerd real cuyo
cuadrado sea cuatro. Notese que f~' (—3) = @&, va que no hay elemento de R cuyo cua-
drado sea —3.
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Ejemplo 8-3:

FUNCIONES [CAP. 4

Sea f una funcion de los nimeros complejos én los ndmeros complejos, estundo f definida
por Ja formula fix) = o2 Entonces ' (=3) = i.v.-'f,? .\ —\.-'3 iioya que el cuadrado de cada
unw de estos numeros es —3.

Es de notar que las funciones de los Ejemplos 8-2 y 8-3 son diferentes a pesar de que estén defini-
das por la misma formula,

Generalizando ahora la definicion de reciproca de una funcion, sea /: 4 — B y sea D un subcon-
Jjunto dg B. es decir, D C B. El conjunto de los elementos de A4 que se aplican sobre algtin elemento de D
es la reciproca de D por la aplicacion fy se denota por /~ '(D). Mds brevemente:

Ejemplo 9-1:

Ejemplo 9-2:

Ejemplo 9-3:

.

=RAInT = v | we A, jlz)e D}

Sea la funcién f: 4 — B definida por el diagrama

Aquif ' ({r.s}) = {»], va que solamente y sc aphica en r o 5. Del mismo modo [ (i 1)) =

{x, 2.z} = A, pues wodo elemento de A tiene por IMNEgen £ O 1.
Sea f: R — R definida por fix) = &%, ysea
L = 48] = et
Lntunees J:, =
f- I.t.fj:f = g | w3 ass—Ra2isee= g1

Sea /14— B ung funcion cualquicra. Aqui /=" (B) = A. pues cada elemento de A tiene
su imagerl en B. Si f{4) designa el dominio de imagenes de la funcion f, entonces

Ay = A ‘:}\ -0
Ademds, s1 b £ B, entonces
) = friiat)

Aqui /71 tiene dos sentidos; como ru.l}'!l’!l(,d de un elemento de B y como reciproca de un
subconjunto de £.

FUNCION RECIPROCA

Sea funa funcion de'A en B. En general, f~(h) pucde tener mas de un elemento o atn ser el con-
junto vacio (. Ahora bien, si /: 4 — B s una funcién inyectiva y sobreyectiva, entonces para cada
b e B, la reciproca f~'(h) consta de un solo elemento de 4. Se tiene entonces una correspondencia que
asigna a cada b € B un elemento tnico /- ]{b} dc 4. Asi que, entonces, /' es una funcion de Ben A y

se puede escribir:

ff:B- 4

En este caso, cuando f': 4 — B es invectiva v sobreyectivat, £~ se llama la funcién reciproca de la f.

Ejemplo 10-1:

Se¢a la funeién f: 4 — B definida por el diagrama
A f B

Notese que fes inyectiva y sobreyectiva. Por tanto, existe /1, la funcidén reciproca. Se des-
cribe /7' : B — A4 por el diagrama -

B fiet A
x a
¥ b
z [

t La funcidn f se dice entonces biyectiva.
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Natese ademas que si se ponen las flechas en la direccion opuesta en el primer diagrama
de f se tiene precisamente el diagrama de /™!
Ejemplo 10-2: Sea la funcién f: A — B definida por el diagrama

A 7 B

e

Como fla) = y ¥ fic) = », 1a funcidén f no es inyectiva. Asi que la funcion reciproca /!
no existe. Como f~! () = {a, ¢} no se pueden asignar a y ¢ al elemento y ¢ B.

Ejemplo 10-3: Sea /: R — R, definida por fix) = x. Nétese que f es inyectiva y sobreyectiva. Por tanto,
/7':R— R existe. Se tiene ciertamente una férmula que define la funcién reciproca,

=3

TEOREMAS SOBRE LA FUNCION RECIPROCA
Sea una funcién f: 4 — B que tiene una funcién reciproca f~': B — 4. Se ve entonces por el

diagrama
f n £=

o N (F71eh) e

que se puede formar la funcion producto de composicidn (f~ L5 f) que aplica 4 en A, y se ve por el

diagrama

el e ’) s = buam

que se puede formar el producto de composicion (f= f~') que aplica B en B. Los teoremas fundamen-
tales sobre la funcion reciproca son:
Teorema 4-2: Sea la funcion f: A — B inyectiva y sobreyectiva, o sca que la funcién reciproca
f': B — A existe. Entonces el producto de composicion
(f7lef):A—> A

es la funcién idéntica sobre A4, y el producto de composicion

(fof™'):B—=B
es la funcion idéntica sobre B.

Teorema 4-3: Sean f: A — By g: B — A. Sila funcién producto de composicion (g f}: 4 —+ 4 es
la funcién idéntica sobre A y si (fog): B — B es la funcidn idéntica sobre B, g es la
funcion reciproca de f, es decir, g = f1.

Ambas condiciones son necesarias en ¢l Teorema 4-3, como se ve en el

Ejemplo 11-1: Sean A = {x, y} y B = {a, b, ¢}. Definida una funcién f: 4 — B por el diagrama (a) que
sigue, |

_ L

(a)

definase una funcién g : B — A por el diagrama (b) anterior.
Calculando ahora (g = f): A — A, se tiene

(geofile) = glfAx)) = gle) = x oAy = gy = gla) = ¥
Por tanto, la funcién producto (g - f) es lafuncién idéntica sobre A. Pero g no es la funcién
reciproca de f porque la funcién producto (f= g) no es la funcién idéntica sobre B, ya que
fno es una funcion sobreyectiva.
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Problemas resueltos

DEFINICION DE FUNCION
1. En los diagramas que siguen, decir cuindo se define o no una funcion de 4 = {a, b, ¢}.en
Bi= |x, y, z}.

Solucidn:
{1y No. Al elemento # € 4 no le corresponde nada.

12) No. Al elemento ¢ 4 le corresponden dos elementos, x y z; y en una funcidn, a un elemento del dominio
solu le puede corresponder un elemento.

{3) Si. En una funcién bien puede ¢l mismo elemento del codominio corresponder a mas de un elemento del
dominio,

2. Duar una férmula para definir las siguientes funciones:
_ (1) A cada numero real asignarle por f; su cubo.
{2) A cada nimero real asignarle por £ el ntmero 5.
{3) Hacer corresponder a todo numcro positivo por f; su cuadrado, y a los otros niimeros rea-

les por f; ei nlmero 4, : S

Solugion:

(1) La funcién f;. que es una aplicacion de R en R, queda definida por £, {x) = x>.
(2) Como f; atribuye el 5 a cada nimero, se puede definir por f; (x) = 5,

{3) Yau que hay dos correspondencias diferentes para definir f;, se define f; asi:

falz) = {f ‘s' xio

six=0 -

3. (Cual de los enunciados que siguen es dlferelzte de. los otros y por que?
(1) f es una funcidn de 4 en B. (3) f: \'—»j{t} (5) f es una aplicacién de 4 en B
2) f:A4-. B 4 AL B~
Solucion:
{3) es diferente de los otros, pues no se dice alli cual es el dominio y cudl el codominio, en tanto que en
todos los otros se declara que A es el dominio y que B8 es el codominio.

4. Definida una funcién en el intervalo cerrado —2 = x =8 por f(x) = x?, averiguar
(1) /{4) (2) f(=3), (3) flz = 3).
‘mluuon
11y fid) = 4° = 16 = | o
{2) f1—3) carece de sentido, es decir, no estd definida porque —3 no estd en el dominio de la funcién.

{3) fir —3)= (1= 3)* =1 — 6t + 9. Pero esta formula es cierta solamente cuando t — 3 pertenece al do-
minio, es decir, cuande —2 = ¢ — 3 = 8. O sea que ¢ debe cumplir | == 7 = 11.
L

5. Sea la funcion f: R— R .deﬁ.nida por
flx) =
(@) Expresar f verbalmente. (b) Hallar f(3). f(n), f(2,1313.. )y f{\/j)‘

Sulucion:
fa)  La funcion fasigna el namero 1 a todo nimero racional y el nimero —1 a todo nimero irracional.

1 si x es racional
—1 si v es irracional
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(h} Como ¢ es racional, f{}) = 1. Siendo = irracional. f{x) = —1. Como 2.0313 .. _ es un decimul periadico,
que representa un nimero racional, f{2,1313 . ..) = 1. Y como /2 es irracional, fi/2) = —1.

6. Sea la funcién f: R — R definida por

i :
flz) = !}:tg—2 s —2=x=3 _2 D

A .,2.’(‘-:’3?~| p =2 h@::./ _‘?
Hallar (a} f(2), () f(4), (c) J(=1), (@) f(=3).
Solucion:
{¢) Como 2 pertenece al intervalo cerrado [—2, 3] vale la formula fix} = x* — 2. Asi que fi2) =27 -
T Fard, B
() Compo 4 pertenecc a (3. o), vale la fédrmula f(x) = 3x — 1. Asi que f{4) = 3{4) — 1=12-1=11. =
(¢) Como —1 esta en el intervalo [—2..3], se aplica la férmula f{x) = x* — 2. Hecho el céleulo, f{—1) =
b1 =3 =] — :
{d) Siendo — 3 menor que —2, —3 pertenece al ]—2c, —2 y se aplica la formula f{x} = 2x + 3. Asi que enton-
ces fil-3=2(-3)+3=-6+3= -3
Nétese que solamente se ha definido una funcién f aungue se utilicen tres formulas para definir a f. No se
ha de confundir-formulas con funciones.

7. Sean los conjuntos A = {a. b, ¢} y B = {1, 0}. ;Cuantas funciones diferentes de A en B hay y cua-
les son? -

Solucion:

Representando con diagramas todas las funciones posibles de 4 en # se tiene asignando a cada elemento
de A el 1 oel 0, pero no los dos:

fu fa A
.
E i
9%

e 1 Jo

R

- —<f) (e
" ' |

Hay ocho funciones. )

DOMINIO DE IMAGENES DE UNA FUNCION
8. Sea A = {I, 2, 3, 4, 5}. Definir una funcién f: A4 — 4 por el diagrama

‘-
e

;Cudl es el dominio de imagenes de la funcidn f?
Solucién:

E! dominio de imagenes consta de todos los puntos imagen. Como solo los nimeros 2. 3 y 5 son imagenes,
el dominio de imdgenes de fes el conjunto {2, 3, 5}
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10.

11.

FUNCIONES [CAP. 4

Con W = {a, b, ¢, d}, definase una funcidn fde Wen W por f(a) =,__a/,f(b) = ¢, flc) = a,fld) = a.
Hallar el dominio de imdgenes de la funcion f: W — W.
Solucidn:

Como el dominio de imagenes de fes ¢l conjunto de gﬁqncmos que son lmagcnes y so]drﬁemc ay ¢ apare-

cen como imégenes de elementos de W, entonces el dominio de imagenes de f'es {a, c}.

Sean ¥V = {—2. —1, 0, 1, 2} y la funcién g: ¥ — R definida asi
glr) = +1
Hallar el dominio de iméagenes de g. =

Solucion:
Calculando la imagen de cada elemento de ¥

g(—2) = (—2F+1 = 4+1 =35
gl-1) = (—1)P+1 =141 =2
glo) = (0F+1=0+1=1
gl = EEL =1 =

98 = (@2°+1=4+1=5

asi que el dominio de imdgenes (o de valores) de g es el conjunto {5, 2, 10 5}, es decir, el conjunto {5, 2. 1},

Cada una de las siguientes formulas define una funcién de R en R. Determinar ¢l dominio de valo-
res de cada una. y : /

(1) f(z) = 2% (2) gl =senz, (3) h(z) = 22+1
Solucién: -
(1) Todo numero real a tiene raiz cibica real ““a luego

fVa) = (Va)y = a
Es decir, el dominio de valores de fes todo el conjunto de los niimeros reales.
(2) El seno de todo numero real pertenece al intervalo cerrado [—1, 1]. O sea que todo nimero de este inter-
valo ser4 el seno de algin niumero real. En consecuencia, el dominio de valores de g es ¢l intervalo [ -1, 1]
(3) Sumando 1 al cuadrado de todo numero real se tiene el conjunto de los nimeros mayores o 1guales que I
O sea que ¢l dominio de valores de 4 es el intervalo infinito [1, oo[.

FUNCIONES IGUALES

12.

13.

Scan las funciones f,, /3. f3. fa de¢ R en R definidas asi: -
((1-} fi (x} = x? (C) f:] (Z} =S
(b)Y faly) y? (d) fs asignando a cada nimero real su cuadrado

Entre estas funciones, jcudles son iguales?

Solucion:

Todas son iguales entre si. Las letras son simplemente variables mudas. Cada funcién asigna el mismo ni-
mero a todo nimero real.

Sean las funciones f, g y h definidas por
{a) flx) = 2* donde 0=zx=1

(b) g(y) = y* donde 2=y =28

(¢) h(z) =2 donde ze R

({Cuales de estas funciones son iguales?
Solucién:

No las hay iguales. Si bien se enuncian las mismas correspondencias, los dominios son diferentes. Asi que
las funciones son distintas.
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FUNCIONES INYECTIVAS

14. Sea A = {a, b, ¢, d, e} y Bel conjunto de letras del alfabeto. Definidas las funciones f, g y 4 de

1s.

16.

17.

18.

.. Solucidn:

A en B por:

(1) f!‘l‘l) =T, f(b): (I_,_f_fCJ = 5, ﬂd}f ‘r_'_f_{{?}_ =g
(2) gla)=Ta, gd)=c¢, glc)=¢ gd) =7, gle)=s
(3) hla) =2z Iib)=y, ke)=2a, h(d)=y, hie)=z.

Decir si son 0 no inyectivas,
Solucion:

Téngase en cuenta que para una funcion ser inyectiva, distintos elementos del dominio han de tener dis-
tintas imagenes.
(1) fno es inyectiva, puesto quej.asigna r tanto a @ como a d, es decir, fla) = f{d) = r.
(2) g es inyectiva.
(3) 4 no es inyectiva porque Ala) = hle).

Entre las siguientes funciones, decir cudles son inyectivas y cudles no.

(1) A cada persona que vive en la tierra asignarle el nimero de sus afios. -

(2) A cada pais del mundo hacerle corresponder el ntimerb de sus habitantes.

(3) A todo libro escrito por un solo autor, asignarle el autor.

(4) A todo pais del mundo que tiene primer ministro, hacerle corresponder su primer ministro.

Solucion:

(1) Muchas personas tienen la misma edad, asi que esta funcién no es myectiva.

(2) Si bien es posible que dos paises tengan la misma poblacion, las estadisticas muestran hf)y que esto no es
asi; asi que esta funcidn es inyectiva. :

(3) Dos libros diferentes pueden ser del mismo autor, asi que esta funcidn no es inyectiva,

(4) Dos paises distintos no pueden tener ¢l mismo primer ministro; la funcidn es inyectiva.

Seand = [-1,1] = {x| —1 =x =1}, B = [1,3]y C = [—3, 1]. Sean las funciones f; : 4 — R,
fo:B— Ry fy:C— R definidas asi: A cada nimero le corresponde su cuadrado. i,Cuélcls son
inyectivas? ’ i
Solucion: 2

La funcion f, : 4 — R no es inyectiva porque f; (3) = f; (—3). 0 sea que dos nameros distintos del dominio
tienen la misma imagen.

La funcién f;:B— R es inyectiva porque los cuadrados de numeros positivos diferentes son
diferentes.

Igualmente, f5 : C — R es inyectiva porque los cuadrados de niimeros negativos diferentes son diferentes.

Notese una vez mds que una formula por si misma no define una funcion. Ya se ha visto que la misma
formula define funciones distintas con propicdades diferentes.

Hallar el intervalo «mas amplio» D en que la formula f(x) = x” define una funcién inyectiva.
- oD,
En tanto que ¢l intervalo D contenga bien numeros positivos, bien niimeros negativos, pero no de ambos,

la funcién serd inyectiva. Asi que D puede ser ¢l intervalo infinito [0, oo o el ]~ 20, 0]. Pueden darse otros
intervalos infinitos en los cuales f sea inyectiva, pero serian subconjuntos de alguno de estos dos.

]

& W

(Puede ser inyectiva una funcion constante? |

Solucidn:

Si el dominio de una funcion consta de un solo elemento, la funcidn serd constante e inyectiva.
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19,

20.

FUNUIONES [CAP. 4

s Sobre gué conjuntos 4 la funcion idéntica 1,:4 — A &3 inyectiva?
Solueidn:
4 puede ser cualquier conjunto. La funcion idéntica es siempre inyectiva.
En ¢l Problema 7 se enunciaron todas las funciones posibles de 4 = {a, b, ¢} en B = {1, (). De
estas funciones. (cudles son inyeclivas?

Soluciou:
Ninguna lo vs. En cada funcién. por lo menos dos elementos tienen la misma imagen.

FUNCIONES SOBREYECTIVAS

21.

22

25.

26.

Sea /: A — B. Hallar f(A). es decir, el dominio de imagenes de /. si f'cs una funcién sobreyectiva. '
Solucién:

Si f ¢s sobreyectiva, entonces todo elemento del codominio de f pertenece al dominio de imagenes; asi gue
fl4) = B.

En ‘el Problema 8, la funcién f: 4 — 4 (es sobreyectiva?
Solucion: .

Los nimeros | y 4 del codominio no son imagenes de ningin elemento del dominio; por tanto, f no es una
funcién sobreyectiva, O Jo que es lo mismo. f{4) = {2, 3, 5! es un subconjunto propio de A.

Sea 4 =[~-1, 1]. De las funciones f. gy h de A en A definidas por:
(1) fix) =% (2) glx) = x*, (3) h(x) = sen x
¢Cudl es sobreyectiva, si la hay?
Solucion: 7
(1) Como en el dominio de valores de f'no hay ningin numero négdtivo, entonces f no es funcion sobreyecliﬁa,
{2) La funcion g es sobreyectiva, esto es, g(d) = A.
{3) La funcién h no es sobrevectiva, pues en 4 no hay ningdn nimero x tal que sen x = 1.

;Puede ser sobreyectiva una funcion constante?
Solucidn:

Si el codominio de una funcién f consta de un solo elemento, entonces f es siempre una funcion constante
v es sobreyectiva.

;Sobre qué conjuntos 4 serd sobreyectiva la funcién idéntica 1,: 4 ~» 47

Solucion:
La funcién idéntica es siempre sobreyectiva, asi que 4 puede ser cualguier conjunto.

En el Problema 7 aparecen todas las funciones posiblesde 4 = {a, b, ¢} en B = {1, 0}. Entre éstas,
icudles son sobreyectivas, si las hay?
Solucidn:

Todas las funciones son sobreyectivas menos f| ¥ fs.

FUNCIONES PRODUCTO DE COMPOSICION

27.

Sean las funciones f: 4 — By g: B — C definidas por el diagrama
A f B g C
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28,

29.

() Encontrar la funcién producto (g« f}: 4 — C.
{b) Encontrar los dominios de imdgenes de f, g v g+ f.

Solucién:

(¢) Mediante la definicién de la funcion producto se obtiene:

tg = fita) giita) = glyy = ot
(g e by = gifthy) = gzt = g
lgofite) = gifien = giy) = ¢

Obsérvese que se llega al mismo resultado «siguiendo la flechay
a =+ y =t
b= x> 8
et b

{h) Scgun el diagrama, el dominio de imagenes de fes [x, v} y el de g es [r. 5, 1. Sepin (). el dominio de
imdgenes de g - fes {s. r}. Notese que los dominios de imdgenes de ¢ v de g 2 f son diferentes,

Sea 4 = {1, 2. 3, 4, 5} y sean las funciones f: 4 -+ 4 y g: A - A definidas por:

) =3, f(2) =5 [B) =23 f4) =1 f(5 =2
g(1) =4, 9@2)=1, 9(3)=1 g4) =2 g5 =3
Hallar las funciones producto de composicién f-g y g f
Solucién: N )
Por la definicion de producto de composicion de funciones se tiene:
(Fegil) = flgll)) = f4) =1
(Fegl2) = flg(2)) = f(1) = 7
(fegh3d) = flgtd)) = fl1) = 3
5
3

(fegidy = flgd)) = fi2)
(feghs) = flg(d) = f(3) =
Asimismo,

(gefil) = gifta) = g(3) = 1
(gefi2) = gif(2) = g(6) = 3
{gef)d) = g(f(8)) = g(3) =1
{geN4) = glfid)) = g(1) = 4
(g o fU8) = g(f(3)) = ¢(2) = 1

Se ve que las funciones fo g v g o/ no son iguales.

Sean las funciones f: R — R y g: R — R definidas por:
flx) = 22+ 1, gla)y = a2 -2

Dar formulas para las funciones producto g f v /2.
Solucion:
Calculando primero g - £: R — R y teniendo en cuenta que de lo que se trata esencialmente es de sustituir
la expresién de fdentro de la fdrmula de g. se tiene por la definicién del producto de funciones:
(gefiz) = glifix)) = g2x+1) = (2r+1P—2 = 4 +4r—1

Tal vez parezca mas familiar el proceso definiendo las funciones asi:

¥ = flz) = 2x+ 1, = gl = y* -2
y eliminando y de las dos férmulas:

2=y -2 = (2r—12—-2 = d2* +4xr— 1
Hay que familiarizarse con el primer método, pues ¢s necesario tener en claro que x es solamente una vanahle
muda. Calculando ahora f - g: R — R:

(foghz) = flg(x)) = fl=z"—2) = 2(x"—-2)+1 = 22°— 3
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30,

3.

3z,

FUNCIONES [CAP. 4

Sean las funciones f y g sobre los numeros reales R definidas por
flx) = z* + 2x — 3, glz) = 3z — 4

(1) Dar férmulas para las funciones producto gofy fog.
(2) Verificar las férmulas mostrando que (g« f)(2) = g(f(2)) ¥ que (f=gk2) = f(2(2)).
Solucion:
(1) (g° Hl=z) giflz)) = gz +22—3) = Hz'"+2x—3)—4 = 3z + 6z — 13
(foghz) = flgle)) = f(Bz—4) = (3x—4)"+2(3x—4) —3 = 9F — 18z =5
() (gef)2) = 32 +62)—13 = 12+12—-13 = 11
gif(2)) = g('+2(2)—3) = g(6) = 3(5) —4 = 11
(fep)2) = 9(2)'—18(2) +5 = 36 —36+5 =
flg2) = f(32)—4) = f(2) = 22 +2(2) -3 = 5

e

Demostrar: Si f: A — B es sobreyectiva y si g : B — C es sobreyectiva, eatonces Ia funcién pro-
ducto (g=f): A — C es también sobreyectiva.

Solucion:

Sea ¢ un elemento de C. Puesto que g es sobreyectiva, hay un clemento b & B tal gue 218} = . Como tam-
bién [ es sobreyectiva, hay un elemento 4 & 4 1al que f{a) = 5. Pero (g = f)a) = giflel) = 2ib) = c. Asi, pues,
para todo ¢ & C, queda demostrado que hay al menos un elemento a £ 4 tal que (g = =) = = Por consiguiente,
£ = fes una funcion sobreyectiva.

Demostrar ¢l Teorema 4-1: Sean f: 4 - B, g: 8— C y h: C— D; entonces
(hog)ef=ho(gef)
Solucidn:
Las dos funciones son iguales si hacen corresponder la misma imagen a cada slemento del dominio, es
decir, si
‘ (thog)e iz = (holg°Pa)
para todo x € 4. Calculando,
((hog)e f)lx) = (hog)lflz)) = hglf(=))

¥

the(go Mz = hi(g= Hlx) = hig(fl=)
Entonces
’ (hog)ef = ho(gef)

IMAGEN RECIPROCA DE UNA FUNCION

33,

Sea 4 = {1, 2, 3, 4, 5}. Dada la funcién /: 4 — A definida por el diagrama

L=L B .

Hallar (1) f7(2), (2) 77'(3), (3) f7'(4), (4) f' (1,2}, (5) F{2.3.4).

Solucién:

€1) f7'(2) consiste en los elementos cuya imagen es 2. Solo 4 tiene 2 por imagen, asigue £ (2) = {4}
(2) f'(3) = &, pues 3 no es imagen de ningin elemento del dominio.

(3) F7'@)=1{1,3 5, puesf{l) =4, f3) =4, f(5) =dy4noes la imagen de ningiin otro elemento.
(4) f7' {1, 2} es el conjunto de elementos cuya imagen es 1 6 2; por consiguiente, £ $1.2) — {2, 4).
15) f74{2,3,4) = {4, 1, 3, 5}, puesto que estos nimeros ¥ solo ellos tienen 2. 3 ¥ 4 por mnagen.
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3.

35.

Sea la funcidn f: R — R definida por fix) = x*. Hallar:

(1) £7'15), @) FH=9) B) STHI-1 1 @) S (=, 01) (5) £ H[4, 25]).

Solucion:

(1) f~1(25) = {5, =35}, pues f(5) = 25 y f{—5} = 25 y ninglin otro nimero tiene por cuadrado 25.

2) /"‘ {—9) = ¢, ya que ningiin nGmero real tiene por cuadrado —Y. o lo que es lo mismo. la ecuacion
x?* = —9 no tiene raiz real.

(3) f7L([—=1,1]) = [—1, 1], ya que |x| = I implica |x*| = 1. ¢s decir. que si v pertenece al [~ 1. 1]. entonces
fi{x) = x? también pertenecc al [—1, 1].

4) f7'(]-=,0]) = {0}, puesto que 0* = 0 & ]— oo, 0] y ningtin otro ndmero tiene su cuadrado en el ]—2c.0].

(5) /' ([4, 25]) es el conjunto de nimeros cuyo cuadrado pertenece al [4, 25], es decir. los nimeros x tales
que 4 = x* = 25 Asi, pues,

f(4,25) = {x|2=x"50 —b5=x=-2

Sea /: 4 — B. Hallar /= '(f(A)), es decir, hallar la reciproca del dominio de imdgenes de [

Solucion:
Como la imagen de cada elemento de A estd en el dominio de imdgenes de /,

I A = 4

en todos los casos.

FUNCION RECIPROCA

36.

37.

Sean f: A4 — B y la funcién reciproca de f. f~':B — A. Diganse dos propiedades de la
funcion f.
Solucion:

La funcién fdebe ser inyectiva y sobreyectiva.

Sea W = {1, 2, 3,4, 5}y sean las funciones f: W —» W, g: W —> Wy h: W— W definidas por
los diagramas siguientes:

;Cudl de estas funciones, si las hay, tiene una funcién reciproca?
Solucion:

Para que una funcién tenga reciproca, debe ser inyectiva y sobreyectiva. Solamente h es inyectiva y sobre-
yectiva; asi que A. y solamente f, tiene funcidn reciproca.

Dado A4 = [ 1, 1], sean las funciones f}, f3, fy ¥ f4 de A en A definidas por
(1) fi(x) = x2 (2) falx) = x%. (3) f3lx) = sen x, (4} [uo(x) = sen iax
Decir cudles de estas funciones tienen o no funcién reciproca.
Solucidn:
(1) f, no es inyectiva ni sobreyectiva: asi que fy carece de reciproca.
(2] f,esinyectiva. yaque x # yvimplica ¥ £ 1 f, es también sobreyectiva. Por tanto. f, tiene funcian reciproce.
(3) [y es inyectiva, pero no sobreyectiva: por tanto, f3 no tiene funcién reciproca.

{4) f; tiene funcion reciproca porgue es inyecliva y sobreyectiva,



39.

41.

42.

FUNCIONES [CAP. 4

Demostrar: Si f: 4 — B y g:B— C tienen funciones reciprocas S Y:B>Ayg':C—B
entonces la funcién producto de composicién g=f: 4 — C tienc una funcidn reciproca que cs

flagmt:C—A.

Saolucién:
Segun ¢l Teorema 4-3, hay que demostrar que
(ftegelgef) = 1 ¥ {g"f')o{.f‘('og") = 1
Reiterando la aplicacion del Teorema 4-1, la ley asociativa de la composicion de funciones resulta
(freg helgef) = flelgi=lgaf) = flellgteg o)
—felel o= faiol = 1

|

Obsérvese que se utiliza la propiedad de que g ! - g es la funcidn idéntica y la de que el producto de 1, la fun-
cién idéntica, y fes f. Andlogamente,
(gopelfreg™ = ge(folftog™) = gollfofeg™
= gleEsigRyE=—gog= =il

Sea f: R — R definida por f(x) = 2x — 3. Siendo f inyectiva y sobreyectiva, f tiene una funcion
reciproca f~!: R — R. Hallar una férmula que defina la funcion reciproca il
Solucién:
Sea y la imagen de x por f. Entonces
yo=flx)=2x—3
Por tanto, x serd la imagen 'de y por la funcién reciproca /!, es decir,
. x=f"()
Expresando x por y en la anterior ecuacion,
x=(+ 32
Y entonces o=+ 3)2
es una formula que define la funcidn reciproca. Notese que y es simplemente una variable muda; asi que
FHx) = (x +3)2

define también la funcién reciproca. Ademas, esta ultima expresion es preferible por ser x la que se acostumbra
a emplear para definir funciones.

Sea f: R — R definida por f(x) = x? + 5. Siendo f inyectiva y sobreyectiva, f tiene funcidn re-

ciproca. Dar una formula que defina la /7.

Solucidn:
Expresando xpor y: v =x* + 5, p — S = x}, yx = Yy — 3.
Asi que la funcion reciproca es ' (x) = ff\ — 5

Sean A = R — {3} y B= R — {1}. Sea la funcion f: 4 — B definida por

w e 222

Asi que f es inyectiva y sobreyectiva. Hallar una férmula para definir la L
Solucion:
. x-—-2 5 2 -3y
Expresando x por y a partir de y = = se tiene x = =5
;) . " ™ 2 - 3x )
Luego la funcion reciproca pedida es {7 (x) = o
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PROBLEMAS DIVERSOS

43. Sea la funcién f: R —» R definida por f(x) = ~ 3x + 2. Hallar:
(@ f(=3) LU (e) f(z?) (3] f(22~3)1 (m) f(f(z + 1))
(b) f(2)—F(—4) () fly—2) (7) f(22—=3) + f(z +3) (n) flz+ ) f(z)
() flyx (g) flx+h) (k) f(x*—3z+2) (0) [flx+ k) —f(=)]/h
(d) fa?) (h) flz+3) () f(f(=))

Solucion:

La funcién hace corresponder a cada elemento el cuadrado del clemento menos 3 veces el elemento mas 2.

(@) F(—8) = (-3 —3(-3)+2 =9+94+2 = 20

by f2) = (2 —3(2)+2 = 0, f(—4) = (~4)P* —3(-4) +2 = 30. Entonces
fi2y—f(—4) = 030 = —30

{e) fly) = (p) —3y+2 =y —38y+2

(d) fla*) = (@) = 3(e®) +2 = a'—3a*+ 2

(&) fizx) = (@ =8N+ 2 = ot =322+ 2

() fly—z2y = (= =¥y—-2)+2 = y*—2yz+ 22— 3y +32+2

{¢) Flx+d) = o+ — 3zt 42 = 224 228 A2 —3z—3h+ 2

(R) flx+3) = (x+3)* —Hr+3)+2 = (2" +624+9) —3xz—-9+2 = 2 +3z+2

hl_ f(2x —3) '-(»"31’-5{2.13—3)-—2—4:‘—12x+9—6x+9+2=4x'-—18:t+20

(\/ Usande thy e (i tenemos

fle—3) + fle+3) = (42°— 182 +20) + (z*+ 32+ 2) = 5x% — 1bx + 22

(k) flz®—38:42) = (2= 8x+2 - 3(z'"-3z+2)+2 = ' — 62" + 102* — 3
(0 fifzl = A —3x4+8) = o' — 6’4 102 — 32
(m) f(fla+1) = flz+1P=3x+ 1 +2]) = flla"+22+1—3c—3+2)
= flat—x) = (-2 —3xP—x)+ 2 = ' =2 =257+ 32+ 2
{(n) Para (g), flx+h) = «*+ 22k + h* — 3r — 3k -+ 2. De donde

flo+=h—flr) = (K*+2xh+h*—3x—3h+2) — (x>~ 3x+2) = 2xh+ A*— 3k
{0} Empleando (1) wenemos

(flx+ R — fia)/h = (2zh+ A*—3h}h = 2x+ h —3

44. Sean las funciones f: R - R y g: R — R definidas por fix) =2x - 3 y
g(x) = 22+ 5. Hallar (a) f(5), (b) 9(=3), (¢) g{f(2)), (d) f(g(3)). () gla—1), (f) flgle—1)),
(g) g(f(x)), () flglz+ 1)), (i) glg(z)).

Solucion:
{e) f(b) = 2(5)—-38 = 10—3 = 7
(b) g{—3) = (—8°+5 = 9+5 = 14 \
(e} g(f(2) g[2(2)—3]) = g{[4—=3]) = g{1) = ()*+5 = 6
(d) flg(3)) f([3*+5]) = f[9+5]) = f(14) = 2(14) -3 = 25
(&) gla--1) = (a—1P¥+5 = a®—2¢+1+5 = a*—2a+6
(A Usando (¢) tenemos

flgla—1) = flat—2 +86) = 2{(a*—2a+6)—3 = 22* —4a+ 9
(g) gifix)) = g(22¢—8) = (Bx—3)*+5 = 42* — 12x + 14
(h) flglzx+1) = fi[(z+1P+5]) = f{[z*+2x+1+5])

= f(z*+2x46) = 2Az*+2x+6)—3 = 2+ 4z + 9

() glglx)) = g(x*+5) & (x*+5°*+5 = 2+ 102* + 30
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Problemas propuestos

DEFINICION DE FUNCION

Fl : i : s = ey 5
48. Decir cuindo los diagramas siguientes definen o no una funcidn de {1, 2. 3} en {4, 3. 6,

) A 1

‘\"“-—.
(1) G 3)

A L/ (

46. Definir por una férmula las siguientes funciones:

(1) Hacer corresponder a todo nimero real por fsu cuadrado mas 3.

{2} A cada numero real asignarle por g el nimero mas el valor absoluto del nimero.

{3) A todo nimero real mayor o igual que 3 atribuirle por / el nimero ai cubo:y a cada ndmero menor o igual

que 3 atribuirle por A el nimero 4.
47, Seala funcién f: R — R definida por f{x) = x* — 4x + 3. Hallar (1) f{4). (2)/(—3), 3)f(y — 22), (4) flx — 2)
- ; t—gr s =2

?B. Sea la funcion g : R — R definida por g(x) = {i i3 = :i z <9°
g Hallar {1) g2(5), (2) g(0), (3] g(—=2).

49. Sea T =[-3,5]ysealafuncion f: T — R definida por fix) = 2%? — 7. Caleular (a) f12). (B) f16), () fir = 2).
J”z:c+5 stlx>9

/55: Sea la funcién k- R — R definida por hix) = lx’— w51 xe [=9,9] .
x—d 5 x <=9

Calcular (a) i(3), (b} A(12), (¢) Al —15), {d) ALA(S)). es decir, h5).

/5( Sean X = {2.3} e ¥ = [1. 3, 5}. ;Cudnlas funciones diferentes hay de X en ¥?

DOMINIO DE IMAGENES DE UNA FUNCION

/5‘.‘.. . Los diagramas siguientes definen funciones f, g ¥ # que aplican ¢l conjunto {1, 2, 3. 4} en si mismo.

i

Averiguar (1) el dominio de imdgenes de £, (2) el de g, (3) el de &

}ii Dado W = [—1, 0,2, 5 11!, Sea la funcién f: W — R definida por fix) = x? — x — 2. {Cudl es el dominio
de imagenes de [V

,Sif Considerense las seis funciones siguientes:
N [—2.2] =R
L fri[0.3] R

Si cada funéion viene definida por la misma formula.

fat | = =5] =R
o :[—1.4[—»!"
wi[=53[= R

Sflx) = x*

es decir, si cada funcidn asigna a cada numero vel x?, calcular el dominio de imédgenes de (1) 7. (2) f3. (3) fa.
(4) fa. (5) S5 (6] fs.
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_A%57 Dadas las seis funciones del Problema 54, definida cada una por la formula
flx) = =

o sea que a cada nimero x cada funcién le asigna el %3, encontrar el dominio de valores de (1) f;. 2) fz. (3) fa.

< (4) fy, (5) fs. (6) fs-

bt

/56. Si las funciones del Problema 34 se definen por la férmula
fix)=x-3

hallar el dominio de imagenés de (1) f1, (2) f2, (3) f3, (4) fa, (5} fs, (6) fs-

}7./ Si las funciones del Problema 54 se definen por la formula
fix)=2x + 4
averiguar el dominio de imagenes de (1) f3, (2) /2, (3) f1. (4) for (5) f5. (6) fo

8. Seaf: A — B.En lo que sigue, jqué es cierto siempre?

(1) f(4) C B, (2) fid) = B, 3} fi4) D B

FUMCIONES INYECTIVAS

59 Sea f: X — Y. Decir entre las condiciones siguientes cuando se define o no una funcién inyectiva:

(1} Ala) = fl) implica a = h. (3) fla) # f(b) implica a + b.
2} a = b implica fla) = f(b). (4) a # b implica fla) # fib).

607 Decir de cada funcién del Problema 54 si es o no inyectiva.
51 Decir de cada funcion del Problema 55 si es o no inyectiva.
_62". Decir de cada funcién del Problema 52 si es o no inyectiva.

6’3 Demostrar: 8i /: A — B es inyectiva y si g : B — C es inyectiva, la funcién producto g« f: A — C es inyectiva.

FUNCIONES PRODUCTO
64. En el siguiente diagrama se representan las funciones [ A — B, g: B A4, h:C— BF:B+CyG:A—-C.

Decir en lo que sigue cudndo se define una funcién producto, ¥ siendo el caso, determinar su dominio y sa co-
dominio,

(M) gof, (@hef, (3)Fof (4 Geof, (5)g°h (6 Feh, (TVhoGog, (8 heoG.
65. Dadas las funciones f, g y A del Problema 52, hallar las funciones producto (1) f= g, (2) A of, (3)g-g, 0sea zt

66. Sean las funciones /: R — Ry g: R — R definidas por
flxg) = 2"+ 3+ 1, gl{z) = 22 —3
Dar férmulas para las lunciones producto (1) feg, (2) g° f. 3 geg, (4) feof.

67. Sean las funciones f: R — Ry g: R — R definidas por
flx) = x=* — 2{xi, glx) = a*+1
Hallar (a) (g o f)(2), (b) (Fogl=2), (&) (g°fNi=4) (&) (f>gB)
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RECIPROCA DE UNA FUNCION

68.

70.

Sea /1 R — R definida por f{x) = x2 + 1. Hallar (1) £~ (5), (2)/~* (0), (3) £~ (10), (4) /= (= 5). (5)/~ 1 ([ 10, 26]).
6) /7 ([0, 5D, (M ([=5 1) B)S " ([—5. 5]).

Sea g : R — R definida por g(x) = sen x. Hallar (1) g7 (0). 2) g~ "' (1), 3) g™ 2), @ g~ ([~ L 1]

Sea f: 4 — B. Averiguar f~! (B).

PROBLEMAS DIVERSO®

7.

72.

73.

4.

75.

51.

52,

E-X X

Sea f: R — R definida por f{x) = 3x + 4. fes, pues, inyectiva y sobreyectiva. Dar una férmula que defina f =4,
Sean A = R — {—4} y B = R — {}}. Sea f: A — B definida por
flxy = (=—3)/(2x+1)
Entonces f es inyectiva y sobreyectiva. Hallar una férmula para definir /~'.
Sea W = [0, co[. Dadas las funciones f: W — W, g: W— Wy h: W — W definidas por
flx) = =%, glx) = 2*+1, h(x) = =+2
;cudl de estas funciones, si la hay, es sobreyectiva?

Sea la funcién f: R — R definida por fIx) = x? + x— 2. Hallar

(a) f(3) (e) flx—2) (e) fly) (g) flz+R) — flx) (110 (k) 7' {=5)
(&) F(=3) — f(2) (d) FA(—2)) (f) flx+h) (hy flf(=) (N '

Sean f: A— B.g:B— Aygef=1,lafuncién idéntica sobre 4. Decir qué es cierto o falso entre lo que sigue:
) g=/f"N (3) fes una funcion inyectiva. (5) g es una funcion inyectiva.
{2) fes una funcion sobreyectiva. (4) g es una funcion sobreyectiva.

Respuestas a los problemas propuestos

(1) No, (2) i, (3) No.

six=3

Hfix)=x*+3, 2 glx) =x+ s

x|, (3) hix) = {
(1)3,(2)24, (3) )2 —dpz + 422 — 4y + Bz + 3, (4) x* — Bx + 15,

{1)10,(2)2,(3) 0.

(@) 1, (6) No definido, pues 6 no pertenece al dominio de definicion, (c) 21> — 8¢ + 1si —l=1=7.
(a)'6, (b) 29, (c) —19, (d) 45.

Nueve.

(1){1,2,4}, (2 {1,2,3, 4}, (3) {1, 3}).

10, —2. 18, 108}

(1) [0, 41, 2) [0, 9]. (3) [0, 9], (4) [25, e[, (5) [0. 16[, (6) [0. 25].
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55, (1)[—8, 8], (2) [0, 27], (3) [—27, 0],-(4) ] — 0. ~ 1257, (55 [ 1. 64[. (6) [—125, 27[.

56. (1)[—=5, —1],(2)[-3.0]. 3} [=6. —3). (4) ]~ =, —8]. (5) [—4. 1[, (6) [ -8, O.

57. (1) [0, 8], (2) [4. 101, (3) [—2, 4], (4) ]—20, —6], (5) [2. 12[. (6) [ -6, 10[.

58, fA)C B

59, (1) Si, (2) No, (3) No, (4) Si.

60. (1) No, (2) Si, (3) Si, (4) Si. (5) No, (6) No.

61. Todas son inyectivas.

62. Solo g es inyectiva,

63. Hay que demostrar que (g« f)a) = (g~ f)(b) implica @ = &. Sea (g - f)(a) = (g - f)b). Entonces, por la defi-
nicién de funcién producte, g(f(a)) = (g« fla) = (g = /)b) = glf(h)). Como g es inyectiva, fla) = f(b), y como
fes inyectiva, a = b. Por consiguiente, g = fes inyectiva.

64. (1) g-f:A— A, (2) No definido, (3) F:f:A4— C, (4) No definido, (5) g=h:C— A, (6) Feh:C—C,
() h-G.g:B— B8, B)h-G: 48

65, 1) feg 129 3 ey
N A
et
YN
66. (1) (feogiz) = 4x* —6Bx+ 1 13 {gogia) = dxr— 0
(2) (¢°fifa) = 22% + 6x —1 (4) ifefilxy = at+6a?+ et + 180 + B
67. (a) 10, (b) 15, (c) 65, (d) 624
68. 1) {-2,2} 3) 13,-3} 5] {# | ~b<a= -3 o 37 x=5 (7)) 10}
2y O 4 0 ) {z| —2=2=2} 8) dau | =2 x = 2)

69. (1) f...,—2m —m 0, m2x, ...} = {x|x=nndondene FAS
(2) {x|x=(n/2) + 2nn donde ne Z}.
3y & (4) R, el conjunto de todos los nimeros reales.

70. fTH(B) = A
T f7x) = (x — 4)3.
72 £V (x) = (3 + x)(1 — 2x).

73. Solo [ es sobreyectiva.

74, (u) 10 (d) —2 (¢) 2eh + W4 h () {2,—-3}
by 0 (e) ¥ +u—2 {h) _::"-i-2x"— 2x% — 3x (k) @
{e) =*— 37 (fy 2 +2ch+R+x+h—-2 (0 18, —4]

75. (1) Falso, (2) Falso, (3) Cierto, (4) Cierto, (5) Falso.



Capitulo 5

Conjuntos producto y grafos de funciones

PARES ORDENADOS

Intuitivamente, un par ordenado consta de dos elementos, a y b, por ejemplo, que ¢n ¢l par se desig-
nan como primero y segundo elementos respectivamente. Un par ordenado se simboliza por
(a, b)

Dos pares ordenados (@, b) y (¢, d) son iguales si, y solamente si, a =cy b= d.

Ejemplo 1-1: Los pares ordenados (2, 3) y (3, 2) sen diferentes.

Ejemplo 1-2: Los puntqs del plano cartesiano de la Fig. 5-1 representan pares ordenados de numeros
reales.

Ejemplo 1-3: El conjunte {2, 3} no es un par ordenado, pues los elementos 2 y 3 no se distinguen.

Ejemplo 14: Puede haber pares ordenados que tengan iguales el primero y el segundo elementos tales como
(1, 1). 4, 4)y (5, 5)

Observacién 5-1: Un par ordenado {a, b) se puede definir rigurosamente por

{a, b} = { {a}, {a. b} }

. Segun esta definicién, la propiedad fundamental de los pares ordenados se puede demostrar:

(@, ) =(c, d) implica a =cy b=4d

CONJUNTO PRODUCTO

Dados dos conjuntos A4 y B, se llama conjunto producto de A y B el conjunto de todos los pares or-
denados (a, b) con as 4 y be B. Se le denota por

A x B
que s¢ lee «A4 cruz B». Mias brevemente
AxB = l{a,b) | ard, beB)
Ejemplo 2-1: Sean A = {1, 2,3} y B = {a, b}. El producto conjunto es entonces
Ax B = {(1,a), (1,b), (2,4}, (2.8), (3,0, (3, b))
Ejemplo 2-2: Sea IV = {s, 1}. Se tiene
Wx W = ls,s), (s,0), (), (D]

Ejemplo 2-3: El plano cartesiaro de la Fig. 5-1 es el conjunto producto de los nimeros reales por si mis-
mos, es decir, R x R.

i E! conjunto producto 4 x B se llama también producto cartesiano de A y B, por el matemdtico
Descartes, quien, en el siglo diecisiete fue el primero en investigar el conjunto R x R, También, por
la misma razén, se llama plano cartesiano a la representacion de R x R en la Figura 5-1.

66
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Observacion 5-2: Si el conjunto A tiene n clementos y ¢l conjunto B tiene m elementos, entonces el
conjunto producto 4 x B tiene n veces m elementos, esto es, nm elementos. Si uno
de los conjuntos 4 ¢ B es vacio, entonces A x B es vacio. Y, en fin, si uno de los
A o B es infinito y el otro no es vacio, entonces 4 x B es infinito.

Observaciéon 5-3: El producto cartesiano de dos conjuntos no es conmutativo, es decir, que

Ax B+ Bx A

4 menos quec 4 = B o que uno de los factores sea vacio.

DIAGRAMAS DE COORDENADAS

Ya se esta familiarizado con el plano cartesiano R x R, como se muestra en la Fig. 5-1. Cada pun-
to P representa un par ordenado (a, b) de numeros reales. Una recta vertical por P corta al eje horizon-
tal en a y una recta horizontal por P corta al eje vertical en b, como se ve en la Figura 5-1.

B
+ ¢
R i
b =
IE s, ;
| P
A+ Y b d
-4 -z | 2l
4+ 2 T
1 A
: a b e d
Fig. 5-1 Fig. 5-2

El producto cartesiano de dos conjuntos que no tengan muchos elementos, se puede representar
en un diagrama de coordenadas en forma semejante. Por ejemplo, si 4 = {a, b, ¢, d} y B = {x, ), z},
entonces el diagrama de coordenadas de 4 x B es como se ve en la Fig. 5-2. Aqui los elementos de 4 se
representan sobre el eje horizontal y los de B sobre el eje vertical. Se ve que las lineas verticales que pasan
por los elementos de A y las horizontales que pasan por los elementos de B se cortan en 12 puntos, que
representan, como es claro, el producto 4 x B. El punto P es el par ordenado (c, »).

GRAFO DE UNA FUNCION

Sea f una funcion de 4 en B, es decir, sea f: 4 — B. El grafo f* de la funcién f es el con-
junto de todos los pares ordenados en los que a £ A estd como primer elemento y su imagen como se-
gundo c¢lemento. Es decir,

= = {{a,b) | evd, b=fla)}
Se ve qué 7*, el grafo de f: 4 — B, es un subconjunto de 4 x B.

Ejemplo 3-1: Sea la funcién f: 4 — B definida por ¢l diagrama

Entonces fla) = 2, fih) = 3, flc) = 2 y fid) = 1. De donde el grafo de f es
%= {la, 2), (b, 3), (c. 2), (d, 1}}
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Ejemplo 3-2: Sca W = {1, 2, 3. 4}. La funcién S W — R definida por
fix)=x+3
tiene por grafo
St = {(1, 4), (2, 5), (3, 6), 4, 7)}
Ejemplo 3-3: Si N es el conjunto de los nimeros naturales 1, 2, 3, . . .| la funcién g : N — N definida por
- glx) = &7
tiene por grafo
g% = {(1, 1), 2. 8), (3, 27), (4, 64), . . 4

PROPIEDADES DEL GRAFO DE UNA FUNCION

Sea f: A — B. Se sabe entonces que a cada elemento a £ 4 le corresponde un elemento de B ¥ que
en B solo un elemento le corresponde a cada a £ 4. En consecuencia, de estas dos propiedades de foel
grafo f* de ¥ tiene las dos propiedades siguientes:

Propiedad 1: Por cada a¢ A4, hay un par ordenado (a, b) & f*.
Propiedad 2: Cada ac 4 es el primer ¢lemento en un par ordenado de Sf* solamente, es decir,
(a, bYef*, (a, c)ef* implica b= ¢
En los ejemplos que siguen, sean 4 = {1,2,3,4 yB= {3. 4, 5, 6}.

Ejemple 4-1: El conjunto de pares ordenados
{(L, 5), (2, 3), 4, 6)}
no puede ser el grafo de una funcién de 4 en B, pues no cumple la propiedad 1, ya que, por
ejemplo, 3 € 4 y en ninguno de los pares ordenados estd 3 de primer elemento.
Ejemplo 4-2: El conjunto de pares ordenados
{(1,5).(2,3), 3, 6). (4, 6), (2, 4)}

no puede ser ¢l grafo de una funcién de 4 en 8, pues no cumple la propiedad 2, o sea que
el elemento 2 & A estd como primer elemento en dos pares ordenados diferentes (2, 3) y (2, 4).

GRAFOS Y DIAGRAMAS DE COORDENADAS

Sea f* ¢l grafo de una funcién f: 4 — B. Como f* es un subconjunto de 4 x B, se puede represen-
tar con el diagrama de coordenadas de 4 x B.

Ejemplo 5-1: Sea f(x) = x? la definicion de una funcion en el intervalo —2 = x = 4. El grafo de f aparece
en la Fig. 5-3 en la forma usual:

15 T+
10+ 3
51 2o
—¥- 1
=2 =1 £ 1 2 3 4
=57 a b ¢ d
Fig.5-3 Fig.5-5

Ejemplo 5-2: Sea una funcién [ 4 — B definida por el diagrama de la Figura 5-4.

Aqui el grafo f* de f consiste en los pares ordenados (a, 2), (b, 3), (e, 1) vy (d, 2). Se
representa /* en el diagrama de coordenadas de 4 x B en la Figura 5-5.
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PROPIEDADES DE LOS GRAFOS DE FUNCIONES EN DIAGRAMAS
Sea f: A — B. El grafo f* de f tiene las propiedades ya dichas:

Propiedad 1: Por cada ae A hay un par ordenado (g, b)e f*,

Propiedad 2: Si (a, b)ef* y (a, c)ef*, sigue que b = c.

Por tanto, st se representa f* en ¢l diagrama de coordenadas de 4 x B, tiene las propiedades si-
guientes:

Propiedad 1: Cada linea vertical contiene al menos un punto de f*.

Propiedad 2: Cada linea vertical contiene solo un punto de f*.

Ejemplo 6-1: Sean 4 = {a, b. ¢} y B = {1, 2, 3}. Examinense los conjuntos de puntos de los dos diagra-
mas de coordenadas de 4 x B siguientes:

I |
3 o
2 2 !
1 P 1 !
r ¥ T
| I
a b« a b e
(1) (2)

En (1), la vertical por # no contiene ningin punto del conjunto; luego el conjunto de
puntos dado no puede ser €l grafo de una funcién de 4 en B.

En (2}, la vertical por g contiene dos puntos del conjunto; asi, pues, este conjunto de
puntos no puede ser el grafo de una funcion de 4 en 8.

Ejemplo 6-2: El circulo 3% + »* = 9, que aparece abajo, no puede ser el grafo de una funcién porque hay
verticales que contienen mds de un punto del circulo.

1+

Representacion de x* + y* = 9

LAS FUNCIONES COMO CONJUNTOS DE PARES ORDENADOS

Sea f* un subconjunto de 4 x B. el producto cartesiano de los conjuntos 4 y B; y supdngase que
* tiene las dos propiedades antes dichas:

Propiedad 1: Por cada ae 4, hay un par ordenado (a, #)¢ /™.
Propiedad 2: No hay dos pares ordenados diferentes en /* que tengan ¢l mismo primer elemento.

Se tiecne asi una correspondencia que asigna a cada elemento a & 4 el elemento b £ B que aparece en el
par ordenado (a, b) £ f*. La propiedad | asegura que cada elemento de A4 tendrd una imagen, y la pro-
piedad 2 asegura que la imagen dicha es anica. De acuerdo con esto, /™ es una funcién de 4 en B.

En vista de la correspondencia entre funciones f: 4 — B y subconjuntos de 4 x B que tiencn las
propiedades | y 2 anteriores, se hace de una funcidn la

Definicién 5-1: Una funcidn fde 4 en B es un subconjunto de A x B en el cual cada a £ 4 aparece
como primer elemento en un par ordenado de f y solo en uno.
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¢ Aunque esta definicion de una funcién pueda parecer artificiosa, tiene la ventaja de que no emplea
conceptos definidos, como son los de «asignar», «hacer corresponder»,

Ejemplo 7-1: Sean 4 = {a. b, cly B = 11,2 3} Seaademas
f={la, 2), (¢, 1), (. 2)}
[ tiene las propiedades 1 y 2, siendo, por tanto, una funcién de 4 en B, que se ilustra en el
diagrama siguiente:

| >4
'

Ejemplo 7-2: Sean ¥V = {1,2.3}yW={a e io, u}. Sea también
F=1{1 a2, 310, 2w}
Aqui f no es una funcion de ¥ en W, pues dos pares ordenados diferentes de f.los (2, e) ¥
(2, u), tienen el mismo primer clemento, Si f ha de ser una funcién de ¥ en W, entonces no
puede asignar ambos elementos e y u al elemento 2 & V.
Ejemplo 7-3: Sean S = {1,2,3,4}y T={1,3.5} Sea
= {1, 25),63)
Aqui f no es una funcién de Sen T, ya que 1 ¢ S no aparece como primer elemento en nin-
giin par ordenado perteneciente a f.

La consecuencia geométrica de la Definicion 5-1 se enuncia en la

Observacion 54: Sea fun conjunto de puntos en el diagrama de coordenadas de 4 x B. Si toda ver-
tical contiene un punto y solo uno de f, entonces f ¢s una funcién de A en B.

Observacién 5-5: Sea la funcién f: A — B inyectiva y sobreyectiva. Entonces la funcion reciproca
/7! consta de los pares ordenados que al invertirse, o sea al ser permutados sus
elementos, pertenecen a f. Es decir, que:

o= {(ba) | (aD) e f)

CONJUNTOS PRODUCTOS GENERALIZADOS

El concepto del conjunto producto se puede extender al caso de mas de dos conjuntos natural-
mente. El producto cartesiano de los conjuntos 4, B y C, denotado por

AxBxC
es el conjunto de todas las ternas (g, b, c) en las que a€ A, be By ce C. Analogamente, el producto
cartesiano de los n conjuntos A;, 4, .... A4, que se denota por

'_"'l.ng;_J_K"'XA;p

es el conjunto de todos los n-tuples ordenados (a;, @3, - - - a)cona, € Ay, ... a4, €A, Aqui un r-tuple
ordenado tiene un significado claramente intuitivo, es decir, que ¢l n-tuple consiste en n elementos, no
necesariamente distintos, donde uno de ellos se designa como primer elemento, otro como segundo
elemento, etc.

Ejemplo 8-1: En la geometria tridimensional euclidiana cada punto representa una terna ordenada, o sea
su componente x, su componente y ¥ su componenie z.
Ejemplo 8-2: Sean A = fa, b}, B=11,2,3} v = fx, y}. Entonces
AXEBEXC = a1, x), . 1,9, (a2, ),
(a,2, 1), (a, 3, x), (2,3, 9),
(b, 1, ), (b,1,u), (b, 2 x}
(6,2, y), (b, 3, x) (b3 y)}
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Problemas resueltos

PARES ORDENADOS Y CONJUNTOS PRODUCTO
1. Sean W = {Juan, José, Tomds} y V' = {Inés, Maria}. Hallar W x V.
Solucidén:
W x } consiste en todos los pares ordenados (¢, b) en los que a e Wy b e V. Por tanto,

W x V= {(Judn, Inés), (Juan, Maria), (José, Inés).
{Jos¢, Maria). (Tomas. Inés), (Tomas, Maria)}

2. Suponiendo que los pares ordenados (x + y, 1) y (3, x — ») son iguales, averiguar x e y.
Solucion:
Sii{x + » 1) = (3, x — ») por la propiedad fundamental de los pares ordenados
x4+y=13 ¥ l=x—y

La solucidn de este sistema de ecuaciones es x = 2, y = L.

B
3. Hallar los pares ordenados que corresponden a los puntos Y
Py, Py, Py y P, que aparecen en el diagrama de coordena- % >
dasde 4 x BenlaFig. 5-6. Aqui, 4 = {a,b,c,d, e}y B = {a, o -
e, i, 0, uh. * :
) " P
Solucion: o) Py
La linea vertical por P, cruza el eje 4 en b y la horizontal por P, A
cruza el eje B en i; asi P, corresponde al par ordenado (b, {). Andloga- e b cd ¢
mente, P, = (a.a), Py = (d, u)y P, = (e. e).
Fig. 5-6

4, Sean A = {a&, b}, B= {2, 3] y C = {3, 4}. Hallar
(1) Ax(BUC), (2)AdxB)UdxCl (B)Ax({BNC), @)4dxBN(A4xC)
Solucion:
(1) Se averigua primero Bl J C = {2, 3, 4}. Entonces
A x (BUC) = {la, 2), (e, 3). (a. 4). (b, 2), (b, 3), (b, 4)}
(2) Calcular primero 4 x By 4 x C:

A x B = {(a2). (@ 3) (b.2). (b 3))
4 xC a. 3), (a. 4). (b, 3), (b, 4)}

Ahora se busca la unidn de los dos conjuntos:
(A x BYU 4 x C) = {{a, 2), (a, 3), (h, 2), (b, 3}, (a. 4), (b, 41}
Por (1) y (2) se ve que
Ax (BUCI=14d x B)\J{4d x ()
{3) Calcular primero B (M C = {3]. Entonces
A x (BN C)= {{a. 3). (b, 3)}

(4) En (2) se calcularon 4 x By A x C. La interseccidn de 4 x By 4 x € es el conjunto.de los pares orde-
nados que pertenecen a ambos conjuntos, es decir,

(4 x B)N (4 x C) = {{a, 3), (b, 3]}
Por (3) y (4) se ve que
Ax (BNC)={Ax B)N(4xC)
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Representar ¢l conjunto producto

fr | 1=w<4d; X

fr | —2=2=3)}
sombreando el drea apropiada en el diagrama cartesiano de R x R.
Solucién:

Tréacense dos rectas verticales delgadas por 1 y 4 del eje horizontal y otras dos horizontales delgadas por —2
v 3 del eje vertical como se ve en la Figura 5-7.

El drea rectangular contorneada por las cuatro rectas. junto con tres de sus lados, representa el producto
de los conjuntos. Sombrear el diagrama como se ve en la Figura 5-8.

Notese que el lado del rectingulo que no pertenece al producto de los conjuntos se traza con linea de
puntos.

4 g 5 44—
a4
| SO P LS IEES LS e L
i | S L L L
= R TR Rl 1 4
_2__ i
Fig.5-7 Fig.5-8

Demostrar que 4 C By CC D implican (4 x C)C (B x D).

Solucidn:

Sea (x, 1) un elemento cualquiera de 4 x C, con lo que x & 4 € y & C. Por hipotesis, 4 es un subconjunto de
B y C es un subconjunto de D; asi que xe B e ye D, vy el par ordenado (x, y) pertenece a B x D, Queda
demostrado que (x, y)g 4 x C implica (x, y)e B x D; por consiguiente, 4 x C es un subconjunto de 8 x D.

