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Prefacio

La creacion de los sistemas automatizados integrados modernos semejantes
a los de proyeccién automatizada (SPA), de produccién automatizada fle-
xible (SPAF), sistemas automatizados de mando (SAM), sistemas automati-
zados de investigaciones cientificas (SAIC), es inconcebible sin la introduc-
cidén acelerada de los resultados del progreso cientifico-técnico, especial-
mente de los logrados en la esfera de las matematicas.

Para crear vy explotar los sisternas automatizados integrados, de uso en
complejo, de procesamiento de la informacién y sus componentes (apoyo
matemadtico, paquetes de programas aplicados, bancos distribuidos de los
datos, sistemas incorporados de microprocesores, redes de trasmision de
los datos, sistemas con particion de recursos y procesamiento distribuido
de la informacién) es necesario conocer la matematica discreta, cuya parti-
cularidad principal es la ansencia del paso limite y la continuidad, lo que
es caracteristico para la matematica clasica.

El libro comprende cinco capitulos e incluye las partes principales de
la matemética discreta moderna: los sistemas algebraicos, la [6gica matemad-
tica, la teoria de grafos y mografos (hipergrafos), la teoria de autdmatas
y gramaticas formales, la teoria aplicada de algoritmos y el andlisis de ca-
racterizacién, Al final de cada capitulo se ofrecen problemas y ejercicios
de dificultad distinta destinados para fijar los conceptos introducidos, algo-
ritmos y construcciones examinados. El ultimo capitulo se dedica a la parte
central de la matemadtica discreta, es decir, al andlisis de caracterizacion,
la solucion de cuyos problemas es la base en el disefio de los algoritmos
déptimos y de apoyos eficientes matemadtico, de programas de informacién
y técnico para los sistemas automatizados integrados, de uso en complejo,
modernos de procesamiento de la informacion.

El autor



Introduccion

El resultado final del trabajo del ingeniero matemdtico y del de sistemas
es un algoritmo realizado mediante un procedimiento de programas, de
aparatos o de programas y aparatos. La eficiencia de los medios de cdlculo
utilizados se define en grado considerable por la optimicidad del algoritmo
elaborado, la cual se estima por la complejidad temporal y capacitiva. Co-
mo complejidad temporal se toma el tiempo de trabajo del algoritmo, como
capacitiva, la capacidad de memoria necesaria para resolver el problema.
Las complejidades temporal y capacitiva son funciones de la dimensién
del problema. Actualmente, debido a la amplia aplicacién de la técnica de
calculo en las distintas esferas de la actividad humana, adquieren cada vez
mayor importancia los calculos sobre estructuras discretas, o sea, los calcu-
los combinatorios. Numerosas publicaciones se dedican a la investigacién
de algoritmos sobre estructuras discretas.

El analisis de las dificultades habidas durante la bisqueda de algoritmos
eficaces de la resolucion de los problemas de la matematica discreta condu-
jo a la enunciacion del problema teérico y metodoldgico central de la mate-
matica discreta, es decir, a la posibilidad de excluir el sondeo de variantes
cuando se resuelven los problemas sobre estructuras discretas. Fue presenta-
da la hip6tesis que para una amplia clase de problemas de la matematica
discreta, de interés para la prictica, no existe un algoritmo eficaz para resol-
verlos y cuya densidad de trabajo sea una funcién polinomial de la dimen-
sién del problema. Estos problemas forman la clase de los problemas NP-
completos, cuya densidad de trabajo para resolverlos se estima por una
funcién exponencial. Segin esta hipdtesis, los problemas de la dimension
real (equivalente a unas centenas) no pueden ser resueltos eficazmente,
incluso mediante los ordenadores de generaciones futuras. En realidad, si
imaginémonos un ordenador, para el cual los simbolos del sistema de cdlcu-
lo utilizado o de la logica se simulan por los distintos estados de dtomos,
con la particularidad de que la masa del ordenador es igual a la de la Tierra,
entonces, basindose en las leyes generales de la fisica este ordenador no
podréa procesar mas de 107 drdenes binarios de la informacién ni siquiera
durante todas las épocas geolégicas. Por lo contrario, resolviendo los
problemas NP-completos de la dimension real el volumen de la informacién
procesada supera el valor de 107}, Este hecho suscité el pesimismo entre
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los matematicos tedricos que centraron la atencién principalmente en la
investigacién del nivel conceptual de la matemadtica discreta. Los especialis-
tas en matematicas aplicadas orientaron sus esfuerzos a disefiar algoritmos
para resolver problemas de la matematica discreta, lo que se debe a la nece-
sidad prictica del movimiento acelerado “desde el contenido del sentido
fisico de un problema hacia las construcciones algoritmicas™ y, también,
hacida un amplio empleo de los ordenadores.

Al resolver el problema de reduccién def sondeo de variantes existen
grupos de algoritmos: heuristicos y de caracterizacion. Entre los heuristicos
figuran algoritmos de la clase amplia a partir de los FBI-algoritmos (FBI
significa fuerza brutal e ignorancia) hasta los “astutos”, “dvidos” y otros
algoritmos heuristicos. El nombre de algoritmo corresponde al tipo de
heuristica que determina el procedimiento de la lucha contra el sondeo.
Es imposible por principic estimar cémo dista la resolucién obtenida por
medio de un algoritmo heuristico de la calidad de resolucién minimal en
el sentido del valor de la funcional. Son libres de este defecto esencial los
algoritmos de caracterizacién, cuya estructura fue propuesta por el autor
en los afios 60. A base de la caracterizacion de transformaciones combina-
torias realizadas se puede hallar la resolucién minimal sin buscar todas
las resoluciones equivalentes, excepto su sondeo. El algoritmo de caracteri-
zacién de la resolucion del problema consta de un procedimiento de forma-
cion de la equivalencia y de la obtencién real de la resolucién, El primer
procedimiento consiste en la transformacion de la informacién inicial en
la forma que permite, sin construir de hecho la resolucién, calcular la fun-
cional de su calidad. La densidad de trabajo de los algoritmos de caracteri-
zacidn para problemas pricticos se estima por las funciones polinomiales,
cuya potencia no supera 3—5. Dos razones explican la divergencia de los
resultados obtenidos por los mateméticos tedricos. En primer término, los
matematicos tedricos estiman la densidad de trabajo de los algoritmos de
la resolucién de un problema combinatorio por una dependencia exponen-
cial, partiendo del peor caso que, como regla, es artificial y no tiene lugar
en la préctica. En segundo término, ellos demuestran estimaciones asintéti-
cas, es decir, consideran el paso limite cuando n — oo (n es la dimensién
del problema). Pero, en la préctica, la dimensién del problema es un valor
finito. Por ejemplo, para obtener la estimacién exponencial de la laboriosi-
dad en la coloracidn de los vértices de un grafo arbitrario hay que basarse
en conocer el mimero maximal f{n) de subgrafos vacios en un grafo de
n vértices:

v i n = 0{mod 3),
j‘(") = 4_3(!!—4]/3‘ ne i (mod 3)’
2:30=23 p = 2 (mod 3,
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sin embargo, esta dependencia es valida solamente para los grafos de una
clase tinica que son complementos de los grafos de Moon—Moser hasta
los completos. La resolucion de los problemas combinatorios no debe con-
siderarse en general, sino tomando en cuenta la informacion concreta
inicial.



“Del mismo modo que ¢l den de la palabra
nos enriquece con opiniones de otras perso-
nas, el lenguaje de los signos matemdticos es
un medio todavia mds perfecto, mds exacto

v claro.,””

N, I Lobachevski

CAPITULO 1
Sistemas algebraicos

§ 1.1. Conjunto, funcién, operacion.
Modos de su prefijacion

Cualquiera nocion de la matemética discreta puede definirse empleando
el concepto de conjunto.

Por conjunto se comprende la unién, en un todo comun, de los objetos
muy diferentes por nuestra intuiciéon o nuestro pensamiento. Esta definicién
intuitiva del concepto de conjunto fue dada por Cantor, fundador de Ia
teoria de los conjuntos. En las matematicas este concepto es primario y,
por consiguiente, no tiene definicién rigurosa que satisface las exigencias
modernas. Los objetos que forman un conjunto los denominaremos efe-
mentos del conjunto y, como regla, los designaremos con las letras minus-
culas del alfabeto latino. Si el elemento m pertenece al conjunto M utilizare-
mos la denotacién 7 € M, en caso contrario, la denotacién m ¢ M, donde
el signo de pertenencia de un elemento a un conjunto € es una estilizacién
de la primera letra de la palabra griega gori (ser, estar).

Un conjunto que contiene un niimero finito de elementos se denomina
Jinito. Pero, si un conjunto no contiene cualesquier elementos éste se deno-
mina vacio y se denota con .

Un conjunto puede ser prefijado mediante diversos procedimientos al
enumerar los elementos (conjuntos finitos) o al indicar sus propiedades
(con ello, para prefijar un conjunto se usan las llaves | }). Por ejemplo,
el conjunto M de las cifras del alfabeto decimal puede estar planteado en
la forma

M=1(0,1,...,9} 0o M= [i/i es entero, 0 € i <9},
donde a la derecha de la raya inclinada se indica la propiedad de los elemen-
tos de este conjunto. El conjunto M de los mimeros pares puede escribirse
en [a forma M = {m/m es un nimero par}.

El conjunto M’ se denomina subconjunto del conjunto M si, y solo
si, todo elemento del conjunto M’ pertenece al conjunto M:

M CMeo (meM' — meM),
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donde C es el signo de inclusién del subconjunto; —* es “si..., entonces..”’,
“» es “si, y s6lo si..”. En particular, los conjuntos M’ y M pueden coincidir.

No inclusién del conjunto M’ en €l conjunto M se denota asi: M’ ¢M.

Es obvio, que si el conjunto M. es un subconjunto del conjunto M,
y el conjunto M, es un subconjunto del conjunto M;, ambos estos conjun-
tos constan de los mismos elementos. Tales conjuntos se llaman equivalen-
tes: M; = M. Pero, si el conjunto M’ es un subconjunto del conjunto M,
mientras que el conjunto M no es un subconjunto del conjunto M’ , enton-
ces el conjunto M’ se denomina subconjunto propio del conjunto M. Para
designar este hecho utilizaremos el simbolo doble de inclusién de subcon-

juntos C C, es decir, escribiremos M’ C C M.

Para cada conjunto M existe un conjunto, cuyos elementos son los sub-
conjuntos del conjunto M y sélo ellos. Tal conjunto lo denominaremos fa-
milia del conjunto M o booleano de este conjunto y lo denotaremos con
B(M), mientras que el conjunto M se denominard universal, universo o
espacio y se designara con 1.

Examinemos la formacién del booleano B(1) de un universo 1 = {»
x, a). El primer conjunto es el conjunto vacio & que no contiene ningin

elemento. Después formemos ( l{l ) [( |:| ) , s decir, el numero de com-

binaciones de [1] elementos tomados 1 a 1 | de los conjuntos que contienen
un elemento cada uno, luego |;1 ) conjuntos, cada uno de los cuales

contiene dos elementos, ..., y, por fin, el conjunto que contiene todos los
elementos del conjunto 1. Aqui, |M| es el nimero de ¢lementos del conjunto
finito M, lo que en adelante denominaremos potencia de un conjunto.

Evidentemente que la potencia |B(M)| de un booleano de un universo
M es igual a 2IM;;

[B(M)| = 2%,
En el caso examinado

B(l) = {@1{y], (x}, {a}, (¥ x), la x], ta ¥}, (% X% a]}.
Frecuentemente, un conjunto se prefija también en forma grafica con auyda
de diggramas de Euler. Por ejemplo, en la fig. 1.1 se expone ¢l conjunto
[{a b c], |b d e}) en el espacio 1 = {a, b, ¢ d e}, donde la linea
cerrada llamada cfrculo de Euler corresponde a uno de los conjuntos consi-
derados y limita sus elementos, con ello, el marco, en cuyo dngulo superior
derecho se situa 1, limita los elementos del espacio. Otras formas de prefijar
los conjuntos se examinaran a medida que sea necesario.

Uno de los conceptos importantes de la teoria de los conjuntos es el
concepto del producto cartesiano de conjuntos.
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Fig. 1,1

Un conjunto M de tipo
M = {(m;, m)/n € My, my€ My)

se denomina producto cartesiano M, X M, de los conjuntos M, y M. Aqui
y en adelante mediante los paréntesis ( ) se denota una sucesidn, es decir,
un conjunto con el orden fijado de elementos.

El subconjunto F C M, x M, se llama funcion, si para cada uno de
los elementos x, x € M, no existe mds de un elemento y € M, de tipo (x
) € F; con ello si para cada elemento x existe un elemento y de tipo (x,
¥) € F, la funcion se denomina completamente definida (definida en todos
los puntos), en caso contrario, parcialmente definida (incompletamente de-
finida). El conjunto M, forma campo de definicidn de la funcidn F, el con-
junto M, es el campo de valores de la funcién F Frecuentemente, en vez
de la denotacién (x, y) € F, se utiliza la denotacién y = F(x); en esto caso
el elemento x se llama argumento o variable, mientras que y se llama valor
de la funcion F,

Comparemos con ¢l producto cartesiano de dos conjuntos un reticulo
rectangular, cuyos nodos corresponden biunivocamente a los elementos del
producto cartesiano. En las figuras el subconjunto del producto cartesiano
sefialemos rayando los elementos respectivos.

Ejemplo 1.1. En la fig. 1.2 (a) estd representado un subconjunto del producto cartesiano
de los conjuntos M, = §xy, x3, X3, xa| ¥y My = |y, 2. 3] que no es funcidn; en la fig.
1.2 (), un subconjunto gue es una funcidn completamente definida; en la fig. 1.2. {#), un
subconjunto que es una funcién completamente definida; en la fig. 1.2 (¢), un subconjunto
que es una funcién parcialmente definida.

El niimero de argumentos determina el tipo-ddico de la funcion. Ante-
riormente han sido examinados las funciones monddicas (de un
argumento).

Por analogia con el concepto del producto cartesiano de dos conjuntos
definamos el producto cartesiano de n conjuntos.

Lldmase producto carfesianno.

MyxMyx...xM,=TJ] M

t=n
de los conjuntos My, M, ... M, el conjunto

M= [{ml'n Mgy oy mi-}/mil EM’.; mi:GMZ: ERCRC ] mf.EMn]-
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F F F
Xy o A Xy [ Xy O
Xy 0= -4 X3 0 Xy 0--
Xy o Xy & X3 &
A L Ay |
]
A & & b 3 & & & &
L Y2 43 o Y s 7] Yy Ys
a) b) o)
Fig. 1.2

Los elementos del producto cartesiano My x Mz X M, son todas las po-
sibles sucesiones, cada una de las cuales consta de  elementos, con la parti-
cularidad de que el primer elemento pertenece al conjunto M, el segundo,
al conjunte Ma,..., el elemento n-ésimo, al conjunto M,.

Si el conjunto M; en la definicion de la funcién y = F(x) es el producto
cartesiano de los conjuntos My, My, . . ., Mx, obtenemos la definicion de
la funcidn n-adica y = F(x1, X2, - - ., X»). Un caso particular de la funcién
n-ddica y = F(x1, Xz, ..., ¥%:) €5 la operacién n-ddica. Por operacién n-
adica O, en el conjunto M se comprende una funcién n-ddica y = F(x,
X2, . . . Xn), cuyos campos de definicién de los argumentos y el campo
de valores de la funcién coinciden: My, = My, = ... = My, = M. De este
modo, una operacion n-ddica respecto a n elementos del conjunto M deter-
mina el elemento (# + 1)-ésimo del mismo conjunto.

Examinemos el espacio 1y, en él, definamos cuatro operaciones sobre
conjuntos: unién, interseccion, diferencia y complemento.

La unidn M,UM, de dos conjuntos M, y Mp es un conjunto M com-
puesto de los elementos del conjunto M, y de los clementos del conjunto
My v

M=MUMy = {mi/m; € My, Mpi.
La interseccion MyN M, de dos conjuntos M, }, M, es un conjunto M

compuesto de los elementos pertenecientes tanto al conjunto M., como al
conjunto Mp:

M= MNM, = |mi/m e My, y mi € M}

a menudo la conjuncién “y” se sustituye por el signo &:
M=MNMy = [mr'/mIGMu&miEMb;-
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|

Ma My Ma "‘?'af

a) My UMy
ety 7
NS
Gy
¢) Ma\ P M, UR,
Fig. 1.3

La diferencia M,  Mp de los conjuntos M, y M, es un conjunto M
compuesto de los elementos pertenecientes al conjunto M, y no pertene-
cientes al conjunto Mp:

M=M; N My = {mi/mie M, &mé Mp}.

Las operaciones introducidas son binddicas. Consideremos la operacidn
de complemento que es monddica.
El complemento M de un conjunto M es el conjunto

M= {m/m; § M).

Las operaciones de union, interseccién, diferencia y complemento se
ilustran en la fig. 1.3 (@, b, c y d), respectivamente; el conjunto resultante
de cada operacidn estd representado mediante una zona rayada.

Empleando estas operaciones se puede expresar unos conjuntos por me-
dio de otros, con ello, en primer lugar, se cumple la operacién monadica
de complemento, Juego la de interseccién y sélo después la de unién (de
diferencia). Para cambiar este orden en la expresién se emplean los
paréntesis.

Ejemplo 1.2. Examinemos la operacién de complemento de un conjunte que es la inter-
seccidn de los conjuntos M. ¥ Mp. Su resultado coincide con la unién de los complementos
de estos conjuntos

M= MaN My = My UMs;
se puede cerciorarse de esto con ayuda de los diagramas de Euler (fig. 1.4).

De tal modo, un conjunto puede ser prefijado mediante una expresion
que tiene identificadores (indices) de conjuntos, operaciones y, tal vez, pa-
réntesis. Semejante modo de prefijar un conjunto se llama enaiitico.
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§ 1.2. Concepto del dlgebra. Algebras fundamentales

Lldmase dlgebra A una coleccion { ) del conjunto M con operaciones
prcﬁjadas en éste S = lf“, flz, o flm. fZI. fzz, ey fzn;. .y an flﬂul
oo fna], A = (M, §), donde el conjunto M es el portador y S es la sig-
natura del dlgebra. El primer indice inferior del identificador de la opera-
cion sefiala su tipo-ddico

Observacion. Para identificar un todo dnico que contiene objetos de
distinta estructura matemdtica, por ejemplo, un conjunto y operaciones en
él, se propuso utilizar el término coleccidn y designarlo con los paréntesis
angulares { ).

Consideremos dlgebras fundamentales. El dlgebra de tipo (M, /) se
denomina grupoide.

Si f» es una operacién de tipo de multiplicacién (%), el grupoide se
llama multiplicativo; si f» es una operacién de tipo de adicién (+), se llama
aditivo.

Sea A = (M, f2) un grupoide; designemos la operacién f; mediante
-. Entonces un elemento e € M se denomina elernento neutral derecho del
grupoide A, si para cualquier /1 € M se cumple la ignaldad me e = m, el
elemento e € M del grupoide 4 = (M, o) se denomina elemento neutral
izquierdo, si para todos los m € M se cumple la igualdad e m = m. En
estas definiciones se utilizaron las expresiones “todos los elementos”, **cual-
quier elemento”. En adelante, para abreviar, emplearemos el simbolo v (la
letra volcada A, la primera letra de la palabra inglesa All, es decir, todo)
en vez de las palabras “todos” o “cualquier”. Si un elemento e, e € M, del
grupoide 4 = (M, o) es simultdneamente elemento neutral izquierdo y de-
recho, se llama efemento neutral bilateral o simplemente elemento neuiral.
Ningiin grupoide puede tener mas de un elemento neutral. En efecto, si

mee=¢eom=mymee =¢ om=m
es vilido para todos los m € M, entonces

e =e' ce=e

Si el grupoide (M, » ) es multiplicativo, el elemento neutral se llama unidad
y se denota por 1; si es aditivo, el elemento neutral se llama cero y se designa
por 0.

El grupoide 4 = (M, <) se denomina idempoftente, si su signatura satis-
face la ley de idempotencia

(Yme MYim«m = m).
El grupoide (M, ), cuya signatura satisface la ley conmutativa,
(vx, yeM)Yx ey = yex),
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se denomina conmutativo o abeliano. El grupoide (M, =), en el cual se
cumple la ley asociativa, a

(vx, 3 2€M)(xe(¥ez)=(xoy)-2),
se denomina asociativo o semigrupo.

El semigrupo (M, =), en el cual se cumplen operaciones inversas (para
cualesquiera @, b € M cada una de las ecuaciones @ox = b, y @ = b tiene
solucién tnica), se llama grupo.

Hustremos este concepto de grupo tomando como ejemplo un grupo de sustituciones
que contiene seis elementos. El grupo de sustituciones fue investigado, resolviendo ecuaciones
en radicales, por Galois, célebre matemitico francés. Lldmase sustitucion de n-ésimo grado
una aplicacion biunivoca de un conjunio de n elementos sobre si.

Consideremos tres elementos: x;, x3, xs. Existen seis permutaciones de Lres elementos:
X1XzXs, XzXaX1, XiXaXa, X3X)Xz, X2X1X3, X3%2X1. Escribamos dos permutaciones de tres elementos
una debajo de otra:

Xp Ap Xy
Xz X X
Esta denotacidén significa que x;, pasa en Xz, Xz €n X3, X3 en X;.

El mimero de posibles sustituciones equivale al nimero de permutaciones. Introduzeamos
las siguientes designaciones para seis sustituciones posibles:

X1 Xz X X Az Xxa X X Xy
a= ;B . C=
Xy X2 X X1 X1 X X X X3
X X Xy oa ox X1 X X
d = . B2 , f =
Xz Xy M I Xoxaox
Introduzcamos la operacidn de multiplicacion % sobre las sustituciones. Se denomina

producto de sustituciones una sustitucidn obtenida como resuliado del cumplimiento sucesivo
de las sustituciones multiplicadas, de la primera, al inicio, v, luego, de la segunda. Por ejemplo,

TR

La tabla 1.i determina la expresion e« X 8, o, 8 =a, b, ¢, d e f
4 Tubla L1
a
[+
a b F's d e I
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TR Ry n
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En el dlgebra considerada A, X} se cumple la ley asociative, pero no se cumple la
ley conmutativa. -

Bl 4lgebra (M, x, +) que segin la multiplicacién es el grupoide mul-
tiplicativo y segtin la adicién, el grupo abeliano, con la partificularidad
de que la multiplicacién y la adicion estdn ligadas mediante las leyes
distributivas

ax(b+c)=axb+axc
b+ecyxa=bxa+cxa

se denomina anille. Un anillo, en el cual todos los elementos diferentes

de cero componen un grupo segiin la multiplicacién se llama cuerpo. Un

cuerpo, cuyo grupo multiplicativo es abeliano, se denomina campo.
Examinemos el digebra de conjuntos (dlgebra de Cantor)

A = (B(p, U, N,
cuyo portador es booleano de un conjunto universal 1 y cuya signatura
son las operaciones de unién U, de interseccidén My de complemento —.

Para las operaciones del dlgebra de Cantor se cumplen las siguientes leyes:
conmutativa de unién y de interseccidn

M, UM, = MpUM,, M,O\M, = MO\ M,;
asociativa de unidn y de interseccién

Mn U (Mb U Mc) = (Ma' UMB) U Mcu

M. N(MpN M) = (Mg an) NM.,

distributiva de interseccion respecto a la union y de unién respecto a
la interseccidn

MaN(MpUM:) = M, NMUM NM,

MU (Mp MM = (MU M) N (M U M), '

de idempotencia de unién y de interseccion

M UM, = M, MoNM; = My;

de operacidn con los conjuntos universal 1 y vacio &

MUZ =M MNQ =@, MUl=1, MN1=M, MUM =1,
MNOM =&,

propuesta por De Morgan

M,NM, = M:UM,, M,UMj, = M;"\M,

¥ de complemento doble

M=M

El algebra de Cantor es un semigrupo abeliano segun la operacion aditiva de union y

multiplicativa de interseccion, ya que para estas operaciones se cumplen las leyes conmutativa
y asociativa, pero no es un grupo, dado que las ecuaciones Mo U X = M, MyaNX = My no
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tienen soluciones, por ejemplo, para el caso cuando los 1) s o se i
M, My = (&, Por consiguiente, el slgebra de Cantor segin las operaciones binddicas U v
M no es un anillo, Esta dlgebra pertenece a otra clase de dlgebras fundamentales, o sea a

la clase de reticulos que se examina a continuacion,

§ 1.3. Relaciones binarias, procedimientos de su planteamiento
y sus propiedades

El concepto fundamental de la matematica discreta es el de relacidn que
se utiliza para designar la ligazén entre objetos 0 nociones.

Lldmase cuadrado del conjunto M el producto cartesiano de dos con-
juntos eguivalentes entre si: M X M = M?. Se denomina relacion binaria
T en el conjunto M un subconjunto de su cuadrado: T C M2, Se dice que
los elementos m: y mi; estédn en relacidn T, si (m1:, my) € T. La colecceién
del conjunto M y la relacién binaria 7 C M2, prefijada en él, se denomina
grafo G:

G=(M, T),

donde M es el porfador del grafo (conjunto de los vérrices); T es la signafu-
ra del grafo (conjunto de los arcos).

Consideremos el planteamiento de la relacién binaria empleando una
matriz de adyacencia y un conjunto cociente.

En el planteamiento matricial se emplea una tabla de dos dimensiones,
es decir, la matriz de adyacencia, poniendo un elemento del conjunto A
en correspondencia biunivoca a cada fila (columna) de la misma. Entonces
cada célula (i, /) corresponde biunivocamente a los elementos del conjunto
M?, Una célula (i, j) que corresponde a un elemento perteneciente a
T C M? se distingue de algin modo, por ejemplo, la dejan ennegrecida
o con una unidad puesta en ella; las otras células se quedan blancas o con
ceros inscritos en éstas.

Consideremos un esquema en blogue, propuesto por von N y per: i a
un ordenador gue consta de un conjunte de dispositivos

M=1{a b c d e},

dondc a es un dispositivo de entrada, b es un dispositivo aritmético (procesor), ¢ es un blogque
de mande, d es5 una unidad de memoria y e, es un dispositive de salida.

Examinemos el cambio de informacidn entre los dispositivos my y m; que estdn en la
relacidn T, si la informacién pasa del dispositiva my en el dispositivo »y,. Esta relacion puede
ser prefijada en forma de una matriz de adyacencia:

b d

co—~ocon
et ™ B Y
O ==

1
0
1
1
0

oo oe

1
1
1
0
0
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QN 7/
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Fig. 1.6

El grafo G, que se prefija mediante la relacién T examinada, se ofrece
en la fig, 1.5. En esta figura (y también en adelante) los vértices del grafo
se representan en forma de circulos (a veces, de puntos), los arcos, en forma
de flechas que salen de m y entran en my, si (7, my) € T con ello, el vértice
m; es el origen de arco y el my, su fin.

Consideremos el planteamiento de la relacién binaria empleando el con-
junto cociente.

Llimase entorno de radio unidad del elemento m; € M un conjunto de
elementos m; € M tales que (n, my)€ T, T C M*. A menudo en vez del
término entorno de radio unidad se utiliza el término seccidn.

Un conjunto de entornos de radio unidad tomados para todos los ele-
mentos del conjunto M, al prefijar en él una relacién T C M?, se denomina
conjunto cociente M/T del conjunto M respecto a la relacion T. El conjun-
to cociente M/T determina completamente la relacidén 7.

Prefijemos el conjunta cociente para el ejemplo considerado en forma de dos filas. En
fa primera se col los ek tos del conjunto M, en Ja segunda debajo de cada elemento

se anota ¢l entorno de radio unidad de éste. Entonces, la segunda fila prefija el conjunto
cociente de M respecto a !

a & e d e
{ib ¢, d) {c. d, e] {a b d e] b c e} [cil

La relacién binaria prefijada por el grafo G = (M, T) (fig. 1.5} puede ser planteada
mediante la enumeracién de sus arcos:

M= la b cd e}, T=1ig b), (ac), @ d, b o),

(& e), (b d), (g a), (c ) (c, d), (& &), (d o), (d b),

(d. e), (e cH.

Examinemos las propiedades mds importantes de las relaciones
binarias.