Sean 4 = {1, 2,3}, B=1{2, 4}y C= {3, 4, 5}. Hallar 4 x B x C.
Sqlucion:
Un método apropiado para encontrar 4 x 8 x ( es ¢l del «diagrama en arbol» que se muestra en seguida:
3 (1,23}
- {4 11,2, 4)
1= ] (1,2, 5)
/ T 3 (1, 4,3
Ty é 4 {1, 4, 4)
: 5 (1, 4,5)
3 (2,23
ol 7
ol (2,2, 4)
il 5 (2,2, 5)
; TRy ~3 (2,4, 3}
e 2,4,4)
\\ 5 (2,4, 5)
3 3 13,2, 8
\ Sl (3,2, 4)
g = 8 (3,2, 5)
-
T 3 (3,4, 3
e a4
5 (3,4, 5)

4 x B % C es el conjunto de ternas que estdn a la derecha del «arbol»,
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Demostrar: A x (BN Cl=(4 x BN (4 x C).
Solucion:

Se demuestra primero que A x (8 (") C) es un subconjunto de {4 x B) M (4 x C). Sea (x, y) un slem=aio
de 4 x (B C). Entonces xe 4 e y& B C. Por la definicién de interseccion y pertenece tanto a B como 2 C
Puestoque x£ A e y £ B, entonces (x, ¥)£ 4 x B. Portanto, puestoquexe de ye C resultague(x. vle 4 = ©

Se tiene, pues, que (x, y) pertenece a la interseccidn de 4 x By 4 x C. Con lo que queda demosirade gue
Ax (BNC)CT(A4 x By (4 x C).

Se demuestra luego que (4 x B) (M (4 x C) es un subconjunto de 4 x (B M C). Sea (z, ) un elemenio
de (4 x B) M (4 x C); entonces (z, w) pertenece a 4 x By (z, w) pertenece a 4 x C. De Io que se sigue gus
zeAyweB yquezed y weC. Como w pertenece tanto a B como a C, entonces w e B (M) C. Se tiens
pues, ze A y we B x C; entonces (z, wje A x (BN C). Queda demostrado que (4 x 8) "\ (4 % C) es un
subconjunto de 4 x (B M C). Por la Definicion 1-1, los conjuntos son iguales.

Sean S = {a, b}, W=1{1,2,3, 4,5} y V= {3,5, 7, 9}. Hallar (S x W) (S x V).
Solucion:

El conjunto producto (S x W) M (S x V) se puede hallar calculando primero § x Wy 8§ x ¥y averiguan-
do luego la interseccion de estos conjuntos. Pero, por el Problema 8,

Sx WMNESxV=8xWnNV
Asique WN ¥V =1{3, 5Ly
(SxW)NEx V)=8x (WN V)= {{a 3), (a, 5), (b, 3), (b, 5)}

GRAFOS DE FUNCIONES

10.

11.

12.

Dados W = {1, 2, 3, 4} y la funcién f: W — R definida por la férmula f{x) = x?, hallar el
grafo f* de la funcion f.
Solucion:

Primero se caleulan f(1) = 12 = 1, fi2) = 22 = 4, f(3) = 32 = 9, f(4) = 4* = 16. El grafo /* de f cons-

ta de los pares ordenados (x, f(x)), o sea de los (x, x?), donde x & W. Asi, pues, /* = {(1, 1}, (2, 4), (3, 9),
(4, 16)}.

Sean el conjunto ¥ = {a, b, ¢, d} y la funcién g : ¥ — V definida por ¢l diagrama de la Fig. 5-9.
Hallar el grafo g* de la funcién g y representar g* en el diagrama de coordenadas de V' x V.

d
¢
b
e
e
= o
a & ¢ d
Fig.5-9 Fig.5-10

Solucidén:

Segin el diagrama, g(a) = b, g(b) = ¢, gl¢) = b y g(d) = a. Por tanto, g* = {(a, b), (b, ¢}, (¢, b). (d, a)}.
En el diagrama de coordenadas de V' x V se sefialan los pares ordenados de g* como se ve en la Figura 5-10.

Sea la funcién #: R — R definida por A(x) = x + 3. Decir cudles de los pares signientes perte-
necen o no al grafo A* de la funcién A:

(a) (2, 6), (b) (8, 11), () (10, 12), (d) (4, 7), (e) (—6, —9), (f) (—1, 2).

Solucién:

(@ Hh(2) =2+ 3 = 5; asi (2, 6) no pertenece a h*. (d) hid) =4+ 3 =T:asi (4, T)eh*

(b) Ah{B) = 8 + 3 = 11; asi (8, 11) pertenece a A*. (e) h{—6)= —6+ 3= —3;asi(-6, —9)¢h"
(¢) A(10) = 10 + 3 = 13; asi (10, 12) ¢ A*. (f) A(=1)= -1 +3=2;asi(—1,2)ch*
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Sea el conjunto S = {a, e, i, 0, u}. Sea g la funcion que a cada letra de S asigna la letra que le sigue
en el alfabeto. Hallar el grafo g* de la funcion g.
Solucion:
Se averiguan primero gla) = b.gle) = [ gli) = j.glo) = oy glu) = . Asi
g* = {a. b te. O3 ) (o, pl e, o))

FUNCIONES COMO PARES ORDENADOS

i4.

15.

Sea ¢l conjunto ¥ = {1, 2, 3, 4!. Entre los siguientes conjuntos de pares ordenados decir cudles
son o no funciones de V en V.

(1) fi = {(2,3),(1,4),(2,1), (3,2), (4. 4)}

(20 f: = (3,1}, (4,2), (1, 1))

(3) fa— 12,1),(3,4),(1,4),(2,1), (4,4)}
(4) fi = {(2,3),(1,6), (4,2), (3.4)}
Solucion:

Notese primero que, segin la Definicidn 5-1, un subconjunto fde } x V es una funcion f: F — 1751 cada
x & V apuarcce como primer elemento en un par ordenado de [y solo en uno.

(1} Como dos pares ordenados diferentes (2. 3) £ f, ¥ {2, 1) £/, tienen el mismo primer elemento. f; no es una
funcion de Ven V.

(2) Eleclemento 2 & ¥ no aparece como primer ¢._.naento en ningin par ordenado perteneciente a /3. Asi, pues.
/7 no es una funcion de ¥en V.

(3) El conjunto f; es una funcion de 1" en 1. Aunque 2 estd de primer elemento en dos pares ordenados, ¢st0s
dos pares son iguales.

(4) Si bien cada elemento de } aparece como primer elemento en uno. y solo en uno, de los pares ordenados
de f, el conjunto f; no es una funcién de " en J* porque f; no es un subconjunto de ¥ x 1% En efecto,
(I.6)ef,. pero (1, 6)¢ V = V.

Dado W = {a, b, ¢, d}, decir en qué casos los siguientes conjuntos de puntos de cada diagrama
de coordenadas de W x W constituyen una funcidn de W en W.

o ‘% d ! = It —'4—#4.» i -4'—0'—L--——'
¢ —— ¢ *— i W S E ¢ l =il
b b i b : bl—e
B CE ﬂ—m
a & ¢ d a b ¢ o a b ¢ d a b ¢ d
(1) (2) (3) 4)
Solucidén:

Tener en cuenta primero que un conjunto de pumos en un diagrama de coordenadas es una funcion siem-
pre que cada recta vertical contenga uno, ¥ solo uno, de los puntos del conjunto.

{1} La vertical por b contiene dos puntos del conjunto; lurgo el conjunto ne es una funcién de Wen W.

(2) Como cada vertical contiene un punto, y solo uno, del conjunto, este conjunto si es una funcién de Wen W.
El hecho de que la horizontal por ¢ contenga tres puntos no contraria las propiedades de una funcion.

(3) La vertical por ¢ no contiene ningln punto del conjunto; por tanto. esle conjunto no es una funcién de
Woen W.

(4) Por la misma razén que en (2}, este conjunto si es una funcion de ¥ en W.
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16.

17.

18.

19.

Dados R=1{1,2,3,4,5 6} yS=1{1,2 3, 4}, seag

¢i conjunto de puntos en el diagrama de coordenadas 4 +
de R x S que aparece a la derecha y que es una funcion 3 .x

de R en S. 1
(a)Hallar g(2), g(4), g(6). (b) Hallarg=*(2),g " '(3), g7 ' (4). 2 : *
(c)Hallar {x | x & R, g(x) < 3}. 1
Solucion: |

{(a) Para_averiguar g(2) se busca el punto de g que esta en la vertical
por 2; el punto es (2, 4) y, por tanto, g(2) = 4, el segundo clemen-
to del par ordenado.

La vertical por 4 contiene al punto (4, 1) de g, asi que g(4) = 1.
La vertical por 6 contiene al punto (6, 4); por tanto, g(6) = 4.

(b) Para averiguar g~ (2) se buscan los puntos que estdn sobre la horizontal por 2. Son (1, 2) y (5,2). g~ 2)
consiste en los primeros elementos de estos pares ordenados, esto es, g~ ' (2) = {1, 5}. Nétese que los parcs
ordenados (1, 2) y (5, 2) de g significan que g(1) =2y g(5) = 2.

La horizontal por 3 contiene solamente el punto (3, 3) de g; entonces g~ (3) = {3}.
La horizontal por 4 contiene los puntos (2, 4) y (6, 4) de g. Entonces g ™! (4) = {2, 6}.

{(c) Notar primeramente que g(1) = 2, g(2) = 4, g(3) = 3, g(4) = 1, g(5) = 2, g6} = 4. El conjunto {x | xX&R,
glx) < 3} consiste en los elementos de R cuya imagen es menor que 3, ¢s decir, cuya imagen es 1 6 2.
El conjunto es {1, 4, 5}. Geométricamente, este conjunto es ¢l de los primeros elementos de los puntos de
£ que quedan debajo de la horizontal por 3.

Sea h el conjunto de puntos del diagrama de coordenadas de E x F que es una funcién

de E en F.

(a) Si cada horizontal contiene a lo mds un punte de A, jqué tipo de funcién es A?

() Si cada horizontal contiene al menos un punto de k, jqué tipo de funcién es h?

Solucidn:

(@) Si cada horizontal contiene a lo mas un punto de A, entonces, para todo x £ F, A~ (x) es vacio o consiste en
un elemento de E. Asi que A es una funcion inyectiva,

(b) Si cada horizontal contiene al menos un punto de A, entonces,-para todo x & F, ™! (x) no es vacio. Luego
h es una funcion sobreyectiva.
.En qué condiciones el conjunto de pares ordenados
f=101,5), 3, 1) (4, 7). (=2, =3)'
define una funcion de 4 en B?

Solucidén:

El conjunto f definird una funcion’ de 4 en B si f es un subconjunto de 4 x By si cada elemento de 4
aparece como primer elemento en un par ordenado de f, y solo en uno. Segin esto, 4 debe ser igual al con-
junto de los primeros elementos de £, es decir, 4 = {1, 3, 4, —2}; y B debe contener al conjunto de los segun-
dos elementos de f, esto es, {5, 1,7, =3} C B.

Sea W = [ —4, 4]. Entre los siguientes conjuntos de puntos representados en el diagrama de coor-
denadas de W x W decir cudl es o cudl no es una funcién de W en W.

al i

—F u
& N -UII : :
‘24

(1} (2)
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3 AL A
2, 1/ oy / \/4

w4

Solucion:
Segin la Observacion 5-4, tener en cuenla que un conjunto de puntos de un diagrama de coordenadas es
una funcion si cada linea vertical contiene un punto del conjunto, y solo uno.

(1) Como las verticales contienen dos puntos del conjunto, el conjunto de puntos no es una funcion de Wen W.

(2) Como las verticales proximas al eje vertical no contienen ningin punto del conjunto, el conjunto de pun-
tos no es una funcién de Wen W.

{3} Las verticales que cortan el circulo contendran dos puntos del conjunto; entonces ¢l conjunto de puntos
no es und funcion de Wen W.

{4) El conjunto de puntos es una funcion de W en W porque cada vertical contiene un punto del conjunto, y
solo uno.

Sea 4 = {a, b, ¢, d}. El conjunto
{{a, b), (b, d), (c, a), (d. c)}
es una funcion inyectiva y sobreyectiva de 4 en 4. Encontrar la funcion reciproca.

Solucidn:

Para encontrar la funcidn reciproca, permitense los elementos en cada par ordenado. Asi, la funcién re-
ciproca es
{(b. @), (d. b), (a. c), (¢, d)}

Problemas propuestos

PARES ORDENADOS Y CONJUNTOS PRODUCTO

21.

22,

Suponiendo que (y — 2, 2x + 1) = (x — 1, y + 2), hallar x e ).

Hallar los pares ordenados que corresponden a los puntos Py, P,, Py y P, que aparccen en el diagrama de coor-
denadas de {1, 2, 3, 4} x {2, 4, 6, B} que sigue

Py

P

LR S -]
1

- P'

Frea o
Sea W = [Marcos, Enrique, Pablo} y sea ¥ = {Enrique, David}. Averiguar (1) W x ¥, (2) ¥ x W, (3) ¥ x V.

Representar, sombreando el drea apropiada, cada uno de los conjuntos producto siguientes en un diagrama de
coordenadas de R x R.

3% [~1,2] - (3) [=3,1[ x J—o0,2]

Ix[-nl @ [-31[ x]-2.2]

Sean 4 = {2,3}], B = {1, 3, 5} y C = {3, 4}. Construir el «diagrama en 4arbol» de 4 x 8 x C como en el Pro-
blema 7 y averiguar entonces 4 x B x C.
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26. Sean § = {a,b.c}, T = {b,c.d} y W = [a. d}. Construir el «diagrama en drbol» de § x T x W y hallar luego
Sx Tx W

27. Sean los conjuntos V, Wy Z con 3, 4 y 5 elementos, respectivamente. ;Cudntos elementos hayen (1) 17 x W x Z.
RIZx Vx W, 3)WxZx V?
28. Sea A = BN C. ;Qué hay cierto en lo que sigue, si lo hay?
(1) 4 xA=(Bx By I(C = C) 2) Ax A=(Bx C)NIC x B)

GRAFOS DE FUNCIONES
29. Dados M = {1, 2, 3, 4, 5} y la funcién f: M — R definida por
fixy=x*+2x— 1
hallar el grafo de f.

30. Sean W = {1, 2, 3, 4} y la funcién g : W — W definida por el diagrama

(1) Hallar el grafo de g. (2) Representar el grafo de g en el diagrama de coordenadas de W x W,

31. Sea la funcion A : R — R definida por la formula
hix)=2x — |
Decir si1 los siguientes pares ordenados pertenecen o no al grafo de A:
(@) (3, 5), (B) (=2, =5), (c) (=4, = 7). (d) (8, 17), (e} (=3, =5), (/) (4, 7).
32. Sea la funcion g que asigna a cada nombre del conjunto
{Berta, Martin, David, Abel, Rebeca}

el nimero de letras distintas que sc necesitan para escribir el nombre. Hallar el grafo de g.

33. Cada una de las siguientes formulas define una funcién de R en R. Hacer el grafo de cada funcion en el diagra-
ma cartesiano de R x R.

) flr) = 22— 1 (8) flx) = la]
@) flz) = 2 ~2zx -1 (4) flz) =z — 2z

FUNCIONES COMO PARES ORDENADOS

3. Sea W = {a, b, ¢, d}. Decir de los siguientes conjuntos de pares ordenados cuiles son y cudles no son funciones
de Wen W.

(1} {{b,a), (c,d), (d,a), (c,d), (a,d)} (3) {{a, b}, (b, d), (c,b), {d.b}}
2) {{d,d), (e,a), (a,b), (d,b)} (4} Ha,a), (b,a), (a,b), (e, d)}

35, Dado V = {l, 2, 3, 4} decir cuiles de los conjuntos de puntos de los siguientes diagramas de coordenadas de
V x V son o no funciones de V" en V.

4 -

[ =

3
2

L
[
L

e
.
-
[
F
.
[}
(3
-

(1) (2) (3) (4)
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36. Dados 4 = {1, 2, 3, 4,5}/, el conjunto de puntos que se representan en primer diagrama de A x A4 y g ef con-
junto de puntos representados en el segundo diagrama.

B 5
4 4
3 8
2 2
1 1
1 2 3 4 5 1 2 3 4
Representacion de Representacion de g

Resulta que f ¥ g son funciones de 4 en 4. Averiguar

(1) f(3) (3) F1(2) (5) F'(4) (7) funcion producto feg (9) iz | flx) = 4}
(2) g{6) (4 g~'(1) (6) funcién producio gof (8) F'({1,2}) (10} {z | g{z) > 2}

- 37. Sea la funcidén f: A — B representada en un diagrama de coordenadas de 4 x B. ;Qué propiedad geométrica
tiene fsi (1) f'es inyectiva, (2) f es una funcién constante. (3) si f es sobreyectiva. (4) si f tiene una reciproca /1.

38. Dado 8 = [ -4, 4], decir cudando los puntos representados en cada uno de los diagramas de coordenadas de B x 8
que siguen es una funcién de Ben B.

2 T

/AN 3.y 4 P
N =

AW

e
&
=

A Ay

(4) (5 (8)

PROBLEMAS DIVERSOS

.39. Representar, sombreando el drea apropiada, cada uno de los conjuntos productos gue siguen en un diagrama
cartesiano de R x R.
(1) {z] -8<x=2) % {x| 2<zx<4! 9 {rjr=<1 x {r| -2=2<3
(2) {x | |z] <3} % {2 | |x] =1} Y {x|aoe>-2} X {z|z=3}
3 lz||x=2) % {z]x>-3]

40. Cada una de las formulas que siguen define una funcion de R en R. Representar cada una de estas funciones en
un diagrama cartesiano de R x R.

? 33—z sixa>2
1 = 4x — g = = siz=0 s ; =
(1) flz) =dz—2' (2) flz) =z+2)z] (3) flz}e= {1—:: G n<cp @B {; 3 E:|< _22
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Respuestas a los problemas propuestos

21, x=2,p=13

2. Pr=(L4),P;=1028)P=4.6), P =(3,2).

23. (1) W x ¥V = {(Marcos, Enrique), (Marcos, David), (Enrique, Enrique), (Enrique, David), (Pablo, Enrigael.

(Pablo, David)}.

2) ¥ x W = {(Enrique, Marcos), (David, iarces), (Enrique, Enrigue), (David, Enrique), (Enrique, Pablo).

(David, Pablo)!.

(3) V¥V x V = {(Enrique, Enrique), (Enrique, David), (David, Enrique), (David, David)}.

(2)

(4)

{(2,1,2), (2,1,4), \2,8,3), (2,3,4), (2,5,3), (2,5,4),

(3,1,3), (3,1,4), (3,3,8), (3,8,4), (3,5,3), (3,5,4)}

{{a, b,a), (a,b,d), (a,¢,a), (a,¢,d), (a,d,a), (a,d,d)

(b, b, a), (b,b,d), (b,c,a), (b.c,d), (b,d,a), (b,d,d),
(c,b,a), (e, b,d), (c,c,a), (c,c,d), (c.d, ), (c.d,d)}

—d 4
12
+-4
(3: ¢
= 2 4
25, Ver Fig. 5-11.
AXBx(C =
26. Ver Fig. 5-12.
SXTXW =
3
1:::4
2 3<i
3
5€::4
3
1¢::4
3 3{1:2
2
Sﬂ::4

Fig.5-11

b-::::__";
a C{::fi
a’-i:;
b-:::__’__"s

b/c{;

d<::3
bﬁ::E

€ c{;

d==""%

Fig.5-12
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27.

29,

3.
32.

33

34.
35.

a7

CONJUNTOS PRODUCTO Y GRAFOS DE FUNCIONES

Cada uno tiene 60 elementos.
Ambas son ciertas.

AxA = (BXBn(ICX() = (BXxCn(C X B)
{(1,2), (2,7), (3,14), (4,28), (5,34)}

(1 {(1,3), (2,2), (3,4), (4,2)}
2) 4

3
2
1

1 2 3 4
{) Si. (b) Si. (c) No. (d) Na. (e) No. (f) Si.
{(Berta, 4), (Martin, 6). (David. 4), (Abel, 4). (Rebeca, 5)}.
(1) J (2)

-5

(3) (4)

(1) 8i, (2) No, (3) Si, (4) No.
(1) No, {2) No, (3} Si. (4) No.

5 (5) {4} (8) {1,2,5}

1 (E) {{1: 3)! (2- 1), (3: 1)1 ("h 3}, [5:- 3)} (9) {1. 2,4, 5}
{1,6} (7) {(1,2), (2,5), (3,2), (4,5), (5,2)} (10) {2,3,4}
{

(1) Cada horizontal contiene a lo mas un punto.
(2) Una horizontal contiene todos los puntos.

{3) Cada horizontal contiene al menos un punto,
{4) Cada horizontal contiene un punto, y solo uno.

{1 8i. (2) No, (3) No, (4) 8i, (5) No. (6) Si.

[CAP.



Capitulo 6

Relaciones ;

FUNCIONES LOGICAS, ENUNCIADOS FORMALES

Se llama funcion logica definida sobre el producto cartesiano 4 x B de dos conjuntos 4 y B, una
expresién denotada por

P(x, y)
que se caracteriza porque cuando en P(x, y) se sustituyen las variables x e y, respectivamente, por
a y b, se convierte en un enunciado ya verdadero, ya falso, para todo par ordenado (a, b)e A x B. Por
ejemplo, si A es el conjunto de autores y B el de dramas, entonces
Plx, y) = «x escribio y»

es una funcidn légica sobre 4 x B. Por ejemplo:

P(Shakespeare, Hamlet) = «Shakespeare escribid el Hamler» /
P(Shakespeare, Fausto) = «Shakespeare escribié el Fauston {

son verdadero y falso, respectivamente.
La expresion misma P(x, y) se dice enunciado formal en dos variables, o simplemente, enunciado
Jormal. Ejemplos de enunciados formales son los siguientes:

Ejemplo 1-1: «x es menor que y».

Ejemplo 1-2: «x pesa y kilos»,

Ejemplo 1-3: «x divide a y».

Ejemplo 14: «x es la esposa de y».

Ejemplo 1-5: «El cuadrado de x mds el cuadrado de y da dieciséis», o sea «x? + y2 = 16».
Ejemplo 1-6: «El tridangulo x es semejante al tridngulo y».

En todos estos ejemplos hay dos variables, pero también pueden darse enunciados en una varia-
ble, como «x estd en las Naciones Unidas», o en mas de dos variables, como «x por y igual z».

RELACIONES

Una relacion ® consiste en lo siguiente:

(1) Un conjunto A.

(2) Un conjunto B.

(3) Un enunciado formal P(x, ) tal que P{a, b) es verdadero o falso para todo par ordena-
do (a, ) de A x B.

Se dice entonces que ® es una relacion enire A y B y se la denota por
®R = (4, B, Plx, y))
81
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Ademas, si Pla, b) es verdadero, se escribe
a®R b

que se lee «a estd relacionado con b»; y si Pla, b) es falso, se escribe

i aqib

que sc¢ lee «g no estd relacionado con b».

Ejemplo 2-1: Sea R, = (R, R, P(x, v)). donde P(x, y) se supone significar «x es menor que v». Es claro que
®, es una relacion, porque Pla, b). 0 lo que es lo mismo, «a < b», es verdadero o falso para
todo par ordenado (g, £) de nimeros reales. Asi, pues, como P(2, n) es verdadero, sc pucde

ibi
escribir X

¥ puesto quc P(3, \;"—2 ) es falso,
5®, /2

Ejemple 2-2: Sea ®; = (4, B, Pl(x, y)). donde 4 es el conjunto de los hombres, B es el conjunto de las mu-
jeres y Plx, y) es «x es el marido de p». ®; es una relacion ciertamente.

Ejemplo 2-3: Sea ®R; = (N, N, Pix, ), donde N es ¢l conjunto de los nimeros naturales y Pix, y) se lee
«x divide a y». R, es entonces una relacion y evidentemente

IR, 12, 2@y 7. SR, 15,6, 13

Ejemplo 2-4: Sea &, = (4, B, P(x, y)), siendo 4 el conjunto de los hombres, B el de las mujeres y Pix. )
quiere decir «x divide a y». Aqui ®, no es una relacion, pues Pla, b) carece de significado si
a es un hombre y b una mujer.

Ejemplo 2-5: Sea R, = (N, N, P(x, y)), siendo N los nimeros naturales y donde P(x, y) significa «x es me-
nor que w». Aqui ®y cs una relacion,

Es de observar que ®, y ®;s no son la misma relacion, pese a venir ambas definidas por

el mismo enunciado formal.

Sea ® = (A, B, P(x, y)) una relacidn. Se dice gque ¢l enunciado formal P(x, y) define una relacion
entre A y B. Ademds, si 4 = B, se dice que P(x, y) define una relacién en 4 o que ® es una
relacion en A.

Ejemplo 2-6: El enunciado formal P(x, y). que se lee «x es menor que y», define una relacién en los nime-
ros racionales.

Ejemplo 2-7: El enunciado formal «x es el esposo de y» define una relacion entre el conjunto de hombres
y el conjunto de mujeres.

Terminologia: Hay autores que llaman relacion a la expresion P(x, y), dando por sentado impli-
citamente que las variables x e y tienen por dominios respectivos ciertos conjuntos 4 y B, es decir, que
P(x, y) es una funcion logica definida sobre cierto conjunto producto 4 x B. Aqui se mantendrd la de-
nominacion ya dicha, donde P(x, y) es simplemente un enunciado formal y, por tanto, una relacidn
consiste en P(x, y) y dos conjuntos dados 4 y B.

CONJUNTOS DE SOLUCION Y GRAFOS DE RELACIONES

Sea ® = (A, 3, P(x, «)) una relacién. El conjunto de los elementos (a, ) de 4 x B para los cuales
Pla, b) es ~erdadero, se llama conjunto solucion ®* de la relacion ®. Es decir,

®R* = {(a, b) |ae A, be B, Pla, b) es cierto}

Es claro que ®*, conjunto solucion de una relacion ® entre 4 y B, es un subconjunto de 4 x B. Por
tanto, ®* se puede representar o mostrar en el diagrama de coordenadas de 4 x B.

El grafo de una relacion & entre A y B consta de los puntos del diagrama de coordenadas de 4 x B
que pertenecen al conjunto solucion de ®.
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Ejemplo 3-1: Sea ® = (4, B, P(x, y)). donde 4 = {2, 3. 4], B = |3, 4. 5, 6} y P(x, y) significa «x divide
a y». Entonces el conjunto solucién de ® es

®* = {(2.4), (2, 6). (3. 3). (3. 6). (4. 4)}

En el diagrama de coordenadas de 4 x B que aparece en la Fig. 6-1 se muestra el conjunto
solucién de R.

[+

ra

Fig. 6-1 ®* en sombreado
Fig. 6-2
Ejemplo 3-2: Sea @& la relacion definida en los nimeros reales por
y<x+1

Lu porcién sombreada del diagrama cartesiano de R x R en la Fig. 6-2 consiste en los puntos
que pertenecen a R*, conjunto solucién de G, o sea que es el grafo de A.

Notese que ®* esta formado por los puntos debajo de la recta v = x + 1. La recta
vy = x + | se representa en linea de trazos para indicar que los puntos de esa recta no per-
tenccen a M*.

RELACIONES COMO CONJUNTOS DE PARES ORDENADOS

Sea R* un subconjunto de 4 x B. Puede definirse una relacion & = (4, B, P(x, y)), donde P(x, y)
signifique
«El par ordenado (x, y) pertenece a ®*»

El conjunto de solucidn de esta relacién ® es el conjunto original ®*. Asi, a toda relacion ® = (4. B,
P(x, ¥)) corresponde un conjunto de solucién Unico, ®*, que es un subconjunto de 4 x B, y a cada
subconjunto ®* de A x B corresponde una relacion ® = (A, B, P(x, y)) de la cnal es ®* el conjunto
de solucion. En vista de esta correspondencia inyectiva y sobreyectiva entre relaciones ® = (4, B,
P(x, 1)) y subconjuntos ®* de 4 x B, se puede definir también una relacion asi:

Definicion 6-1: Una relacion ® entre 4 y B es un subconjunto de 4 x B.

Si bien la Definicidn 6-1 de una relacion puede parecer artificiosa, tiene sin embargo, la ventaja
de que no se sirve de conceptos no definidos como «enunciade formal» y «variablen para definir una
relacton,

Ejemplo 4-1: Scan 4 = {1.2 3} y B = {a, b}. Entonces
® = {(1, @), (1, b). (3, a)}
es unz relacion entre 4 y 8. Se tiene
1Ra, 2Rp, 3Ra IRH
Ejemplo 4-2: Sea W = |a. b, ¢;. Entonces
® = {(a, b). (a, ¢), {e, ). {c. b}
es una relacion, y entonces
«Ra. bRa cRe a®Rb
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Ejemplo 4-3:

RELACIONES [CAP. 6

Sen
®R=lx. )| xeR yER y < X}

Asi que ® es un conjunto de pares ordenados de nimeros reales, o sea gue es un subconjunto
de R x R. Por consiguivnte, ® vs una relacién en los nimeros reales que se podria definir

asimismo por ® = (R, R, Plx. v))

habiéndose de leer P{x. y} «y €5 menor que x»,

Observacién 6-1: Si el conjunto A tienc m clementos y el B tiene n elementos, hay entonces 2™ rela-
ciones distintas entre 4 y B, porque 4 x B, que ticne mn elementos, tiene 2™ sub-
conjuntos diferentes.

RELACIONES RECIPROCAS

Toda relacion @ entre 4 y B tiene una relacion reciproca ® ™' entre By 4, que s¢ define por

® = {(b. a)|la. b)e@R]

Es decir. la relacién reciproca ® ' consta de los pares ordenados que al ser invertidos, es decir, per-
mutados, pertenecen a ®.

Ejemplo 5-1:

Ejempio 5-2:

Sean 4 = /1.2, 3] y 8= la, b]. Entonces
® = {(1, @), (1, b), (3, a}}

es una relacion entre 4 y B. La relacion reciproca de la ® es

R = {a, 1) (b 1), (@, 3)]
Sea W = la, b. c}. Entonces

® = I(a, b), (a, ), (c, ), (¢, )}
es una relacion en W. La relacion reciproca de esta R es
6 = (b al (e, ak (e o) (b, ci}

RELACIONES REFLEXIVAS

Sca® = (4, 4,

P(x. ¥)) una relacion en un conjunto A, s decir, sea ® un subconjunto de 4 x A.

Se dice que @ es una relucion reflexiva si, para todo ¢ &4,

{a, u) e ®

o lo que es lo mismo, ® es reflexiva si todo elemento de A esta relacionado consigo mismo.

Ejemplo 6-1:

Ejemplo 6-2:

Ejemplo 6-3:

Ejemplo 6-4:

Sean ¥ = 11,2, 3.4} y

®o= (1,1, (2,4), (3, 3) (4 1), (4, 4)}
Esta ® no es una relacion reflexiva, ya que (2, 2) no pertenece a ®. Téngase en cuenta que
todos los pares ordenados (4, a) deben pertenecer a B para que @ sea reflexiva.
Sea A el conjunto de triangulos del plano euclidiano. La relacién ® definida en A por el
enunciado formal «x es semejante a y» es una relacion reflexiva porgue todo triangulo es se-
mejante a si mismo.
Sea (® la relacion definida en los nliimeros reales por el enunciado formal «x es menor que y»,
¢s decir, «x < y». Aqui B no es reflexiva, puesto que a 4 a para todo niimero real «.
Sea of una familia de conjuntos y sea @ la relacion definida en & por «x s un subconjunto
de y». Esta relacion ® es reflexiva porque todo conjunte es subconjunto de si mismo.

RELACIONES SIMETRICAS

Sca & un subconjunto de 4 x A, es decir, sea ® una relacion en 4. Se dice que R es una relacion

simétrica sl

{(«, b)e® implica (b, a)e@®

esto es. que si ¢ estd relacionado con b, entonces b estd relacionado con a.
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Ejemplo 7-1:

Ejemplo 7-2:

Ejemplo 7-3:

Observacion 6-2:

RELACIONES 835

Sean § = {1,2, 3,4} y

® = {(1,3), 4,2),(2,4),2,3).3, 1)}
Aqui & no es una relacion simétrica, puesto que

(2,3)e® pero (3,2)ER

Sea A el conjunto de los tridngulos del plano euclidiano, y sea ® la relacion en A4 definida
por ¢l enunciado formal «x es semejante a y». Entonces R es simétrica, puesto que si el tridn-
gulo a es semejante al tridngulo b, entonces el tridngulo b es también semejante al 4.
Sea (R la relacion en los niimeros naturales N que viene definida por «x divide a y». Esta ®
no es simétrica, pues si 2 divide a 4, 4 no divide a 2. Es decir,

2,4)e® pero (4, 2)f®

Como (o, b) € R implica que (b, a) pertenece a la relacion reciproca ™!, R es una

relacion simetrica si, y solamente si,

R=@®"

RELACIONES ANTISIMETRICAS

Una relacién & en un conjunto A, o sea un subconjunto de A x A, se dice relacion antisimétrica si

{a, b)e® y (b, a)e ®R implican a = b

—# O, en otras palabras, si @ # b, entonces puede a estar relacionado con b, o bien b relacionado con a,
pero no las dos cosas.

Ejemplo 8-1:

Ejemplo 8-2:

Ejemplo 8-3:

Sea N el conjunto de los nimeros naturales y ® sea la relacion definida en N por «x divide
a y». Esta B es antisimétrica, puesto que a divide a & y b divide a g implican a = b.

Sea W = {1,2,3,4} ysea
®R={(1,3)(42), 44,24}
no €s una relacion antisimétrica en W, pues
4,2)e® y (2,4)e®

Sea & una familia de conjuntos, y sea & la relacion definida en & por «x es un subconjunto
de y». Esta relacion ® es antisimétrica porque

ACByB(CA umplca A=8

Observacion 6-3: Sea D la diagonal de A x A, esto es, el conjunto de todos los pares ordenados
(@, a)e A x A. Entonces una relacion ® en A4 es antisimétrica si, y solamente si,

RNR'CD

RELACIONES TRANSITIVAS

Una relacion ® en un conjunto 4 se dice relacicon transitiva si

(@, b)e®R y (b, c)e® implica (g, c)e®

O sea que si a estd relacionado con b, y b estd relacionado con ¢, entonces a estd relacionado con ¢.

Ejemplo 9-1:

Ejemplo 9-2:

Sea A el conjunto de gentes de la Tierra. Sea (t la relacién en 4 definida por el enunciado for-
mal «x ama a y». Siaama a by b ama a ¢, no se sigue necesariamente que ¢ ama a ¢. Asi
que | no es una relacién transitiva.

Sea R la relacion definida en los nimeros reales por «x es menor que y». Entonces, como
ya se ha demostrado,

a<byb<c implica a<c¢
Por tanto, ® es una relacion transitiva.
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*  Ejemplo 9-3: Sea W = {a, b ¢l ysea
®R = {(a, b), (¢, b), (b, a). (a. ¢)}
Esta relacién R no es transitiva porque
(c.b)e®R y (b,a)e® pero (c.a)i®
Ejemplo 94: Dada «, una familia de conjuntos, sea ® : relacion definida en & por «x es un subcenjunto
de y». Aqui & es una relacion transitiva porque
ACByYy BCC wmplica ACC

RELACIONES DE EQUIVALENCIA
’ Una relacién ® en un conjunto A es una relacién de equivalencia si

(1) ® es reflexiva, esto es, para todo ae 4, (a. a)e R.
{2) ® es simétrica, esto es, (. b)e R 1mplica (b, a) e R.
(3) ® es transitiva, esto es, (a, b)e@®, y (b, ¢)e ® implican (a4, c)e ®.

Mas adelante se hard un estudio mas completo de las relaciones de equivalencia en conjuntos. Baste
ahora con dos ejemplos de relaciones de equivalencia.
Ejemplo 10-1: Sea 4 el conjunto de tridngulos del plano euclidiano. Sea ® la relacion en 4 definida por
«x es semejante a y». Entonces, como se demuestra en geometria. ® es reflexiva, simétnica
y transitiva y. por tanto, ® es una relacion de equivalencia.
Ejemplo 10-2: El gjemplo mas importante de relacion de equivalencia es el de la «ignaldad». Para cuales-
quiera elementos en todo conjunto:
(1) a=a,
(2) a= b implica b =aq,
(3) a=by b= c implican a = c.

DOMINIO DE DEFINICION Y DOMINIO DE IMAGENES DE UNA RELACION

Sea R una relacion entre 4 y B, ¢s decir, sea & un subconjunto de A x B. El dominio de definicion D
o dominio simplemente de la relacién ® es el conjunto de todos los primeros elementos de los pares or-
denados que pertenecen a ®, o sea

D={a|aed, (a b)c®]

El dominio de imdgenes E de la relacion B consiste en todos los segundos elementos que aparecen en
los pares ordenados, o sea

E={b|beB, (a be®}

Se ve que ¢l dominio de definicion de una relacién entre 4 y B es un subconjunto de 4 y que su domi-
nio de imagenes es un subconjunto de B.
Ejemplo 11-1: Sean 4 = {1,2,3, 4}, B={a, b, ¢}y
® = {(2. a), (4, a), (4. 0)} 4]
Aqui el dominio de definicion de R es el conjunto |
{2, 4} y el dominio de imagenes de ® es el conjun- 2
to {a. c}. /_
Ejemplo 11-2: Sea la relacion ® definida en los nimeros reales 2 ] L
por el enunciado formal «dx? + 9y* = 36». Se n 1 .
muestra ® en el diagrama de coordenadas cartesia-
nas de R x Ren la figura de la derecha. El dominio -2
de definicion de @ es el intervalo cerrado [—3, 3] ]

_ ¥y €l dominio de imagenes de ® es el intervalo ce-
rrado [-2, 2]. Y

Observacién 6-4: Sea una relacion R entre 4 y B reprcsentada en un diagrama de coordenadas de
A x B. Entonces a € A4 esta en el dominio de R si, y solamente si, la vertical por a
contiene un punto del grafo de ®. Asimismo, b € B estd en el dominio de imagenes
de @& si, y solamente si, la horizental por 4 contiene un punto del grafo de ®.

-4 4
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RELACIONES Y FUNCIONES
Repitamos la
Definicion 5-1: Una funcién f'de 4 en B es un subconjunto de 4 x B en cl cual cada a € A4 aparec
como primer elemento en un par ordenado de f y solo en uno.

Como todo subconjunte de 4 x B es una relacion, una funcidn es un tipo especial de relacion.
Asi, por ejemplo, los términos «dominio de definicion» y «dominio de imagenes» aparecen tanto en el
estudio de las funciones como en el de las relaciones.

Problema importante es en matemadticas el determinar si una relacion ® definida en los numeros
reales por una ecuacién de la forma

Flx, v)=20
es 0 no una funcién. Es decir, dada la relacion definida por
Flx. v) =10

(define una funcién y = f(x) esta relacion?
En general, este problema es en extremo dificil. Aqui solo se esta en posibilidad de resolver tal pre-
gunta en el caso de ecuaciones muy sencillas.

Ejemplo 12-1: Sea ® la relacion en los numeros reales definida por
x4yt =25
® se representa en el diagrama cartesiano R x R
de la Figura 6-3.

® es un circulo de radio 5 con el centro en el
origen. Hay. pues, muchas verticales que contie-
nen mas de un punto de ® y asi (3, 4)e B y tam-

bién (3, —4) ¢ ®, de modo que la relacion ® no es —5
una funcién. Representucion de (R
Fig. 6-3

Ejemplo 12-2: Sean 4 = [—35, 5], B = [0, =c[ v sea QR la relacion entre A y B definida por
x*+ =25
(® se representa en el diagrama de 4 x B de la Figura 6-4.

(R es la mitad superior de un circulo. pero aqui cada vertical contiene un punto, ¥ solo
uno, de ®; por tanto. & es una funcion.

4 x B en sombreado
Representacion de ® Representacion de (3

Fig. 6-4 Fig. 6-5

Ejemplo 12-3: Sea ® la relacion definida en los ndmeros reales por
v — =6
y que se representa 0. en el diagrama cartesiano de R x R de la Fig. 6-5. Aqui ® es una recta
y cada vertical contiene un punto. y solo uno. de ®R; & es. pues, una funcidn. Ademds, ¢x-
presando x por ) en la ecuacion anterior, se tiene una formula que define la funcion ®:

v = fm = E2Z2
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Problemas resueltos

PROPIEDADES FUNDAMENTALES DE LAS RELACIONES

1. Sea @ la relacién entre A ={1, 2, 3,4} y B ={1, 3, 5} definida por el enunciado formal «x es me-

nor que .
(1} qEncbnlrar el conjunto de solucién de ®, esto es, escribir ® como un conjunto de pares
ordenados. .
(2) Representar ® en un diagrama de coordenadas de 4 x B.
Solucion: g
(1) @ es el conjunto de los pares ordenados (a, b)e 4 x B para los cua- g
les a < h; entonces
® = (1. 3). (L. 5), (2,3), (2, 5), (3. 5). 4, 5)} 1
(2} @ se representa en el diagrama de coordenadasde A x Ben la figu-
ra de la derecha. 1 2 3 4

2. Sea ® la relacion entre £ = ]2, 3, 4, 5] y F = {3. 6. 7. 10} definida por ¢l enunciado formal
wy divide a y». i
(1) Eseribir ® como conjunto de pares ordenados, es decir; hallar el conjunto de solucion de R.
(2) Representar ® en un diagrama de coordenadas de E x F.

Solucion: 10
(1) Examinense los dieciséis elementos de E x F y elijanse aquelios pa-
res ordenados en que el primer elemento divida al segundo: entonces 1
® = (2. 6), (2. 10), {3, 3), (3, 6), (5. 103} [
i{2) @ aparece representada en el diagrama de coordenadas de £ »x F 3
en la figura de la derecha.
% i3 4 B
3. Sea M = {a, b, ¢, d} y sea una relacion ® en M represen-
tada por los puntos que se muestran en el diagrama de coor- d
denadas de M x M en la figura de la derecha.
(1) Decir qué es verdadero y qué falso en lo que sigue: [
(a) c @b, () dE,Ea, (c)a®Re, (d) PR H b
W T
2) Hallar%{x | (x. b)e @}, ¢s decir, encontrar todos los
elementos de M que cstan relacionados con b. im.l“--ll"' &
(3) Hallar {x|(d. x)&®}, esto es, encontrar todos los e
clementos de M que se relacionan con d. ;5 L e b ¢ d
Solucion: ;
(1) Notar primero que x ® v es verdadero si, y solamente si, (x, y) pertenece a (.
{a) Falso, pues (¢, by g R {c) Verdadero, pues (a.¢)g ®R.

(b) Falso, pues {d, a)e ®. (d) Falso, pues (b, b) & Gl

(2) La horizontal por b contiens todos los puntos de ® en los que b aparece de segundo elemento; contiene los
pares ordenados (a, ). (b, b) y (d. b) de 8. Asi que el conjunto pedido es {a, b, d}.

{(3) La vertical por d contiene todos los puntos de ® en que d aparece como primer elemento; contiene los pun-
tos (d, a) y (d, b) de ®. Asi que {a. b} es el conjunto pedido.

4. Cada uno de los enunciados formales siguientes define una relacién en los numeros reales. Repre-
sentar cada relacion en un diagrama cartesiano de R x R.

(1) y==* (B) y<3-x (5) y=2*
2) y==* (4) y=sengw (6) y > a®
Solucion:
Para representar una relacion en los numeros reales definida por un enunciado formal fal como
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(a) ¥ =flx)

(6) ¥ > fl=)

() = flx)

d y < flx)

(e) w=flz)
lo primero representar y = f{x) como es usual. Entonces la relacion, o sea ¢l conjunto buscado, constard de los
puntos o} eyl

() encima de y = f(x)

{c) encima de yen y = f(x)

(d) debajo de y = flx)

{e) debajo deyen y = f(x)

Y asi estas relaciones se representan como sigue:

/
!

6) y=>&*

(4) y =senx

Obsérvese de nuevo que la curva y = f(x) se hace con trazos si los puntos de y = f(x) no pertenecen 2 la re-
lacion. :

5. Cada uno de los enunciados formales que siguen define una relacién en los nimeros reales. Repre-
sentar cada relacién en el diagrama cartesiano de ® x ®.

(1) z2+y2 <16 (6 22+y*—16 <0) 38) =2+ =16
(2) 2—4y*=9 (o 22— 4y*—9=0) (4) =z2—4p* <9
Solucién:

Para representar graficamente una relacién en los nimeros reales definida por un enunciado formal del tipo
fix,y) < 0 (o=, >, =) representar primero f(x, ¥) = 0. La curva f(x, y) = 0, en los casos simples, divide el pla-
no en varias regiones. La relacion contendrd todos los puntos de una o més regiones posiblemente. Ensayar con uno
o mas puntos de cada regién para determinar si fodos los puntos de la regién pertenecen o no a la relacion.

La representacion de cada una de las relaciones anteriores es como sigue:

(1) 2)

4yt —16 <0
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(3) (4)

24y = 16

DOMINIOS DE DEFINICION, DOMINIOS DE IMAGENES Y RECIPROCAS

5.

Sea la relacion & = {(1, 5), (4. 5), (1, 4), (4. 6), (3, 7), (7, 6)}.

Averiguar (1)el dominio de definicion de ®, (2) el dominio de imagenes de ®, (3)la reciproca de ®.
Solucidén:

(1) El dominio de definicién de ® es el conjunto de los primeros elementos de ®; esc dominio de ® es

{1,4.3, 7}
{2) El dominio de imagenes de ® es el conjuntc de los segundos elementos de ®; asi que este dominjo de ima-
gEnes es (5,4.6,7)

{3) La reciproca de (® consiste en los mismos pares que ®. pero en orden inverso: entonces
®R™' = {(5, 1), (5, 4), (4, 1), (6, 4), (7. 3), (6, T)}

Sea T'= {1,2, 3,4, 5}, y sea una relacién R en T representada por el conjunto de puntos que se
indican en el siguiente diagrama de coordenadas de T x T,

= B2 o B En

2 348

Hallar (1) el dominio de definicién de ®, (2) el dominio de imagencs de ®, (3) 1a reciproca de (.

(4) Representar ®~! en el diagrama de coordenadas de T x T.

Solucion:

(1) El elemento x & T esta en el dominio de definicion de ® si, y solamente si, 1a vertical por x contiene un
punto de ®. Asi que el dominio de definicidn de ® es el conjunto {2, 4, 5}, pues la vertical por cada uno
de estos elementos, y solo por éstos, contiene puntos de ®,

(2} El elemento x & T estd en el dominio de imédgenes de ® si, y solamente si, la horizontal por x contiene un
punto de . Asi que dicho dominio de imagenes de (R es el conjunto {1, 2, 4}, pues la horizontal por cada
uno de estos elementos, y solo por éstos, contiene al menos un punto de ®,

{3) Como

®R=1@, 1) 24), 42)..4) (572
®R™ = {(1,2), (4,2), (2, 4), 4, 4), 2, 5)}

{4) ®"' se representa en el diagrama de coordenadas de T x T como sigue:

Ll - -

1 23405

Representacion de ®~!
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8.

10.

Sea ® = {(x, y)|xeR, ye R, 4x> + 9y* = 36). La representacién de ® en el diagrama de

R x R es:
2
-
\_2

3

Hallar (1) el dominio de definicidn de A, (2) el dominio de imagenes de ®, (3) R~ 1.
Solucidn:

(1) El dominio de definicién de ® es el intervalo [—3, 3], pues la vertical por cada uno de estos nimeros, y
solo gstos, contiene al menos un punto de G

{2) El dominio de imagenes de (R es el intervalo [ —2, 2], pues la horizontal por cada uno de estos elementos,
y solo por éstos, contiene al menos un punto de (.

(3) @' se encuentra intercambiando x e y en el enunciado formal que define a ®, luego
R = {(x.y)|xeR, pe R, Ix?* + 4% = 36}

{Qué relaciones, si las hay, existen entre el dominio de definicion y el de imagenes de una rela-
cion ® y entre los mismos dominios de R~'?
Solucién:

Como ®~* tiene los mismos pares que ® excepto que los tiene en orden inverso, cada primer elemento en
@ es segundo elemento en ® ™', v cada segundo elemento en ® es primer elemento en &', En consecuencia,
ci dominie de definicion de ® es el dominio de imagenes de &' y el dominio de imdgenes de ® es el dominio
de definicién de ® 1.

Sea ® la relacion en los nimeros naturales N = {1, 2, 3, ... } definida por el enunciado formal
«2x + y = 10», es decir,

® = {(x, )| xeN, yeN, 2x + y = 10}

Dar (1) el dominio de definicion de &, (2) el dominio de imagenes de &, (3) R~L
Solucién:

Observar primero que el conjunto de solucién de 2x + y = 10 es

® = {(1, 8), {2, 6), (3, 4), (4, 2)]

no obstante haber infinitos elementos en V.
(1) E! dominio de definicion de ®, que consiste en los primeros elementos de ®, es {1, 2. 3. 4}
{2) El dominio de imagenes de &, que consiste en los segundos elementos de ®, es {8, 6, 4, 2}.
{3) ® 7' se obtiene intercambiando x ¢ y en el enunciado formal que define a ®; por tanto,

R = {{v, ) |xeN yeN x+ 2y = 10}
Si, pues vomno ® ™' contiene los mismos pares que & pero en orden inverso, ® ™! se puede definir por
R~ = |(8, 1), (6, 2), (4, 3), (2, 4)}

RELACIONES REFLEXIVAS

11.

12,

i Cudndo una relacién ® en un conjunto A4 es no reflexiva?
Solucion:
® es no reflexiva si hay al menos un elemento a £ 4 1al que (a, a) £ R.

Sean W= {1, 2, 3, 4} y & = {(1, 1), (1, 3), (2, 2), (3, 1), (4, 4)}. (Es reflexiva R?
Solucidn:
® es no reflexiva porque 3 e Wy (3, 3)£®R.



92 RELACIONES [CAP. 6

13. Sea A un conjunto cualquiera y sea D la «diagonal» de 4 x 4, es decir, D es ¢l conjunto de todos
los {a, a) con a& A. (Qué relacién hay entre todas las relaciones reflexivas ® en A y D?

Solucion:
Toda relacion reflexiva ® en A debe contener la «diagonal», es decir, que D es un subconjunto de & si R
es reflexiva.

14. Los siguientes enunciados formales definen cada uno una relacién ® en los nimeros naturales N.
Decir en cada caso si la relacion es o no reflexiva.

(1) «x es menor o igual que w». (3) «x + y = 10m.
(2) «x divide a y». (4) «x e y son primos relativos».
Selucion:

(1) Como ¢ £ g para todo a € N, (a, a) e ®. Asi que (R es reflexiva,

(2) Puesto que todo nimero se divide a si mismo, la relacion es reflexiva.

(3) Siendo 3 + 3 # 10, 3 no esta relacionado sonsigo mismo y, por tanto, & no es reflexiva.
(4) El maximo comun divisor de 5y 5 es 5; asi, pues, (5, 5) £ ®, con lo que ® no es reflexiva.

15. Sea E = {1, 2, 3}. Examinense las siguientes relaciones en E:

®, = {(1, 2 G, 2) @ 2), @ 3} & = {01, 2))
(RZ = {(]s 2]$ (2, 3), (1, 3}} (R5 =FE % E
®Ry = {(1, 1), {2, 2), (2, 3), (3. 2). (3. 3)}

Decir de cada una de estas relaciones si es o no reflexiva.
Solucion:

Si una relacion en E es reflexiva, entonces (1, 1), (2, 2) ¥ (3, 3) deben pertenecer a la relacion. Asi, pues,
unicamente ®; y ® son reflexivas.

RELACIONES SIMETRICAS

16. ;Cuindo una relacion ® en un conjunto A es no simétrica?
Solucitn:
&t c< no simétrica si hay elementos a € 4, b € 4 tales que

fa, BYe®R, (b, a)f R
Notese que @ # b, sino (a, b) ¢ ® implica (b, a) e B

17. Dados ¥ = {1, 2,3, 4}y ® = {(1, 2), (3. 4}, (2, 1), (3, 3)}, (es R simétrica?
Solucion:
(R es no simétrica, puesto que 3e V, 4e V, (3,4)e Ry (4, 3) £ L.

=

18. ;Hay algin conjunto 4 en que toda relacién en A4 sea simétrica?
Solucién:
Si 4 es el conjunto vacio o si 4 solamente tiene un elemento, entonces toda relacion en A es simétrica.

19. Cada uno de los enunciados formales siguientes define una relacidén ® en los nimeros naturales V.
Decir de cada una si es o no una relacion simeétrica.
(1) «x es menor o igual que y». (3) «x+ y= 10n.
(2) «x divide a y». 4) «x + 2y =10»
Solucidn:

(1) Como 3= 5perol _$ 3,03, 5)e ® y (5, 3} £ R. Asi que ® no es simétrica.
{2) Como 2 divide a 4 pero no divide a 2, (2, 4)e R y (4, 2) ¢ R. Y asi, pues, R es no simétrica.
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20.

21.

(3) Sia+ b=10,b+ a=10; es decir, que si (a, b) £ R aqui se sigue que (b, a) e . R es, pues, simétrica.
(4) Se ve que (2, 4) & ® pero que (4, 2) ¢ ®, es decir, que 2 + 2(4) = 10 pero 4 + 2(2) = 10. ® es no simé-
trica.

Dado E = {1, 2, 3}, sean las siguientes relaciones en E:

®, = {(1, 1), (2, 1), 2, 2), 3, 2), (2, 3)} Re = {(1, 1), (3, 2), (2, 3)}
('Rz={(l,]]} R;=Ex E
R; = {(1, 2]}

Establecer si estas relaciones son o no simétricas.

Solucion:

(1) @&, es no simétrica puesto que (2, 1) & G, pero (1, 2) £ ®,. (4) O, es simétrica.

(2) ®, es simétrica. (5) ®; es simétrica.

{3) ®; no es simétrica ya que (1, 2) £ ®, pero (2, 1) ¢ ®,.

Demostrar: Sean ® y ®’ relaciones simétricas en un conjunto 4 ; entonces ® (M ®’ es una relacién
simétrica en A.
Solucién:

Siendo ® y ®’ subconjuntos de 4 x A, entonces ® M ®’ también es un subconjunto de 4 x A4 y, por con-
siguiente, es una relacion en A.

Sea («, b) e R M ®'. Entonces (a, b) e R y {a, ) e ®'. Como ® y ®’ son simétricas, (b, a) pertenece también
a My (h, @) pertenece también a R'; luego (b, a)e ® M) (.

Queda demostrado que (a, b) e ® (N ®’ implica (b, a)e @ MR’ y que, por tanto, R M R’ es simétrica.

RELACIONES ANTISIMETRICAS

22,

25,

(Cudndo una relacion ® en un conjunto A4 es no antisimétrica?
Solucién:
® es no antisimétrica si hay elementos ae 4, bg A, a + b, tales que (a, b)e R y (b, a) s R.

Sea W= {1,2,3,4} y® = {(1, 2), (3, 4), (2, 2), (3, 3), (2, 1)}. {Es ® antisimétrica?
Solucion:
(& es no antisimétrica, porque le W,2e W, 1+ 2,(1,2)e®Ry (2 e®R.

{Puede una relacién ® en un conjunto A ser simétrica y antisimétrica?
Solucién: %
Cualquier subconjunto de la «diagonal» de A x A, esto es, cualquier relacion 0 en A4 en la que

(a, ) e ® implique a = &

es tanto simeétrica como antisimétrica,

Sea E = {1, 2, 3}. Considérense las siguicntes relaciones en E:
(Rl = {“s 1]. {2, 1]3 (2v 2}, (33 2), (29 3)} 6{4 = {(I, 1)5 (2! 3}» (35 2]}

m’lz{(ls ]J} (Rs‘:EXE
(HB == {(lv 2)}

Decir de cada relacidn si es o no antisimétrica.

Solucién:

(1) G, no es antisimétrica, pues (3, 2)e ®, v (2, 3) & ®R,.
(2) @, es antisimétrica.

(3) ®; es antisimétrica.

(4) ®, no es antisimétrica, porque (2, 3) ¢ M,y (3, 2)ed,.
(5) @ no es antisimétrica, por la misma razoén que en ®,.
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26. Sea E= {1, 2, 3}. Dar un ejemplo de una relacion ® en E que no sea simeétrica ni anii-
simeétrica.
Solucién:
La relacion ® = {(1, 2), (2, 1), (2, 3)} no es simétrica porque {2, 3) & ® pero (3, 2) £ (1.
(R tampoco es antisimétrica porque (1, 2)e R y (2, 1) e ®.

27. Cada uno de los siguientes enunciados formales define una relacion | en los nimeros naturales N.
Decir de cada relacion si es o no antisimétrica.
(1) «x es menor o igual que y» (3) «x+ 2y = 10»
(2) «x es menor que y» (4) «x divide a y»
Solucién:
(1) Comoa= bybhs aimplican g = b, R es antisimétrica.
(2) Sia + b, entonces bien @ < 5 o bien b < a; asi que M es antisimétrica.

(3) El conjunto de solucion es ®* = {(2, 4), (4, 3), (6, 2), (8, 1)}. Obséervese que ® (M A~ = 4, que es un sub-
conjunto de la «diagonal» de ¥ x N. Asi que ® es antisimétrica.

(4) Como g divide a b v b divide a 2 implican @ = &, R es antisimétrica.

RELACIONES TRANSITIVAS

28. ;Cuando una relacién en un conjunto A es no transitiva?
Solucidn:
(R es no transitiva si hay elementos a, b y ¢ de 4 no necesariamente distintos, tales que
(@, b)e®, (b, c)e® pero (a, )R

29. Sean W ={1,2 3,4}y ®R = {(1, 2), (4, 3), 2, 2), (2, 1), (3, 1)}. ;Es ® transitiva?
Solucién:
Gt no es transitiva, pues (4, 3)e @, (3, 1) e ® pero (4, 1) ¢ R.

30, Sean W =1{1,2 3, 4} y®R={(2 2), (2, 3), (1, 4), (3, 2)}. (Es QR transitiva?
Solucidn:
® no es transitiva, puesto que (3, 2) e ®, (2, 3) e ® pero (3, 3) £ R

31. Cada uno de los enunciados formales que siguen define una relacién ® en los niimeros naturales N.
Decir de cada relacion si es transitiva o no.

(1) «x es menor o igual a y» (3) «x + y=10»
(2) «x divide y» 4) «x + 2y = 5»

Solucién:
(1) Comoazg byb= cimplican a £ c, la relacidn es transitiva.
(2) Six divide a y e y divide a z, entonces x divide a z, esto es,

(x, y)E®, (y, 2)e® implica (x,z)e®

Asi que @ es transitiva.
(3) Obsérveseque2 + 8 = 10,8+ 2 =10y 2 + 2 # 10, s decir,

(2,8)e®, (8,2)e® pero (2,2)eR

Asi que ® no es transitiva.
(4) @ no es transitiva, puesto que (3, 1) e ®, (1, 2) & R pero (3, 2} £ R ; esto es,

34+ 2(1)=514+22)25 pero 3+ 2(2)#3
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32

Demostrar: Si una relacion ® es transiti%a, entonces su relacion reciproca ® ™' también lo es.
Solucidén:

Sean (a, &) v (b, c) clementos de ®~'; entonces (c, b)e®R y (b, a)e ®R. Como R es transitiva, (¢, a)
también pertenece a ®; luego (a, c)e R™'.

Queda demostrado que (g, b)e ®R™", (» c)e R~ implican (g, c)e ®~*; luego R~ es transitiva.

Dado E = {1, 2, 3}, sean las siguientes relaciones en E:

®, = {1, 2), 2, 2)} @, = {(1. 1)}
&, = {(l, 2), (2, 3), (1, 3), 2, 1), (1, 1)} R, =Ex E
®; = {(1, 2)}

Establecer en cada relacion si es o no transitiva.

Solucion:
Todas las relaciones son transitivas menos la ®,, que no lo es porque

@, Ne®,, (1, 2)eR, pero (2, 2)¢QR,

RELACIONES Y FUNCIONES

34

35.

Dado W = {1, 2, 3, 4], sean las relaciones siguientes en W:

®, = {(1. 2), (2, 3), (3. 4), (4, 1)} R, = {1, 2), 3, 4), 4, 1)}
®, = {(1, 1), (1, 2), (L. 3). (1, 4)} ®s = {(2, 1), 4, 4), 3, 1), (2, 3)}
Ry ={(1, 1), 2. 1), 3, 1), 4 1)}

Decir de cada una de estas relaciones si es o0 no una funcién de W en W,
Solacién:
Primero tener en cuenta que una relacién &t en W es una funcién de W en W si, y solamente si, todoae W
aparece como primer elemento en un par ordenadc de @, y solo en uno.
(1} ®,; es una funcion. - .
{2) ®; no es unz funcion porque 1 € W y 1 aparece como primer elemento en (1, 1) e ®; yen (1, 2) e ®,.
(3) @, es una funcion.
{4) ®, no es una funcién porque 2 ¢ W, pero 2 no aparece de primer elemento en ningin par ordenado de ®,.
(5) @, no es una funcién porque los dos pares ordenados diferentes (2, 1) y (2, 3), que pertenecen a R, tienen
el mismo primer elemento.