Una relacidén T en el conjunto M se llama reflexiva, si para cada elemen-
to m € Mes valido que (m, m) € T. Al prefijar la relacién mediante la matriz
de adyacencia, el cardcter reflexivo se caracteriza por el hecho de que todos
los elementos de la diagonal principal estdn marcados (equivalen a 1 o son
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Fig. 1.7

ennegrecidos); al prefijar la relacién por medio del grafo, cada elemento
tiene /azo, es decir, arco de tipo (m, m) (fig. 1.6, a).

La relacién 7 en el conjunto M se llama simétrica si de (my, m)) € T
se desprende (my, mg) € T, myg = my.

La matriz de adyacencia de la relacién simétrica es simétrica respecto
a la diagonal principal, mientras que al prefijar Ia relacién en forma del
grafo la consecuencia del cardcter simétrico es que entre cualquier par de
vértices, que se encuentran en la relacion 7, existen dos arcos dirigidos
contrariamente (fig. 1.6, b).

La relacién T en el conjunto M se llama rransitiva, si de (my;, ny)) e T
y (my, my) € T se desprende (1, m)€ T, nu, my, mx € M my % my, m; 7% i,
my E= M.

En el grafo, que prefija una relacién transitiva T, para cualquier par
de arcos tales que el extremo del primero coincide con el origen del segundo
existe un arco tercero que tiene origen comun con el primero y extremo
comiin con el segundo (fig. 1.6, ¢), o sea el arco de cierre transitivo.

La relacién T’ prefijada por el grafo parcial G’ del grafo G (véase la
fig. 1.5) se hace simétrica una vez quitados los arcos (a, b), (@, d), (b, )
y (d, e).

Se denomina grafe parcial G’ del grafo G = (¥, U} el grafo de tipo
G =Ly Uy, U ct

La relacion T*, prefijada mediante el grafo parcial G~ del grafo G
(fig. 1.5) obtenido una vez quitados todos los arcos, excepto (a, b), (a, d),
(b, e) y (d, e) (fig. 1.7, &) no posee propiedades del caracter simétrico (o),
ni del reflexivo (@), ni del transitivo (y). Apreciemos a cudl de estas pro-
piedades se aproxima mds la relacidn T”. La proximidad A(T, o) de la
relacion T a la propiedad « la apreciaremos por el mimero minimal de
arcos que hay que quitar o agregar al grafo que plantea esta relacidén, para
que este grafo prefije la relacién T que posee la propiedad o, « = o, g,
3. Para el ejemplo examinado (fig. 1.7, b).

A(T”, o) =4, AT", g} =4, AT", 4) = 1.

Empleando estas propiedades definamos la relacion binaria de ordena-
- ¢idn que tiene gran importancia tedrica y préctica.
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Fig. 1.8

La relacién binaria R en el conjunto M, la que tiene las propiedades:
reflexiva

(vae M) ((a @) €R);

antisimétrica

(va, be M) (((a. B)ER y (b @)ER) = a = b);
fransitiva

(va, b ceM) (((a, DYER y (b, c)€ER)© (a, c)€R),

se llama relacidn de ordenacidn y se designa con <. La relacién binaria
en el conjunto M es antirreflexiva, antisimétrica y transitiva lldmase rela-
cién de ordenacion estricta y se designa con <. La relacién reflexiva y
transitiva R en el conjunto M se denomina relacidn de suborden.

Examinemds la relacién de inclusién <. Es reflexiva: M; C M; (el con-
junto M; incluye a si mismo); si M; C M; y M; C M;, entonces M; = M;
y, por consiguiente, ésta es antisimétrica; si M; C M; y M; C M,, entonces
M; ¢ Me y la relacion C es transitiva. La relacion de inclusion C es la
de ordenacién <. Un conjunto M, con la relacion de ordenacién < prefija-
da en él, se llama ordenado mediante esta relacién.

Si cualesquiera dos elementos m; y m; de un conjunto ordenado estén
en la relacion de ordenacién m; < m; o m; < m; este conjunto se denomina
linealmente ordenado, es caso contrario, parcialmente ordenado.

Un ¢jemplo del conjunto parcialmente ordenado se ofrece en la fig.
1.8 (como relacidn < se examina la relacion de inclusion C).

Con frecuencia un conjunto parcialmente ordenado se répresenta en for-
ma de grafos H = (¥, £) que tienen omitidos todos los lazos y arcos de
cierre transitivo. El grafo H = (¥, <) que prefija un conjunto parcialmen-
te ordenado con los lazos alejados y los arcos de cierre transitivo omitidos
se denomina diagrama de Hasse H. En la fig. 1.9, a se representa el diagra-
ma de Hasse H que expresa el conjunto parcialmente ordenado mostrado
en la fig. 1.8. El diagrama de Hasse es conocido desde fines del siglo XIX
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Fig. 1.9

y durante muchos afios se aplicaba en la genealogia para prefijar el paren-
tesco. El concepto de mayor directo se plantea con facilidad en un conjunto
parcialmente ordenado por la siguiente definicion: m; cubre m;, esto signifi-
ca que m; < m; y no existe ningln elemento m, tal que my < m, < m;.

Consideremos el subconjunto M’ del conjunto ordenado M. Si existe
un elemento m, € M tal que m; < m, para cualquier elemento m; del sub-
conjunto M’, este elemento se denomina mayorante del subconjunto M’.
De modo andlogo, si existe un elemento mig € M’ tal que mg < m; para
cualquier elemento m; del subconjunto M’, el elemento mg se llama meno-
ranfe del subconjunto M’. En el diagrama de Hasse H (fig. 1.9, a) el ele-
mento [x} es la menorante del subconjunto [y x}, {a x}, {» x, @)},
¢l elemento {a@, x] es la mayorante del subconjunto {{x}, {a], &}.

Si la mayorante m, de un subconjunto M’ pertenece a M*, me M’,
se llama elemento maximal mna, de este subconjunto. De modo andlogo,
si la menorante /s de un subconjunto M’ pertenece a M’, mg€ M’, se
denomina elemento minimal Mgin del subconjunto A ’. En el diagrama de
Hasse H (fig. 1.9, &) los elementos minimal y maximal del subconjunto
flx), {» x}), l4 x}, [» x a}) son {x], {3 x a], respectivamente. Para
un par de elementos de un conjunto linealmente ordenado siempre existen
elementos maximal (equivalente a uno de ellos) y minimal (equivalente al
otro elemento). Un par de elementos de un conjunto linealmente ordenado
se llaman con frecuencia comparables, o sea, elementos my, my, para los
cuales ni < my 0y < m.

Si un conjunto de mayorantes (menorantes) tiene, a su vez, elemento
maximal (minimal), lldmase cota superior (inferior) del subconjunto M’
y se denota por medio de sup M’ (inf M*).

La cota superior (inferior} del subconjunto M’ que pertenece a M’ se
denomina elemento mdximo (minimo) del subconjunto M'.

Teorema 1.1. Un conjunto ordenado M no contiene mds de un elemento
mdximo (minimo).

o Demostremos el teorema para el caso de elemento maximo. Efectiva-



24 Capitulo 1. Sistemas algebraicos

mente, si ma, s son dos elementos maximos, M. < M ¥ Mg < Mq, de
donde m, = mg debido a la antisimetria de <. Para el elemento minimo
la demostracion es andloga. m

Si el elemento maximo de un conjunto ordenado M existe, lo denomina-
remos unidad y denotaremos por medio de 1. Si el elemento minimo de
un conjunto ordenado M existe, lo denominaremos cero y denotaremos por
medio de 0.

En una familia ordenada del conjunto M el conjunto vacio corresponde
al elemento cero y M, al elemento unidad,

Un elemento que cubre 0 en el conjunto parcialmente ordenado M, es
decir, el elemento minimal en un subconjunto del conjunto M obtenido
por medio de excluir 0, se denomina dromo o punto. Al prefijar una familia
del conjunto M por un grafo al punto {(dtomo) se le corresponde un elemen-
to del universo.

Por isomorfismo entre dos conjuntos ordenados M y M * comprendere-
mos una correspondencia biunivoca n entre M y M™, tal que de m; < my
se desprende 7(m;) < n(m;) v de n (m;) < n(m;) se desprende my; < m;.

Dos conjuntos ordenados M y M* se denominan isomorfos si, y solo
si, entre ellos existe el isomorfismo.

Por relacién R inversa de R se comprende una relacién tal que (i,
n;) € R si, y sOlo si, (my, nu) € R.

Principio de dualidad. La relacidn inversa de la relacion de ordenacidn
también es la relacion de ordenacion.

Se llama dual el conjunto parcialmente ordenado M el conjunto parcial-
mente ordenado M definido sobre el mismo portador empleando la relacién
inversa. En la fig. 1.9 (b) se ofrece el diagrama dual al diagrama de Hasse
(fig. 1.9, @). Muchas veces el principio de dualidad se formula del modo
siguiente: si el teorema es vdlido para los conjuntos parcialmente ordenados
también es vdlido su teorema dual

Es evidente que el subconjunto M del conjunto ordenado M es el con-
junto ordenado v si es lineal, el subconjunto M’ es cadena M’ en M. Una
de las caracteristicas numéricas irnportantes de la cadena M’ es su longitud
/, iguala |M’| — 1, donde |M’| es la potencia del portador del subconjunto
linealmente ordenado M. Cada cadena de longitud / es isomorfa a la cade-

na de los numeros reales 1, 2, ... [+ L
Llamase affura d(m;) del elemento »y de un conjunto ordenado M el
méximo de la longtitud /_, de las cadenas mp < my < ... <men M,

para los cuales m; es el elemento méximo (1, es ¢l elemento minimo del
conjunto M).

Se llama longitud d(M) de un conjunto ordenado M ¢l maximo de lon-
gitudes de las cadenas en M. En otras palabras, se llama longitud d{(M)
de un conjunto ordenado el maximo de alturas di(m;) de sus elementos
d(M) = m?.x dilm;), m;eM.



§ 1.3. Relaciones binarias 25

Se denomina cofa superior minima una cota superior que es menor que
cualquier otra cota superior. La cota inferior mdxima se define de manera
andloga. Es obvio, que un subconjunto de un conjunto ordenado no tiene
mds de una cota superior minima y una cota inferior maxima.

Otra relacién binaria importante es la relacién de equivalencia o. La
relacién binaria oo que posee propiedades reflexiva, simétrica y transitiva
se llama relacidn de equivalencia.

Dencminaremos clase de equivalencia K(m,) del elemento m, un con-
junto de todos los elementos m;, cada una de los cuales estd en relacion
de equivalencia con este elemento (conjunto de elementos equivalentes)
K(ma) = {mi/m;comg].

Segin la propiedad reflexiva de la relacién oo, m, € K(m,). De la pro-
piedad transitiva de la relacién de equivalencia (rm, oo my) & (rmp 0o me) —
— g @ m, se desprende que K(mg) D K{mp) y de la propiedad simétrica
se deduce que my, oo my — K(ma) = K(mp).

Las dos clases de equivalencia diferentes K(m,) y K(m,), m, $om,, no
se intersecan: K(m,) N K(m,) = &, ya que en caso contrario éstas coincidi-
rian. En efecto, sea que existe un elemento m. perteneciente a estas clases:
mz € K(mx) y K(m,), pero entonces, debido a las propiedades dadas ante-
riormente, K(rm) = K(m:) = K(my). O sea, si existe un elemento m, perte-
neciente a dos clases de equivalencia K(m) y K(m), entonces
K(m;) = K(iny), lo que se puede escribir como

(Am; € K(mx), K(my)) — K(me) = K(my),

empleando la designacién 3 en lugar de la palabra “existe” (3 es la primera
letra vuelta de la palabra inglesa Exisi, es decir, existe).

La representacién del conjunto M en forma de subconjuntos que no
se intersecan dos a dos {M;] la denominaremos particidn de este conjunto:

UM =M, M.OM, = &, i # is.

Por lo tanto, las clases de equivalencia forman una particién del conjun-
to. En calidad de prueba para reconocer la relacion de equivalencia, prefija-
da por una matriz de adyacencia, puede aparecer la reduccién de la matriz
de adyacencia a la forma representada en la fig. 1.10. Tal reduccién se reali-

Fig. 1.10
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za empleando la permutacién de filas (columnas). En la fig. 1.10, se situan
junto a Ia diagonal principal las submatrices compuestas de unidades (estdn
rayadas), los otros eclementos de la matriz son iguales a cero. Toda submatriz
rayada corresponde a una clase de equivalencia.

§ 1.4. Reticulo

Al usar la nocién del conjunto parcialmente ordenado, definamos ¢l con-
cepto del reticulo. Lldmase retfcufo un conjunto ordenado (M, <), en
el cual cualesquiera dos elementos m, /1 tienen cota inferior méxima o
interseccién myNmy y cota superior minima o unién m; U m;. Es obvio, que
el conjunto ordenado M, dual al reticulo M, es el reticulo, en el cual la
interseccién y la unién cambian de papeles.

Un conjunto ordenado, en el cual cualquier subconjunto tiene cotas
inferior méxima y superior mfnima se denomina reticulo completo. Eviden-
temente, si en reticulo todas las cadenas son finitas, cualquier subconjunto
en éste tiene cotas superior minima e inferior maxima.

En calidad de ejercicio hallemos la interseccion y la unién de ciertos elementos del reticulo
determinado por el diagrama de Hasse & (véase la fig. 1.9, ay

yivix) = 1y xi, 1@ =1,
yInla ¥ = {r¥}, v xfNie} =@
fr xjNfa x} = |x), {(yIUlg x} =1L

EI reticulo puede ser definido también como el dlgebra A = (M, U
M), cuya signatura posee las siguientes propiedades:

£l

idempotente

mUm=m, mNm = m; (1.1)
conmutaliva

mlUm; = m\Jdmi, mNm; = myNmg; (1.2)
asociativa

(M V) Umy = m; ' (m; U mg), (1.3)
(i) N = O (my N g ); ’
de absorcidn

mi U(m,-ﬂm_,—) = my, m; (Y ny) = mi. (1.4)

Aqui U es la operacién de determinar la cofa superior minima de elementos
(de unidn); N es la operacién de determinar la cota inferior mdxima de
elementos (de interseccion).

Ahora demostremos yue las dos definiciones del concepto retfculo son
equivalentes. Supongamos que sea dado un reticulo definido por medio
de un conjunto parcialmente ordenado. Entonces, es obvio, que se cumplen
las propiedades idempotente y conmutativa. Comprobemos si se cumple
la propiedad asociativa, por ejemplo, para la unién U. Como U es una cota
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superior minima, se tiene
() mj)Umk = milJm; =2 my,
miUmpUny =z miUny 2 m;,
(i mpyUmyg = my.

De modo andlogo tenemos:
(mUm) Uy = my; Ui,
(m:UmjUme 2 miUmyUmyg),
U Uims) 2 (U omgy U g,

La propiedad asociativa queda demostrada.
Demostremos la validez de la propiedad de absorcién:
miJ(miNmy) = my,

ya que el resultado de la unién es la cota superior minima; m; < ny,
m; 2 mi\m; puesto que m;MNm; es la cota inferior maxima. Entonces,
m; = ;U (m; N my), porque U es la cota superior minima. Debido al princi-
pio de dualidad, la afirmacion es valida también para la interseccidn.

Ahora, sea que el reticulo esta definido como algebra con operaciones
Ny U que satisfacen las condiciones (1.1)—(1.4). Sefialemos de antemano
que si my, n; € M, entonces las igualdades

mN oy = my, nyUm; = m; (L.5)

pueden o no pueden cumplirse simultaneamente. En efecto, si mi Ny = my,
debido a las propiedades (1.4) vy (1.2) se tiene

miJm; = (miNmyUmy = my;

si miUmy; = my, segun (1.4} mu0imy = miN(pUmy) = myg

Si para los elementos #; y my; tienen lugar las igualdades (1.5), pongamos
m; < my. De esta manera, en el conjunto M estd introducida la ordenacién
parcial. En efecto, en virtud de la propiedad (1.1), m; < m;.

Luego, si my < m; y m; < mg, o sea myNm; = my;, mNm = m;,
entonces debido a la propiedad (L.3), m;Nmye = (M) O =
= m;N(miNmg) = miOm; = my, es decir, my < mg.

En fin, si m; < m; y my < my, o sea, m Oy = my, m O = my, segiin
la propiedad (1.2), mi; = my.

Demostremos que se cumple la condicién de la cota inferior mdxima.
De la igualdad {m;ﬁmj)ﬂm,- = m;ﬂ(m;nmj) = (m;nm;)nm,- = m; N m;
se deduce que m;Nmy; < my. De modo andlogo tenemos # Ny < my.

Sin embargo, si en M tomamos un elemento arbitrario m, que satisface
las condiciones my < my. Mg < my, 0 sea, Mo NN = Moy Mo AN = My,
se tiene m. NN ;) = (Ma M) Ny = Mo Ny = m,, de donde m, <
< miNm;. Por consiguiente, el elemento »;MNmy; es la cota inferior
maxima.
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En virtud del principio de dualidad obtenemos que #7;Um; es la cota
superior minima en el dlgebra a examinar.

En calidad de ejercicio calculemos el valor de cierta formula F considerando e reticulo
como el dlgebra. Tenemos

Fla, &) = ((aN@Ub)N{@U@N &) N@Us))uoUa = (@ant@NiaU b)) UoUa=

=(aNa)UllUae =aU0Usg=alUag=a

Al simplificar Fla, b) habian empleadas las propiedades (1.4), (1.1} ¥ (L2).

Aqui y a continuacién denominaremos cere y unidad estructurales 0
y 1 en el reticulo.

Definamos la propiedad distributiva en un reticulo. Se llama subreticulo
A’ del reticulo A un subconjunto del reticulo 4 que junto con cada par
de elementos m, m; de A contiene, también, m;Uniy y m; Ny Llamase
intervalo I, determinado por los elementos m. y ms en el reticulo 4, un
subreticulo A‘ del reticulo 4 con el elemento maximo 7 v el elemento
minimo m,:

I = [me, mgl = (mi€A /tha < m; < mg}.

En un reticulo A con el cero y la unidad estructurales dos elementos
Me ¥ Mg se denominan complementarios si

meNmg =0, me,Umg = 1.

Un elemento /1 complementario a m se denomina también complemen-
to del elemento m en el reticulo A. Dos elementos que tienen un comple-
mento comun en ¢l reticulo A se llaman /igados en A.

Una clase importante de reticulos representa la de reticulos distributi-

vos, El reticulo A se llama disiributivo, si satisface las siguientes
identidades:

(iU mjy 0 s

iy ey my
y

e N (1 Uy} = e Oy U e N imy

para todos los iy, my, my € M.

Segin la propiedad conmutativa de interseccién es suficiente cumplir
una de estas identidades para definir el reticulo distributivo.

Citemos el criterio de distributividad de un reticulo: el reticulo A es
distributivo si, y sdlo si, en todo intervalo I del reticulo A cualesquiera
dos elementos conexos en I son iguales.,

Este criterio se lo puede expresar en una forma mds cdmoda para célcu-
los, si se muestra la estructura de subreticulos, cuya existencia pone el reti-
culo fuera de la clase de los distributivos.

Introduzcamos el concepto de reticulos de Dedekind (modulares). El
reticulo A se llama de Dedekind si, y solo si, (mUm)Nmge = (my0
Nme}Um; para todos los ny, my, mg € A, tales que m; < mi.
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Fig. LIl a) &)

Criterio del cardcter de Dedekind de un reticulo: el reticulo A es de
Dedekind si, y solo si, éste no contiene subreticulo isomorfo al reticulo
Am (fig. 111, a).

El reticulo Am contiene un elemento de altura nula, dos de altura uni-
dad, uno de altura 2 y otro de 3.

Al emplear el criterio de modularidad de reticulos formulemos el crite-
rio de distributividad en una forma més comoda para calculos: un reticulo
es distributivo si, y sdlo si, no contiene subreticulo isomorfo a Am, 0 sea,
es de Dedekind, y no contiene subreticulo isomorfo al subreticulo A; (fig.
1.11, b). El reticulo A, contiene tres cadenas de longitud 2 compuestas de
un elemento de altura nula, tres elementos de altura unidad y de un elemen-
to de altura 2.

El reticulo A representado por el diagrama de Hasse H (véase la fig.
1.9, @) es de Dedekind y también distributiva.

En un reticulo A con el cero y la unidad estructurales, en el cual cada
elemento #m tiene el complemento m, puede considerarse dada la operacién
monaria fi(m) = m. El reticulo A se denomina reticulo con complementos,
si posee el cero estructural y una operacion monaria fi(m) = m, tal que

m=my . (1.6)
miJm; = Ny, ; (.7
mNim = 0. .8

En virtud de (1.6) y (1.7), una de las operaciones U, N puede ser represen-
tada por medio de otra. Por consiguiente, el reticulo con complementos
puede definirse como dlgebra, cuya signatura se compone de U, ~

Serialemos unos corolarios de las identidades (1.6)—(1.8). Tenemos
0 € m para todos los m € M; por consiguiente, 0Mm = 0.

Si hacemos 1 = 0y 0Nm = 0, 0Um = m insertamos en (1.7), obtene-
mos 1m = m, 1 Um = 1. Por consiguiente, 1 es el elemento maximo del
reticulo, o sea, es la unidad estructural,

Segin las identidades (1.8) y (1.7).

mUm = 1.
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Un reticulo distributivo con complementos se denomina digebra de
Boole,

Se denomina isomorfismo n entre las Aalgebras A4, = (M, St ¥
A = (M, $) una correspondencia biunivoca entre los elementos de por-
tadores y signaturas, tal que

ff(mﬂ‘n Mazy - - o mﬂ‘a—l) ol mmén(.)‘})("?(’rfou)n ﬂ(ma;}‘ LR
1(Mac_)) = n(tMa.),
My €My, p(ma) €M, j =1, 2, ..., k fi€S, (i) €S

Las dlgebras, entre las cuales existe isomorfismo, se llaman isomorfos.
Todas [as leyes del dlgebra A, son vilidas también en el 4lgebra 4; isomorfa
a la primera.

Teorema 1.2. (teorema de Stone). El digebra de Boole es isomorfa al
digebra de Cantor.

Para las algebras consideradas tiene lugar el siguiente isomorfismo:
aUb « M,UM,, aNb < M,N\My, @ M,,

donde en los miembros izquierdos de las expresiones figuran las opera-
ciones tedrico-reticulares y en los derechos, de la teoria de conjuntos. Estas
operaciones tienen la misma denotacién. Por eso, para distinguirlas desig-
naremos los argumentos de operaciones tedrico-reticulares mediante letras
minisculas y los argumentos de operaciones de la teoria de conjuntos por
medio de letras mayusculas del alfabeto latino.

En la fig. 1.12 se representa un reticulo distributivo con complementos, en ¢l cual los

ltados de la ion de las operaciones tedrico-reticulares de unién, interseccién y
complemento se determinan en las 1ablas (1ablas 1.2, a. b y ).

Fig. 1.12
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Tabla 12, a «UB

k i
k 1
| 1
k 1
k 1
I 1
| 1
k 1
| i

Tabla 1.2, b an g

4 1
] 0
] a
b b
¢ c
b d
c €
k k
k 1
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Tabla 1.2, ¢

@ @ Comenrarios

0 1 Ul =1,0N1=0
a k alk=1l,anNk =10
b e bUe=1 bNe=10
< d cUd=1,cNd=0
€ b eUb=1eNb=0
k a kUg=1kNa=10
1 o I1Jo0=L 1N0=0

A los elementos a ¥ o les corresponden los vértices del diagrama A que distan ma-
ximalmente (en el sentido de la longitud de la cadena que une estos elementos).

§ 1.5. Modelo. Algebra de relaciones

Definamos la relacién n-aria andlogamente a la relacién binaria.

Un producto cartesiano de n conjuntos M, iguales entre si, se denomina
n-ésima potencia M™ del conjunio M. Por relacién n-aria T en el conjunto
M se comprende un subconjunto 7" de su n-ésima potencia T C M”". Si ele-
mentos My, Mi, - .., M, € M, (i, My, ..., M) € T, se dice que los ele-
mentos mi, My, . .., M, estin en la relacién 7. Cualquiera relacién n-aria
puede ser prefijada en la forma de una fistg, cuyos elementos son las suce-
siones (cortegjos) determinadas por esta relacién.

Consideremos la propiedad simétrica de relaciones n-arias que permiten
emplear aficazmente relaciones n-arias para la formalizacién de muchos
problemas practicos. Se llama siméirica tal relacién n-aria T en el conjunto

M tal, que si (my,, my, ..., m.) e T, entonces cualesquiera sucesion (1,
My, ..., M) obtenida de (mi, M, . . ., M) permutando los elementos
estd también en la relacién T (my, my, ..., m)eT.

En esencia, una relacidn n-aria gue posee la propiedad simétrica prefija
los subconjuntos compuestos de n elementos, es decir, subconjuntos de po-
tencia n. A continuacién, una relacién n-aria que tiene la propiedad si-
métrica la denominaremos relacidn S-rica (S-relacidn) vy, si se trata de una
S-relacién, simplemente relacién S o relacién verbal. Los elementos de un
conjunto M, en ¢l cual estd determinada una S-relacion, los llamaremos
letras y los subconjuntos determinadaos, por la S-relacién, los denominare-
mos palabras y los designaremos con la letra griega g; con el indice inferior.

Se puede prefijar S-relacion en formas mds cémodas: mediante la
matriz de incidencia y el grafo modelo (mografo).

Lldmase matriz de incidencia Q = [g;;] una matriz de dos dimensiones,
a cada columna de la cual le corresponde biunivocamente una letra, a cada
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fila, una palabra determinada por la S-relacién y

_— 1 para m; €
b 0 en caso contrario.
Por ejemplo, la 3-relacién en el conjunta M = |a, b, ¢, j, m, 0} que determina las pa-

labras w1 = @, j 0), w2 = & m, 0}, s = lo, ¢, @}, pa = |& 0 j§ puede ser prefijada,
empleando la matriz de incidencia , del modo siguiente:

ab ¢ j m o
10 01 0 1
Q= 10 0 0 1 1
10 1 0 0 1
01 0 1 0 1

Si la relacion § determina el subconjunto M* C M?, llamaremos poten-
cia de la relacién S el numero s,

No se puede prefijar la S-relacion de potencia arbitraria empleando un
grafo, cuyo portador coincide con el conjunto de letras (véase el teorema
1.3). )

Diremos que un arco u es incidente a un vértice v, si v es su origen
0 su extremo. Llamase subgrafo G* de un grafo G el grafo G’ obtenido
del grafo G después de eliminar unos vértices y sus arcos incidentes. Un
grafo se llama completo, si todos sus vértices son adyacentes dos a dos.

Teorema 1.3. Si por lo menos tres palabras distintas determinadas por
una relacion S corresponden a un subgrafo completo de un grafo G el grafo
G no prefija la relacion S.

o Al prefijar una relacién verbal por un grafo asociaremos la palabra
determinada con un subgrafo completo del grafo G. Entonces, el teorema
queda obvio. En efecto, es suficiente considerar el siguiente ejemplo. Sea
que una 3-relacion en el conjunto M = {a, s, o, /} determina las palabras
m= (s 01, =1, 0 a}, pa= [a, s o], a las cuales corresponde el
grafo G representado en la fig. 1.13, #. Esto es un grafo completo de cuatro
vértices. Este puede prefijar la palabra (a, s, o, !} o las palabras {s o,
N, (4 o al, {a o s o las palabras {s, 0}, {/ o}, {s /], (& I}, {s
a), a o}, es decir, tiene lugar la multiformidad. =

Para prefijar univocamente las relaciones verbales, es necesario poner
en correspondencia a cada letra (vértice) un conjunto de identificadores
de las palabras que contienen esa letra. Entonces, a cualquiera palabra le
corresponde biunivocamente un subgrafo completo, a cada vértice del cual
corresponde el identificador de esta misma palabra. Tal subgrafo completo,
correspondiente a la palabra, lo denominaremos a continuacién de elemen-
to. El proceso de poner en correspondencia a cada letra un conjunto de
identificadores de las palabras que contienen esa letra, lo llamaremos mo-
delizacién del grafo G. Como resultado de modelizacién del grafo G, a

3—6577
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9 0123

7 g T3 2)

8(2,3}
aj 8) Fig. 1.13

cada vértice corresponde biunivocamente una letra ponderada por un con-
junto de identificadores de las palabras que la contienen, con ello, dos vérti-
ces son adyacentes (se unen mediante una linea no orientada es decir, la
arista), si l€s corresponde por lo menos un identificador comun. Una fun-
cion obtenida por este modo en el grafo, cuyo campo de definicién son
los vértices del grafo y cuyo campo de valores son los conjuntos de identifi-
cadores de las palabras, la denominaremos grafo modelo (mografo} y la
denotaremos con G™ = ((V, W), U). Aqui W es el conjunto de identifica-
dores de palabras.
Los mografos Gy G¥que prefijan, respectivamente, las relaciones S, = I{s o 1), §
o al, |a o s]} en el conjunto My = (a, 5, 0, {} ¥y Sa={la 4 o ), ta m o},
N ] Nl

lo. ¢ al, 1B 0 7)) en el conjunto Mz = {a b ¢ j, m, o) se ofrecen en las figs. 1.13, &
N \--;--J

3
y L4, a

Para prefijar S-relaciones se utiliza también el término hipergrafo.
Cuando lo representan geométricamente, sus letras se ponen en co-
rrespondencia biunivoca a los vértices y sus palabras, a los circulos de Euler
que abarcan las letras que integran la palabra correspondiente,

La interpretacion geométrica del hipergrafo que determina la coleccidn (M, Si),

M=la b i mol,

Sy = (fa 4 0}, 14, m, o), o, ¢ al, (b o f})
estd representada en la fig, 114 b,

Empleando un grafo se puede prefijar univocamente una S-relacién,
si en calidad de portador del grafo tomamos tanto el conjunto de letras,
como el conjunto de identificadores de palabras. Tal representacién de S-
relacién se realiza por medio de un grafo de dos partes.

Un grafo G = (¥, U) se denomina de dos partes, si su portador estd
partido en dos subconjuntos ¥*, V¥~ que no tienen vértices comunes y
el origen de cada arco u € U pertenece al subconjunto V'*, y sdlo a él,
mientras que su extremo pertenece al subconjunto V™, y sélo a él. Al prefi-
jar S-relaciones a los elementos del subconjunto V'* en un grafo de dos
partes G = (¥, U) se les ponen en correspondencia binivoca las letras, a
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Fig. 1.14

los elementos del subconjunto ¥V, es decir, los identificadores de las pa-
labras y (va, vg) € U si, y sdlo si, el vértice v, corresponde a una letra que
figura en la palabra vg. El grafo de dos partes que prefija la 3-relacién
Ss = [{a J. 01, g m, 0], {0 ¢ a], {b o j]] en el conjunto fa b, ¢
/» m, o] estd representado en la fig. 1.14 c.

Uno de los principales conceptos de la matematica discreta es el concep-
to de modelo. Llamase modelo ¥ una coleccién del conjunto M con las
relaciones prefijadas en él.

§= (R, Rz, ..., Rin, B2, Rz, ..., Ran, ..., Rz, Rz, ...,
48 2n Rﬂﬂ!u}a

donde el conjunto M es el portador del modelo y las relaciones prefijadas
Ria, Ria € M' forman la signatura del modelo % = (M, S).

La potencia del portador determina el tipo-ario de la relacién. Dos rela-
ciones R, ¥ Ra con la misma potencia se llaman compatibles segiin la union
o simplemente compatibles.

Esta claro que la operacién n-adica fa(imy, ma, . . ., m,) = M., puede
ser examinada como una relacion (n + 1)-aria R, 4.

Denominaremos, segin A. I. Méltsev, sistema algebraico una coleccién
del conjunto M con las operaciones y relaciones prefijadas en él.

Un caso particular del sistema algebraico es digebra de relaciones y su
extension, dlgebra relacional.

B
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Examinemos el dlgebra de relaciones, cuyo portador es un conjunto de
relaciones y la signatura son las operaciones de unién, interseccidn, diferen-
cia y del producto cartesiano extenso de relaciones.

La unidn R,\J Rs de dos relaciones compatibles R, y Ry es el conjunto

_de todos los cortejos, cada uno de los cuales pertenece por lo menos a
una de estas relaciones. La unidén de las relaciones

Ra=1(a, b c)(a b d), (b c e)ly
Rs=1{(a b d), (b d e), (c d e)) es
Ro.URs= [(a b ¢), (& b, d), (b, ¢ e), (b d e) (c d e)l.

Las relaciones consideradas son compatibles, ya que sus potencias son igua-
les: $(Ra) = $(Ry) = 3, Roy R CM’, M= (g b ¢ d e).

La interseccion Ry N Ra de dos relaciones compatibles R, y Rg es el con-
junto de todos los cortejos pertenecientes tanto a la relacidon Ra, como a
la relacién Rs. La interseccién de las relaciones Rqe ¥ Rp es

R.NRs= {(a, b o), (a b d), (b ¢ &)N{(a b d),
(b d e)(cd e =({ab dl

La diferencia R, ~ Rga de dos relaciones compatibles R y Ry es €l con-
junto de todos los cortejos pertenecientes a la relacién R, y no pertenecien-
tes a la Rs. Asi, por ejemplo, Ra NRs= {(a, b ¢), (& b d),
(bcelNfabd,hde)ldel=1abo)deae)

El producto cartesiano extenso R. X Rg de dos relaciones R, y Rg es
el conjunto de todos los cortejos  tales que  es concatenaciéu del cortejo
a € R, y del cortejo b € Rg(concatenacién de cortejos (a1, @z, - - . @) ¥ (b1,
b1, . .. bm) es el cortejo (ay, @z, . - ., @, b1, b2, . . . bm)). Por ejemplo,
para las relaciones examinadas R« ¥ Rg el producto cartesiano extenso es

R, % {Qe= {(@ b), (¢ d), (@ €}] X [(& b c)
b d ey=1I{a b a b ¢, (& b b d e, (¢ d a b o),
(c d bde),(aeabc),laebddel

Los conceptos del modelo y del dlgebra de relaciones tienen amplio
empleo para formalizar los objetos reales. Consideremos cémo se utiliza
el 4lgebra de relaciones para elaborar el apoyo de informacion, es decir,
una base relacional de datos.

La construccién de una base relacional de datos se asienta en una tabla bidimensional,
cada columna de la cual corresponde a un dominio (o a un atributo correspondiente a vna
parte del dominio) vy cada fila, & un cortejo de atributos que estdn en la relacién R.

Consideremos una relacidén S-aria Rs (exdmenes) (tabla 1.3).
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Tabla 1.3
Rs| B D: Ds D: Dy
1| K5-01 TEORIA DE LOS PROF. IVANOV 03 AULA 210
AUTOMATAS ENERO
2| Ks-02 LINGUISTICA PROF. PETROV 03 AULA 211
MATEMATICA ENEROQ
3| K5-03 FlsICca PROF. S{DOROV 03 AULA 211
ENERO
4| K504 LENGUAJES PROF. PETROV 05 AULA 210
ALGORITMICOS ENEROQ
5| Ks-m FlsSicA PROF. SIDOROV 09 AULA 210
ENERO
6 | K502 TEORIA DE PROF, IVANOV 09 AULA 211
LOS AUTOMATAS ENERO
7 | K5-03 LENGUAIES PROF. PETROV 10 AULA 211
ALGORITMICOS ENERO
8 | K5-04 LINGUISTICA PROF, IVANOV 10 AULA 210
MATEMATICA ENERO

de medo andlogo lenemos dominios:

La tabla 1.3 determina una relacién de un modelo relacional de datos. La relacién Rs
es un subconjunto del producta cartesiano Dy X Dy X Dy X Dy % Ds, cuyo factor es el domi-
nio Dy. Los elementos del dominio £ representan valores de atributos. E! dominio D, (grupe)
contiene valores K5-01, K5-02, K5-03 y K5-04:

Dy = |K5-01, K5-02, K5-03, K5-04];

D1 {asignatura):
D; = {TEORIA DE LOS AUTOMATAS, LINGUISTICA MATEMATICA, FISICA,

LENGUAIJES ALGORITMICOS|;

D; {examinador);
Dy = [PROF. IVANOV, PROF. PETROV, PROF. S[DOROV;

Dy (fecha):

Dy = |[ENERO 03, ENERO 05, ENERO 09, ENERO 10};
Dy (aula):

Dy = [AULA 210, AULA 211).
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El orden de las columnas esid fijado, las filas, en el caso comun, se sitdan arbitrariamente.
Las cifras de la primera columna 1, 2, ..., 8 identifican los elementos de la relacidén Rs.

Definamos digebra relacional para transformar relaciones. El portador del dlgebra rela-
cional es un conjunio de relaciones. La signatura, excepto las operaciones introducidas (ta
unién, la interseccién, la diferencia y el producto cartesiano extenso de relaciones) incluye
operaciones especiales en las relaciones: eleccién, proyeccién y agrupacion.

La operacidn de eleceidn es un procedimiento de la construccidn de un subconjunto “ho-

rizontal” de una relacidon, o sea, un subconjunte de cortejos que poseen una propiedad
planteada.

Ejemplo 1.3. Empleando la operacion de eleccion construir una relacién Rs (el horario
de examenes del Prof. 1vanov). El resultado de la operacién de eleccion son las filas, en las
cuales el dominio Dy se representa por el valor Prof. Ivanov; son las filas 1, 6 v 8 (tabla 1.4).

Tabla 1.4

Rs| D D; Ds Dy Ds

1| Ks5-00 TEORIA DE LOS PROFE. IVANOV 03 AULA 210
AUTOMATAS ENERO

6 | K5-02 TEORIA DE LOS PROF, IVANOV 09 AULA 211
AUTOMATAS ENERO

8 | K5-04 LINGUISTICA PROF. [VANOV 10 AULA 210
MATEMATICA ENERO

Para definir proyecciones de las relaciones en ¢l dlgebra relacional el conjunio se parte

en dos subconjuntos en el caso de la relacion binaria ¥ en n subconjuntos en el caso de la
refacién m-aria:

RRCM M=AUB ANB=Q, R, C AxB;

"
Roc M, M= JA; 4,.04,=0,

i=t
fay fplic 7 )€ Vi, B2y oo da), B C AT X A2 X, - .oy X An.

Lldmase proyeccion Pr{R2/4) de una relacion binaria Rz, Rz C A » B sobre 4 un con-
junto de elementos |a/{a:, &) € Rzj.
Lldmase proveccion Pr(R./Ai, An, ... A) de una relacidn n-aria
Ry C Ay X Az X .. .% Ay, n 2 m,sobre Ay, Ajy, . . ., As, un conjunto de cortejos (@i iy,
.. @), donde @, € 4, an € A, . . .8, € A,,, cada uno de los cuales es una parte de un
elemento de la relacion n-aria R,
La operaci6n de proyeccion determina la construccién de un subconjunto “vertical” de
una relacién, es decir, de un conjunto de un subconjunto de cortejos que se obtiene eligiendo
unos y excluyendo otros dominios.

Ejemplo 1.4. Una proyeccién Pr (Rs/Ds, Ih) engendra un conjunto de pares, cada uno
de lds cuales determina la asignatura y al examinador (tabla 1.5).
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’ Tabia 1.5.
Ra D; Ds
TEORIA DE LOS AUTOMATAS PROFE. IVANOV
LINGUISTICA MATEMATICA PROF. PETROV
FisSicAa PROF. SIDOROV
LENGUAJES ALGORITMICOS PROF. PETROV
LINGUISTICA MATEMATICA PROE. IVANOV

En la tabla 1.5, las filas iguales se unen en una sola.

La operacidn de agrupacidn de dos tablas que tienen un dominio comiin permite con-
struir una tabla, cada fila de la cual se forma uniendo dos filas de las tablas de partida.
En las tablas prefijadas se toman las filas de un mismo valor que integran un dominio comun;
una columna se pone en correspondencia al dominio comiin.

Ejemplo 1.5. Por dos tablas prefijadas {tablas 1.6, @ y 1.6, b) hallemos €l resultado de
la operacién de agrupacién segin el dominio D, (tabla 1.6, ¢).

Tabla 16, a
R D, s Ds Dy Dy
K5-01 |TEORIA DE LOS PROF. IVANOV 03 AULA 210
AUTOMATAS ENERO
K5-02 |LINGOISTICA PROF. PETROV 03 AULA 211
MATEMATICA ENERO
K5-03 |FISICA PROF, S{IDOROV 05 AULA 211
ENERO
K5-04 [LENGUAJES PROF. PETROV 05 AULA 210
ALGORITMICOS ENERO
Tabia 1.6, b
Ri Dl Dy Dy Dy Dy
K5-01 |FISICA PROEF. SIDOROV (] AULA 210
ENERO
K5-04 |LINGUISTICA PROF. IVANOV 10 AULA 210
MATEMATICA ENERO
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Tabla 1.6, a
Ry Dy Dy Dy D I
K5-02 |TEORIA DE LOS PROF. [IVANOV o9 AULA 211
AUTOMATAS ENERO
-K5-03 |LENGUAJES PROF, PETROV 10 AULA 211
ALGORITMICOS ENERO
Tabla L6, ¢
R| Dy i Dy Dy Ds Dj oy 2 fili
K501 | TEORIA PROF. 03 | AULA|FISICA PROF, 09 |AULA
DE LOS IVANOV | ENERO| 210 SIDOROV | ENERO| 210
AUTOMATAS
K5-02| LINGUISTICA |PROF. 03 |AULA|TEORIA PROV. 09 |AULA
MATEMATICA |PETROV | ENERO| 21l |DE LOS IVANOV | ENERO| 211
AUTOMATAS
K5-03| FISICA PROE 05 |AULA|LENGUAJES | PROF, 10 |AULA
SIDOROV | ENERO| 21t |ALGO- PETROV | ENERO| 211
RITMICOS
K5-04| LENGUAJES |PROF. 05 | AULA|LINGUISTICA | PROF. 10 |AULA
ALGO- PETROV | ENERO| 210 |MATEMATICA|IVANOV |ENERO| 210
RITMICOS

De manera andloga, como por la condicion de “igoaldad”, se puede definir la operacidn
de agrupacién por otras condiciones de comparacidn: >, =, #, <, <. Por ¢jemplo, defina-
mos la operacién de agrupacion por la condicién “mayor que” ().

Se llama agrupacion por la condicidn “mayor que” de la relacion R, respecto al atributo
X v de la relacidn Ry segin el atributo Y (los atributos X y ¥ son de un mismo dominio
comun para tas relaciones R; ¥y Rp), X > Y, un conjunto de todos los cortejos =; tales que
; es la concatenacion del cortejo a; perteneciente a R, y del cortejo by perteneciente a Rs,
donde X es una parte de a;, mientras que ¥ es una parte de by y X > Y.

En una base de datos, un pedido serd cumplido tanto mads rdpido cuanto menos opera-
ciones sobre relaciones contiene. De este modo, es de interés practico un problema gue se
examina a continuacién de simplificacién de expresién de uh conjunto por medio de opera-
ciones introducidas.
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§ 1.6. AXIOMATICA DE LA TEORIA DE LOS CONJUNTOS.
MINIMIZACION DE LA REPRESENTACION
DE LOS CONJUNTOS

Al emplear el enfoque axiomatico construiremos formalmente una teoria
de conjuntos a base de los siguientes axiomas.

Axioma de existencia. Existe por lo menos un conjunto.

Axioma de voluminosidad (de extensionalidad). Si los conjuntos M,
» My se componen de los mismos elementos, ellos coinciden (son iguales):
My = M. ’

Axioma de unibén. Para los conjuntos arbitrarios M, y My existe un
conjunto, cuyos elementos son fodos los elementos del conjunto M, y todos
los elermnentos del conjunto My y que no contiene ningin otro elemento.

De los axiomas de voluminosidad y de unién se deduce que para los
conjuntos arbitrarios M, y M, el conjunto que satisface las condiciones
del axioma de union es dunico. En efecto, si existieran tales dos conjuntos
M., y M,,, contendrian los mismos elementos (todos los elementos perte-
necientes al conjunto M, y todos los elementos del conjunto M). Por esta
razon, en virtud del axioma de voluminosidad, M., = M., = M.. Este ini-
to conjunto M, se llamara unidn de los conjuntos M, y M, y se denotard
M, = MU Mp.

Axioma de diferencia. Para los conjuntos arbitrarios M, y M, existe
un conjunto, cuyos elementos son aquelios, y sdlo aquellos, elementos del
conjunto M, que no son elementos del conjunto M.

De modo analogo, de la segunda y la cuarta axioma deducimos que
para los conjuntos arbitrarios M, y M} existe exactamente un conjunto que
contiene elementos del conjunto M, no pertenecientes al conjunto M. Este
conjunto M. se denominara diferencia de los conjuntos M, y My:
M. = M, ~ M,.

Axioma de potencia. Para cada conjunto M existe una familia de con-
Juntos B({M) (booleano), cuyos elementos son todos los subconjunios M;,
M; C M, y sdlo éstos. ¢

Axioma de existencia del conjunto vacio. Existe tal conjunto /3 que
ningin elemento le pertenece.

Si las operaciones y los conceptos de la teoria de los conjuntos fueron
introducidos intuitivamente, el enfoque axiomatico permite definir formal-
mente estos conceplos y operaciones de la teoria de los conjuntos basiando-
se en los seis axiomas introducidos.

Con auyda de las operaciones de unién y de diferencia, empleando los
axiomas introducidos, definamos otras tres operaciones sobre los
conjuntos.

La interseccion de los conjuntos M; v M, se determina mediante la
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férmula

Mo My = My N (Mo N Mp).

Se puede mostrar que los elementos de interseccién M, MM, son
aquellos, y sélo aquellos, que pertenecen al conjunto M y también al con-
junto M. .

El complemento M del conjunto M se define por la formula

M=1\ M,

La diferencia simétrica de los conjuntos M, y M, se determina por me-
dio de la férmula

My N My = (M, N Mp)U(Mp N M,).

A base de la axiomdtica introducida puede ser demostrada la validez
de las leyes aducidas anteriormente que determinan las propiedades de Ia
signatura del dlgebra de los conjuntos (las leyes idempotente, conmutativa,
asociativa, distributiva, de operacién con constantes, de complemento
doble y las leyes propuestas por De Morgan) y también de las siguientes
leyes:

ley distributiva de interseccidn respecto a la diferencia

MOV My N M) = M, N My N M, N M.

ley conmutativa de diferencia simétrica

My N My = M, Mg

ley asociativa de la diferencia simétrica

M, N (My N M) = (M N M) N M,

ley distributiva de interseccion respecto a la diferencia simétrica

MMy N M) = MoNM, N~ M, NM,;

leyes de encolamiento

M NM UM, N My = Ma, (MaUM) N (MUMs) = M.:

leves de absorcicn

Mu UM.an = Ma, Man(MaUMb) = Ma;

leyes de Poretski

M, UM NMy = My\UM,,

Mo N (M, UMy) = My M,

Empleando estas leyes examinemos el problema de minimizacién de la
representacién del conjunto A mediante las operaciones U, N, ~

Como complejidad de la representacion del conjunto M comprendere-»
mos el nimero de simbolos M;, M; en la expresién que lo prefija.
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.Sea que en el espacio 1 = [M), My, M} se prefija un conjunto de la forma

MM\, Mz, My) = MUNMNMLUMNMNMUMNMNMUMNMN

NA UM NAMNM; UM, N M0 M,

A base de las leyes idempotente, conmutativa y asociativa de unidn, obtenemos

MMy, M2, My) (My N M0 My UM, N M N M) U (M N M N M UM, DA O M) U

LM N MO E, UM NM:NM)UM NMNMUMNMOM)U

U (M, N M O My UM DM 0O M)

Al usar_las leyes conmutativas de_interseccién y de encolamiente, tenemos M(My, M,
M) = MiNAMyUM NMUMNMOMUM MM UM NM.

Segun las leyes conmutativas de unidn y interseccién y la ley de encolamiento obtenemos
MMy, Mz, Ma) = M0 M UM, UM; N M UM, 0 M,. En virtud de las leyes conmwiativas
deinterseccién y absorcion tenemos MM, Mz, M3) = M N MU M; UM N M:. La comple-
jidad de la representacién del conjunio prefijado disminuyd de 21 a 5.

Denominaremos estrategia de transformaciones la sucesion de aplica-
cién de Ias leyes. La complejidad de la representacién de un conjunto que
se obtiene aplicando estas leyes (cada una de las cuales determina una trans-
formacién equivalente) depende de la estrategia utilizada. Hallemos una
estrategia que engendra siempre la expresion minimal de un conjunto
prefijado.

Consideremos una algebra A = {B(1), U, N, ~ ) y determinemos los
conjuntos que pueden engendrarse (formarse) de conjuntos arbitrarios A,
M, . . ., M, llamados generatrices del espacio 1 empleando las operaciones
un ".

A continuacién un conjunto

M = {M para i = 1,

— i=1,2 ..., n
M; para g; = 0, g G

lo denominaremos ferma primaria. Un conjunto de tipo

friMf* = MOOMEN. .. M 0= 0, 1.

lo llamaremos constituyente.

El niimero comun de distintas constituyentes no supera 2”. A cada cons-
tituyente se le puede poner en correspondencia un juego binario de longitud
n, €l nimero de estos juegos equivale a 2". Si unas constituyentes son
iguales a (&, el nimero comun de constituyentes es menor que 2", con
ello, entre los conjuntos existen al menos dos tales que pueden expresarse
uno por medio del otro, es decir, dependientes. Por ejemplo, si n =2 y
M; = M,, existen sélo dos constituyentes distintas de &

@ = MYNMS = M{NM;,
Gy = MYNM;, G = M{NM;.
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Lema 1.1. La interseccion de dos consnruyemes d;sﬂmas es vacia.
a En efecto, si las constituyentes C, = r] My Cy = ﬂ M son di-

i=]
versas, entonces ax # ok por 1o menos, para un k, k& < n. Pero, entonces,
MZ'I'\M‘;; = (J vy, por consiguiente, C;NCh = (. =
Lema 1.2. La unidn de todas las constituventes equivale a 1.
o Representemos 1 en la forma
n

1= N MUM)
f= 1

Y, abriendo el paréntesis, obtenemos la unién de todas las constituyentes
en el segundo miembro de la igualdad. m

Lema 1.3. El conjunto M; equivale a la unidn de las constituyentes,
cada una de las cuales contiene M},

@ Segin el lema 1.2, )

1=CUGU.. WG = Ucg,

i=1

donde G, i = 1, 2, .. ., /, es una constituyente. Determinemos la intersec-
cién de los miembros primero y segundo de esta expresidn con. M;. Tenemos

M = (MNCHUMN GV, . .UM NC).

Si C; contiene M? en calidad de argumento de interseccién, se tiene
MiNC; = 3. Pero, si C; contiene M}, se tiene C;NM; = C;. Por consi-
guiente, M; es la unién de aquellas constituyentes que contienen M en cali-
dad de factor. m

Teorema 1.4. Cada conjunto no vacio formado de los conjuntos M,
M, . . ., M, empleando las operaciones\U, N, ~ es la unién de cierto niime-
ro de constituyentes.

a En virtud del lema 1.3, el teorema es valido para los conjuntos M,
M, ..., M, Por consiguiente, es suficiente demostrar que si conjuntos
arbisrarios Ma y Mp pueden representarse en forma de la uni6n de cierto
numero de constituyentes, los conjuntos M, UM, M, N M, y M, si no son
vacios, pueden también representarse en forma de unién de las
constituyentes.

Sea que los conjuntos M, y My son representables en forma de la unién
de constituyentes M, = G, UC,,U.. . UCs ¥ Mp = Cp,UCpU...UCGCs,
Entonces el conjunto M, UM, puede representarse ewdentemcnte en forma
de unién de las constituyentes.

Segun la ley de distributividad, M. NMp = (C,,NCp)V. . . L(Ca N
N Cp,). Ademds, si C;, 2 Cp,, de acuerdo con ¢l lema 1.1, C;,NCp, = &3,
en caso contrario, C,, # Cp,. Por consiguiente, la interseccién M;NMp o
bien es vacia, o bien es representable en forma de unién de las cons-
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tituyentes. Demostremos que el conjunto M es también representable en
forma de unién de las constituyentes, si M = C;UGU. ..UCk.
Debido a la ley correspondiente a De Morgan,

M=GUGU...UG=GNGN...NGCk = M, NMw1. ..
e NMpeNMPNMEO. . OMeN. . . OMYNMeN. ..

- NMpr = (M{nUM3aU. . UMY NM UM, ..
CLUMEINL L NMUMe UL L UM,

Abriendo el paréntesis y empleando las relaciones M, NM, = &,
M. UM, = 1 y también afiadiendo el factor Mz U M; a las intersecciones
que no tienen indice inferior 8, llegamos a que el conjunto M es también
representable en forma de unidn de las constituyentes. m

Teorema 1.5. De n conjuntos en el digebra A = (B(1), U, N, ~) se
puede formar no mds de 2% conjuntos.

o Debido al teorema 1.4, cada conjunto M es la unién de constituyen-
tes, €l niimero de las cuales no supera 2"; por consiguiente, el mimero de
distintas uniones no supera 2*". Ademads, si los conjuntos My, M;, . . ., M,
son independientes, es decir, todas las constituyentes se distinguen del con-
junto vacio, el nimero de constituyentes diversas es igual a 2" y el nimero
de conjuntos formados por éstas en forma de su unién es igual a 22" (te-
niendo en cuenta el conjunto vacio). =

La introduccién del concepto de la constituyente permite prefijar un
conjunto M, para los conjuntos independientes fijados M), M, ..., M,
del conjunto universal 1, en forma de unién de las constituyentes:

M= UM

Joim1

Cada conjunto fijado M; C 1 divide el espacio en dos partes: pro-
piamente M; y M;. Para los conjuntos independientes M; € [Mi/i = 1, . . .

..., n} elespacio se parteen 2 X 2 x . . . X 2 = 2" regiones. Cada regién
A veces

es la interseccién de n conjuntos Af; o M;, i = 1, . .., n. Ponemos en co-

rrespondencia a esta regién un vector binario (o1, 02, . . ., ox), en el cual

o = 1, si la interseccién C = () M;' contiene M; y o; = 0, si contiene M,
i
y también el equivalente decimal

d(C) = i‘, -2,

i=1

Cualquier conjunto M en el espacio 1 puede representarse en forma
de unién de estas regiones. Al conjunto M le pongamos en correspondencia
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7, (1.3
My (13,4}
M,(3,4,5)
Mo (2.4,5)
c)

un vector binario de la longitud 2", en el cual al orden i-ésimo le co-

rresponde una regidn con el equivalente decimal, igual a i. Representemos

el vector que determina el conjunto en forma de eguivalente decimal:
21—!

dM)= 3 e2', ¢ =0, 1.
i=0

Por consiguiente, el conjunto M en el espacio puede prefijarse en forma
de equivalente decimal correspondiente.

En el espacio tridimensional 1 = [M,, M, M;}, consideremos, por
ejemplo, un conjunto M(M,, M, M3) con el equivalente decimal
d(M) = 217. Tenemos 217 = 1-27 + 128 + 0-2° + 1.2° + 1-2* + 0. 22 4
+ 0-2' + 1-2°

Al conjunto M le corresponde un vector binario (1, 1,0, 1, 1,0, 0, 1)
que determina la inclusiéon de regiones en el conjunte M (fig. 1.15, 4).

Ademds del diagrama de Euler, el espacio puede ser prefijado en forma
de hipercubo o cubo n-dimensional (#n-dimensién del espacio, igual al ni-
mero de conjuntos fijados).

Se llama hipercubo (cubo n-dimensional) un grafo H, cada vértice del
cual corresponde biunivocamente a una regién del espacio y dos vértices
se unen por una arista, si corresponden a regiones colindantes (que tienen
la frontera comun). Los vectores binarios puestos en correspondencia a es-
tas regiones se distinguen en un, y sélo en un, orden.

El hipercubo para el ejemplo considerado se representa en ta fig. 1.5, & (los vértices
correspondientes a las constituyentes del conjunto M estdn rayadas).