Sean la relacion ® entre A y B representada en el diagrama de coordenadas de 4 x B. ;Cémo
se podria determinar geométricamente si ® es o no es una funcién de 4 en B?
Solucidn:

Si toda vertical contiene solamente un punto de R, entonces ® es una funcion de A4 en B.

Sean 4 = [—4,4], B=1[0,4], C=[-2,0] y D = [—4, 0] y ¢l enunciado formal P(x,¥) que
dice «x® + y? = 16». De la consideracion de las siguientes relaciones

(1) R, =4 B Pix,y) (@) ® =4 C Px, y)
Q) R,=(B A Plx.y) (5 ®Rg=(4, D, Px )
3) ®, = (B, B. P(x, y))

concluir cudles son funciones y cuiles no lo son.
Solucidn:

Nétese primero que la relacion ® en los niimeros reales definida por x* + y* = 16 comprende los puntos
de un circulo de radio 4 con centro en el origen, como se ve en la Figura 6-6.
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A % B en sombreado
Representacion de R Representacion de R
Fig. 6-6 Fig. 6-7
(1) Representar 4 x B en el diagrama cartesiano de R x R indicando ® por sombreado del drea apropiada
como se ve en la Figura 6-7.
La interseccion del circulo | con A x B es (. Noétese que cada vertical por 4 contiene precisamente
un punto de R, lo que hace que ®, sea una funcion.
{2) Representar 8 x A y & en un diagrama cartesiano como se ve en la Figura 6-8.
®; = ® M (B x A). Se ve que hay vertical por elementos de B que contienen dos puntos de &;; lue-
go &, no es una funcion,

B x A en sombreado B % Ben sombreado
Representacion de R Representacion de 3
Fig.6-8 Fig. 6-9

(3) Representar B x By ® en el diagrama cartesiano de R x R como se ve en la Figura 6-9.

Cada vertical por cada elemento de B contiene precisamente un punto de ®, = ® M (B x B); asi
que M4 es una funcion.
Representar 4 x C y ® en el diagrama cartesiano de R x R como en la Figura 6-10.

La vertical por 0£ .4 no contiene ningun punto de ®,, ®, =R N (4 x C); luego ®, no es
una funcion.

(4

—

A * (C en sambreado A = D en sombreado
Representacion de R . Representacion de ®
Fig. 6-10 Fig. 6-11

{5) Representar A x D y ® en un diagrama de coordenadas de R x R como en la Figura 6-11.
Notar que cada vertical por cualquier elemento de A conticne precisamente un punto de R, =
® N (4 x D)y, por tanto, R es una funcion de 4 en D.

PROBLEMAS DIVERSQOS
37. Sea (R la relacién en los nimeros naturales N definida por el enunciado formal «(x — y) es divisi-
ble por 5»; es decir,
® = {(x, y)|xeN, ye N, (x — y) es divisible por 5}

Demostrar que ® es una relacion de equivalencia.
Solucién:
Sea a & N; entonces (@ — a) = 0 es divisible por 5 y, por tanto, (a, a) ¢ ®R, con lo que & es reflexiva.




CAP. 6] RELACIONES 97

39.

Sea (¢, b) e ®; entonces (@ — b) es divisible por 5 y, por tanto, (b — «) = —(a — b) también es divisible

por 5. Por lo cue (b, a) pertenece a ®R. Como
{a, b)e@® implica (b, a)e®

(& es simétrica,

Sean (a, ) R y (b, ¢) e R; entonces (¢ — b) y (b — ¢) son divisibles por 5. Por tanto, (a — ¢) = (a — b} +
(b — c) es también divisible por 5, esto es, (u, c) pertenece a R. Como

(@, b)e®@ vy (b,c)e® implica (¢, c)e®

@ es transitiva.

Siendo ® reflexiva, simétrica y transitiva, & es, por definicion, una relacion de equivalencia.

Sean ® y ®' relaciones en un conjunto 4. Demostrar las siguientes proposiciones

(1) Si & es simétrica y si ®' es simétrica. entonces ® | J ®" es simétrica.

(2) Si1 ® es reflexiva y ®’ es una relacion cualquiera, entonces ® |J R es reflexiva.

Solucidn

(1) Si{a, b)e® |J R, entonces (a, b) pertenece a R o a &', que son simétricas. Luegn (b, a) pertenece también
aMoa®, oseaque(h,a)e® R yR UM essimélrica.

(2) (M es reflexiva si, y solo si, B contiene la «diagonals» D de 4 x A. Pero D C R y ® C ® | ®' implican
D C ® U ®'. Por consiguiente, ® | B’ es reflexiva.

Sean R y R’ relaciones en un conjunto 4. Demostrar la falsedad de los siguientes razonamientos
valiéndose de un contraejemplo, es decir, de un ejemplo en que el razonamiento no es verdadero.

(1) Si ® es antisimétrica y B’ es antisimétrica, entonces & | R’ es antisimétrica.

(2) Si ® es transitiva y ®' es transitiva, entonces ® | J &' es transitiva.

Solucion:

(1) ®={(1,2)} y® = {(2, 1)} son ambas antisimétricas; pero ® \J ®" = (1, 2), (2, 1)} no es antisime-
trica.

2) ®=1{(1, 2)} y®

12, 3)} son cada una transitivas, pero ® U ®' = {{1, 2), (2, 3)} no es transitiva.

Sean ®R={(x. y)|xeR, yeR, y = x*}
5

®R'={(x, y)|xeR yeR y =x + 2}

Notar que ® y ®' son ambas relaciones en los niimeros reales.

(1) Representar la relacién ® M ®’ en el diagrama cartesiano de R x R.

(2) Averiguar el dominio de definicion de ® N ®'.

(3) Averiguar ¢l dominio de imagenes de ® M &',

Solucidn:

(1) Representar ® en un diagrama de R x R como en el Problema 4 rayando & con trazos inclinados a la de-
recha (////); y en el mismo diagrama representar ®' con trazos inclinados a la izquierda (\}}), como se ve
en la Fig. 6-12. El area con doble rayado es ® M ®'. Asi aparece R (M) B’ representado en la Figura 6-13.

Representacion de R y '
Fig. 6-12 Fig. 6-13
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(2) El dominio de definicién de ® M ®’ es [— 1, 2], pues toda vertical por cada punto de este intervalo, y solo
por esos puntos, contieie un punto de ® M &',

(3) El dominio de imagenes de ® M ®’ ¢es [0, 4], porque toda horizontal por cada punto de este intervalo, y
solo por esos puntos, contiene al menos un punto de ® M ®'.

Problemas propuestos

PROPIEDADES FUNDAMENTALES DE LAS RELACIONES

41.

42.

Sea B una relacion en 4 = {2, 3, 4. 5} definida por el enunciado formal «x ¢ v son primos relativos», esto es,
wel uinico divisor comiin de x e y es I».

{1) Averiguar el conjunto de solucion de ®, o lo que es lo mismo, escribir ® como un conjunto de pares ordenados.
(2) Representar ® en un diagrama de coordenadas de 4 x A.

Sea B la relacién en B = {2, 3, 4, 5, 6} definida por el enunciado formal «|x — y| es divisible por 3». Escribir ®
¢como un conjunto de pares ordenados.

Dados C = {1, 2, 3, 4, 5} y la relacidén ® en C por el conjunto de puntos representados en ¢l siguiente diagrama
de coordenadas de C x C:

5 P

U

’ L

2 4

(1) Establecer si es verdadero o falso: (a) 1 R4, (b)) 2®S. (c) 3R 1. (4) SG3.
(2) Escribir los siguientes subconjuntos de C en forma tabular:

(@) {z | 3R =} (¢ {z | (z,2) gR}
) {z| (4,z)e®R)} (d {®R|x®S5}

Hallar (3) el dominio de definicidn de ®, (4) el dominio de imagenes de ®, () R™'.

Los enunciados formales que siguen definen sendas relaciones en los nimeros reales. Representar cada relacién
en un diagrama de coordenadas de R x R.

1) y < 2*—4dx+2 3) =z < ¢
@ v =Z+2 (4) = =seny

Sea® = {(x,y)|xe R, ye R x* + 42 < 16}.
{1) Representar R enel diagramade R x R.Hallar (2)el dominio de definicionde ®, (3)el dominio de imsdgenes de ®.

Sea® = {(x,y)|xeR peR x* =y = 4.

(1) Representar R en el diagrama cartesiano de R x R. Hallar (2) el dominio de definicion de ®, (3) el dominio
de iméagenes de R. (4) Definir R~ ',

Sea ® la relacion en los niimeros naturales N definida por el enunciado formal «x + 3y = 12», Dicho de otra

VIRIENR, R ®R={x,y)|xeN yeN x + 3y =12}

(1) Escribir ® como un conjunto de pares ordenados. Hallar (2) el dominio de definicién de ®, (3) el dominio
de imdgenes de R, (4) R ™",



CAP. 6] RELACIONES 99

48. Seca (R la relacion en los nimeros naturales N definida por 2x + 4y = 15.
{1) Escnbir ® como conjunto de pares ordenados. Hallar (2) el dominio de definicidn de R, (3) el dominio de
imdgenes de ®, (4) ®R~!

RELACIONES REFLEXIVAS, SIMETRICAS, ANTISIMETRICAS Y TRANSITIVAS

49. Dado W = {1, 2, 3, 4] considérense las siguientes relaciones en W:

®, = {t1, 1), (1, 2}} Ry = {(1,1),(2,2), (3, 3
@y, ={(1,1),(2.3), (4, 1)) Ry=WxWw
®, = {(1,3), (2, 4)]

Establccer para cada una si es o no: (1) simétrica, (2) antisimétrica, (3) transitiva, (4) reflexiva.

50. Establecer la verdad o falsedad de los razonamientos que siguen, suponiendo que ® y ®' son relaciones en un
conjunto 4.
(1) Si ® es simétrica, entonces |~ ! es simétrica,
{2) Si® cs antisimétrica, entonces ® ' es antisimétrica.
(3) Si® es reflexiva, entonces @ MR~ + &
{4) Si 0t es simétrica, entonces R YR ! £ .
(5) Si @ es transitiva y B’ es transitiva, entonces ® | R’ es transitiva.
{6) Si@® es transitiva y ®' es transitiva, entonces ® (M) R’ es transitiva.
(7) Si & es antisimétrica y R’ es antisimétrica, entonces ® | R’ es antisimétrica.
(8) Si R es antisimétrica y ®’ es antisimétrica, entonces ® (7} R’ es antisimétrica.
(%) Si @A es reflexiva y R’ es reflexiva, entonces ® | ®’ es reflexiva.
(10) Si ® es reflexiva y R’ es reflexiva, entonces ® M ®’ es reflexiva.

51. Sea L el conjunto de rectus del plano cuclidiano y sea la relacién ®R definida en L por «x es paralela a y».
Decir si R es o no (1) reflexiva, (2) simétrica, (3) antisimétrica, (4) transitiva. (Se acepta que una recta es parale-
la a si misma.)

52. Dado L, el conjunto de rectas del plano euclidiano, sea ® la relacion en L definida por «x es perpendicular a y».
Decir si ® es o no (1) reflexiva, (2) simétrica, (3) antisimétrica, (4) transitiva.

53. Dada una familia o de conjuntos, sea R la relacion definida en of por «x es disjunto de y». Decir si R es 0 no
(1) reflexiva, (2} simétrica, (3) antisimétrica, (4) transitiva.

54. ;Qué clase de relacidn es Rsi (1) RNA =&, 2) R =R !?

55. Cada enunciado formal de los que siguen define una relacién en los nimeros naturales N.

(1) «x es mayor que y». (3) «x por y es el cuadrado de un nimero».
(2) «x es multiplo de y». (4) «x + 3y = 125

Decir de cada relacién si es o no («) reflexiva, (b) simétrica, (¢) antisimétrica, (d) transitiva.

RELACJONES Y FUNCIONES

56. Dado T = {a, b, ¢, d}, considerar las siguientes relaciones en T:

(1) &, = {(a, b), (b, c), (c. d), (d, a)} 4) G4 = {(a, a), (b, a), (c, a), (d d)}
2) Ry = {(b,a) (¢, d), (b, a), (@ b), (db)} (51 ®Ry={(b a) (ac) (dd)
() & = {ld ¢, (¢, b), (a, b), (d. d)}

Establecer si cada relacion es o no una funcién.
57. Sead =[—4,4], B=[0.4], C = [—4,0], y sea ¢l enunciado formal P(x, y) que quiere decir «x* + 4y* = 16m.
Considerar las relaciones siguientes:

(1) &, = (4,8, Plx.y)) (3) ®;=(B A, Plx,»)
=G Pxy) @) R =(B8C Plx,y)

Representar cada relacidn en un plano cartesiano como en el Problema 36, y establecer si la relacién es o no =az
funcion.
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58. Dados 4 =[0. =[.B=]- %.0]. C=[2. [, D= ]-0, —2] y el enunciado formal P(x, y) que significa
wx? — 1? = 4». considerar la relacion
R = (Y, Y. Pix. 3))

donde Y e ¥ son conjuntos desconocidos. Si X ¢ ¥ pueden ser cualesquiera de los cuatro conjuntos anteriores, jcud-
les de las dieciséis relaciones son funciones? (Sugerencia: primerc -epresentar P(x, y) en un plano cartesiano.)

59. Sca 4 cualquier conjunto.
{11 ;Hay mas de una relacion reflexiva en 4 que sea una funcion?
(2) (Hay alguna relacidn reflexiva en 4 que sea una funcién?

60. Demostrar: Si 4 no es vacio y B es una relacion transitiva en 4 que no contiene ningun «elemento de la diago-
nal» (x. x)e 4 x A. entonces R no es una funcion en 4.

PROBLEMAS DIVERSOS
61. Considércnse las siguientes relaciones en los numeros reales:
® = {(x. v) | xe R reR x* +* <25
R'=llx. )| xsR yeR y =49
11} Representar Ja relacion & 7y & en un diagrama de coordenadas de R x R.
(2] Averiguar el dominio de definicion de ® M ®'. (3) Hallar el dominio de imdgenes de R N R".

62. Considérense los siguientes conjuntos de pares de nimeros reales. o sea relaciones en R:

(1) {{x,y) | 2"+ y* =25} n {{z,y) | ¥ = 32/4}
(2} {lz,y) | 2+ =25} n {(z, ) | ¥ = 42%/9)
(3) iz, | 2+ y = 28U {{z,y) | ¥ = 427/9)
(4) {(z,9) | o*+ 9 < 28} N {(x,y) | ¥ < 3z/4}

¥

Representar cada relacion en un diagrama de coordenadas de R x R y establecer ¢l dominio de definicidn
y ¢l dominio de imagenes.

63. Sea A el conjunto de las personas. Cada enunciado formal siguiente define una relacion R, Para cada una de estas
relaciones, hallar un enunciado formal, el lamado a veces «enunciado reciproco», que defina la relacién reciproca.

(1} «x es el marido de y» (4) «x es mas rico que y»
{2) «x es mayor que y» (5) «x es mas inteligente que y»
(3) «x es mas alto que y»

64. Sean N los nameros naturales. Cada enunciado formal de los gue siguen define una relacidn en V. Para cada una
de tales relaciones, encontrar un enunciade formal que defina la relacion reciproca.

(I} «x es mayor que y» (3) «x es multiplo de y»
(2) w«x es mayor o igual que y» (4) «2x + 3y = 30»

Respuestas a los problemas propuestos

4. (1) & = ((2,3), (2,5), (3,2), (3.4), (3,5), (4,3), (4,5), (5,2), (5,3), (5,4)}
(2)
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. (3.3), (3.6), (4,4), (5,5), (5,2), (6,6), (6,3)}

18) Falso. (¢) Falso. (d) Cierto.

5 (B) 9. (o) {2,3,4}, (D (3}

@ {1.2,4,5

11.3), (1,5), (2,1), (2,5), (4,1), (4,3), (4,5), (5,3)}

(2)

2) El dominio de definicion de ® es [—4, 4]. (3) El dominio de imdgenes de ® es [-2, 2].

(1)

(2) El dominio de definicion de ®R es {x|x =2 0 x £ -2}
(3) El dominio de definicién de R es R.
@) ®R'={(x. p)|xeR yeR x" -y £ —4}.
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47. (1) ® = {(9, 1), (6, 2), (3. 3)} (3) {1, 2, 3]
2) {9, 6 3 4) ®~' = {(1.9) (2, 6). (3, 3)}

8 (1)g 23 3T @D

49. (1) R, y ®R; son simétricas. (3) Todas las relaciones son transitivas.
(2) Solo R no es antisimétrica. (4) Solo Ot es reflexiva.

50. (1) Cierta (3) Cierta (5) Falsa (7) Falsa (9) Cierta
(2) Cierta (4) Falsa (6) Cierta (8) Cierta (10) Cierta

5§1. @& es reflexiva, simétrica y transitiva, esto es, una relacidon equivalente. ® no es antisimétrica.
52. ( es solo simétrica.
53. @R es solo simétrica.
54. (1) antisimétrica, (2) simétrica.
§5. (1) antisimétricd y transitiva.
{2) reflexiva, antisimétrica y transitiva.
(3) reflexiva, simétrica y transitiva, esto es, una relacion equivalente.

(4) antisimétrica y transitiva.

56. (1) Si, (2) Si, (3) No, (4) Si, (5) No.

ST, (1) (2)
®; es uny funcién
(3) (4)
2
f 4
-2 &x
o
_‘
®, no es una funcién ®, es una funcion

58. Las unicas relaciones que son funciones son:
®R=I(C. A4, Plx, )y ®=(C, B Plx; y)), ®R=(D, 4, Plx, y)), ®=(D, B, P(x, v)).

59. La unica relacidn reflexiva en un conjunto 4 que es una funcion, es la relacion que solo contiene los pares orde-
nados de la «diagonal». de 4 x A define la funcion idéntica sobre 4. Por tanto, (1) no, (2) si.
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60. Como 4 + ¢, hay algin clemento a € 4. Si ® es una funcion, hay entonces un par ordenado (a, £) € R tal que.
por hipdtesis, a # b. Y, ademads, como b & A, hay un par ordenado (b, ¢) £ ® tal que # # ¢. Como R es transitiva

(a, b)e@®R y (b, c)e®R implica (g, c)e@®

Asi
(@, b)e®, (@, c)e®, b+ ¢

(% no puede ser una funcion puesto que contienc dos pares ordenados diferentes con el mismo primer elemento.

61. (1)
® M ®' en sombreado
(2) [-83,8]
(3) [0, 5]
e @ o
(3,4, NE
-5 §
(—4,-8) ¥
-5
El dominio de definicion es [ -5 4] El dominio de definicién ¢s R
El dominio de imdgenes es [ —3. 5] E! dominio de imagenes es [4, [
(3) (4)
El dominio de definicién es R El dominio de definicién es {x | -4 < x < §}
El dominio de imdgenes es [ —5, oo El dominio de imapeneses x| —5 < x < 3}

63. (1) «x es la esposa de y»
(2) wx es menor que y»
{3) «x es mas bajo que y»
(4) «x es mas pobre que y»
{5) «x es menos inteligente que y»

64. (1) «x es menor gue y»
(2) «x es menor o igual que y»
(3) «x divide a y» o «x es un factor de y»
4) «3x + 2y = 30»



Capitulo 7

Complementos a la teoria de conjuntos

ALGEBRA DE CONJUNTOS

Las operaciones de union, interseccién y de complemento entre conjuntos cumplen varias leyes,
es decir, verifican ciertas identidades. En la Tabla 1 se enuncian estas leyes, la mayoria de las cuales
ya se han visto y demostrado en el Capitulo 2. Hay una rama de las matemdticas en que se investiga
la teoria de conjuntos estudiando aquellos teoremas que se deducen de estas leyes, es decir, aquellos
teoremas cuya demostracién requiere de estas leyes y solo de ellas. Se dira que las leyes de la Tabla 1

y sus consecuencias constituyen el algebra de conjuntos.

LEYES DEL ALGEBRA DE CONJUNTOS

Leyes de idempotencia

la. AUA = A 1b, AnA

Leyes asociativas
2a, (AuB)uUC = Au(BuC)

2b. (AnNBINC = An(BnC)

Leyes conmutativas

3a. AUB = BUA 3b. ANnEB

Leyes distributivas

4a. AU(BNC) = (AuBINn(Au() 4b. An{BuC) = (AnBjL(ANC)

Leyes de identidad
5b. AnU

6a. AU = U 6b. AN@ = @

Leyes de complemento

Ta. AUA’' = U : Th, AnAdA" = §
Ba. (AY = A 8h, =, & =U

Leyes de De Morgan

9a. (AUBY = A'nE’ gb. (AnBY = A'UE

Tabla 1

Es de notar que el concepto de «elemento» y la relacion «a pertenece a A» no aparecen en ninguna
parte en la Tabla 1. Aunque estos conceptos eran esenciales para el desarrollo previo de la teoria de
conjuntos, no aparecen al investigar el dlgebra de conjuntos. La relacion «4 es un subconjunto de B»

se define en esta digebra de conjuntos por
AC B significa ANB=A
104
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Por via de ejemplo se demuestran dos teoremas de esta dlgebra de conjuntos, es decir, sc demues-
tran los dos teoremas siguientes que se deducen directamente de las leyes de la Tabla 1. En la seccidn
de problemas se dan otros teoremas y demostraciones.

Ejemplo I-1: Demostrar (4 U BN (A\JB)= 4

Proposicion Razén
L AUBNAUB)=AU(BNA) 1. Ley distributiva
2 BNB = 2. Ley del complemento
3L AUBNMAUBR)=AUY 3. Sustitucién
4 AUg=4 4, Ley de identidad
50 LAUBINMAUB)=4 5. Sustitucion

Ejemplo 1-2: Demostrar: A C B y B8 C implica 4 C .
Propaosicién Razon
A=4ANBy B=8BMNC Definicion de subconjuntos

1 1.

2. LA=AN(BNC) 2. Sustitucidn

L. A=(ANBNC 5 3. Ley asociativa

4 - A=A4ANC ' - S I;.;\I 4. Sustitucion

3 HAEE / ' e : 5. Definicion de subconjunto

PRINCIPIO DE DUALIDAD

Si se intercambian \_/ y (M como también U y én Lua]qmer razonamiento sobre conjuntos, €l
nuevo enunciado resultante se ilama dual del primero. b (N2

Ejemplo 2-1: EI dual de
(UUBNA\ ) =4

es
FNnBuanu)=4

Obsérvese que la dual de cada ley de la Tabla 1 estd también en la Tabla 1, hecho sumamente im-
portante por el siguiente principio:

Principio de dualidad: Sj ciertos axiomas implican sus propios duales, entonces el dual de cualquier
teorema que sea consecuencia de los axiomas, es también consecuencia de
los axiomas. Pues dados cualquier teorema y su demostracion, el dual del
teorema se puede demostrar del mismo modo empleando el dual de cada paso
de la primera demostracion.

Asi se aplica el principio de dualidad al algebra de conjuntos.
Ejemplo ZwZIL_Mﬁcmostrar: ANBJANE)= A

El dual de este teorema estd demostrado en el Ejemplo 1-1; por tanto, este teorema es
cierto por el principio de dualidad.

CONJUNTOS INDIZADOSY
Sean los conjuntos
Ay ={1, 10}, A, =1{2,4,610}, 4,=1{3,69}, 4,=1{48}, 4;={56, 10}

y el conjunto
I={123,435}

Se ve que a cada elemento i e [ corresponde un conjunto A;. Se dice entonces que I es el conjunto de in-

dices, que los conjuntos {4, ..., 4} estan indizados y que la i suscrita de A, es decir, cada /e I, es
un indice. Una familia semejante de conjuntos indizados se denota por
{Ai}’izi

t No hay mejor traduccion para un verbo ya corriente en francés y en inglés que esta palabra, por lo demds perfectamente
bien formada, clara y concisa.
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Una familia indizada de conjuntos se puede considerar desde otro punto de vista, ya que a cada
elemento i € { se le asigna un conjunto 4;. Se establece entonces la

Definicién 7-1: Una familia indizada de conjuntos {4,};,, es una funcién

en que el dominio de definicion de f es el conjunto de indices / v el dominio de imd-
genes de fes una familia de conjuntos.

Ejemplo 3-1: Definido B, = |x |0 = x = (I/n)}. donde ng N, los nimeros naturales. Entonces
B, =1[0, 1], B, =10 4], ...
Ejemplo 3-2: Sea [ el conjunto de las palabras espanolas e is /. Definiendo
P, = {x | x es una letra de la palsbra i€ [;
Si i es la palabra «palabra», entonces
Pi=1{p.a L b r!
Ejemplo 3-3: Definase D, = [x E x es multiplo de n}, donde n&e N, los numeros naturales. Entonces
Dy =1{1,234 ...},D,=124,68 ...}, D3 =1{3,6,9,12, ...}
Es de notar que el conjunto de indices N es también D y asimismo es el conjunto universal
para los comjuntos indizados.
Observacién 7-1: Toda familia # de conjuntos puede ser indizada por si misma. En especial, la fun-
cion idéntica B R
es una familia indizada de conjuntos
{Aiic g
donde 4, & # e i = A,. Es decir, ¢l indice de cualquier conjunto de # es el conjunto
mismo.
OPERACIONES GENERALIZADAS

Las operaciones de union y de interseccion, definidas para dos conjuntos, se generalizan facil-

mente por induccion a un nimero finito de conjuntos. Asi, dados los conjuntos 4,, ..., 4,
U'{'=1Ai = A;UAU ... UA,
Nt A = AiNnd:nN...NnA,

el .
Por la ley asociativa, la unién (interseccion) de los conjuntos se puede efectuar agrupdndolos de cual-
quier modo; asi que no es preciso utilizar paréntesis en las expresiones anteriores.
Se generalizan estos conceptos de la siguiente manera. Sea la familia indizada de conjuntos
{A'} tel
y sea J (C I. Entonces Uies Ay
consiste en aquellos elementos que pertenecen al menos a unc de los A,, siendo i € J. Asi, pues,
WUiss A; = {x|existe un i e J 1al que x& 4,}
De igual manera {Yipid:
consiste en aquellos elementos que pertenecen a todos los A4, siendo /& J. O lo que es lo mismo,
MNies A; = {x | x& A, para todo i e J}
Ejemplo 4-1: Sean A, = [1, 10}, 4, = {2, 4.6, 10}, 4, = {3, 6,9}, 4, = 4, 8}, A; = {5, 6, 10}:
y /= {2, 3, 5. Entonces
MicsAi=16] 'y Ui 4, =12 4,6, 10.3 9.5

Ejemplo 4-2: Sea B, = {0, 1/n] con ne N. los nimeros naturales. Entonces
Mien Be={0) ¥y UinB=[0 1]
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Ejemplo 43; Sea D, = {x|x es multiplo de n}, donde n e N los numeros naturales. Entonces

Nien Dy = @
Existen también leyes distributivas generalizadas para un conjunto B y una familia indizada de
conjuntos {4;};,;. Se tiene asi:

Teorema 7-1: Dada una familia indizada de conjuntos {4,};,;, para cualquier conjunto B es
Bn(U.(” A.) — U:u(BﬂAi)
BU(Nier A)) Nier (BUA)

En los libros donde se escribe 4 + B para la unidn de dos conjuntos y AB para la interseccidn de
dos conjuntos, ¢l Teorema 7-1 se escribe

BEA; - EBAi

iel
B + A = B+ A
H 11 ( )
PARTICIONES
Considerando el conjunto 4 = {1,2,...,9, 10} y los subconjuntos suyos

B, =1{1,3, B,=1{7.810}, By;=1{256}, B,=1{49

la familia de conjuntos # = {B,, B,, B, BI4} tiene dos propiedades importantes:

(1) A esla union de los conjuntos de &, o sea

A=BUB,UB;U B,
(2) Para cualesquiera conjuntos B; y B,
o bien B, = B; o bien B, "\ B; = .

Se dice de una familia semejante de conjuntos que es una particion de A. Se da, pues, la
Definicién 7-2: Dada una familia {B;};.; no vacia de subconjuntos de 4, {B;},,, es una particion

de A4 si

Por Uiy Bi= 4

P,: Para cualesquiera B, B}, o bien B; = B;, o bien B, "\ B; =
Y entonces cada B, sc dice una clase de equivalencia de A.

Ejemplo 51: Sean N=1{1,2,3, ...}, E=1{2,4,6,...} y F=1{1,3,5, ...} Aqui {E, F} es, pues,
una particién de N.

Ejemplo 5-2: Sean T={1,2,...,9,10} ylos 4 = {1,3,5}, B = {2, 6,10} y C = {4, 8, 9}. En este caso
{A, B, C} no es una particion de 7, pues
T+AUBUC
es decir, porque 7e T pero 7¢ (4 B\ C).

Ejemplo 5-3: Dado T={1,2,...,9,10} ylos F = {1,3,5,7,9}, G = {2, 4, 10} y H = {3, 5, 6, 8}. En-
tonces {F, G, H} no es una particion de T porque

FNH+@, F+H
Ejemplo 5-4: Sean y,. y;. 3 € ), Tespectivamente, las palabras «libro», «danzan, «brillo», «jeque» y sea
A=1{la iu jn z b 0dq e r
Definase, ademads,
P, = {x|x es uma letra de la palabra y;}
Aqui se tiene que {P,, P, P3, P} es una particién de 4. Obsérvese que £, y P, no son &is-

juntos, pero no hay contradiccion porque los conjuntos son iguales. (Esle ejemplo es alez-
mente instructivo; averigliense los conjuntos F; y verifiquese si definen una particion d= 4.}
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RELACIONES DE EQUIVALENCIA Y PARTICIONES

Recuérdese la siguiente

Definicién: Una relacién ® en un conjunto A es una relacion de equivales
(1) @ es reflexiva, esto es, para todo a € 4, a estd relacionac
(2) @ es simétrica, esto es, si a esta relacionado con b, enton,
(3) @ es transitiva, esto es, si g estd relacionadocon by b e;

ces a esta relacionado con c.

Se vinculan particiones y relaciones de equivalencia por el

Teorema 7-2: Teorema fundamental sobre relaciones de equivalencia: ©
valencia en un conjunto A4 y para todo g € 4 sea

B, = {x|(x, a)e ®R}

que es el conjunto de elementos relacionados con a. Entg

{Bﬂ}a&A
es una particion de A.

Lo que quiere decir que una relacién de equivalencia ® en un conju
del conjunto 4 al reunir todos los elementos que estdn relacionados entre
valencia.

El conjunto B, es la ¢lase de equivalencia determinada por « y el conju

{B,}.e4.5¢ denota por _
A/®
que se llama el conjunto cociente.
El reciproco del teorema anterior es también cierto. Se tiene, pues,

Teorema 7-3: Sea {B;};.; una particion de 4 y sea ® la relacion en 4 ¢
mal «x estd en el mismo conjunto (de la familia {B;};, ) ¢
una relacion de equivalencia en 4.

Asi, pues, hay una correspondencia biunivoca entre todas las particio,
las relaciones de equivalencia en 4.

Ejemplo 6-1: En el plano euclidiano, la semejanza de tridngulos es una re

todos los tridngulos del plano se reparten en conjuntos ci

tridngulos semejantes entre si son elementos del mismo ¢

Ejemplo 6-2: Sea R la relacion definida en los enteros por
x =y (mod 3)

lo que se lee «x es congruente con y modulo 5» y que signific
es (0 una relacion de equivalencia. Hay cinco clases de eq
E, y E;. Como todo entero x se puede expresar de una sola
donde 0 =r < 5, entonces x es un elemento de la clase ¢

resto. Asi
E. = {...,-10, =5, 0,5, 10,
E, = { =0y —d4.1,'6, 11,
Ey = {...,-8 -321,12
E, = {...,—-T, —2,3,8,13,
E. = {...,—6, —1,4,9, 14,

y el conjunto cociente es Z/®Ry = {E,, E,, E;, E;, E,}.

[CAP. 7

mismo;
‘elacionado con a;
1ado con ¢, enton-

relacién de equi-

milia de conjuntos
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sma clase de equi-

;es de equivalencia
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modo que todos los

divisible por 5». Aqui
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Problemas resueltos

ALGEBRA DE CONJUNTOS Y DUALIDAD

1.

4,

5.

Escribir el dual en cada uno de los casos siguientes:
() (BUC)NA=BNAUJICNA) R AU NB=4AUB3) ANUNZUA)=D.
Solucién:

En cada proposicion intercambiar U y N, y @ y U; asi que
() BNC)JA=BUANIICUAL) Q) ANMAUB=4ANB8 (3) (AUZHUIUNA)=U
Demostrar la ley distributiva a la derecha: (Bl C)(N 4 = (BN A)\UJ (C M A).

Solucién;

Proposicion Razon
L. BUCNA=4AN(BNC) 1. Ley conmutativa
2. =ANB)UANC) 2. Ley distributiva
3 =(BMNAAUCNA 3. Ley conmutativa

Demostrar: (BN C)\J A =(BU A) N (C U A).
Solucidn:

Meétodo 1. El dual de este teorema se demostrd en el Problema 2. Por tanto, ¢l teorema es verdadero por
el principio de dualidad.

Método 2.
Proposicion Razén
L BNCOUA=AUBNC) 1. Ley conmutativa
2. =AdUBN{4\UC) 2. Ley distributiva
3 =(BUANICU A 3. Ley conmutativa

Demostrar: (A N B)\J (AN B') = A.
Soelucién:

Método 1. Por el principio de dualidad el teorema es cierto, puesto que su dual se demostro en el

Ejemplo 1-1.
Método 2. ,
Proposicion Razén
. ANBUMANE)=AN(BU B) 1. Ley distributiva
2. BUUB =U 2. Ley del complemento
I ANBUMANB)=4ANU 3. Sustitucion
- 4. ANU=A4 4. Ley de identidad
AN BUMANB)=4 5. Sustitucion
Demostrar: Si A\ B = U, entonces 4' C B.
Solucion:
Proposicion Razén
1. Unda =4 1. Ley de identidad
2. A\UB=U 2. Hipotesis
I, (AUBINA =4 3. Sustitucion
4, ANAYJBNAY=A4" 4. Ley distributiva a la derecha
5. GUBNA)Y=A 5. Ley del complemento
6. AANB=4 6. Ley de identidad
7. A'CBHB 7. Definicion de subconjunto
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CONJUNTOS INDIZADQOS Y OPERACIONES GENERALIZADAS

6.

Sea 4, = {x | x es multiplo de n}, donde n € N, los nimeros naturales. Averiguar: (1) 4; M As;
(2) Ay M Ag; (3)Us, p 4, siendo P el conjunto de los nimeros primos 2, 3, 5,7, 11, . ..
Solucion:
(1) Los nimeros divisibles pot 3 y por 5 son multiplos de 15; entonces
Ay As = Ay
(2) Los multiplos de 12. y solo estos nameros, estin en ambos conjuntos 4, y A,; asi que
AsMNdg = Ay,
(3) Todo numero natural, excepto 1, es miltiplo de un nimero primo por lo menos; asi, pues,
Uiepdi= (2.3 4 ... = N {1}

Sea B, = [i, i + 1], donde ie Z, los numeros enteros. Averiguar (1) 8,\J B,, (2) B, M B,
(3) U;l:s'f Bis {4) UJ:ZBI"

Solucién:

(1) B, \U B, contiene todos los puntos de los intervalos [1, 2] y [2, 3]; con que
B, UB, = [1. 3]
(2) B3 (M B, contiene los puntos gque estin en los dos [3, 4] v [4. 5]: asi que
By M B, = {4}
(3) \U!%, B, es la union de los conjuntos [7, 8]. [8, 9]. ..., [18. 15}; se tiene, por tanto,
US,B, = [7, 19]

(4) Como todo numero real pertenece por lo menos a uno de los intervalos [i, i + 1], entonces U, B; = R.

Dado D, = ]0, 1/n[, donde n & N, los numeros naturales. Hallar:

(1) D:UD, (3) D,uD, (5) Uira Di, donde 4 es un subconjunto de N
(2) DanDz (4) D:ND, (6) Nien Dy

Solucion:
{1) Como 10, 1/3[ es un superconjunto de 10, 1/7[. Dy Dy = Dy,
{(2) Como ]0,1/20[ es un subconjunto de 10, 1/3[, £; M Dzg = Dy

(3) Sea m = min (s, {). esto es, el menor de los dos numeros 5 y 1 entonces D, es igual a D, 0 a D, y contiene
al otro como subconjunto. Asi, pues, D, \UJ D, = D_.

{4) Sea M = max (s, 1), esto es, el mayor de los dos nameros. Entonces D, M D, = D,,.
{5) Sea ae A el menor numero natural en A. Entonces \); 4D, = D,
{6) Si x es un numero real, hay entonces al menos un numero i, tal que x ¢ 10, 1/i[. Por tanto, N, x D; = &.

Demostrar: B (N (Ui 4i) = Ui (BN A
Solucifn:

Si x pertenece a B (M) (\U,,; A;), entonces x £ By x £ (\U;, ; 4;); asi, pues, existe un i, tal que x € A4;,. Por consi-
guiente, x pertenece a B (M A, lo cual implica que x pertenece a \J; (8 M 4,;). Como x & B M (U; ., 4;) implica
xelUper (BN Al

Bn(U;e  A)) C Ui (BNdy

Si y pertenece a \J;,; (B M 4;), hay entonces un i, 1a: que y & B M A, ; asi, pues, ye Be y £ A, Por tanto, y
es elemento de \J;,; 4;. Como ye Be y e, A, yestd en BN (U; ., 4;). Por consiguiente,
Uitl(BﬂAiJ C Bn(u;“ﬁl()

Br(Uge; A) = Ui (BnAy

Por la Definicion 1-1,
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10.

11.

Demostrar: Si {4;};,; es una familia indizada de conjuntos y es iy & /I,
Mier A1 C Ay C Uger A
Solucidn:
Sea x & (M); .y A;; entonces x € 4; para todc fe 1. En particular x £ A;. Por tanto,
Nier4; C Ay
Sea ye d,. Como igel, yelU;,;4;. En consecuencia
Ay T U 4
Sea la familia indizada {4;};,.z de subconjuntos de R x R definida por
Apg=1{0y) |xeRr=x=r+ 1, yeR s=y=s+1}

(1) Representar {4, s en un diagrama de coordenadas de R x R.

(2) Representar B = Ui (Uj=-2 4G ) = Ui=o Uj=-2 44,1
en el diagrama de coordenadas de R x R y escribir B en notacion constructiva.

(3) Representar C = Uken Ujen 40
donde N son los niimeros naturales, en un diagrama de coordenadas de R x R y escribir
C en notacién constructiva.

Solucién:

(1) Ay 3 = {(x, ¥)|xe[2 3], ye[3., 4]}, esto es, el conjunto de puntos cuya primera coordenada est4
entre 2 y 3 y cuya segunda coordenada estd entre 3 y 4. Asi, A, ; es la porcion sombreada en la
Figura 7-1.

4 |4l
HiE s
e
2 S s e o]
1 St b b
—5|—aj-3|-2|-17 0] 1] 2| 3| 4 & —5|-¢|-sl-2l | | 1 18l 4|5
1 =1
- _gl
—3 —8
—4 —4
Fig.7-1 Fig.7-2

(2) Nétese primero que B = Uioo -2 VA v YidgnVaa

Y B consiste en doce «cuadrados», los sombreados en la Figura 7-2.
Asique B={(x, y)| -2 =x =2, 0=y =3},
(3) Notese primero que C = UgenAaVApnVAadgnl )

Asi, pues, C es lo sombreado en la Figura 7-3.

4] P
s e e e
sl i
el P EE
i TE e Ll
—5|—4¢|-8{—2|-1]| of 1] 2| 8] ¢ &
-1
=k —2
=
Fig.7-3

Y entonces C = {(x, y) |x =1, y =1}.
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PARTICIONES Y RELACIONES DE EQUIVALENCIA

12.

13.

14.

Sea A = {a, b, ¢, d, e, f, g). Decir si las siguientes familias de conjuntos son o no particio-
nes de 4.

(1) {B:={a,ce}, B:= (b}, Bs={d,g}}

@) (Ci =l(a,e9), Co={c,d}, Ca={b,ef})

(8) {Di={a,b,e, g}, Da={c}, Ds={d.f)}

(4) (Ei=(a,b,cdef,g}}

Solucién:

(1) Nétese que 4 # B, \J B,\J B; porque fe 4 pero f¢ (B, U B, U B,). Asi que {B,, B;, B;} no es una
particion de A.

(2) Obsérvese que C; # C, y que, ademds, C, y C, no son disjuntos, puesto que e & C, y e € Cs. Asi, pues,
[C,, C3, C3} no es una particién de A.

(3) Como A = D, \J D, \J D, y los conjuntos son disjuntos dos a dos, {D,, Dy, D,} es una particion de A.

{4) Aunque {E,} consiste en un solo conjunto, es una particidn de A. Es decir, para cualquier conjunto no vas’>
A, la familia {4} es una particién de 4.

Demostrar el Teorema 7-2, o sea el teorema fundamental sobre las relaciones de equivalencia:
Sea ® una relacion de equivalencia en 4 y, para todo ag 4, sea

B, = {x|(x, d)e R}

T

Entonces la familia de conjuntos {B,},, , €s una particién de 4.

alaE
Solucién:
Para demostrar que {8 ,},,. € una particién de A, hay que demostrar:
(1) A= \Js.aB8:
(2) Si B, y B, ticnen clementos en comin, es decir, si B, M B, # ¢, entonces B, = B,
Como @ es reflexiva, es decir, como cada elemento esta relacionado consigo mismo, a € B, para todoa e 4;
entonces (1) es cierto.

Sea z& 8, (M B, Entonces SR ¥ e

Para demostrar que B, = B,, sea x un elemento de B, Se tiene entonces

(x, r)e®
Por ser simétrica, (r, z)e
y por ser transitiva, (x, De® y (r, z)e® implican (x, z)e®
y también (x, Z)E®R y (z, s)e® implican (x, s)e @

(Asi, pues, x pertenece a B, Como x es un elemento cualquiera de B, B, es un subconjunto de B,. De
igual manera, puede demostrarse que B, es un subconjunto de B,; por tanto,

B, =B,

Y en consecuencia, {B,}, ., €s una particion de 4.
Dado el conjunto N x N, esto es, el conjunto de pares ordenados de niimeros naturales, sea ®
una relacion en N x N definida por

{a, b) estd relacionado con (c, d)

lo que se escribira (a, b) = (¢, d)
si, y solo si, ad = be
Demostrar que R es una relacién de equivalencia y que, por tanto, induce una particién de N x N.

Solucion:
Notese que (a, b} = (a, b) ya que ab = ba. Por tanto, ® es reflexiva,

Supuesto (a, h) = (¢, d), entonces ad = be lo que implica que cb = da. Luego (¢, d) =~ (g, b))y B es
simétrica.
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15.

Suponiendo ahora que (a, b) =~ (¢, d) y que (c, d) = (e, f), se tiene ad.= be vy ¢f = de. Por tanto,
(ad)(cf) = (bc)(de)
y, por cancelacion en ambos lados,
af = be

Con lo que (a, b) = (e, f), y ® es transitiva.
De acuerdo con todo esto, ® es una relacién de equivalencia.

, a - : : ;
Si el par ordenado (a, b) se escribe como fraccién 7 la relacién anterior B es en realidad la defini-

cion usual de igualdad de dos fracciones, s decir, §= 3 si, v solo si, ad = be.

Hallar todas las particiones de 4 = {a, b, ¢, d}.

Solucidén:
Primero obsérvese que cada particion de A contiene 1, 2, 3 6 4 conjuntos diferentes. Las particiones son:

(1) {{a b,c,d}}
2 {{a}, {b,e,d}}, {{b}). {a,e,d}}, {{e}, {a, b, d}},  {{d}, {a, b,0}},

{{la, b}, {c,d}}, {{a,e}, {b,d}}, {{a,d}, {b,e}}
(3 (e}, {b}, le.d}}, {{a}, {e}, {b,d}}, {{a}, {d}, {b,e}},

{ {6}, {et, {a,d}}, (B} {d}, {a,e}}, {{c}, {d}), {a, b}}
4)  {{a}, {b}, {e}, {d}}

Hay quince particiones diferentes.

Problemas propuestos

ALGEBRA DE CONJUNTOS Y DUALIDAD

16.

17.

18.

19.

20.

Escribir el dual en cada uno de los siguientes casos:

(1) AUANB) = 4, (@) (AuU)INANY) = 0, (3) (_AuB)n(BUC) = (AnC)uB.
Demostrar: AU(A'nB) = AUB.
Demostrar: An{4'UB) = AnBA.
Demostrar; AU(AnB) = A.
A.

Demostrar: An(AUB) =

CONJUNTOS INDIZADOS Y OPERACIONES GENERALIZADAS

1.

22.

Sea 4, = {x | x es miltiplo de n} = {n, 2n, 3n, ...}, donde n & N, los nimeros naturales.
Hallar: (1)4; M Aq; (Y As M Ass (3)A4; U Ay @) A3 NV Ayg; (5) 4,1 A, dondes,re N; 6} A4, N A,
donde s, re N.

Sea B, = Ji, i + 1] un intervalo semiabierto, donde i e Z, los enteros. Hallar, es decir, escribir en notacién de
intervalos:
(1) ByUB; (3) uilyB; () Uiy B,y
(2) Bgn By (4) ByUB, . UB iy 5eZ (B) Uiz Byyy
Sean D, = [0, i/n], S, =10, 1/a] y T,=[0, 1/n[ dounde ne N, los nimeros naturales. Hallar:
(1) NueN D_m (2) Nnen Sn’ (3) Maen Tn'
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24. Sea la familia indizada {d4,};, .7 de subconjuntos de R x R definida por
A = ey | r=z=r+l, s=y=s+1}
(Véase Problema 11.) Representar cada uno de los conjuntos que siguen en un diagrama cartesiano R x R.
(1) Aaw UAanUdae, @) Ulogdan, (8) Ui— —aUi—gAwn (4) Uiz (doo Udea).

25, Demostrar: Si 4, = In, 2n, 3n, ... } donde n & N los niimeros naturales, y es J un subconjunto infinito de N, en-
tonces (M .54 = &.

PARTICIONES Y RELACIONES DE EQUIVALENCIA
26, Dado W = {1, 2, 3, 4, 5, 6} decir si cada una de las siguientes familias de conjuntos es 0 no una particién de W.

(1) {{1,3,5), {24}, {3,6}} (8) {{1,5}, {2}, {4}, {1,5}, {3,86}}
(2) {{1,5}, {2}, {8, 6}} (4) {{1,2,3,4,5,6}}

27. Hallar todas las particiones de ¥ = {1, 2, 3}.

28. Dado el conjunto N x N de pares ordenados de niimeros naturales, sca & la relacidn en N x N definida por
(a, b) esta relacionado con (¢, d)

que se¢ escribird (&, b)Y = (e, d)

si, y solo si, a+d=5b+c¢

Demostrar que ® es una relacién de equivalencia y que, por tanto, induce una particion de N x N.

Respuestas a los problemas propuestos

6. HANMAUB =4 (2 UNGIUMAUU)=U () ANBUBNC)=MAUCINE

17. Proposicién Razon
. AUANB=4UAIN(4UB) 1. Ley distributiva
2. AUA'=U 2. Ley del complemento
. AUUA'NB=UNI40 B) 3. Sustitucion
4. =AUB 4. Ley de identidad

18. Método 1. Eldual de este teorema se demostré en el problema anterior, luego este teorema es cierto por el prin-
cipio de dualidad.

Método 2.

Propaosicion Razén
. ANMAUB=(ANA)J(ANB) 1. Ley distributiva
2. ANA' =G 2. Ley del complemento
I AN UB=aU(4dNB) 3. Sustitucion
4, =ANB 4. Ley de identidad
19. Proposicion Razén
. ANU=4 1. Ley de identidad
2. AUMANB=4ANU)JANB) 2. Sustitucion
3. =ANWUB) 3. Ley distributiva
4. =ANU 4. Ley de identidad, sustitucién
5. = A 5. Ley de identidad
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20.

2L
22,

25.

27.

Método 1. El dual de este teorema se demostré en el problema que precede, asi que este teorema es cierto
por el principio de dualidad.
Meétodn 2. Proposicién ) Razén
. AU@=4A I. Ley de identidad
2. ANAUB =(AUB)IN (AU B) 2. Sustitucién
3 =A\J(S N B) 3. Ley distributiva
4 =A@ 4. Ley de identidad. sustitucion
5 =4 5. Ley de identidad
(1) A1, (2) Azq. (3) A3 (4) Ayay (5) 4, (6) A,
(1) 14. 6], (2) @. )14 21]. @) Js. s + 3], (5) s, s + 16], (6) ]—or. =[.
(1) {0}, @) @. (3) {0}
5 5
—5 5 =3 - 5
b3 pary
(1) (2)
115 1 5
it
o .&
=5 5 -5 : 5
=5 =3
(3) (4)
Sea m un nimero natural. Como J es infinito, existe un ig & J tal que iy > m. Entonces m¢ 4, y, por tan-
to, mg ;A
Como m es cualquiera, M); ,; 4; = &.
(1) No, (2) No, (3) Si, (4) Si.
Hay cinco particiones diferentes de V:
L2380, (L &3} {2,138, (3,2} {1}, {2, 8
Notese que (a, b) = (a, b), pues a + b= b + a, asi que (R es reflexiva.

Suponiendo que (a, h) = (¢, d),esa + d = b + clo que implicaque ¢ + b = d + a. Asi que (c. d) = (= &)
y B es simétrica.

Suponiendo ahora que (a, b} = (¢, d) y que (¢, d) ~ (e, f) sc tiene entonces g + d = b + cy c = f=d+ 2
Por tanto,

fat+d)+(e+f) = (b+e)+ (d+e)

y. restando ¢ + o de ambos lados, @ + f= b + e. Asi, pues, (a, b) = (e, f) v, por tanto, ® &= t===rws
Segiin esto, & es una relacion de equivalencia,

il




Capitulo 8

Complementos a la teoria de funciones, operaciones

FUNCIONES Y DIAGRAMAS

Como ya se ha dicho antes, el simbolo

AL B
denota una funcién de 4 en B. De manera semejante, en el diagrama
A i ¢

las letras A. B y C denotan conjuntos; las flechas f, g y # denotan funcionss f: 4 - B, g:B—Cy
h:A— C,ylasucesion de flechas {f; g} denota la funcién producto de composicion o funcién com-
puesta g=f: A — C. Cada una de las funciones h: 4 = Cy g=f: 4 — C, o sea, cada flecha o suce-
sién de flechas que unen a A con C se dice un camino de 4 a C.

Definicion 8-1: Se dice de un diagrama de funciones que es conmutativo, si para cualesquiera conjun-
tos X e Y del diagrama, dos caminos cualesquiera de X a Y son equivalentes.

Ejemplo 1-1; Suponiendo que el diagrama de funciones siguiente es conmutativo,

D
/'\
t
A B c
f g

entonces i ‘h=f goi=jyg-f=j-h=geizh

Ejemplo 1-2: La funcién f: 4 — Bylag: B— A son reciprocas si, y solamente si, los diagramas siguien-
tes son conmulativos

A - 1. A B 1a B
\ / \ /
B 4

Aqui 1, y 15 son las funciones idénticas.

RESTRICCION Y PROLONGACION DE UNA FUNCION

Sea funa funcién de A4 en C, es decir, sea f: 4 — C y sea B un subconjunto de 4. Entonces f in-
duce una funcion f*: B —+ C que se define por
Sfb) = fib)
para todo b & B. La funcidn f* se llama restriccion de fa B y se la denota por
/B
Ejemplo 2-1: Sea f: R — R definida por f{x) = x*. Entonces

SIN =10, 1), (2, 4). 3, 9), 4, 16),...}
es la restriccion de fa N, los numeros naturales.

116
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Ejemplo 2-2: El conjunto g = {(2, 5), (5, 1), (3, 7), (8, 3), (9, 5)} es una funcién de {2, 5, 3, 8, 9} en N,
Y entonces

{2, 5), 3.7, 6, 3)

un subconjunto de g, es la restriccion de g a {2, 3, 9}, que &5 un conjunto de primeros elemen-
tos de los pares ordenados en g.

Se puede considerar esto desde otro punto de vista. Sea f: 4 — C y sea B un superconjunto de A.
Entonces una funcién F: B — C se llama prolongacion de f si, para todo a € A4,

Fla) = fla)

Sea f la funcion definida por f{x) = x en los nimeros reales positivos, o sea la funcion idén-
tica. Entonces la funcion valor absoluto

T { x Sig=p

Ejemplo 2.3:

~x slx<Q
es una extension de f a todos los numeros reales.
Ejemplo 2-4: Dada la funcion
S=11,2) 3, 4), (7, 2)}
cuyo dominio de definicion es {1, 3, 7}, la funcién

F=1{(1, 2), (3, 4), (5, 6), (7. 2)}

que es un superconjunto de la funcion f, es una prolongacion de f.

FUNCIONES DE CONJUNTO
Sea f una funcion de 4 en B y sea T un subconjunto de A, es decir, 4 & By T C A. Entonces
AT)
que se lee «f de T», sc define como el conjunto de las imdgenes de los ciementos de T. O sea,
AT) = {z| fle)==,aeT, zeB)
Es de notar que f(7) es un subconjunto de B.
Ejemplo 3-1; Sean A = {a, b, ¢, d}, T={b, ¢} y B= {1, 2, 3}. Detinida f: 4 ib‘ por

B

e

resulta que f(T) = {2, 3].

Ejemplo 3-2: Sea g: R — R definida por g(x) = x*, y sea T = [3, 4]. Entonces
o) = [9,16] = {r | 9=zx=16}

Sea ahora .« la familia de subconjuntos de 4 y sea # la familia de subconjuntos de B. Si f: 4 — B,
se tiene que f asigna a cada conjunto T € & un conjunto dnico f(T) & #. Dicho de otra manera, la fun-
cion f: 4 — B induce una funcién f: o — 4. Si bien cada funcién de éstas se denota por la misma
letra f, las dos son funciones esencialmente distintas. Se ve que el dominio de definicién de f: o —+ &
consiste en conjuntos.

En general, se dice que una funcién es una funcion de conjunto si su dominio de definicién consis-
te en conjuntos.
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FUNCIONES NUMERICAS REALEST

Una funcién f: 4 = R que aplica un conjunto en los niimeros reales, esto es, que asigna a cada
at A un nimero real f(a) e R, se llama funcion numérica real. Las funciones que se¢ estudian por lo
comun en las matemdticas elementales, tales como

plx)=aexX" + ;X" '+ ...+ 4,1 X + a,
1{x) = sen x, cos x o tg x
fix) =log xo0 ¢

es decir, los polinomios, las funciones trigonométricas y las logaritmica y exponencial son ejemplos
de funciones numeéricas reales.

ALGEBRA DE LAS FUNCIONES NUMERICAS REALES

Sea %, la familia de todas las funciones reales g : tienen el mismo dominio de definicién D. Se
definen entonces varias operaciones algebraicas en % . En especial, sean f: D - Ry g: D — Ry sea
k £ R. Se tienen entonces las funciones siguientes definidas como aparece al frente de cada una:

(f+k):D->R por (f + k)z) = flz) + &k
(f):D->R por (=) = [f(=)]
(f}:D—+ R POF. (f)z) = (flz)"
(f£9):D->R por (f = 9)(z) = flx) = g9(x)
(kf):D - R por (kf)(z) = k(f(x))
(fg):D>R por (fg)(z) = f(z)g(x)
(flg):D >R por U/g)x) = flx)/g(x) (donde g(x) +.0)
Obsérvese que (fg) : D — R no es lo mismo que el producto de composicidn de funciones visto ante-
riormente,
Ejemplo 4-1: Sean D = {a, b} y /: D — R y g: D — R definidas por
flay=1fib)=13 y gla)=2 glb)= —1
O sea,
f={@ 1), (b3} y g={la2) b -1}
_— (3f — 2¢)a) = 3fla) — 2gla) = 3(1) - 22) = —1
(37 = 2g)tb) = 3f1b) — 2glb) = 33) - A-1) = 11
es decir, 3= 2= l{a, — 1), (b 11)}
Ademas, como g|{x) = [g(x)] ¥ (g + 3)x) = glx) + 3,

lel={la, 2). (6. )} y g+ 3={(a. 5), (5. 2}
Ejemple 4-2: Sean f: R— R y g: R — R definidas por las formulas
fiy=2x-1 y glx}=x*
Se obtienen entonces férmulas que definen las funciones (3 — 2g): R— Ry (fg): R — R asi:

(3f — 2glx) = 32x — 1) — 2(x*) = —2x* + 6x — 3
(fg)x) = (2x — 1){x?) = 2x? = x?

REGLA DEL MAXIMO DOMINIO
Una férmula como

Sx) = 1/x, g(x) =senx. h(x)= \/)_c

no define sola una funcion al menos que se dé, explicita o implicitamente, un dominio de definicion,
o sea el conjunto de nimeros en el cual la formula si define una funcidn. Asi que se requieren expre-
siones como éstas:

t Si A C R, o sea si el dominio de definicion es un subconjunto de niimeros reales, la funcién se dice real de variable real.
o real simplemente.—N. del T.
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Sea f(x) = x* definida en [ -2, 4].
Sea g(x) = sen x definida para 0 = x = 27,
No obstante, si el dominio de definicion de una funcién dada por una formula es el méximo conjunto
de numeros reales para los cuales la formula da un nimero real, como, por ¢jemplo, en
fix) = l/x para x + 0
entonces el dominio de definicidn no se enuncia por lo comun explicitamente. Esta convencion se sue-
le lamar regla del mdximo dominio.

Ejemplo 5-1: Sean las funciones siguientes:

filz) = = para x =90

f2lz) = 1/(z—2) para x # 2

fa(x) = cosx pira 0 = z = 25

fulz) = tgx Ptz 7 2/2+ nr, ne N

Los dominios de f, y f; no hubiera sido necesario decirlos explicitamente, pues cada uno
consta de todos aquellos nimeros para los cuales la formula tiene significado, o sea que las
funciones bien se hubieran podido definir escribiendo

filx)=1x=2) ¥y fulx)=1tgx

Ejemplo 5-2: Sea la funcion f(x) = \/l_ﬁ:j\j; su dominio de definicidn, al menos que se diga otra cosa,
es [—1, 1]. Se supone implicitamente que el codominio es R.
FUNCIONES CARACTERISTICAS
Sea 4 un subconjunto cualquiera de un conjunto universal U, La funcion numérica real
x.:U = (1,0}

definida por 1 sized
o = .
X (@) {o si z¢ A
se llama funcion caracteristica de A.

Ejemplo 6-1: Scan U = {a, b, c,d e} y A = {a. d. e}. La funcién de U en {1, 0] definida por el diagrama

es la funcidén caracteristica y, de A.
Obsérvese ademas que cualquier funcién f: U — {1, 0} define un subconjunto
A = (x| zel, flz) =1}
de U y que la funcion caracteristica Xa, de Ages la funcion original f. Asi, pues, hay una corresponden-

cia biunivoca entre todos los subconjuntos de U, o sea, el conjunto potencia de U, y ¢l conjunto de todas
las funciones de U en {1, 0}.

FUNCIONES DE ELECCION
Sea {A4,};,, una familia de subconjuntos no vacios de B. Una funcién
f: {A‘}(u > B
se dice funcion de eleccién si, para todo i [,
f(A) e A
esto es, la imagen de cada conjunto es un elemento del conjunto.
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Ejemplo 7-1: Sean los subconjuntos
A= (1,23, A = {1,3,4), 4s; =235}
de B = 11,2 3,4, 5} y considérense las siguientes funciones de {A4,, 4;, A3} en B:

A,

= |

P ) (=
AH

I g

Notese que f no es funcion de eleccion porque f(A,) = 2, no periencce a A, esto €3,
flA,) ¢ Ay; y asimismo que g e funcion de eleccion puesto que g{d,)e 4. gld;)ed, ¥
glAs)e As.

Observacién 8-1: En esencia, una funcién de eleccion en una familia dada de conjuntos, welige» un
elemento de cada conjunto de la familia. Si existe o no una funcién de eleccién en
una familia arbitraria de conjuntos, es problema fundamental de la teoria de con-
juntos al cual se dedicara el Capitulo 11.

OPERACIONES

Son bien conocidas las operaciones de adicidon y multiplicacién de ntimeros, la union y la intersec-

cién de conjuntos y la composicion de funciones, operaciones que s¢ denotan por

a+b=¢, ab=c¢, AUB=C, ANB=C, gef=h
En cada caso se le hace corresponder un elemento (¢, C 0 #) 4 un par dado de elementos. O sea que
hay una funcién que asigna un elemento a cada par ordenado de elementos. Hablando con precision,
se tiene la
Definicién 8-2: Una operacién « en un conjunto A4 es una funcion del producto cartesiaro 4 x A

en A, es decir,

A XA-= A

Observacién 8-2: La operacion «: A x A — A se dice operacion binaria; una operacion n-aria es la
funcion definida por
atAXAX - XA A
k_.....‘.-..ﬂ—«——-—-—’
(7 conjuntos)

Aqui se seguird diciendo operacién en vez de operacion binaria.

OPERACIONES CONMUTATIVAS
La operacion «: A X A4 — A se dice conmutativa si, para todo a, be A,
ala, b) = alb, a)

Ejemplo 8-1: La adiciéon y la multiplicacién de nimeros reales son conmutativas, pues
a+bh=b+a y ab=ba
Ejemplo 8-2: Sea a: R x R— R la operacion de sustraccion definida por o : (x, ¥} = x — .
Entonces af, 1)=4 y ol 5)= -4

Asi que la sustraccién no es operacion conmutativa.

Ejemplo 8-3: La unidn y la interseccién de conjuntos son operaciones conmutativas, ya que

AUB=BUA y ANB=BNA
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OPERACIONES ASOCIATIVAS
La operacién a: 4 x 4 — A se dice asociativa si, para todo a, b, ¢ ¢ A,
a(a(a,b), ¢) = afa, a(b,¢))
O sea que si se escribe a{a, b) en la forma a + b, a es asociativa si
(axbd)sc = a*x(b=*c)
Ejemplo 9-1: La adicion y la multiplicacién de numeros reales son operaciones asociativas, pues
(at+tb)t+e = a+(b+te) ¥ (ab)e = a(be)
Ejemplo 9-2: Sea «: R x R— R la operacion de division definida por «: (x, ¥} — x/y. Entonces

a(a(12,6), 2) = «(2,2) = 1
2(12, «(6,2)) = «(12,3) = 4

La divisién no es, pues, una operacion asociativa.
Ejemplo 9-3: La unidn y la interseccién de conjuntos son operaciones asociativas, puesto que

(AUB)UC = AU(BUC) ¥ (ANB)nC = An(BnO)

OPERACIONES DISTRIBUTIVAS
Considerando las dos operaciones siguientes:
a:AXA-> A
B:AXA-» A
se dice que u es distributiva respecto de la operacién 8 si, para toedo a, b, ce A,

afa, B(b,¢)) = PBla(a,b), ofa,c))

O bien, escribiendo «(a, b) en la forma a+ b, y Bla b) como a A b, es a distributiva con respecto

afsi

ax(bac) = (asxb)a(a*c)

Ejemplo 10-1: La operacion de multiplicacién de nimeros reales es distributiva con respecto a la adicidn
de numeros reales, pues

alb+¢) = ab+ ac
Pero la adicion de nimeros reales no es distributiva respecto de la multiplicacion, porque

a + (be) # (a+ b)a+¢)
Ejemplo 10-2: Las operaciones unién e interseccién de conjuntos son distributivas cada una respecto de
la otra, puesto que

AU(BNC) = (AUB)N(AUCQ)
AN(BUC) = (ANB)U(ANC)

ELEMENTO NEUTRO

Sea a: 4 x A — A una operacién escrita a(a, b) = a = b. Se dice que un elemento ec 4 es ele-
mento neutro para la operacién « si, para todo elemento g € A,

e*a=qaxe=4a

Ejemplo 11-1: Sea a: R x R — R la operacién de adicion. Aqui es 0 un elemento neutro para la adicién
porgue, para todo nimero real, ae R,

Ora=as0=aq, estoes, 0+a=g+0=a
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Ejemplo 11-2: Sea la operacion de interseccion de conjuntos. El conjunto universal U es un elemento neutro
? agui, porque para todo conjunto A (que es un subconjunto de U)

Usd=A+«U=A estoes, UNAd=ANU=4

Ejemplo 11-3; Sea la operacién de multiplicacion de niimeros reales. Aqui es el numero | un elemento neu-
tro porque, para todo nimero real a,

lsa=a+1 =g, estoes, lra=a'l=a

Teorema 8-1: Siuna operacién a: 4 x 4 — A tiene un elemento neutro e £ A, éste es anico.

Asi, pues, se puede hablar del elemento neutro para una operacion en vez de un elemento
neutro.

ELEMENTOS SIMETRICOS

Seawa: A x A — A una operacién denotada a(a, b) = a = b y sea e € 4 el elemento neutro para «.
Se llama elemento simétrico de un elemento a € 4, denotado por

a—l

un elemento de A4 tal que

a lra=ax*xal=¢

Ejemplo 12-1; Dada la operacion de adicién de numeros reales, para la cual es 0 el elemento neutro, para
cualquier numero real a, su opuesto (—a) es su simétrico aditivo, ya que
—axa=a=*—a=10, estoes, (—a)+a=a+(—a)=10
Ejemplo 12-2: Dada la operacién de multiplicacién de nimeros racionales, para la cual es 1 el elemento

neutro, todo numero racional no nulo p/g, donde p y ¢ son enteros, tiene por simétrico mul-
tiplicativo su inverso g/p, pues

(g/p)p/g) = (p/g)laip) = 1
Ejemplo 12-3: Sea o: N x N — N la operacién de multiplicacidn para la cual es 1 el clemento neutro;
si N es el conjunto de los nimeros naturales, 2 no tiene simétrico multiplicativo, pues no
existe ningin elemento x g N tal que
x'2=2'x=1

En realidad, ningin elemento de N aparte el 1, tiene simétrico multiplicativo. El simétrico
de 1 es ¢l mismo.

OPERACIONES Y SUBCONJUNTOS

Dada una operacion o : 4 x A — A y un subconjunto B de A, se dice que B es cerrado con respec-
to a la operacion o si, para todo b, b’ ¢ B,

a(b,b’) ¢ B

esto es, si
«(BXxB)CB

Ejemplo 13-1: El conjunto de los niimeros pares es cerrado respecto de la adicién de numeros naturales,
ya que la suma de dos pares cualesquiera es siempre par. En cambio, el conjunto de los ni-
meros impares no es cerrado respecto de la operacion de adicién dicha, pues la suma de dos
numeros IMp4res no es impar.

Ejemplo 13-2: Los cuatro nimeros complejos, 1, —1, i, —i, forman un conjunto cerrado respecto de la
operacion de multiplicacion.
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Problemas resueltos

DIAGRAMAS Y FUNCIONES

1.

En el diagrama de funciones anexo, ;cuantos caminos hay de

B
A a E y cudles son? f . =
Solucién: |ﬂl
A i . E

Hay seis caminos de 4 a E:

AL BISE A CcSE p 5/
AL B cHE ASCcLDSE D
ALBrSCcHLDSE ASDSE

esto es, rioif, S totjioed, g0k, tejoh, tog

Como ya se ha dicho, las funciones se escriben de derecha a izquierda.

Suponiendo conmutativo el diagrama adjunto, y siendo 1, la

A i A
funcion idéntica sobre A, enunciar todo lo que se puede inferir
del diagrama. f ¥
B

Solucidn:

Lo primero, como el diagrama es conmutativo, g=f = 1.

Ademds, como g = f es inyectiva, f tiene que ser también inyectiva; y como g = f'es sobreyectiva, g ha de serlo
también. No es necesariamente cierto que g = /', pues no se sabe si f- g = [

FUNCIONES DE CONJUNTO

3.

Sean W = {a, b, ¢, d}, V = {1,2,3} y f: W— V definida por
¢l diagrama adjunto. Averiguar: (1) f({a, b, d}), (1} f({a. c}).
Solucion:
(1) Procediendo como sigue:

flle; b, d}) = {fla), f(b), fld)} = {2,3,38) = {2,3)

(2) Asimismo,

fHa, c}) = {fla), flo} = (2,2} = (2}
Notese que f({a, ¢!) = 2 es un enunciado incorrecto, puesto que la imagen del conjunto {a, ¢} en este caso,
es un subconjunto de ¥, que es el {2} y no un elemento de V.

Demostrar que si f: 4 — B es inyectiva, la funcién de conjunto inducida f: 24 — 2% es también
inyectiva. 24 y 22 son los conjuntos potencia de 4 y B, respectivamente.
Solucion:
Sean X e Y dos subconjuntos distintos de 4, es decir,
Xe2 Ye2f XY
Existe entonces un elemento z€ A tal que
zeX; ey ¥ (0 ze¥, 2¢ X)

Asi que f(z) & f(X) y como fes inyectiva, f(z) ¢ f(Y) (o bien f(z) e f(Y) y fiz) € f(X)). Por tanto, f(X) # f(¥) y.
por definicién, la funcion de conjunto inducida es también inyectiva.

Demostrar que si f: 4 — B es sobreyectiva, la funcién de conjunto inducida f: 24 — 2% es tam-
bién sobreyectiva.

Solucion:
Hay que demostrar que cada conjunto de 27 es imagen de un conjunto de 2% por lo menos. Sea Y& 28 Pues-
to que f es sobreyectiva,
YY) = dx | xwed; flz) e Y}
no es vacio, Pero Y es la imagen de f~'(Y), es decir. f{f~'(¥)) = Y. Luego f:2* — 2" es sobreyectiva.
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FUNCIONES NUMERICAS REALES
6. Sea W = {a, b, ¢} y sean f'y g las siguientes funciones numéricas reales en W:

fla)=1, f(b)= -2, f(e)=3 gla)=-2, g(b) =0, gc) =1
Encontrar las siguientes funciones: (1) f + 2g, (2) fg — 2f.
Solucion:
(1) Calculando como sigue: (f + 2g)(a) = fla) + 2¢(a) = 1—4 = —3
(f + 2g)(b) = fib) +2g(b) = =240 = -2
(f +2g)c) = fle) +2g(c) = 3+2 =5
A f+2¢ = {la,—3), (b, —2), (e, 5)}.
21 Andlogamente, (fg — 2f)la) = fla) gla) — 2f(a) = (1}(—2) —2(1) = —4
(Ffg — 2A)(b) = [f(b)glb) — 2/(b) = (=2)(0) —2(—2) = 4
(fg —2f)(e) = fle)gle) — 2f(e) = (3M1) —2(3) = —3

Lucgo  fg — 2f = {({a, —4), (b, 4), (e, —3)}.

7. Sea fla funcion numeérica real con dominio de definicién [ —3, 3] que se representa en el diagrama
de coordenadas siguiente:

5
Representar y describir el grafo de cada una de las siguientes funciones: (1) £+ 2, (2) |/].
Solucion:
{1) Ya que, por definicion, (f + 2){x) = fix) + 2, cada valor de la funcién original se aumenta en 2. Asi que
siiby. se todo el grado de [ dos unidades para obtener el grafo de f+ 2, como se ve en la Figu-

ra §-1.
. 5
5T 4
A4 3
8 2
2 \ 1
o
=5 (=4|-3]-2[-1|_ | 1] 2| 3| 4] 5 -5 [—4|—8|—z|-1 | 1| 2[ 3] 4] 5
—2 -2
=3 -3
—4 —4
-5 -5
Representacion de £+ 2 Representacion de |f]
Fig. 8-1 Fig. 8-2

(2) Obsérvese que

(i) = |fx)) = {_ﬁii ?1 ﬁiizg

Asi que parte del grafo de |f] es idéntica a la parte del grafo de f que estd sobre 3 eje de las x; ¥
el resto del grafo de |/] se obtiene por simetria respecto del eje x, de la porcién del grafo de f que estd deba-
jo del ¢je de las x. Véase la Figura 8-2.




CAP. §) COMPLEMENTOS A LA TEORIA DE FUNCIONES. OPERACIONES 125

8. Averiguar el dominio de definicion de cada una de las siguientes funciones numéricas reales:

(1) fi(z) = 1fx donde =z >0 (3) fa(z) = log (x—1)
(2) falz) = V3 —x (4) falz) = 2* donde 0=zx=4

Selucion:

{1} El dominio aparece dado explicitamente como {x | x > 0}.

(2) Como no se da explicitamente ningin dominio de definicidn, se aplica la regla del maximo dominio, Pues-
to que f, toma valores reales solamente cuando 3 — x = 0, es decir, cuando x = 3, el dominio de f, bus-
cado es {x|x =3}.

(3) Puesto que no se da el dominio explicitamente, se aplica nuevamente la regla del maximo dominie. Como
la funcion logaritmica real solo estd definida para numeros positivos, f; tiene significado solamente si
x—1>0, 0seasi x> 1. Asi que el dominio de f; es {x|x > 1}.

(4) El dominio estd dado explicitamente como {x |0 = x = 4}.

9. La funcidn numérica real 0, : 4 — R definida por
0,(x) = 0 para todo x & 4
se llama funcion cero (sobre A4). Demostrar que para cualquier funcién f: 4 — R,
Mf+0,=7r5 vy @f0=0
Solucion:
(1) Ya que (f + 0,)(x) = fix) + 0,(x) = fix) + 0 = f(x) para todo xc A4, f+ 0, =/
{2) También, (f:0,)(x) = f(x)-040x) = f(x)+ 0= 0= 0,(x) para todo xe 4. Luego f+0, = 0,
Notese que la funcion cero tiene propiedades muy parecidas a las del ndmero 0.

10. Dada la funcidn real f = {(1, 2), (2, —3), (3, —1)} (de dominio {1, 2, 3}), averiguar (1) f + 4,
@ Il G £
Solucibn:

(1) Como, por definicion, (f + 4)(x) = f(x) + 4, basta sumar 4 a cada valor de la funcion, esto es, sumar 4
al segundo clemento en cada par ordenado de f. Asi que

f+4 = {{1,86), (2, 1), (3, 3)}
l (2) Como [f](x) = |f(x)|. sustituir el segundo elemento de cada par de f por su valor absoluto. Entonces
Ifl = {(1,2), (2,8), (38 1)}

(3) Pussto que f%(x) = (f(x))*, cambiar en cada par de f el segundo elemento por su cuadrado. Se tiene, pues:
o= {14, @9, 1)

PROBLEMAS DIVERSOS SOBRE FUNCIONES

11. Demostrar que si 4 y B son subconjuntos de un conjunto universal U, entonces y,n z = %5
Solucién:
Sea xe A (M B; por tanto, xe 4 y x& B. Luego

X4npl®) = 1, x xp)®) = x, (@ x,(x) = 1) =1

Sea y e (4 M B)'; por tanto, ye A'\J B’ y entonces y£ 4’ o bien y £ B'. Entonces x, nz(3) = 0.
Asimismo, (y,2a)(¥) = xa(¥)xs(y) = 0 porque y,(y) = 0 o bien ys(y) = 0.
Asi, pues, y, s Y XaXp asignan el mismo numero a cada elemento de U. Entonces, por definicion,

Xanp T Xa¥p

12. Sea la funcion: f(x) = x siendo x = 0. Entre las funciones siguientes, decir cudles son o no pro-
longaciones de f.

()" &b =z domle s == 3) 1:R->R (5) ga(x) = xdonde xe[—1,1]
(2) g2(x) = |x| paratodo xe R (4) gs(x) = (x + |x|)2
Solucién:

Tener en cuenta que una funcién f” es una prolongacion de f si, en primer lugar, €l dominio de definicién
de /" es un superconjunto de [0, o[, el dominio de £, y en segundo lugar, si f'(x) = x para todo x € [0, =of.
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(1) Como g, satisface ambas condiciones, g, es una prolongacién de f.
; g fzﬁixe[ﬂ,w)
(2) Como g:dx) = !z = .)L SRR ;
la funcion valor absoluto es una prolongacién de f
{3) Por definicion de la funcion idéntica, 1{x) = x para todo xg R. Asi que la funcién idéntica es una
prolongacidon de f [ @+ 2

) Como ) = (echBlgesi ~ ) -

r sl xs[O,WJ

, & oy una prolongacion de /.
0 st z<0 PR e

(5} El dominio de definicion de g4 no contiene al dominio de f; por tanto, g, no es una prolongacién de f,

Como conjuntos, ;qué relacion hay entre una funcién f: 4 — B y la restriccion de f a un sub-
conjunto 4’ de 4?
Solucién:
La restriccion de fa A', es decir f|4", es un subconjunto de f. Pues x € A" implica x € 4 y entonces
(x. fix))ef]4" implica (x, fixNesf

Dados los subconjuntos A4, = {1. 2. 3}, 4, = {1, 5}, A;=1{2, 4, 5} v A, = {3, 4] de
B = {1, 2, 3, 4, 5}, decir si cada una de las siguientes funciones de {A4,. A;, 43, 4,} en Bes o
no funcién de eleccion.

M) fi = {(4:,1), (A4, 2), (A4 3), (A4, 4))

(2) f: = {(An 1), (A2, 1), (A4, 4), (A4, 4))

(3) fa = {(Awn2), (As, 1), (As 4), (Aq, 3)]

(4) f« = {(A:.,3) (A2 5), (45 1), (A4, 3))
Solucion:

(1) Como f,(4;) = 2 no es elemento de 4,. f; no es funcién de eleccion.

{2) Observando que f;(A4;) pertenece a 4, para todo i, se ve que f; es una funcion de eleccion.
(3) Siendo f3(A4;)€ 4; para todo i, f; es funcidn de eleccion.

(4) Como f,(43) = | no pertenece a A;. entonces f; no es una funcidn de eleccion.

OPERACIONES

15.

16.

Sea a: N x N — N la operacién del minimo comiin multiplo, esto es,
a(a, b)) =a+b=mecmdeaybd
(1) (Es @ conmutativa? (2) ,Es « asociativa? (3) Averiguar el elemento neutro de a. (4) ;Qué ele-
mentos de N, si los hay, tienen simétricos y cudles son?
Solucitn:

(1) Como el mcm de a y b es €l mem de & y a, @ es conmutativa.

(2) En teoria de los niimeros se demuestra que (a * b) « ¢ = a = (b » ¢), es decir, que la operacion del mcm es
asociativa.

(3).._El numero 1 es un elemento neutro puesto que el mem de 1 y cualquier otro nimero a €s a, esto €s,
l*a = a para todo ae N.

(4) Como el mem de dos numeros @ y bes | si, ysolosi,a =1y b = 1, el inico nimero que tiene simétrico
es el 1 y ¢l es su propio simétrico.

Dada la operacién «: Q0 x Q — @ denotada y definida por
ala,b) = a*xbh = a+b—ab

donde Q es el conjunto de los niimeros racionales, (1) jes @ conmutativa?, (2) ;es o asociativa?
(3) Hallar el elemento neutro de «. (4) ; Tiene algir. :lemento de Q un simétrico, y cudl es?
Soluciin:
1 axb = a+b— ab

b*a = b+ a— ba

Asi, pues, a ¢s conmutativa, porque la adicién es asociativa y la multiplicacién es conmutativa, esto es ab = ba.
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17.

18.

19.

{2) [@a*xby*e = (a+b—ab)xe = (a+b—ab)+c— [(a+b— able
= (a+b—ab)+c—(a+b—abe
= a+b—ab+c¢c—ac— bec+ abe
— at+b+ec— ab—ae— be +abe
a*{bxe) = a=*(b+ec— be)

a+ (b+e—be)—alb+e— be)
= a+b+c—bc—ab—ac+ abe
Luego o es asociativa.

(3) Un elemento e es un elemento neutro para x si a ¢ = g para todo a € Q. Calculando como sigue:
a*e = a, a+te—ae =4a, e—ea =0, el—a) =0 ¢ =20

resulta, pues, que 0 es el elemento neutro.
(4) Para que a tenga un simétrico x, habra de ser a » x = 0, pues, segin (3), 0 es el elemento neutro. Calcu-
lando como sigue:

a%r =0, a+x—axr =0, @ =ar—2x, a =zla—1), =z = afla—1)

Asi que a # 1, a tiene simetrico que es a/la — 1).

Demostrar el Teorema 8-1: Si ¢ y ¢ son elementos neutros (para la misma operacion),
es e=¢e.
Solucién:

Por hipétesis, e+ ¢’ = ¢’ y ese’ = ¢, Luego e =exe = ¢

Sea la operacion unién de conjuntos. (1) Hallar el elemento neutro. (2) ;Qué elementos, si los hay,

tienen simétricos y cudles son?

Selucién:

(1) Noteseque A\J & = Z\J A = A para todo conjunto 4. Asi que el conjunto vacio ¢ es el elemento neutro
de la operacion union de conjuntos.

(2) Para que un conjunto 4 tenga un simétrico X, A U X = @. Como A\ )X = Fimplicad =FyX =g,
e! tmico conjunto que tiene un simétrico es el conjunto vacio, que es, a su vez, su propio simétrico.

Sea la operacién a: 4 x 4 — A denotada por
ala,b) = ax*b

supuesta asociativa y con un elemento neutro e. Si b y b’ son simétricos del mismo elemento a,
es b = b'. (Es decir, que el simétrico de un elemento es unico.)

Demostracién:
Segun la hipodtesis br(a*xb) = b*e = b
(bra)*b = exbd = b
y como & es asociativa,
b*{a*bh) = (b*a}*b

y, por tanto, h = b".

Sea & , el conjunto de todas las funciones de 4 en A. Sea a la operacién de composicion de fun-
ciones. (1) ;Es & conmutativa? (2) ;Es « asociativa? (3) Averiguar el elemento neutro para o.
(4) ; Qué elementos, si los hay, tienen simétricos y cudles son?

Solucidn:
(1) Si A tiene mas dc un clemento, entonces @ no es conmutativa. Porque con a & 4, be B, a £ by conside-
rando las funciones constantes f y g definidas por f{x) = a, glx) = b, se tiene
(fogiz) = flglx)) = fb) = a
(geNlx) = glfix)) = gla) = b
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(2} Por el Teorcma 4-1, 2 es una operacién asociativa.

{3) Un elemento neutro es la funcidn idéntica 1,: A — A pues, segin ya se ha visto, (1, /) = (f=1,) = f
para toda funcién fe Fa

(4) La funcién f: 4 — A tiene simétrica si, y solamente si, fes inyectiva y sobreyectiva; y su simétrica es la fun-
cion reciproca /™' que se definié en el Capitulo 4.

Sea la operacién o : N x N — N definida por

ala, b) =axbh=a
(1) (Es & conmutativa? (2) {Es a asociativa? (3) ;Existe elemento neutro? (4) ; Tiene alguno de
los elementos un simétrico? ;Cual?

Solucién:

(1) Como asbh=aybwa=>5 o no es conmutativa.

(2) Como (ash)sc=asc=ayas(bsc)=axh=a, aes asociativa.

(3} St o tiene un elemento neutro e entonces, por definicion de elemento neutro, ¢ » @ = a para todo a e N.
Pero por la definicién de o, 2+ @ = e. Asi que no hay elemento neutro.

{4) No tiene sentido hablar de simétrico cuando no existe ni siquiera elemento neutro.

OPERACIONES Y SUBCONJUNTOS

22,

23.

Decir cuales de los siguientes subconjuntos de N, los numeros naturales, son o no cerrados res-
pecto de la operacién de multiplicacidn:

(1) {0,1} (4) {1,3,57 } {x| x es impar}

(Z) $1-2} (5) {x|xes pr]mo;

(3) {2.4.6,8. ...} = {x|xes par} (6) {2,4,8,16,...} ={x|x=2"neN}
Solucién:

(1) (03(0) = 0, (1){0) =0, (ON1)=0, (1)(1) =

Por lo que {0, 1} es cerrado respecto de la multiplicacion.
(2) Como (2)(2) = 4¢ {1, 2}, {1, 2} no es cerrado respecto de la multiplicacién.
(3) El producto de numeros pares es par; asi que el conjunto es cerrado respecto de la multiplicacion.
(4) El producto de nimeros impares es impar; este conjunto es, pues, cerrado respecto de la multiplicacién.
(5) Tenmiendo en cuenta que 2 y 3 son primos, pero (2)(3) = 6 no lo es, se ve que el conjunto no es cerrado res-
pecto de la multiplicacion,
(6) Como (2')(2°) = 2%+, el conjunto es cerrado respecto de la operacién de multiplicacion.

Entre los conjuntos del problema anterior decir cudles son ¢ no cerrados respecto de la operacidn
de adicion.
Selucién:

El conjunto de los nimeros pares, {2, 4, 6, 8, ...} es cerrado respecto de la adicién porque la suma de
dos nlimeros pares es par. Pero ninguno de los otros conjuntos es cerrado respecto de la adicién, pues, por ejemplo,

1+1 =2 ¢ {0,1}
1+2 =3¢ {1,2
3+5 =8¢ {1,357, ...}
3+5 = B ¢ {z | zesprimo}
2+4 = 6 ¢ {2,4,8,16, ...}
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24, Sean (1) & la familia de conjuntos finitos de nimeros reales,

25.

(2) 48 la familia de intervalos.
(3) C la familia de superconjuntos del intervalo unidad [0, 1].

Establecer para cada una de estas fami ias de numercs reales si es 0 no cerrada respecto de la ope-
racion (g) union, (b) interseccion.

Solucidn:

(1) Come la unién y la interseccion de conjuntos finitos son finitas, o es cerrada respecto de ambas operaciones.

(2) Como [1, 2] \J [3, 4] no es un intervalo, @ no es cerrada respecto de la operacién de unién. Como se vio
en el Capitulo 3, la interseccién de dos intervalos es un intervalo, asi que & es cerrada respecto de la ope-
racion de interseccion.

(3) Si[0,1]C Ay][0,1]C B, entonces [0, 1] C (AU B)y [0, 1] C (4 N B). Asi, pues,Ces cerrado respec-
to de ambas operaciongs,

Demostrar: Sea a: 4 x 4 — A una operacion asociativa con elemento neutro e, y sea B el con-
junto de elementos unitarios de A, esto es, el conjunto de elementos de 4 que tienen simétrico. En-
tonces B es cerrado respecto de la operacién a.

Solucion:
Sean a & B y b & B. Entonces a tiene un simétrico @ ' y b tiene un simétrico b~ '. Hay que demostrar que
ala, b) = a=be B

es decir, que a + b tiene simétrico
Puesto que
fexb)(d 7 +a") = a*x(b=(btea’l)
a*{b*b")*xa™)

a*(exalt)

I

a*a”
= ¢

resulta que a+ b tiene por simétrico 6~ ' =g~ ! y, por tanto, a* be B.

Problemas propuestos

DIAGRAMAS Y FUNCIONES

26.

27.

En el diagrama de funciones de la Fig. 8-3, jcudntos caminos hay de 4 a D y cudles son?

A g C D——wF

f h ‘5 f-‘\‘u
i I

B D 1 B

Fig.8-3 Fig. 8-4

Si el diagrama de la Fig. 8-4 es conmutativo, ;qué funciones son equivalentes?

FUNCIONES DE CONJUNTO

28,

Dado W = {1, 2, 3, 4, 5} sea f: W— W el conjunto de pares ordenados:
S=1{01,3)% (22, (3 5 @ 3), (5 1)
Hallar: (1) £({1, 2, 3}), (2) f({1, 4}), (3) f({2, 5}).
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29. Dados S={a. b ¢y T={LL23 yla
f = {la, 1), (b, 3), (c, 1)}

Averiguar la_funcién inducida f: 2° — 27,

FUNCIONES NUMERICAS REALES

0. Sean V= fa, b, ¢} y las siguientes funciones numéricas reales £y g de V:

f = {a,2), b-3), (c.-1)}, g = {(a,—2), (b,0), (c, 1)}
Hallar.(1) 3/, (2) g+2, 3) f+g, (4) 2f—5g, &) fg, ) Ifl, (D f2 B 3/ —fg.

31. Averiguar el dominio de definicion de las funciones reales:

1) flz) = =/(x+3) (8) flx) = V4 —~=*
(2) flx) = x/{zx+3) donde x > 0 (4) flz) = log(x?)
32. Sea f la funcion numérica real de dominio de definicion [—4, 4] representada en el diagrama de coor-
denadas:
|
N
|
3
1
S / —
1
—4| -3 —2| =1 1 N2z 3 |4
0
-1
-2
-3
- .. ] 1|
J [ ]

Representar del mismo modo las funciones: (1y f— 3, (2) [f|

FUNCIONES CARACTERISTICAS
3. Sean U=la. b, e, d e}, A={a b e} B=lc.d y C={a d. e
Hallar: (1) x4 (2) ¥ (3) %c

34, Sea U = {a, b, ¢, d}. Cada una de las funciones siguientes de &/ en {1, 0} es una funcidn caracteristica de un
subconjunto de U. Hallar cada subconjunto.

(1} {(a, 1), (5, 0), (e, 0), (d, 1)} (3) {(a, 0}, (b, 0}, (c, 0, (d, O)}
(2) {(a, 0), (b, 1), (e, 0), (d, 0)} 4) {(e, 1), (b, 1), (e, 0), (d, 1)}

35. Si la funcion caracteristica x, es una funcion constante, jqué puede decirse del conjunto 47
PROBLEMAS DIVERSOS SOBRE FUNCIONES

36. Dada la funcion
f = {(1,2), (3,5), (4,6), (8 3)}

cuyo dominio de definicion es {1, 3, 4. 8} y las funciones siguientes en las que x e y aparecen como incognitas,
ipara qué valores de x e v, si los hay, serd cada funcién una prolongacion de la f?

(1) fi = {(1,2), 2.9), (3, 2), (4, 6), (58), (8 )}
(2} j: = {(1,2), (x3), (2,3), (4, 6), (3, 5)
(B fi = {(4,8), (z,3), (3,5), (5 ), (1, 2)}

37. En qué caso puede ser constante la restriccion de una funcién caracteristica y, a un conjunto B, esto es, la fun-
cion y,|8? .
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38. Dados los subconjuntos 4, = [a. b d}. A; = |e,d.e|. 4; = b} de B = {a. b ¢ d. ¢}, decir si cada una de
las signie ‘es funciones de [4,, 4., 43} en B es una funcion de eleccion.
(1) fi = WAL alk (Ay by, (A b))
(2) f2 = WAL ), (A o), (As, b
(3) fa = WAL L), (A ), 14, B}
OPERACIONES
39, Sea z la operacion de interseccion de conjuntos (1) (Es x conmutativa? (2) (Es x asociativa? (3) Hallar el elemen-

40.

41.

42,

to neutro para o. (4) ;Qué elementos. si los hay. tienen simétricos y cudles son?
Sea o la operacion de diferencia de conjuntos. Notese que
A—B = AnE
(1) (Es o conmutativa? (2) ;Es « asociativa?
{3) Hacer ver con diagramas de Venn que la operacion de union no es distributiva con respecto a %, es decir.

que en general
AUB-C) = (AuB —(Au)

(4) Demostrar que la operacion de interseccion es distributiva con respecto a x, esto es. que

AnNB-=-C) = AnB)—(An0

Sea o la operacion con conjuntos defimda (y denotada) por

AAsB = (AuB)—(AnBE %

Esta operacion se llama diferencia siméirica. (1) (Es « conmutativa? £ " ————
(2} (Es « asociativa? (3) Hallar el elemento neutro. (4) Hallar el simé- — _—
trico de un conjunto cualquiera 4. (5) Mostrar con diagramas de Venn = E
que la operacién de unién no es distributiva con respecto a x, es decir, ==\ —

que, en general, ‘@g

AU(BAC) # (AuB)a(Au ()

{6) Demostrar que la operacion de interseccion es distributiva con res-
pecto a o, 0 sea qgue
AnN(BAC) = (AnBja{AnC)

A A Ben rinado

Sea « la operacion en Q x @, el conjunto de pares ordenados de nimeros racionales, definida (y denotada) por
(a, b) * (z,y) = (az, ay+b)

(1) ;Esxconmutativa? (2) ; Es 2 asociativa? (3) Hallar el elemento neutro para a. (4) ; Que elementos, si los hay.
tienen simétricos y cudles son?

Sea a la operacion en los numeros reales definida (y denotada) por

a*b = a4+ b+ 2ab

(1) (Esaconmutativa? (2) ;Es a asociativa? (3) Hallar el elemento neutro para a. (4) ; Qué elementos, si los hay
tienen simétricos y cudles son?

OPERACIONES Y SUBCONJUNTOS

4.

45,

47,

Sea E={...,—4,-2,0,2,4,.. .} oscan losenteros pares. Decir si Ees 0 no cerrado respecto de la opera-
cion de (1) adicién, (2) sustraccion. (3) multiplicacién, (4) divisidn (excepto por cero).
Sea F=1{...,—5 —3, —1,1,3,5 ...}, o seca los nimeros impares. Decir si F es 0 no cerrado respecto de

la operacién de (1) adicién, (2) sustraccion, (3) multiplicacion, (4) divisién (excepto por cero).
Sea 4 la familia de todos los conjuntos acotados de numeros reales. Decir si # es 0 no cerrado respecto de la
operacion de (1) union, (2) interseccion, (3) diferencia.

Sea o la familia de todos los intervalos abierto-cerrados Ja, #] junto con ¢l conjunto vacio, Decir si &/ es 0 no
cerrada respecto de la operacién de (1) union, (2) interseccion, (3) diferencia.

Considérese la familia = de conjuntos de niimeros reales que contienen al {0}, es decir, que 4 £ «f si, y solamen-
te si. 0 & 4. Decir si & es 0 no cerrada respecto de la operacion de (1) union, {2) interseccion, (3) diferencia.
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Respuestas a los problemas propuestos

28, Tres; d=f, jog y johof.

27, t=g°f, r = uvs, vof —ucsef = uot, w = You, WoO§5 = VOr — vOuUOS, Yy wot=wogaf=
vouot = youvgof =vporof

28. (1) {3,2,5}, (2) {8}, (3) {&.1}

29. jila, b, ¢}) = {1, 3}, fUa, b}) =413}, fle,c}) = {1}, F(@) =0, [fUb,c}) = {18}, flla}) = {3},
b)) = {3}, fl{eh) = {1}

30. (1) 3f = {{a 6), (b, =9), (¢, =30} (6) fg = {{a, —4), (b, 0), (¢, —1)}
2 g+2 = {{=,0), (b2} (c, 30} 6) ifl = {la, 2), (&,3), (¢, 1)}
(3) f+g = {{a, 0}, (b. =3), (c.0)} M £ = e, 8), (b, =27), (c, -1}
(4} 2f —8g = {{a, 14), (b, —6), (c, —T)} (8) I3f—fg| = {la, 10, (b, 9), (¢, 2)}

3. (1) {z | xe R , =+ —3} 2 {=z| z=0 3) {z | 2= =2} (4) {z | xe R , z =0}

32 (1) (2)
4 q
3 /3
2 i CHAY
oll 1
—4}-31—2|-1 B SR ER —4|—a|-2]-1] o] 1| 2| 3| 4
[]-2 &
{ -3 ~2
i -3
-5 —4
—8 =
=
F—3 I

3. (1) x4 = {(a,1), (b, 1), (e, 0), (d,0), (g, 1)}
@) x = {la,0), (5,0, (e, 1), (d, 1), (e, 0)} 1
(3 xc = {le, 1), (b,0), (c,0), (d, 1), (e, 1)} ‘

34. (1) {a,d}, (2) b}, (3) @, (4 {e, b, d}
35, O bien A =, o bien 4 = U,

3. (hx=35y=3 (2)x=8 yr=4 (3) x=28§, y puede ser cualquier elemento,
37. O bien 8 es un subconjunto de 4. o bien B es un subconjunto nulo del complemento de A.
38. (1) Neo, (2) 5, (3) 50

39. (1)Si. (2}Si. (3) U, el conjunto universal, es el elemento neutro. (4) Solo U tiene simétrico, que es el mismo.

40. (1) No, (2) No
{3)

AU (8 = () lo rayado (4\J B) — (4 U C) lo rayado
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Proposicién

ANBNMANCY
(AN BN4UC)
=UnanAaTulidn B NC])
={dNA)N

=ZJNA8

=
SLANB)—{ANC)=

(AN B) - (4N C)

Il

Pero (AN BYM A’

dul4anBnc]
ANBNC
ANBNC)
=AN(B-0)

i

(2) Si. (3) & es el
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Razén

Definicién de diferencia

Ley de De Morgan

Ley distributiva

Ley asociativa, ley conmutativa
Ley del complemento

Ley de identidad

Sustitucién

Ley de identidad

Ley asociativa

Definicion de diferencia

B i R S

=

elemento neutro. (4) El simétrico de todo conjunto es el mismo.

A\ J (B A C)lo rayado

Proposicion

(ANB)a (ANC) = ((ANB)U(ANC) — (AnB)A(ANC)]

Pero (AnB)u(AnC) = An(BuC)
(AnB)n(AnC) = {(AnA)n(BnC)

= An{BnC)
- (AnB) A (AnC) = [An(BUC)] — [An{BnC)
An[(BuC) — (BnC)]

i

An(BACQ)

(2} Si. (3) El par ordenado (1. 0) es el elemento neutro.

si g ¢ 0, que es (l/a, —b/a).

CAP. §]
4)
1
2
3
4
5
6,
7
8
9.
10.
41, (1) Si.
(8)
{6)
1.
2
3.
4.
5.
6.
T
42. (1) No.
43, (1) Si.
4. (1) si
45. (1) No
46. (1) Si
47, {1) No
48, (1) Si

(2) 8i. (3) Cero es el elemento neutro.
(2) 8i (3) Si (4) No

(2) No (3) Si (4) No
(2) §i (3) Si

(2) 8i (3) Si
(2) 8i (3) No

(41 BYA (4 U C) lo rayado

Razon

Definicion

2. Ley distributiva

3. Ley asociativa,
Ley conmutativa

4. Ley de idempotencia

5. Sustitucién

6. Interseccion distributiva
con respecto a la diferencia

7. Definicién

(4) El par ordenado (a, b) tiene simetria

(4) Si a =+ 1/2, a tiene un simétrico, que es —a'(1 + 2q),



Parte I1: Cardinales, ordinales,
induccion transfinita

_ Capitulo 9
Numeros cardinales

CONJUNTOS EQUIPOTENTES

Parece natural preguntarse si dos conjuntos cualesquiera tienen o no el mismo niimero de elemen-
tos. Para ¢l caso de los conjuntos finitos, basta contar los elementos de cada conjunto. Pero cuando se
trata de conjuntos infinitos, la respuesta depende de lo que se entienda por conjuntos con el mismo
numero de elementos 0, como se dird en adelante, por conjuntos eguiporentes. Antes se pensaba que
todos los conjuntos infinitos eran equipotentes, pero la siguiente definicion, atribuida al matemdtico
aleman Georg Cantor (1845-1918), revoluciono por completo la teoria de conjuntos.

Definicién 9-1: El conjunto A es equipotente al conjunto B. lo que se denota por
A~B
si existe una funcion
fiA—- B

inyectiva y sobreyectiva.
La funcion [ define ertonces lo que se llama una correspondencia biunivoca entre los conjun-
tos 4 y B.

Ejemplo 1-1: Sean ® = {1, 2, 5, 8} v T = {Marcos, Enrique, Pablo, Beatriz|. El diagrama siguiente de-
fine una funcién de ® en T que es inyectiva y sobreyectiva. Por tanto, (| es equipotente a 7.

Marcos
Enrigue
Pablo

Beatriz

Ejemplo 1-2: Sean M = {1, 2, 3} y N = {1, 2}. Ninguna de las posibles funciones de M en N es inyecti-
va y sobreyectiva. Asi. pues, M no es equipotente a N.

En vista de los dos ejemplos anteriores, no es dificil comprender que, en general, dos conjuntos
finitos son equipotentes si contienen el mismo numero de elementos, y solo entonces., Asi, pues, para
los conjuntos finitos, la Definicidn 9-1 corresponde al significado usual de tener dos conjuntos ¢l mis-
mo nimero de elementos.

Ejemplo 1-3: Sean G = [0, 1], H = {2. 5} y /: G — H la funcion definida por
flx)=3x+ 2
Como [ es inyectiva y sobreyectiva. entonces G ~ M, o sea G es equivalente a H.
Ejemplo 1-4: Sean N = {1,2.3....}y E=1{2.4,6....]. La funcién /: N — E definida por f{x) = 2x

es inyectiva y sobreyectiva. Asi que N ~ E.

En el Ejemplo 1-4 resulta que el conjunto infinito N de los nimeros naturales es equivalente a un
subconjunto propio suyo: esto es caracteristico de los conjuntos infinitos y de hecho queda establecida
la siguiente

134
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L

Definicion 9-2: Un conjunto A es infinite si es equivalente a uno de sus subconjuntos propios. En
caso contrario el conjunto es finifo.

Ejemplo 1-5: Sean A4 y 8 dos conjuntos cualesquiera. Se tiene
A~ A% [1)
B ~ B ¥ (2]

fra — {a, 1), ap 4
gibh (b2, b B

pues las funciones

son ambas inyectivas y sobreyectivas, Por otra parte, aun no siendo 4 y B disjuntos, no-

i/ Ax{1INBx 2} =@

pues cada par ordenado de 4 x |1} tiene | por segundo elemento y cada par ordenado de

B x {2} tiene 2 por segundo elemento.

Se termina esta seccidn con un teorema que se utilizara después en el capitulo.
Teorema 9-1: La relacion entre conjuntos definida por 4 ~ B es una relacion de equivalencia. En
efecto,

(1) A ~ A para todo conjunto,
(2) Si A~ B,entonces B ~ A,
(3) Sid~ByB~ C,entonces 4 ~ C.

CONJUNTOS ENUMERABLES

Sobre la base ya conocida de los nimeros naturales, N = {1, 2,3, ...},
Definicién 9-3: Si un conjunto D es equipotente al conjunto N de los numeros naturales, se llama
enumerable y se dice que tiene cardinal N, (alef cero).
Definicién 94: Si un conjunto es finito también se dice enumerable por ser equipotente a un subcon-
junto de N. Si un conjunto es infinito y no es equipotente a N se dice no enumerable.

Ejemplo 2-1: Toda sucesion infinita
s Ay Aay v
de elementos distintos es enumerable, pues una sucesion es una funcidn
ﬂﬂ) = 4y
cuyo dominio de definicion es N. Asi que si los a, son distintos, la funcién es inyectiva y so-
breyectiva. Asi, pues, los conjuntos siguientes son enumerables

{1, 1/2, 1/3, ..., 1/, ...}
11, =2, 8, —4; ..., (=1, 0
11,10, (4, 8), (9, 27), ..., mhat, L)

Ejemplo 2-2: Sea el conjunto producto N x N segin se ve en la Figura 9-1.

(1,1) (1, 2)—(1,3 L 4)—.

|

2,1) (22 (€3 249

) (3 3}/<3,41/.
| 2 P

4,1} (4, 2) 4, 3}/{4= 4}

a4

s

(3,1) (3,2

R

Fig. 9-1
El conjunto N x N puede escribirse como sucesién infinita de elementos distintos asi-
f102), 42, 1), (1, 2) (103), 02, 2), o
{Se ve que la sucesion se establece «siguiendo las flechas» en la Fig. 9-1.) Asi que, seg== &
dicho en el Ejemplo 2-1: N x N es enumerable.
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Ejempio 2-3: Sea M = (0. 1. 2. ...} = N \J {0}. Ahora todo numero natural a £ N se puede escribir de
una manera unica en la forma

a= 2025+ 1)
donde r, se M, La funcidn f: N — M x M definida por
fa, = (r, 5}

es inycctiva y sobreyectiva. Por tanto, M x M es enumerable. Notese que N x N es un sub-
conjunto de M x M.

He aqui varios tecremas sobre conjuntos enumerables.

Teorema 9-2: Todo conjunto infinito contiene algin subconjunto enumerable.

Teorema 9-3; Un subconjunto de un conjunto enumerable, o bien es cnumerable, o bien es finito,
y entonces, por extension. se dice también enumerable (se pueden contar sus elemen-
tos, esto es, enumerarlos).

Teorema 9-4: Sea A,, A;, A5, ... una familia enumerable de conjuntos enumerables disjuntos dos
a dos. La union de los conjuntos

Ui’:_\' '4i

es enumerable.
El siguiente ejemplo de un conjunto enumerable es de gran importancia: su cardcter de enume-
rable no es tan claro como parece.

Ejemplo 24: Sea O~ el conjunto de los numeros racionales positivos y sea Q' el conjunto de los nimeros
racionales negativos. Entonces

0=0 U{luQ"

es el conjunto de todos los racionales.
Sea la funcidn f: @ — N x N definida asi:

floiq) = (p. )

siendo p/g un elemento cualquiera de Q% expresado como cociente de dos enteros positivos
primos entre si. Es inmediato que fes inyectiva y que, por tanto, @ es equipotente a un sub-
conjunto de N x N, Por el Teorema 9-3 y el Ejemplo 2-2, 0" es cnumerable. Asimismo, re-

sulta que O s enumerable. Por consiguiente, el conjunto de los nimeros racionales, que
es la union de @7, {0} y O, es enumerable.

EL CONTINUO

No todo conjunto infinito es enumerable. El siguiente teorema presenta un ejemplo particular de
extrema importancia.
Teorema 9-5: El intervalo unidad [0, 1] no es enumerable.
Se dan dos demostraciones de este teorema en la seccion de problemas resueltos.
Definicién 9-5: Sea un conjunto A equipotente al intervalo [0, 1]. Se dice que A tiene la potencia del
continue y que su cardinal es c.

Ejemplo 3-1: Sea [, #] un intervalo cerrado y sea
F:00, 1] = [a, 8]
la funcidén definida por
fx)=a+ (b —a)x

Se ve que fes inyectiva y sobreyectiva. Asi que [a, b] tiene cardinal ¢. Se demostrard, ademds,
que todo intervalo, abierto o semiabierto, tiene también cardinal c.
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Ejemplo 3-2: La funcion f: (—m/2. m/2) — R, definida por f(x) = tg x, es inyectiva y sobreyectiva, asi que

R~ (—n/2, n/2)

Por tanto, el conjunto de los numeros reales tienc la potencia del continuo. es decir, su
cardinal es ¢

NUMEROS CARDINALES
Teniendo en cuenta que, segiin el Teorema 9-1, la relacidén definida entre conjuntos por
4~ B

es una relacion de equivalencia, resulta, segin €l teorcma fundamental sobre relaciones de equivalencia,
una particién de todos los conjuntos en clases de equivalencia, que son clases disjuntas de conjuntos
equipotentes.

Definicion 9-6: Dado un conjunto cualquiera 4, la familia « de los conjuntos equipotentes a 4 se
llama numereo cardinal de A (o, simplemente, cardinal de 4) y se denota por

x = #(4)
Definicion 9-7: El numero cardinal de cada uno de los conjuntos
W T I S (o TR
se denota por 0, 1, 2, 3, . . _, respectivamente, y se dice un cardinal finito.

Definicion 9-8: EI niimero cardinal de ¥, el conjunto de los numeros naturales, y el nliimero cardinal
del intervalo unidad [0, 17, se simbolizan respectivamente por

#(N) =X, #(0.1])=¢

Observacion 9-1: El simbolo N, (alef cero) fue introducido por Cantor; también sucle escribirse a
(a gotica) en vez de N,.

ARITMETICA CARDINAL

En vista de la Definicién 9-7, los nimeros cardinales pueden considerarse como superconjuntos
de los cardinales finitos 001,02 3,0
o sea de los nimeros naturales N y 0. La definicion que sigue generaliza en esencia las operaciones or-
dinarias de adicion y multiplicacion de numeros naturales a todos los numeros cardinales.

Definicién 9-9: Sean « y B numeros cardinales y sean 4 y B dos conjuntos disjuntos tales que

« = #(A), p = #(B)

Entonces at+ f = #AUB)

Teorema 9-6: La Definicién 9-9 es una buena definicidn, es decir, que la definicidn de « + § y de 2f
no dependen de los conjuntos particulares 4 y B. Esto ¢s, si

A~A, B~B, ANB=0, ANB =0

entonces

#(AUB)
#(A X B)

#(A’UB)
#(A' X B)
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En la Definicion 9-9 se supone que los conjuntos 4 y B son disjuntos. Como los conjuntos 4 x {1}
y 8 x {2} son disjuntos en todo caso, sean cuales fueren 4 y B, puede sustituirse la Definicién 9-9 por
la siguiente;
Definicién 9-9': Dadosa = #(4)y f = # (B), es

at+f = #AX {1} U Bx {2}
af = #(A xB)
Ejemplo 4-1: Como 3 = #({a. b, ¢}) y 4 = #({1, 3. 5. 7}), entances
S = = {asble 1305, 00 = 7
(8)(4) = #{{a,b,¢c} %X {1,857 = 12

O sea. las operaciones de adicion y multiplicacion de cardinales finitos corresponden a las
operaciones ordinarias de adicion y multiplicacion de nimeros naturales.

Ejemplo 4-2: Siendo 8, = #({1, 3. 5, ...}) = #({2, 4. 6, ... }), s¢ tiene que
Np + Ny =#(N) =N, vy NN, = #N x N) =8,
Teorema 9-7: Las operaciones de adicion y multiplicacién de cardinales es asociativa y conmutati-

va; y la multiplicacién es distributiva respecto de la adicion, es decir, que para car-
dinales cualesquiera «, f y 7,

(1) (et B) +y = at(By)

(2) (aB)y = alBy)
(3) at+tf = f+aea
(4) off = fa

(3) «f+y) = af + ay

No todas las propiedades de la adicién y de la multiplicacion de numeros naturales son validas
para los cardinales en general. Por ejemplo, para los nimeros naturales se verifica la ley de cancelacion,

0 sea que A
4 a+b=a+c¢ implicab=rc

ab = ac implica b = ¢
Pues, por el Ejemplo 4-2,
Nog+ Ng=8y =1+ X, noimplica ¥, =1
Koo = Ny = IR, no implica ¥, = 1

se ve que la ley de cancelacion no ‘es cierta para las operaciones de adicidn y multiplicacion de car-

dinales.

Observacion 9-2;: También se pueden introducir exponentes en la aritmética de los cardinales, como
sigue: Sean o = # (4) y f§ = # (B), y dendtese por

Byi
la familia de todas las funciones de A (el exponente) en B. Entonces
B* = # (B*)

En efecto, las leyes siguientes de los exponentes, validas para los nimeros natura-
les, también lo son para cardinales cualesquiera, o, ff y y:

(1) afa¥ = o7

@) @) = o

(8) (aB) = 7"

Ej’emplo 4-3: Dados 4 = {a. b, ¢} y B= {1, 2}, se ticne #(4) = 3, £(B) = 2 y 2* = #(B*), Pero ecn B*
hay exactamente 8 funciones:

e, 1), (b, 1), (e, 1D}, e, 1), (b, 1), (¢, 2)}, {(e,1), (8,2), (¢, 1)}, {(a,1),(,2),(c,2)}
{ta,2), (6,1), (e, 1)} {(@, 2} (b, 1), (0,2}, {{@.2), (b,2), (e,1)}, {(a,2), (b,2), (c,2)}
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Por tanto, se verifica entre los cardinales,
2 =8

Es decir, que si m y n son cardinales finitos m" denota el mismo nimero, sean m y n numeros
naturales o cardinales.

DESIGUALDADES Y NUMEROS CARDINALES

Una relacién de desigualdad se define como sigue entre cardinales:
Definicién 9-10: Sean o = # (4) y B = # (B). Suponiendo ademas que A es equipotente a un sub-
conjunto de B, es decir, que hay una funcién f: 4 — B inyectiva, entonces sc escribe

A=XB
que se lee «A4 es anterior a B», ¥
x=f
que se lee «a es menor o igual que fi».
Se emplea, ademas, Ia notacion siguiente:
A < Bsignifica 4 S By A+ B
o < f§ significa x = fy a < f8
Ejemplo 5-1: Dados 4 y B finitos. sean n = #{A)y m = #(R). Entonces n = m como cardinales si, y solo
si. n = m como ntimeros naturales. Es decir, que la relacion de desigualdad en el conjunto
de los nimeros cardinales es una extension de la relacion de desigualdad en el conjunto de
los numeros naturales.

Ejemplo 5-2: Puesto que ¥, el conjunto de los nimeros naturales, es un subconjunto de R, el de los ni-
meros reales,
Wy =c¢
Y puesto que R no es enumerable, se tiene M, = ¢,
We=<¢
Ejemplo 5-3: La funcion ideéntica 1,:4 — A es inyectiva sobre cualquier conjunto 4; asi que 4 T Ay
entonces o = a para cualquier cardinal o
Ejemplo 54: Si f: 4 — B cs inyectiva y g: 85— C es inyectiva, la funcion producto de composicion
(g1 4 — C también es inyectiva. De modo que
A=<B y B=C implica 4=XC
y para cardinales cualesquiera x, # y 7.
x=ffl v B=y mmplica a=7
Por lo visto en los dos ejemplos anteriores, el siguiente teorema es cierto.

Teorema 9-8: La relacién entre conjuntos definida por 4 < B es reflexiva y transitiva; y la relacion
entre cardinales definida por x = f es también reflexiva y transitiva

TEOREMA DE CANTOR

Los unicos cardinales infinitos vistos hasta ahora son X, y c¢. Parece natural preguntarse si no ha-
bra otros; y la respuesta es afirmativa. En efecto, el teorema de Cantor, que se expone a continuacion,
dice que dado cualquier cardinal a existe un cardinal mayor que a.

Teorema 9-9 (teorema de Cantor): Para todo conjunto 4,

A=<
y. por consiguiente, para todo cardinal a.

o< 2®
siendo asi que si o = #(4), 2* = # (24), numero cardinal de la familia de subconjun-
tos de A.
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TEOREMA DE SCHRODER-BERSTEIN

Dados dos conjuntos cualesquiera A y B, sc verifica una de las siguientes relaciones por lo menos:
(1) A es equipotente a B, esto ¢s,

#(4)=#(B)
(2) A no es equipotente a B, pero A es equipotente a un subconjunto de B (o viceversa), esto es,
#A) < #(B) (0o #(B)<#(4)
(3) A es equipotente a un subconjunto de B y B es equipotente a un subconjunto de A, esto es,
#(A)=#(B) y #(B)=4#(A)
(4) A no es equipotente a un subconjunto de By B no ¢s equipotente a un subconjunto de 4, esto es,
#(A) £ #B), #(A)+#B) y #(4)} #(B)

El célebre teorema de Schroder-Bernstein establece que, en el caso (3), 4 es equipotente a B, es
decir, que # (4) = # (B).
Teorema 9-10 (Schroder-Bernstein): Si 4 < By B < A, entonces 4 ~ B; asi, pues, para cardinales
a y B cualesquiera,
e=fyf=a implicaac=p

El teorema de Schroder-Bernstein se puede enunciar de la manera equivalente que sigue:
Teorema 9-10': Dados X D Y D X,, y si X ~ X,, entonces X ~ V.
Para concluir este capitulo, se enuncia la imposibilidad del caso (4) por el

Teorema 9-11 (ley de tricotomia): Para verificar cualquier par de nimeros cardinales a y
obiena < i, o biena = f, o bien o > f

La demostracién de este tiltimo teorema requiere procedimientos de induccidn transfinita, los cua-
les se trataran en el Capitulo 12; de ahi que la demostracion se posponga hasta entonces.

HIPOTESIS DEL CONTINUO
Por el teorema de Cantor, ¥y < 2" y como ya s¢ ha visto, ¥; < ¢. El teorema siguiente expresa
la relacidn entre 2% y ¢,

Teorema 9-12: 2% = .

Ocurre preguntar si existird un cardinal f§ comprendido «entre» R, y ¢. Desde un principio, Cantor
sostuvo la conjetura, conocida por hipdtesis del continuo, de que la respuesta a tal pregunta es nega-
tiva. O sea, pues,

Hipétesis del continwo: No existe cardinal § tal que Ny < < ¢

En 1963 se demostré que la hipétesis del continuo es independiente de los axiomas de la teoria de
conjuntos, de cierta manera en el mismo sentido en que ¢l postulado quinto de Euclides sobre las rec-
tas paralelas es independiente de los otros axiomas de la geometria.
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Problemas resueltos

CONJUNTOS EQUIPOTENTES, CONJUNTOS ENUMERABLES, EL CONTINUO
1. Sean los circulos concéntricos

C: = {{z,y) | 2*+y% =a?}, C: = {(z,y) | 2+ 9* = b%)
con 0 < a < b por cjemplo. Establecer geométricamente una
correspondencia biunivoca entre C; y C,. z C:
C
Solucién: f(z) h‘

Sea x e C,. Sea la funcion f: C, - C; donde f(x) es el punto de b
interseccién del radio que va del centro a x, con C,, como se ve en el &_/
diagrama adyacente.

Resulta que f es inyectiva y sobreyectiva, asi que define una corres-

pondencia biunivoca entre C, y C,.
2. Demostrar: (a) [0, 1] ~ 10, I[, (6) [0, 1] ~ [0, I[. (¢) [0, 1] ~ Jo, 1].

Solucion:
() Notese que

[0,1] = {0,1,1/2,1/3, ...} U A
0,1) = {1/2,1/3,1/4, ... U A
donde
A = [0,1] —{0,1,1/2,1/3, ...} = (0,1) — {1/2,1/3,...)

Considérese la funcién f: [0, 1] — ]0, I[ definida por el diagrama siguiente

{0,1,1/2,1/3, ...} U A

14
5 {1/2,1/3,1/4,1/5, ...} U A
Es decir
1/2 six =10
flx) = {1/(n+2) si x=1/n, neN
z Sioz#0,1/n, neN

Esta funcién es inyectiva y sobreyectiva. En consecuencia, [0, 1] ~ 10, 1[.
{6) La funcién f: [0, 1] — [0, I[ definida por

= Yin+1) 8 z=1/n, neN
fle) = {x Si z ¥ 1/n, neN

es inyectiva y sobreyectiva. [Es andloga a la funcién de la parte (2).] Asi que [0, 1] ~ [0, 1[.

(e) Sea f:[0, 1I[ — 10, 1] la funcién definida por f(x) = 1 — x. Entonces f es inyectiva y sobreyectiva y, por
tanto, [0, I[ ~ ]0, 1]. En vista de (b) y del Teorema 9-1, [0, 1] ~ J0, 1].

3. Demostrar que cada uno de los intervalos siguientes tiene la potencia del continuo, esto es, que tie-
ne cardinal ¢: (1) [a. 6], (2) Ja. B[, (3) [a, b[. (4) ]a, b], siendo a < 4.

Solucion:
La férmula f(x) = a + (b — a)x define cada una de las funciones:
[0, 1] 6 [a, ] [0, I[L[a, 8[ 10, 1[5 Je, B[ 10, 1] -5 ]a, b]

Cada funcidn es inyectiva y sobreyectiva. Por consiguiente, segiin ¢l Problema 2 y el Teorema 9-1, cada intervalo
es equipotente a [0, 1], esto es, tiene la potencia del continuo.
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Demostrar el Teorema 9-1: La relacion de equlpotenc:a A ~ B entre conjuntos es una relacion de
equivalencia. Es decir, demostrar que

(1) A ~ A para todo conjunto,
(2) S1 A ~ Bentonces B ~ 4,
(3) Si4~ByB~ Cer dces A ~ (.
Solucion:
(1) La funcién idéntica 1,: 4 — A es inyectiva y sobreyectiva; por tanto, 4 ~ A.
{2) Si A4 ~ B. existe entonces una funcion f/: 4 — B inyectiva y sobreyectiva. Por tanto, f tiene una funcidn re-
ciproca ™! : B — 4 que también es inyectiva y sobreyectiva. Asi, pues,

A~ B mmplica B~ A
(3) Sid ~ By B ~ C. existen entonces funciones f: 4 —+ By g : B — C inyectivas y sobreyectivas. Entonces la
funcién producto de composicion g f: 4 —+ C también es myectiva y sobreyectiva y, por consiguiente,
A~By B~ C imphcan 4~ C
Demostrar el Teorema 9-2: Todo conjunto infinito 4 contiene algiin subconjunto D que es enumerable.

Solucién :
Sea f:2* — 4 una funcion de eleccidn. Dada la sucesion:

a == f(A]

a: = fld - {a})

as = ftd — {a;, a:})

a, = fld - {ﬂ. ) G-}
puesto que A es infinito 4 — {a,, ....qa, ;] noes cio para cualquier n ¢ N. Ademds, puesto que fes una fun-
cion de eleccidn

a,+ a; donde i<n

Asi, pues, los a, son distintos y, por consiguiente. D = {a,, a;, ... | es enumerable.