Frecuentemente un conjunto M se prefija en forma de una tabla binaria, a cada fila
de la cual le corresponde biunivocamente una constituyente. El conjunto de filas de la tabla
esté ordenado linealmente segiin el imiento del equivalente decimal de un juego binario
correspondiente, Los conjuntos que forman el espacio corresponden a las columnas. La tltima
columna se pone en correspondencia al conjunto A v la unidad indica que la constituyente
correspondiente entra en el conjunto M. En el caso dado tenemos la tabla 1.7.
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Analiticamente ¢l conjunto M se prefija en Tabla 1.7.
forma
M =M NMOMUMOMOAMU HOY | M| M M M

UM NM N MU .
UM, NM: N M UM, 0 M0 M,
¢ ¢n forma de mografo
GM = (¥, 5.
V= (M Msi=121|5c¥V,

T Y -
————e 20O
—_-—_O O - -0 O
— oD~
—_—_e—-—,O O -

Sy = [(M, Mz, Ma}, (M, M, M),
L " L f
1 2

}M:, M, ﬁlli, (M, My, My}, (M), My, M} (fig. 115, o),
L ] | ]

3 4 5

En ¢l dlgebra considerada .4 = (B(1), U, N, ~ ) las operaciones son de-
pendientes. En efecto, debido a la ley segiin De Morgan se puede construir-
todo conjunto de 22" conjuntos empleando el dlgebra A = (B(1), U, 7).
Las dlgebras A = (B(1), U, 7>, A = (B(1), N, ~ ) son equivalentes en el
sentido de engendrar cualquier conjunto de 22" conjuntos. Ellas pueden
sustituirse por las dlgebras 4 = (B(1), U, N, 1), A = (B(1), N, \, 1,
respectivamente, en virtud de la férmula M = 1 N\ M, donde ¢l universo
1 se examina como operacion 0 adica.

Debido a las igualdades

M, UMy =(Ma - My (M N\ M),
M N My = Mg N (M, N Mp)

el dlgebra (B(1), U, \°, 1) puede ser sustituida por el dlgebra de tipo
(B(1), N, N7, 1).

Examinemos el problema de minimizacién de la representacion de los
conjuntos en el dlgebra de Cantor. La interseccion de los conjuntos distintos
dos a dos NM{" se llama elemental. La expresion que prefija el conjunto
M; en forma de union de intersecciones elementales diversas se llama forma
normal de Cantor (FNC) del conjunto M. La unién de constituyentes del
conjunto M se denomina FNC perfecta del conjunto M.

Llamase FNC minimal del conjunto M la FNC de este conjunto la que
tiene la complejidad minimal.

Consideremos el méfodo de Quine que utilizaremos para obtener una
FNC minimal del conjunto M. Este método consiste en el cumplimiento
sucesivo de tales etapas.

1. Formacion de los intervalos maximales. Se denomina intervalo del
conjunto M un conjunto de constituyentes del conjunto M que forman
un hipercubo (de cierta dimension).
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Es obvio, que la potencia de un intervalo es igual a 2 en una potencia
(o sea, 2°, 2!, etc).

Por ejemplo, escribamos un conjunto de intervalos para ¢l ejemplo con-
siderado anteriormente: {000, 100, 110, 011, 111, =00, 1-0, 11—, ~11].
Aqui y en adelante “ — " significa que en conjunto correspondiente a este
orden estd ausente en la interseccion, es decir, después de la unidn de cons-
tituyentes correspondientes se hizo encolamiento por este conjunto. Por
ejemplo, el intervalo —00 correspondiente al conjunto de constituyentes
000 y 100 se obtiene como resultado de la transformacién M;NAM:N
NMUMNMNM;: = MyNM,.

El intervalo I, se denomina infervalo maximal I, del conjunto M,
si no existe otro intervalo Iz de este conjunto que contenga el intervalo
In, Tu Clg.

En el caso dado hay cuatro intervalos maximales: —00, 1 — 0, 11—,
— 11; cada uno de éstos forma un hipercubo de dimensién (arista).

La interseccién (| M{’ que corresponde a un intervalo maximal del

'}

conjunto M se denomina implicante simple de este conjunto.

La unidn de las implicantes simples del conjunto M se llama FNC abre-
viada del conjunto M.

El nimero de termas primarias que forman una implicante simple se
denomina rango de una implicante simple y una interseccion elemental se
llama rango de un intervalo correspondiente.

Al formar intervalos maximales, un conjunto de intervalos que tienen
un mismo rango se parte en zonas con la particularidad de que i-ésima
zona contiene intervalos, a los cuales corresponden juegos con i unidades
en cada uno. Entonces la formacién de intervalos maximales se reduce a
comparar elementos solamente de zonas vecinas, cuyos mimeros difieren
en la unidad. Si los intervalos construidos no son maximales, €l proceso
de comparacidon continua.

Los resultados de la comparacién para el caso considerado se ofrecen
en la fig. 1.16.

114 Fig. 1.16
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LA FNC abreviada del conjunto M(M,, M,, M;) tiene la forma
MM, Mz, My) = MaNMs UM NMs UM, N M UM, MM,

La primera etapa del método se termina al construir la FNC abreviada
del conjunto M.

Llamase FNC tope del conjunto M una FNC de este conjunto, la que
no determina M al omitir aunque no sea mds que una terma primaria.

Lema 1.4. La FNC minimal del conjunto M es de forma tope.

o La complejidad de la FNC minimal del conjunto A no se puede
disminuir por eliminar una terma primaria. Por consiguiente, esta forma
es de tope. m

Lema 1.5. La FNC rope del conjunto M se compone de las implicantes
simples de este conjunto.

0 Si al menos una interseccion corresponde a un intervalo no maximal
del conjunto M, se puede cambiar esta interseccién por una implicante
simple eliminando las termas primarias correspondientes, sin salir de la
clase de las FNC equivalentes (que dan un mismo conjunto) del conjunto
M, lo gque contradice a la definicién de la FNC tope. =

Teorema 1.6. La FNC tope del conjunto M, inclusive la FNC minimal,
se contiene en la FNC abreviada de este conjunto.

o La FNC tope del conjunto M, inclusive la FNC minimal, debido
al lema 1.5, consta de las implicantes simples. La FNC abreviada del con-
junto M incluye todas las implicantes simples. Por consiguiente, la FNC
tope (minimal) del conjunto M se contiene en la FNC abreviada de este
conjunto. m

En virtud del teorema 1.6, la construccwn de la FNC tope del conjunto
M se reduce al cubrimiento de una tabla bidimensional.

Lldmase cubrimiento de las columnas por las filas en una tabla bidi-
mensional tal conjunto de filas, en el cual para cada columna existe por
lo menos una fila de este conjunto, intersecandose con la cual esta columna
tiene unidad, con la particularidad de que al eliminar aunque no sea mas
que un elemento de este conjunto de filas, la propiedad indicada no se
cumple.

2. Construccidn y cubrimiento de la tabla de Quine. L.a tabla de Quine
es una tabla bidimensional, a cada fila de la cual le corresponde univoca-
mente un intervalo maxlma] y a cada columna, una constituyente, mientras
que en el lugar de interseccién de la i-ésima fila y la j-ésima columna se
encuentra la unidad, si [a j-ésima constituyente se incluye en el i-ésimo in-
tervalo maximal. En el caso contrario no se escribe nada o se pone 0 en
la célula (i, j).

4—6577
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Para el caso considerado, la tabla de Quine tiene tal forma:

Tabla 1.8

Constituyente
Intervalo

000 160 110 on i1

~00 1 1
1-0 1 1
11- I 1
=11 1 1

Un intervalo maximal se denomina obligatorio, si existe una cons-
tituyente que pertenece a él, y sélo a él. Un conjunto de intervalos obligato-
rios forma el nucleo del cubrimiento.

En nuestro caso el micleo del cubrimiento es el conjunto [ —00, —11]
que cubre la primera, la segunda, la cuarta y la quinta columnas. Para for-
mar un cubrimiento, se puede tomar ora la segunda, ora la tercera fila.
Como resultado obtenemos dos cubrimientos: [ —00, —11, 1 — 0}, { —00,
=11, 11—}, cada uno de los cuales es minimal y tiene la complejidad 6.
Para mayor precisién elijamos el primero de los cubrimientos que co-
rresponde a la FNC minimal que prefija el conjunto M(M;, M,
M;) = MbNM UM NM, UM N M,. Como resultado de la simplifica-
cién, la complejidad L(M) disminuyé de 15 a 6,

La FNC minimal se determina como resultado del sondeo de todos los
cubrimientos realizado empleando la transformacién de una forma
multiplicativo-aditiva en una forma aditivo-multiplicativa.

Para el ejemplo considerado identifiquemos cuatro filas de la tabla 1.8
por las letras @, b, ¢, d, respectivamente. Escribamos un conjunto de filas,
cada elemento del cual cubre j-ésima columna:

fﬁ 1— 4, = [d},j= 2= A = [ﬂ', bl,

J=3—-As= b ecl,j=4—2As=[d}, j=5—A4s = le di.
El cubrimiento de columnas con las filas de esta tabla es un conjunto de
filas que cubre todas las columnas de Ia tabla, y al eliminar aunque no
sea mds que una de estas filas, existird una columna no cubierta, Por consi-
guiente, si se representa cada uno de los conjuntos 4 ; en forma de la unién
de sus elementos y se halla la interseccién de todos los conjuntos A4 , M A

4
cada interseccién en la forma aditiva obtenida corresponde a un cubrimien-
to y el mimero de todos los cubrimientos es igual al niimero de distintas
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intersecciones en la forma aditivo-multiplicativa obtenida:
NA;=aN@Ub)nNdUe)NdNicUd) =

4
=aN(BUNd = aNbNdUaNecNd.

Las intersecciones obtenidas aNbMNd y aNeNd engendran dos cubrimien-
tos: (—00,1—0, =11} ¥y {—00, 11—, ~-11}; cada uno de los ultimos
corresponde a FNC minimal del conjunto prefijado M.

La disminucion sucesiva de la complejidad de expresién que determina
un conjunto prefijado es posible en caso de pasar de la clase de FNC a
la de formas paréntesis de Cantor (FPC). Una expresién que determina

el conjunto M se denomina forma paréntesis de Cantor si, excepto las ter-
mas primarias y los signos de operaciones de unién e interseccién, la in-
tegran los paréntesis (,).

En el ejemplo examinado la complejidad de representacién del conjun-
to, igual a 6, disminuye hasta 5 debido al empleo de la ley distributiva de
interseccién respecto a la unién MM, Ms, M3) = Mz N (M; UMz)UMN
NM;.

La transformacion de una forma multiplicativo-aditiva en aditivo-
multiplicativa se denomina método de Petrick que puede definirse por un
algoritmo correspondiente.

Definicidn intuitiva (ingenua) de algoritmo. Un conjunto de reglas que
poseen las propiedades de masa (invariabilidad respecto a la informacién
de entrada), dererminatividad (univocidad de la aplicacién de estas reglas
a cada paso), resultatividad (obtencion, después de haber aplicado estas
reglas, de una informacién que es resultado) y elementalidad (esta ausente
la necesidad de precisar ulteriormente las reglas) se denomina a@lgoritmo.

§ 1.7. Problemas y ejercicios

L1. Demaostrar que
ACB® AUB=B~ANB=A+“ANB=~AUB=1.
1.2. Demaostrar que
ANBENA) =@, ANBUO =ANBNC

L3. Resolver un sistema de ecuaciones
ANX =B
AUX =C,
donde A, B C son los conjuntos prefijados y BC 4 € C
L4. Demostrar que

A=B~{dNB)UB N A)=&.

1.5. Demostrar que si las relaciones R, y R; son reflexivas, las relaciones B, U Rz, R N R
son también reflexivas.

1.6. Demostrar que si las relaciones R, y R: son simétricas, las relaciones R, U Rz, B, N R
son también simétricas.
I*
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% o o . ni 2
1.7. Demostrar que un conjunto finito de potencia n contiene ub 1os

piin - p)!

distintos de potencia p < n.
1.8. Demostrar que UM; es el conjunto minimo que comprende todos los
']

conjuntos M.
1.9. Demostrar  que ﬂM. es el conjunto maAximo que se contiene en
i

todos los M.
1.10. Demostrar que si Ma, My, M. ¥ Ma no son vacios, se tiene

a) Mo © My y Me C My~ Ms % M: C Mp X Mg,
b) My = My v Me = My = My X M. = My X Ma;
l.'!l. Demostrar que

N M, x My, = [V (Ma, % Ms).

im im} im]

1.12. Demostrar que
(Ma % M) U (M x My) C (M. U M) X (Mp\J Ma).

Verificar en qué caso tiene lugar la igualdad en esta fdrmula.
1.13. Demostrar que

a) (MaU M) % M. = (Ma X M)U(Ms x M),

b)Y M. X (M UM} = (Mo %X M) UMy X M)

) (M. U M) X (MU M) =

= (Ma % M) U (Ms X MYU{Ma X Mg)U (M, U Mg},

d UM x UM, = U (M, x M)
FLY

iml Liml, .0

o) MM, x (Y Mp= [\ My X Mp).

i=1 j=t idmla

1.14. Construir una relacién binaria:
+a) reflexiva, simétrica, intransitiva;
b) reflexiva, transitiva, asimétrica;
c) irreflexiva, antisimétrica, transitiva;
d) reflexiva, antisimétrica, intransitiva.
1.15. ;Cuales entre tas siguientes relaciones son univocas, cudles son inversamente univo-
cas y cuéles son biunivocas:

{x, ¥) € R = y es €] padre de x,
(x, ¥) € R = y es el hijo de x,
x MeERwx =)
 NER= X =y,
X WER « |x + 5> 3 - y?

1.16, Hallar el nimero de todas las posibles relaciones binarias antisimétricas entre los
elementos de un conjunto finito que se compone de 7 elementos.

1.17. Sean M un conjunto de todos los paralelogramos en un plano, A, un conjunto
de cuadrados, Az, un conjunto de rectdngulos, A;, un conjunto de rombos en un plano, Hallar
los ltados de las siguientes relaciones: A, Ay, A,NA, ANAz i j=12 3

1.18. Demostrar que dos conjuntos son iguales si, y 610 si, los resultados de su intersec-
cidn y su union coinciden.
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1.19. Es sabido que entre 100 estudiantes 28 son los aficionados a la pintura, 42, al depor-
te, 30, a la muisica, 10, a la pintura y el deporte, 8, a la pintura ¥ la musica, 5 at deporte
y la misica, 3 a la pinwura, el deporte y la miisica, Determinar:

a) €l nimero de estudiantes aficionados solamente at deporte;

b) po aficionados a la nada.

1.20. Verificar si el dlgebra, cuyo portador es {0, 1, 2, .. ., p — |} ¥y cuya signatura
es operacidon de adicién segin ¢l modulo p, forma un grupo.

1.21. Dilucidar si una algebra, cuyo portador es {0, 1, 2, ... p — 1] ¥ cuya signatura
es operacién de multiplicacién segin ¢l médulo p, forma un grupo,
1.22, ;,Representa un campo el dlgebra, cuyo portador ¢s |0, 1, 2, ..., 2 — 1) ¥ cuya

signatura son operaciones de adicién y de muliiplicacidon segin el médulo p?.

1.23. Demostirar gue en ¢l conjunto de niimeros enteros de | a &, la relacion < puede
ser prefijada por una matriz triangular de adyacencia.

1.24, Demostrar que cualquier subconjunto de un conjunto parcialmente ordenado no
tiene mds gue una cota superior y una inferior,

1.25. Para un conjunto de vectores binarios de longitud 4 construir un grafo que prefija
la relacion X; £ Ay + (¥, Xo) (Xa, = Xp). Dilucidar, 5i este grafo prefija el dlgebra de Bo-
ole. Si prefija el resultado de operaciones de multiplicacién y adicidn.

1.26. Designemos mediante (Mz % M, @) = Ra X Rp, Ra = (Ma, £}, Rp = (M, <)
un conjunto, para el cual (7., Ms)g (M, My) = Me, < Ma, & mp, < my,. Demostrar que:

a) Ry % Ry es un conjunto parcialmente ordenado;

b) R. X Ry es una cadena solamente en el caso cuando R, 0 R consia de un elemento.

1.27. Demostrar que toda cadena es un reticulo distributivo.

1.28. Un intervalo [a, &] de un conjunto parcialmente ordenado se compone de todos
los elementos x que satisfacen la condicién @ < x < b, Demostrar que: a) la interseccién
de dos intervalos es intervalo (1al vez, vacio); b) en un retculo cualquier intervalo es
subreticulo.

1.29. Examinemos la unidn del conjunio de los nimeros mutuamente simples M y un
cenjunto de todos los productos, cuyos factores son elementos del conjunto M. En esta unién
definamos la adicién v la multiplicacidén como céleulo del minimo comin miiltiple vy el
maximo comiin divisor, respectivamente. Verificar si la coleccion de la unidén de conjuntos
examinados y operaciones de adicldn y muliiplicacién es el dlgebra de Boole,

L30. Demosirar que en todo anillo conmutativa

@+ by =a"+ E i ({')a”"b’+ b".
L

im

1.31. Demostrar que en todo anillo conmutativo

aman = RM"| (ab)n -0y ulbi‘ [nﬂl)l = aﬂlﬂl

1.32. Al examinar la coleccidén (0, +, -}, donde 0 + 0 = 0 y 00 = 0, y averiguar si
es un anillo; un cuverpo; un campo.

1.33, Demostrar que el nimero minimal de cad en la repr idn de un conjunto
finito parcialmente ordenado en forma de suma de las cadenas es igual al nimero maximal
de elementos no comparables dos a dos,

1.34. Demostrar que en cada reticulo se tiene:

aA@sh&@sd ~aleg bUd; efasbylasc)ra<gbneg
b)agby&(c by~ alegd; Db~ valeNecgbna.
¢l fas b)—(ve) (aUc = bUcy

djigs 8 &(csdy—alNec= bnrd;
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1.35. Demostrar que en cada reticulo para cualesquier elementos a, b, ¢

al albNec < @Ub)N@cy
by an(bUel 2z anbUane;
cdasb—albNcg (@aUecnb.

1.36. Demostrar que un reticulo es modular si, ¥ solo si, para cualesquier elementos a,
b, c se tiene

aftbUcN@aub) = (@aNclBHN@Ub).

1
L.37. Demostrar que un reticulo es distributivo si, ¥ s6lo si, para cuatesquiera tres elemen-
tos a, b, ¢ se tiene

afbUclUbNe = (cUaNb)N(aUb).

1.38. Hallar un conjunto de “figuras prohibidas" que pone un conjunto parcialmente
ordenado fuera de Ja clase de reticulos.

1.39. Un espacio métrico es una coleccién del conjunto M con una distancia prefijada
en €l s(/ma, mp) entre cualesquier dos elementos my, my € M que satisfacen las siguientes condi-
ciones; %

S{ma, mp) > 0, si ma % my ¥ S(tna, ma) = 0, si los elementos coinciden;

s(ra, mp) = s(mp, ma)i

${ma, mp) + S(mp, M) = s(ma, mc) (la condicién triangular).

Prefijar una métrica en un hipercubo y averiguar lo que representa,

1.40. Demostrar que en Iz FNC perfecia del conjunto A la igualdad no se rompe, si
cambia cada operacién de uni6n por la de diferencia simétrica. _

L4L. Verificar, si la forma M(M,, Mz, My) = M, N MOV ML UM, OV M, MMUM: es
perfecta. NS

1.42. Verificar, si la jorma M(M,, Mz, Ms) = MyNM:UM N M UM N MU M, N M,
es abreviada.

1.43. Averiguar, si se puede trasmitir una sucesién de simbolos en el canal de trasmisidn
en forma de mografo.

1.44. En la clase de las formas normales de Cantor minimizar el canjunto M, dado como
la unidn de sus constituyentes: M(M,, M, M, M) = 100, 2, 7, 8, 11, 14, 15), donde los
nimeros decimales son equivalentes numéricos de vectores binarios que determinan las cons-
tituyentes correspondientes de este conjunto.

1.45. Determinar la complejidad de a forma de paréntesis minimal del conjunto M prefi-
jado por su forma normal:

M = MO M NVM O MO M2 0 Ms UM O M; 0M, 0 M UM N

MMy N Ms 0 A,

1.46. Hallar el nimero de las FNC tope del conjunto

MM, My, My, Ma) = My Y M 0V My UMM N ML UM 0

MM UM N M UM, O Ms N M.

1.47. Determinar el rango (nimero de constituyentes} del conjunto

MM, Mz, ..., M) = (Ma MM UM OM) O (M DML

U M 11 M),

1.48. Hallar la FNC minimal del conjunto M, determinade en un espacio cuadridimen-
sional: M = U(1 — 00, —110, 0101, 0 — I, 0010, —01-,0-0-).

L.49. Determinar la disminucién de la po ia de In signatura de un mografo G™(A)

que determina el conjunto M(M,;, M;, Ms, Ms) = (0, 4, 6, 7, 8, 9, 11, 13, 15) después de
la minimizacién en la clase de FNC,
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1.50.' Determinar la disminucion de la potencia del portador de un mografo GM{AM) que
determina el conjunto M{M;, Mz, M;, M) = U(0, 1, 2, 3, 5, 11, 15) después de la minimiza-
cidn en la clase de FNC.

1.51. Hatlar la forma de paréntesis minimal de la representacidn de un conjunto M(M,,
My, My, Mi) que contiene intervalos O — O, 01 —~ 1, 110—, 01 - 0 ¥ no contiene intervalos
-1, 11— y 00 ~o0,

Comentarios

La teoria de los conjuntos fue reconocida oficialmente en 1897, en ¢l Primer Congreso
Internacional de Matemdticos, en el cual Hadamard y Hurwitz dieron numerosos ejemplas
de ]a aplicacion de esta teoria en el andlisis matemdtico, La teoria de los ¢conjuntos fue la
base de la creacion de los sistemas algebraicos que tienen gran aplicacion prictica en el disefio
del apoyo matemdtico de los ordenadores. A. |. Méltzev y J. D. Birkhoff hicieron gran aporte
al desarrolie de la teoria de los sistemas algebraicos. La teoria de los modelos, cuya signatura
posee la propiedad de simetria (modelos simétricos), se desarrolla de modo especialmente
tempetuoso. Esta clase de modelos permite considérar eficazmente el objeto investigado como
una “caja negra’. Los elementos (constructivos o funcionales) del objeto forman el portador
del modelo y su signatura determina su interrelacién. Para prefijar los modelos de esta clase
en forma ptima, fue propuesto el concepto de mografo, tres afios mds tarde fue “introducido”
de nuevo en Francia e identificado por el término de hipergrafo.

Los conceptos algebraicos son muy eficientes para proyectar los sistemas complejos de
mando, ordenadores, sistemas de cdlculo y redes de los ordenadores, bancos de datos y pa-
quetes de programas aplicados. A mediados de los afios 70 fuc hecho un gran paso por el
camino de resolver el superproblema de “enunciar qué hacer sin deraliar cdmo"’ Este paso
fue hecho empleando el lenguaje de conjuntos, SETL, en el cual la construcciébn principal
@5 un conjunto que permite simular objetos complejos en el programa.

Para profundizar los conocimientos de los sistemas atgebraicos, recomendamos la litera-
tura adicional enumerada en Ja bibliografia.



“..la prictica del hombre, que se repite mil
milliones de veces, se consolida en la concien-
cia del hombre mediante tas figuras de la 16-
gica. Precisamente (y s6lo) debido a esta re-
peticion de mil milliones de veces, estas figu-
ras tienen la estabilidad de un prejuicio, un

cardcter axiomdtico?

V. L Lenin, “Cuadernos filosdficos”
CAPITULO 2
Légica matematica

§ 2.1. Légica de enunciaciones.

Se denomina enunciacidn una oracién narrativa, sobre la cual se puede
decir que en un momento dado es verdadero o falso, pero no es la primera
ni la otra simultdneamente. La “veracidad” y la “falsedad” de una oracién
es el verdadero valor de la enunciacion. Ponemos en correspondencia a cada
enunciacién una variable igual a 1, si la enunciacidn es verdadera o igual
a 0, si es falsa. Si Py Q son ciertas enunciaciones se puede formar las
enunciaciones Po @, Py Q, no Pintroduciendo las operaciones de disyun-
cion Vv, de conjuncion & y de negacidn. Los resultados de estas operaciones
se prefijan por las tablas de veracidad (“disyuncion”, tabla 2.1, ¢; “conjun-
cién”, tabla 2.1, b; “negacion”, tabla 2.1, ¢}, a cada fila de las cuales corres-
ponde biunivocamente un juego de valores de las enunciaciones componen-
tes y el correspondiente valor de la enunciacién compuesta.

Tabla 2.1, a Tabla 2.1, b Tabla 2.1, ¢
P Q |pPve P Q |P&Q r P
1] 0 0 0 V] 1] V] 1
(1] 1 1 o 1 0 1 0
1 1] 1 1 V] i)

] 1 1 1 1 1

Las operaciones de disyuncién, conjuncién y negacién se leen como
“O”, “Y” y “NO", respectivamente.

Sefialemos las leyes principales que determinan estas operaciones:
idempotente de disyuncidn y conjuncion

aVa=gqg aka=a 2.1)
conmutativa de disyuncién y conjuncidn

avb=>bva akb=>b&a (2.2)
asociativa de disyuncién y conjuncion

av(ve)=(@vh Ve a&(bie) = @& b&e 2.3)
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distributiva de conjuncion respecto a la disyuncién y de disyuncidn
respecto a la conjuncion

a&bvec)=a&bvake; ' 24 a)

(Nota. No ponemos los paréntesis en la expresiéon a& b v a& ¢, ya que
la conjuncién &, como una operacion multiplicativa, es mayor que la
disyuncién {que es una operacion aditiva) y se cumple en primer lugar.}

avb&f,':(avb)&(a\r‘c); (2.4 b)
de negacion doble

a=a (2.5)
segin De Morgan

avb=a&b, a&b =avb; (2.6)
de encolamiento

a&bva&b=a (avb)&@vb)=a @2.7)
de absorcidn

ava&b=a a&lavh)=a (2.8)

leves que determinan las operaciones con las constantes 0 y 1:

avl=ga a&0=0,avl=1
a&l=a ava=1), a&a=0. 2.9)

Todo enunciado compuesto con ayuda de las operaciones v, &, ~ tiene
cierto valor veraz que depende de los valores de las enunciaciones compo-
entes, Cualequier enunciacién f puede ser prefijada en forma de una
tabla de veracidad. Si el valor de la enunciacién f depende de n enun-
ciacidnes componentes x, Xz, . - ., Xx la tabla de veracidad contiene 2" filas.
Una enunciacion componente x; se denominara enunciacion aidmica o
simplemente variable x; examinando con esto la enunciacién compuesta co-
mo una funcién f de n variables. La funcidn f que toma uno de dos valores,
06 1, v depende de n variables, cada una de las cuales toma uno de dos
valores, 0 6 1, se denominarad funcidn booleana f(x, X, . .., Xu) de n
variables.

Por ejemplo, examinemos un dispositivo que fija la aprobacién de una resolucién por
un comité de los “tres”. Cada miembro del comité aprieta su tecla, si aprueba la resolucidn;
si ]a mayoria de los miembros estdn de acuerdo, !a resolucién se aprueba, lo que se fija por

el dispositivo registrador. E} dispositivo realiza la enunciacion f(x,, xz, x1), cuya tabla de vera-
cidad tiene forma de la tabla 2.2.
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Tabla 2.2

XMk Sx, x2, x3) Xxonox Jx, 22, o)

cCooQ
——
— O
-00o0
——
——
—o=-o
— e

Se puede construir el cdlculo de enunciaciones empleando las co-
rrespondientes tablas de veracidad. Con ello, es evidente que el dlgebra de
enunciaciones es isomorfa a) algebra de Boole (M, Vv, &, ~ ), los elementos
de cuyo portador toman valores 0 6 | y la signatura v, &, ~ posee las
propiedades de operaciones de los reticulos distributivos con complemen-
tos. El dlgebra de Boole es la mds simple en la clase de las algebras boole-
anas; €s una dlgebra booleana de dos elementos. El dlgebra de enun-
ciaciones y las leyes que determinan su signatura pueden cbtenerse, si consi-
deramos formalmente el caso limite de reticulos: un reticulo de dos elemen-
tos, en el cual aUb = b, cuando a < b. Este reticulo se transforma en el
algebra booleana, si ponemos @ = b, b = a. Uno de los elementos del 4l-
gebra booleana es 0, ya que el dlgebra booleana es un reticulo con comple-
mentos y por esta razén segundo elemento de esta algebra es 1.

En virtud de los teoremas 1.2 y 1.4, cada enunciacién y su correspon-
diente funcién booleana f(xi, x2, . .., x,) puede representarse en forma
de disyuncidn de constituyentes

4 [

& Xi'y

i=1
donde

o [x,' cuando ¢; = |,

) X cuando g = 0.
Para el ejemplo a examinar f{xi, X, X3} puede representarse en forma

Sx1, x2, x3) = }lxzxa V:q;)n Vx1x2J_c; V Xrx2xa.