En esencia, la funcion de cleccion f welige» un elemento a; € 4, después un elemento a, entre los elementos
que «quedan» en A, etc, Como A es infinito, el conjunto de elementos que «quedan» en 4 es no vacio.

Demostrar que para cualesquiera conjuntos 4 v B, setiene 4 x B ~ B x A.
Solucion:
La funcién /: 4 x B —+ B x A definida por
Sla, &) = (b, a), (@#e A, be B)
es inyectiva y sobreyectiva; por tanto, 4 x 8 ~ B = A.

Demostrar que para cualesquiera conjuntos 4, By C

(AxB)x C~A4dxBxC~A4Ax (BxC(C)
Solucién:
La funcién f:(4 x B) x C = 4 x B x C definida por
flla, B), ¢) = (a, b, ¢, (acA. beB, ce(C)
es imyectiva y sobreyectiva; por consiguiente, (4 x B) x C ~ 4 x B x . De igual modo, 4 % (B x C) ~
A4 x 8 x C..Asi que entonces
(A% B)x C~AxBx(C~A4x(Bx(C)

Demostrar: $i X es un conjunto cualquiera y C(X) es la familia de funciones caracteristicas de X,
esto es, la familia de funciones f: X — {1, 0}, entonces la familia de subconjuntos de X es equi-
potente a C(X), es decir, 2¥ ~ C(X).
Soluciin:
Sea 4 un subconjunto de X, esto es, 4£2% Sea f:2%¥ - C(X) definida por
fld) = x,

o sea que f aplica cada subconjunto A de X en y,, la funcidn caracteristica de 4 (con respecto a X). Entonces [ es
inyectiva y, como antes se vio, sobreyectiva. Por tanto, 2% ~ C(X).
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9.

10.

Demostrar el Teorema 9-3: Un subconjunto de un conjunto enumerable es finito o es enumerable.
Solucion :
Sea
AR =Wl i) (1)
un conjunto enumerable y sea B un subconjuuto de 4. S1 B = (7, entonces es B finito. Si B + @, sea a, el

primer elemento de la sucesion (1) tal que a, & B: sea a,, el primer elemento que sigue a a,, en la sucesion (1)
tal que a,, £ B; etc. Entonces

B = {an, @n, ...}
Si el conjunto de enteros {n,. n,. ...} es acotado, entonces B cs finito. Si no. 8 es enumerable.

Demostrar el Teorema 9-5: El intervalo unidad A = [0, 1] no es enumerable.
Solucion:
Método 1. Supéngase lo contrario; o sea que

A = lxy, 21, 0,00

es decir, que 4 se puede escribir como sucesion.
Cada clemento de A se puede escribir en forma de decimal con infinitas cifras. como sigue:

o = 0anGata .., G, ...
2 = .oy @ .. Bee .
r3 = 0.@u Qs s ... Qe ... (1}
Ta = 000w Guz i .. Ben ol
donde a;; € {0, 1. .. .. 9} y donde cada decimal tiene un nimero infinito de elementos no nulos. Asi, pUes. se es-

cribe 1 como 0.999 . . . y, para aquellos nimeros que se pueden escribir en forma decimal de dos maneras, como
por ejemplo.
12 =0,5000... = 04999 .

(en una de ellas hay infinitos nueves y en la otra todas las cifras son ceros, con excepeion de un namero finito
de ellas) escribase el decimal que tiene los nueves.
Construyendo ahora el nimero real

y=0,8 by 85...5,...
que pertenecera a A. de la siguiente manera: tomar b, de manera que b, # a,,,y &, # 0; tomar A, de modo que
by Fay ¥y by # 0, et resulta que y £ x, pues by # a,, (v b, # 0). y # x,, pues by # ay; (y b, = 0), etc;
esto es, resulta que y # x, para todo n e N: por consiguiente, y £ 4, lo que se contradice con yeA Asiquela
suposicion de que 4 es enumerable lleva a una contradiccion. Por consiguiente, ne es enumerable.

Méiodo 2. (En esta segunda demostracion del Teorema 9-5, se utiliza la siguiente propiedad de los nu-
meros reales: Sea [, = [a,. b,]. [, = [a,. b,]. ... una sucesion de intervalos cerrados tales que 7, 7, 0 ...
Hay entonces un numero real v que pertenece a todos los intervalos. )

Suponiendo lo contrario, o sea, como antes

ey s 1
A=, x,

constriyase una sucesion de intervalos cerrados /. f,, . .. de la manera siguiente: Sean los tres subintervalos
cerrados de [0.1].

[0, 1/3], [1/3, 2/31, [2/3, 1] ()

cada uno de los cuales tiene longitud 3. Ahora bien. x, no puede estar en los tres intervalos. {Si v, es uno de los
extremos. podria estar en dos de los intervalos.) Sea /, = [a,. #,] uno de los intervalos en (1) tal que x, & [,
Tomando ahora los tres subintervalos cerrados de /, = [a,. 4,].
lay, a+1/9], [ac+1/9, ai+2/8], [a,+2/9, b)) (2)
cada uno de longitud §, igual que antes, sea /; uno de los intervalos en (2} tal que x; ¢ /,. Continuando de estz
manera. resulta una sucesion de intervalos cerrados
Lo (=)
caracterizada porque x, ¢ [, para todo neg N.
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Segun la citada propiedad de los numeros reales, hay un nimero real y € [0, 1] tal que ) pertenece a todos
los intervalos de {3). Pero como
yeA = {z,x ...}
¥ = x, para algin m € N. Pero por la construccion que se hizo, y = x, ¢ I,. lo cual estd en contradiccién con

el pertenecer y a todos los intervalos de (3). Asi, pues, la suposicion de que A es enumerable, ha llevado a una
contradiccidn. Por consiguiente, 4 no es enumerable.

NUMEROS CARDINALES Y ARITMETICA CARDINAL

11.

12.

13.

14.

Sean A, A,, A3 y A, conjuntos cualesquiera. Definir conjuntos B,, B;, B, y B, tales que
#(A)) + #(A2) + #(Az) + #(Ay) = #(B1UB.UB;UB,)

Solucida:

Sea B, = A, x {1}, By = A; x {2}, B; = Ay x |3} y B, = A, x {4}. Entonces B, ~ A, i= 1,2, 3. 4;
y B, B; =& si i+ j Y, por tanto, resuita lo propuesto.
Sea {A;};,, una familia de conjuntos. Definir una familia de conjuntos {B;);,; tal que

B, ~A,icelyBNB,=Fsii+#j

Solucitn:

Sea B, = A; x {i}, iel La familia {B}, , tiene las propiedades que se piden.
Demostrar el Teorema 9-7: Para cualesquiera cardinales a, § y 7,

gl) (et+B)+y =a+(B+7y)

2) («B)y = a(By)
(3) at+fl = f+a
(4) aff = fa
(3) alBt+y) = af+ay
Solucibn :
Sean A, B y C conjuntos disjuntos dos a dos tales que a = #(4), f = #(B) y 7 = #(C).
) (a+8) +vy = #AUB) + #(C) = #((AUBUO)
a+ (B+y) = #A + #(Bul) = #{(AU(BUC(O)
Cqgmo la unién de conjuntos es asociativa, esto es, como (4 \J B)\J C = 4 \J (B\U €) entonces
la+B)+ v = a+ (B+7)
{2) {af)y #A XBY#(C) = #((A xB)X o)

alfy) = #A#BXC) = #AX(BXC)
Por el Problema 7 se sabe que (4 x B) x C ~ A4 x (B x C). Por consiguiente, (af)y = a(fy).

3) a+B=#AUB)=#(B\UA)=Pp+ o pues A\ UB= B A
(4) Noétese que aff = #(4 x B) y fix = #(B x A). Por ¢l Problema 6, A x B~ B x A; asi que af = fa.
(5) Observar primero que B C = & implica (4 x B) N (4 x C) = . Entonces
alf + v) #(A) #(BUC) = #(A x (BUC))
af + ay #(AXB) + #AXC) = #((AxB)UAXC)
Pero A X (BUC) = (A X B)U(4A xC). Luego  a(f+7v) = aff + ay.

Demostrar: Nqc = ¢
Solucidn:
SeanZ={...,-1,0,1,...} yA = [0, 1[. La funcién f: Z x 4 — R definida por
fliia)=i+a
que aplica, pues, f({i} x [0, 1[) sobre [i, i + I[ es inyectiva y sobreyectiva. Por tanto,
(Zx A)~ R
Como #(Z) =N, #(4)=cy #(R)=¢, es Ro = ¢
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15.

Demostrar que si £ es un cardinal infinito, entonces

Ro_+ .5 =f
Solucidn :
Sea A un conjunto infinito, B = {b,, b,, . . . } enumerable y A M B = . El teorema “-ra cierto si se de-
muestra que
A\ B~ A
Como A es infinito, A contiene un subconjunto enumerable
D=ld,d, ...\

Sea f: 4 B — A definida por el siguiente diagrama:

Es decir, la f: 4\J B — A4 definida por

x St xeA—D
flz) = -y s r=d,
dza 5i T = ba

Entonces f es inyectiva y sobreyectiva. En consecuencia, 4 U B ~ 4, como afirma el teorema.

DESIGUALDADES Y NUMEROS CARDINALES
16. Demostrar el teorema de Cantor: Para todo conjunto 4, 4 < 24 y, por tanto, # (4) < # (24).

17.

Solucién:

La funcién g : A — 24 que aplica cada elemento a & 4 en el conjunto formado por a solo, esto es, la defini-
da por gla) = {a}, es inyectiva; por tanto, 4 < 24,

Si se demuestra ahora que A no es equipotente a 24, queda establecido el teorema. Suponiendo lo contra-
rio, 0 sea que exista una funcién f: 4 — 2* inyectiva y sobreyectiva, sea @€ A un elemento que llamaremos
«malo» si @ no pertenece al conjunto que es su imagen, es decir, que af fla); y sea B el conjunto de ele-
mentos «malos»,

B={x|xeAd, x¢fix)}

Se ve que B es un subconjunto de 4, esto es, B e 24. Por tanto, como f: 4 — 24 es sobreyectiva, existeun ele-
mento b ¢ A tal que f{(b) = B. ;Es b «malo» 0 no? Si b& B, entonces, por la definicién de B, b¢ f(b) = 8 que
es imposible, Die igual manera, si & ¢ B, entonces be f(b) = B que también es imposible. Asi, pues, la suposicion
del principio de que 4 ~ 24, ha llevado a una contradiccién. Por consiguiente, la suposicién es falsa y el teore-
ma es cierto.

Demostrar ¢l teorema de Schréder-Bernstein: Si X D Y O.X 1Y X ~ X, entonces X ~ Y.
Solucién:
Como X ~ X,, existe una funcién f: X — X, inyectiva y sobreyectiva. Por otra parte, como X D ¥, la

restriccion de fa ¥, que también se denotar por £, es asimismo myectiva; por tanto, ¥ es equipotente a un sub-
conjunto de X, esto es, ¥ ~ ¥,, donde

XO¥DXxDOr
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y J: Y-+ ¥, es inyectiva y sobreyectiva. Pero ahora X, C Y; por parecida razon, X, ~ X, donde
Xo2¥o>X,oV,0X,

y [ X, — X, es inyectiva y sobreyectiva. En consecuencia, hay conjuntos equipotentes X, X, ¥,. . .. ¥y conjun-
tos equipotentes ¥, ¥, ¥, ... tales que

XOoYoXyoYy2X:2Y0

Sea
do == D W A I e kb I i S P
Entonces
X = (X—Fyui¥—2wiX,—¥)u ool
¥ = ¥ Aguix, —¥Y)ulY —X5u e u B

Notese, ademas, que
(X—F) ~ (XKi—Y) — (Xa—V)) ~
En particular, la funcion
X ¥ —dXie—Yuey)
€5 Inyecliva y sobreyectiva.
Sea la funcion g : X — Y definida por e! diagrama:

O expresado de otra manera:

_ [fx s ozeXi—Y. o
R x

g()

g resulta ser inyectiva y sobreyectiva. Por consiguiente, X ~ Y.

Demostrar el Teorema 9-12: ¢ = 2%,
Solucion:

Sea R el conjunto de los nimeros reales y sea 29 la familia de subconjuntos de Q. el conjunto de los nime-
ros racionales. Sea, ademas, la funcion f: R — 2¢ definida por

fla) = {x|xeQ, x < a}
o sea que faplica cada numero real ¢ en el conjunto de los nimeros racionales menores que a. Se demuestra que
fes inyectiva: Sean a, be R, a # b con a < b, por ejemplo. Por una propiedad de los nimeros reales, existe un
numero racional r tal que
a<r<b

Entonces r £ f(b) y r £ fia); se sigue que f{b) # fia) lo que quiere decir que fes inyectiva. Asi que R < 29 y como
#R)=cy #(Q) =¥,

o O

Sea ahora C(V) la familia de funciones caracteristicas /: ¥ — {0, 1} la cual. como se demostré en el Proble-
ma 8, es equipotente a 2¥, siendo N el conjunto de los nimeros naturales. Considerando la funcidn
F:C(N}— [0, 1] definida por

Fify =0, fil) f2) i3). ..
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que es un decimal con infinitos ceros y unos, sif, g€ C(N) y/ + g, entonces F() £ Flg), pues los decimales serian
distintos; asi que F es inyectiva. Por consiguiente, 2V ~ C(N) < [0, 1] y entonces

AL ]

Y, por tanto,

t=ata

PROBLEMAS DIVERSOS
19. Demostrar: El conjunto P de todos los polinomios

pE) = etz + - + ama™ (1)
con coeficientes enteros, es decir, con ag, 4y, ..., 4, enteros, es enumerable.
Solucion:
Para todo par de nimeros naturales (n, m), sea P, , el conjunto de polinomios de (1) de grado m para los
cuales
|aal + || + << + Jaa] = =n

Es claro que P, ., es finito. Por tanto.
P = Uuz.\'\.-\'Pi

es enumerable, pues es una familia enumerable de conjuntos enumerables. No siendo P finito, es, por consiguien-
te, enumerable.

20. Un numero real r se llama nimero algebraico si r es solucién de una ecuacién polindmica
p(r) = aut+max+ - +az" = 0
con coeficientes enteros. Demostrar que el conjunto 4 de los nimeros algebraicos es enumerable.

Solucién:
Por ¢l precedente problema. es evidente que el conjunto E de las ecuaciones polindmicas es enumerable:

E = {p= =0 p(x) =0, ps(x} =0, ...}
Definido
A; = {x | x es una solucion de pix) = 0}
puesto que un polinomio de grado n puede tener a lo més » raices, todo A4, es finito. Por consiguiente,
A4 = Uix 4,

es una familia enumerable de conjuntos enumerables. Asi, pues; 4 es enumerable si no es finito.

Problemas propuestos

CONJUNTOS EQUIPOTENTES, CONJUNTOS ENUMERABLES, EL CONTINUO

21. Los enteros, Z, se pueden poner en correspondencia biunivoca con N, los nimeros naturales, como sigue:
1 2 3 4 5 & 7

o4 v Ll

0 Loyt 2. = 3 =3
Hallar una férmula que defina una funcion /: N — Z que exprese esta correspondencia entre ¥ v Z.
22. N x N se eseribid como sucesion considerando el diagrama de la Fig. 9-1. No es ésta la inica maners d= =0

bir en sucesion N x N. Escribase N x N como sucesion de otras dos maneras distintas, haciendo desames
apropiados.
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23. Demostrar el Teorema 9-4: Sea 4,, 4,, 4,. ... una familia enumerable de conjuntos disjuntos dos a dos, cada
uno enumerable. La unién de los conjuntos UJ;, y 4; es enumerable.

24. Demostrar que si 4 y B son enumerables. 4 x B también es enumerable.
25. Demostrar que el conjunto de puntos del plano que tiene coordenadas racionales es enumerabie.

26. Sea {T;};., una familia de intervalos disjuntos dos a dos. Demostrar que la familia es enumerable.

27. Se dice que un nuamero real x es trascendente si no es algebraico, es decir, si x no es solucién de una ecuacion

polisomice px)=ap+ayx + ... .ax"=0

con coeficientes enteros (véase Problema 20). Por ejemplo, 7 y e son nimeros trascendentes. Demostrar que el
conjunto de los nimeros trascendentes no es enumerable.

2

28. Demostrar: ¢* = cc = ¢. (Por consiguiente, R x R tiene la potencia del continuo.)

ARITMETICA CARDINAL
29. Demostrar que si a = f, existe un conjunto B con un subconjunto A4 tal que o« = #(4) y ,[f = #(B).

30. Demostrar que si & = f§, entonces para cualquier cardinal y, (1) a + y =8 + 7, 2) ay = fiy.

31. Sea T el conjunto de los numeros reales trascendentes. Demostrar que #(7') = ¢. (En el Problema 27 solo se de-
mostré que T no era enumerable.)

32. Seax = #(A). 2" se definio como el cardinal de la familia de subconjuntos de A4, es decir, que 2° = #(2%). Tam-
bién se definio 2* como cardinal de la familia de todas las funciones de A en un conjunto B, siendo #(B) = 2.
Demostrar que estas dos definiciones son equivalentes.

33, Demostrar que para cualesquiera cardinales, a, f y y, 2a? = o#* 7.

34, Demostrar que si @ = ff; entonces para cualquier cardinal p, (1) o' = f%, (2) y* =+

Respuestas a los problemas propuestos

21. Lla funcion /: N — Z definida por

_ |—=/2+1/2 s xes impar
fle) = { x/2 1 X es par

tiene la propiedad pedida.

22. Considerando los siguientes diagramas de N x N.

(1, 1) (1,2)——=(1,3) (1,4)—=--- 1,1)—=(1,2) _-(1,8) ,/(1,4)
| f | f il g
(2,1)—=(2,2) (2,3 2.4 e D" (22 -7239 (2,4)
I 2
(3.ll)~— (3,2)=—(3,3) (3,4) s 317 (32 (3,8) (3,4)
4,1} 4,2) {4,3) (4.4) i 4,1) 4,2) (4,3) 4,4)
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resulta que N x N se puede escribir como sucesion infinita de elementos diferentes como sigue:
NxN = {11), 1), 22), (1,2), (1,8), (2,8), ...}
NxN = {{L1), (1,2), ,1), (1,3), (2,2), (3,1), (1,4), ...}
23. Sugerencia: Demugéstrese que |, ,y4; cs equipotente a N x N.
25. Sea § el conjunto de puntos del plano que tiene coordenadas racionales y sea @ el conjunto de los numeros ra-

cionales. Se ve que § ~ @ x O porque cada punto x £ S corresponde a un par ordenado tnico (g, ;) e 0 x O,
y viceversa. Pero como Q x O es enumerable, por serlo (0, entonces S es enumerable.

26. Todo intervalo T}, i & / contiene al menos un niimero racional ¢;. Por otra parte, si T; # T, entonces g, = g; por-
que T; y T} son disjuntos. Por consiguiente, {T7}; , ; es equipotente a un subconjunto {4;}, ., de los nimeros ra-

cionales, con lo cual {T;};,; es enumerable.
27. Sugerencia: R, que no es enumerable, es la union de los nimeros algebraicos y los trascendentes.
28. Sea 4 = [0, 1]. Hay que demostrar que 4 x A tiene la potencia del continuo. Sean x, y £ {0, 1]. Entonces x ¢ y

se pueden escribir de una sola manera como decimales de infinitas cifras

x=0,xxx5..., y=0,y ¥ ...
no nulas (por ejemplo, se escribe § como 0,4999. . . en vez de 0,5000. . .).
Sea f: 4 x A — A definida por
S, yN=0,x, py X2 ¥3 X3 3+ ..

fes inyectiva. Por tanto, A x A tiene cardinal ¢ a 1o sumo. Pero 4 x A tiene cardinal ¢ por lo menos, puesto que,
por ejemplo,

{0, x)| xe[o0, 17}

que es un subconjunto de 4 x A, es equipotente a2 4. En consecuencia, 4 x A tiene por cardinal ¢, es decir, tiene
la potencia del continuo.
Notese que #(A4) = ¢, luego ¢ = #(4 x A) = c.

32. Sea B = {0, 1}. Entonces #(B) = 2 y B* = C{A), el conjunto de funciones caracteristicas de A. Por el Problema 8,
24 ~ B2 Por tanto, #{24) = #(BY). :

33. Seana = #(d), f = #(B)y y = #(C), siendo B y C disjuntos. Entonces f + y = #(8 U C). Notese que

= FATVUC) y  ofo = (4% x A°)
y que A®C es el conjunto de todas las funciones definidas en B \J C y cuyo codominio es A. 4" y A€ tienen pa-
recido significado. El teorema queda aclarado al demostrar que
ABUC 48 x A€
Si fe ABUC corresponde al par ordenado de funciones

18 1|0
{la restriccién de fa By la restriccion de fa C). Obsérvese que (f | 8. f | C) pertenece 2 A" x A, La funcién
F:APUC 48 x AC definida por
F=Ul8 710

es inyectiva y sobreyectiva. Por consiguiente, AZUC ~ 49 x A€,
Y entonces of*' = afa’,

M. Como a = f, existe un conjunto B con un subconjunto A4 tal que x = @#{A)y f = #(B). Sea, adenrds, y = #(C).

(1) SeafeA“ estoes, seaf: C— A. Como A C B, fse puede considerar como una funcién de C en B, £50 es,
f£ BS. Luego A es un subconjunto de B y, por tanto, A 5 BC. Como a' = #(A) y 7 = #{BC), s¢ de-
duce que o' = fi7,

(2) SeafeC” estoes, sea f: A — C. Sea también una prolongacion de £ a una funcién 7 : B — C. Néteseque
si f +# g, entonces [* # g’, donde g’ es una prolongacion de g. Por tanto, la funcién F: C* ~» C® definida
por F(f} = f es inyectiva. Y entonces C* 5 C®. Como * = #(C*) y ¥ = #(C"), se deduce que y* = y.
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Conjuntos parcial y totalmente ordenados

CONJUNTOS PARCIALMENTE ORDENADOS

Un orden parcial en un conjunto 4 es una relacion R en A4
(1) reflexiva, es decir, (2. a)e ® para todo g€ A4,
(2) antisimétrica, esto es, (a. b)e R y (b, a) e ® implican a = b,
(3) transitiva, es decir, (@, b) e R y (b, ¢) € R implican (a, ¢) e R.
Si una relacion R en 4 define un orden parcial en A, entonces (¢, b) € R se denota por

a=h

gue se lee «a anterior a b».

Ejemplo 1-1:

Ejemplo 1-2:

Ejemplo 1-3:

Ejemplo 14:

Ejemplo 1-5:

Ejemplo 1-6:

Sea o una familia de conjuntos. La relacion definida en & por «x es un subconjunto de y»
es un orden parcial en o

Sea 4 un subconjunto de los numeros reales. La relacion en 4 definida por «x = » es un
orden parcial en 4, que se llama el orden natural en 4.

Sea R la relacion definida en los niumeros naturales N por «x es multiplo de » ! ® es un orden
parcial en N. Y asi se tiene 6 <2, 15 =<3y 17 <17,

Sea W = {a, b, ¢, d, e}: El diagrama
b c
\d / \.,,

define un orden parcial en W de la siguiente manera: x <X y 8i x = y o si se puede ir de x a
¥ en el diagrama yendo en la direccidon ascendente indicada. Notese que b <a, d=<a
yeSe

Sea ® la relacionen V' = {1, 2, 3, 4, 5, 6} definida por «x divide a y». & es un orden parcial
en V. Este orden parcial en V¥ se puede describir también por el siguiente diagrama, que es
semejante al diagrama del ejemplo anterior y a los diagramas lineales construidos para fami-
has de conjuntos:

St
|

1

Sea (R la relacion definida en una familia lc conjuntos por «X es equipotente a un subcon-
junto de ¥» (es decir, ¥ = ¥). Por el Teorema 9-8, R es reflexiva y transitiva; y por el Teore-
ma 9-10 de Schroder-Bernstein, ® ¢s antisimétrica. Asi, pues, ® ¢s un orden parcial en la fa-
milia de conjuntos.

Si bien el simbolo = se utilizd antes para denotar una relacion entre conjuntos, la relacion,
como s¢ ve en este ejemplo, es un orden parcial.

150
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Definicion 10-1: Un conjunto 4 y una refacién ® de orden parcial en 4 constituyen un conjunto
parcialmente ordenado.

Observacién 10-1: Notese que un conjunto parcialmente ordenado consiste en un conjunto A4 y una
relacion de tipo particular ® en A; por esta razén, un conjunto parcialmente or-
denado se denota a veces como par ordenado

(A.®) o (4. %)

Sin embargo, es corriente emplear el mismo simbolo, 4. por e¢jemplo, para denotar tanto el conjunto
parcialmente ordenado como el propio conjunto en gue se ha definido el orden parcial,

Observacién 10-2: En este capitulo y en los siguientes se supone que todo conjunto de nimeros rea-
les estd ordenado por el orden natural, al menos que se advierta otra cosa, explicita
o implicitamente.
En relacidon con los conjuntos parcialmente ordenados se emplean, ademds, las notaciones si-
gulentes:
a < bsignificaa X hya+ b; léase «a estrictamente anterior a h».
bra s_ign_lﬁca a=xb; It}ﬁse «h supera a a», _
b = a significa a < b; léase «b estrictamente superior a a».
X, %, Z y # scentienden por si mismas.

Dos elementos a y b de un conjunto parcialmente ordenado se dicen no comparables si
atxb y bxa
es decir, si ninguno de ellos precede al otro. En el Ejemplo 1-3, los nimeros 3 ¥ 5 no son comparables,

pues ninguno de ellos es multiplo del otro.

Observacion 10-3: Si una relacion ® en un conjunto A es reflexiva, antisimétrica y transitiva, en-
tonces la relacion reciproca ™' es también reflexiva, antisimétrica y transitiva.
O sea que si R define un orden parcial en 4, entonces ® ™' también define un or-
den parcial en 4, que se llama ¢l orden inverso.

CONJUNTOS TOTALMENTE ORDENADOS

La palabra «parcial» se emplea al definir un orden parcial en un conjunto 4 porque algunos ele-
mentos de 4 pueden no ser comparables. Si, por otra parte, cada par de elementos de un conjunto par-
cialmente ordenado 4 son comparables, entonces el orden parcial en A se llama orden total en A.
De ahi la
Definicién 10-2: Un orden total en un conjunto A4 es un orden parcial en 4 mds la propiedad

a<ba=boa>bh
para cualesquiera dos elementos a y b de 4. Un conjunto 4 y un orden total dado
en A4 constituyen un conjunte totalmente ordenado.

Ejemplo 2-1: El orden parcial en cualquier conjunto 4 de numeros reales (con el orden natural) es un orden
total, puesto que dos nimeros cualesquicra son comparables,

Ejemplo 2-2: Sea @ el orden parcial en ¥ = {1, 2, 3, 4, 5, 6} definido por «x divide a ». ® no es en-
lonces un orden total en ¥, ya que 3 y 5 no son comparables.

Ejemplo 2-3: Sean 4 y B conjuntos totalmente ordenados. Su producto cartesiano 4 x B se puede or-
denar entonces totalmente como sigue:

la, By <(e', #') sia<a osia=a yh<¥b

Este orden se llama orden lexicogrdfico de A x B porque es analogo a la manera como se
ordenan las palabras en un diccionario.
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Ejemplo 2-4: Sea {4}, ., una familia totalmente ordenada (es decir, J esta totalmente ordenado) de con-
juntos totalmente ordenados disjuntos dos a dos. Entonces la umién (J;,; A; queda total-
mente ordenads (al menos que se diga otra cosa) como sigue: Sean a., b e |, A4;; existen
entonces j, k €/ tales que ae 4;, he A, Ahora bien. si j< k, a < b; ysij= k, entonces a
y h estan ordenados por el orden de A,

Observacion 104: La palabra «orden» serd empleada muchas veces, ya por orden parcial, ya por
orden total.
SUBCONJUNTOS DE CONJUNTOS ORDENADOS

Suponiendo una relacion & que define un orden parcial en un conjunto 4, o sea que (4, ®) es un
conjunto ordenado, sea B un subconjunto de 4. Entonces el orden parcial ® en 4 induce un orden par-
cial &’ en B de la siguiente manera: Si a, b € B entonces

(a.b)e R, estoes,a < b

como elementos de B, si, y solamente si, (4, b) & ®, es decir, ¢ =< b como elementos de 4. Se dice en-
tonces que el conjunto ordenado (B, ®’) es un subconjunto (parcialmente ordenado) del conjunto or-
denado (4, ®).

Ejemplo 3-1: Sea W = {a, b, ¢, d, ¢} ordenado como sigue:
a
“
d'/ \s

Entonces V' = {a. 4, ¢} con el orden

d/a\e

es un subconjunto del conjunto ordenado W. Pero V con el orden

/d\
€ a
no es un subconjunto del conjunte ordenado W.

SUBCONJUNTOS TOTALMENTE ORDENADOS

Sea A un conjunto parcialmente ordenado. Entonces, como ya se vio, ¢l orden parcial en 4 in-
duce un orden parcial en todo subconjunto de 4. Algunos de los subconjuntos de A quedaran en reali-
dad totalmente ordenados.

Notese que si 4 es un conjunto totalmente ordenado, todo subconjunto de A es totalmente or-
denado.

Ejemplo 4-1: Sea N, los numeros naturales, ordenado por «x es multiplo de y». Entonces N no esta to-
talmente ordenado. pues 4 y 7 no son comparables, por ¢jemplo. Pero el conjuntoe

M=1{248 ... 2 ..}

si es un subconjunto totalmente ordenado de N.
Ejemplo 4-2: Considérese ¢l orden parcial en W = {a, b, ¢, d, ¢} definido por el diagrama
a b
T
A
d e

Cada uno de los conjuntos {a, ¢, d}, {b, d}, {b, c, e}, {a, c, e} ¥ {a, ¢} es un subconjunto de
W totalmente ordenado. Los conjuntos {a, b, c} y {d, e} no son totalmente ordenados.
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PRIMERO Y ULTIMO ELEMENTOS
Sea A un conjunto ordenado. El elemento a & A4 se dice primer elemento de A si, para todo x € A4,

axx

es decir, si g es anterior a fodos los elementos de 4. Analogamente, un elemento b€ 4 se dice @ltimo

elemento de A si, para todo x e 4,
x=bh

es decir, si b es posterior a todos los elementos de A.

Ejemplo 5-1: Sea W = {a. b. c. d. e} ordenado por el diagrama siguiente:

/\
\/\

Aqui a es un elemento dltimo dc W porque es posterior a todo elemento. Nétese que W ca-
rece de primer elemento. El elemento 4 no es un primer elemento porque-d no es anterior a e.

Ejemplo 5-2: En los nimeros naturales N, el | es un primer elemento de N, pero no hay iltimo ele-
mento.

Ejemplo 5-3: Sea A un conjunto y sea .o la familia de subconjuntos de A, o sea el conjunto potencia de
A. Si o se ordena por «x es un subconjunto de y», resulta ser primer elemento ¢l conjunto
vacio y iltimo elemento de o el conjunto A.

Ejemplo 54: Sea 4 = tx |0 < x < 1} ordenado por «x = y». A estd entonces totalmente ordenado, pero
no tiene primero ni ultimo elemento.

Observacién 10-5: Un conjunto parcialmente ordenado puede tener a lo mds un primer elemento
y un dltimo eiemento.

Observacion 10-6: Si a y b son primero y uitime slementos, respectivamente, de un conjunto par-
cialmente ordenado A, entonces a y b serdn Gltimo y primer elementos, respecti-
vamente, el orden inverso de 4.

ELEMENTOS MAXIMAL Y MINIMAL
Sea A un conjunto ordenado. Se dice que un elemento a ¢ A es maximal'si

a=<x implica a=x

Es decir, a es un elemento maximal si no hay en A ningin elemento posterior a a en sentido estricto.
Anilogamente, se dice que un elemento b € 4 es minimal si

x=<&b implica b=x

esto es, si ninglin elemento de A es estrictamente anterior a b.

Ejemplo 6-1: Sea W = {a, b, c. d, ¢} un conjunto ordenado por el siguiente diagrama:

/\
\/\

Tanto d como e son elementos minimales, puesto que no hay en W ningan elemento estric-
tamente anterior a ninguno de ellos. El elemento ¢ es un elemento maximal.
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Ejemplo 6-2: Sea W = [a, b, ¢, d, e} ordenado por el diagrama:

Aqui a y b son elementos maximales, y ¢ y o son minimales. Obsérvese que W no tiene pri-
mero ni ultimo elemento.

Ejemplo 6-3: Sea V' = {x|0 < x < 1}. ¥ no tiene elemento maximal ni elemento minimal.

Las observaciones siguientes muestran las relaciones entre los conceptos antes definidos. 4 es aqui
un conjunto parcialmente ordenado.

Observacién 10-7: Si a es un primer elemento de A4, entonces a es un elemento minimal de A y es Uni-
co. Asimismo, un Gltimo elemento de A es un elemento maximal de A y es unico.

Observacion 10-8: Si A es totalmente ordenado, puede tener a lo mas un elemento minimal, que serd
entonces primer elemento. De igual modo, puede contener a lo mds un elemento
maximal, que serd entonces ultimo elemento.

Observacién 10-9: Todo conjunto finito parcialmente ordenado tiene por lo menos un elemento ma-
ximal y un elemento minimal. Un conjunto infinito ordenado, como en el Ejem-
plo 6-3, puede no tener elementos maximales o minimales, aun en el caso de ser
totalmente ordenado.

MAYORANTES Y MINORANTES 2
Sea B un subconjunto de un conjunto parcialmente ordenado A. Un elemento m de A se llama
minorante de B si, para todo x € B, et

es decir, si m es anterior o inferior a tode elemento de B. Si un minorante de B es posterior o superior
a todos los otros minorantes de B, sc dice que es el exiremo inferior o el infimo de By se le denota por

inf (B)

En general, B puede no tener minorantes o tener muchos, pero solo puede haber a lo mas un inf (B).
Analogamente, un elemento M de A4 se llama mayorante de B si M es posterior o superior a todos
los elementos de B, esto es, si para todo x¢ B

X3 M

Si un mayorante de B es anterior o inferior a todos los mayorantes de B, se dice que es el extremo
Superior o supremo de B y se le denota por

sup (B)
Solo puede haber un sup (B) a lo mas.
Fiemplo 7-1: Sea V = {a, b, ¢, d, e, f, g} ordenado por el siguiente diagrama
a b
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Sea B = {c, d, e}. Entonces a, b y ¢ son mayorantes de 8, y f es el unico minorante de B.
Nétese que g no es un minorante de B porque g no es anterior a d; g y d no son comparables.
Por otra parte, ¢ = sup(B) pertenece a B, en tanto que f = inf(B) no pertenece a B.

Ejemplo 7-2: Sea A un conjunte de nimeros reales acotado, es decir, que tiene mayorantes (o que es ma-
yorado) y que tiene minorantes (o que es minorado). Se verifica entonces un importante teo-
rema sobre los nimeros reales que establece la existencia de inf(A4) y de sup(A4) en la orde-
nacion natural de R

Ejemplo 7-3: Sea Q el conjunto de los nimeros racionales. Sea:
B={x|xeQ, 2 <x* <1}

es decir, B consiste en los nimeros racionales entre \;’5 y \/3 sobre la recta real. B
tiene entonces infinitos mayorantes y minorantes, pero inf(B) y sup(B) no existen. Es decrr,

B no tiene extremos ni inferior ni superior. Notese que los niimeros reales \ﬁ y \,/3 no per-
tenecen a O y no se les puede considerar como mayorantes o minorantes de B.

CONJUNTOS ISOMORFOS

Se dice que dos conjuntos ordenados son isomorfos si existe entre sus elementos una correspon-
dencia biunivoca que preserva la relacion de orden. En particular,

Definicién 10-3: Un conjunto ordenado A es isomorfo a un conjunto ordenado B, lo que se denota por
A~B

si existe una funcidn f: 4 — B inyectiva y sobreyectiva y que tiene la propiedad
de que, para cualesquiera elementos a, a' e 4,

a < a'si, y solo si, fla) < fla')

La funcidn f se dice aplicacion isomorfa o isomorfismo de A en B.

Ejemplo 8-1: Sea V¥ = {1, 2, 6, 8} ordenado por «x divide a y», y sea W = {a, b, c, d} ordenado por el si-

guiente diagrama:
a\ /b
c
d
Un diagrama de ¥ sera el siguiente:
8

N/
t

Entonces V =~ W porque la funcion f: V' — W definida por

es un isomorfismo de F en W, es decir, establece una correspondencia biunivoca entre los ele-
mentos preservando la relacion de orden. Notese que

g = {{L, d), (2, ¢} (6. a). (8, b))

es también un isomorfismo de V' en W.
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Ejemplo 8-2: Considérense los numeros naturales N = {1, 2, ...} y los enteros negativos M = {—1,
—2, ...} ordenados ambos por el orden natural «x = y». Entonces ¥ no es isomorfo a M.
Porque si f: N — M es un isomorfismo, entonces para todo a & N,

I < a implicaria f(1) < fla)

para todo fla)e M. Como M carece de primer elemento, f no puede existir.

Ejemplo 8-3: Los numeros naturales N = {1, 2, 3, . . . } son un conjunto isomorfo al de los niimeros pares
E =12, 4,6, ...} porque la funcion f: N — E definida por f(x) = 2x es un isomorfismo
de M en E.

Los siguientes teoremas resultan directamente de la definicion de conjuntos isomorfos.

Teorema 10-1-1: Si A es totalmente ordenado y B ~ A, B es totalmente ordenado.

Teorema 10-1-2: Sea f: 4 — B un isomorfismo. Entonces ae 4 es primer elemento (Gltimo, mi-
nimal o maximal) si, y solamente si, f(a) es primer elemento (Gltimo, minimal o
maximal) de B.

Teorema 10-1-3: Si 4 es isomorfo a B, entonces A es equipotente a B.

El siguiente teorema es importante para la teoria que se va a desarrollar.

Teorema 10-2: La relacién definida entre conjuntos ordenados por 4 ~ B es una relacion de equi-
valencia, es decir,

(1) A = A para todo conjunto ordenado
(2) SiA~BesB~ A
3) SiAd~ByB~C,esAd~C
Observacion 10-10: La condicién en la Definicién 10-3 de que
a < a'si, y solo si, fla) < fla')
es equivalente a las dos condiciones siguientes:
(1) a < a' implica f(a) < fla’); (luego a > a’ implica f(a) > f(a’)).
(2) a| a' (no comparables) implica f(a) | f(a’).

Por tanto, si los conjuntos estan totalmente ordenados, solo (1) es necesaria.

TIPOS ORDINALES
Segin el Teorema 10-2, la relacion definida entre conjuntos ordenados por
A~B

es una relacion de equivalencia. Por tanto, segin el teorema fundamental sobre relaciones de equiva-
lencia, todos los conjuntos parcialmente ordenados, y, en particular, todos los conjuntos totalmente
ordenados, quedan repartidos por esta relacion en clases disjuntas de conjuntos isomorfos,

Definicion 10-4: Sea 4 un conjunto totalmente ordenado y sea & la familia de los conjuntos isomor-
fos al A. £ se llama entonces el tipo de orden de A o el tipo ordinal de A.

El tipo ordinal de cada uno de los conjuntos ¥, Z y Q, o sea los nimeros naturales, enteros y ra-
cionales, se denota respectivamente pot w, T y #.

Si ¢ es el tipo ordinal de un conjunto ordenado A, entonces &* denotara el tipo de orden de 4 con
el orden inverso.

Ejemplo 9-1: El tipo ordinal de £ = {2, 4, 6, ...} es w porque E es isomorfo a N.
Ejemplo 9-2: Notese que N = {1, 2, 3, ...} en el orden natural no es isomorfo a N en el orden inverso:

asique w # w*. Pero Z={ ..., -2, —1.0,1,2, ...} en ¢l orden natural es isomorfo a
Z en el orden inverso. Por tanto, m = n*.
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Problemas resueltos

CONJUNTOS ORDENADOS Y SUBCONJUNTOS

1.

La relacidn en N, los nimeros naturales, definida por «x divide a y» es un orden parcial.
(1) Insertar el simbolo correcto, <, > o || (no comparable), entre cada par de niimeros:

(@28 (b)18__24, (c)9_ 3 (d) 5___15

{2) Decir si cada uno de los siguientes subconjuntos de N es totalmente ordenado:
(@) {24,2,6}, (b) {8,15,5), (¢) {15,5,30}, (d) {2,8,32,4}, (e) {1,2,8,...}, H {n

Solucion:

(1) (a) Porque 2 divide a 8, 2 es anterior a 8, o sea 2 < §.
{6) 18 no divide a 24, y 24 no divide a 18: asi, 18 | 24.
(c) Como 9 es divisible por 3, 9 > 3.
(d) Como 5 divide a 135, 5 < 15,

(2) (a) Puesto que 2 divide a 6, el cual divide a 24, el conjunto es totalmente ordenado.
{6) Como 3 y 5 no son comparables, ¢l conjunto no es totalmente ordenado.
(¢c) El conjunto es totalmente ordenado porgue 5 divide a 15, el cual divide a 30.
(d} El conjunto es totalmente ordenado porque 2 < 4 < § < 32,
(e) El conjunto no es totalmente ordenado, pues 2 ¥ 3 no son comparables.
(f) Cualquier conjunto formado por un solo elemento es totalmente ordenado.

Sea V = {a, b, ¢, d, e}, ordenado por el siguiente diagrama:
a
/ b< \"
d e/

(1) Insertar el simbolo correcto, <, > o || (no comparables), entre cada par de elementos:

(@ a—¢, (b) bl e, (c)d=q, (@) el d

(2) Construir un diagrama de los elementos de V' que defina el orden inverso.
Solucién:

(1} (a) Como hay un «camino» de ¢ a ¢ a a, e es anterior a a; por tanto, a > e.
(6) _No habiendo camino de b a ¢, o viceversa, b | e
(c) Hay un camino de d a b a a; luego d < a.
(d) Nid<cmnic<d; entonces ¢ | d.

(2) El orden inverso se encuentra invirtiendo el diagrama original y poniendo las flechas en sentido contrario, asi:
d\ ot 8
; N \
a/

Ordénense los nimeros naturales, N, como sigue. Cada par de elementos a, a', £ N se pueden es-
cribir de manera univoca asi:

a=22s+1), o =2"(28+1)
donde r, r', 5, s’ {0, 1, 2, 3, ...}. Sea

a<a'sir<rosir=rperos<sg
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Insertar ¢l simbolo correcto, < o >, entre cada par de nimeros siguientes:

(@) 514, (b)y 6__9, {e) 3—__20, (d) 14___21
Solucion:
Los elementos de N se pueden escribir como sigue:

0 2 3 4 5 6 7

0 1 3 5 1 9 |11 |13 |15

1 2 6|10 | 14 | 18 | 22 | 26 | 30

2 4112 |20 | 28 | 36 | 44 | 62 | 60

Y entonces un nimero de una fila superior es anterior a un numero de una fila inferior y, si dos numeros estin
en la misma fila, el de la izquierda precede o es anterior al numero de la derecha. En consecuencia,

(a) 5<14, (b) 6>9, (c) 3<20, (d) 14>21

4. Sea N x N en orden lexicografico. Insertar el simbolo correcto, < o >, entre cada par de elemen-
tos de N x N que aparecen a continuacién:

(a) (6.78)___(7,1), (b) (4,6)__(4,2\. () (5,5) __(4,23), (d) (1,8)—(1,2)

Solucién:
Obsérvese que, de acuerdo con el orden lexicogrifico,

(a. by<(a’. b') sia<a o sia=a pero h< b
{a) (5, TB) < (7. 1), pues 5 < 7.
(6) (4, 6) > (4, 2), pues 4 = 4 pero 6 > 2.
{c) (5. 5) > (4, 23), pues 5 > 4.
(d) (1, 3)>(1,2), pues 1 = 1 pero 3 > 2.

5. Sea 4 = (N, =), el conjunto de los niimeros naturales en el orden natural, y sea B = (N, =), el
mismo conjunto en el orden inverso. Ademads, dendtese con 4 x Bel orden lexicograficode N x N

segun el orden de 4 y de B. Insertar el simbolo correcto, < o >, entre cada par de elementos de
N x N que aparecen en seguida:

(@) (3,8)— (1,1), (b) (2,1)——(2,8), (o) (3,3)—_(3,1), (d) (4,9)__(7,15)
Solucidn:

a<a

Se aplica la regla: (a. b} < (@', A’} si bttt BRRR S

{a) (3, 8) > (1, 1), pues 3 > 1; es decir. 3 > |, seglin el orden de A,
(h) (2, 1) > (2, 8), pucs 2 =2 pero | < 8; es decir, | > 8, segin ¢l orden de B.
(e) (3, 3)< (3, 1), pues 3 = 3 pero 3 > 1; es decir, 3 < I, segin el orden de B.
(d) (4, 9) < (7. 15), pues 4 < 7; es decir, 4 < 7. segin el orden de A,

6. Sea o/ la familia de los subconjuntos 4 de los numeros naturales N, donde A tiene las siguientes
caracteristicas: 4 es finito y el maximo comin divisur de los elementos de A es |.

(1) Establecer si los siguientes subconjuntos de N pertenecen ¢ no a .o ;

(@) {2,3, 8} () {2,5} (e) {4,6,8}
(b) {2,8,5,8) (d) {2,3,4,5,...} () 12,3}
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(2) Ordenado & por inclusién de conjuntos, es decir, por X < Ysi X C Y. sea # la subfamilia
de o/ gne contiene los conjuntos en (1) que pertenccen a +7. Construir un diagrama de 4.

Solucién:

(1) El maximo comin divisor de {4, 6. 8 es 2, y ¢ conjunto {2, 3, 4, 5, ...} no es finito; asi que estos
dos conjuntos no pertenecen a 5. Todos los otros si pertenecen a .« y, por tanto, a #.

{2) Un diagrama de # es como sigue:
/{2, 3, 5.8} \
12, 3, 8) 12, 5}

i2, 3}

G\

b/ []

Sea o la familia de todos los subconjuntos no vacios de A totalmente ordenados, y supongase .o
parcialmente ordenada por inclusién de conjuntos. Construir un diagrama de .

Solucidn:

Los subconjuntos de A totalmente ordenados son: {a}, {6}, {e}. {&, b}, {a. ¢}. Asi que un diagrama de o
serd asi:

Sea A4 = {a, b, ¢} ordenado como sigue:

{a, b} {a, ¢}

e o

{b} {a}
Sea B = {1, 2, 3, 4, 5| ordenado como sigue:

T
SN\

Sea 2 la familia de todos los subconjuntos de B totalmente ordenados que contienen 2 o més ele-
mentos. y supdngase parcialmente ordenada por inclusién. Construir un diagrama de #.
Solucidn:

Los elementos de # son: {1, 2. 4}, 11,2, 5!, {1, 3,5}, {1, 20, 11.4}. 12,4}, (1,5, 12,5} {1, 3}, {3, 5 Por
tanto, el diagrama de 4 es como sigue:

e}

{1,2,5} {1, 3, 5}

{1,2,4} 3
{, 4}/{2!4‘}\‘{1, 2}/{2,l5}\{1, 53 {1,t3} (3,5}

MINIMAL, MAXIMAL, PRIMERO Y ULTIMO ELEMENTOS

9.

Sea 4 = {2, 3,4, 5, ...} ordenado por «x divide a y». (1) Hallar todos los ¢lementos minimales.

(2) Hallar todos los elementos maximales,

Solucion:

(1) Sip es un nimero primo, entonces p divide a p solamente (porque 1 £ 4); por tanto, todos los nimeros pri-
mos son elementos minimales. Si a € A no es primo, hay entonces un nimero b & 4 tal que b divide a a, o
sea que b X @, y b #+ a. Por consiguiente. los unicos elementos minimales son los niimeros primos.

(2) No hay elementos maximales, porque para todo ¢ & 4. & divide a 2a. por ejemplo.
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10. Sea B = {1, 2, 3, 4, 5} ordenado como sigue:
1
2/ \3
LR A
4 5

(1) Hallar todos los elementos minimales. (2) Hallar todos los elementos maximales, (3) ; Tiene
B un primer c¢lemento? (4) ;Tiene B un ultimo elemento?

Solucion:

(1) Ningun elemento es estrictamente anterior a 4 6 5; con que 4 y 5 son elementos minimales.

(2) El udnico elemento maximal es 1.

(3) No hay primer elemento; 5 no es primer elemento porque 5 no es anterior a 4.

{(4) El nimero 1 es un uitimo clemento porque es posterior a todo elemento de B.

1:  Demostrar que si @ y b son elementos minimales de un conjunto A4 totalmente ordenado, enton-
28 a = b
Solucién:
Los elementos a y b son comparables puesto que A es totalmente ordenado; asi que @ =< b 0 # < a. Como
b es un elemento minimal, a < b implica @ = b, y como a es un elemento minimal, b < g implica # = 4. En
todo caso a = b.

12. Sea B = {2,3,4,5,6,8,9, 10} ordenado por «x es miiltiplo de y». (1) Hallar todos los elementos
maximales de B. (2) Hallar todos los elementos minimales de B. (3) ; Tiene B un primero o un tl-
timo elemento?

Solucién:

Constriiyase primero un diagrama de B como sigue:
3 /2 b
9/ \6 I\ 110
l

(1) Los elementos maximales son 3, 2 y 5. (2) Los elementos minimales son 9, 6, 8 y 10. (3) No hay prime-
ro ni Gltimo elemento.

MAYORANTES Y MINORANTES
13, Sea W= {1, 2 ..., 7, 8 ordenado asi:

Considérese el subconjunto ¥ = {4, 5, 6} de W. (1) Hallar el conjunto de mayorantes de V.
(2) Hallar el conjunto de minorantes de V. (3) ; Existe el sup (¥)? (4) ¢ Existe el inf (n?

Solucién:
(1) Cada uno de los elementos de {1, 2, 3}, y solo éstos, es posterior a todo elemento de ¥ ¥, por tanto,
es mayorante.
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14.

15.

16.

17.

{2) Solo 6 y 8 son anterjores a todo elemento de V3 por tanto, {6, 8} es el conjunto de los minorantes, Note-
s¢ que 7 no es un minorante porque 7 no es anterior a 4 n; a 6.

(3) Como 3 es un primer elemento en el conjunto de los mayorantes de V, sup(F) = 3. Notese que 3 no per-
tenece a V.

{4) Como 6 ¢s un tltimo elemento del conjunto de los minorantes de ¥, inf(¥) = 6. Notese aqui que 6 per-
lenece a V.

Sea D = {1, 2, 3, 4, 5, 6} ordenado como sigue:
1

Considérese el subconjunto E = {2, 3, 4} de D. (1) Hallar el conjunto de mayorantes de E.

(2) Hallar el conjunto de minorantes de E. (3) ¢ Existe sup (E)? (4) ; Existe inf (E)?

Solucién:

(1) 1y 2, y ningin otro elemento, son posteriores a todo nimero de E; luego {1, 2} es el conjunto de
mayorantes de E.

(2) 5y 6, y solo estos numeros, son anteriores a todo numero de E; luego {6, 5) es el conjunte de mi-
norantes de £.

(3) Como 2 es un primer elemento en {1, 2}, el conjunto de mayorantes de E, entonces sup(E) = 2.

(4) Como {5, 6}. el comjunto de minorantes de E, carece de ultimo elemento, no existe inf(£).

Sean @, el conjunto de los niimeros racionales, y su subconjunto 4 = {x|xeQ, x* <3}

(1) ¢ A es mayorado, es decir, tiene A un mayorante?

(2) A es minorado, es decir, tiene 4 un minorante?

{3) (¢Existe sup (4)?

(4) (Existe inf (4)?

Solucion:

(1) A es mayorado porque, por ejemplo, 50 es un mayorante,

(2) No hay minorantes de A4; luego 4 no es minorado.

(3) Sup(4) no lo hay. Considerando 4 como un subconjunto de R, los nimeros reales, entonces \fﬁ seria
el extremo superior de A4; pero como subconjunto de @, no existe sup(A).

(4) Tampoco hay inf(4) puesto que el conjunto de minorantes es vacio.

Sea ./ una familia de conjuntos parcialmente ordenada por inclusion, y sea & — {A};.; un sub-
conjunto de .

(1) Demostrar que si Be o es un mayorante de &, entonces (\J,,; 4,) C B.

(2) ¢Es \J;.; 4; un mayorante de &7

Solucion:

(1) Sea x un elemento de | J; . 4, Entonces existe un Ajcon jel, tal que xe 4;, Como B es un mayorante,

A; D B: luego x pertenece a B. Como x¢ WU, 4, implica x £ B, entonces (IJ;,4;) C B.
(2} Aun siendo {4;},,; una subfamilia de o, puede suceder que la union | J; , ;4; no sea elemento de . Por

tanto, LJ;, 14, es un mayorante de @ si, y solamente si, Ui 1A, pertenece a &7,

Sea N, los nimeros naturales, orden..do por «x divide a y», y sea A= {a,, a,, .. ., d,} un sub-
conjunto finito de V. (1) ;Existe inf (4)? (2) { Existe sup (4)? .
Solucidn:

(1} El maximo comun divisor de los elementos de 4 es inf(4) y existe siempre.
{2) El minimo comun miultiplo de los elementos de A es sup(A) y existe siempre.
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CONJUNTOS ISOMORFOS

18. Dar un ejemplo de un conjunto ordenado X = {4, &} isomorfo al ¥ = {4, ® ™'}, el conjunto
A con el orden inverso.

Solucién:

El conjunto de los numeros racionales @, con el orden natural, es isomorfo a @ con el orden inverso. En
efecto, la funcion f: @ — @ definida por f{x) = —x es un isomorfismo porque para reales cualesquiera
x =y si, y solamente si, —x = —y

Como segundo ejemplo, sea el conjunto W = {g, b, ¢, d, e, f} ordenade como sigue:
a.\ b

[

d
e / \f

El diagrama siguiente, obtenido invirtiendo el diagrama original y las flechas, define el orden inverso:
e\ 7
d

!
g

Notese que los dos diagramas son semejantes. La funcién

fo= Aa.e), (b)), (e, d), (d, ), (¢ a), (f,b)}

€5 un isomorfismo.

19. Sea 4 un conjunto ordenado y, para todo elemento a & 4, sea S(a) el conjunto de los elementos
anteriores a a; es decir, que

S(a) = {z | zed, z<a)

Sea, ademis, o = {S(a)},, ., la familia de todos los conjuntos S(a), ordenada parcialmente por
inclusidn. Demostrar que A4 es isomorfo a ..
Solucion :

Hay que demostrar que la funcién f: 4 — o definida por f: x — 8(x) es un isomorfismo. 8i a < b, enton-
ces x 5 a implica x X b; por tanto, a < b implica S(a) C S(b). Asi si S(a) C S(b), entonces a ¢ S(a) pertene-
ce también a S(b); luego S{a) C S(b) implica a < b. De modo que / preserva el orden.

Por definicion, fes sobreyectiva. Demostremos que también es inyectiva. Si @ # b, entonces o bien g < b,
0 b<aoaybhno son comparables. En el primero y ultimo casos, b ¢ S(b) no pertenece a S(a). Er el segundo
caso, a & Sla) no pertenece a S(b). Asi, pues, en todos los casos, S(a) # S{b). Por consiguiente, f es inyectiva.

Y se tiene entonces, que f es un isomorfismo.

Por cjemplo, considérese el conjunto 4 = {4, b, ¢, d, e} ordenado asi:

a\c/b
oy
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Obsérvese que o = {S(a), S(b), S(c), S(d), S{e)} esta ordenado como sigue:
{a,¢,d, ¢} {b,e.d, e}

{e,d, e}

{d} {e}

Y, ademas, que los dos diagramas son semejantes.

Problemas propuestos

CONJUNTOS ORDENADOS Y SUBCONJUNTOS

20.

21,

22.

La relacion en N, los nimeros naturales, definida por «x es miltiplo de y» es un orden parcial.
(1) Insertar el simbolo correcto, <, >, o || (no comparables) entre cada par de nimeros.

(@) 3__T, (b) 2___8, (¢) 61, (d) 3___33

{2) Decir si los siguientes subconjuntos de N estan o no totalmente ordenados:

(o) {8,224} (e} {5,1,9} (¢) {2,4,6,8,...}
(b) {5} (d) {2, 4, 8, 24} (f) {15, 3,9}

Sea W= {1, 2, 3, 4, 5, 6} ordenado como sigue:
1 2
N
4/\ 5
L/

(1) Insertar el simbolo correcto, <, >, o || (no comparables) entre cada par de elementos.
(@) 1___ 6, (by 4 ___ 5, {e) 51, (d)y4___ 2

(2) Construir un diagrama de los elementos de W que defina el orden inverso.

(3) Hallar todos los subconjuntos de W totalmente ordenados, y que contenga cada uno al menos tres elementos.

{4) Hallar todos los subconjuntos de ¥ totalmente ordenados en el orden inverso, y que contenga cada une
al menos tres elementos.

Sea 4 = (N, =) los niimeros naturales con el orden natural, sea B = (N, =) los niimeros naturales con ¢l orden
inverso y sea 4 x B, en orden lexicografico. Insertar el simbolo correcto, < 0 >, entre cada par de los siguien-
tes elementos de 4 x B.

(a) (1,3) —_(1,5), (5) (4,1)— (2,18), (c) (4,30). — .(4,4), {d) (2,2)__(1B,15)
Sea D = {1, 2, 3, 4} ordenado como sigue:
1 2
N
l

Sea @ la familia de todos los subconjuntos no vacios de D totalmente ordenades por inclusién. Construir un dia-
grama de &.
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MINIMAL, MAXIMAL, PRIMERO Y ULTIMO ELEMENTOS
24. Sea B = la b o d e [} ordenado asi:

a

b/ \c

’ / ™~ ’

d \f
(1] (a) Hallar todos los elementos minimales de B. (¢) ;Tiene B un primer elemento?
(A} Hallar todos los elementos maximales de B. (d) ¢Tiene B un dltimo elemento?

{2) Sea # la familia de todos los subconjuntos no vacios totalmente ordenados, y supdngase @ ordenada por

inclusion.

{a) Hallar todos los elementos maximales de . {¢) ¢Tiene # un primer elemento?

(A} Hallar todos los elementos minimales de . (d) ¢Tiene & un Gltimo elemento?
25. Sea M =2 3,4, .. .| ysupongase M x M ordenado como sigue:

(a, b) < (e, d) si a divide a ¢ y si b es menor o igual que d
{1} Encontrar todos los elementos minimales. (2) FEncontrar todos los elementos maximales,
26. Sea M = {2,3,4. ...} ordenado por «x divide a y». Por otra parte, sea .4 la familia de todos los subconjun-

tos no vacios totalmente ordenados de M, estando .4 parcialmente ordenada por inclusién. (1) Hallar todos los
clementos minimales de #. (2) Hallar todos los elementos maximales de 4.

27.  Establecer la verdad o falsedad de las siguientes aserciones, y en caso de falsa dar un contra-¢jemplo.

{1) Si un conjunto parcialmente ordenado A tiene solo un elemento maximal @, entonces a es también un ul-
timo elemento.

{2) Si un conjunto finito 4 parcialmente ordenado tiene solo un elemento maximal g, entonces a es también
un ultimo elemento.

(3} Si un conjunto A totalmente ordenado tiene solamente un elemento maximal o, entonces @ es también un
Gltimo elemento.

MAYORANTES Y MINORANTES

28. Sea W = {1, 2, ..., 7, 8} ordenado como sigue:

5

T
A gt

VA
P2

6 1

(1) Considerando el subconjunte 4 = |4, 5. T} de W.

{a) Hallar el conjunto de mayorantes de A. (c) ¢(Existe sup(A)?

() Hallar el conjunto de minorantes de 4. (d) ;Existe inf{4)?
{2t Considerando el subconjunto B = {2, 3. 6} de W,

{a) Hallar el conjunto de mayorantes de 8. (¢) ;Existe sup(B)?

{b) Hallar el conjunto de minorantes de B. () (Existe inf(8)?
13i Considerando ¢l subconjunto C = {1, 2, 4, 7' de W,

le)  Hallar el conjunto de mayorantes de C. te) (Existe sup(C)?

164) Hallar el conjunto de minorantes de C. (d) (Existe inf(C)?

29. Sean (). el conjunto de los numeros racionales con el orden natural, y su subconjunto 4:
Ad={x|xeQ §<x <15

(1) (Es 4 mayorado? (2) (Es A minorado? (3) (Existe sup(A4)? {(4) ;Existe inf(4)?