A continuacion la representacién de una funcién booleana f(xi, xz2, . . .
Xn) en forma de disyuncion de constituyentes se denominara forma normal
disyuntiva (FND) perfecta de la funcidn f(xi, xz, . .., Xn).

Llamaremos terma primaria una variable o su negacion.

El niimero de termas primarias que llevan una forma que prefija una
funcién booleana f(xi, x2, ..., Xx) se denomina complejidad L(f) de esta
Sorma,

La complejidad de la FND perfecta de la funcién f(x), X2, x3) de la
votacién es igual a 12. Disminuyamos la complejidad de esta funcion
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empleando identidades principales del dlgebra de Boole, Segiin las pro-
piedades idempotentes de la disyuncion, se tiene

Slx1, X2, x3) = xszxB Vxl.t:X3 v XleJG WV Xdeas Vo xiaex V Xixax.

Utilizando las propiedades conmutativa, asociativa y distributiva
obtenemos

SO, 32, x3) = Ga VXXV (a V X2)Xxs V(X V X3)xuxs.
Finalmente tenemos
Jx, X2, X3) = 26V x6 Vxe = x306 V) VX,

A consecuencia obtenemos la complejidad L(f) de la funcién f(x, Xz,
x3), igual a 5.

Las funciones f.(x1, X2, . . ., Xa) ¥ falx1, X2, . . ., %) se llaman iguales,
si sobre cada uno de los juegos binarios (a1, 03, . . ., 03)
fa{o'h 02y v 4y O'rl) =fﬂ(alp 1 RN . =)

§ 2.2. Minimizacién de las funciones booleanas
en la clase de las FND

Empleando el isomorfismo del dlgebra de Boole y del dlgebra de conjuntos
se puede aplicar con éxito el método de tablas implicantes, para minimizar
las funciones booleanas.

Examinemos con anticipacién una descomposicidn de la funcién boole-

ana flxi1, xz, . .., Xn) respecto a k variables (con precisién respecto a xi,
X, .. Xg): descomposicion de Shannon.
Teorema 2.1. Cualquiera funcidn f(xi, xz, . . ., Xa) es representable en
Jorma de descomposicion de Shannon:
Sy, o, o0 Xkia X hlgsia winy K ) = WV ( )ﬂa], o2, . .
¢ por todos i=1
105 jucgos
(O Oay00iy Or)
s Oky XE 41y oo vy Xn) (2.10)
donde 0; = 0); i=1, ..., k x5 = {f’ cuando o; = 1,
X; cuando o; = 0.

o Empleando el método de induccién completa, demostremos que
=1+ x = o (tabla 2.3).

Tabia 23
a, L
Xy 0 X Xi L] X
0 0 0=1 1 0 1=0
] 1 0 1 1 1
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En vez de las primeras k variables sustituyamos arbitrariamente sus va-

lores: x; = a1, X2 =02, . .. Xk = ox™ Enlonces el pnmer miembro de la
formula que se demuestra es igual a f(o1, 02, . « ., Oks Xk 41, « + 2 x,,) El
segundo miembro es la disyunccién de 2¥ conjunciones de tipo x'43, . . .
.o X' f(01, 02, . . .y Oky Xk+1, - .. Xa) Que se parten en dos clases me-
diante esta sustitucién. La primera clasa mcluye la comunczén, para la cual
el juego (o(, o2, . . ., ok) coincide con el juego (o1, o3, ... Ok)
(01)°(a2) . . . (0k)"f(ol, G2, . .., Oky Xkw1y oo
o ayelel o Nflon, B, voovss O XE i e
L xil) =f(€r;v 02.: CEEIE 0;! Xk +1p o+ oy xn)‘

Esta conJunc:én es igual al primer miembro de la férmula. La segunda
clase incluye 2* — 1 conjunciones, cada una de las cuales tiene o] 3 o; por
lo menos en una variable x;, i € {1, 2, ..., k}. Por consiguiente, cada una
de ellas es igual a cero.

Entonces, en virtud de la ley que caracteriza operaciones con las cons-
tantes, a V0 = g, obtenemos que los miembros segundo y derecho de las
férmulas son iguales entre si para cualesquiera sustitucién de las variables
Xis X2y v v oy Xg. W

Corolario. Una descomposicion limite de Shannon (k=) de la funcién

booleana f(xi, x2, ..., x,), distinta de cero, tiene forma
L
o,
Jta, x, ..., Xn) = v & Xit .11
por todos inl
los juegos
(B, O34000, )

sobre los cuaies
SBi, OreeOay =y
La descomposicioén limite de Shannon de la funcién booleana f(x, x2,
. ., Xn) €8 su forma normal disyuntiva perfecta.

En el algebra de Boole es vélido el principio de dualidad puesto que,
como fue demostrado en el capitulo 1, ella es un reticulo distributivo con
complemento. Debido a este principio, tenemos las siguientes descomposi-
ciones duales de Shannon de la funcién booleana f(x1, X2, ... Xk
Xk 4 dy » =y Xnki

segin a k variables

=
S X2, o0 Xkey Xk w15 o Xn) & V X'V flo, 0z, . . ., Ok,
por todos f=1
los jucgos

(78
Fyp-0p Ge)

Xk+ly =+ u X'n)); (2.12)
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la decomposicion limite dual

"
R,y oaxd=& (v ?) @.132)
por todos i=1
los juegos
(o, On.. .,
ﬂ-)
sobre los

cuales fia,
Ogeean

+ Oay=
La descomposicién limite de Shannon de la funcién booleana fix,, . . .
X3, ..., Xp) es su forma normal cojuntiva (FNCj) perfecta.

Ejemplo 2.1 Construyamos las FND y FNC) perfectas de la funcién booleana f(x, xz,
x2) prefijada segun la tabla de veracidad (tabla 2.4).

Tabla 2.4
X oM ox Sy Xz, 23) XX X e, Xz, x5)
0 0 0 1 I 00 0
0 01 0 B 1 TR 1
o1 0 1 110 0
(125 Vil | 0 111 1

Las FND y FNCj perfectos de esta funcidn tienen, respectivamente, la forma
e, X2, X3) = XiXak V XXX V XiXan V X5

Sla, X, X3) = (a Vaxa Vgl Ve V)X Vg V)

(e W X2 Vs,

En adelante se considerard la teoria de la FND, de la cual es facil cons-
truir Ia teoria de la FNCj basdndose en el principio de dualidad. -

Prefijemos una funcién booleana f(x1, x2, X:) con ayuda de un hipercu-
bo, a cada vértice del cual le corresponde biunivocamente un juego binario
(01, 02, « . ., On); 108 vértices estdn ordenados por niveles: el i-ésimo nivel

- n - . . .
contiene ( ) vértices, a los cuales les corresponden los juegos binarios
I

que contienen / unidades; los vértices se unen por una arista, si sus juegos
binarios correspondientes se distinguen en um, y sélo en un, orden.
Los juegos binarios se prefijan con frecuencia por equivalentes decima-
a

tes (o1, 02, . . ., on) = 3, 2"~y la funcidn booleana, por la enumeracién
i=l

de equivalentes decimales que corresponden a las constituyentes (a las con-

junciones de la descomposicién limite de Shannon). Por ejemplo, f(x;, x2,

x)i = v, 1, 2, 3, 7) (tabla 2.5).
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Tabia 2.5
Equi- Equi-
valen- Xy X2 X3 fm.)n. valen- X £ X3 fixi, %2, x0)
te decimal 2 te decimal
0 0 0 1] 1 4 i 0 0 4]
1 0 0 1 1 5 1 0 1 (]
2 1] 1 V] 1 6 1 1 ] 0
3 0 1 i 1 7 I 1 1 1
Los vértices, en los cuales f(x, X2, . . ., Xx) = 1 y que forman un hiper-

cubo engendran el infervalo unitario de esta funcién. Un intervalo unitario
L: de una funcién booleana f se denomina maximal, si no existe ninglin
intervalo unitario Ip que incluye 1.

En el ejemplo dado los intervalos unitarios son 10s conjuntos de vérti-
ces: (O}, (1}, (2}, (3}, (7}, [0, 11, {0, 2], {1, 3), {2, 3}, (3, 7}, (O,
1, 2, 3}; los intervalos maximales son {0, 1, 2, 3}, (3, 7).

La conjuncién que corresponde al intervalo unitario maximal de la fun-
cion f se denomina implicante simple de esta funcién:

{0, 1, 2, 3} & X1, {3, 7) < xxs.

Prefijaremos un intervalo unitario por la enumeracién de vértices VA
también, con ayuda de una sucesién de simbolos 0, 1 —, donde el guidn
significa que en la conjuncién est4 ausente la variable correspondiente: {0,
1,2, 30 - -, (3,7} ~-1L

La disyuncién de todas las implicantes simples de una funcién booleana
s¢ denomina FND abreviada de esta funcion.

El paso de la FND perfecta a la abreviada es univoco y se realiza emple-
ando la comparacién de dos a dos entre las constituyentes de los niveles
vecinos (cuyos ntimeros difieren en unidad).

Tienen gran importancia las funciones booleanas débilmente definidas
Jibxy, x3, ..., x;) que poseen las siguientes propiedades:

I} el numero de variables n es grande;

2) la potencia de la unién de las regiones unitaria V; y nula ¥ es mucho
menor que 2", donde estas regiones se forman mediante los vértices, en
los cuales la funcién es igual a 1 y 0, respectivamente;

3) las regiones unitaria y nula se prefijan por los intervaios
correspondientes.

El conjunto de los vértices de un hipercubo, sobre los cuales una funcién
es igual a 0 y que forman un hipercubo, se denomina intervalo nulo. La
FND abreviada de las funciones débilmente definidas se construye con ayu-
da de la tabla de distinciones.

Llamase rtabla de distinciones una tabla bidimensional de orden
n X |Vo|, a cada fila de la cual le corresponde biunivocamente un orden
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del intervalo unitario, que se examina v a una columna, el intervalo nulo.
En la interseccidn de 1a i-ésima fila con la j-ésima columna estd el resultado
de la operacion:

0@0=0, 1®0=1 -@0=0,
0@1=1, 1®0=1 -®1=0,
0®@-=0 1&-=0 -~ =0

con la particularidad de que en calidad del primer argumento se toma el
valor del i-ésimo orden del intervalo unitario y del segundo, el valor del
i-ésimo orden del intervalo nulo correspondiente a la j-ésima columna.
La formacién de intervalos maximales se reduce al cubrimiento de las
columnas por las filas de la tabla de distinciones. En efecto, los intervalos
maximales en las funciones débilmente definidas constan de los vértices
de las regiones unitaria e incompletamente definida. La unidad en una
célula (7, j) de la tabla de distinciones muestra que si dejamos €l i-ésimo
orden en la conjuncidn, el j~ésimo intervalo nulo no se incluye en el hipercu-
bo que corresponde a esta conjuncién. Por consiguiente, ¢l cubrimiento
de Tas columnas por las filas engendra un intervalo maximal de la funcién
booleana débilmente definida, que se examina.
Ejemplo 2.2. Consideremos como se halla la FND minimal de la funcién booleana
1 en los intervalos 0-0-0-0, 11-0—0, 0~ —001 -,
A, X2, oL, X)) = )
0 en los intervalos 10=0-01, 0= —10~, 1HOI=0—,
o una funcién prefijada con ayuda de equivalentes decimales de los elementos minimales y
maximales de los correspondientes intervalos que se obtienen sustituyendo los cédigos nulo
00 ..., 0y unitario 11 ... 1 en vez de guiones,
1 en los intervalos (0, 42), (97, 117), (2, 51)%
S, 2, ., %) = )
0 en los intervalos (65, 83), (4, 29), (104, 109).
Formemos un conjunto de intervalos maximales 1 {, que contienen un intervalo uni-
tario (0, 42), por la tabla de distinciones (tabla 2.6, @), cuyas filas se identifican por las letras

g bcdegh
Tabla 2.6, a

Intervalos nulos

Inmervalo unitario

{65, 83) 4, 29)  |(104, 109)

> AN R
elololo
~-oocCcoco~
co-Scoo
cCoooeD o —
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Farma normal disyunivaF Vo)
da La Tymcion F{xy, Ky, uusln)

vbrimiento ae abla de
distincionses

FND abrevioda de

ta tupcion

FXr X, s hir)

| faﬂf{m’ggﬂa gg I{g’ tabla |

N

las FND tope ae (a
Funcion Fx, k... dn) Fig. 2.1

Al emplebar el método de Petrick hallemos todos los cubrimientos de esta tabla (a v &)
ea = ge. Tenemos un cubrimiento que corresponde al intervalo maximal @ — — - 0 - -
_ (0, 59), al cual le corresponde la implicante simple xixs.

De modo analogo hallamos conjuntos de intervalos maximales que contienen los demds
intervalos unitarios:

[T . 257, 1IN = {32, N9} - xax;

g 212 51)) = [0, 59), (2, 123)] + X(Xs, XsXs.

Como resultado se ha obtenido la FND abreviada de la funcién boole-
ana f(x;, X2, . . . x1) que ya es completamente definida. La regién unitaria
7, de la funcién f contiene la region unitaria ¥, de la funcién £ Vi D ¥,
la region nula ¥ de la funcién f comprende la regién V, de la funcién
A \-’a o Vo

ﬂXl. X2, .oy X7) = EIESV-'Q}-Q VESXG-

La formacién de los intervalos maximales y la construccion de la FND
abreviada de la funcién fes la primera etapa de la minimizacion en la clase
de las FND. La segunda etapa es ¢l paso de la FND abreviada de la funcion
J a la FND tope de esta funcién (fig. 2.1).

Se llama FND tope de la funcién booleana f(xi, X2, . . . Xs) una FND
que no determina la funcién fcon una exactitud de regién incompletamente
definida cuando se elimina aunque mds no sea que una terma primaria
arbitraria x. La FND tope de una funcién booleana se obtiene como re-
sultado del cubrimiento de las columnas por las filas de una tabla implican-
te (una tabla bidimensional, en la cual a cada fila le corresponde biunivoca-
mente un intervalo maximal, y a cada columna, un intervalo unitario,
mientras que en la interseccién de una i-ésima fila con una j-ésima columna
se encuentra 1, si el j-ésimo intervalo se incluye en el i-ésimo intervalo maxi-
mal, en el caso contrario en la interseccion se encuentra 0).
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Construyamos una tabla implicante para el e¢jemplo considerado (tabla 2.6, b).

Tabla 2.6, b
S Intervalos unitarios de la funcién f
maximales de la
funcién J {0, 42) -l (97, 17 2, 31
(©, 59) 1 0 ]
@2, 119) 0 ! 4
@, 129 0 o L

La tabla tiene un cubrimiento que se forma por la primera y la segunda filas. Este cubri-
micoto engendra la FND tope de la funcién f{xi, X2, ... X7) = Xi¥s V Xaky.

Tedricamente, cuando n — <o, el nimero de las FND tope de la funcién
booleana f(xi, x2, . . ., Xx) crece como el mimero de todas las distintas fun-
ciones booleanas de n variables 2%'. De modo préctico el nimero de las
FND tope aumenta con més lentitud que 2*' a costa de un gran niimero
de los vértices incompletamente definidos del hipercubo. El sondeo de todas
las FND tope de la funcién booleana f determina la seleccién de la FND
minimal de esta funcidén.

En el ejemplo a examinar existe una FND tope; por consiguiente, es
la FND minimal de la funcién f(xi, X2, ..., X7):

J@ b ¢ d)=adVbc,

donde @ = x1, b = x, ¢ = x4, d = xs5. Contando con esta definicién suple-
mentaria, la funcion depende de cuatro variables.

Una funciéon booleana obtenida de la funcion f{xi, x, . . ., x) fijando
una /i-ésima variable, /€ (1, 2, . . ., n], lldamase residual. Si x; = 1, la fun-
cion residual se denomina wnitaria, si xi = 0, nula.

La funcidn booleana f(xy, x2, ..., X») depende insustanciaimente de
la /-ésima variable, si sus funciones residuales respecto a esta variable son
iguales.

§ 2.3. Completitud

Cualesquiera enunciacion compleja puede representarse en la forma de una
expresion que contiene enunciaciones simples (variables) x;, operaciones de
disyuncién, conjuncién, negacioén y, tal vez, paréntesis (,). Consideremos
qué propiedades debem satisfacer las operaciones por cuyo medio se puede
expresar cualquiera enunciacién compleja.

Simularemos la conjuncion y la disyuncién por la conexion en serie
y en paralelo, respectivamete, de los elementos clave (para la exactitud: se-
miconductores), simularemos la negacién por la inserciéon de carga en el

5—6577
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T o o

Q ab.ed)

1

a e d b Fig. 2.2

circuito colector del transistor. Entonces la funcion booleana, obtenida a
fines del parrafo anterior, se realiza en forma de un médulo integral con
el circuito de sustitucién representado en la fig. 2.2. Designemos la opera-
cion que se realiza por este elemento mediante o (g, b, ¢, d) y consideremos
el dlgebra de enunciacién de tipo (M, 0 ), donde M son las enunciaciones
légicas vy o{a b ¢ d)= adV bc.

Establezcamos, si se puede representar cualesquiera funcién booleana

Jlxa, x2, .. ., xa) en forma de superposicién del sistema S = (o], como
lo es posible en el caso del sistema {v, &, ~}.

Lldmase superposicidn del sistema S = {@1(x1, X2, - . o X&), @2(x1, - - .
cen X2y e X - @100, X2, oL . X) cualesquiera funcién f obtenida:

a) de ¢i{x1, X2, ... X,) cambiando las denominaciones de las va-
riables, ;€ 8,

b) sustituyendo algunas variables de una funcién e.(xi, X2, . . ., X&)
por las funciones @i(x1, X2, « « . X&) Par @ €S

¢) aplicando repetidamente los puntos a) y b).

Un sistema S se llama completa en Py, si cualesquiera funcién f, f€ Py,
es representable en forma de superposicidn de este sistema vy se denomina
base, si la completitud de § se pierde, cuando se elimina, por lo menos,
una funcién, donde P es una légica de k signos.

Expresernos la disyuncién y la negacion mediante o0 (g, b, ¢, d); enton-
ces, debido a la descomposicion de Shannon y la ley propuesta por De
Morgan, cualquiera funcién booleana f(xi, xz, . . ., X») puede expresarse
por medio de S = {o}:

a=o0 (e, @, o, );

avf=aaVEB= o B, B, o) =

o(afe, o, @, @), B, 8(B, 6, B, B), ni&, a, @, a)).

En el caso general para establecer la competitud de un sistema S de

funciones booleanas fi(S en P:) se utiliza el criterio de completitud de
Post—Yablonski.
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Definamos con anticipacion cinco clases de funciones booleanas.
Lldmase clase Ky de funciones booleanas fi(xi, x2, . . ., Xn) que conser-
van la constante 0 un conjunto de funciones de la forma

Vika, xa, . x)/fi0, 6, ..., 0) = 0].

Se denomina clgse K, de funciones booleanas fi(x\, X2, . .., Xa) que
conservan la constante 1 un conjunto de funciones de la forma

o, x2s - v /00, L - D = 1)L

Tomando como ejemplo el sistema S = [ o ] examinemos los tests de reconocimiento
de funciones que poseen ¢stas propiedades;

ala b c &) = adV be,
00,000 =00v00=1v0=1 a@ & ¢ d¢Ko,
o, , L, D=Tivii=0v0=10 plg b c deK.

Se llama clase K de funciones booleanas lineales fi(xy, X2, . . ., Xz) un
conjunto de funciones de la forma

(i, X2y« oo X)fil01, X2y« o0 Xn) = G0 ® Baxi],
=0 Li=12, ..., m

donde @, ¥, son los signos de la operacién “adicién segiin el médulo
dos™:

0@®0=0,0®1=1,1®00=51®1=0

Establezcamos si la funcidén booleana o(a, b ¢, d) es lineal,

Supongamos que ésta es lineal y, por cousiguiente, representable en la forma

ola b, ¢ d) = co @ cad ® cpb @ ccc @ cad.

Hallemos coeficientes incognitos €o, €a, Cs, ¢e, €4, partiendo de la suposicidn de linealidad
de esta funcion. Fijemos un juego 0000:

o(,0,0,0) =1,

@l Bl @ Bedd =0 00=1

De manera andloga definamos los coeficientes ¢a, s, Ce, Ca, fijando respectivamente los
juegos 1000, 0100, 0010, 0001, Tenemos:

a(l, 0,0,0) = 1-0v0-0=0v0=10

1Rl D0 @al@cesrd=1@c,

1@ =0 c=1

00, 1,00 =00vI0=1vi=1,

1 @10l @@l =13 c,

1@a=La=0

00,0, 1,0 =00v0Tl=1v0=1

1 @10RO0B el Beal=1Dc,

Il ®De=1 =0

5
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o, 0,0, 1) =01v0-0=0v0 =0,

1@10@R00RM0OD el =0,

I ®@eca=0 co= L

De modo definitivo obtenemos

Qg b dy=1Ba@d

Esta igualdad no se mantiene en cada uno de los demds 11 puntos. En efecto, en el punto
(1, 1, 1, ) tenemos :

a{l, , , 3 =T1-1v1-T1=0v0 =0,

121@1=10=1L

Par consigui la suposicion hecha es invdlida. La funcidén o(a, b, ¢, ) es no lineal:
olg b ¢ d) K.
Se denomina clase Kg de funciones booleanas autoduales fi(x), xz, . . ., X,) un conjunto

de funciones booleanas de la forma
Ui, %20 <« o Xa) IS0 22y ooy Xa) = Filry X2y oo K]

Consideremos la propledad de autodualidad de la funcién booleana o (a, b, ¢, d). Cons-
truyamos una tabla (tabla 2.7) 2 x 2" {n = 4) gue en la primera fila tiene equivalentes decima-
les correspondientes a los juegos (@, & ¢, ), en la segunda, valores de la funcidon a(a, b,
¢ d) que corresponden a estos juegos.

Tabla 2.7
o 1 213 |4l5|6]7 (8 |9]10 b 12 13 14 i5
1 0 Ljofjrjejrjojofoj1 o 1 ] 0 0

Una funcién es autodual, si sobre cualquier par de juegos contrarios
(juegos para los cuales la suma de sus equivalentes decimales es igual a
2" — 1) la funcién toma los valores contrarios.

La funcién O{a, b, ¢, d) no es autodual: 0(7) = [I(8).

Se denomina clase K, de funciones booleanas mondtonas fi(xi, xz, . . .
.+« Xn) un conjunto de funciones booleanas de la forma

-
[fl(xh X2, ... Xn)/ (oW, ﬂ';‘ “e Ur:) = (o1, 02, ..., On) **
: - .
S@izai=12 ..,n)=fa, 01,..., 02) = flor, 02,. .., on)}.
Para realizar los tests de monotonia de Ja funcién ({a, b, ¢, o) construiremos un hipercu-

bo y analizaremos la distribucién de valores de esta funcién en él (fig. 2.3). Si existe al menos
und arista, a cuyos fines se les ponen en correspondencia los juegos binarios

(o1, @2, .. ., 03) ¥ (o4, 02, . . -, 0n) de tipo
(o1, 0%, . .., aa) = (o1, 02, . . ., o), para los cuales
oty 03, o .., @) < floy, o3 . . ., 0x), tal funcidn

booleana no es monétona. En otras palabras, en el hipercubo existe por lo menos un 0 que
cubre |
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SIS
SR

N\
2} 000 00

La funcién booleana a examinar C{a, b, . &) no es mondtona (fig. 2.3):

. 0,0,0 > 0,0, 0,
£0, 0, 0, 0) < f10, 0, 0, 0).

Fig. 2.3

Criterio de completitud. El sistema S de funciones booleanas f; es
completo si, y solo si, se cumplen cinco condiciones: existen una funcion
fi€ S que no conserva la constante cero: f; # Ky, una funcién fi€ § gque
no conserva la constante unidad f; ¢ Ky; una funcion no lineal, una funcion
no autodual y una funcidn no mondtona en el sistema S.

Al usar el criterio de completitud y el método de Petrick en P; cons-
truiremos las bases posibles con operaciones cero-, mono- y biddica.

Construiremos todas las funciones booleanas de dos variables (tabla
2.8).

Tabia 2.8.

Variables Funciones booleanas

x X2 |fH|N{fLHh|L|L|6|A LA S | fu |fiz|fis | fis| Sis

0 0 olololojojolofoftfr] 1 | v |t |1 |1 1
0 1 olofojo|e|rj1|rfofol o o |t |1 |1 1
1 ] ofo|tjtfojolrf1jefoal 1 |1 |o |01 1
] 1 gl1tolrlolrlolyliolrl o 1 0 1 [ 1
El indice i/ de una variable funcional £, i =0, 1, 2, ..., 15, es igual

a un juego equivalente decimal de valores de esta funcién leido de arriba
abajo. Sefialemos estas funciones booleanas.



70 Capitulo 2. Légica matematica

La funcién fo(xi, x2) = 0 es la consrante cero.

La funcién fi(x1, %) = xi1x; es la_conjuncidn.

La funcidn falxy, %) = x1x2 = X3 Vo = X3 ~* X2 = X1 PX2 €s la coim-
plicacion izquierda (se lee “no si x;, entonces x»”, el prefijo co proviene
de la palabra latina conversus que significa inverso).

La funcidén f3(x1. x2) = x1x%2 V X102 = x1.

La funcién fala, X)=xm=xVe=x+<x=X4+x e la

coimplicacion derechg. _

La funcién fs(x1, %2) = xixa Vax, = x3.

La funcion fe(x1, x2) = x100 Vx1x2 = x1 @ x2 es la adicidn seguin el md-
dulo dos o la funcién de no eguivalencia.

La funcién fo(x;, x2) = x Vx; es la disyuncidn.

La funcién fa(xi, 22) = xix; = X1 V22 = x1°x; es la funcidn de Webb.

La funcién fo(x), ) =xpeVxx: =xicox: es la funcibn de
equivalencia.

La funcién fio(x, x3) = xz es la negacidn

La funcién fiu(x1, @) = xaVxeVon =V =x —x; e la
implicacidn derecha (se lee “‘si x;, entonces x,").

La funcién fiz(x1, x2) = x; es la_negacion. _

La funcién fia(x, m)=xieVieVix = VvV =x—x: es la
implicacion izquierda (se lee “si x1, enfonces x;”"). _

La funcion SJaba, ) =xxevVanvVia=xVx=x |xz es la fﬂ'ﬂ"
cion de Sheffer.

La funcidn fis(x1, x2) = 1 es la constante unidad.

Para engendrar todas las bases en P; construiremos una tabla bidimen-
sional (tabla 2.9), a cada fila de la cual le ponemos en correspondencia
biunivoca once funciones (no consideramos las funciones £, fi, /5, fio, fi1h
a cada columna le ponemos en correspondencia una clase: Ky (Ko son las
funciones que conservan la constante cero), K; (K son las funciones que
conservan la constante unidad; Ki (K) son las funciones lineales); K. (K.
son las funciones autoduales); K (Ki» son las funciones mondtonas) y en
la célula (i, /) ponemos 1, si la i-ésima funcién no pertenece a la j-ésima
clase, en caso contrario dejamos la célula (i, j) vacia,

Tabia 2.9

Clases

Tdentifiend, Fi

de la fila Ji Ky K K Ka Ko

LN
-
-
-
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. 3 Clases
Identificador Funciones
de la fita Ji
Ky K K X Ka

g 8 1 1 1 1 I
k 9 1 1 1
m 12 1 1 1
n 13 1 1 1 1
P 14 1 1 1 1 1
r 15 1 i

Por medio del método de Petrick, transformando la forma multipli-
cativo-aditiva en la aditivo-multiplicativa engendramos todos los cubri-
mientos de las columnas por las filas de esta tabla:

(gvkvmvavpvravevdvgvmvp)bvevevgvnvpl&

&(avbvevdvevgvkvavpvirievdvgvkvmvVavp)=

(gvakvkcvkdvmvanvenvdnVpvarvervrd)&

&bvevevegvavplevdvgvkvmyvnvp)=

(gevVakvkevikdvmvanvenvdnVpvarverVrd) &

&(cvgvnvpvbdvbkvbmvedVekVem) =

evpvabkvkevanvenvdnvakeV kbdv kedv

Vmev NV bmvmeVerVrbdVired =

=gVpvkevanVenvdnvmeNmnvbmvmev

vV crV abk v ake v kdb v ked Vv rbd v red.

Cada uno de los cubrimientos obtenidos =; engendra la base Bi

a1 = {gl ~ B =[] es la base de Webb;

mz = {pl > By = {|] es la base de Sheffer;

m = [k, c] © By = {b o},

ws = [@, n} o By = |-, 0 ) es la base implicativa;

ws = [cl "I “BS - l_"l +’n

7 =(d, n) ©Bs={—, @),

w7 = {m, ¢} + By = [, T} es lag base coimplicativa;

ms = [m, n}+ By = (=, ~} es la base implicativa;

we = (b, m} + By = (&, ~] es la base conjuntiva de Boole;
mio = {m, €} & Bio = {V, "} es la base disyuntiva de Boole;
71 = l¢ r] = B = (¥ 1] es la base coimplicativa;

2 = fa, bk}« Bz = [0, &, 0);
T3 = [a, k, e] v Biz = [eo, V, 0};
me = [k b d} o Bua={®, & o}
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ms={k e djoBs={®,V, o};

wie = {rn b d)l » Bis= @, & 1) es la base de Zhegalkin;

my=1{nedleoBn=[(®,V, 1]

Quedan obtenidas 17 bases, en cada una de las cuales no se puede quitar
ninguna funcién sin perder la completitud en P;.

En la base {v, & T~} a cualesquiera enunciacién compleja le co-
rresponde una enunciacidon equivalente en cualesquiera de estas bases.

Por ejemplo, en la base implicativa [—, ~ } a la enunciacién “no g
0 b y ¢” le corresponde la enunciacién equivalente “si @, entonces no si
b, entonces no c”.

I

U
]

avbc=a—bc=a-bvc=a—(b—c)

La realizacidn técnica de las funciones bdsicas puede tener por funda-
mento el empleo de distintos fenémenos fisicos, por ejemplo, la implicacién
y la coimplicacién se basa en los fendmenos magnéticos y las funciones
de Sheffer y Webb, en los fendmenos de semiconductores.

De acuerdo con las normas estatales de la URSS 2.473-72, los elementos
basicos se representan graficamente en forma de rectangulos, en los
cuales las entradas inversas y la salida se representan como circulos no raya-
dos y se pone encima 1 si la copula exterior es la “disyuncién”, y &, si
lo es la “conjuncién™, excepto la adicidén segiin el médulo dos {entonces
encima se pone M2) y la equivalencia (que se designa por =) (fig. 2.4,
@). Los elementos mas complejos se representan graficamente en forma de
composiciones de los elementos enumerados a base de la representacidn

" |Gonstante | Wegocion | Disyumcidn | Compuncion |Elemento | Etemento
Elements | - de webt | aeShelier
CarD £ vy X &'9’
x vy by
3 7 7 - 7 -4 & e i
Pesigna- |V || X L[« x X x
ot 0% — ~ "
4 £ 4 £
Cramentollmplicacidn |Coimptica - | Adicion mod|Fquvatencea |Constarte
fvy cidox & g ? x-y X oemgy craeidad
7 - - = a &y
{Pesigna-| 77 , & - ME e ; ' 2 =
cidn | B = =t = | = — » iz r
] ¥ 7 ¥ £
al 4

Fig. 2.4
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de una funcién booleana realizable en forma de una FND o una FNC;j.
Por ejemplo, el elemento examinado antes U(a, &, ¢, d) puede ser represen-
tado gréficamente en forma de un rectdngulo (fig. 2.4, b) que corresponde
a la FND de la funcién U{a, b, ¢, d) = adV be.

§ 2.4. Sintesis de los circuitos légicos

Examinemos la sintesis de los circuitos légicos en una base prefijada.

Demos el método de simulacién directa de las copulas v, &, = con
ayuda de las cépulas de la base prefijada.

1. Para una funcién booleana prefijada se halla su forma de paréntesis,
optima en el sentido del mimero de cépulas v, &, ~.

2. Se expresan las copulas cldsicas v, &, ~ en forma de una superposi-
cién de la base prefijada.

3. Se ponen los resultados del punto 2 en la expresién obtenida en el
punto 1 marcando con trazos en esto las uniones de los bloques que simulan
v, & ~ en la base prefijada.

4. Al analizar 1as uniones y utilizando la ley de doble negacion, se elimi-
na la redundancia del circuito légico.

Ejemplo 2.3, Sintetizar un circupito Idgico gue realiza una funcién booleana

’ - 1 sobre —0 — 10, 10 — 11, ¢ — 101,

M B s s SN {0 sobre 1 - 10—, I — 001, 0 — 100

en la base 8 = (-, 0).

1. Al cubrir las tablas de distinciones (tabla 2.10, hallemos la FND abreviada de una
funcion booleana completamente definida f, cuyas regiones umnitarias M; y nula A, incluyen
respecti e regi unitaria y nula de la funcién dada f /2 1.

La FND abreviada de la funcién f tiene siguiente forma:

Flxt, X2, 200 Xs) = 2V XgXs,
2. Expresamos las cépulas v, &, ~ por medio de tas de una base implicativa:

a=a=0,
avb=avb=a—b=(a—0 5

—_— —_—
a—+b

ab=avb= =ag=+bh-+M=(@—~B—=0—0
Tabia 2.1
Intervalos de fa regidn nula de la funcion f

Intervalos de la regién

unitaria de la funcién f 1— 10— | — 001 0 — 100

- —_ 0 1] 1]

Xz 0 0 0 0

s — 0 0 0

X4 1 1 1 i

Xs 0 ¢ 1 0
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Intervalos de la regién aula de la funcidn f

Intervalos de la regidn

unitaria de la funcidén | — 10— | = 001 0 — 100
X ] 0 0 1
Xz 0 4] 0 4]
—_ —_ 0 o 0
X 1 1 i 1
Xs 1 0 0 1

Xy ] 1 1 0
—_ —_ 0 o 0
X 1 4] 1 0
X4 0 0 1] 0,
Xs 1 0 0 1

El punto 3 es realizable en forma de un grafo con vértices ponderados, —, £, x;, 0 (fig.
2.5, a). En )a base dada la ley de doble negacién puede representarse como en la fig, 2.5, &

Eliminando Ja redundancia, obtenemos el circuito l6gico S (fig. 2.5, c).

El método descrito de sintesis puede aplicarse con éxito para proyectar circuitos simples.

Examinemos una serie de métodos de proyectar circuitos. La eficiencia
de cada uno de ellos aumenta en comparacion con los anteriores.

El método de cascadas basado en la descomposicién de Shannon

S o Xy Xks1, o0 Xn) =

F 3
= \Y4 & Xflon, 02, . . oy Oky Xeity . o X,
VT, 02y enny, Tk} i 1
permite, al existir los bloques de exclusién de k variables, reducir la realiza-
cidén de una funcién booleana de n variables a la realizacién de una funcion
de n — k, k = 1, variables. A su vez, la dimensién de funciones residuales
Mo, 02, . . ., Ok, Xicw 1y . . ., Xz} puede bajarse a su vez al excluir ¢ variables,
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etc., hasta que las funciones residuales tengan la forma simple v su realiza-
¢ién no sea dificil en la base prefijada.

La complejidad de funciones residuales depende del grado de exclusién
de variables en una funcién booleana dada f(x;, xz, . .., xx). El niimero
de todos los posibles procedimientos de exclusion de variables aumenta de
modo combinatorio. Por ejemplo, si utilizamos sélo los bloques que exclu-
yen una misma variable en cada nivel, este nimero es igual a n!. Empero,
en todo nivel se puede excluir tanto una misma variable como también dis-
tinias; luego, a cada paso se puede excluir diverso nimero de variables (una,
dos, tres, etc.). Escoger una exclusion dptima de variables mediante el son-
deo de todos los procedimientos de exclusidén es un proceso que requiere
trabajo de mucha laboriosidad.

Una exclusion éptima se busca empleando criterios heuristicos uno de
los cuales se basa en el empleo de la nocién de la derivada de una funcién
booleana. of

Derivada de primer orden B de la funcidn booleana f respecto a una

variable x;

T?i% =fGu X, s Xicn Ly X)) @0, X,

T e . (2.13b)
donde f(xi, X2, . . ., Xi-1, 1, . . ., X») €5 una funcién residual unitaria; f(x;,
X2y .4 o Xi—1, 0, . . ., Xa) es una funcion residual nula; aqui y a continuacion

® es fa suma segiin el médulo dos. Una funcién residual unitaria se obtiene
después de hacer una variable x; igual a la unidad, una funcién nula resulta
después de hacer x; igual a cero.

Ejemplo 2.4. Calculemos la derivada % de la funcion booleana
%)
S, k2, xa)h = V0,4, 7)

donde 0, 4, 7 son los equivalentes decimales de juegos binanos, sobre Jos cuales la funcion
fesigual a 1,

Slr, X2, Xa) = XaXs V XX
Segin la definicién,

3, - i

A (X V xaxs) @ xaxs =

dxp_ S

= [xans Voxexs) & xun v

V (xaxs V Xax) & Xaxs =

=(0aX3 V, 220000 V X3)

V (k2 V X3k V xa) & daxs = doxs. i
Una derivada de primer orden —é*;:— de la funcién booleana fix, . ..

. . Xn) determina las ¢ondiciones, para las cuales esta funcién cambia su
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valor cuando se conmuta la variable x; (el valor de x; se sustituye por su
contrario).

En el ejemplo considerado la funcién f{x,, x3, x3) cambia su valor ¢ por ola —+ o), 0 =0,
1, al cambiar el valor de la variable xy, ¢ = o, bajo la condicién de que la conjuncidn xn
tome el valor de “verdad”, o sea, x» = x3 = 1.

Se denomina derivada mixta T of de la funcidn booleana
df sl
f una expresidn de la forma
3*f
ox;,0X;, . .. 0X,_,0%,
d e 21
=— - W14
axy, \ 9x:,0x, . .. O, ’ ( )

W
ax;,0x;, ... dx,
la relacion (2.13) &k veces y fijando las variables x;, Xx;., .. ., X;, (no tiene
importancia el orden en que se fijan las variables).

La derivada mixta de orden k& se calcula aplicando

X
La derivada de orden k s de la funcion booleana
a(xf'r: Kiys o ooy xﬁ)

fx, x2, ... Xu) respecto a las a variables x;, %, ... X determina las
condiciones, para las cuales esta funciéon cambia su valor sustituyendo si-
multaneamente los valores de las variables x;, X, ..., Xi.

&
Segun Bochmann, la derivada de orden k IS de la
a(x.i., Kizs + v vy xhr)

SJuncién booleana f(x1, Xz, . . ., Xa) respecto a las variables xi,, xi,, . . ., x,

es igual a la suma segun el moduio dos de todas las derivadas de primer
orden, de las segundas, las terceras y las k-ésimas derivadas mixtas fijando
las variables xi, xi., . ... X,

*f =
Xty Xy -« o X0) E Dxi ® E ax:a)q,

INSET]
akr
® Z ax;ijaxs Dy x;, 80Xy . . . OXi,
[N
i, s, fus
Ed& cowr=iy By v vl 2.15)

Ejemplo 2.5. En un circuito légico que realiza la funcidn booleana flx, X,
X1} = Xpx2 V xx3, detezminemaos las condiciones de conmutacién de un canal de salida fcuan-
do se conmuta cada canal de entrada, se conmutan simultaneamente el primer canal y el
segundo, ¥, al mismo tiempo, los tres canales xy, xz, X
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Tenemos:

3
ar. =x2Vx, . N =x @ xx = i ®6) = 0,
axy ax;

i =xx®@x=xx®l)= XXz,
Bx;3 .

La condicidén % = | es la de conmutacién del canal de salida f cuando se conmuta
1

el canal de entrada xi: 1 en caso de alimentacidn del segundo canal 6 0 en caso del tercero;

para la conmutacién delt primer] canal ¥, de a a o(¢ — ), el canal de salida se conmuta de

aaole = o, o = 0,1). El canal de salida f se conmuta, ¢ — ¢, cuando se conmuta et canal

de entrada x3, 0 =+ 0, i Xy = x3 = 1, ¥ f se conmuta ¢ — g, cuando se conmuta x3, g = o,

para x3 = 1, x3 = 0, ¢ = 0,1. Luego hallamos:

7f =2 (o =l@x=x

xrdxz dxz \ 9
2

Lm af _ar Ln(x;\f:_q]@

Hxy, x2) dxy dxz dx1dx2

@xx@x =00V @@=

= (V)@ e = 6V &anV

Vi Vx) &y = (o Via vis) Vv

Vax&xix =%V Vonn =

— }3 Vxixiv ;p;‘g

El canal de salida f s¢ conmuta con cualquiera conmutacidn simultdnea de los canales
de entrada x3, xz, cuando x; = 0, e independientemente del estado del canal de entrada x3,

cuando xj3 ¥ X3 se conmutan de 1,1 a 0,0 o de 0,0 a 1,1. Determinemos
_¥r
am. X2, rs}
| = 1= xz,
a:q ﬂx; ( axy ) =P %
2
af » 6 = i
dxadxy o ax:
a*f __2 af -1
3x,8x2823 By \ dx2dxs =
¥ af 5‘! af
P . @& =
30x, x2, x3) ax iy g Oxs
s ar 6’.."
@ @ @ @
dxy0x dxydxy dxzdxs
@ =
S =V @nna®

o dxidxzdx
Ban@n@n®a®@i=
V)@@ NeRteNd®
@xn=(vVay)@an@mm®@xn =
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=fuva@ixs@ae® =
= Ve @@ x.(x:O =
(e V) & X0 VL VI & Xu6) @
® xix2 = (X2 V Xl V X} v

V X1Xa &EAXBJ B xx = (Ve V
V XXX} @ ne = (GVannv

v xlxi) = -‘-’l»"! (“'3 V Xixz V ;1}3] &
& Xy V (X3 V XyX2 V xixg) & xoxe =
= (x: VXNV «\’IX:.)(XI VXV

v x;(.u Vxa)x v xz)-nxz

= XXV X0V X0 V A’ﬁrz W

V XXy = XiXaXs V Xxexs V5 V

V XXz V XXz V XXX,

Con la conmutacidn del vector de entrada 4 ++ 3, 6 =+ 1 y 7+ 0 se conmuta el cana
de salida f

El criterio de exclusién 6ptima de las variables en el método de cascadas
consiste, primero, en la exclusién de variables, con la conmutacién de las
cuales la funcién booleana se conmuta con el nimero méximo de condi-
ciones. Este nimero méximo se determina por el peso de la derivada.

Llamase peso de la derivada de ia funcion booleana el niimero de cons-
lituyentes de esta derivada.

Al emplear los bloques que excluyen k variables, se hallan las derivadas
de orden £ de una funcidn realizable y se busca el valor maximo del peso

k
de la derivada p( s ) , que determina variables para
(i, Xiyy + oy Xi)

excluir. Para las funciones booleanas residuales obtenidas se vuelve a hallar
las derivadas, se determinan los pesos, mientras que la derivada de la fun-
cién residual a examinar que tiene el peso méximo determina variables co-
rrespondientes que en este nivel se excluyen para esta funcién residual, etc.,
hasta que las funciones residuales tengan realizacién simple.

Ejemplo 2.6. Sinteticemos un circuito 1dgico que realiza la funcion booleana

SO, Xz, o X8) = XX VXXXV
VXX VXXX V XX Vo nXaXs,

empleando bloques de exclusién de una variable (fig. 2.6, a).

af . -
Determinemos la variable x;, respecto a la cual la derivada a—f tiene peso MAXIMO, €5
x;
decir, ta funcion flxy, x, .. ., xs) depende de elia del modo mas esencial,
Tenemos
af

e (raXs V X3Xs V XoXs V XaXsds V X3XaXs) @
1

@ (esxe V XoxaXs V XyXaXs).
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x5
I /
o1 fra)
BEZE |
’:’i'. &7 =
¢
;1 — fiio
‘*_E & 140) ‘,"lEﬁ K
1) ¢
a) 40
ri11) I
A, ""&'
Fig. 2.6 )

) F ) .
Para calcular el peso de la derivada % que depende de cuatro variables xz, x, X,
¥

X3 representamos un espacio cuadridimensional con las generatrices .z, X3, Xa, x5 ) en forma
de un producto cartesiano de dos espacios bidimensionales |x;, x5} x |X, xs| con las gene-

i " ; a,
ratrices [xz, x3) ¥ |Xa, X5 ], respectivamente. Entonces, [a derivada aTj puede representarse
1

en forma de una tabla bidimensional: a cada valor de 0z0y de las variables xi, x3 les co-
reesponde biunivocamente una fila de la tabla, a una columna le corresponden los valores
de as0¢ de las variables xi1, xs. En la interseccion de la i-ésima fila y la j-ésima columna que
corresponde biunivocamente a un punto de un espacio cuadridi ional con las g ices

d
| X2, X3, X4, X5}, escribimos €] valor de axi en este punto. El peso de la derivada --a-f— es igual al
X!

nimero de unidades en esta tabla (tabla 2.11, a).

Tabla 211, a

XXy ey
XXy XXy
0 1 2 a 0 1 2 3
] o 0 1 1 2 0 o 0 1]
1 1 o 1 0 3 1 ] 1 i

g a,
Asi, pues, P(—f) =17,
ax

De modo andlogo calculemos los pesos de las derivadas
af

—,i=2 3,4, 5 (ablas 2.11, b, ¢ 4, e}
B
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Tenemos
—— - 4, - -
—i = (X1X3xe V X1 XXs V X0 V _f. = (XpX2 V X1 V XXX V
axz axy %
v Xaxaxs) @ (6 V XXX V V X2x5) @ (N V X XaXe V Xas).
V X XaXs V XaXs V XaKaXs),
Tabla 2.11, b Tabla 2.1, ¢
KXy KX
Xi1X3 XXz
0 1 2 3 0 1 2 3
a 0 0 0 0 Q 0 o i 0
1 o 1 o 1 1 0 1 1 1
2 0 o] 1 ] 2 1 ] I 1
3 0 1 0 0 3 o 1 o Q
ar
Pl — =5 =8
( axy
a = =y - af
Ef = [(0X2X VX V Xixsxs vV 3—;* = (X103 V Xixaxa V
Vs V exsxs) @ (xen) v VXX VK V Xak) @
V X1X3Xs V XaXaXs V Xsxs), @ (X2 V X Vv
VXX V Xxexa),
Tabla 2,11, d Tabia 2.11e
Xy A3y
X1 XXy -
1] 1 2 3 [1] | 2 3
V] 1 ¢ 4] 0 0 1 0 1 1
[ 1 4] o 0 1 1 0 0 (4]
2 1] 1 o 0 2 1 0 0 4]
3 1 0 Q 1 3 1 0 1 o

P(i =5 (
dxs axs

El valor maximo mdéx P( :’) se obtiene diferenciando Ja funcion f respecto a ia
] L]

variable x3. Excluyendo esta variable, obtenemos dos funciones residuales: la unitaria Six,
Xz, Xy o= 1, xs) = f{1} ¥ la nula f(xy, x2, x5 = 0, xa, x5) = f(O):
S} = X103 V X105 V X130 V X5,

JI0) = Xixq V XyX0%8 V XaXs.
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De manera andloga determinemos la exclusién optima de las variables en el siguiente
nivel del circuito légico (1ablas 2.12, &, b, ¢ d' tablas 213, g, b, ¢, d):

a1 - = an =
—ﬂ-l=(xz\txavx:x.v ""f-{“-?-=(X|x:VX|X.|@
ax; dxz
v ;C;Xs} ® .;{zxg, (R AR -\’1;: v Xs),
Tabie 2,12, a Tabla 2.12,b
XaXs XX
X X
0 ] 2 3 a 1 2 3
0 1 0 | Q 0 Y] 1 0 1
1 1 1 1 Q s | 0 0
(3_{[”) = 5: P ;.a{(.l.’_) =3
axz
2 . af = =
i(ﬂ = (XX V 01X V X V £=(X|x‘lv-\’lxzx1vx2)@
Bxy Cdxs
V Xxaxs) @ (X2 V XiXs V Xaxs), @ (ax: VX Vo),
Tabla 2.12, ¢ Tabla 2.12.d
XXy Xk
Xi N
] 1 2 3 0 1 2 3
] ] 0 0 1 1 0 0
1 ] 1 t 0 0 1 0

4] 0
1] 0
P =1 P AL R
ﬂx,
Excluimos la variable xy y obtenemos funciones residuales de la forma
fei =1 xa x =1, %, &) = S, 1) = X VXV Vaxs = 6V XV,

S =0, x3, x5 = 1, xa, x3) = f{1, 0) = xaxs.
JIO0) = Xuxe V X122%0 V XaXs = Xi¥a V Xpxe V XaXs,

VO oo i YO _ Gy v Xaxs) @
ax axz
® (VXX V Xaxs), ' @ (X2 V Xaxs),

6—6577
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Tabla 2.13, a Tubla 2.13,b
XXy XaXs
E+ x
0 i 2 3 L] 1 2 3
0 0 0 1 1 0 0 0 0 0
1 0 0 ] 0 1 Q 1
P(aﬂo)) i (aﬂ(’)) L
a.\.‘;
(i} — a0} =
Y (x1x2) © xs M0 (rg Vv o) @
ax axs
@ (kv Xk,
Tabla 2,13, ¢ Tabla 2.13,d
X3 Xs Xrky
X X
[} 1 2 3 0 i 2 3
Q0 1 0 1 0 4] 1 ﬂ 1 Q
1 0 1 1 0 1 3 1 0
p o) = af(0)
[ axs
Excluimos la variable xs y obtenemos funciones residuales de la siguiente forma:
S, X, xa=0,x =1, x) = f0, ) =1 VX
S, x, x =0, xa =0, x3) = A0, 0) = x5.
Como resultadu obtenemos el circuito l6gico que realiza la funcidn fix, x2, ..., x5)

{fig. 2.6, b).

El criterio de exclusién 6ptima de variables tiene cardcter heuristico,
lo que se basa en la siguiente suposicién: cuanto mayor es el peso de una

derivada P( E‘g ) , tanto mds la funcidon f depende de la variable x;. Si
&

existen blogues de exclusion de k variables, la construccién del circuito se
realiza de modo andlogo, calculando el peso de las derivadas de orden

a*f
kPl — L
(8(3’;., Ky, o ey, Kb}

En la matemdtica discreta no existe el concepto de limite. Sin embargo,
en las expresiones (2.13) ... (2.15) se usa el término “derivada”. Esto se
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vincula con la descomposicién de una funcidn booleana en una serie, and-

loga a la serie de Maclaurin en el punto 00 ... 0 0 a la serie de Taylor
en un punto arbitrario del espacio. Examinemos las descomposiciones da-
das en la funcion booleana f(x, x, ... Xp).

Dos funciones f, ¥ fp se denominan rmutuamente ortogonales si su con-
juncién es igual a 0: fo & f3 = 0.
La expresion (2.11) equivale a la igualdad

"
JOa, x2, ..o, Xn) = h) & x, (2.16)
(lono:  i=1
and}
oy, gy

aa)=1)

puesto que aVE = a @ 8 @ of y las constituyentes de la unidad de la
funcién f(x1, xz, ... Xa) son mutuamente ortogonales dos a dos.

En la expresién (2.16) en cada constituyente sustituyamos x; por
(x @ 1). Aplicando las siguientes identidades:

de conmutatividad

a@B=FDa;
de asociatividad
a@BEDN=DR®Mn

de distributividad de la conjuncidn respecto a la adicidn segiin el mddu-
lo dos

a&(B@7y) = (@&B) D (a&y) 2.17)
de operacion con constantes
a@Pa=0,a@®l=a, a®0=aq, a@a=1,

obtenemos una Ieprescmac:én de la t‘uncldm S, x2, ..., x4) en la forma

JCa, 2 o v Xa) = fo @ Efxi(‘D E fwn@

l._;--l
@...e ¥, o SuneaXiX X5 @ ... @ (2.18)
i i
@f:z nX1Xs ... Xn,

\ﬁ)a h fi}! I fhl'a TR ) ﬁ!,..n = 0,1

La expresion (2.18) se llama polinomio de Zhegalkin de la funcidn fix,
X2y v 0y xn)-

Diferenciemos sucesivamente el polinomio de Zhegalkin de la funcién
flx, X2, ..., Xn) TESpecto a las variables x;, x2, . .., X¢ y determinemos
HU
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el valor de esta derivada en el punto 00 ... 0. Teniendo en cuenta que

WD) _ af 6‘«0

e ® = (219
y

= ( & x;) & X @20

FERWEY
después de la diferenciacidén respecto a las variables xi1, xz, . . ., Xx Obtene-
mos gue
3*f _
3x10xz . . . dxg |00...0 = fi2...x-

En efecto, después de diferenciar respecto a las variables xi, xz, .. .,
X, en la expresion (2.18), todos los términos de la descomposicién hasta
fiz.x se anulan y, como resultado de la sustitucién

Xesl = Xea2 = ... =Xn = 0, los demis términos de esta descomposicion,
exceplo a fi2. ..k, también seran iguales a 0. De aqui obtenemos el teorema
de descomposiciéon de cualesquiera funcidén booleana f(x, x2, .. ., xx) en
el punto 00 ... 0.

Teorema 2.2. Cualguiera funcién booleana f(x1, X2, ..., Xa) puede
representarse por su valor en el punto 00 . .. 0 y los valores de todas las
derivadas

of a s N B _
gl B e bl vy o i b L R

en este punto en la forma
S, Xar o Xn) = S0, 0, 0)@-)

® E’%{‘lm oSN Z axax;e
fi‘J

00...0
a*r
&xixi® ... @ ‘ “—_‘aniaxh .. . oxi, ]oo,,.o
SEXGXY s WD s
a"f
—_—— e, A b
ax10xz . . . 0% 0.0 H¥12 * 22y
Para obtener la descomposicién de una funcién booleana en la serie,
andloga a la serie de Taylor, en el punto o102 . . . @, introduzcamos nuevas
coordenadas x{, x4, ... xi,dondex! = xx @ oi,i = 1,2, ..., n. Entonces,

en las coordenadas x), X2, . . ., Xn, €l punto o102 . . . 6, corresponder4 al
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punto 00 . . . O en las coordenadas xy, x7, .. ., x». Empleando la descom-
posicién (2.21) de una funcién booleana en el punto 00 . . . 0 en las coorde-
nadas x{, x4 ... x; y sustituyendo cada variable x/ por i ® &, i = 1,
2, ..., n, obtenemos el teorema de descomposicién de la funcién booleana
S, x2, ..., Xa) en el punto o102 . . . gy

Teorema 2.3. Cualquiera funcidn booleana f(x\, xz, . . ., xy) se determi-
na por su valor en el punto o,02 : . . 6, ¥ los valores de todas sus derivadas

af _d&f s B _

ax; * dxdx; T U 0xidxz . . . OXn LGRS, =02
en este punto segun la expresidn

f(xlv X2; o 'rﬂ) = f(ah G2y -« oy an) @

n
af :
® 219 |on o EEONO a2
® P2 &0 ® o)y @ ) @
Fyer ax,-a);f ATy On : gbad %
izf
n &
atr
@ 2P fiuiy .Z;al ax‘-axl': ... O Imaz...o, & (Xb @ mJ) @
Bisarii s foesyils ek
"
af : :
®...® dxjdxz ... Ox om...e.& i @ ).

i=1

§ 2.5. Cdlculo de las enunciaciones

El cédlculo de enunciaciones como una teoria formal se puede definir con
ayuda del método axiomatico.

Una teoria axiomdtica (formal) T se considera determinada, si se
cumplen las siguientes condiciones:

1) esta prefijado un conjunto numerable, es decir, un conjunto, cuyos
elementos pueden ponerse en correspondencia biunivoca a los elementos
de la serie natural 1, 2, . . . de simbolos, 0 sea de los simbolos de la teoria
T. Sucesiones finitas de los simbolos de la teoria se llaman expresiones
de la teorfa 77

2) existe un subconjunto de expresiones de la teoria T llamadas férmulas
de la teorfa T (a menudo se denominan férmulas de la teoria T las formulas
construidas correctamente). Para determinar, si una expresién es la férmula
en la teoria T existe un procedimiento eficaz;
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3) esta formado cierto conjunto de férmulas denominadas aviomas de
la teoria T}

4) existe un conjunto finito Ry, Rz, . . ., R de relaciones entre las férmu-
las, llamadas reglas de deduccién. Para cada R; existe un J natural tal que
para cualquier conjunto compuesto de j férmulas y para cualquier férmula
F se resuelve eficientemente el problema de si estdn j férmulas dadas en
la relacién R; con la férmula Fy, en caso de “si”, F se denomina consecuen-
cia inmediata de j formulas dadas segiin la regla R;.