CONJUNTOS ISOMORFOS

30, Hallar el maximo numero de conjuntos de tres elementos parcialmente ordenados, no isomorfos dos a dos. y
constriuyas: un diagrama de cada uno.

31, Demostrar el Teorema 10-2: La relacion definida entre conjuntos por 4 ~ B es una relacion de equivalencia.
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20.

21,

22.

27.

Respuestas a los problemas propuestos

(1) (a) 317, (b) 2>8, (c) <1, (d) 3> 33
(2) (a) Si. (B) Si. (c) No, (&) Si. (e) No, (f) No
(1) (@) 1>6, (B) 415, (e) 511, (d) 4<2
(2)

(3) {(1,3,4}, {1,8,6}, {2,3,4}, {2,3,6}, {2,5,86)
Los mismos conjuntos que en (3).

{g) (1,8) > (1,5), (b) (4,1) > (2,18), (e) (4,30) < (4,4), (d) (2,2} < (15,15)

11, 3, 4} {2, 3, 4}

a, 3}/M{2, " \{2, 4}
\{1} ) {4}/</'

(1) (@) dy f. () a (c) No. (d)Si, a es un tltimo elemento.

2) (@) f{a, b, d}, {a b, e f}, {a, ¢ f}.
{b) Los subconjuntos de un elemento: {a}, {b}. {c}. {d}. {e}, {/].
{c} No, (d) No

(1) Cualquier par ordenado (p, 2), donde p es primo, es un elemento minimal.
(2} No hay elemento maximal.

(1) Cada subconjunto de un elemento es un elemento minimal.
(2) Cada conjunto de la forma {p;, p\p;, p,pops, - - . }. donde p,, p,. . .. es cualquier sucesidn de primos, es
un elemento maximal.

(1) Falsa. Considérese, por ejemplo, el conjunto {a, 1, 2, 3, ...} ordenado como sigue:

4
3 -~
a 2 -
~1”
Nétese que el subconjunto {1, 2, 3, . . . } tiene el orden natural. Entonces g es un elemento maximal, el Gnico,
pero no es un ultimo elemento.
(2) Cierta. (3) Cierta. En efecto, un conjunto totalmente ordenado puede tener a lo mds un clemento maximal

que serd siempre un ultimo elemento.

1y (@) {1, 2,3}, () {8}, (c)sup(d) =3, (d)inf(d)=28
(2) f(a) {2}, (b) {6, B}, (c) sup(B) =2, (d) inf(B) =26
(3) (a) ¥. No hay mayorantes. () {8}, (c) No, (d) inf(C) = 8.

(1) Si, (2) Si, (3) No, (4) infid)=2

Hay cinco maneras no isomorfas de ordenar tres elementos, o sea de ordenar un conjunto 4 = {a, b, c}:

O — =0

a b o
\c/ b/ \c

(1) (2 3 (4) (8)



Capitulo 11

Conjuntos bien ordenados. Numeros ordinales

CONJUNTOS BIEN ORDENADOS

No todo conjunto ordenado, ni aun totalmente ordenado. tiene un primer elemento. Una de las
propiedades fundamentales de N. el conjunto de los nimeros naturales con el orden natural. es que
N y cada subconjunto de N tiene un primer elemento. Un conjunto ordenado se dice bien ordenado si
tiene esta propiedad. Asi. pues,

Definicion 11-1; Sca 4 un conjunto ordenado tal que cada subconjunto de A tiene un primer ele-
mento. 4 se dice entonces conjunto bien ordenado.

En particular, todo conjunto 4 bien ordenado es totalmente ordenado. Pues si a, b e 4. el subcon-
junto {a, b} de A tiene un primer elemento, que. por tanto, debe ser anterior al otro, y entonces dos ele-
mentos cualesquiera de A4 son comparables.

Los siguientes teoremas resultan directamente de la anterior definicion.

Teorema 11-1-1: Todo subcenjunto de un conjunto bien ordenado es bien ordenado.

Teorema 11-1-2: Si 4 es bien ordenado y B es isomorfo a 4, entonces B es bien ordenado.

Ejemplo 1-1: Sean los subconjuntos ordenados
A= 308 o y de —E AE)
de N, que son también bien ordenados. Entonces la unién (ordenada de izquierda a derecha)
Al ds= AL, 3.5, i B b
cs lamt‘)iéu bien ordenada. Este cjemplo muestra que es posible que un conjunto, tal como
el N = A\ A4, sea bien ordenado de mds de una manera.
El ejemplo anterior se puede generalizar como sigue:

Teorema 11-2: Sea {4;};,; una familia bien ordenada de conjuntos bien ordenados disjuntos dos
a dos. Entonces la union de los conjuntos |J;,; 4; es bien ordenada. (El orden de la
union de una familia totalmente ordenada de conjuntos totalmente ordenados estd
definido en el Ejemplo 2-4 del Capitulo 10.)

Ejemplo 1-2: Sea V = {a,. a;. ..., a,} un conjunto finito cualquiera totalmente ordenado. Se puede en-

tonces escribir foles g :
Vo= G by ool dy

donde los g;; son los elementos originales reordenados segin el orden. Se ve que F es bien
ordenado. Notese, ademds. que cualquier conjunto totalmente ordenado de n clementos

" . W= b, b bg
es 1somorfo al V. :

A la vista del Ejemplo 1-2 se establece el
Teorema 11-3: Todos los conjuntos finitos totalmente ordenados que tienen el mismo numero de
elementos son bien ordenados y son isomorfos entre si,
INDUCCION TRANSFINITA

Es bien conocido el

Principio de induccién matematica
Dado un subconjunto S de N, los numeros naturales, tal que

(1y 18
(2) neSimplican + 18,

resulta ser S el conjunto de los nimeros naturales (es decir, § = N).

166
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Este principio es uno de los axiomas de Peano para los numeros naturales, pero se le puede de-
mostrar como consecuencia de ser N bien ordenado. Y de hecho, para todo conjunto bien ordenado
es valido un principio analogo.

Principio de induccién transfinita
Dado un subconjunto S de un-conjunto bien ordenado A tal que

(1) @eS
(2) s{@) C SimplicaaeS.

entonces § = 4.
Aqui es a, el primer clemento de 4 y s(a), llamado seccion inicial de a, se define como el conjunto
de elementos de 4 estrictamente anteriores a a.

ELEMENTOS LIMITE

Un elemento b de un conjunto ordenado A se llama siguiente de un elemento a € 4, y ¢l a se llama
precedente del b, si @ < b y no existe ningtn elemento ¢ e 4 tal que

a<c=<b

Ejemplo 2-1: Sea A = {a, b, ¢, d. ¢} ordenado como sigue:

e
A ot

Entonces b es siguiente tanto de d como de e, y ¢ es precedente tanto de b como de c.

Ejemplo 2-2: Sea el conjunto @ de los nimeros racionales. Ningun elemento de ¢ tiene siguiente ni pre-
cedente. Pues si @, be (), con a < b, por cjemplo, entonces (@ + b)2eQ ¥

a <o+ h)2<b
Ejemplo 2-3: Sea A un conjunto bien ordenado y sea Mia) el conjunto de los elementos estrictamente su-
periores a a £ 4. S1 M(a) + &, es decir, si @ no es un ultimo elemento, entonces M(a) tiene
un primer elemento & que es el siguiente de a.
El Ejemplo 2-3 sugiere el
Teorema 11-4: Todo elemento de un conjunto bien ordenado tiene un siguiente, excepto el ultimo
elemento.

No vale, en cambio, proposicién analoga al Teorema 11-4 en cuanto a los precedentes, pues exis-
ten elementos bien ordenados en los cuales hay elementos, distintos del primero, que carecen de ele-
mento precedente.

Ejemplo 24: Sean D = {1,3,5, ...}y E=1{2.4,6, ... |. Entonces en ¢l conjunto bien ordenado
(D EY = {1, 3.5, 001 204 600}

se ve gue ni I ni 2 ticnen precedente.

Observacién 11-1: Aqui y en lo que sigue, {D; E} denota el conjunto D U E ordenado de izquierda
a derecha, esto es, que todo elemento de D es anterior a todo elemento de £y que
entre los clementos de cada conjunto se guarda el mismo orden.

A la vista del ejemplo anterior, sc hace la

Definicién 11-2: Se llama elemento limite en un conjunto bien ordenado, un elemento distinto del

prirero y que no tiene precedente.
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SECCION INICIAL

Sea 4 un conjunto bien ordenado. La seccidon inicial s(a) de un elemento ¢ € 4 es ¢l conjunto de
todos los elementos de 4 estrictamente superiores a a. Es decir,
sla) = {x|xeA4, x < a}
Es claro que s(¢) es un subconjunto de A.

Ejemplo 3-1: Sean D = {1, 3,5 ...}y E={2 4, 6, ...} Sea el conjunto bien ordenado
THEE Y S R R e DL R
Entonces 5(1) = @, &(5) = {1,3}, s(2) = {1,3,5,...}, vy &8 = {1,3,5,...:2,4,6}.

En el teorema siguiente se enuncia una propiedad fundamental de las secciones iniciales.

Teorema 11-5: Sca S(A4) la familia de todas las secciones iniciales de elementos de un conjunto bien
ordenado A, y supongase S(4) ordenado por inclusion. 4 es entonces isomorfo a
S(A), y en particular, la funcién f: A — S(4) definida por f: x — s(x) es un isomor-
fismo de 4 en S(4).

ISOMORFISMO ENTRE UN CONJUNTO BIEN ORDENADO Y SUS SUBCONJUNTOS

Sean los numeros naturales N y el subconjunto E = {2, 4, 6, ...} de N. La funcion /: N — E de-
finida por f(x) = 2x es un isomorfismo de N en su subconjunto E. Nétese que, para todo x € N.
x = fx)
propiedad que es cierta en general.

Teorema 11-6: Sea A4 un conjunto bien ordenado, sea B un subconjunto de A y sea la funcion
f: A4 — Bun isomorfismo de 4 en B. Entonces, para todo ¢ € 4,

a X fla)

Las importantes propiedades que siguen de los conjuntos bien ordenados son consecuencia del
teorema anterior.

Teorema 11-7: Si dos conjuntos bien ordenados 4 y B son isomorfos, existe un Unico isomorfismo
de 4 en B.

Teorema 11-8: Un conjunto bien ordenado no puede ser isomorfo a una de sus secciones iniciales.

COMPARACION DE CONJUNTOS BIEN ORDENADOS ¢«

El teorema siguiente establece una importante relacion entre dos conjuntos bien ordenados cua-
lesquiera:

Teorema 11-9: Dados dos conjuntos bien ordenados A y B, o bien son isomorfos entre si o bien uno
de cllos es isomorfo a una seccién inicial del otro.
Si un conjunto bien ordenado A es equivalente a una seccion inicial de un conjunto bien ordena-
do B, se dice que 4 es mds corto que B 0 que B es mds largo que A. Con estas definiciones, el
Teorema 11-9 se puede enunciar en esta nueva forma:

Teorema 11-9': Sean a 4 y B bien ordenados; entonces A es mds corto que B, 4 es isomorfo a B o
A es mas largo que B,
Este teorema se puede reforzar como sigue:

Teorema 11-10: Si .o/ es una familia de conjuntos bien ordenados no isomorfos dos a dos, existe un
conjunto 4 £ &/ que ¢s mds corto que cualquier otro conjunto de ..

Ejemplo 4-1: Sean los dos conjuntos finitos bien ordenados:
d=—hpe oo saik oy B by bl
Sin < m, A es isomorfo al segmento nicial {b,, ..., b} de B; seria entonces 4 mas corto
que B. Del mismo modo, si n > m seria 4 mas largo que B.
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Ejemplo 4-2: Obsérvese que N = {1, 2, 3, ... | es mas corto que el conjunto bien ordenado
BB BalSiloni 2048 6L
puesto que es isomorfo a la seccidn inicial {1, 3, 5, .. L

NUMEROS ORDINALES

Recordando otra vez que, segiin ¢l Teorema 10-2, la relacién definida entre conjuntos ordena-
dos por e ¥

o isomorfismo de conjuntos, es una relacién de equivalencia; y que por el teorema fundamental sobre
relaciones de equivalencia todos los conjuntos ordenados, y en particular los bien ordenados. quedan
repartidos en clases disjuntas de conjuntos isomorfos, se ticne entonces la

Definicién 11-3: Dado un conjunto bien ordenado A, la familia & de los conjuntos bien ordenados
isomorfos a 4 se llama mimero ordinal de A y se escribe

h = ord (A4)
Definicién 114: El nimero ordinal de cada uno de los conjuntos bien ordenados
41k {1, 20, 01,2, 38 ..
se denota por 0, 1. 2, 3, . . ., respectivamente, y se dice nimero ordinal finito. Todos
los demads ordinales se llaman numeros transfinitos.
Definicién 11-5: El nimero ordinal de los niimeros naturales se denota por
w = ord (N)

Observacién 11-2: Si bien se emplean los mismos simbolos 0, 1,2, 3. ... para denotar nimeros natu-
rales, numeros cardinales, y ahora numeros ordinales, el significado particular
que tengan tales simbolos lo indicara el contexto en que aparezcan. Por otra par-
te, como, segun el Teorema 11-3, dos conjuntos finitos bien ordenados del mismo
nimero de elementos son isome: s, 0, 1, 2, ... son los Gnicos nameros ordinales
finitos. :

Dada la definicién de tipo ordinal de un conjunto totalmente ordenado, vista en el capitulo an-
terior, la Definicién 11-3 se puede enunciar en esta nueva forma:

Definicion 11-3":  Si A es el tipo ordinal de un conjunto ordenado A, ysi A es bien ordenado, A se llama
numero ordinal.

DESIGUALDADES Y NUMEROS ORDINALES
Puede definirse como sigue una relacién de desigualdad entre ntmeros ordinales:
Definicion 11-6: Si A y u son dos nimeros ordinales, y s1 4 y B son dos conjuntos bien ordenados ta-
L h=ord(4) y u=ord(B)
es
A< op
s1 4 es isomorfo a una seccion inicial de B.
O sea que con A = ord (4) y u = ord (B),

A < p s1Aes més corto que B
L= u siAesisomorfoa B
A>pu siA4esmaslargo que B
A=y sil<poh =y
A=p sid>pok=uyp
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Ejemplo 5-1: Sean los dos conjuntos finitos bien ordenados

A=lay, @ cioye) ¥ B={by, cooibg}
ordenados de izquierda a derecha. Si n =m, entonces A es isomorfo a la seccion inicial
{by, ..., b,} de B. Con lo que ord(4) = ord(B).

Esto es, que s1 #n = m como numeros ordinales, si, y solamente si, n = m como nume-
ros naturales. De modo que la relacion de desigualdad entre niumeros ordinales es una gene-
ralizaciéon de la relacion de desigualdad en el conmjunto de los numeros naturales.

Ejemplo $-2: Sea A = ord({1,3,5....:2, 4, 6....}) Como N, los numeros naturales, es isomorfo a la

seccion inicial {1, 3, 5, ...},

W<k
El teorema que sigue es una consecuencia directa del Teorema 11-9 y de la definicion anterior.

Teorema 11-11: Todo conjunto de nimeros ordinales queda totalmente ordenado por la relacién
A= p
A la vista del Teorema 11-10, el teorema anterior se puede reforzar asi:
Teorema 11-12: Todo conjunto de nimeros ordinales es bien ordenado por la relacién A = pu.

Sean ahora A un numero ordinal y s(A) el conjunto de nimeros ordinales menores que A. Segin
el teorema anterior, s(A) es bien ordenado y, por tanto, ord (s(k)) existe. ; Qué relacion habrd entre A
y ord (s(A))? El teorema que sigue responde a esta pregunta.

Teorema 11-13: Si 5(A) es el conjunto de ordinales menores que el ordinal A, es & = ord (s(})).

Observacién 11-3: Como los numeros ordinales son bien ordenados, todo ordinal tiene un siguien-
te. Algunos ordinales no nulos, como, por ejemplo, w, no tienen precedente;
tales nimeros se llaman numeros ordinales limite o simplemente numeros
limite,

ADICION ORDINAL

Para los ordinales se define una operacidn de adicion como sigue:

Definicién 11-7: S_ca_n X y u nimeros ordinales tales que b = ord (4) y ¢ = ord (B), siendo 4 y B
disjuntos. Entonces

A+ p=ord({4; B})

Ejemplo 6-1: Notese que con w = ord({l. 2. ...}} vy n = ord({a,, ..., a,}) se tiene
n+w = ord{{a, ..., 1,2,..0)) =
Pero w+n = ord{({l1,2, ... @y ..., 8.

ya que N es equivalente a S(a;), la seccion inicial de a;.
Asi, pues, por el Ejemplo 6-1, se ve que la operacion de adicién de numeros ordinales no es con-
mutativa. Pero si se verifica que:
Teorema 11-14: (1) La adicidn de numeros ordinales es asociativa:
A+p+n = A+ (et
(2) El ordinal 0 es un elemento aditivo neutro:
0+x = A+0 = A

Ejemplo 6-2: En este ejemplo se denotardn los ordinales finitos por
0% 1% 2%, o
Sean ahora dos conjuntos finitos disjuntos bien ordenados

A=lan...oap y B=1{b, . ... b}



CAP. 11] CONJUNTOS BIEN ORDENADOS. NUMEROS QRDINALES 171
Entonces
n* +m*® = ord(A) + ord{B) = ord({4; B}) = (n+m)*

Asi que la operacion de adicion de ordinales finitos corresponde a la operacion de adicién
de ndmeros naturales.

Recuérdese otra vez que el conjunto de (os numeros ordinales es ¢l mismo un conjunto bien orde-
nado, asi que cada ordinal tiene un siguiente. Para los ordinales finitos, o sea para los nimeros natura-
les, se ve claramente que n + 1 es el siguiente de n. El teorema que sigue establece la certeza general
de esta propiedad.

Teorema 11-15: Si A es un niimero ordinal, A + 1 es el siguiente de .

La adicion de nimeros reales, y, por tanto, la de los nimeros naturales, es una operacién binaria
que se puede generalizar por induccién a una suma

a, + gz + -+ + aa

finita de sumandos reales. La suma de un numero infinito de nimeros reales, como, por ejemplo,
1424+3+4+ -
3ok §teik b § o

carece de significado (a menos que se introduzcan los conceptos sobre limites). Y, en cambio, si es po-
sible definir la suma de un nimero infinito de nlimeros ordinales como sigue:

Sea {A;};,; un conjunto bien ordenado, finito o infinito, de nimeros ordinales. Es decir, / es un
conjunto bien ordenado y a cada 7 e f corresponde un numero ordinal ;. Y sea

A = ord(4)

Entonces la familia de conjuntos {A; x {i}};,; es una familia bien ordenada de conjuntos bien orde-
nados disjuntos dos a dos. Por el Teorema 11-2:

U (4, < {1})
es un conjunto bien ordenado. Por consiguiente, queda establecido que

Definicion 11-8: Sea {\;};., un conjunto bien ordenado de numeros ordinales A, = ord (4,). En-
tonces

ik = ord(U,, (A4, X (1})})

Ejempio 6-3: Segin la anterior definicién 1 + 1 + 1... = . Mas aln, para todo 4; finita (y diferente
de 0) se tiene

MA At A+ = Bk = e

MULTIPLICACION ORDINAL

Se define como sigue una operacion de multiplicacién para nimeros ordinales:

Definicion 11-9: Si A y u son numeros ordinales tales que A = ord (4) y 4 = ord (B}, entonces
hu = ord ({4 x B})

donde {4 x B} esta ordenado en orden lexicogrdfico inverso,
Nétese que {4 x B} ordenado en ord” . lexicografico inverso quiere decir que

(a,a)y < (b,B) si a<b oa=5bperoa=<b

Observacién 11-4: Si no se advierte otra cosa, el conjunto producto {4 x B} de'dos conjuntos bien
ordenados 4 y B ha de ponerse en orden lexicogrifico inverso.
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Ejemplo 7-1: Teniendo en cuenta que 2 = ord({a, b}) y que w = ord({l1, 2, 3, ... }), entonces

20 = ord({(a,1),15,1), (a,2), (5,2), ..., (@, n), (b,n), ...}) = w
Pero

w2 = ord({(1,a), (2,a), ...;(1,b),(2,8), ...}) > w
pues que N es isomorfo a la seccidn inicial {(1, a), (2, a), ... }.

Se ve, pues, que la operacion de multiplicacion de niimeros ordinales no es conmutativa. Sin em-
bargo, sigue siendo valido que

Teorema 11-16: (1) La multiplicacidn es asociativa:
Aun) = (Ap)n
(2) La multiplicacion es distributiva a la izquierda respecto de la adicién:
Mp+n) = Apt Ay
(3) EIl ordinal 1 es un elemento multiplicativo neutro;

I = A1 = A

ESTRUCTURA DE LOS NUMEROS ORDINALES
Escribiendo los ntimeros ordinales segiin su orden, primero vienen los ordinales finitos
01,2, 0.
y luego el primer ordinal limite w y sus siguientes
w, wt+l, a+2

Notese (véase el Ejemplo 7-1)que ord ({0, 1, 2, .. .;w, @ + 1, @ + 2, ...}) = w2. Asi que en seguida
vienen el segundo ordinal limite w2 y sus siguientes

w2, o2+1, u2+2, u2+3, ...
El nimero limite que sigue es w3. Se prosigue asi:

2

m3,m3+1,.‘., w4,...,w5,..., ce ey W = @
siendo wew = w?* el nimero limite que sigue a los nimeros limites wn, con # € N. Continuando:
wz,wg‘f'].,...,m2+m,m2+m+1,...,02+n>2,...,w2+w3,..., ...,w2+w2=w22

Después
m’2, waey m23, - alay m24, ey olo = o

Luego estdn las potencias de w:
ma,m3+1, Pt D SR e SR Sy
Aqui w® es el nimero limite que sigue a los niimeros limite @, con n & N. Prosiguiendo.:
T Cl) (@))% - ey v ns
Después de todos estos ordinales se tiene el ordinal ¢;. Continuando;
S o IO

Cada uno de los niimeros ordinales que se han enumerado es, a su vez, el niimero ordinal de un con-
junto enumerable.

.CONSTRUCCION AUXILIAR DE LOS NUMEROS ORDINALES
Recuérdese el

Teorema 11-13: Si s(A) es el conjunto de numeros ordinales ‘anteriores a A se tiene
A = ord(s(\)
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Algunos autores utilizan esta propiedad de los niimeros ordinales justamente como definicion de
dichos nimeros. Dicho sencillamente: un nimero ordinal es el conjunto de los numeros ordinales que
le preceden. Asi, pues,

Definicion: 0 = @ at2 = {0, ].,. 2, ..-,Ul,w'i"].}
1 = {0}
2 = {0,1}
3 = (0,1,2) '
02 E 00,0 o B K Lo

w2+1 = {D. 1 vy mywt 1, ..,,w?.}

o =10,1,2, ...}
o+l = {0,1,2 ..., 0}

Una de las principales razones para desarrollar los niimeros ordinales, comeo aqui aparece en esta
definicion, es el evitar ciertas contradicciones inherentes a la construccion de los numeros ordinales.
como se hizo en lo que precede (véase Capitulo 13).

Problemas resueltos

1. Demostrar el principio de induccion transfinita. Dado un subconjunto S de un conjunto bien or-
denado A con las propiedades siguientes: (1) ay & S, (2) s(a) C S implica a € S, se sigue que § = 4.
Solucion:

Supdngase S + A4 0 seaque 4 — S = T no es vacio. Como 4 es bien ordenado, T tiene un primer elemen-
to ty. Todo elemento x € 5{t,) es anterior a ¢, y, por tanto, no puede pertenecer a 7T, perteneciendo entonces a S
asi que S(ty) C S. Por (2), 1o £ S_ Esto se contradice con lo de ser 1, £ 4 — 5. De modo que la suposicién del prin-
cipio de que § # A no es clerta, 0 sea que 5 = A. (Obsérvese que en realidad (1) es consecuencia de (2) puesto
que & = slaq) es un subconjunte de S y, por tanto, implica a, € 5.)

2. Demostrar el Teorema 11-5: Si S(A4) es la familia de todas las secciones iniciales de elementos de
un conjunto bien ordenado A, y 8(4) estd ordenado por inclusidn, entonces 4 es isomorfo a S(A)
¥, en particular, la funcién f: 4 — S(4) definida por f:x — s(x) es un isomorfismo de
Aen S(A4).

Solucién:

Por definicion, f es sobreyectiva. Para demostrar que es inyectiva, supdngase gue x = y; entonces uno de
ellos, por ejemplo, x, es estrictamente anterior al otro; asi, pues, x £ s(3). Pero, por la definicidn de seecidn inicial,
x ¢s(x). Asi que s(x) # s{y), y entonces f es inyectiva.

Para demostrar que f preserva el orden, o sea que

x =y s, vy solo s, s(x) C sly)

supdngase x < y. Sia € s(x), entonces a < xy, por tanto, a < y; con lo que a & s{y). Como a & 5(x) mplica a £ s(y),
5(x) es un subconjunto de s(y). Suponiendo ahora x £ y, o sea que x > y, entonces y € s{x). Pero, por la defini-
cién de seccidn inicial, y £ s(v). ¥ entonces s(x) € s(y), Es decir, x = y si, y solamente si, s(x) C s(p).

3. Demostrar el Teorema 11-6: Si 4 es un conjunto bien ordenado, B es un subconjunto de A4 y
f:A— B es un isomorfismo de 4 en B, entonces, para todo ae 4, a < fla).
Solucién:
Sea D = {x | flx) < x}. Si D es vacio, el teorema es cierto. Si D # (7, entonces, como A es bien ordenado,
D tiene un primer elemento dy. Notese que d, & D implica f{d,) < dy. Como [ es un isomorfismo,

fldo) < dy implica  f(f(dp)) < f{d,)

En consecuencia, fid,) también pertenece a D. Pero fid,) < d, y fid,) € D esta en contradiccion con lo de ser dy
el primer elemento de D, Lo que significa que la suposicion previa de que D # (& lleva a una contradiccion. Por
tanto, D es vacio y el teorema es cierto.
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4, Demostrar el Teorema 11-7: Si 4 y B son conjuntos bien ordenados isomorfos, hay un 1somorfismo
unico de 4 en B.
Solucion:
Sean f: 4 — By g: A — B sendos isomorfismos. Supongase /' #+ g. Hay entonces un elemento x & A tal que
flx) # g(x). En consecuencia, o bien f(x) < g(x), o bien g(x) < fix). Sea fix) < glx).
Como g: 4 —+ B es un isomorfismo, g~ ' : B — A4 también lo es. Ademads, g~' = f: 4 — 4, producto de compo-
sicion de dos isomorfismos, es un isomorfismo. Pero
flx) < glx) implica (g7'sf)x) < (g7 eglx) = x

Se tiene asi que g~ ! = fes un isomorfismo y que (g~ = f)(x) < x. Lo cual contradice el Teorema 11-6. De manera
que la suposicion de que f = g lleva a una contradiccidn y no puede haber, pues, mas que un tnico isomorfismo
de 4 en B.

5. Demostrar el Teorema 11-8: Un conjunto bien ordenado no puede ser isomorfo a una seccién ini-
cial suya.

Solucion:
Sean 4 un conjunto bien ordenado y f: 4 — s{a) un 1somorfismo de 4 en una de sus secciones iniciales. En-
tonces fla) € s{a). Por tanto,
fla) < a

lo que contradice el Teorema 11-6. 4 no puede ser, pues, isomorfo a una de sus secciones iniciales.

6. Demostrar que si 4 es un conjunto bien ordenado y S es un subconjunto de 4 tal que
aXxXbybeSimplicaae§
entonces S = 4 o bien § es una seccion inicial de 4.

Solucion:

Supongase S # 4. 4 — § tiene entonces un primer elemento ag y claro es que a, £ S. Para demostrar que
S = slay), sea x = a,; entonees x £.4 — 8§, ¢s decir, x€ 8 luego s(ay) C 5.

Supongase ahora que y ¢ s(a,), es decir, que a, = y. Pero
yeS y gy =y mmplica apye§
lo cual contradice el que a, ¢ §. Luego y £ 5.
Es decir, y ¢ 5{ay) implica y ¢ S, lo cual significa que S C s{eg). Por tanto, § = s(ay).

7. Demostrar que dos secciones iniciales de un conjunto bien ordenado no pueden ser isomorfas.
Solucién:

Sean s{a) y s(#) dos secciones iniciales distintas, o sea que a # b. O bien g < b, o bien b < a; sea @ < b. En-

tonces s(a) es una seccion inicial del conjunto bien ordenado s(b). Por consiguiente, segiin el Teorema 11-8, s(h)
no es isomorfa a s(a).

8. Demostrar: Sean 4 v B bien ordenados, y sea la seccion inicial s{a) de A4 isomorfa a una seccion
inicial de B. Entonces s(a) es isomorfa a una seccion inicial unica s(b) de B.
Solucién:

Sean s{a) =~ s(b) y sla) = s(b’) con b, b’ £ B. Entonces s(b) = s(b’). Por el Problema 7, s(b) = s(b’), y por tan-
to, b=4.

9. Demostrar que 5i 4 y B son bien ordenados y tales que una seccidn inicial s(a) de 4 es isomorfa a

una seccion inicial s(b) de B, entonces toda seccidn inicial de s(a) es isomorfa a una seccidn inicial
de s(b), es decir,

a' =% aimplica s{a’) ~ s(b’) donde b’ < b



CAP.

10.

11.

12.

11] CONJUNTOS BIEN ORDENADOS. NUMEROS ORDINALES 175

Y ademds que. si [: s(a) — s(b) es el isomorfismo de s{a) en s(h), entonces la restriccion de fa s(a )
es el isomorfismo de s(a’) en s(b') = fls{a')).

Solucion:
Sea f{a’) = b'. Notese que la restriccion de f a s{¢’) es inyectiva y que preserva el orden, de medo que

sla’) = fls(a)).
Ademas, como [ es un isomorfismo

a* < a' si, y solo s, fla¥) < b
Asi que fis(a)) = s(b’) y. por tanto, s(a’) = sib’).

Demostrar que si A y B son bien ordenados y

S = {x|xed,s{x)~ s(y) donde y ¢ B]
[es decir, i cada elemento x & S es tal que su seccidn inicial s(x) es isomorfa a una seccion inicial
s(v) de B], entonces S = A o bien S es una seccion inicial de A.

Solucion:
Sean x£Se r =< x. Por el Problema 9, s(y) es isomorfa a una seccién inicial de B: luego y £ 5. O sea que

y=xyxeS mplica rec§

Por el Problema 6. § = 4 o bien § es una scccion inicial de A.

Demostrar que si 4 y B son bien ordenados y

S = (x| zrA, s(z) = s(y) donde ye B}
T = {y | yeB, sly)=s(x) donde ze A}

It

entonces S es isomorfo a T.
Solucidn:

Sea x £ S. Entonces. por el Problema 8, s{x) es isomorfa a una seccion Onica s(y) de B. Asi. a cada ve S co-
rresponde un dnico re ¥ tal que s(x) = s(3) vy viceversa. Por tanto, la funcion f: § — 7 definida por

flx) =y si slx} = sy}
es inyectiva y sobreyectiva.
Sean ahora x, x£S. f(x) = v, fix') = v' y ¥’ < x. El teorema queda demostrado si se prueba que 1’ =< 1.
csto es. que [ preserva el orden.
Sea @ : s{x) — s(y). El isomorfismo de s(x) en s(f(x]) = siv). Segiin el Problema 9, F en su restriccion a
six') es un isomorfismo de s(x') en la seccion inicial s(@{x')) de B Pero, por el Problema 8. solo hay un iso-
morfismo tnico de s{x’) en B. En consecuencia, @i(x') = fix') = 3. Como @(x') g 5{y).

@)=y <y

Por tanto. § es isomorfo a T.

Demostrar el Teorema 11-9: Si 4 y B son bien ordenados, 0 bien 4 ¢s mas corto que B. o bien
A es isomorfo a B, o bien 4 es mas largo que B.
Solucion:

Sean Sy T definidos como en el problema anterior, Notese que § = T. Por ¢l Problema 10, hay cuatro po-
sibihdades:

Caso . S=Ay T =B A es entonces isomorfo a B.

Caso II. S =4 y T = s(h). una scecidn inicial de B. Entonces 4 es mis corto que A

Caso II. T = By S = sla), una seccidn inicial de A. Entonces A es mis largo que B.

Caso IV. § = s{a)y T = s{h). Entonces a £ S puesto que su seccion inicial sla) es isormorfa @ una scccion ini-

cial s(h) de B. Pero g no pucde pertenecer a su propia seccion inicial: luego cste caso es im-
posible.
Por tanto, ¢l teorema es cierto.
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Demostrar: Sea ./ una familia de secciones iniciales de un conjunto bien ordenado 4. Hay en-
tonces una seccion inicial s(a) e o tal que s(a) C sTx) para cualguier otra seccion inicial s(x) de
&, es decir, hay una seccién inicial s{a) € & que es mas corta que cualquier otra seccidn ini-
cial de /.
Solucitn:

Por el Teorema 11-5, 4 es 1somorfo a S(A4), la familia de todas las secciones muciales de elementos de A, orde-
nada por inclusion. Como A4 es bien ordenado, S(4) también lo es. En consecuencia, &f, un subconjunto de S(4),
tiene un primer elemento s(a). Por tanto, s{a) C s(x) para cualquier otra seccion micial s(x) e o.

Demostrar el Teorema 11-10: Sea &/ una familia de conjuntos bien ordenados no isomorfos dos
a dos. Existe entonces un conjunto 4, € & tal que 4, es mas corto que cualquier otro conjunto de &,
Solucién:

Sea B un conjunto de . Definase

@ ={X|Xes, X es mas corto que B}

Si # es vacio, entonces B cumple los requisitos del teorema. Supdngase # = (. Demostrando que # posee un
mjunto A, mds corto que los otros, entonces, si se considera como se definié &, es 4, el conjunto mds corto de ..
Ahora bien, por el Teorema 11-9, todo conjunto 4 £ # es isomorfo a una seccion inicial s(a) de B. Sea &'
la familia de las secciones iniciales de B que son isomorfas a un conjunto de &. Por el Problema 13, #' contie-
ne una seccion inicial s(ay) que es mas corta que cualquier otra seccidn inicial de #'. En consecuencia, el con-
junto 4, & # que es isomorfo a s(a,), es mds corto que cualguier otro conjunto de &.
Asi que A, cumple los requisitos del teorema.

NUMEROS ORDINALES

15.

16.

17.

Demostrar: si A = ord (4) y g < A, hay una seccién inicial dnica s(a) de 4 tal que u = ord (s(a)).
Solucion:

Sea u = ord(B). Como u < A, B es mas corto que A4, esto es, B es isomorfo a una seccién inicial s(a) de A.
Por tanto, u = ord(s(a)). Ademads, s(a) es la Unica seccidn inicial cuyo nimero ordinal es u puesto que, segun el
Problema 7, dos secciones iniciales distintas de 4 no pueden ser isomorfas.

Demostrar el Teorema 11-13: Sea s()) el conjunto de los ordinales menores que ¢l ordinal A. En-
tonces A = ord (s(R)).
Solucién :

Sean A = ord(4) y S(A) la familia de las secciones iniciales de A4, ordenada por inclusién. Por el Teore-
ma 11-15, 4 = S5(4); con que A = ord(5(4)). Para demostrar el teorema bastard demostrar que (A} es isomorfa
a S(4).

Sea p £ 5(X); entonces u < A. Por el Problema 15, hay una seccién inicialiinica s{a) de A4 tal que p = ord(s(a)).
Por tanto, la funcion f: s(k) — 5(4) definida por

Slu) = sla) si p = ord(s(a))
es inyectiva. Ademas, fes sobreyectiva, pues si es 5(b) e S{4), entonces s(b) es mas corta que 4 y, por tanto, ord(s(b))
=75 < ord(4) = A, esto es, nes(X), luego fin) = s(b).

Para completar la demostracién del teorema, solo falta demostrar que f preserva el orden; pues entonces
fes un isomorfismo y s(X) ~ S(4). Sea u < 5, donde u, n & s(A). Entonces u = ord(s(a)) y n = ord(s{b)), esto
es, fip) = s(a) y fln) = s(b). Como 4 < n, s(a) es una seccion inicial de s(b); luego s(a) es un subconjunto propio
de s(h). O lo que es lo mismo, segtin el orden de S(4), s(a) < s(b). Asi que f preserva el orden.

Demostrar el Teorema 11-15: Sea A un nimero ordinal. Entonces A + 1 es el siguiente de A.
Solucién:
Sea u el siguiente de A. Entonces, por la definicion de s(u),
s(u) = s(A) U {A}
Luego ord (s(u)) = ord (s(A)) + ord ({A})
esto es, 4= A+ 1.
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18.

19,

20.

21.

22

23

Demostrar, dando un contraejemplo, que la ley distributiva a la derecha de la multiplicacion
respecto de’la adicién no se verifica en general entre nimeros ordinales. Es decir, mostrar tres
ordinales A, u y #n tales que

(A+p)n = Ag+ py
Solucidn:
Notese, por el Ejemplo 7-1, que (I + Iks = 2w = w, y que {utilizando la ley distributiva a la izquierda)
lutle = etae = wl+wl = oldl) = 2 > w

Por tanto, {1 + l)» # lo + la.

Sea {A;};,, una familia bien ordenada de conjuntos bien ordenados disjuntos dos a dos. y sea
ord (/) = w y ord (4;) = w para todo i ¢ [. Hallar ord (\J;,, 4,).
Solucion:

ord(U;.14) = atetot - = Wl + 141+ 1) = we =
Demostrar que w + @ = @2.

Solucidn:
Método 1. Notese que

e+ = wld+el = {14+1) = w2

Habiéndose empleado la ley distributiva a la izquierda,

Meétodo 2. Considérense les conjuntos bien ordenados

A =f{anapucccly Bi= (b, by ...}, C=l¢y 05, 0}y, D=1r, s
Obsérvese que

« = ord (4) = ord (B} = ord (C) Yy 2 = ord (D)
Entonces
wtw = ord({A; B}) = ord({a;, ay ... by, bs, ...}

w2 = ord{{CXD}) = ord({(e,7), (c,7), ...; (e1,8), (es,8), ...}

Pero la funcién f: {4; B} — |C x D} definida por

= (enr) S z=g
flz) = { .

(e;, 8) s
es un isomorfismo de {4; B} en C x D. Por tanto,

etw = ord({4; B)) = ord({CXD}) = 2

Problemas propuestos .

Demostrar el Teorema 11-1-2: 5i 4 es un conjunto bien ordenado y B es isomorfo a A, entonces B es bien ordenado.

Demostrar el Teorema 11-2: Si {4,}; ., es una familia bien ordenada de conjuntos bien ordenados disjuntos dos
a dos, la union de los conjuntos UJ;,,4; es bien ordenada.

Suponiendo que N, el conjunto de los nimeros naturales, es bien ordenado, demostrar el principio de induccién
matemitica: Si § es un subconjunto de NV tal que (1) 1 e Sy (2) ne S implican + 1 & S, entonces S = N,

Demostrar que 0 es el elemento neutro para la adicidn de nimeros ordinales, esto es, que para todo ordinal A,
04+A=34A+0=0
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1s.

27.

29.

3.

2.
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Demostrar que 1 es el elemento neutro para la multiplicacion de nimeros ordinales, esto es, que para todo or-
dinal &, 1L =4l = A,

Demostrar: Si &,, i€ N, es un ordinal finito, entonces Ay +Ag + Az + *** = By M = w-
Demostrar: Si & ¢s un ordinal infinito, entonces A = p + n, siendo g un nimero limite y # un ordinal finito.

Establecer la verdad o falsedad de cada una de las siguientes proposiciones sobre ordinales: las ciertas, demostrar-
las, y para las falsas, dar un contra-ejemplo.

(1) S1 & # 0, entonces p < & + 4,
{2) Si % # 0, entonces u < g + A

Establecer la verdad o falsedad de las siguientes afirmaciones sobre los ordinales; demostrar la verdad o dar un
contra-ejemplo, en caso de falsedad.

(1) SiA+0yu<n cntonces A + 4 <A + n.
(2) SiA#0ypu<n entonces g+ i <y + A

Demostrar: La ley distributiva a la izquierda es valida para la multiplicacidn respecto de la adicién de nimeros
ordinales, esto es, Ay + ) = Az + An.

Respuestas a los problemas propuestos

Sugerencia: Noétese que un conjunto bien ordenado no puede contener un subconjunto ordenado 4 = { ... a;
< a; < a,} puesto que 4 no es bien ordenado.

(1) Falso, (2) Cierto.

(1) Cierto, (2) Falso.



Capitulo 12

Axioma de eleccion. Lema de Zorn.
Teorema de la buena ordenacion

PRODUCTOS CARTESIANOS Y FUNCIONES DE ELECCION

Definicién 12-1: Sea {4,},,, una familia no vacia de conjuntos no vacios. Entonces el producto car-
tesiano de los {4.};,,, que se denota por

Xi;!A.‘

es el conjunto de todas las funciones de eleccion definidas sobre {4,},,;.

Recuérdese que una funcion f: {4,},,, — X, donde {4i}i,; es una familia de subconjuntos de X,
se llama funcion de eleccién si f(4;) = 4; € A;, para todo ie /. En otras palabras, f «elige» un punto
a; € A; de cada conjunto A4,

Ejemplo 1-1: Sea {d,, 4,, ..., A,} una familia finita de conjuntos. En el Capitulo 5 se definio el produc-
to cartesiano de n conjuntos
Ap XAy x oo Xy, = 3% A
como el conjunto de n-tuples
(e, az, ..., a,)
donded; e 4, parai = 1, ..., n. Peroa cada funcién de eleccion fdefinida sobre {4, ..., A,)

corresponde el unico n-tuple
(flAy), f(Ag) .., AL

¥ viceversa. Asi, pues, en el caso finito, la Definicidén 12-1 coincide con la definicién ya dada.
de producto cartesiano.

La razén principal para introducir la Definicion 12-1 es que se aplica a cualquier familia de con-
juntos: finita, enumerable o no enumerable. La definicion anterior, que se basaba en el concepto de
n-tuple, no se aplica sino a una familia finita de conjuntos.

Observacién 12-1: Aunque una funcién de eleccidn se define para una familia de subconjuntos, toda
familia de conjuntos {4}, se puede considerar como una familia de subcon-
Jjuntos de su unién {J,,, 4,

AXIOMA DE ELECCION

El axioma de eleccion es fundamental para la matemadtica y, en particular, para la teoria de con-
Jjuntos. Este axioma de «apariencia inocenten, que en seguida se expone, tiene como consecuencia algu-
nos de los resultados mas poderosos e importantes de la matematica.

Axioma de eleccién: El producto cartesiano de una familia no vacia de conjuntos no vacios, no
es vacio.

A la vista de la Definicién 12-1, se puede establecer el axioma de eleccion como sigue:

Axioma de eleccibn: Hay una funcién de eleccion para toda familia no vacia de conjuntos no
vacios.
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El axioma de cleccion es equivalente al siguiente postulado:

Postulado de Zermelo: Sea [A,};.; una familia no vacia de conjuntos disjuntos no vacios. Existe
entonces un subconjunto B de \J;.; 4; tal que la interseccion de B y cada
conjunto A4; consta de un elemento.

Obsérvese que en el postulado de Zermelo los conjuntos son disjuntos, en tanto que en el axioma
de cleccion pueden no serlo.
LEMA DE ZORN

El lema de Zorn es uno de los mas importantes instrumentos de la matematica; ¢s una consecuen-
cia del axioma de eleccién. El lema de Zorn establece la existencia de ciertos tipos de elementos, $i bien
no se da ningin procedimiento constructivo para hallar tales elementos.

Lema de Zorn: Sea 4 un conjunto no vacio parcialmente ordenado tal que todo subconjunto to-
talmente ordenado tiene un mayorante en A. 4 contiene entonces un elemento ma-
ximal por lo menos.

En Halmos, Naive Set Theory. hay una demostracién del lema de Zorn que solo utiliza ¢l axioma
de eleccion.

TEOREMA DE LA BUENA ORDENACION
El siguiente teorema se atribuye a Zermelo, quien lo demostré directamente con el axioma de

eleccion.

Teorema de la buena ordenacién: Todo conjunto puede ser bien ordenado.

Se demostrara este teorema, primero con el axioma de eleccion, y luego con el lema de Zorn.

NUMEROS CARDINALES Y ORDINALES

A cada ntimero ordinal A = ord (4) se puede asociar un nimero cardinal Unico o« = # (4). Lla-
mando a este o numero cardinal de A, denotado por

a = A

se ve que esta funcion de los nimeros ordinales en los numeros cardinales no es inyectiva, es decir, que
hay diferentes numeros ordinales con el mismo niumero cardinal. Por ejemplo,

ord ({1,2,8, ...})
ord ({ﬂ'.;, az, ...; b], bz, Ty o= })

w

w2

son ambos nimeros ordinales de conjuntos enumerables, esto es, conjuntos con el mismo nimero car-
dinal ¥,. Dicho de otra manera,

®=N0:&

El teorema de la buena ordenacion implica que la funcion anterior de los nimeros ordinales en los
numeros cardinales es sobreyectiva. Porque, suponiendo que o = # (4) es un numero cardinal cual-
quiera, por el teorema de la buena ordenacion, 4 puede ser bien ordenado; sea A = ord (4). Entonces
o = L. Y o es el nimero cardinal de un nimero ordinal & por lo menos. (Aqui, 4 se usa tanto para
el conjunto mismo, como para el conjunto bien ordenado.)

Se establece ficilmente la siguiente correspondencia entre numeros ordinales y cardinales:

Teorema 12-1: Sean « = A y f§ = ji nimeros cardinales. Se tiene entonces

(1) o< fimplicah < u
(2) A < pimplica xd = f8
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El resultado siguiente, ya mencionado, es una consecuencia directa del teorema de la buena or-
denacion.

Teorema 9-11: (Ley de tricotomia): Sean a y f numeros cardinales, Una de las siguientes relaciones
es cierta:
a< B o=Foax>f

Es decir, la relacién de desigualdad definida en los nimeros cardinales es un orden total y no so-
lamente parcial. Como los nimeros cardinales estan bien ordenados, se puede dar un enunciado mas
fuerte.

Teorema 12-2: Todo conjunto de nimeros cardinales estd bien ordenado por la relacion o = f.

ALEFS
Ya se dijo antes que el nimero cardinal de los conjuntos enumerables es
No
(N alef es la primera letra del alfabeto hebreo.) Como los nimeros cardinales forman un conjunto bien
ordenado, se emplea el siguiente sistema de notacion para los numeros cardinales. El siguiente de N,
se denota N, y el siguiente a éste por N,, y asi sucesivamente. El ntimero cardinal que sigue a todos los

R, sc denota por ¥,. O sea que todo cardinal infinito se puede denotar univocamente por una N con
un nimero ordinal como subindice de la manera siguiente:

Notacién: Sea z un numero cardinal infinito. Sea s(x) el conjunto de los nimeros cardinales infini-
tos inferiores a a. Notese que s(x) es bien ordenado: sea . = ord (s(x)). Entonces a se de-
nota por

R,
La hipdtesis del continuo se puede ahora enunciar asi:

Hipétesis del continmo: R, — ¢

Problemas resueltos

AXIOMA DE ELECCION
1. Demostrar que el axioma de eleccion es equivalente al postulado de Zermelo.

Solucifn:
Sea {A;};,, una familia no vacia de conjuntos disjuntos no vacios y sea f una funcion de eleccion sobre
{A;}i e1» ¥ sea el conjunto B = {f{4,): i [}. Entonces

A;nB = {fl4)}

consta de un solo elemento puesto que los 4, son disjuntos y fes una funcién de eleccién. De acuerdo con esto,
el axioma de eleccion implica el postulade de Zermelo.

Sea ahora {A;};,; una familia no vacia de conjuntos no vacios disjuntos o no y hagase
A? = {4y x{i}, para todo e[

Entonces es ciertamente {4*} una famil’ disjunta de conjuntos puesto que [ + j implica 4; x {i} # 4; x {J|
aun en el caso de ser 4; = 4. Por el postulado de Zermelo, existe un subconjunto B de | A} tal que
Bn A.‘aK = {{e; O}

consta de un solo elemento. Entonces a; € 4, y la funcion f sobre {4}, ,, definida por f(4;) = a; es una funcion
de eleccién. Segin lo cual, el postulado de Zermelo implica el axioma de eleccion.
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Demostrar ¢l teorema de la buena ordenacion (Zermelo): Todo conjunto no vacio X puede ser
bien ordenado.
Solucién:
Sea f una funcion de eleccion sobre el conjunto #(X) de todos los subconjuntos de X, esto es,
f:P(X)+X con f(A)e A, paratodo A CX

Un subconjunto A de X se dira normal si tiene una buena ordenacion y, ademads, la propiedad de que, paratodoa € 4,

fIX —sua) =a donde  s,la)=i{xed:x<al
es decir, 5,(a) es la seccién inicial de @ en la ordenacion que tiene A. Hay que demostrar que existen conjuntos
normales. Haciendo

%o =f00, xi=fIX — {xo}) ¥y % =LK~ {xo x;})
resulta que A = {x;, x,, x,} es normal. Ahora bien, si A y B son subconjuntos normales de X, entonces 4 = B,
o el uno es una seccion inicial del otro. Como 4 y 8 son bien ordenados, uno de ellos, 4, por ejemplo, es isomor-
fo a B o a una seccion micial de B (Teorema 11-9). Existe, pues, un isomorfismo «: 4 — B. Higase

A* = {xe A alx) £ x}

Si A* es vacio, entonces 4 = B o bien 4 s una seccidn inicial de B. Suponiendo 4* # &, sea a, el primer
elemento de A* Entonces s, (ag) = sple(ay)). Pero siendo 4 y B normales,

ay = fIX — s54lag)) = fIX = splala,))) = alag)
Como esto contradice la definicién de 4* es o bien A = B o bien A es una seccién inicial de B. En particular, si

aedybeB osona be A osona, be B Ademids, sia, be A ya, be B, entonces @ X b como elementos de A
si, y solamente si, a = b como elementos de B

Sea ahora Y el conjunto de los elementos de X que pertenecen a un conjunto normal por lo menos. Sia, be ¥,
entonces a£ A y b& B, donde A y B son normales y asi, pues. como ya s vio antes, a, hbe Ao a, b B. Definiendo
ahora un orden en ¥ de la siguiente manera: a = A como elemeftos de ¥ si, y solamente si, @ < b como elemen-
tos de A o de B: este orden cstd bien definido es decir, es independiente de la eleccién particular de 4 y By, ade-
mas, es un orden total, Sea ahora Z un subconjunto no vacio de ¥ y sea  un elemento de Z. Entonces a perle-
nece a un conjunto normal 4. Luego 4 /) Z es un subconjunto no vacio del conjunto bien ordenado 4 y tiene,
por tanto, un primer elemento a,. Ademds, ¢, es un primer elemento de Z (Problema 12); asi que Y es bien
ordenado.

Hay que demostrar también que ¥ es normal. Si a & ¥, entonces a pertenece a un conjunto normal 4, Por
otra parte, s,la) = syfa) (Problema 12), y asi

SIX — syla)) = [1X — sula)) = a
esto es, ¥ es normal. Por Gltimo, es ¥ = X; pues suponiendo que no fuese asi, es decir, que X — ¥ # F y que,
por ejemplo, a = f{X — Y), hdgase ¥* = ¥ \J {a} y sea ¥* ordenado por el orden de ¥ y con a superior a todo
clemento de ¥, Entonces (X — syla)) = f(X — ¥) = a y, por tanto, ¥'* es normal. De modo que ag V. Pero
esto contradice al ser la funa funcién de eleccidn, es decir, que flX — ¥) = @& X — Y que es disjunto de Y. Por
tanto, ¥ = X y entonces X es bien ordenado.

LEMA DE ZORN Y APLICACIONES

3.

Demostrar: Si B es un conjunto parcialmente ordenado, hay entonces un subconjunto totalmente
ordenado A de B tal que 4 no es subconjunto propio de ningun otro subconjunto totalmente or-
denado de B.
Solucion:

Sea # la familia de todos los subconjuntos totalmente ordenados de B, parcialmente ordenada por inclu-
sién. Supdngase, ademds, que {B,};,; es un subconjunto totalmente ordenado de . Sea el conjunto 4 = L, 1B

Nétese primero que 4 es totalmente ordenado. Porque sia, b e A existen, entonces j, k £ [ talesque ae B;. b £ B;.
Como 4 es totalmente ordenado, uno de ellos, B, por ejemplo, es un subconjunto del otro; luego a, b € B.. Como
B, es totalmente ordenado, o bien @ < & o bien # < a. Luego dos elementos cualesquiera de 4 son comparables:
asi que A ¢ #.

Pero, para todo i I, B, C 4; A ¢s entonces un mayorante de {B;}; ;. Como todo subconjunto totalmente
ordenado de # tiene un mayorante, por el lema de Zorn # tiene un elemento maximal que es un subsubconjunto
de B totalmente ordenado que no es subconjunto propio de ningin otro subconjunto totalmente ordenado de B.

Demostrar: Sea (R una relacion de 4 en B siendo 4 ¢l dominio de definicion de ®. Notese que @&

es un subconjunto de 4 x B. Existe entonces un subconjunto f* de ® tal que f* es una funcion
de A4 en B.

Solucion:
Sea o la familia de subconjuntos de ®& en los que cada f¢ o es una funcién de un subconjunto de 4 en B.
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Ordénese parcialmente &/ por inclusion. Notese que si f: 4, — B ¢s un subconjunto de g: 4, — 8, enton-
ces A, T A,

Supongase ahora que {f;: 4; — B};,; es un subconjunto de . totalmente ordenado. Entonces {véase Pro-
blema 12) f = \U;, f; es una funcion de \J;;;4; en B y, por tanto, f es un mayorante de {f;};,,. Por el lema de
Zorn, .« tiene un elemento maximal /* : 4* — B. Si se demuestra que 4* = A4, el teorema estd demostrado.

Supongase A* # 4. Existe entonces un elemento a € 4 tal que a § A*. Ademas, como £l dominio de definicion
de ® es 4, existe un par ordenado (a, b) £ R. Entonces f* | {(a, )} es una funcion de 4%\ {a} en B. Pero esto
contradice el hecho de ser f*. que seria un subconjunto propio de /* | J {(a, 5)}, un elemento maximal de .«/. Por
consiguiente, 4* = 4 y el teorema esti demostrado.

{Aplicacién al algebra lineal.) Demostrar que si V' es un espacio vectorial, ¥ tiene una base.

Solucion:

Si V consiste en el vector nulo solamente, entonces, por definicion, el conjunto vacio es una base de V; se
supone, pues, que ¥ contiene un vector ¢ no nulo. Sea # la familia de los conjuntos de vectores independientes de V.
Es decir, cada clemento B £ 2 es un conjunto de vectores independientes. Notese que @ no es vacia, pues, por ejem-
plo, {a} pertenece a #. Ordéncse # por inclusion,

Suponiendo ahora que {B;}, , ; es un subconjunto de # totalmente ordenado, si se demuestra que 4 = U, , /B,
pertenece a &, es decir. que es un conjunto de vectores independientes, seria entonces 4 up mayorante de {B;};, ;. Si
A es un conjunto de vectores dependientes, entonces existen veclores a,. ..., a, & 4 tales que

cay + oo+ c,a, = 0 (1)

donde por lo menos un ¢; = 0. Notese que existen también clementos i;, .. .. i e ftalesquea, e B, . ... . a,£ B,
Como | B}, ., es totalmente ordenada, uno de los conjuntos, sea B; . es un superconjunto de los otros; luego
S a, € B, . En wista de (1), B,, seria un conjunio de vectores dependientes, cosa’que contradice lo supuesto.
Asi. pues. 4 es un conjunto de vectores independientes, pertenece a # y es un mayorante de [ B}, ,,.

Por el lema de Zorn, & tiene un mayorante B*. Entonces se puede demostrar que B* ¢s una base de .

Obsérvese que la parte principal de la demostracion consiste en demostrar que 4 = \J; 8; pertenece a #.
Es un ejemplo tipico del empleo del lema de Zorn.

Demostrar el teorema de la buena ordenacion por el lema de Zorn.

Solucion:

Sea A un conjunto cualquiera. Sea « la familia de todos los subconjuntos bien ordenados de A asi, pues;
un elemento We .o es un par W = (B, =) donde B es un subconjunto de 4 y < define una buena ordenacién
en B. Ordénese & parcialmente como sigue:

W, < W, si W, =W, o W, cs una seccion inicial de W,

{Obsérvese que W, = (B, =)= W, = (B,, =) implica B, C B;.)

Suponiendo que [W, = (B;, =)} ., es un subconjunto totalmente ordenado de &/, entonces la familia de
conjuntos {B;};,, ordenada por inclusién, es también totalmente ordenada. Definase ahora el conjunto ordena-
do W = (B, <) como -sigue. Primero sca

B = U1 B

Supéngase a, b € B. Existen entonces j, k € I tales que a € B, b £ B,. Como {B;},,, cs totalmente ordenado, uno
de ellos, B;, por ejemplo, es un subconjunto del otro; asi que a, bhe B,

Escribase @ < b como elementos de B si a < b como elementos de B,. Entonces W = (B, <) esun subcon-
junto bien ordenado y, por tanto, pertenece a . Ademas, W es un mayorante de {W.}, ., Por consiguiente, por
el lema de Zorn, & tiene por lo menos un elemento maximal.

W+ = (B* <X}
Supéngase B* # 4.Seaae A — B* Entonces W* ¢s una seccién inicial del conjunto bien ordenado { W*; {a}].

que también pertenece a .. Lo cual contradice la suposicion de que W* es un elemento maximal de o/, Asi, pues.
la afirmacidon B* # A es falsa; luego B* = 4. Por tanto, 4 puede ser bien ordenado.
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Problemas propuestos

Decir cudl de las afirmaciones siguientes sobre ntimeros cardinales es falsa y cuil es cierta; razonar la
respuesta:

(1) wg+ 8, = ¥ (2) my+ K, = Hy,y
Demostrar el Teorema 12-1: St x = L y f = i son numeros cardinales, se tiene:

(/) =< f implica A < u
(2) A< p implica a=§

Demostrar el Teorema 9-11: Para numeros cardinales a y f es valida una de las relaciones siguientes: « < 8,

a=foa>f

Demostrar ¢l Teorema 12-2: Todo conjunto de niimeros cardinales estd bien ordenado por la relacion o« < §.

Considérese la demostracion de esta proposicion: Existe un conjunto finito de nimeros naturales que no es un
subconjunto propio de otro comjunto de numeros naturales.

Demostracion. Sea # la familia de todos los conjuntos finitos de niimeros naturales, ordenada parcialmen-
te por inclusion. Sea ahora | B};,; un subconjunto de # totalmente ordenado, y sea el conjunto 4 = U, B,
Ndtese que, para todo ief, B; C A: luego 4 es .. mayorante de {B;};, .

Como todo subconjunto totalmente ordenado de @ tiene un mayorante, por el lema de Zorn 4 tiene un ele-
mento maximal, que s un conjunto finito que no es un subconjunto propio de ningin otro conjunto finito.

Se pregunta: Como esta proposicion es evidentemente falsa, jcual es el paso incorrecto de la demostracion?

Demostrar los dos enunciados siguientes, supuestos en la demostracién en ¢] Problema 2:
{i) El primer elemento ag del conjunto 4 (| Z es un primer elemento del conjunto Z.

(i) s4la) = syla).

Demaostrar la siguiente proposicion, supuesta en la demostracién en el Problema 4: Sea {f: 4; - B}, ,, un con-
junto de funciones totalmente ordenado por inclusion. Entonces | J; ., f; s una funcién de \J; ., 4; en B.

Respuestas a los problemas propuestos

(1) Cierta. Porque N es el nimero cardinal de un conjunto enumerable y, como ya se demostro antes, la union
de un conjunto enumerable con un conjunto infinito no cambia el cardinal de este conjunto infinito.
(2) Falsa. Pues como la adicién de cardinales es conmutativa,
Mg = ®HH R = 8, + 8 = 8,

implicaria que la adicion de ordinales es conmutativa, que no es cierto.



Capitulo 13

Paradojas de la teoria de conjuntos

INTRODUCCION

La teoria de conjuntos, como una disciplina matematica, fue Cantor (1845-1918) el primero que
la estudi¢ hacia finales del siglo diecinueve. Hoy la teoria de conjuntos es fundamental en las matema-
ticas cuyas ramas ha transformado casi todas. Por la misma época en que la teoria de conjuntos co-
menzo a influir sobre otras ramas de las matemdticas, se le descubrieron varias contradicciones o pa-
radojas, la primera por Burali-Forti, en 1897, de las cuales se presentan algunas en este capitulo. Si
bien es factible eliminar estos contrasentidos por un desarrollo axiomadtico estricto de la teoria de con-
juntos, atin quedan muchos interrogantes por responder.