Lldmase deduccidn en T cualquiera sucesion Fy, £, . . ., Fm de férmulas
tal que para cualquier /, la férmula F; es ora un axioma de la teoria 7,
ora consecuencia inmediata de algunas férmulas anteriores.

La formula F de la teoria T se denomina teorema de la teorfa T, si
en T existe una deduccién tal que, en ella, F es la tltima férmula; esta
deduccién se llama deduccion de la férmula F. En caso general puede ser
que no exista ningtin procedimiento eficaz, con cuya ayuda se pueda deter-
minar por la férmula dada, si existe su deduccién en la teoria T,

Una formula, para la cual existe tal procedimiento se denomina reso-
luble en esta teoria, en caso contrario, irresoluble. En otras palabras, para

,las férmulas irresolubles no se puede construir un algoritmo para dilucidar
la propiedad de esta férmula de ser teorema. Para esto se necesitan cada
vez mas nuevos ingenios {inventos) que no pueden ser formalizados.

Al utilizar el concepto de la teoria axiomadtica T definamos el calculo
de enunciados en la base disyuntiva de Boole.

1. Los simbolos de T'son V, ~, (,) v las letras m; con los niimeros positi-
vos como indices: m1, M, ... . Los simbolos Vv, ~ se denominan cdpulas
y las letras my, lefras proposicionales.

2. a) Todas las letras proposicionales son férmulas;

b) si 4 y B son férmulas, entonces (4 v B) v (4) son también férmulas;

¢} una expresién es férmula si, y sélo si, se puede establecerlo emplean-
do los puntos a) y b).

De este modo, cualquier fdrrmula del cdlculo de enunciaciones es una
forma proposicional construida de letras proposicionales con ayuda de las
cépulas v vy ~

3. Cualesquiera que sean férmulas A, B, C de la teoria T, las siguientes
formulas son axiomas de T:

AVA—A AVB=-BVA,

A—-AVEB, (B2 C)»(AVvB— Av(O),

donde la denotacién « — f es equivalente a la denotaciéon « V .

4. Reglas de deduccion del cdlculo de enunciados son:

regla de sustitucidn (si a es una férmula deducible y en vez de cualquier
variable por doquier en esta férmula se realiza una sustitucién de cualquier
férmula, nueva férmula es también deducible);
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regla de conclusion (si @ — 8 y o son férmulas deducibles, 3 es también
una férmula deducible) es la regla modus ponens. Simbodlicamente esta
o;eeTril

B

Por ejemplo, si los enunciados 4 y 4 —* (g = A) son verdaderos, el
enunciado ¢ — A es también verdadero en virtud de la regla de conclusidn.

De manera analoga se puede definir otras algebras booleanas: digebra
de Webb A = (M, ©);

digebra de Sheffer A = (M, |>;

dlgebra implicativa A = (M, —, 0);

digebra coimplicativa A = (M, —, 1};

dlgebra de Zhegalkin A = (M, &, @, 1).

La generalizacion de Iégicas de dos signos son légicas de signos finitos.

Una funcién f(x(, X2, . . ., Xa) que aplica un cortejo n-dimensional de
k signos (o1, o2, . . ., @), i€ (0, 1, ..., kK — 1},i=1,2,..., n enel
conjunto (0, 1, . . .,k — 1} se denomina funcidn de una logica de k signos.
Prefijaremos una funcién de una 1égica de & signos f{x1, Xz, . . ., Xx) emple-
ando una tabla de veracidad (tabla unidimensional) que tiene &" filas o
bien una tabla bidimensional que tiene A" células.

Examinemos una funcién de tres signos, funcién de Webb, prefijada
por las tablas 2.14, @ y b.

regla se denota asi:

Tabla 2.14, a Tabla 2.14,b
Xa Xb ¥ -
Xa

0 0 1 0 \ 1 t 2
] 1 2

¢ 2 1]

1 0 2 Q 1 2 0
] 1 2 i 2 2 0
1 2 0 2 0 0 0
2 ] V]

2 1 (4}

2 e a

La funcidn de Webb
P = Xy o Xp = Max(Xe, Xp) + 1(mod k)

es completa en una légica de signos finitos. Por lo tanto, el dlgebra de
Webb de signos finitos

Aw= (M, 0y, M=1{0, 1,2, ..., k—1],
determina una légica correspondiente de k signos.
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A menudo se encuentran otras dlgebras de & signos que se determinan
por:
el digebra de Post

Ap= (M v, =), M= |0, 1 2wy = 1}
donde x; V xp = max(xg, Xp) es la disyuncidn;
£ =x+ I{mod k) es el ciclo;

el dlgebra de Rosser y Turguette

Arr = (M, V, &, ji, i}

M={0, 1,2 ..,k—-1},0gigk—-1,

donde x; & xp = min(x;, X)) es la conjuncidn,
iix) = il o son jfunciones caracteristicas,
AX= 1o cuando x # i ’

sl Bs a1,

La signatura de toda algebra debe ser completa, independiente y no
contradictoria. La signatura es compflera, si cualquier otra férmula puede
representarse en forma proposicional con ayuda de sus elementos.

La signatura se denomina independiente, si no tiene elemento que se
deduce empleando reglas de deduccion de otros elementos de la signatura.

La signatura se llama no contradictoria, si no tiene ninguna férmula
F, vilida simultdneamente con la férmula F

Las légicas de signos finitos son la generalizacidn de las l6gicas de dos
signos. Por ejemplo, la légica de Post (M, v, ) generaliza la 16gica de
Boole (M, v, 7).

Al minimizar las funciones légicas de las 16gicas de signos finitos se
puede utilizar los resultados de la légica de dos signos, es decir, la teoria
de la FND de funciones booleanas. Para esto introduzcamos una variable
booleana x., igual a 1 cuando x. = i y a 0 en caso contrario, x, # i. Deno-
minaremos a X!, de la fase i-ésima de la variable X, Xu = 10, 1, ...
o k= 1)

o 1 cuando x, = i,
“ 7 10 cuando x, # i

La negacién de la i-ésima fase es igual a la disyuncién de las demés
fases de esta variable
k=1

Es obvio que
NAvxlv... vl =1, (2.23)
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Fig. 2.7

En efecto

AvidvaEv. .. vy =xval=1.

Consideremos la minimizacién de la funcién de tres signos de Webb
prefijada por la tabla 2.14:

Y = Xa ° Xp,

¥° = x0xE v xbxb Vv xExh v xixh V xix3.

De acuerdo con la leyes conmutativa, idempotente, asociativa y distribu-
tiva tenemos

¥ = AV xlv DV XExV XV X5) =

= 1-x2vxil = xEvxi

Se puede obtener este mismo resultado comparando las ternas de con-
juncién para determinar la veracidad de la expresion (2.23) después de apli-
car la ley distributiva (fig. 2.7). Cada conjuncién corresponde a un intervalo
maximal, es decir a la arista. Construyendo y cubriendo una tabla de Quine

{tabla 2.15) enterémonos, si se puede minimizar la complejidad obtenida
de la funcién.

" Tabla 2.15
Intervalos
Intervalos
maximales
02 12 \ 20 2L 2
2— [ 1 1 1
-2 1 i 1

Tenemos un cubrimiento 7 = {2—, —2} al que corresponde una FND
minimal de la fase nula de la funcién de tres signos de Webb:

¥ = xtv .
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Anidlogamente obtenemos formas minimales para la primera y la segunda
fases de la funcién y = x; o x»;

y' = xox,

¥ = xxh v xixdv xix].

De este modo, la minimizacidn de una funcion de la légica de & signos
se reduce a la minimizacién de un sistema compuesto de k funciones boole-
anas, cada una de las cuales determina una fase respectiva de esta funcidn.

Al minimizar las funciones légicas [#] disminuye el coeficiente de
conexidad del mografo correspondiente G™([f;}). Se llama coeficiente de
conexidad de un grafo s(G) la relacién de la potencia de la signatura a
la potencia del portador de este grafo. El coeficiente de conexidad de un
mografo se define como coeficiente de conexidad del grafo obtenido des-
pués de quitar su modelizacién.

La funcién de Webb no minimizada se determina por un modelo de
la forma

¥ = (M, S3),

PESE N

Sy = [{x0, x3, y‘ll, ile. xb, y’li. 22, X2, ¥°1,
L ]

L

1 2 3
[ixé, x5, y"f, leé, x}, yzl}. {Ixé. X5, y"lj,

3 3 6
(. %3 D) 2, %, X0, 0, X3, 0°),
L 1 J L ]
R 3 5
El mografo G}“determinado mediante este modelo se representa en la

fig. 2.8, a. Su coeficiente de conexidad S(GY') es igual a 21,

3
S(GH) = 2+6+6+4+5+5+6+4+4 =21
2:9 3
Después de la minimizaci6n esta funcién corresponde a un modelo ¥;
de la forma
‘FZ = (MJ S2| S3)|
M = §x3, x5, x2, xB, x5, xk, ¥°, ¥', »*),

S = (2 ¥°), (53, ¥},
) —]

1 2
S = h:xﬁ'. x5, y‘I}. {22, xi, yzll.
L

3 4
2 ] (1]
lxa!', xa: Y ]v {[x" Xbs yzll ]'
L i

3 6
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a)

Fig. 2.8

El mografo G} determinado por el modelo ¥, se representa en la
fig. 2.8, b. Después de la minimizacién su coeficiente de conexidad dismi-
nuira mas de dos veces:

244 +4+44+3+3+2+ i 1

S6an w2 H 4+ A bl gl

2-9 3

Nota. En la fig. 2.8 los vértices correspondientes a las fases de la funcién estdn rayados;

los vértices correspondientes a las fases de argumentos no estdn rayados.

El coeficiente de conexidad de un grafo se determina como suma de los niimeros de
aristas, incidentes a los vértices del grafo, dividida por el mimero duplicado de sus vértices.

§ 2.6. Cdlculo de los predicados

No basta utilizar el cdlculo de enunciaciones para expresar razonamientos
logicos mas complicados. En esencial, una légica de & signos permite deter-
minar, si existe 0 no una u otra propiedad sobre un conjunto finito de ele-
mentos. En el caso de conjuntos infinitos, para establecer una propiedad
determinada de un concepto abstracto considerado, es necesario introducir
funciones, cuyos argumentos recorren el mimero infinito de valores en el
conjunto M. La funcién P que toma uno de los valores, 0 6 1, y cuyos
argumentos recorren valores del conjunto arbitrario M se denomina predi-
cado P en el campo-objeto M. E] nimero de argumentos del predicado
P, xz, ... Xz) se denomina su orden.

El predicado P(x1, x2, . .., X;) determina una relacion n-aria R en M:
si P(x1, X2, . . ., Xn) = 1, (x], X3, . . ., x») estdn en una relacién R determina-
da por este predicado y si P(x], X3, . . ., X3} = 0, estos elementos no estin
en la relacién R, (x3, X3, ..., X3) ¢R.

Para simplificar la estructura de razonamientos légicos complicados
introduzcamos designaciones especiales para unas expresiones que se en-
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cuentran a menudo. Acordemos designar la expresion “para cualquier ele-
mento x € M la propiedad R estd cumplida” mediante (vx € M)(R(x) = 1)
y la expresion “existe por lo menos un elemento x € M que posee la pro-
piedad R” mediante (3Ixe€M) (R(x)=1). En las expresiones
(¥x € M)(R(x) = 1) y (3x € M)(R(x) = 1) las designaciones vx y 3x se deno-
minaran  cwuantificador  universal 'y  cuantificador  existencial,
respectivamente.

Definamos inductivamente la férmula del cdlculo de predicados de mo-
do andlogo a la definicién de la formula del cdlculo de enunciaciones, Utili-
zaremos comas, paréntesis, simbolos del cdlculo de enunciaciones,
variables-objetos x;, x2, ... (variables que toman valores de un campo-
objeto), constantes-objetos, ai, @, . . ., letras de predicado Py, P, ... ¥
letras funcionales £, 5, ... .

Definamos conceptos de las termas de la férmula elemental.

La definicién de la rerma es la siguiente:

1. Toda variable-objeto o constante-objeto es terma.

2. Si f es una letra funcional v 7y, 72, . . ., 7. SOn las termas, f(41, . . .
e ey M2y .. Ta) €8 la terma.

3. Una expresién es la terma solamente en el caso cuando eso se despren-
de de las reglas 1 y 2.

Si P es una letra de predicado y m, %2, - . ., 7. Son las termas, P(y,
N2, - « ., P} €5 una formula elemental.

La definicién de la fdrmula:

1. Cualquier féormula elemental es la formula.

2. Si A y B son formulas y x es una variable-objeto, cada una de las
expresiones A = B (= es la cépula del calculo de enunciaciones) y (vix € M)
(A(x)) es la férmula.

3. Una expresién es la férmula en el caso, y sélo en el, cuando esto
se desprende de las reglas 1 y 2.

En la expresién (vx € M) (A(x)) la férmula A(x) se denomina campo
de actuacién del cuantificador vx. .

Una variable-objeto que forma parte de una férmula llamase fibre, si
no sigue directamente a un cuantificador y no entra en el campo de ac-
tuacién del cuantificador respecto a esta variable. Todas las demads variables
que integran la formula se llaman conexas. En el limite cualquier férmula
sin variables libres (férmula cerrada) es una enunciacion, verdadera o falsa,
y cualquier féormula con variables libres prefija una relacién en el campo-
objeto, a veces llamado campo de interpretacidn. Esta relacién puede ser
verdadera o falsa dependiendo de los valores de variables libres.

En la definicidén de la férmula entre los simbolos principales no hay
signo 3 para el cuantificador existencial, puesto que se puede definirlo co-
mo la denotacién abreviada para vx(A4(x)).
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El cuantificador universal puede considerarse como generalizacién de
la conjuncién. Si el campo-objeto es finito y comprende elementos m,
mz, ... oy, la formula (vx)(F(x)) equivale a la conjuncién
F(m ) & F(mz) & . . . & F(m,) y el cuantificador existencial (3x) puede con-
siderarse como generalizacién de la disyuncién con ello las denotaciones
(AxX)(F(x)) F(my)y Vv F(mz) v . .. Vv F(m,) son equivalentes.

Para los campos-objetos infinitos, los cuantificadores interpretan el pa-
pel de disyunciones y conjunciones infinitas.

En el cidlculo de predicados, cada férmula F(P;, P2, ..., Pm, X1,

. X2, . . . X,) prefija un operador que procesa un sistema de predicados

Py, P, ..., Py en el predicado P, de argumentos xy, x3, . .., X5, donde
todas estas variables en la fdrmula son libres. Dos férmulas Fo(Py, Ps, . . .
ooy Py X1y X2y o 20y Xn) ¥ FolPy, Pa, .+ ., P, X1, X2, . . ., Xn) que prefijan
el mismo operador que procesa el sistema de predicados Py, P, ..., Pm
en el predicado P.(xy, xz, . . ., X:) las denominaremos eguivalentes v desig-
naremos Fy = Fp.

Igual que en el cédlculo de enunciaciones, denominaremos transforma-
cion idéntica el paso de la férmula F a su forma equivalente.

A base de los conceptos introducidos, pueden ser demostrados los si-
guientes cuatro grupos de identidades:

de dualidad

@E(PE) = (YPX), (YXPX)) = EX)NPX));

para w-operaciones (de conjuncién y de cuantificador universal)
(Vx)(Fa(x) A Fp(x)) = (YX)Fa(x)) A (YX)Fp(x)),
(WX)YYIF(x p)) = (YYHYXFx »))

para g-operaciones (de disyuncién y de cuantificador existencial)
(3x)(Fa(x) V Fp(x)) = (Qx)}Fa(x)) V (3x)Fp(x)),
E)EVNF ¥y = EPIEX)(EF(x »));

de sacamiento de la constante
(Ex)(Fa o Fo(x)) = Fy o (Zx)(Fp(x)),

donde (Ex) = (3x), (¥x); = = V, A; F; es una subférmula que no contiene
variable-objeto conexa x llamada a continuacidn constante respecto al
cuantificador (Zx).

Para sacar una constante del campo de definicién del cuantificador exis-
tencial una expresién subcuantificadora se reduce de antemano a la forma
de disyuncion de conjunciones; para sacar una constante del campo de defi-
nicién del cuantificador universal la expresion se reduce a la forma de
conjuncién.
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Por ejemplo, examinemos el sacamiento de una constante G(») en la
formula

(YX)((F(x) + GO V (H(x) » GON)= (¥x)(Fx) A COY V HEX)V G()) =

= (YX)(F(x) A G) vV H(x) A GON= (VNG A (H(xX) V.F(x))) =

= (VXHGU) A (H(x) = F(x))) = Gy) A (VX)(H(x) — F(x)).

En el cdlculo examinado, los cuantificadores se aplican solamente res-
pecto a las variables-objetos. El lenguaje serd mds expresivo, si junto a los
cuantificadores respecto a las variables-objetos se utilizan los cuantificado-
res respecto a las variables de predicado.

El cdlculo con [a aplicacién solamente de los cuantificadores respecto
a las variables-objetos se denomina cdiculo estrecho de predicados al que
se puede transformar en el cdlculo extendido de predicados, anadiendo los
cuantificadores segtin las variables de predicado.

La definicién de la férmula en el cilculo extendido de predicados es
andloga a su definicién en el célculo estrecho. La diferencia consiste en
que, en el punto 2 de la definicidn de la férmula, la variable x puede ser
tanto la variable-objeto como también la de predicado. Las identidades de
dualidad, de 7- y g-operaciones y de sacamiento de una constante son vili-
das también en el cdiculo extendido de predicados.

Examinemos el problema de deducibilidad en el célculo de predicados.
Extendamos el sistema de axiomas de un cilculo de enunciaciones incluido
en el calculo estrecho de predicados, mediante los axiomas siguientes:

(VXNG(x) = G)); H(y) = (ax)H(x).

El sentido de estos axiomas es siguiente: si el predicado G(x) es verdadero
para cualquier x, es verdadero también para cualquier y; si el predicado
H(y) es verdadero para cualquier y, existe un x tal que H{(x) es verdadero.

En el cdlculo estrecho de predicados dos reglas de deduccién (de sustitu-
cién y de conclusién) del cdlculo de enunciaciones se completan con otras
tres regias:

1) regla para v (si g1 = ¢; se deduce, ; no contiene x como variable
libre y ¢, sf la contiene en esta forma, entonces la férmula ¢, — v{x)2
también se deduce);

2) regla para 3 (si 1 — ¢2 se deduce y x se contiene como variable libre
€N @1, Mas no se contiene en forma de variable libre en w2, entonces la
férmula 3(x)¢; > ¢ también se deduce);

3) regla de redenominacidn de variables conexas (si una férmula @1 se
deduce y en ¢ existe ora el cuantificador universal ora el existencial, en
1 una variable conexa puede ser sustituida por otra igual simult4neamente
en todos los campos de actuacion del cuantificador y en el mismo cuantifi-
cador. La férmula obtenida también se deduce).
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§ 2.7. Problemas y ejercicios

,2.1. Demostrar gue el ndmero de todas las funciones booleanas de » argumentos es igual
az.

2.2. Escribir la funcién booleana y = flx;, ¥z, k1), que toma el valor 1 sobre los juegos
con los nimeros 3, 4, 7, en las FND y FNCj perfecias.

2.3, Anotar la funcién booleana y = f(xi, X2, X3, X), que toma el valor 0 sobre los juegos
con los numeros 2, 6, 7, 8, 11 y 12, en las FND y FNCj perfectas,

2.4, Verificar la validez de la igualdad x = x @ L.

2.5, Verificar la validez de las sigui igualdade

- -]

—— i S
XX =Xivy, x—x =XV xxa=x&x.

2.6. Demostrar que €l nimero de funciones booleanas que dependen esencialmente de
n argumentos se determina por la relacion recurrente

donde A; es el nimero de funciones bool que dependen de 1 arg 08,

2.7. La funcién booleana f dependiente de tres argumentos se denomina mayoritaria,
si tiene tugar la igualdad f = xya3 V xixa V x2x;. Designaremos esta operacién mediante el
signo # y escribiremos x1 # X2 # x3. Demostrar que tienen lugar las siguientes relaciones:

D ox #x #x =
2) i # X #xp = a2
NXAEXRFEX =X # X2 # X

2.8. Hallar l]a FND minimal {(FNDM) de la funcidn ¥ = flxi, X2, x5, x) que toma el
valor 1 sobre los juegos 0, 1, 2, 5, 6, 7, 8, 12 y 13.

2.9. Hallar la FNDM de la funcién y = flx;, X2, X3, X, Xs) que toma el valor 1 sobre
los juegos con los nimeros de 0 a 7, de 11 a 21, de 26 a 31.

2.10. La funcién y = flx;, X2, x3) es igual a | sobre los juegos 1, 3, 4 y no es determinada
sobre el juego con el numero 5. Hallar su FNDM.

2.11. Elaborar un test de reconocimiento de la representacidn contradictoria de una fun-
cién booleana incompletamente definida f{x, Xz, . . ., X) (una funcion estd prefijada contra-
dictoriamente, si (3X)(X) = 0, 1).

2.12. Hallar la FNDM de la funcién booleana

Foo, W 1 sobre Ml — 0 —, 001 — 0, —010—,
T e BT 0 sobre 110 — 1, 000 — 1, 1001 —,
2.13. Determinar la forma con paréntesis de la funcion booleana
1 sobre — 0 — 100, 100 — 01, M} = — —1,
T 222 0 25) = {o sobre 110 — 0 —, 0] — — ~ 0, 00 — 1 — 1.
2.14. Hallar la potencia de Ja regién unitaria de la funcién booleana incompletamente
definida f{xi, X2, ... xs) después de su definicién completa

i ~ (1 sobre 001 — 1, 01 — 01, 1011 —,
% e X5) = 4o bre 0001 —, 100 — 1, Il —OIL -

La funcional de la calidad de definicién completa es el numero minimal de las termas prima-
rias en la FND equivalente de la funcion f
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2.15. Verificar la linealidad de la funcién booleana

S, x2 x0h = v (0, 1, 5, 6).

2.16. Establecer, si la funcién de equivalencia es autodual,

2.17.Verificar la monotonia de la conjuncién de » argumentos.

2.18. Poner un c¢jemplo de una funcién mondtona que sea simultdneamente lineal,

2.19. Poner un ejemple de una funcién autodual que sea simultdneamente lineal.

2.20. Poner un cjemplo de una funcidn lineal y mondtona.

2.21. Cerciorarse que las funciones de Sheffer y de Webb no son Imeales. ni monétonas,
ni autoduales.

2.22. Establecer, si la funcién booleana fix, X2, x3, x){i = v (0, 3, 7, 11, 13) forma base
en P,

2.23. ;Es vélida la afirmacidn: si una funcién booleana depende esencialmente de mds
que un argumento y es mondtona, ésta no es autodual?

2.24. ;Es vélida la afirmacidn: si una funcidon booleana depende (esencialmente) de mds
que un elemento y es fineal, ésta no es mondétona?

2.25. Hallar todas tas funciones booleanas que satisfacen el siguiente sistema de
ecuaciones: B _

elx) = 1 = p(x), elx)e(x) = 0.

2.26. Demostrar el siguiente reorema: con la superposicién (sustitucién de una funcién
a otra en vez de sus argumentos) de las funciones lineales resultan funciones lineales.

2.27. Demostrar el teorema: con la superposicién de funciones autoduales vuelven a resul-
tar funciones autoduales.

2.28. Demostrar el teorema: con la superposicidn de funciones monétonas vuelven a resul-
lar funciones mondtonas.

2.29. Una funcién se denomina conservadora de una constante r(r = 0,1), si sobre un
Juego de argumentos de tipo {s # ... r} toma el valor r. Demostrar que la superposicién
de funciones conservadoras de la constante ~ es, otra vez, una funcidn que conserva esta
constlante.

2.30. ;Son autoduales ¢, V ¢2 ¥ vz, Sl @1 ¥ 2 son autoduales?

2.31. ;Son lineales vy V @1, w1 ¥ @1 = ¢, Si @1 ¥ ¢z son lineales?

2.32. Una funcién booleana se denomina siméirica, si no se cambia con cualquier redeno-
minacién de sus argumentos, Se llama funcidn booleana simétrica fundamental del indice
m una funcién booleana simétrica tal que todas conjunciones que forman parte de la FNDP
de esta funcién tienen igualmente mr letras sin negacidn.

Demostrar el siguiente teorema: cualesquiera funcién booleana simétrica es disyuncién
de fas funciones booleanas simétricas fundameniales, cuyos indices se determinan univoca-
mente por la funcidén simétrica que se presenta.

2.33. Determinar el nimero de funciones autoduales que dependen de n argumentos.

2.34. Demostrar la completitud de un sistema de funciones booleanas gue se compone
de la disyuncién, la constante 0 y la equivalencia. ;Forma base este sistema?

2.35. ;Forma una base un sistema de funciones booleanas que se compone de la implica-
cién y la constante 07

2.36, Establecer, si es completo un sistema que se compone de ta disyuncién, la implica-
cion y la conjuncidn.

2.37. ;Forman un sistema completo la funcidn xixz V xuxa V Xaxs ¥ la negacién?

2.38. Demostrar que, si una funcidn booleana no conserva la constante y es no autodual,
ella es no mondiona o no lineal.

2.39. Comparar las conexidades de los mografos que determinan la conjuncién y la dis-
yuncion en una logica de tres signos antes y después de la minimizacién.

2.40. Aclarar, i es posible realizar cualguier funcion booleana sobre elementos del SUANI
(Sistema Universal de Automdtica Neumdtica Industrial) que rep un relé neumdti
descrito por la funcidén a(b Vv ¢) v bed.
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2.41. Sintetizar en ta base de Webb un esquema l6gico que realiza una funcidn booleana
Jix, x2 xa, X, xs, xe) = v(0, 1,2, 5 7, 1L, I3, 15, 19, 20, 32, 57, 61 y 62).
2.42. Sintetizar en la base | -+, 0] un esquema l6gico que realiza una funcidn booleana
Jon, . oo x)e = VA0, 3, 5, 8,10, 12, 14, 15, §7, 25, 27 ¥ 3).

2.43. Determinar la complejidad del semisumador en la base de Sheffer.
2.44. Demostrar que

Bflxu, X2y ooy Xip v oy Xa) AN, X2y - ooy Xia o ooy Xn)
ax, ax; ’

2.45. Establecer si es vilida la igualdad
aflx, Xz, . . Xn) _ 3fix1, X3, + - . Xn)

ax; 3x1

2.46. Sintetizar en la base de Webb un esquema 16gico que realiza una funcién booleana.
S, xz, %, %, xs)) = V (0, 3, 5, 8,10, 12, 14, 15, 17, 25, 27 y 31).

2.47. Determinar la complejidad del semisumador en la base4—+, 1).

2.48. Sintetizar en la base [, ~ ] un esquema ldgico que realiZa una funcidén booleana

S0n, x2, X3, X5, x5, X)i = v (0, 1, 2, 5, 7, 11, 13, 15, 19, 20, 32, 57, 61 y 62).

2.49, Sintetizar en }a base {a vV @2 V @3] un esquema ldgico que realiza una funcién
booleana

S, x2, X3, x5, Xs) = V0, ), 2, 5, 6,7, 11, 12, 15, 16, 18, 25 y 30).

2.50. Sintetizar en la base { —, 0} un esquema logico que realiza una funcién booleana

S X2y oo X)) = V0,2, 4,5 6 7,11, 12 ... 81 y 101),

2.51. Definir el orden de exclusién de variables cuando se realiza una funcién booleana

SO xa X x)h = VO, 1,2, 4,7, 8 11 y15),

si se tiene un catdlogo de realizacién de todas las funciones de dos variables; la funcién resi-
dual se considera simple, si se compone de dos conjunciones elementales.

2,52, Establecer qué es mayor: el peso —;!-— o ¢l peso :—"( de una funcién booleana
2

Xy

S0, x2, X3, Xa)y = V(1 3, 7, 8, 12, M4y 15).