CONJUNTO DE TODOS LOS CONJUNTOS (PARADOJA DE CANTOR)

Sea ( el conjunto de todos los conjuntos. Entonces todo subconjunto de C es asimismo un ele-
mento de (; luego el conjunto potencia de C es un subconjunto de €, esto es,

accC
Pero 2€ C C implica que
#(26) = #(()
Pero entonces, segun el teorema de Cantor,
#(C) < #(26)
Asi, pues, el concepto de conjuato de todos los conjuntos lleva a una contradiccion.

PARADQJA DE RUSSELL
Sea Z el conjunto de todos los conjuntos que no son elementos de si mismos, es decir,

Z = (X|X¢X}
Se pregunta; ;Z es o no es elemento de si mismo? Si Z no pertenece a Z, entonces, por la definicién
de Z, Z se pertenece a si mismo. Pero si Z pertenece a Z, entonces, por la definicién de Z, Z no per-
tenece 4 si mismo. En cualquiera de los dos casos hay contradiccion.
Esta paradoja es de cierto modo aniloga a la paradoja popular siguiente: En una aldea hay un
barbero que afeita solamente a los hombres que no se afeitan ellos mismos. Se pregunta: ; Al barbero,
quién lo afeita?

CONJUNTO DE TODOS LOS NUMEROS ORDINALES (PARADOJA DE BURALI-FORTI)

Sea A el conjunto de todos los niimeros ordinales. Por un teorema anterior, A es un conjunto bien
ordenado; sea o = ord (A). Considérese ahora s{x), el conjunto de todos los numeros ordinales meno-
res que a. Obsérvese que

(1) Puesto que s(x) consiste en todos los elementos de A que son anteriores a o, s(x) es una sec-

cion inicial de A.
(2) Por un teorema previo, @ = ord (s(x)); por tanto,
ord (s(x)) = o = ord (A)

185
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Por consiguiente, A es isomorfo a una de sus secciones iniciales. Asi, pues, el concepto de conjunto de
todos los niimeros ordinales lleva a una contradiccion con el Teorema 11-8.

CONJUNTO DE TODOS LOS NUMEROS CARDINALES

Sea o el conjunto de todos los nimeros cardinales. Entonces, para cada cardinal a € & hay un
conjunto A4, tal que a = # (4,). Sea

e & Ead Aa
Considérese el conjunto potencia 2* de 4. Notese que 24 ~ Ay 24y, que es un subconjunto de 4. Por
consiguiente, 24 < A4 y, en particular,
#(24) = #(A)
Pero, por ¢l teorema de Cantor,
#(A) < #(29)

Asi, pues, el concepto de conjunto de todos los numeros cardinales es contradictorio.

FAMILIA DE TODOS LOS CONJUNTOS EQUIPOTENTES A UN CONJUNTO

Sea 4 = {a, b, ...} un conjunto (no necesariamente enumerable) y sea of = {i, j, ...} otro con-
junto cualquiera. Considérense los conjuntos

B MR e e R R R g

es decir, la familia de conjuntos {4,},, . Notese que
#F{AY,, ) = #(A)
y A; ~ A paratodoic ..

Sea ahora « la familia de todos los conjuntos equipotentes al A.. Considerando ¢l conjunto po-
tencia 2° de a y definiendo la familia de conjuntos {4,},, ;« como se dijo, puesto que cada 4; ~ A4,

]

{A)i e C
Por Lanto,

#(27) = #({Ai}igzﬂ) = #(‘1)

Pero por el teorema de Cantor, # (x) < # (2°). Asi, pues, ¢l concepto de familia de todos los conjuntos
equivalentes a un conjunto (la definicién que se dio de numero cardinal) es contradictorio.

FAMILIA DE TODOS LOS CONJUNTOS ISOMORFQS A UN CONJUNTO BIEN ORDENADO

Sea A un conjunto bien ordenado. Entonces, el conjunto A;, definido como antes y ordenado por
@iS(b,i) si ash

es bien ordenado y es isomorfo al 4, estoes, 4, ~ 4.

Sea ahora A la familia de todos los conjuntos isomorfos al conjunto bien ordenado 4. Considerese
el conjunto potencia 2* de &, y definase la familia de conjuntos {4}, ;x como se hizo antes. Como cada
conjunto 4, es isomorfo al 4

1 {(A);, 2 CA
Por consiguiente, = 3 #(2Y = #({A), p) = #()

Como, por ¢l teorema de Cantor, # (A) < # (2%), el concepto de familia de todos los conjuntos iso-
morfos a un conjunto bien ordenado (la definicion dada de nimero ordinal) es contradictorio.




Parte [1l: Temas anexos ‘

Capitulo 14

Algebra de proposiciones

ENUNCIADOS
Los enunciados lo aserciones verbales) se denotardn por las letras
P47
(con o sin subindices). El caracter fundamental de un enunciado es que o bien es verdadero. o bien es
Jalso. pero no ambas cosas. La verdad o falsedad de un enunciado se llama su valor de verdad. Algunos
enunciados son compuestos. es decir, estin formados de cnunciados simples y de varias conectivas que
se estudiaran despues.
Ejemplo 1-1: «lLas rosas son rojas y las violetas son azules» es un enunciado compueste de los enunciados
simples «lLas rosas son rojase ¥ «las violetas son azules».
Ejemplo 1-2: « Donde vas’» no es un enunciado, pues no es i verdadero m falso.
Ejemplo 1-3: «Juan estd enfermo o viejor estd implicitamente formado de los enunciados simples «Juan esta
enfermon v «Juan estd viejon.
Propiedad fundamental de los enunciados compuestos es que su valor de verdad esta determi-
nado por completo por el valor de verdad de cada uno de los enunciados simples y por el mede como
se les reune para formar el enunciado compuesto.

CONJUNCION, p ~ ¢

Dos enunciados cualesquiera se pueden combinar por medio de la palabra «y» para formar un
enunciado compuesto. que se llama conjuncion de los primeros enunciados. Simbolicamente se deno-
ta la conjuncion de dos enuncsados p y g por
' P g
Ejemplo 2-1: Sea p «Esta floviendon vy sea ¢ «El sol brillas. Entonces p A ¢ denola el enunciado «Esta llo-

viendo y el sol brilla».
Ejemplo 2-2: El simbolo A se puede emplear para definir la interseccion de dos conjuntos: asi
ANB = {zr | xed ~ xeB)
El valor de verdad del enunciado compuesto g a p satisface la condicion siguiente:
V.: Sipes verdadero vy g es verdadero. entonces p A g es verdadero: en olro caso p A g €s falso.
1 Yq PAY 1
Es decir, la conjuncién de dos enunciados €s verdadera solamente si cada componente es
verdadero. '

Ejemplo 2-3: Scan los cuatro enunciados siguientes:

L

{1) Paris estd en Francia v 2
{2) Paris estd en Inglaterra
{3} Paris estd en Inglaterra
{4) Paris estd en Francia ¥

o D

tata |
e

(SRR

(SR

Segln V. solamente (4) es verdadero. Todos los demas enunciados son falsos porque al menos
uno de los componentes es falso,

Una manera muy conveniente de expresar ¥V, es por medio de una tabla como sigue;

p | g [ pog

o PR s ,

V F F 5 -
Wil ¥ F

o F
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Obsérvese que la primera linea es una manera abreviada de decir que si p es verdadero y ¢ es verdade-
ro, entonces p A g es verdadero. Las otras lineas tienen significados parecidos.

DISYUNCION, p v g

Dos enunciados cualesquiera se pueden combinar por medio de la palabra «o» (en el sentido de
«y/o») para formar un nuevo enunciado que se llama disyuncidn de los dos enunciados previos. Simbo-
licamente se denota la disyuncion de dos enunciados p y ¢ por

Pvg
Ejemplo 3-1: Sea p «El estudio francés en la universidad», y sea ¢ «El vivié en Francia». Entonces p v g es

el enunciado «El estudid francés en la universidad o &l vivid en Francian.
Ejemplo 3-2: El simbolo v se puede emplear para definir la union de dos conjuntos; asi

AuB = x| zed v zeB}

El valor de verdad del enunciado compuesto p v ¢ cumple la condicion siguiente:

V,: Sipes verdadero o g es verdadero o s1 ambos p y ¢ son verdaderos, entonces p v g es ver-
dadero; en otro caso p v g es falso. Es decir, la disyuncién de dos enunciados es falsa sola-
mente si cada enunciado componente es falso.

V, se puede expresar también en una tabla como sigue:

plalrva

Vo[ v v

A K v

F v v

F B F

Ejemplo 3-3: Sean los cnunciados siguientes:

(1) Paris estd en Francia o 2 + 2 = 3,
{2} Paris estd en Inglaterra o 2 + 2 = 4.
(3) Paris estd en Francia o 2 + 2 = 4.
(4) Paris cstd en Inglaterra o 2 + 2 = 5,

Solo (4) es falso. Cada uno de los otros enunciados es verdadero, pues al menos uno de los com-
ponentes es verdadero,

NEGACION, ~ p

Dado un enunciado p, se puede formar otro enunciado, que se llama negacidn de p, escribiendo
«Es false que .. .» antes de p o, cuando es posible, insertando en p la palabra «no». Simbdlicamente
se denota la negacion por -

Ejemplo 4-1: Considérense los tres enunciados que siguen:
(1) Paris estd en Francia.
(2} Es falso quc Paris estd en Francia.
(3) Paris no estd en Francia.

Entonces (2) y (3) son cada uno negacidn de (1).
Ejemplo 4-2: Sean los siguientes enunciados:
: (1) 2+2=75
(2) Es falso que 2 + 2 = 5.
(3) 2+ 245,

{(2) ¥ (3) son cada uno la negacién de (1).

El valor de verdad de la negacién de un enunciado depende de la siguiente condicién:

Vi Sip es verdadero, entonces ~p es falso; si p es falso, entonces ~p es verdadero. Es decir,
el valor de verdad de la negacidn de un enunciado es siempre el opuesto del valor de verdad
del enunciado. j

<
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Ejemplo 4-3: Examinense los enunciados de! Ejemplo 4-1: Notese que (1) es verdad v (2) v 13). sus negacio-
nes, son falsos.

Ejemplo 4-4: Considérense los enuncrados cel Ezemplo 4-2: Ohsérvese que (1) es falso v (21 v (3 son ver-
dadceros.

¥V, se puede escribir en forma de tabla como sigue:

B ~P
¥, [
F e

CONDICIONAL, p — g

Multitud de enunciados, especidlmente en las matematicas, son de la forma «Si p entonces g». Ta-
les enunciados se llaman condicionales:y se les denota por

==Y
El condicional p — ¢ se puede también leer:
{¢) pimplica g (¢) p es suficiente para ¢
(h) p solamente si ¢ ~{d) ¢ es necesario para p

El valor de verdad del enunciado cendicional p — ¢ resulta de la condicion:

V,: El condicional p —+ ¢ es verdadero a menos que p sca verdadero y ¢ falso. Es decir, ¥, afir-
ma gque un enunciado verdadero no puede implicar uno falso.

V¥, se¢ pucde escribir como tabla asi:

Ejemplo 5-1: Sean los siguientes enunciados:

(1) Si Paris estd en Francia, entonces 2 + 2 = 5.

(2) Si Paris esta en Inglaterra, entonces 2 + 2 = 4,
A {3) Si Paris esta en Francia, entonces 2 + 2 = 4.

(4) Si Paris esta en Inglaterra, entonces 2 + 2 = 5.

Por V,. solamente (1) es un enunciado falso: los otres, son verdaderos.

BICONDICIONAL, p < g
Otro enunciado corriente es ¢l de la forma «p si, y solamente si, g» o con una comoda abreviatu-
ra, «p ss1 g». Tales enunciados se llaman hicondicionales y se les denota por
p > q ' »
El valor de verdad de los enunciados bicondicionales p «+ g obedece a la condicion: |

V.: Sipy g tienen el mismo valor de verdad, entonces p «» g ¢s verdadero: si p y ¢ tienen valores
de verdad opuestos, entonces p « g ¢s falso,

Ejemplo 6-1: Sean los enunciados siguientes:

(1) Paris esta en Francia si, y solamente-si, 2 + 2 = 5.
(2) Paris esta en Inglaterra si, y solamente si, 2 + 2 = 4,
(3} Paris esta en Francia si, y solamente si, 2 + 2 = 4.
Y14) Paris esta en Inglaterra si, y solamente s1, 2 + 2 =5

Segin Vo, (3} y (4) son verdaderos y (1) y (2) son falsos.



190 ALGEBRA DE PROPOSICIONES [CaAP. 14

V. se escribe en forma de tabla como sigue:

p g |pg
v v Y

v F F

F v F

F | F \

POLINOMIOS Y POLINOMIOS BOOLIANOS
Las sumas finitas (+ ), productos ( - ) y diferencias (— ) de las indeterminadas (o variables)
5 Ol
sometidas a las reglas usuales del dlgebra ordinaria, constituven los pelinomios en dichas variables,
Ejemplo 7-1: Los siguientes son polinomios en dos indeterminadas:
fleay) = arx —xoy +yryry+xra = 22° — xy + 37
glr,yl = (x—yrle—y) = = —y
Sien el polinomio f{x. y. . . .) se remplaza cada indeterminada por un numero real dado v, py. . . .
respectivamente, la expresion A
Hxge po - 00)
que denota sumas, productos y diferencias de nimeros reales, es ella misma un nimero real. Es decir. que
$1.X, ¥, ... se consideran como rariahles reales. entonces el polinomio f(x, v, ...) define una funcion

que hace corresponder un cierto valor fixg. vg. ...} como imagen de los nimeros reales x,. »

Ejemplo 7-2: Scan los polinomios del Ejemplo 7-1. Entonces,
f2,3) = 242 28 L+ 3-3:3+2:2 = 4 B+ 2744 = 29
g(3,1) = B-1-3+1) = 2-4 = B8

Las operaciones suma. producto y diferencia. definidas entre nameros reales, inducen operacio-
nes seméjantes llamadas asimismo suma. producto y diferencia entre polinomios.

Ejemplo 7-3: Sean los polinomios del Ejemplo 7-1. Se uene
flz,w) — glz,y) = (2et—zy+4 ") — (27— Y
fle,y) ~gleyy) = (20 —ap+ y") « (28 — )
Supdngase ahora que las letras
L —

que antes denotaban enunciados, sean indeterminadas. es decir, variables. Combinando estas variables
por las conectivas A, v y ~. 0. con mas generalidad, por ias conectivas A, v, ~, — y e, sc
construyen expresiones que se laman polinomios boolianos.

Ejemplo 7-4: Los siguientes son polinomios boolianos en dos varizhles.

flp,g) = ~p v (p=q)
glp.g) = (per~q) ~ g

Y ademas pueden emplearse los simbolos A, v. ~, — y < como conectivas para los polinomios
boolianos; asi que se puede hablar de la conjuncion, disyuncidon y negacién de polinomios boo-
hanos.

Ejemplo 7-5: Sean los polinomios boolianos del Ejemplo 7-4. Entonces

flpigl ~nglpa) = |[=pvip=q)] ~ [lpe ~q)~q]
flpog) — glpg)y = [~pvip—g] = |lpe~q » 4
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Suponiendo ahora que cada una de las variables p. ¢. .. . de un polinomio booliano f(p, g. .. .)
se remplazan respectivamente por un enunciado particular denotado por pg. ge. - - . . la expresion
Hpo- qo. - - )

es tambien un enunciado y tiene por lo mismo un valor de verdad.
Ejemplo 7-6: Sean fip. gl = ~p o (p— gl y py «2 + 2= 3ny g, «| + 1 = 2». Entonces fip,. g, quie-
re decir
2+ 2= 5 y si2+2=5entonees, byl = 2w
Por ¥.. r, = py — g, o8 verdadero, Notese que s, = ~p, es verdadero. Por tanto, por V.

Mg gal = 55 A £y s lambién verdadero.

Observacion 14-1: Sez un polinomio booliano fip. ¢. .. .) ¥ sean los enunciados py. g¢q. ... con el
mismo valor de verdad que los enunciados pg. ¢p. - . . Entonces f(pg. ¢p. .. .) tiene
el mismo valor de verdad que [(po. go. .. ).

PROPOSICIONES Y TABLAS DE VERDAD

Definicion 14-1: Sellama proposicion un polinomio booliano en las variables p. ¢, . . . v sc le denota por
Plpog, ... L Clpog....) ...
o simplemente por P, (0. ...
Por la Observacion 14-1. el valor de verdad de una proposicion Plp, ¢. .. .) evaluado sobre enun-
ciados cualesquiera. es funcion solamente de los valores de verdad de los enunciados y no de los enuncia-

dos particulares mismeos. Asi. pues. sc habla del «valor de verdad» de cada una de las variables. p. g.
... .y del «wvalor de werdadw» de la proposicion Pip. g, .. ..

Una simple manera concisa de mostrar la relacién entre el valor de verdad de una proposicion
Pip. q. .. .) v los valores de verdad de sus variables p. ¢, . .. es por una tablu de verdad. Por gjemplo,
la tabla de verdad de Iz proposicion ~ (p A ~g¢) s¢ construye como siguc:

pla | ~¢ | pa~a | ~lpn~9
A | F F v
V| F v v F
¥ Vi O F v
F P v F v
Las primeras columnas de Ia tabla estdn ocupadas por las variables p, ¢. .. . En la tabla hay suficientes

filas para abarcar todas las combinaciones de V y F para estas variables. (Para 2 variables. como en
este caso, se necesitan 4 filas: para 3 variables s¢ necesitan 8 filas y. en general. para # variables s re-
quieren 2" filas). Luego hay otra columna para cada paso sucesivo del cileulo del valor de verdad que
se busca para la proposicion. valor que aparece en la aluma columna.

La tabla de verdad de la proposicion anterior ~(p A ~g) consiste solamente en las columnas
encabezadas por las variables v la columna encabezada por la proposicion. asi:

P | q | ~p A g
\.' \‘.’ \‘.’
vV | F F
F| V v
FI|F 3
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Otra manera de construir esta tabla de verdad de ~(p A ~¢q) s lu siguicnte: Primero trdcese la
tabla.

i (p S o= q)

Lo B B ol -
< 1 < |a

F |
Puaso || ! |

Escribiendo la proposicion en la fila superior a la derecha de las variables de la proposicion. Cada va-
riable o conectiva encabeza una columna. Los valores de verdad se anotan luego en la tabla en varios
Ws0s,  asi:

| g "= T oTREaNe=" ) p | @ = o @)
v |V | ¥ l v v |V v ‘ F |V
v | F v F v F L vV | F
F |V F | v P |V F F |V
F | F F | | F F | F F VI|F
Paso | 1 | | 1 Paso | 1 | 2 l. i
p | g oo SRR e | ) plae ]~ & ~ ~ @
v[v [SEAE"F | v VIV| V]V [|F[F [V
v | F Ve L ‘ F v ‘ F|F |V ‘ vV |V | F
F |V FIF‘F v 3 IR Y F-F!Fl\"
F | F F|F|V |F F|F |V |F|F|V|F
Paso | 1 | 3 | 2 l 1 Puso 4 | 1 | 3 | 2 | 1

1. 1abla de verdad de la proposicion queda formada por las columnas encabezadas por las variables
y por la dltima columna completada en ¢l tlumo paso.

TAUTOLOGIAS Y CONTRADICCION

Algunas proposiciones P(p, g. .. .) tienen solo V en la iltima columna de sus tu . s de verdad.
Es decir, que la proposicion P(p. g. . . .) sera siempre un enunciado verdadero sean cuales fueren los
enunciados pg. go. . . . verdaderos o falsos por los que se sustituyan las variables. Estas proposiciones
se llaman rtautologias.

Definicién 14-2: Una proposicion P(p, ¢, . ..) es una fautologia st P(pg, 4o - - -) &s verdadera para
cualesquiera enunciados po, 4g. - - -

De manera analoga.
Definicién 14-3: Una proposicion P(p. g. .. .} es una contradiccion si P(po. o, - - -] €5 falsa para cua-

lesquiera enunciados pg. ¢g. . - - O sed que una contradiceion solo contiene F en la
diltima columna de su tabla de verdad.

Ejemplo 8-1: La proposicion «p o no g», €5 decir p v ~p es una tautologia, cosa que se verifica al construir
una tabla de verdad.

P | pv~p
v F v
F v
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Ejemplo 8-2: La proposicion «p y no p», es decir p A ~p es una contradiccion, lo cual se ve por la tabla

p | ~p | pr-p
0 F ‘ F
F vV F

Ejemplo 8-3: Un principio fundamental del razonamiento logico, la «ley del silogismon, dice que: «Si p im-
plica ¢ y ¢ implica r, entonces p implica r». Esto es, la proposicion

(=@ nlg=r)] = (p=r)

es una tautologia. Lo que se ve por la tabla de verdad:

pla |7 |lle - @ ~ (g = || = n
v v v V v ! v AY v V v v v v v
viviirlv | vIiv | irFr|v|Fr|lFr|Vv|V ]| F|F
VI F |V |V |F F F F|lv |V v i v | v |V
vir|Fr|Vv|F|F|F|F |V ]| F|V]V|IF]|F
Flv | vi]iFr|v v v v iviv]v]r|v]|y
Flv |F|F |V |V v iF|P|V]|F|V]|F
F| P |VIF|v| F |V | F|V|Vv]v| r]|Vv]|V
F|F|F|P |V |F|Vv | F|VI|F|V[F|V]|F

Paso 1 2|1 |8 |1 |21 |e]1]2]1

En esta tabla se necesitan ocho filas para abarcar todas las combinaciones de V y F para
las tres variables p, g y r.

Como una tautologia es siempre verdadera, la negacién de una tautologia serd siempre falsa, o
sea que se trata de una contradiceion; y viceversa. En otras palabras,

Observacion 14-2: Si P(p. ¢. ...) es una tautologia, entonces ~P(p, ¢, ...) es una contradiccion,
y viceversa.

Sean ahora Pi(p, q. - - .), Po{p. ¢, .. .), . . . proposiciones cualesquiera y sea P(p, g, ...} una tau-
tologia. Entonces P(p, g, - - -) no depende de los valores particulares de verdad de p, ¢, ... Por tanto,
si se sustituye p por P,, g por P, en la P(p, g, ...) se tiene aun una tautologia. Dicho de otra
manera:

Teorema (principio de sustitucién): Si P(p, ¢, ...) es una tautologia, entonces ‘
P(Py, Py, ...}

es lambién una tautologia para cualesquiera proposiciones Py, Py, . . .

EQUIVALENCIA LOGICA

Dos proposiciones P(p, . ...) y @(p, ¢, ...) sc dicen ldgicamente equivalentes si sus tablas de
verdad son idénticas. Se denota la equivalencia 1dgica de P(p, ¢, ...}y O(p. ¢, .. .) por

Plp,g,...)=0(p.gq,...)

Ejemplo 9-1: Las tablas de verdad de (7 — g) A (g — p) ¥ p+> g son como sigue:
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-
p | alp~ala=p| p2anq=p p | g |reg
S AR T TR v ¥ 1w v
v | F o F 8 i F
g = | v| v | F F F | F
' F | ¥ ¥ | LY v Wl v

Lucgo (p~ghnlg—p) = perg.

Ejemplo 9-2:  Las tablas de verdad siguientes muestran que p— gy ~p v ¢ son ldgicamente equivalentes,

eslo ey, qUE p— ¢y = ~p v g

p | g |p>a RN o e
v v Y v [v] F ¥
V| F F v | F| F F
F \«' y F v v v
FI| F v FlFrIlV v

Los teoremas que siguen son consecuencias de estas defimiciones dadas en lo que precede,

Teorema 14-1: La relacidn entre proposiciones definida por

Plp.g,...)= Qlp.g. ..
es una relacion de equivalencia. _s decir:

(1) para todo Plp. q. ...). Plp. gq. ...)= Pip. g, ..

4

"

(2) st Pip.g. ...)=Qlp. g. ...). entonces Qp. g. ...)= Plp, q. .. .0

(3) st Plp. g. ...)= Qlp. q. Hp. g. ...0= Rip. ¢. ...) entonces
Plipig o HERip gio L4
Teorema 14-2: Plp,q....)= Olp, q....}si, y solamente si, la proposicidon
Plpog, .. )= Qlp. qg....)

es una tautologia.

Teorema 14-3: Si P(p, q, ...) y Olp, ¢. ...) son ambas tautologias o bicn ambas contradicciones,

Plp.og,...)=0p.g....)

entonces

El siguiente corolario es una consecuencia del principio de sustitucion en las tautologias vy del

Teorema 14-2 anterior.

Corolario 14-1: Si P(p, g, ...) = Qlp, g, ...), entonces
BBy, Bavins

para cualesquiera proposiciones P,, Ps. . ..

N 2 e,

Es decir, que, si se sustituyen por proposiciones las variables en proposiciones equivalentes, las
proposiciones que resultan son también equivalentes.

ALGEBRA DE PROPOSICIONES

Las siguientes proposiciones son ldgicamente equivalentes:
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Teorema 144: (la) pvp = p (18) pap =p
(2a) (pv@vr =pvigvr) -~ (2b) PAag)ar = pa(gar)
(3¢) pvag =gqvp (8b) pag = qgap
. (da) pvl@nr) = @vealpvr)  (4D) palgvr) = (Pag)v(ar)
(5a) pvf=0» (5b) pav=p
(6a) pvr=r (6b) pnaf =f
(7Ta) pv~—p =v (1) pa~p = f
(8¢) ~~p =1p (8b) ~v=f, ~f=v
9a) ~(pvq) = ~pr~qg (9b) ~(pag) = ~Pv-~q

Este teorema se puede demostrar construyendo las tablas de verdad correspondientes. Aqui vy [
denotan variables gue estan restringidas respectivamente a enunciados verdaderos y falsos.

e£n vista del Corolario 14-1. cualquier proposicion puede sustituir a las variables en el Teore-
ma 14-4 (excepto 2 « ¥ f. que solo se pueden remplazar respectivamente por una tautologia V o por
una contradiccion F). Asi, pues, las proposiciones cumplen las leyes de la Tabla 14-1 que sigue. Notese
la semejanza entre las leyes del dlgebra de proposiciones de la Tabla 14-1 y las leyes del dlgebra de con-
juntos de la pagina 104.

LEYES DEL ALGEBRA DE PROPOSICIONES

Leyes de idempotencia

la. PvP = P 16, PAP = P
Leyes asociativas
2a. (Pv@vR=Pv(QvE) 2b, PA@ AR = PAlQAR)
Leyes conmutativas
3a. PvQ =QvP 3, PAQ =@QnP
Leyes disti:bativas
4a. Pv(QAR) = (Pv@Q)n(PYR) 4b, PA(QVv Ry = (PAQ)v(PAR) /\ =
Leyes de identidad
5¢. PvF =P 56, PAa "= P
6a; =t 6b. PAF = F

Leyes del complemento
7a. Pv -P =V . PAr~P = F /\

8a¢. ~~P =P 8. ~V=F, ~F =}
Leyes de De Morgan ) \ )
9a. ~(Pv @) = ~Pnr~Q 9., ~(PAQ) = ~Pv~Q
Tabla 14-1

IMPLICACION LOGICA
Examinese el siguiente teorema:
Teorema 14-5: Si P(p, g, ...) y Q(p. g. .) son proposiciones, las tres condiciones que siguen son
cquivalentes:

(1) ~Plp,g....) v Q(p, ¢,...) esuna tautologia.
(2) Plp.g....)An ~Q(p,g,...) esuna contradiccidn.
(3) Plp.gq....)—Qlp,gq ...) es una tautologia.
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En vista del teorema anterior se¢ puede introducir la

Definicién 14-4: Se dice que una proposicion P(p, g, ...) implica légicamente una proposicién
Q(p. q. ...). lo que se escribe

Plp.g....)=0Q(p.q....)

si se verifica una de las condiciones del Teorema 14-5.

Ejemplo 10-1: La proposicién «p implica g y g implica r» implica Idgicamente la proposicién «p implica r»,
pues, como se muestra en el Ejemplo 8-3,

[lp—q) nlg=r)] = (p—=r)
¢s una tautologia. O lo que es lo mismo,

p=anlg=r) = p=r

Ejemplo 10-2: Considérese la tabla de verdad de

P | q (» n q) A = (p v q)

A e | A T [ G oo e R

(. BN F i F F F F Vv Vv F

< _ 0 S /& v LB | FUBEIEHER BV |V

i e (/¥ | ¥l F | = lTEllis Y |F | F|F

A les e e — Paso 2 1 4 q 1 2 1
- Obsérvese que (p A g) A ~(p v g) es una contradiccién; luego p A g=p v q.

Teorema 14-6: La relacion entre proposiciones definida por

Pp.gq...)=Q0 g ...)
es reflexiva, antisimétrica y transitiva, es decir:

(1) P(p,g,...)=>P@q ...).

2) Si Plp,g, ...) = Qg ...) vy Qv,4q ...)=> Plp,gq ...), Entonces
P(p,q,...)=Qp, 9, --.)

(8) Si Pip,q,...)=>Qpgq ...)y Quw,q ...)= E(p,q ...), Entonces
Pp,gq,...)=> R(p,q, ...).

Vale también la condicién sigulente:

Teorema 14-7: Si P(p, ¢, ...)=> O(p, g, .. .) entonces, para cualesquiera proposiciones Py, Py, ...
P(Plsplg ...}:Q(PI,PZ, ]

Es decir, si una proposicion .implica légicamente otra, la relacidn sigue siendo valida cuando se
sustituyen las variables por proposiciones arbitrarias en las proposiciones originales.

Observaciéon 14-3: Considerando los simbolos
— y =

Pp,g,...)—> Q. g, -..)

es precisamente una proposicion y que su tabla de verdad solo puede contener
0 bien V o bien F en la ultima columna. Pero

Pip,g,..)=0(p.q....)

define una relacidn entre proposiciones compuestas, a saber, que la proposicion
compuesta
g P(p.g...)> 00,4 .. )

solo tiene V en la ultima columna de su tabla de verdad, o sea que es una tautologia.

obsérvese que
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Observacion 14-4: Considerando ahora los simbolos
—s y =
obsérvese que
Pip.g....)=Qp. g, ...)

es también precisamente una proposicién compuesta y que su tabla de verdad
puede tener en la dltima columna tanto V como F. Pero

Plp.g...)=0lp. g ...)

define una relacion entre proposiciones compuestas estableciendo que Pip, q, . . .)
y O(p, g, .. .) tienen tablas de verdad idénticas, o lo que es lo mismo, que

Plp,q,...)=Qlp g ...)
solo tiene V en la dltima columna de su tabla de verdad. Siendo asi que, hablando
en pura logica, no cabe distinguir entre dos proposiciones equivalentes, hay
autores que usan el signo = en vez del =.

ENUNCIADOS LOGICAMENTE VERDADEROS Y LOGICAMENTE EQUIVALENTES

Se dice que un enunciado es lbgicamente verdadero si se le puede derivar de una tautologia, es de-
cir, si el enunciado es de la forma P(p,. g, . . .), donde P(p, ¢, . ..) es una tautologia.

Ejemplo 11-1: Sean los siguientes enunciados:

(1) Esta lloviendo.
(2) Esta lloviendo o no esta lloviendo.

El primer enunciado puede ser verdadero: su valor de verdad depende de condiciones extrin-
secas al enunciado mismo, es decir, del tiempo climatico. El segundo enunciado es ldgicamente
verdadero, ya que se puede derivar de la tautologia p v ~p. Es de ver que su valor de verdad
no depende de condiciones extrinsecas al enunciado mismo.

Asimismo, s¢ dicen logicamente equivalentes los enunciados de la forma Plpg, gq. ...} ¥ Qlpg,
4o, - - -) 51 las proposiciones P(p, g, .. .) ¥ Qlp. g, . . .) son logicamente equivalentes,

Ejemplo 11-2: Como ~(p A g) = ~p v ~ g, elenunciado «No es verdad que las rosas son rojas y que las vio-
letas son azules» ¢s logicamente equivalente al enunciado «Las rosas no son rojas o las viole-
tas no son azules».

Observacion 14-5: Téngase muy en cuenta que ¢l proposito principal de este capitulo es el de mos-
trar que los polinomios boolianos, o sean las proposiciones, junto con sus tablas
de verdad, tienen ciertas. propiedades algebraicas. No se ha tenido la intencidn de
analizar los fundamentos logicos de los supuestos aqui utilizados.

Problemas resueltos

ENUNCIADOS
1. Sean p «Hace frio» y g «Estd lloviendo». Describir con un enunciado verbal las siguientes
aserciones:
1) ~p (6) p=>~q @) ~~q
(2) prg (6) av~p (10) (P~ ~q)= D
B)pve (M) ~pnr~q
4) gep (8) pe~q
Solucidén:

En cada caso, transcribir A, v, ~, — y +» por «y», «o», «es falso que» o «now», «si . . . entonces» y «sl, y solo
si», respectivamente, simplificando luego la oracién.
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(1} No hace frio.

21 Hace frio v estd lloviendo.

(31 Hace frio o esta lloviendo.

{4) Esta lloviendo si, y solo si. hace frio.

t5) 81 hace frio. entonces no estd lloviendo.

16) Estd lloviendo o no hace frio.

(7} No hace frio y no estd lloviendo.

{#) Hace frio si. y solo si, no esta Illoviendo.

{9) No es verdad que no estd lloviendo.

(10} 51 hace frio ¥ no estd lloviendo, entonces hace frio.

2. Sean p «El es alto» y g «El es galan». Escribir los siguientes enunciados en forma simbdlica
con py gq.
(1) El es alto y galan. (10 A9 i,
{2) El es alto pero no es galan| p A~ ) ,
(3) Es falso que él es bajo o galin. ~ (-pv 9|
(4) El no es ni alto ni galan. (P N~3
(3) Eles alto, o el es bajo y galdn. PE~PNA N ;\-_-xp,\q\'\
(6) No es verdad que el es bajo o que no es galan. :
STV

Solucion:
(1) prg (8) ~(~pwvq)/ (5) pvi~prg ¥
2) par~gqg | 4) ~pr~g [/ (6) ~(~pwv ~gq).~

3. Determinar el valor de verdad de cada uno de los siguientes enunciados compuestos.
(1) Si3 —i}IZ =75 entorf;ces 44+4=8 / o —F
(2) Noesverdad que 2 + 2 = 55, ysolosi, 4 + 4 = 10. M-P :q a4 = A
(3) Paris esta en ]nglatcrra o Londres estd en Francia.
(4) Noesverdadque!l + 1 =3 0que2 + 1 =3.
(5) Es falso que si Paris estd en Inglaterra, entonces Londres esld en Francia.

Solucion:

(1) Sea p«3 + 2 =T»n ysea g «d + 4 = B». Notese que pes falso v g cs verdadero. Segin V,. p — ¢ ¢s verda-
dero. Es decir, el enunciado propuesto es verdadero.

(2) Seap«2 + 2= 51 5eaqud + 4= 10»yscar«pssign. Es claro que p y g son falsos; luego por Vg p sy
es verdadero, esto es, r es verdadero. Como r es verdadero. el enunciado, que es la negacion de r. es falso.

(3) Sea p «Paris estd en Inglaterra» y g «Londres estd en Francias. Evidentemente p y ¢ son falsos: por tanto,
segin V. el enunciade dado, p v g¢. es falso.

(4) Sea p«l +1=3ny g «2+1=>73 ysear« ogn Notese que p es fulso v ¢ verdadero; entonces.
por ¥V, p v g que es r. es verdadero. Como el enunciado propuesto es ~r, es falso.

(5) Sea p «Paris estd en Inglaterran y g «Londres estd en Francia» y sea r «Si p entonces g». Siendo p y ¢ falsos,
entonces, por ¥,. p — g es verdadero. esto es. r es verdadero. En consecuencia. el enunciado propuesto, ~r,
es falso.

TABLAS DE VERDAD DE PROPOSICIONES
4. Hallar la tabla de vefdad de cada proposicion.

(1) ~pagq (3) prg)=(pvaq)
(2) ~(p—=~q) (4) ~(p ~q) v ~(g > D)
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Solucion:
(1)
p la|~p | ~pna » | a]|~ Ag
v vV F F Y v F v F v
v | F| F F VIF|F |V ]|F|F
F |V ]| v A rlv | v I ir]|v|v
F | FP |V F F|F|V|F|F]|F
Paso 2 1 3 1
Mérodo | Mitada 2
(2)
plal~qa]| po~0 | ~t6-~9 plal~ ® > =~ g
\ I v | F ‘ F v viv|iv]iv]iel|lFr|v
VIF|vV v F v F|lF|lv |v|vVv|F
F|lV]F \Y F F|{VvV|F|F |V |F |V
F ' Ffv | v F Flr|F|F|V]|Vv|F
Paso 4 1 3 2 1
Mérodo | Mitado 2
(3)
p |alora|rve | bro~(pva pla |l A @ = ( v g
vl 7 Y v ’ v v ivi v iv]v]v]v]v]v
vV | F F % v V| |F |V |F|F|V]V|V]|F
F |V F v v F|lVv | F|[PFP|V]V]PFr |V |V
F | F F F | W F|F |F|F|F|V]|F|F|F
Paso 1 2 1 3 1 2 1
Método T Métado 2
Seveque (p Ag) = (pvg) s una tauiologia
(4)
D l q ]pAQIqu | ~(p ~q) ~(g < p) ~(p A g)v ~(g < p)
v | v v v F F F
A F F F v v v
F v F F W v v
E s F | vV F 3
Mérach |
r q = I i . ot - . .
viv]ie|v iv]iv]r]lr|v | v ]|V
vie|vi|iv | er|lFr]lv]|v I IFIlF |V
Flv|lv|ir|r|Vv | v]|]Vv I IV |F|F
FlEJNJ|F|IF|F|Vv]|F|F|Vv|F
Paso 3 1 2 i 4 3 ; 1 2 1

Mo 2

Por lo general, si una proposicién es muy complicada. con el segundo método se invierte menos tiempo

¥ espacio.
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5. Hallar la tabla de verdad de cada proposicion.
(1) (p=g)v ~(pe ~q) ) [p=(~gvnla~[gv pe ~r]
Solucién:
(1)
o A e ) I R i s G )
v v v v v v Y v F F A
AY F \Y F F F F v v v F
F AY F v v v F F v F v
F F F v F hY v F F v F
Paso 1 2 1 5 4 1 3 2 1
(2)
I R ey e R S e D £ = o A 5
v v A% v v F v N v F F v v v P F \Y
v v F v F F \') F F F F v v Vv v v F
\Y F v A v Vv F Vv v v v i F A% F F Y
vV F F v v Y F \Y F F 3o F v v v Vv F
F Y \Y F A% F v \Y v F F Vv \' F v F A
F v F F v F N F F F F v v F F v F
F F A F Vv v F v b F F F v 13 A F Ay
F F F F vV v F Vv F v Vv F F B B v F
Paso 1 4 2 1 3 1 6 5 1 4 1 3 2 1
o - o
NEGACION

6.

Verificar, por tablas de verdad, que la negacionde p A g, p v g, p— g y p < ¢ es logicamente

equivalente a ~p v ~g, ~p A ~q, p A ~G y per ~q 0 ~p+> g, respectivamente. Es decir,

verificar que

(1) ~(prgl=~pv ~q
(2) ~pvgl=~pnr ~q

Solucién:

(1)

(Ley de De Morgan) ® (3)

{(Ley de De Morgan) o (4)
P g | pra ~{p ~ q) =pil e | =y g
v v v F F F F
g F F v F v v
F |V F v 1% F v
F | F F Y v v v
4 }
2 |a |pve | ~lpvg | ~p| ~q¢ | ~pr~q
v v v F F F F
v |E v F F v F
F | V % F v F F
FI|F F v % v %
t }
p | ¢ |p~e|~p-9 | ~a|pr~q
v |v v F F F
vV | F F v \% v
F | Vv v F F F
E|F v F v F

3

~po2g=p A ~q
~peorg)=pe ~g= ~pey
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(4)

» g |peq |~pq) | ~p | ~pg| ~qg| pe~qg
v v v F F F F F
v F F v F A v Y
F | V F v v v F v
ek b e i el

7. Verificar: ~~p = p.

8. Mediante los resultados de los Problemas 6 y 7, simplificar las siguientes proposiciones.

1) ~(pv ~q) 3) ~(p A ~0q) (5) ~(~p o q)
(2) ~(~p~q) (4) ~(~p r~q) (6} »(E )
Solucidn:

(1) ~lpv~q) = ~par~~q = ~prg

@ ~(~p-q = ~pa~q

(B) ~pAr~g) = ~pv ~~q¢ = ~pvyg

(4) ~(~pnr~q) = ~~pv~~qg =pveg .

Bl -m(@psmg) = meptig = pEeg o

6) ~(=p>~q) = ~pAr~~¢g = ~pag

9. Simplificar los siguientes enunciados.

(1) No es verdad que las rosas son rojas implica que las violetas son azules.
(2) No es verdad que hace frio y esta lloviendo.

(3) No es verdad que ¢l es bajo o galan.

(4) No es verdad que hace frio o que estd lloviendo.

(5) No es verdad que si estd lloviendo entonces hace frio.’

(6) No es verdad que las rosas son rojas ssi las violetas son azules.

Solzcidn:

(1)

(2)
3)

(4)

(5)
(6)

Sea p «Las rosas son rojas» y sed ¢ «Las violetas son azules». El enunciado dado se puede denotar entonces
por ~(p — g). Por el Problema 6, ~(p — g) = p A ~g. Asi que el enunciado es logicamente equivalen-
te a «Las rosas son rojas y las violetas no son azules».

Como ~(p ~n g) = ~p v ~g este enunciado es ldgicamente equivalente a «No hace frio o no esta llo-
viendo.

Puesto que ~(p v g) = ~p A ~qg, este enunciado es logicamente equivalente a «El no es bajo y no galan».

Notese que ~(~p v g) = ~~p A ~g =p » ~g. Asi que el enunciado, que se puede denotar por
~(~p v g), donde p es «Hace frio» y g es «Esta lloviendo», se puede escribir «Hace frio v no esta llo-

“viendo»,

Como ~(p—+q)=p ~ ~g, ¢l enunciado se puede escribir «Estd lloviendo y no hace frion.

Como ~ (p «+ g) = p ++ ~ g, este enunciado es logicamente equivalente a «Las rosas son rojas ssi las viole-
tas no son azules».
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EQUIVALENCIA LOGICA
10. (1) Demostrar la Jey asociativa: [p AGIALSpAAG A
@) v a)A(p v

Solucién:  Construyendo una tabla de vErdad——p:rra—eada—so*—-—- =g
{1

P q T pag | prgar | gar | palgar)

VI v ]|v % v v v

v V| F v F F F

vV | E ¥ F F F F

vV | F | F F F F F

F |V |V F F v F

F v F F F F F

b (55 0 TR F F F F

F|F|F F F F ?

t

p q r | gar | pvigar) |pvg | pvr |[pv@alpvr
vV | e v v v ' vV
v V| F F Y \% \Y vV
V|F |V F v v g% %
v lop R F Y Y Y, v
F|Vv|v v v v | v
F |V |F F F | v F F
F | F |V F F F vV F
F|F|F F i_ F i ?

11. Demostrar que la operacién de disyuncidn se pucde expresar por las operaciones de conjuncion
y negacién, oseaquep v ¢ = ~(~p A ~q).

Solucién:
plalrva|~p|~a|~pa~qg | ~(~pn~q
v | v v F F ‘ F i v
vV | F vV A v
F | v v V | F F v
F| F F v | v ‘ Y ’ F
}

12. Demostrar que la operacion condicional es distributiva respecto de la operacién de conjuncién:
polgan=p—og)a@—r)
Soluciin:

3§

=
™

p=>lgar) | p=2q | p
v v

F v

F F
F

\

v

p=gAalp—r)

T ot

F

-
-y

L B - S N B o el ol -
o B B B R ]

LT R B ]
R B R
<< << "< <]}

-
-




CAP. 14] ALGEBRA DE PROPOSICIONES
ALGEBRA DE PROPOSICIONES
13. Con las leyes del dlgebra de conjuntos, simplificar:

(1) (Pv @ a~P, () Pv(PrQ), (3) ~(PvQ)v(~P~Q).

Solucidn;

1) (Pv@ a~P = ~Pr{Pv@Q = ([ "2 Pyv (=B Q) = Fu{=Pr@Q) = ~P~Q
(2) Pv(PAQ = (PAT)v(PAQ = Pa(Tv@ =FnT =P

@) ~PvQVI(~PAQ = (~PA~QV(~PAQ) = ~FA(~QvQ) = ~PaT = ~P

IMPLICACION LOGICA

14. Decir entre lo que sigue qué es verdadero o falso: (1) p=p » ¢. (2)p=1p
Solucion:
Constriyanse las tablas de verdad de p = (p A g) ¥ p— (7 v 4.

<
=

p | ¢ | prag|p-tpra | pva | p=tova

V|V v Vv v v

v | F F F v v

F |V F v % v

F F F v F v
Natese que p — (7 A ¢) no es una tautologia: luego (1) es falsa.

Notese que p— (p v ¢) €s una tautologia; luego (2) es verdadera,

15. Demostrar que p A ¢ implica logicamente p < 4.
Solucion:
Constriyase la tabla de verdad de (p A ¢) — (p— q).

p | a]|png | pog | pra~eoq
VoV v Voot v
V. | E F F v
F v ¥ F v
F | F F v v

Como {p A ¢) =+ (p + ¢) es una tautologia, p A g=pg.

16. Demostrar el Teorema 14-7: Si P(p, ¢. .. .) = Q(p. q. . - .), entonces
PP, P;, ...) = Q(Py, Pa, ...)

Solucion:
Obsérvese que Plp, ¢.... )= Qlp. g.... ) si. y solo si.

Pip,q,.-) = Qlp.g,...)

es una tautologia. Por el principio de sustitucion.

P{P\,Pz. el | Q(Pn.Pz, HEEE |
es también una tautologia. Es decir,

PPy Py .. ) =2 QPGP L)

17. Demostrar; Sea P(p, . . . .) una proposicién: entonces p = p v Pip.g....)
Solucion:
Por ¢l Problcna 14, p= p v g. Por el Teorema 14-7. P(p. g. ... ) pucde sustituir a ¢. es deair.

p = pv Plpag...)

203
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18. Demostrar: Si Pip, ¢, ...) = Q(p. g, . - .), entonces O es verdadera siempre que P lo sea.

Solucion:

Notese que Plp. g, .. )= Qlp, g....)s,ysolosy, Plp,g,...)— Qlp, ¢, ...)es una tautologia, esto es,
siempre es verdadera. Por ¥, pg — g, es falso si p, es verdadero y g, es falso; por tanto, si Plp, q. ... ) es
verdadera, entonces Q(p, g, . . . ) debe ser también verdadera.

PROBLEMAS DIVERSOS
19. La conectiva proposicional v se llama disyuncion exclusiva; p v g se lee «p 0 ¢ pero no ambos».
(1) Construir una tabla de verdad parap v q.

(2) Demostrar: p v g = (p v g) A ~(p A g). Por tanto,v se puede escribir empleando las
tres conectivas primarias v, A y ~.
Solucion:
(1) Notese que p v g es verdadero si p es verdadero o g es verdadero, pero no lo es si ambos p y g son verda-
deros; de ahi la tabla de verdad de p v g:

p| a|»pve

v v F

v F A%

F v v

F F F

(2) Sea la siguiente tabla de verdad:

p gl v @ ~ ~ (p A g
AY v v v v F F v v v
v F v v F v v Ay F F
F v F A Vv v v F F v
F F F F F F A F F F
Paso 2 1 4 3 1 2 1

Como las tablas de verdad de p v gy (p v g) A ~(p A g) son idénticas, pv g = (p A g) A ~(p A g).

20. La conectiva | es la conjuncion negativa; p | q se lee «Ni p ni g».
(1) Construir una tabla de verdad para p | g.

(2) Demostrar: Las tres conectivas v, A y ~ se pueden expresar con la conectiva | como

sigue:
@ ~p=plp, ®)prg=@Ipl@le, () pve=@mlalkmla.
Selucion:
(1) Nétese que p 4 g es verdadero si no es verdadero p ni es verdadero g; asi, pues, la tabla de verdad de
plges ésta;

| »

oo o< < |m
o< om <|a
< = o o]
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21,

22,

23.

(2) (a) (b}
p|~p|plp p o |pralplnlalalloliala
v| F ‘ F v ‘v v | F | F | v
F| V v v | F E | F v r
F-{v F | v F | F
F [ F DI T v F
t §
(e
p la]lovelole|wlalele
V| v v = v
VI iFr| v F v
F | v v F v
F | F F ol F
t }

Hay a lo més cuatro proposiciones diferentes en una variable que no son equivalentes. Las tablas
de verdad de tales proposiciones son como sigue:

P | Pi(p) | Palp) | Pi(p) | Pu(p)
v A T
F Vool BT

Hallar las cuatro proposiciones dichas.
Solucion:
Nitese que

pl=p|pv~p|pAr~p
v| F ‘ it
1 vV | F

Lucgo Pip)=p v ~p, Pip) = p. Pylp) = ~p, Pyp)l=p & ~p.

Hallar el ndmero de proposiciones diferentes no equivalentes de (1) dos variables PYyq (2)tres

variables p, g y r, (3) n variables p;. p,. . . ., p,.

Solucién:

(1) La tabla de verdad de una proposicién P(p. ¢) contendra 22 = 4 filas. En cada fila pueden aparecer V o F;
asi, pues. hay 2 = 2* = 16 diferentes proposiciones Pip. g) no equivalentes.

(2) La tabla de verdad de una proposicion P(p, g. r) contendra 2* = 8 filas. Como en cada fila pueden apa-
recer V o F. habrd entonces 22" = 2% = 256 proposiciones diferentes no equivalentes Plp, ¢. r).

(3) La tabla de verdad de una proposicién Plp,. . . . p,) tendra 2" filas; por consiguiente, como se vio antes,
habrd en este caso 2*" diferentes proposiciones no equivalentes P(p,. . . .. D).

Denétese con Apg p ~ ¢ y con Np ~p. Escribanse las siguientes proposiciones empleando
Ay Nenvezde n y ~.

(1) pa~q () ~pAa(~qAaT)

(2) ~(~p~q) (4) ~(p A ~q) A {~q » ~7)
Solucion :
(1) pr~g = paNg = ApNg
@) ~(~pnrgq) = ~(Npnrgq = ~(ANpq) = NANpg

(3) ~pArl~gar) = Npan(Ngar) = Npn(ANgr) = ANpANgr
4) ~(@ A ~q) nl~qgnr~r) = ~(ApNg) n (ANgNr) = (NApNq) ~ (ANgNr) = ANApNgANgNr

Notese que no hay paréntesis en la respuesta final cuando se usan 4 y N en vez de A y ~. Se demuestra
que no son necesarios. Y, ademads, como toda conectiva es logicamente equivalente a A y N, es decir, a A ¥ ~,
la notacion anterior basta para cualquier desarrollo del algebra de proposiciones.



206

24,

ALGEBRA DE PROPOSICIONES [CAP. 14

Escribir las proposiciones siguientes utilizando A y ~ en vezde 4 y N,

(1) NApq (3) ApNq (5) AApgr (7) NAANpgr

(2) ANpq (4) ApAgr (6) ANpAgNr (8) ANApAgqpAANgrp
Solucion:

(1} NApg = N(pnrgq) = ~(pag) (3) ApNg = Ap(~q) = pnr~g

(2) ANpg = A(~plg = ~pAg (4) ApAgr = Aplgnr) = prlgar)

(5) AApgr = Alprgr = (BAg) AT

(6) ANpAgNr = ANpAgq(-7) = ANp(gr ~r) = Al(~pllan ~1) = ~p A (g A ~r)

(7) NAANpqr = NAA(~plgr = NA(~parqr = N[(~prg)ar] = ~[(~prg)rr]

(8) ANApAqpAANgrp ANApAgpAA(—q)rp = ANApAgpA(~g A 7v)p = ANApAqp[(~q A7) A p]
ANAplg npll(=g A7) A p] = AN[p A (g A p)|[(~g A7) AP
A~prlgaplli=gnr)ap] = ~[pa(gap)]nall~gnar) gl

Problemas propuestos

ENUNCIADOS

25,

26.

27.

Sea p «El es ricon y sea g «El es felizn. Expresar por enunciados verbales los siguientes enunciados sim-
bélicos.

1} pv g 3) g—p (5) g > ~p (1) ~~p
(2 prg 4) pv ~q (8) ~p—g (8) (~prgq)=>p

Sea p «El es ricor y sea g «El es felizn. Escribir en forma simbdlica los siguientes enunciados.
(1} El no es rico ni feliz.

(2) Ser pobre es ser infeliz.

{3) Uno nunca es feliz si es rico.

{(4) El es pobre pero feliz.

(5) El no puede ser rico y feliz.

(6) Si él es infeliz es pobre.

{7) Si €l no es pobre y feliz, entonces es rico.
(8} Ser rico es lo mismo que ser feliz.

{9) El es pobre o bien es rico e infeliz.

(10) Si ¢l no es pobre, entonces es feliz.

Sea p «El es ricon y sea g «El es felizn. Escribir los siguientes enunciados condicionales en forma sim-
bolica.

(1) Si él es pobre, él es feliz.

(2) Ser pobre implica ser feliz.

(3) Hay que ser pobre para ser feliz.

(4) Ser rico es suficiente para ser feliz.

(5} Ser rico es necesario para ser feliz.

(6) El es pobre solo si es infeliz. B

Determinar el valor de verdad de los siguientes enunciados:
(1) Si 5 <3, entonces —3 < —5.

{2) No es verdad que 2 +2 =463+ 5=6.

(3) Es verdad que 2 +2 4+ 4y 3 + 3 =26,

(4) Si 3 <5, entonces —3 < —35.

Determinar el valor de verdad de los siguientes enunciados:

(1) No es verdad que si 2 +2 =4 entonces 3+3 =561+ 1 =2

2) Si2+2=4, entonces no es verdad que 2 + 1 =3y 5+ 5= 10.

(3) No es verdad que 2 + 7 =9 si, y solo s, 2 + | = 5 implica 5 + 5 = 8.
(4) Si 2+ 2+ 4, entonces no es verdad que 3 + 3 =T ssi | + 1 =2
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30.

Escribase la negacion de cada uno de los enunciados siguientes de la manera mds simple posible.
(1) El es alto pero galan. ]

(2) El no es rico ni feliz.

(3) Si caen los precios de las acciones, aumenta el desempleo.

(4) Ni Marcos ni Ennique son ricos.

(5) EI tiene cabello rubio u ojos azules.

(6) F' tiene cabello rubio si. y solamente si, tiene ojos azules.

7) Ambos, Marcos y Enrique son inteligentes.

(8) Si Marcos es rico, entonces, tanto Enrique come Aura son felices.

(9) Marcos o Enrique es inteligente y Aura es bonita.

TABLAS DE VERDAD

3L

32.

Hacer la tabla de verdad de cada una de las proposiciones siguientes:

(1) ~pAr~q (3) p=>(~pvaq
2) ~(~peq) 4) (pa~q)=>(~pvq)

Hacer una tabla de verdad para cada proposicion.

(1) [pA(~g=p)] A ~[pe~q=(gv ~p) (2) [pvig—~n] al{l~pvr) e ~q]

EQUIVALENCIA LOGICA E IMPLICACION LOGICA

33.

M.

37.

Demostrar: (1) p—» ~g¢ = g— ~p B (prg=2r = (p=7r)vig>n
2) palgvr) = (pagvipar) 4) [p~q)=71] = [(pA~1)> ~q]
Establecer la verdad o falsedad de lo que sigue:

(1) prg=>p (@) pveg=>p (3 g=>p-g

Demostrar (construyendo las tablas de verdad necesarias):
(1) pe>gqg > ¢g=p (B) palgvr) = pagvr
(2 ~p = p-yq (4) ¢ = [(p~q) < 7]

Demostrar: Para toda proposicion Plp, g. ... ). p A Plp, g, ...)=p.
Si Apg denota p A g y Np, ~p (véase Problema 23), escibir las proposiciones siguientes con 4 y N en
vez de A ¥y ~.

(1) ~pnrg (4) ~{p A g) A ~{~p ~~q)
2) pa~(»nag 5) [pr~@n~g]a~pnrq)
(8) ~(pAg)alpna~q) 8) (~p A ~q) n~[(pAg) A (~gnrp)]

Escribir las proposiciones que siguen con A y ~ en vez de 4 y N.

(1) NApNg (3) AApNrAgqNp (5) ANAApAgNrpAgr
(2) ANApgNp (d) ANANgANpgNp (6) ANANpNAgNrApNAgNr

Respuestas a los problemas propuestos

2 ~po~q (6 ~(pagh (9) ~pVipA—q)

(3 ¢g=+~p, @) p—q (6 ~p>-9q

(1) F, (2) F, (3) Ambigua. (4 V

(2) El es rico o feliz. (8) Marcos es rico, y Enrique o Aura son infelices.

(2) VFFV, (4) VFVV

(1) FVFF

Sugerencia: Construir tablas de verdad.

(1) Verdadero. (2) Falsfo_ (3) Verdadero.

(2) ApNApq, (4) ANApgNANpNg, (6) AANpNgNAApgANgp

@ ~padA~p, @) ~[~gA(~prd]a~p 6 ~[~pA~gA~D]Alpr~(gr=T]



Capitulo 15

Cuantificadoies

FUNCIONES LOGICAS Y CONJUNTOS DE VALIDEZ

Sea A un conjunto dado, explicita o implicitamente. Una funcién légica. o simplemente un enun-
ciado formal sobre 4 es una expresion que se denota por

plx)

iue tiene la propiedad de que p(a) es verdadera o falsa para todo u € 4. En otras palabras, p(x) es una
mncion logica sobre 4 si p(x) se convierte en un enunciado al sustituir la variable x por un ele-
5ot g g A,

“iemplo 1-1: Sea p(x) «x + 2 > T». Asi, pues, p{x) es una funcion logica sobre N, el conjunto de los nume-
ros naturales.

Ejemplo 1-2: Sea p(x) «x + 2 > T». Entonces p(x) no es una funcion logica sobre C, el conjunto de los nu-
meros complejos, pues las desigualdades no se definen para todos los numeros complejos.

Si p(x) es una funcidn I6gica sobre un conjunto A4, entonces el conjunto de elementos a e 4 que
tienen la propiedad de que p(a) es verdadero, se llama conjunto de validez V, de p(x). En otras palabras.

V,=1{x|xeA p(x)es verdadero}

0. simplemente,
Vo = {x | px)}

Ejemplo 1-3: Considérese la funcion légica «x + 2 > 7» definida sobre N, el conjunto de los nimeros na-
turales. Entonces

{z | xeN, 24+2>7) = (6,7,8 ...}

es el conjunto de validez.
Ejemplo 1-4: Sea p(x) «x + 5 < 3». Entonces el conjunto de validez de pix) sobre N es

{z |'"zeN, 2+5<3} = @

el conmjunto vacio.
Ejemplo 1-5: Sea p(x) «x + 5 > I». El conjunto de validez de p(x) sobre N es

{z | a:fi—ﬁ) i} = N

Es de notar, por los ejemplos anteriores, que ; p(x) es una funcion logica definida sobre un con-
junto 4, entonces p(x) puede ser verdad para todos los x & 4, para algunos x € 4 o para ningiin x £ 4.
CUANTIFICADOR UNIVERSAL

Sea p(x) una funcién légica sobre un conjunto 4. Entonces

(Yxed)plx) o V.plx) o Vx px) (1)

¢s un enunciado que dice «Para todo elemento x de 4, p(x) es un enunciado verdadero», o, simplemen-
te, «Para todo x, p(x)». El simbolo v

que se lee «para todo» sc llama- cuantificador universal. Nétese que (/) es equivalente a la asercién con-
juntista de que el conjunto de validez de p(x) es todo el conjunto 4, esto es,

Vo={x|xed, plx)) = 4 @
Ejemplo 2-1: Sea M el conjunto de los hombres. Entonces «Todo hombre es mortal», se puede escribir:

(Vx & M)(x es mortal)

208
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Nétese que p(x), por si solo, es un enunciado formal y, por consiguiente, no tiene un valor de ver-
dad. Pero p(x) con el cuantificador ¥ precediéndole, es decir, ¥x p(x), es un enunciado y tiene un valor
de verdad. A la vista de la equivalencia de los enunciados (/) y (2), queda establecido que

Q,: Si{x|xed, p(x)} = A, entonces Vx p(x) es verdadero: si {x|xeA, p(x)} £ A, entonces
Vx p(x) es falso.

Ejemplo 2-2: La proposicion (Yn & N)(n + 4 > 3) donde N es el conjunto de los nimeros naturales, es ver-
dadera porque
n | n+4>3} = {1,263, casf = N

Ejemplo 2-3: La proposicion Yn{n + 2 > 8) es falsa, pues
{n|nt+t2>8 = {1,89 ..} = N

Ejemplo 2-4: El simbolo ¥ se puede emplear para definir la interseccién de una familia de conjuntos 14}
como sigue

il
Nierdr = {= | Vicel, 24}

CUANTIFICADOR EXISTENCIAL

Sea p(x) una funcién logica sobre un conjunto A. Entonces
(3zed)p(z) o Lp(z) o Izp() (2)

es una proposicién que se lee «Existe un x £ A tal que p(x) es un enunciado verdadero» o, simplemente,
«Para algin x, p(x)». El simbolo
E|

que se lee «existe» o «para algin» o «para al menos un» se llama cuantificador existencial. Notese que
(1) es equivalente a la afirmacién conjuntista de que el conjunto de validez de p(x) no es vacio, es
decir,

V,={x|xe4, px) = &
Por tanto,

Q,: Six ]p[x}} # (&, entonces 3x p(x) es verdadero: si {x | p(x)} = (, entonces 3x p(x) es falso.
Ejemplo 3-1: EI enunciado (AneN)n+4<7)
es verdadero porque n | n+4<T} = {1,2} #* ©
Ejemplo 3-2: La proposicién n(n + 6 < 4) es falsa porque {n |n + 6 < 4} = .
Ejemplo 3-3: Elsimbolo 3 puede usarse para definir 1a unién de una familia de conjuntos {4,}; ., como sigue:

UiSIAI = {:I: | 31:8!, xﬂAi}

Observacién 15-1: El simbolo = se usa frecuentemente en vez de las palabras «tal que» en muchos
: enunciados en que aparece el cuantificador existencial 3. Por ejemplo, el enun-
ciado «Existe un namero natural n tal que 50 < »* < 100» se escribe entonces

IneN 3 50 <n? <100

NEGACION DE PROPOSICIONES QUE CONTIENEN CUANTIFICADORES

La negacidn de la proposicion «Todo hombre es mortal» ¢s «No es verdad que todo hombre es
mortal»; es decir, existe al menos un hombre que no es mortal. Simbdlicamente entonces, si M denota
el conjunto de los hombres, entonces las sobredichas proposiciones se pueden escribir

~(Vx &€ M)(x es mortal) = (Ix € M)(x no es mortal)
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Mejor aun, st p(x) significa «x es mortal», s¢ puede escribir
~(YzeM)p(x) = (QxeM)~p(x) 0 ~V¥ep(x) = 3:~p(x)
Cosa que. en-general, es verdadera. Asi, pues,
Teorema (De Morgan) 15-1: ~ (Yye A4)ply) = (Ave A)~plx).
Hay un teorema andlogo para la negacién de una proposicion que contienc ¢l cuantificador exis-
tencial.

Teorema (De Morgan) 15-2: ~(3ve A)plx) = (Vx e 4)~plx).
O sea que el enunciado

«No es verdad que, para todo a & 4, pla) cs verdadero»
es equivalente al enunciado
«Existe un a € A lal que p(a) es falso»
De igual modo, el enunciado
«No es verdad que existe un ¢ & A tal que p(a) es verdadero»
es equivalente al enunciado
«Para todo a £ A. p(a) es falso»

Ejemplo 4-1: La negacién de la proposicion «Para tode nimero natural n. n + 2 = 8 es equivalente a la pro-
posicién «Existe un n tal que n + 2 3 8. Es decir, que
~(fmeNHn + 2 =8l =(IneN)in + 2 = 8)
Ejemplo 4-2: La negacion del enunciado «Existe un planeta habitabler es el enunciado «Todos los planstas
son inhabitables». En otras palabras. si P es el conjunto de los planetas, entonces

~(3x & P)(x es habitable) = (Vx & P)(x no es habitable)

Observacion 15-2: Aqui el significado de ~p(x) es obvio, pues es la funcion logica que se obtiene es-
cribiendo «No es verdad que .. .» antes de p(x). Notese que el conjunto de va-
lidez de ~ pix) es el coniplemento del conjunto de validez de p(x), porque

st pla) es verdadero. entonces ~ p(a) es falso

y viceversa. S1 antes ~ era una operacion de enunciados, ahora es una operacion
de funciones logicas.

Teniendo en cuenta ademas que p(x} ~ g(x)selee «p(x)y glx)» yque p{x) v glx)
s¢ lee «p(x) o gl{x)», se puede demostrar que las mismas leyes de las proposiciones
valen para las funciones logicas, por ejemplo ~(p(x) A g(x)) = ~p(x) v ~g(x).

CONTRAEJEMPLO

Por el Teorema 13-1, ~Vx, p(x) = 3x~ p(x). Por tanto, para demostrar que un enunciado Vx, plx)
es falso, da lo mismo demostrar que 3x~ p(x) es verdadero, esto es, que existe un elemento x, tal que
plxy) es falso. Un elemento x, semejante se dice un contraejemplo del enunciado Yx, p(x).

Ejemplo 5-1: Sea el enunciado Vx, | x | # 0. El enunciado es falso porque el nimero 0 es un contragjemplo,
es decr, [0| + 0 no es verdadero.

Ejemplo 5-2: Sca el enunciado Vo, x* > x. Estc enunciado no es verdadero, ya que, por ejemplo, § ¢s un con-

traejemplo. es decir, 32 3 1.

NOTACION
Sea 4 = {2, 3, 5] y sea p(x) «x es un numero primo». Entonces la proposicion

«Dos es un numero primo y tres es un ndmero primo y ¢inco s un ndmero primo» (1)
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se puede denotar por
p2) A p(@) ~p(B) = a . ,P(a)
Andlogamente, la proposicion

«Dos es un numero primo o tres es un nimero primo o cinco es un numero primo» (2)
se puede denotar por

p2)vp@)ve(B) = v,,,p)

Pero (1) es equivalente al enunciado
«Todo numero de 4 es primo» ()
¥ (2) es equivalente al enunciado
«Al menos un nimero de A es primo»
M aeaPl@) = ¥ . p(a)
va:atp(a) 33;,&?(“}

asi que los simbolos A y v se usan 4 veces en vezde V y 3.

De otra manera,

Observacién 15-3: Si A fuera un conjunto infinito, un enunciado de la forma (/) no seria factible
porque nunca terminaria: pero en cambio siempre se puede hacer un enunciado
de la forma (3) aun cuando A es infinito.

FUNCIONES LOGICAS QUE CONTIENEN MAS DE UNA VARIABLE

Dados los conjuntos A4,, 4,, ..., A,, se llama funcién légica (de n variables) sobre A x A; x
. X_A, una expresion denotada por
Plxgce X,)
tal que pla,, ..., a,) es verdadera o falsa para todo n-tuple ordenado (a,, ..., a,)¢ (4, x 4, x
X AL

Ejemplo 6-1: Sea M el conjunto de hombres y H” el de mujeres. Entonces «x esta casado con »» es una fun-
cion ldgica sobre M x W

Ejemplo 6-2: Sea N el conjunto de los nimeros naturales. Entonces «x + 2y + 3z < 18» es una funcién
logica sobre N x N x N.

Principio fundamental: Una funcién ldgica precedida de cuantificadores para cada variable, por

gjemplo.
i Vz3iyp(z,y) o IrV¥zVyp(x,y.z2)

es un enunciado y tiene un valor de verdad.
Ejemplo 6-3: Sea M = {Ennique, Marcos. Pablo}, sea W = {Carmen, Aura} y sea plx. ¥} «x es el hermano
de y». Entonces
VeeM[3ye W plz,y)] = VzeMIyeW plz,v)
significa «Para todo x de M existe un 3 de W tal que x es el hermano de »». En otras palabras,
todo elemento de M es el hermano o bien de Carmen. o bien de Aura.
Ejemplo 64: Scan M. W y p(x. v) como en el Ejemplo 6-3. Entonces

Jye W VzeM plz,y)
afirma que al menos una de las mujeres de W es la hermana de todos los hombres de M. Asi. pues.
un orden diferente de los cuantificadores da lugar a una proposicion diferente.

La negacidn de una proposicién que contiene cuantificadores puede averiguarse como sigue.
~Yz[3yp(x,y)] = Iz~[Fyp(e,y)] = Iz Vy~plz,y)
Ejemplo 6-5: Sean M. W y p(x. v) como en ¢l Ejemplo 6-3. Enlonces
~VzeM3IyeW plz,y) = JzeM vV yeW ~plz,v)

En otras palabras. el enunciado «Es falso que todo hombre es el hermano de al menos unz ==
jer» es equivalente a «Al menos uno de los hombres no es el hermano de ningunz muEss
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Problemas resueltos

1. Si p(x) denota el enunciado «x'+ 2 > 5», establecer si p(x) es o no una funcién logica sobre cada
uno de los siguientes conjuntos: (1) N, el conjunto de los nimeros naturales; (2) M = {—1, —2,
~3,...}; (3) C, el conjunto de los niimeros complejos.

Solucién:

(1) 8i. (2) Aunque p(x) es falso para todo elemento de M, p(x) es de todos modos una funcién légica sobre
M. (3) No. Notese que 2/ + 2 > 5 no tiene ningin sentido. Es decir, entre nimeros complejos no est4 definida
la desigualdad.

2. Determinar el valor de verdad de cada uno de los siguientes enunciados. (Aqui el conjunto univer-
sal es el de los numeros reales.)

(1) Ve, |z|=2 - @)V, z+1>2 / (5)3z, |z =0
(2) 3z, 22=2x - 43z, z+2=2

Solucién: DN b=

(1) Falso. Notese que si x; = —3. entonces |xo| # xo-

(2) Verdadero. Porque si x, = 1. entonces x3 = x,. =

(3) Verdadero. Porque todo nimero real es solucién de x + | > x. =y

(4) Falso, No existe solucién para x + 2 = x.
(5) Verdadero. Porque si x, = 0, entonces |xo| = 0.

3. Negar los enunciados del Problema 2.
Solucién: _
(1) ~Vz,|2j=2z = 3z ~(lz/=2) = e, |2| %=
(8) ~dz,2*=2 = Vz~(z"=2) = Va,z'%z
@ ~¥vz,z+1>z = Jr~(z+1>z) = Jz,2+1=¢x
4) ~3z,z+2=2z = Ve ~(z+2=2) = Vo o+2+z
(6) ~3z,|z[|=0 = Vz ~(z]|=0) = Ve, |z| %0

4. Dado 4 = {1, 2, 3, 4, 5}, hallar el valor de verdad de los siguientes enunciados.

(1) Gzed)z+3=10)= (3) (IzcA)z+3<5)
(2) (V:ceA)(:t‘.+3<10) (4) (Vxed)(z+3=T7)
Solucién:
{1} Falso. Ningiin nimero de 4 es solucién de x + 3 = 10.
(2) Verdadero. Todo niimero de A satisface a x + 3 < 10.
(3) Verdadero. Pues si x, =1, entonces x, + 3 < 5, 0 sea que 1 es una solucion.
(4) Falso. Porque si x, = 5, entonces x, + 3 £ 7. En otras palabras, 5 no es solucién de la condicién dada.

§. Negar los enunciados del Problema 4.

Solncién:
(1) ~(3zed)(z+3=10)
(2) ~(Vzed)(z+3<10)
(3) ~(3zeA)(z+3<5)
(4) ~(Vzed)Xz+3=T1

(Vzed) ~(z+ 3 = 10)
(dzed) ~(x+8 < 10)
(Vzed) ~(z+8 < B)
(Ized) ~(x+3=17)

(VzeA)(z+ 8+ 10)
(dzed)(z+8 = 10)
(VzeA)(z+3=5)
(IzeA)z+8>17)
6. Negar los enunciados: (1} ¥Vx p(x) A 3y q(y), 2) 3xp(x) v Vyg(x).

Solucién:

(1) Notese que ~(p A q) = ~p v ~q; entonces

~(Yzp(z) n Jya)) = ~Vzpl) v ~Iyq(y)
(2} Notese que ~(pv q) = ~p A ~g; enlonces

~(3zpx) v Yyqly)) = ~3zp(x) A ~Vyoly) = V& ~p(x) A Iy ~qly)

momomom

mow o mow

3z ~p(z) v Vy ~q(w)
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7. Negar los siguientes enunciados.

(1) Si hay un motin, alguien es muerto.
(2} Es de dia y todo el mundo se ha levantado.

Solucidn:

(1) Néotese que ~(p —g) =p A ~g. Por tanto:
«Es falso que es de dia y todo el mundo estd levantado»
= «No es de dia o es falso que todo el mundo estd levantadon

= «Hay un motin y todos cstan vivos»

(2) Notese que ~(p A q) = ~p v ~gq. Por tanto:
«Es falso que es de dia y todo mundo estid levantado»
= «No es de dia o es falso que todo mundo esta levantado»
= «Es de noche o alguien no esta levantado»

8. Hallar un contraejemplo para cada uno de los enunciados siguientes. Aqui B = {2,3, ..., 8.9].
(1) VeeB, z+5 <12 (3) VzeB,22>1
(2) Vxe B, zesprimo (4) VzeB, x es par
Solucion:

(1) Six,=7 8009, entonces xo + 5 < 12 no es verdadero; y cualquicra de los 7, 8 6 9 es un contracjemplo.
(2) Como 4 no es primo, 4 es un contragjemplo.

{3) El enunciado es verdadero; asi que no hay contragjemplo.

{4) Siendo 3 impar, 3 es un contragjemplo.

9. Sea {1, 2, 3} el conjunto universal. Averiguar el valor de verdad de los enunciados si-

10.

guientes.
(L) 3z vy, x*<y+1 (4) 3z ¥y Iz, 22 +97 < 222
(2) Vziy, *+y* <12 (5) 3z 3y Vz, x? +y* < 222
(8) VaVuy, 2 +y2 <12
Solucidn:

(1) Verdadero. Porque si x = 1, entonces 1 < v + 1 tiene como soluciones los nimeros 1, 2 y 3.

{2) Verdadero. Pues para cada x,, sea y = 1: entonces xj + 1 < 12 es un enunciado verdadero.

(3) Falso. Porque si x, = 2 e y, = 3, entonces x} + y§ < 12 que no es enunciade verdadero.

{4) Verdadero. Puessix, = 1yz, = 3,entonces el conjunto de validez de x} + y3 < .2z§, estoes, 1 + )7 < 18
es el conjunto universal {1, 2, 3}.

(5) Falso. Pues si z5 = 1, entonces x* + »* < 2x{ carece de solucion.

Sea A = {1, 2, ..., 9, 10}. Considerando los siguientes enunciados formales, decir del que es

enunciado, si es verdadero o falso; y para el que sea una funcién logica determinar el conjunto
de validez.

(1) (VeeAd)dyed) 2 (z+y <14) (8) (VzeA)(VyeAdA)(z+y <14)
(2) (Vyed)z+y <14) (4) Qued)(z+y <14)

Solucion:

{1} El enunciado formal en dos variables esta precedido de dos cuantificadores; es, pues, un enunciado, que,
ademas, es verdadero.

{2) El enunciado formal esta precedido por un cuantificador; asi que es una funcién logica de la otra variable.
Notese que para todo y £ 4, xo + ¥ < 14 si, y solamente si, xo = 1, 2 6 3. Asi que el conjunto de validez
es {1, 2, 3},

(3) Es un enunciado y es falso. Porque si X, = 8 & y, = 9, entonces x, + yo < 14 no es verdadero.

{4) Es un enunciado formal en x. El conjunto de validez es 4 mismo.
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11. Negar los siguientes enunciados.

(1) 3z Yy, p(z,y) (4) Yoy (p(x) v a(¥))
(2)VzVy, p(=,v) (6) 3z Vy (p(x,u) = a(x, 7))
(8)3y32Ve pl=z,v.2) (6) 3y 3z (p(x) ~ ~q(¥)
Solucién:
(1) ~(IzVy, plx,y) = VzIy~plx,y)
@ ~(YzVy, plz,y) = 3Izdy ~plx,y)
3 ~3y Iz ¥z plx,y,2) = YyVziz-~plxy,2)
4 ~[(Yedyp@)vaw)] = JxVy~@pE)vay) = Iz Vy(~plz) A ~q)
(5) ~[IxVy (plx,y) = alz,¥)] = YVzdy~@ply)>qzy) = YVeiyiplz,y) A ~alz,y)
6) ~[Iy 3z (plx) ~n~qly)] = Yy¥a~@p) A~qy) = Yy ¥z (~px)v )
12. Dado el enunciado siguiente, que es la definicion de que la sucesion a,, a,, . .. tiene por limite
cero;

Ve>03na Y0 (>0 = [ <e)
Negar dicho enunciado.

Solucidn:

~Ve>03n Vo (n>n = la. <e) Je>0¥m In ~(n>ne > |aa <e)
Je>0¥m An (n>ne A ""(lf.‘.'..| 4:))

Je>0¥Yn In n>m A |a. =)

womom

Problemas propuestos

13. Determinar el valor de verdad de los siguientes enunciados. (Aqui el conjunto universal es el de los nime-

ros reales.)
(1) V=, z2*==x 4) Vr,e—3<z
(2) 3z, 22 =2 (5) 3z, 2*—2x+5=0
(8) 3z, 2*+3x—2=10 (6) V z, 22+ 8z = bz

14. Negar los enunciados del Problema 13.

15. Sea {1, 2, 3, 4} el conjunto universal. Determinar el valor de verdad de cada enunciado:
(1) Vz, z+3<6 (3 Yz, 2*—10=38g
2) 3z, 2+83<6 (4) 3z, 22*+2 =15

16. Negar los enunciados del Problema 15.

17. Negar los enunciados: (1) Vz p(z) A 3z g(z), (2) Iy ply) = Yz ~a(z), (3) Ix ~plx) v Yz qlz).

18. Negar los siguientes enunciados.

(1) Si el maestro estd ausente, algunos estudiantes no terminan su tarea.
(2) Todos los estudiantes terminaron su tarea y el maestro estd presente.
(3) Algunos estudiantes no terminaron su tarea o el maestro esti ausente.

19. Dar un contragjemplo para cada enunciado falso, Aqui es {3, 5, 7, 9} el conjunto universal.

(1) Vo, 2+32=17 (3) V=, «esprimo
(8) ¥ =, es impar 4) Va, || ==
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20. Negar los enunciados del Problema 19.

21. Sea {1, 2, 3} el conjunto universal. Determinar el valor de verdad de cada enunciado:

()Y &2 Vy, 2242y <10 By Vaedy, «*+2y <10
(2) 3z Yy, 22+ 2y < 10 (4) 1z 3y, =2+ 2y < 10

22. Negar los enunciados del Problema 21.

23. Negar los siguientes enunciados:

(1) Yz3y Yz ple,v,2) (8) Yz 3y (plx,w) = glu))
2 3= Yy (p(x) v ~qly) (4) 3z 3y (p(z) A qly))

24, Sea {1, 2, 3, 4, 5} el conjunto universal. Hallar el conjunto de validez de las siguientes funciones logicas.

(1) 3=, 2x+y<T (3) Vux 22 +y <10
(2) Jy, Bx+y<T (4) Vy, 224+y <10

Respuestas a los problemas propuestos

13 2V, (5 F

4. (1) 3z, 8%z (4 Jz,z2~8=z (B)Va a'—2u+5%0
15. (1) F, (3)V

6. (2) Ve, 2+3=6 (8) 32, 2'—10>8

1. (2) Jyply) A Jxglx) (3) Vzpl@) A Iz ~qlx)

18. (1) El maestro esta ausente y todos los estudiantes terminaron sus tareas.
(2) Algunos estudiantes no terminaron su tarea o el maestro esti ausente.
(3) Todos los estudiantes terminaron su larea y el maestro estd presente.

19. (1)8, (8)9

2., (1) 3z, 2+3 <7 (8) 3z, z noes primo
(2) 3z, x es par 4) 3z, |2| *=

2. 2V, (B)F
23. (2) Ve dy (~p(z) nqly) (8)3 = Yy (plz, ) A ~ql)

4. (1) {1,234}, @ L2, @6 0 @& {1,2



Capitulo 16

Algebra booliana

DEFINICION

Se ha visto que los conjuntos y las proposiciones poseen propiedades analogas, es decir, que cum-
plen lcyes idénticas. Son estas leyes las que se emplean para definir una estructura matemética abstracta
llamada algebra booliana, por el nombre del matematico George Boole (1813-1864),

Definicién 16-1: Un ilgebra booliana es un conjunto B de elementos a, b, . . . dotado de dos ope-
raciones binarias llamadas swma y producto, que se denotan respectivamente por
+ y = tal que:

B,. Ley de clausura: Para cualesquiera a, be B, la suma a + b y el producto
a * b existen y son ¢lementos Unicos de B.

3,. Ley conmutativa:
(la) a+b = b+a (10) a*b = b=*a
B,. Ley asociativa:
(2a) (a+b)+c =a+(b+e) (2b) (a*b)xc = ax(bxec)
B;. Ley distributiva:
(Ba) a+(b*c)=(a+b)+(a+c) (3b) a*(b+c) = (a=b)+(axc)

B,. Elementos neutros: FExisten un neutro aditivo 0 y un neutro multiplicativo
U tales que, para todo a € B,

(da) a +0 = @ (4b) ax U = a

B;. Complemento: Para todo ae B existe un @' ¢ B llamado complemenro de a,
tal que
(5a) a+a = U (Bb) axa’ = 0

Observacién 16-1: Notese que, por definicién, una operacién binaria cumple la ley de clausura; no
era, pues, necesario establecer explicitamente el axioma B,.

Ejemplo 1-1: Sea B = {1, 0} y sean las dos operaciones + y * definidas como sigue:

+ I 1 ] 0 * | 1 ! 0
1 1 1 1 1 0
0 1 0 0 0 0

Entonces B, o mas precisamente, la terna (B, 4, *) es un algebra booliana.

Ejemplo 1-2: Sea &/ una familia de conjuntos cerrada respecto de las operaciones de union, interseccién ¥
complemento. Entonces («/, \J, M) es un dlgebra booliana. Nétese que el conjunto universal
es aqui el elemento umdad y que el conjunto vacio ¢ es el elemento cero.

Ejemplo 1-3: Sea @ el conjunto de las proposiciones generadas por las variables 2.4, ...Entonces (&, v, A)
es un algebra booliana.

216
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Observacién 16-2: Como conjuntos y proposiciones son ejemplos cldsicos de 4lgebras boolianas,
muchos textos denotan las operaciones de un élgebra booliana por v y A o
por Uy N.

DUALIDAD EN UN ALGEBRA BOOLIANA

Por definicién, el dual de un enunciado en un algebra booliana (B, +, *) es el enunciado que re-
sulta intercambiando + y = y los elementos neutros U y 0 en el enunciado original; por ejemplo, el
dual de

(U+a)=(b+0)
(02a)+(b+ )

Nétese que el dual de cada axioma de un dlgebra booliana es también un axioma. Asi, pues, es valido
el principio de dualidad:

_ b
€5

Teorema (principio de dualidad): EIl dual de un teorema en un dlgebra booliana es también un
: teorema.

O sea que, si un enunciado es una consecuencia de los axiomas de un dlgebra booliana, entonces
el dual es también una consecuencia de aquellos axiomas, porque ¢l enunciado dual se puede demos-
trar mediante el dual, en cada paso, de la demostracién del enunciado primitivo.

TEOREMAS FUNDAMENTALES

Si bien los cinco axiomas B,-B, no abarcan todas las propiedades de los ¢conjuntos y de las pro-
posiciones enumeradas en las paginas 104 y 195, las otras propiedades son una consecuencia directa
de los axiomas B;-B;, a saber,

Teorema 16-1-1 (ley de idempotencia): (i) a+a=a (ii) ara=a

Teorema 16-1-2: () a+ U=U (ii) a=0=10

Teorema 16-1-3 (ley de involucién): (g') = a

Teorema 16-14: (i) U'=0 () 0'=U

Teorema 16-1-5 (ley de De Morgan): (i) (a +b) =a'sb’ (i) (axbh) =a + &

ORDEN EN UN ALGEBRA BOOLIANA
Considérese el teorema siguiente:
Teorema 16-2: Sea a, be B un ilgebra booliana. Entonces las siguientes condiciones son equiva-
lentes:
(1) a*b =0, 2 a+b=b, B a+b=U, (4 e*rb=¢a
Véase el Problema 9 para la demostracion.
En vista del teorema anterior, se introduce la definicion que sigue:
Definicion 16-2: Sea a, b ¢ B un algebra booliana. Se dice entonces que a es anterior a b, denotado
axb

si es vdlida una de las propiedades del Teorema 16-2.

Ejemplo 2-1: Considerando un dlgebra booliana de conjuntos (s, \J, M),

entonces 4 es anterior a B significa que 4 C B. Es decir,
¢l Teorema 16-2 afirma que si A es un subconjunto de B,
como se ilustra en el diagrama de Venn adjunto, entonces B

se verifica que:

(1) AnB'=0 (3) A'UB = U A es un subconjunio de 8
2) AUB =B 4) AnB = A
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Ejemplo 2-2: Considérese un dlgebra booliana de proposiciones (#, v, A ). Entonces p es anterior a g sig-
nifica que p implica Idgicamente a ¢, es decir, que p = g.

Teorema 16-3: La relacién definida en un dlgebra booliana por a < # es una relacién de orden par-
cial en B, es decir,
f1) a =< a para todo ac B (Ley reflexiva)
(2) a=xbyb=aimplican a =5 (Ley antisimétrica)
(3) a=<byb=5c implican a < ¢ (Ley transitiva)
Si no se dice otra cosa, se supone que un 4lgebra booliana estd ordenada parcialmente por la an-
terior definicion.
La relacion entre las propiedades del orden parcial en un 4lgebra booliana B y las operaciones de
8 se dan en el siguiente teorema.

Teorema 16-4: Sea a, be B un algebra booliana. Entonces
i) a+ b=supia b} (ify a»b =inf{a, b}

Observacién 16-3: Un conjunto parcialmente ordenado A4 tal que para cualesquiera elementos a,
be 4 existen inf {a, b} y sup {a, b}, se llama reticulo. Asi, pues, un algebra boolia-
na es un tipo especial de reticulo.

DISENOS DE CIRCUITOS CONMUTADORES

Sean 4, B sendos interruptores eléctricos y sean 4 y A’ interruptores tales que cuando el uno esta
abierto el otro esta cerrado, y viceversa. Dos interruptores, 4 y B, por ejemplo, se pueden conectar por
un alambre en serie o en paralelo, como se muestra en seguida:

—(D—F)— .
Conexion en serie. 4 A B Conexion en paralelo, 4 v B
Sean ArB y AvB

la indicacién de que 4 y B estan en seric y de que A4 y B estdn en paralelo, respectivamente.

Un circuito conmutador booliano es un dispositivo de alambres e interruptores que se puede
construir mediante combinaciones en serie y en paralelo; por tanto, se le puede describir con las co-
mectivas A y V.

Ejemplo 3-1:

'—
—(c)—

(1: A A(BvA) (2): (AAB)v[(A'vC)AB

Ei circuito (1) se puede deseribir por A A (B v A’) y el circuito (2) por {4 A B) v [{4" v C') A B]

Indiquese ahora por 1y0

respectivamente, que un interruptor o circuito estd cerrado o abierto. Las dos tablas siguientes des-
criben el funcionamiento de un circuito en serie 4 A B y de uno en paralelo 4 v B,
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A!BlAAB A‘B'AVB
1|1 1 1|1 1
1] o 0 1] o0 1
0o | 1 0 0o | 1 1
) 0 o | o 0

La tabla siguiente muestra la relacidn entre un interruptor 4 y un interruptor 4’

A A’
1 0
0 1

Notese que las tres tablas anteriores son idénticas a las tablas de conjuncion, disyuncidn y nega-
cidn de enunciados (y proposiciones). La unica diferencia es que aqui se emplea 1 y 0 en lugar de V
y F. Asi, pues.

Teorema 16-5: El dlgebra de un circuito conmutador booliano es un algebra booliana.
Para averiguar el funcionamiento de un circuito conmutador booliano se construye una tabla se-

mejante a las tablas de verdad para las proposiciones.

Ejemplo 3-2: Sea ¢l circuito (1) del Ejemplo 3-1. ;Como funciona el circuito. es decir, cuando estd el eircui-
ta cerrado (o sea, cudndo pasara la corriente) ¥ cudando estd abierto? Se construye una tabla de
wverdade para 4 A (B v A7) asi:

A ‘ B | A Bvﬁ'lAA(BvA')
1 l 1 0 ‘ 1 [ 1
1|0 0 o | 0
0| 1 1 1 0
0 ’ 0 1 1 0

La corriente pasard, pues, solamente si estan cerrados 4 y B.

Ejempio 3-3: El fluncionamiento del circuito (2) del Ejemplo 3-1 se indica en la siguiente tabla de verdad para
{4 A B)v (4 v Cha B]:

S
W
15}
N
>
8
<
<
g
>
&

[(a

=T T T R T
= - -
(=T R - e T~
[ R o R — T = R — R )

Mo @ ©o o H = o o
Hl= =~ o o = = o o
-0 = =T R R e S = S )
T I R — R R )
Hlo R o R o - o =
Wl o o = H o o o R
S o S O e

—

HlS © @ @ H = o= -

Paso

Observacién 16-4: Toda combinacién de interruptores mediante las conectivas A y v, tal como
(A n B') v [(4' v C) A B], se llamara también polinomio booliano.
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Problemas resueltos

TEOREMAS FUNDAMENTALES
1. Demostrar el Teorema 16-1-1 (ley de idempotencia): (i)a + a = a, (li)a*a = a.

Solucién:

(iiy  Proposicién Razén
(1) a=as*U (1) B,. Identidad
(2) = a*{a+a) (2) B.. Complemento
(3) = (a*a)+ (a*a) {3) B,. Ley distributiva
(4) =(a*a)+0 (4) Bs. Complemento
(5) = a*a {5) B,. Identidad

(i) Verdadero por el principie de duahidad.

2. Demostrar el Teorema 16-1-2: (i)a + U = U, (ii)a*0 = 0.

Solucion:
(i) Proposicién Razon
(1) U=ata (1) B, Complementc
2) a+U =a+(a+a) (2) Sustitucion
(3) = (a+a)+a (3) B,. Ley asociativa
(4) = g4 a (4) Teorema 16-1-1, ley de idempotencia
(5) AT 4 (5) Bs, Complemento

(if) Verdadero por el principio de dualidad.

3. Demostrar el Teorema 16-1-3 (ley de involucion): (@)’ = a;estoes,si(a)a + a’' = U, (b)a+ra’ =0,
(c)a'+a" =Uy (d) a*a"=0,esa=a".

Solucion:
Proposicion Razon

(1) e = a+0 (1} B4, Identidad
(2) = a+(a*a") {2) Hipdtesis (d)
3) = (e +a)*(ata”) (3] Bi. Ley distributiva
(4) = U=*(a+a") (4) Hipotesis (a)
{5) = (@’ +a"”)*(at+a) (5) Hipdtesis (¢)
{6} = (a” +a') % (a’ + a) (6) B,, Ley conmutativa
(M = a’+(a' *a) (7) B, Ley distributiva
(8) = g"+ (a=xa) (8) B,, Ley conmutativa
(9) = a”"+0 (9) Hipdtesis (&)

(10) =gt (10} B,, Identidad

4. Demostrar la unicidad de los elementos neutros, esto es, que
(@) Si 0; y 0, son elementos neutros aditivos, entonces 0, = 0,.
(b) Si I, e I, son elementos neutros multiplicativos, entonces I =1,

Solucidon;

(@) Proposicion Razén
(1 0. = 0.+ 0s (1) Hipotesis (0, es un neutro aditivo)
(2) = 0+ 0 (2) B;. Ley conmutativa
{3) = 0 (3) Hipdtesis (0, es un neutro aditivo)

{b) Principio de dualidad
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5. Demostrar el Teorema 16-1-4: Los elementos neutros son complementos €l uno del otro, esto es,

) U'=0 vy (i) 0’="U.

Solucion:

(i) Proposicion Razén
1 U =UsU (1) B, Identidad
{2) = U=l (2) B, Ley conmutativa
(3) =) {3) B,. Complemento

(ii} Principio de dualidad

6. Demostrar ¢l Teorema 16-1-5 (ley de De Morgan):
(i) ([@a+b) =a*+b, estoes, (a+b)*(@*b)=0 y (a+b)+ (@=b)="1U.
(ii) (a*bd) =a" + b, estoes. {(asb)=(a’+b)=0 y (e=b)+{(a’"+b)=1U.

Solucidn:

(i) Proposicién Razén
(1) (e+d)s(a’*b) = (a'#b)*(a+b) (1) B,. Ley conmutativa
(b4 = ({a’ * &)+ a) + ((a" * &) * ) (2) B, Ley distributiva
(3) = ((b'*a’) *a)+ ({a' = b') »b) {3) B,, Ley conmutativa
(4) = (0" (a *a)) + (a’ * (b’ » b)) (4) B,, Ley asociativa
(5) = (b'*(a*ra))+(a = (b=*b)) (5) B,. Ley conmutativa
(6) = (b'«0)+ (&' *=0) (6) B;, Complemento
()] =040 (7) Teorema 16-1-2
(8) =0 (8) Teorema 16-1-1
9 (a+bd)+(x*xb) = U (9) Pasos (1)

(ii) Principio de dualidad

7. Demostrar (unicidad de complemento): Si a; y a; son complementos de a, esto es, a + a; = U,
a+ay=U axa; =0yaxa; =0, entonces a; = as.

Solucidn:
Proposicién Razon
(1) @ = ai+0 (1) By, ldentidad
(2) = a+ (@ *a) (2) Hipotesis
(3) = (a\+ a) * (a) + o, (3) B;, Ley distributiva
4) = (e +a)) * (a, + a)) . {(4) B,, Ley conmutativa
(5) = U= (a+a) (5) Hipotesis
(6) = (g, +a)»U (6) B,. Ley conmutativa
(7 = a\+ g, (7) B, ldentidad
8 a) = a/+al (8) Pasos (1)
9 ¢/ +a, = a +a (9) By, Ley conmutativa
(10) ¢ = a (10) Sustitucion

8. Demostrar (ley absorcion): (i) a + (a*b) = a, (ii) a* (@ + b) = a.

Solucidn:

(i) Proposicidn Razon
(1) a+{axd) = (axU)+{a*bh) (1) B,, Identidad
(2) = g*(U+b) (2) B,, Ley distributiva
(3) =a*b+U) (3) B,, Ley conmutativa
(4) =as*sl (4) Teorema 16-1-2
(6) = a (3) B,, Identidad

(ii} Principio de dualidad
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ORDEN

9. Demostrar el Teorema 16-2: Las condiciones siguientes son equivalentes:

10.

11.

12,

13,

(1) axd' =0, (2 a+b=>b, (3) a’+b=U, (4 a*xb=g¢
Solucién:

{Solo la equivalencia de (1). (2) y (3) se demuestra aqui. Que (4) es equivalente a los otros enunciados, se
deja como ejercicio para ¢l lector.) La demostracién se efectita en tres ctapas:

(i) (1) implica (2), (ii) (2) implica (3), (i) (3) mmplica (1)

Demostracién de (i). a* b = 0 implica ¢ + b = b:
@+d) =(@+b)*U = (a+b)*(b+bd) = (b+a)=(b+b) = b+(asbd) = b+0 = b,
Aqui 4 significa que la hipotesis se utiliza en la etapa de la demostracion. Las otras etapas utilizan los axio-
mas o teoremas previos.
Demostracion de (i), a + » = b implica «' + b = U.
A +b 2t @tb) = (@ta)tb = (a+a)tb=Uth = U
Demostracion de (i), ¢’ + b = U implica a*b' = 0:
a + b= U implica (¢ + &) = U implica a” b’ = U implica g+ &' =

|
e

Demostrar el Teorema 16-3: Para cualesquiera a, b & B:
(Mae=Za.2)axbyb<aimplicana = b, (3)a < by b < ¢ implican a s
Solucién:
(1) Notese que ¢ X bssia+ b=

h.
{2) Notese que a <bssia+ b=5h
(3) Notese que e < hssia+h=5b

Luego ¢ + ¢ = ¢ implica a < a.
yhZassib+a=a Luegpau=b+a=a+ h=ph
y b= ¢ ssi b+ c=c Por tanto,

at+tc=a+b+c)=la+bl+e=b+c=c¢

Y en consecuencia. a =< .

Demostrar: Si @, b € B es un algebra booliana, entonces ¢ + b es un mayorante del conjunto {a, b},

Solucion:
Notese que a + (@ + ) = (@ + a) + b = a + b. Por tanto. por definicién. a < (@ + b). Analogamente,
h S (a+ b). Asi que @ + b es un mayorante de ‘a. bl

Demostrar el Teorema 16-4: Sea a. b £ B un algebra booliana. Entonces
(i) a + b = sup {a, b}, (i) a+b = inf{a, b}
Solucion:

(Aqui solo se demuestra (i). Se deja la demostracién de (if) como ejercicio para el lector.)

Segun el problema precedente. « + # es un mayorante de tu, b}. Para demostrar que a + b es el extremo
superior de a, by, esto es, sup |a, b}, solo hay que demostrar que si ¢ es también un mayorante de {a, b}, en-
tonces « + b es anterior a ¢. Es decir, que

axcyb=c implican fa + h)=<¢
Notese que a Scssiat+c=cy b=cssi b+ c=e Luego

@a+bl+c=a+(b+c)=a+rc=c¢, es decir. @+ b)=<e

Demostrar que el dual de a X b es b < a, es decir, que la relacién dual en un algebra booliana
8 induce la relacion inversa del orden parcial en B.

Solucion:

Notese que « S bssia’ + b= U Eldualde s’ + b= Uesa' =bh=0; luego b+a' = 0. Pero b < a ssi
bsa' = 0. Por consiguiente, el dual de a < b es h < aq.
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14. Demostrar: Los clementos neutros 0 y U son cotas universales, es decir, para todo ae B,
0=xXax U
Solucion:

Notese que 0 + @ = @ + 0 = a; por tanto, 0 < a. También ¢ < Ussia + U = U que es verdadero por
el Teorema 16-1-2. O sea que, 0 <a =< U.
CIRCUITOS CONMUTADORES

5. Determinar el polinomio booliano para cada uno de los circuitos que se dan:

<Ll 28 £

Circuito (1) Circuito (2) Circuito (3)
Solucion:
(1) AA(BvA)AC (2) [AA(CVEB)v(BAC) (3) {{AvBYAC]vA}AB
16. Construir un circuito para cada uno de los siguientes polinomios boolianos:

(1) (AAB)v[A"A(B'vAvB), (2) (AvB)ACA(A’'vEB v ()

Solucion: kA/ @
— @ —o
o1&
(&)
Circuito (1) Circuito (2)

(1) Obsérvese que el circuito en seric 4 A B estd en paralelo con A" A (B' v 4 v B) que es A’ en serie con
la combinacién paralela B v 4 v B.

(2) Nétese que el circuito paralelo 4 v B estd en serie con € y en serie con el circuito paralelo
A v B v C.

17. Construir un circuito equivalente mas simple que el del dia-
grama adyacente:

(D>—®

Solucién:

Primero se escribe un polinomio booliano que represente el
circuito:

®

(AAB)v(AAB)v (A" AB)

Luego sé simplifica: o 9

(AAB)v(AAB)v (A AR) [AA(BvB) v AB)

[A AUV (4" A B)

Av (A" A B

(Av A) A(4Av B) o
Un(Av B)

Av B

Oomomom

Asi, pues, la figura adyacente es un circuito equivalente. @
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18. Verificar la solucidn del Problema 17 por «tablas de verdad».

Solucion:

AlBla A~ B v 4 A BYy v @ A By a| B| BlavE
1 (111221 |lolofl1]o]ol]o 1 1 0 1

1 ol Lo @] el o) ke o |1 1 0 1 1

0o |1]o]o|1]o]o|lo|o]o]1]|]o]|o 0 1 0 0

o |lo]o|o|o|lo|o|o|1]1]|1]1]1 0 0 1 1
Paso 1 2 1 3 |1 2 1 4 1 2 1 I

Problemas propuestos

19  Demostrar el Teorema 16-1-1 (i): @ + a = a (sin emplear el principio de dualidad).

20. ©Demostrar el Teorema 16-1-2 (ii): a=0 = 0 (sin emplear el principio de dualidad).

21. Demostrar el Teorema 16-14 (ii): 0" = U (sin emplear el principio de dualidad).

Demostrar el Teorema 16-1-5 (ii): (@ * #)' = @' + b’ (sin emplear el principio de dualidad).

Demostrar la ley de absorcion (ii): a s (« + b} = a (sin emplear el principio de dualidad).

Terminar la demostracion del Teorema 16-2: a*b = g si, y solo si. a * b = 0. (Referirse al Problema 9.)

hRBE

Demostrar: a =< b si, y solo si, ' = a'.

26. Determinar el polinomio booliano para cada uno de los circuitos dados.

... . i S
® Lo—e]

Circuito (1) Circuito (3)
Circuito (2) Circuito (4)
27. Construir un circuito. para cada polinomio booliano:
(1) Av (BAC) (3) (AvB)A(Cv D) (6) (Av B)n[A’v (Cn B
(2) A~(BvCC) (4) (AAB)v (CaA D) (6) (A AB)vCla[Dv (A" B)

Respuestas a los problemas propuestos

2. 3) (AAB)vCv(A'AC), 4) [BAAVOIvIA AC)

N ‘ =
® —~—@= " @®

Circuito (5) Circuito (6)




Capitulo 17

Razonamiento logico

ARGUMENTOS

Un argumento es la afirmacién de que un conjunto dado de enunciados S, . .., S,, llamados pre-
misas, implica (tiene como consecuencia) otro enunciado S llamado la conciusién. Se denotara un ar-

gumento por Si, st bl Sn =S

Notese que un argumento es un enunciado y, por tanto, tiene un valor de verdad. Si es verdadero se
dice un argumento wvdlide; si es falso se dice que es una falacia.

Ejemplo 1-1: Sea el siguiente argumento:

S;: Algunos animales pueden razonar.
§,: El hombre es un animal.

S:*  El hombre puede razonar.

Aqui el enunciado S bajo la linea es la conclusién y los enunciados S, y S, sobre la linea, son
las premisas. Si bien cada enunciado es verdadero, se puede demostrar que el argumento S,
S, F § es una falacia.

Ejemplo 1-2: Sea el siguiente argumento:

§,: Los nifios son ildgicos.
S, No se desdefia a quien puede domar un cocodnilo.
S§5: Las gentes ilogicas son desdefiadas.

§: Los nifios no pueden domar cocodrilos.
{Este razonamiento se¢ ha adaptado de Symbolic Logic, de Lewis Carroll, el autor de Alice in
Wonderland.) El argumento S,, S,, S; = § es vilido.

Observaciéon 17-1: Obsérvese que el valor de verdad de un argumento .5, ..., S, S no depende
del valor de verdad particular de cada enunciado del argumento.

ARGUMENTOS Y DIAGRAMAS DE VENN

Muchos enunciados verbales se pueden traducir en enunciados equivalentes sobre conjuntos, los
cuales se pueden describir por diagramas de Venn. Por eso los diagramas de Venn se emplean a menu-
do para determinar la validez de un razonamiento o argumento.

Ejemplo 2-1: Sea el argumento del Ejemplo 1-2. Por S, el conjunto de nifios es un subconjunto del conjun-
to de las gentes ildgicas, es decir

genles ilagess

Por S, el conjunto de las gentes ilogicas estd contenido en el de las gentes desdefiadas, esto es,

gentes desdefadas

genles ildgicas

225
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Por 5, ¢l conjunto de las gentes desdefadas y el conjunto de gentes que pueden domar un co-
codrilo son disjuntos, es decir,

genies desdefadas

sentes gue pucden

genies thigicas

dumar
covodrilos

Nétese que el conjunto de nifios y el de gentes que pueden domar un cocodrilo son disjuntos.
O sea que «Los nifios no pueden domar cocodrilos» es una consecuencia de S 1S,y 5,5, estoes.

S1. 8. S35 F 8

€5 un argumento vilido.

ARGUMENTOS Y PROPOSICIONES

Un enunciado de que un conjunto de proposiciones Py, . .., P, da lugar a otra proposicion P, lo
que se denota por Pios i Bl

se dice un argumento sobre proposiciones, o simplemente un argumento.

Definicién 17-1: Un argumento sobre proposiciones P, ..., P, = P se dice vdlido si P es verdadero
siempre que Py, . .., P, son verdaderos, o lo que es lo mismo, si

PyoA o NPi=P

esto es, si
(PyA...AP)— P
€s una tautologia.

Por el principio de sustitucion, las variables en toda tautologia se pueden sustituir por proposi-
ciones. Por consiguiente,

Teorema 17-1: Si el argumento
Pi(p,q,...),...,Pﬂ[p,q....}}-—P(p,q,...]

es valido, entonces, para cualesquiera proposiciones P, Q’, ..., el argumento
Py (P,Q, . ..), ., P (P,Q. ... )PP, 0O, ...
es también vilido.

Ejemplo 3-1: El argumento p, p g + ¢ (Ley de desprendimiento) es valido. ‘ . | _—

En otras palabras, si p y p — g son verdaderos, entonces 4 €3 ver- 2

dadero. La demostracién de esta regla se sigue directamente de y | v v
la tabla de verdad adyacente de p — ¢. Nétese que p es verdadero

en los casos (filas) 1 y 2, y que p — g es verdadero en los casos 1, ¥ K ¥
3 y4 Luego p y p— g son verdaderos simultaneamente solo en F v v
el caso 1, donde g es verdadero. En olras palabras, PYyp—ygim- F F \%

plican g, es una proposicion vilida.

Ejeﬁ:plu 3-2: Elargumentop-—>g¢q,q—r P — r {Ley del silogismo) es vilido. Pues se demostré antes que
oglalg—r)=por

Luego, por la Definicion 17-1, el argumento es valido.

La relacién entre argumentos vilidos sobre proposiciones y argumentos vdlidos en general es la
siguiente:
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Principio fundamental sobre la argumentaciéon: Dados los argumentos sabre proposiciones

PLlpig, 5000 iy P,,(;J,(;,_,_}I—P[p_q,__l,)
si los enunciados pg. gg. ... se sustituyen a las varigbles p, ¢, , ... entonces
el argumento
Pylpo oo o e oo P, (pas o - - 3 Plpg, g0, - 2)

es valido si, y solamente si. el argumento dado sobre proposiciones es vilido.

Ejemplo 3-3: Sea el argumento,
S,: Si un hombre cs soltero, ¢s infeliz.
S;: S1 un hombre es infeliz, muere joven.
S§:  Los solteros mueren jovenes.
Sea p «El es solteron, sea ¢ «El es infelize y sea r «El muere joven». Entonces §,, §, +— §

se puecde escribir
pPagoy—=r b por

que es un argumenlo vilido sobre proposiciones (Ley del silogismo, Ejemplo 3-2). En conse-
cuencia, el argumento dado es valido.

ARGUMENTOS Y CUANTIFICADORES
Sea pix) una funcién légica sobre un conjunto 4. 51
' (VzeA) p(x)

es verdadero, entonces, en particular, p(x,) es también verdadero para un cierto elemento x; € 4. Ana-
logamente. si plx,) es verdadero para un elemento dado x; € 4, entonces el enunciado cuantificado

(3xzeA) p(z)
es también verdadero. Es deair,
Principioc fundamental sobre argumentos y cuantificadores: Sea p(x) una funcién légica sobre un con-
junto 4. Entonces cada uno de los argumentos siguientes es valido:
(VzeA)p(z), Zoe A ~ p(xo)
Toe A, p(xo) ~ (IzeA) p(x)
Ejemplo 4-1: Sca el argumento clasico:
5;: Todo hombre es mortal.
S,: Socrates es hombre.

S§:  Socrales es mortal.
Sea M el conjunto de los hombres. sea p{x) «x es mortal» y sed x, ¢l elemento Séerates. Enton-
ces el argumento anterior se puede escribir en la forma

Si (YzeM) plx)
Sy zoe M

Por tanto. por el principio fundamental, el argumento es vilido.

ENUNCIADOS CONDICIONALES Y VARIACIONES

Sea la proposicion condicional p — gy otras proposiciones condicionales simpl;s_que contengan
pyq.estoes, g —p, ~p -+ ~qy ~q - ~p, que s llaman, respectivamente, proposiciones reciproca,
contraria y contrarreciproca. Las tablas de verdad de estas cuatro proposiciones son como sigue:

Condicional Reciproca Conlraria Contrarreciprocu
p q Pp=*q q*p =P g il et ]
v A Y v v %
vV | F F v v | F
F v ¥ ¥ F v
F | F S ¥ v ’ v



228 RAZONAMIENTO LOGICO [CAP. 17

Obsérvese primero en esta tabla que un enunciado condicional y su reciproco o su contrario no
son, logicamente, equivalentes. El teorema siguiente, sin embargo, es una consecuencia de la tabla de
verdad anterior.

Teorema 17-2: Un enunciado condicional p — ¢ y su contrarreciproco ~g — ~p son |égicamente
equivalentes.
Ejemplo 5-1: Sean los enunciados siguientes sobre un tridngulo 4.
p—q: Si A es equildtero, A es isosceles.
g—p: Si A es isésceles, A es equildtero.
Notese que p — g es verdadero, pero g — p es falso.
Ejemplo 5-2: Demostrar: (p— g). Si x? es impar, x es par.
Demuéstrese que la contrarreciproca ~g — ~g, es decir, «Si x es par entonces x2 es par» es
verdadera. Sea x par; entonces x = 2n donde n € &, los ntimeros naturales. Por tanto, x? = (2n)
(2n) = 2(2n?) es también par. Como la contrarreciproca ~g — ~p es verdadera, el enunciado
condicional dado p — g es también verdadero.
Observacién 17-2: En general, la reciproca, contraria y contrarreciproca de una proposicion P(p,
g, -..) = 0(p, g. ...) son respectivamente Q + P, ~P = ~Q y ~(Q — ~P.
Ademas, por el Teorema 17-2 y por el principio de sustitucién

Plp,g....)=0Qp.q,...)= ~Q(p.q,..)— ~P(p,q,...)

Problemas resueltos
ARGUMENTOS Y DIAGRAMAS DE VENN

1. Demuéstrese que los argumentos siguientes no son validos construyendo un diagrama de Venn
en el que las premisas sean validas pero la conclusién no.

(1) Algunos estudiantes son perezosos. (2) Todos los estudiantes son perezosos.
Todos los varones son perezosos. Nadie que sea rico es estudiante,
Algunos estudiantes son varones. Los perezosos no son ricos.

Solucion:

(1} Sea el siguiente diagrama de Venn:

perezosns

Notese que ambas premisas son validas, pero que la conclusién no lo es,

Es posible construir un diagrama de Venn en que las premisas y la conclusidn sean validas, tal como

L,

Para ser valido un argumento, la conclusidn debe ser siempre verdadera cuando lo sean las. premisas. Como
¢l primer diagrama da un caso en que la conclusion no es verdadera, aun siendo verdaderas las premisas ¢l
argumento no es vilido.

(2) Sea el diagrama de Venn siguiente:

PEIvsos0s

Obsérvese que las premisas son vilidas pero que la conclusién no lo es; asi, pues, el argumento no es valido.



CAP, 17]

RAZONAMIENTO LOGICO 109

2. Para cada conjunto de premisas hallar una conclusion tal que el argumento sea valido y 1al que
cada premisa sed necesaria para la conclusion.

(1) §,: Ningun estudiante es perezoso. (2) §;: Todos los abogados son ricos.
Sy: Juan es un artista. 5,1 Los poetas son caprichosos,
S,: Todos los artistas son perezosos. Sy Murcos es abogada.
S.: Ningtn caprichoso es rico.
BE o omes om o e S:
Solucidn:

(1)

(2

Par S, ¢l conjunto de los artistas es un subconjunto del conjunto de los perezosos. Por 5. el conjunto de
los perezosos y el de los estudiantes scn disjuntos. Entonces

Por S,. Juan pertenece al conjunto de los artistas: luego la conclusion correcta. como lo indica el diagra-
ma de Venn, es «Juan no es cstudiante».

Por §,, el conjunto de los abogados es un subconjunto del conjunto de los ricos. Por Sy, el conjunto de los
ricos y el de los caprichosos son disjuntos. Asi, pues,

Por S,. €l conjunto de los poetas es un subconjunto del conjunto de los caprichosos, es decir,

citprichomis

Por §,, Marcos ¢s un abogado, luego la conclusidn correcta, por el diagrama de Venn, es «Marcos no es pocta»

ARGUMENTOS Y PROPOSICIONES

3.

Determinar la validez de los argumentos siguientes:

(LYo Giepi=rg (2) peqag - p
Solucion:

Construrr las tablas de verdad.

o | e e e e e p | ¢ | neg
Vv Vv v W Vv F P V A F v vV vV Vv
\' F v F F F F v A Y F Vv F F

F v F v A v v F F F V F v F

F F F v F vV \ F V Vv F F F v

Paso 1 2 1 3 2 1 4 2 1
(1) (2)

(1)
(2)

Como [(p— ¢) A ~p] = ~¢ no es una tautologia, p — g, ~p + ~q es una falacia.

Notese que p s g es verdadero en los casos (filas) 1 y 4, y que ¢ es verdadero en los casos 1 y 3. luego
p++q y g son verdaderos simultdneamente solo en el caso I en que p es tambien verdadero. En consecuen-
cia, p+>¢, g = p es un argumento valido.

Demostrar que el siguiente argumento es vélido:

P o~g f o g re ~p

Es decir, que si p — ~gq, r — ¢ y r son verdaderos, entonces ~p cs verdadero

Solucion:
Método 1: Constriyanse las tablas de verdad siguientes:
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p q r p—~q rq B
1 v v A F v F
2 v T F F v F
3 v F v A% F g
4 v F F Vv A F
5 F V \ v \Y v
6 F AY F ¥ v v
7 F F v v F v
8 F F F vV \' v

Notese que p — ~g, r = ~g y r son verdaderos simultidneamente solo en el caso (fila) 5 en que ~p es también
verdadero; luego el argumento dado es vilido.

Mérodo 2. Construyendo una tabla de verdad para la proposicion

[p—~a)Alr—=g) Ar]l— ~p

se encuentra que es una tautologia; con lo que el argumento es vilido.

Método 3. Propesicién Razdn

(1) p— ~g es cierta. (1) Dada

(2) r— g es cierta. (2) Dada

{3) ~g— ~r es cierta. (3) Contrarreciproca de (2)

(4) p -+ ~r es cierta. (4) Ley del silogismo, empleando (1} y (2)

(5} r— ~p es cierta. (5) Contrarreciproca de (4)

(6) r es cierta, (6) Dada

(7) .. ~p es cierta. (7) Ley de desprendimiento, empleando (5) y (6)

Averiguar la validez de los siguientes argumentos.

(1) Si llueve, Enrique enfermara. (2) Si llueve, Enrique enfermars.
No llovid. Enrigue no enfermo.
Enrique no enfermé. _N_o o

Solucidn:

{1

2)

Sea p «Llueven y sea ¢ «Enrique estd enfermo». Entonces el argumento dado se puede escribir p — g,
~p = ~g lo cual, segin el Problema 3. es una falacia. Asi que el argumento dado es una falacia.

Sea p «Lluever y sea g «Enrique esta enfermon. Entonces el argumento dado se puede escribir p — g, ~¢ — ~p,
lo que, mediante una tabla de verdad, se puede demostrar que es vilido. El argumento dado es, pues, valido.

RECIPROCA Y VARIACIONES

6.

Hallar y simplificar: (1) Contrarreciproca de la contrarreciproca de p — g. (2) Contrarreciproca
de la reciproca de p — ¢. (3) Contrarreciproca de la contraria de p — ¢.
Solucién:

(n

(2)
3)

La contrarreciproca de p — g es ~g — ~ p. La contrarreciproca de ~g — ~pes ~~p = ~~q = p — g,
que es la proposicion condicional original.

La reciproca de p — ¢ es g — p. La contrarreciproca de ¢ — p es ~p — ~g, que es la contraria de p — g.
La contraria de p —+ g es ~g — ~p. La contrarreciproca de ~p — ~ges ~~g— ~~p = g — p que es
la reciproca de p — gq.

Averiguar la contrarreciproca de cada proposicion.

(1) Si Juan es poeta, entonces s pobre.

(2) Solo si Marcos estudia, pasara el examen.

(3) Es preciso que nieve para que Enrique esquie.

(4) Si x es menor que cero, entonces x no es positivo.
Solucién:

(1) Nétese que la contrarreciproca de p — ges ~g — ~p. Por tanto, la contrarreciproca de la proposicién dada

es «5i Juan no es pobre, entonces no es poeta».
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(2) La proposicion dada es equivalente a «Si Marcos pasa el cxamen, entonces ha estudiado». Por tanto. la con-
trarreciproca de la proposicion dada es «Si Marcos no estudia. entonces no pasara el examen».

{3) La proposicion dada es equivalente a la proposicion «Si Enrique esquia. entonces ha nevadow. Luego la
contrarreciproca es «Si no ha nevado, entonces Enrique no esquiard».

(4) Notese que la contrarreciproca de p — ~g es ~~¢ — ~p = g — ~p. Luego fa contrarreciproca de la
proposicion dada es «8i x es positivo. entonces x no €s MENOT que ceron.

Problemas propuestos
8. Determinar la validez de los argumentos siguientes:
(1) pogr=>~g - r>~p 2) p=~q, ~r>~¢ - p> -7
9. Encontrar una conclusion adecuada a las premisas dadas. de modo que el argumento sea vilido.
(1) p=~q, ¢ () p>~q,r=q (3) p=>~g, ~p>7 (4 P>~qT>P4

10. Determinar la validez de cada uno de los siguientes argumentos para cada conclusion propuesta.

(1) Ningiin profesor es rico. {2) Todos los poetas son gente interesante.
Algunos poetas son ricos. Aurd €5 una persona intergsante.
(e} Algunos poetas son prolesores. (@) Aura es poeia,
{h) Algunos poetas no son profesores. (h) Aura no es poeta.

(3) Todos los poectas son pobres.
Para ser maestro. hay que ser graduado.
Algunos matematicos son poctas.
Ningin graduado e¢s pobre.

ta) Algunos matemalicos no son maestros.
{h) Algunos maestros no son matematicos.
{¢) Los maegstros no son pobres.
{d) Algunos matematicos no son pobres.
¢} Los poetas no son maestros.
(f) Si Marcos es graduado, entonces no es poeta.
4) Todos los matemdticos son personas interesantes.
Algunos maestros venden seguros.
Algunos fildsofos son matematicos.
Solo la gente que no es interesante s¢ pone a vender seguros.

(@) Algunos filosofos no son vendedores de seguros.
() Los vendedores de seguros no son malematicos.
(¢) Algunas personas interesantes no Son Maestros.
(d) Algunos maestros no son filosofos.

(¢) Algunos maesiros no son personas interesantes.

11. Hallar: (1) Contrarreciproca de p — ~¢. (3) Contrarreciproca de la reciproca de p— ~4.
(2) Contrarreciproca de ~p — g. {4) Reciproca de la contrarreciproca de p — ~ 4.

12. Hallar la contrarreciproca de cada una de las siguientes proposiciones:
(1) Si él tiene valor, ganara.
(2) Es preciso ser fuerte para ser marinero.
{3) Solo si no se cansa ganara.
{4) Es suficiente que sea un cuadrado para ser un rectangulo.

Respuestas a los problemas propuestos

8. (1) valido (2) falacia 9. (I} ~p (2} p— ~r (3 g—r 4y ~r

10. (1) {a) falacia, () valido (3) (a) valido. (b) falacia, {¢) valido, (d) falacia, (e) vilido. (f) valido
(2) ({a) falacia, (b) falacia (4) (a) valido, (h) vilido, (¢} falacia, (d) falacia, (¢} vilido

1. (1) g—=~p (2) ~g—p (3) ~p—g M p—yq

12. (1) Si él no gana. entonces no tiene valor,
{2) Si él no es fuerte, entonces no €s MArinero.
{3) Si %l se cansa, entonces 1o ganard.
(4) Si no es un rectdngulo. no es un cuadrado.
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