2.53. Proponer un algoritmo para caleular el peso de la derivada de una funcidén boole-
ana, utilizando matrices binarias,

2.54. Establecer, si es util desde el punto de vista de disminucidén de gasios para aparaios
la exclusién segun una o dos variables en la base de la implicacién y la constante cero.

2,55, Hallar todas las funciones residuales cuando el orden de exclusién de variables de
una funcidn booleana

Sy, x2, x3. )y = v(0, 4, 6, 8, 10, 13, 14 ¥ 15)

es optimo.
2.56, ;(Cudntas entradas tiene el bloque de exclusién de k variables?
2.57. Hallar una realizacién del btoque de exclusién de una variable en la base de Webb.
2.58. iCudl es la complejidad de) blogue de exclusién de una variable en la base de
Sheffer?

76577
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d
2.59. Hallar el peso de la derivada BJ{: de una funcién booleana

Sy, X2, %)y = w00, 1, 5, 6 ¥ 7).

2.60. Demostrar que

(X, Xz, v Ko oo X)L X - E e Xa)
ax; ax;

2.61. Hallar la derivada de primer orden para una funcidn del circuito de traslado en
el semisumador completo,

2.62. Determinar la derivada de segundo orden de una funcién de suma en ¢l semisuma-
dor completo, la que determina las condiciones de conmutacion de una funcién de suma
al conmutar los canales correspondientes a }os sumandos.

2.63. Demostrar que cualesquiera fupeion booleana se define univocamente por las valo-
res de la funcién y de todas las derivadas en el punto 0, 0 ... (.

2.64. Proyectar un contador de imparidad en una base coimplicativa.

2.65. Proy un i dor en una base implicativa.

1.66. Sintetizar un_esquema que realiza una funcién que toma el valor | sobre los juegos
de sus cinco argumeans que tienen no menos de cuatro unidades. Emplear para la sintesis
fos el de equivalencia, disyunci iy

2.67. Sintetizar un descifrador de tres entradas y ocho salidas utilizando los elementos
0, Y y NO.

2.68. Realizar la funcién de implicacion sobre el que realizan la negacion y la
funcion y = xixz V X351 V XaXs.

2.69. Realizar la implicacién sobre los elementos que realizan la funcidn de Webb.

2.70. Realizar la suma segiin el mddulo dos sobre elementos de Sheffer.

2.71. Realizar un circuito de adicién en un orden sobre elementos Y, O y NO,

2.72. Realizar un circuito de adicién en un arden, teniendo en cuenta la minimizacién
de las funciones de suma y de traslado sobre los elementos O, Y y NO.

2.73. Demostrar que s¢ puede construir un descifrador completo de n entradas, emplean-
do dos descifradores completos de m y n — m entradas y de 2 elementos de tipo Y.

2.74. Realizar la funcién y = XXz V X1X2%; sobre los elementos mayoritarios y los elemen-
tos NO,

2.75. Realizar la funcidon y = x; = (¥ — x3) sobre los elementos y = x; # Xz # X3y NQ.

2.76. Realizar, sobre los elementos mayoritarios v los NO, un circuito de prueba del cédigo
de paridad, o sea, un circuito, a Ja salida del cual surge una sedal unitaria, si a la entrada
del mismo hay un aumero par de unidades. El nimero de entradas equivale a tres.

2.77. Demastrar que

WN& olXy _ o dplX) i)
et - 0 250 0

@ (X)) BelX)
ax ax; ax;

2.78. Demostrar que
AKXV plX)) - 70 B'F;t’) @ 20 afX) 61.;;({7_ 3pelX)

axy ax; X ax
2.79. Desarrollar la funcidn booleana
S, X2 %, Xa) = Xixpke V XaXpXa V XX

en una seric andloga a la serie de Taylor en los puntos 2 y 11. Comparar el nimero de las
termas primarias en los desarrollos obtenidos.
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2.80. Escribir las leyes principales del dlgebra de Boole durante una interpretacién aritmé-
tica de las siguientes operaciones ldgicas:

X&y = xp XVy=x+p—xpx=1-x

donde «-», « + », « — » son las operaciones aritméticas "multiplicacion”, “adicidn™ y “*sustrac-
cién”, respectivamente,

2.81. 1} La lista de termas del cdlculo es §{J, +, =1}. Las reglas de formacién de las
férmulas son siguientes: a} f es la formula; b) si ¢ es la férmula, ¢! también es la férmula:
c}si @ ¥ ¥ son las formulas, entonces ¢ + ¥ y ¢ = ¥ son también férmulas. Estan prefijadas
el axioma tnico I + I = I v dos reglas de deduccidn:

a}sigs + I = 2 es una fdrmula deducible, ¢/ + I = ¢ también es una férmula dedu-
cible; b) si ¢ + 92 = > €5 una fdrmula deducible, v + w2f = @:f también es una férmula
deducibte. Demostrar que:

a) la férmula IT + fIf = IHIT se deduce en el cdleulo dado;

b} la férmula F + F = I no se deduce en el célculo dado.

2) Un conjunto de las termas consta de un mimero infinito de letras y signos v y —.

Las reglas de formacién de tas formulas son siguientes:

a) coualquier letra es una férmula;

b) si o ¥ 8 son férmulas, « v 8 v e — 2 son también férmulas.

El sistema de axiomas es tal:

A AVA—= A b A= AVE ) AVEB— BV A;
d} (A = B) = ((C = A) = (C = B)).

Las reglas de deduccidn son tales: a) regla de sustitucidn; si o« es una férmula deducible
y en vez de cualquier variable en esta férmula se pone en todas partes cualquier formula,
la férmula nueva es también deducible;

b) regla de coneclusion {modus ponens): si @ — 8 ¥ « son fdrmulas deducibles, 8 es tam-
bién una formula deducible.

En el cdlculo dado (cdlculo de Hilbert) demostrar gue son deducibles las siguientes fér-
mulas: 1) 4 = A; 2) si 4 = (B~ C}, A y B se deducen, la férmula C también se deduce.

2.82. Empleando los resultados del problema anterior, demostrar que en el cdlculo de
Hilbert tienen lugar las siguientes afirmaciones: si & — (8 — v) se deduce, § — (o — ) tam-
bién se deduce.

2.83. Introduzcamos el cdlculo siguiente {cdlculo de Lukasiewicz): el conjunto de las ter-
mas se compone del mimero infinito de letras y de signos —, —.

Las reglas de formacién de las férmulas son:

a) todas las letras son f{érmulas;

b) si ¢ es una férmula, ¢ ¢s5 también una férmula;

¢} si ¢ y ¥ son férmulas, ¢ — ¥ es también una férmula.

El sistema de axiomas es el siguiente:

a) (A= B)—~ (B—C)— (4~ Q)

A=A~ A )A— (A~ B).

Son vélidas la regla de sustitucidn y la de conclusién,

Demostrar que en el cdlculo de Lukasiewicz se deduce la formula 4 — A.

2.B4. Un cdlculo esté prefijado del modo siguiente (cdlculo de P, 5. Névikov): d conjunto
de las termas se compone del nimero infinito de letras y de signos v, A, —

Las reglas de formacidn de las férmulas son: a) todas las letras son férmulas,

b) si o es una férmula, o &5 también una férmula;

¢} si ¢ y B son fédrmulas, eV 3, o A B8, & — 3 son también férmulas.

El sistema de axiomas se compone de las siguientes once axiomas:

1) A=(B— A% 2) (A = (B~ C) = (A ~ B) = (4 - O

NAAB A DAAB-EB A B)—=((A=-Cl—~A—(BArOY

T*
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6 A= AVE NNB—AVE; 3}(A—-C;—‘((B-C)-*(AVB]-°C')):
NU=B)=(A~Bi 10 A=A 1) A= A
Como regla de deduccidn se utilizan la regla de sustitucion y la de conclusién (modus .
ponens).
Demostrar que el sistema de axiomas no es contradictoria.
2.85. Demostrar que el axioma nueve del cdlculo de Névikov (véase la condicién del
problema anterior) es independiente respecto a todos los demds axiomas de este céleulo.
2.86. Sea que los predicados N{x), C(x), R(x), P(x), Q(x), D{x, ¥) tienen respectivaments,
el sentido: x &s un nimero natural, x es un nimero enterc, x €5 Un mtimero simple, x ¢s un
nimerc positivo, x es un nimero par, x divide y. Enunciar el sentido de las siguientes férmulas
del cdlculo estrecho de predicados (y seffalar los que son idénticamente verdaderos entre ellos):
1) ¥ ING) = ki
2) ¥(x) [C(x) =~ Q) v Q));
3) v(x) 3() (C(x) A C) = Dix, ¥);
4) 3(x) (R0 A Q(x)];
5) ¥(x) [C(x) A Pix} = N(x)).

1.87. Describir un conjunto de veracidad de los sigui predicados biddicos, definidos
sobre el conjunto de los niimeros reales:

P =0x>0Ap<0;@x>0-F<.

2.88. Sobre un conjunto M son determinados los predicados monddicos F{x) y G(x).
1Qué condiciones satisfacen sus campos de veracidad, si son verdaderos:

DY) (Fix) = G A0 (Fi) A GE));

2) a(x) (Flx) A G(x)) A 3(x) [Flx) = G(x))?

2.89. En un conjunto A sea definida una operacién binaria asociativa y conmutativa.
Sea que, para cualesquiera «, 8 € A, la ecuacidn o« = 8§ =  (+ €5 el signo de operacién en
A) es resoluble. Entonces 4 a la par con = se denomina grupo de Abel. Sea que P{a, §)
significa o = 8 y S(a, 8, y) significa que v es la suma de o y §.Demostrar que la coleccidn
de axiomas dadas a continuacién define el concepto de! grupo abeliano:

1} vaP(a, o)

2) ¥(a, B)Plar, §) — P8, o)),

3) ¥(a, B, )P, B) A P(B, v) — Pla, v))i

4) ¥(5, &, w, a, B, VIS, e, w) A P(B, o) A P(g, 8) A Plo, ¥) A Sla, 8, v))

5) ¥(a, 8)3 (v)S(e, A, ¥H

6) v(a, B, v, 8}(S(a, B, ¥) A Slar, 8, 8) = P(y, )N

7 ¥is, & w, o, BISS, & w)A Sw, o, BYA

A S(e, a, v) = 5@, v, 8)

8) ¥(m, 8, Y)(S(a, 8, ¥) = Sif#, o, VI

9) ¥{a, 8) 3 (y)S(a, B, ¥)

2.90. Demostrar la equivalencia de las sigui férmulas:

a) A()Fx) y VOFx);

b) Y(x)(F(x) = A) y 3I()(F(x) = A);

) V(x)A — Fx)) y A = V(x)F(x).

2.91. Demostrar la equivalencia de las férmulas:
a) 3(x)A A F(x)) y A A 3X)F(x);

b) 3(x)}F(x) v G(x)) ¥y 3(F(x) = A);

c) AV YX)F(x) y ¥{x)(A V F(x)).

2.92. Establecer cdmo se puede construir una teoria de las formas normales en e} calculo
de predicados
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Comentarios

La légica matemndtica es el analisis de los métodos de los razonamientos, y no su conteni-
do. La formatizacidn de los raz jentos remonta a Aristételes, La légica aristotélica (for-
mal) adquirié el aspecto moderno en la segunda mitad del siglo XIX en la cbra de George
Boole “An Investigation of the Laws of Thought”, Otros cientificos de aguel perfodo —
P. 5. Poretski, catedrdtico de la Universidad de Kazén, De Morgan, Frege, Pierce, Schroder,
etc. — también hicieron gran aporte al proceso de formacién de la légica de enunciaciones.

La légica matemética se desarrollaba intensamente en los afios 50 de nuestro siglo debido
al progreso impetuoso de la técnica digital. En 1910, ¢! flsico ruso P. Erenfest sefialé la posibili-

dad de aplicar la légica de enunciaciones para describir los circuitos de ién en la
telefonia. En 1938—1940, ap d casi simultd los trabajos del cientifico ruso
V. I. St kov, el nor icano Shannon y los jap Nakashima y H sobre la

aplicacion de la logica matematica en la técnica digital. En 1951, en la URSS fue puesto en
explotacién el ordenador M3CM (PMCE Pequefia Mdquina Calculadora Electrénica), et pri-
mero en Europa, disefiado bajo la di ién de S. A. Lébedev, La pri monografia, dedica-

da al empleo de la ldgica Atica para di los aparatos digitales, fue publi en
la URSS por el cientifico soviético M. A. Gavrflov, en 1950.

P. 5. Novikov, destacado cientifico soviético, y sus discipulos, contribuyeron mucho al
desarrollo de esta parte de la matemética discreta.

Para profundizar los conocimientos acerca de la légica matemdtica, rec damos las
obras indicadas en la bibliografia.




«La Naturaleza habla ¢l idioma de las mate
maticas: las letras de éste son circulos, tridn:
gulos y otras figuras matemditicasy.

Calileo Galifel

CAPITULO 3
Teoria de los grafos y mografos

§ 3.1. Grafo ponderado y su planteamiento matricial

Anteriormente el concepto del grafo fue definido como coleccién de un
conjunto de vértices V' y de arcos ;< V2. Un arco u unido con un vértice
v se denomina incidente al vértice v y el vértice v se denomina coincidente
al arco u. En el arco (v;, vy), los vértices v; y u; se llaman de fronfera con
la particularidad de que v es origen y vy es fin del arco. Para contar los
vértices aislados, es decir, los vértices no coincidentes a ningun arco, exten-
damos el concepto del grafo G hasta la colecion de la forma

G = (¥, U, Uy, UiCV, U:C V2,

donde la relacién monaria U/, determina los vértices aislados y Us, los arcos,

Al sacar arcos del grafo G = (¥, U,, U2) obtenemos un grafo parcial
G'CG, G =(V, U, U4y, UsC s, del grafo G, al sacar los vértices y
sus arcos incidentes obtenemos un subgrafo G* = {(V", U{, UH, V" CV,
U'c Uy, U'C U4 del grafo G. Al seguir sacando los arcos del subgrafo G*
del grafo G obtenemos un subgrafo parcial G = (V, Uy, ;) del grafo G.

Dos arcos u, y ug se denominan adyacentes, si son incidentes a un mis-
mo vértice.

Dos vértices v, ¥ up se llaman adyvacentes, si se unen mediante un arco.

Un conjunto de los vértices adyacentes con el vértice v, lldmase su en-
torno y se denota mediante O(v,) o I'v... Empleando el concepto de entorno
el grafo se define como una coleccidn del conjunto de los vértices y un
conjunto de sus entornos: G = (¥, I'),

Definamos el concepto del grafo ponderado. A cada vértice vel

(V=t(w/i=1,2, ... n))del grafo G= (¥, U, U>) le pongamos en
correspondencia el peso w; de un conjunto de los pesos W = [wi/i =1,
2, ...). Como resultado obtenemos un conjunto de los vértices ponderados
{(w, w)/i = 1,2, ... n}, con elio, no hace falta que todos los pesos sean
distintos.

Pongamos el peso p; del conjunto de pesos P= {p/i=1,2,...} en
correspondencia a cada elemento del conjunto Uz = {w/i= 1, ... m}.

Como resultado obtenemos un conjunto de los arcos ponderados [(u,
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p)i=1,2, ... m); ademds, no hace falta que sean distintos todos los
pesos.

Los conjuntos de vértices y arcos ponderados dados anteriormente en
su conjunto definen un grafo ponderado G = ((F, W), (U, P)}, V= VU
U Uy, el que, estrictamente dicho, ya no es un grafo, sino una funcién defini-
da sobre los vértices y los arcos del grafo.

Para prefijar los grafos existen varias clases de matrices, entre las cuales
las principales son la clase de matrices de incidencias y la de matrices de
adyacencia, Examinemos estas clases de matrices.

Clase de matrices de incidencias. Si el grafo G contiene n vértices y
m arcos, la matriz de incidencias A(G) = [@y]mx« s¢ determina como

-1, si el vértice v; es el fin del arco w;

1, si el vértice v; es el origen del arco u;
ay =
0, si el vértice v; no es coincidente al arco w.

A veces el grafo contiene lazos, es decir, arcos de tipo (v, v:). En este
caso ciertos elementos de la matriz 4 son iguales a 1 y I simultdneamente,
lo que lleva a Ja multiformidad de los elementos de la matriz 4.

Para prefijar un grafo con lazos dividamos la matriz 4 en dos matrices
At y A"

AT = [‘IJ % ns

1, si el vértice u; es el origen del arco w;;
donde af= ) § hx g L
0 en caso contrario;

A” = [ai..lT]mxm

0 en caso contrario.
Si un grafo no tiene lazos, A = A% ~ A~. Las matrices A" y A~
describen el grafo sin tener en cuenta los pesos de los vértices y arcos.
Prefijemos los pesos de los vértices de un grafo G en forma de una
matriz columna

donde aj= {1, si el vértice v; es el fin del arco u;;

Wi

w(G) = |2,

Wn

y los pesos de los arcos en forma de una matriz diagonal de orden m
;m 0 0...0

0 0 0...pm

Las matrices 4%, A~, W, P describen completamente un grafo
ponderado.

P(G) =
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Fig. 3.1

Examinemos un esquema légico que realiza la adicién segun el modulo
dos filxi, x2) = x@x; en la base de Sheffer gl(a, B) = av (fig. 3.1, a)
¥y su respectivo grafo ponderado G = ( (¥, W), U), cuyos vértices vy, ta,...
- Uy =13, 4, 5, 6 y 1y son ponderados por las variables x; y x3, de la
variable funcional ¢sh del elemento de Shefier y una variable funcional f,
respectivamente. El origen del arco corresponde a una variable x;, x3, ¢
a la salida del elemento de Sheffer, el fin del arco corresponde a la entrada
del elemento de Sheffer o bien a la variable funcional f. Entonces el grafo
G = ((¥ W), U) (fig. 3.1, b) que determina este esquema 16gico se repre-
senta por matrices de la clase examinada como

10 0 ~t 0 0 0
10 -1 0 0 o0 0 x
01 -1 0 0 0 o0 x;
01 0 0 -1 0 0 Psh
AG=f0 0 1 -1 0 0 0 , WG = | om
00 1 0 -1 4} 0 Psh
o6 B 1 4 -4 9 Psh
0 0 (1] V] 1 -1 ] ¥ 3
600 0 0 0 1 -

Clase de matrices de adyacencia. La matriz de adyacencia S = [5;]n xx
de un grafo no ponderado se define del modo siguiente:

e 1, si (v, u)eU
770, si (v v)¢ UL

Para un grafo ponderado

s VPib si el arco (u, v)el tiene peso py;
4 0, si (t, l}}]ﬂ u.
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Las matrices S, W, P describen completamente un grafo ponderado.
Por ejemplo, el grafo G (fig. 3.1, b) se prefija por matrices de esta clase
como

$(G) = s WG = | om

Psh

coo0ooo o
coOQooooQ
SO0 Q= r—
SO0 —o =
OO0 =—O
(== = = =)
=0 000 O

Al prefijar el grafo G (fig. 3.1, b) estd ausente la matriz P(G), puesto
gue los arcos de este grafo no son ponderados.

Dos grafos G = {V, U y G’ = (V’, U’) se llaman isomorfos, si existe
una correspondencia biunivoca entre sus vértices ¥y V' tal que los vértices
Us ¥ Up se unen mediante el arco (vs, vs) €n un grafo en aquel, y solo en
aquel caso, cuando sus respectivos vértices vs y vp se unen mediante un
arco (va, vg) en otro grafo.

Las matrices de las clases examinadas prefijan los grafos con exactitud
de hasta el isomorfismo.

Denotaremos una matriz de incidencias transpuesta 4* mediante
(4 *)7. Una matriz de adyacencia, matrices de incidencias inicial A* y
final A ~, asi como una matriz diagonal de los pesos de arcos estdn rela-
cionadas por la siguiente igualdad:

S=(AYYP(A7). 3.0

Se denomina potencia s(v) de un vértice v el namero de arcos (aristas)
incidentes a este vértice.

Empleando el concepto de mografo se puede prefijar, con mayor efica-
cia en el sentido del volumen consumido de la informacién, grafos grandes
(i, cuyas matrices de adyacencia estdn débilmente llenas por las unidades.
Las grafos de esta clase tienen gran importancia practica.

Prefijaremos un grafo no orientado conexo G = { V¥, U), sin lazos por
un modelo ¥ = {M, 51, 82, . . ., Sx), en el cual A = V; la palabra definida

¥, 4 (V)

%(%) ¥ (45,9, )

Fig.32 velt5,.,15)
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por §; es un entorno O(v,) de radio unidad del vértice v.€ V que contiene
i — 1 vértices y el vértice v,. Para ilustrar esta representacién, consideremos
el mismo grafo G (fig. 3.1, b), sin tener en cuenta la orientacién de sus
aristas. En este caso la matriz de incidencia Q(¥) es la matriz de adyacencia
S(¥) del grafo G, cuyos elementos diagonales son iguales a 1:

vt v, v s Us Ys by
1 0 1L 1 0 0 0| m
01 1 0 1 0 0f »
1 4 £ 1 1 0 o =
QW =117 0 1 1 0 1 of uv
0 1 1 0 1 1 of o
o o 0o 1 1 1 1 Us
0 0 0 0 0 1 1

Reduzcamos la minimizacién del volumen consumido de la informacién
para expresar un grafo a un cubrimiento de columnas por filas de la matriz
Q(¥). Para disminuir la densidad de trabajo de la blisqueda de un cubri-
miento minimal tachemos filas y columnas que se absorben. La fila « ab-
sorbe la fila 8, si el conjunto M, de columnas cubiertas por la fila « con-
tiene el conjunto Mjp de columnas cubiertas por la fila 8, M. DMz, La co-
lumna a absorbe la columna b, si el conjunto Mj de las filas .que cubren
la columna b contiene el conjunto M, de las filas que cubren la columna,
a, Ma C Mb .

Hallemos un cubrimiento de columnas por filas de la matriz Q(¥), des-
pués eliminemos los elementos unitarios no diagonales comprendidos en
el cubrimiento y volvamos a cubrir las columnas hasta llegar a que todos
los elementos no diagonales sean iguales a cero. Obtenemos como resultado
una expresion minimizada del grafo G en forma del correspondiente mogra-
fo, cuya signatura representa cortaduras de los elementos de los cubrimien-
tos obtenidos.

En el caso a examinar el cubrimiento minimal tiene la forma {vs, ve).
A este curbimiento le corresponden dos entornos de radio unidad:
O(vs) = (v, tr, va, Us} ¥ O(vs) = {v4, Us, 1»]. Después de eliminar las
unidades correspondientes de la matriz Q(¥) cobtenemos la matriz

vy W Vs Us

1 0 1 Ofwn
Q'M=10 1 0 1jw

1 0 1 Ofw

0 1 0 1y

que tiene cubrimiento {ui, v2} o bien { w4, vs]. Para ser precisos, escojamos
el primer cubrimiento. El grafo G que se examina definitivamente se prefija
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por el modelo ¥, cuya matriz de incidencia tiene forma

vy 2 Vs Us

1 1 1 1 O0Ojfe
o =fo 0 1 1 1w

0o 0 1 0 Ofw

0 0 0 1 0un

Para prefijar esta matriz es necesario tener 20 bitios en vez de 49 bitios,
cuando este grafo se prefija por la matriz de adyacencia. El mografo
GM(O(¥)) estéd representado en la fig. 3.2. La minimizacién del plan-
teamiento de los grafos orientados con lazos es andlogo al primer procedi-
miento. Los origenes y los fines de los arcos del grafo se prefijan indepen-
dientemente en forma del mografo (GM)* y el (G™)~, respectivamente.

Para representar grafos en forma de una composicién de grafos mas
simples introduzcamos tres operaciones siguientes: unién, suma y producto.

Se denomina unidn de grafos G, = {Va, Us) ¥ Gb = { Vb, Us) el grafo
G = (V, U) cuyos portador y signatura son, respectivamente, la unién de
la teorfa de los conjuntos de los portadores Va, V} y de las signaturas U,
Uy de los grafos G, G» (fig. 3.3, a).

Llamase suma de grafos G, = {Va, Usd ¥ Gy = (V», Up) un grafo
G = (¥, U) que es la unién de los grafos Ge, Gy y un grafo completo

1
f 4 ()
a 2
u — ()
b
3 2 303

a)
’ 7
a a
+ — 2z
4 :/ P
7 ]
4)
4 @l (@2 (a3
a
X ——
2
)
3 1y (b2 (63

Fig. 3.3 &)
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de dos partes K|v,|, || construido sobre los portadores Vi VoN¥p y
Vp ™ Va\Vp. En otras palabras, para construir la suma de los grafos G,
y Gp se determina su unidn y cada vértice v€ ¥, no comprendido en la
interseccidn VNV, se une con todos los vértices ¥, VoV, y viceversa.
Diremos que el vértice v conifica el grafo G, si v y todos los vértices del
grafo G son adyacentes. Los vértices no comprendidos en la interseccion
de los sumandos, vi¢ V.MV, conifican, al sumar los grafos Go y Gs,
VN VadWe y Vo \ VW, respectivamente (fig. 3.3, b).

Se denomina producto (producto cartesiano) de grafos G, = (Vy, Ta)
Yy Go = (¥, Ip) el grafo G = (¥, Ty, V=V, X Vo = [(ta, o)/ UeEVa,
up€Ve], T(va, Un) = Tva, X T, (fig. 3.3, )

§ 3.2. Conexién y conexion fuerte de un grafo

La distribucién de cadenas y ciclos en un grafo no orientado, asi como
de caminos y circuitos en un grafo orientado, determina muchas propieda-
des del grafo, incluso su conexién y conexién fuerte.

Lldmase cadena una sucesidén de aristas (g1, g2, ... @a) de tipo
o= (Ui, vis1), i =1, 2, ..., n. Los vértices de una cadena pueden tener
potencia igual a 1. El vértice v; de potencia igual a 1 se llama vértice
extremo.

El mimero de aristas de una cadena que une los vértices v y v; se deno-
mina longitud [ (v, v;) de la cadena.

Se llama ciclo una cadena, cuyos vértices finales coinciden. Todos los
vértices del ciclo tienen potencia s(v)>2.

Una cadena se denomina compuesta, si en ella se repite al menos una
arista, compleja, si se repite al menos un vértice y simple, en caso contrario.

Un grafo G = (¥, U) se denomina conexo, si cualquier par de sus vérti-
ces se une por una cadena.

Un subgrafo conexo, maximal respecto a la inclusion de vértices, de un
grafo se denomina su componente de conexién. Un grafo se llama incone-
xo, si el nimero de sus componentes es mas que uno. Por ¢jemplo, un
grafo que se compone de dos vértices no adyacentes es inconexo y tiene
dos componentes de conexidn.

Examinemos el algoritmo para determinar la conexién de un grafo y
el mimero de sus componentes.

Teorema 3.1, Un elemento de ung matriz 8" (S = [s;], es decir, una
matriz de adyacencia,
el conjunto de los identificadores de aristas que unen
Sy = [!o.s vérlices vy, v
0, si los vértices v, v; no son adyacentes,
es un conjunto de cadenas de longitud n que unen los vértices v;, v;.
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Fig. 3.4

Al elevar una matriz de adyacencia § = [s;] a la potencia n, la multipli-
cacién se examina como concatencion, o sea, afiadimos ¢l identificador
correspondiente a j-ésima columna a la derecha del identificador corres-
pondiente a i-ésima fila, la sumacién se examina como unién de palabras
obtenidas como resultado de la multiplicacién.

Ejemplo 3.1. Examinemos la distribucion de cadenas en un grafo no orientado de Peter-
son (fig. 3.4), cuya matriz de adyacencia tiene forma siguiente:

1 2 3 4 5 ] T 8 9 10

a e k 1
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La matriz de adyacencia S determina la distribucion de aristas {cad de longitud vnita-
ria). Para determinar Jas cadenas de fongitud 2 el »s la matriz de adyacencia al cuadrmdo:
1 2 3 4 5 6 T B 9 10
aa,
ee, ab ed am ks kx er 1
kk
aa,
bb, be ae ak bn mi my 2
mm
bb,
ab e, ed ns bm ep nu 3
nn
L,
ed be dd, px pt cn dr 4
Flid
ae cd 5‘& ek ry ru dp 5
5 = 4
kk,
ak ns px ek 55, xt su &
xx
mm,
am bm ot ry xt ", yu 7
ry
nn,
ks bn on ru 55, 5x 8
uu
kx mt cp dp %‘? o 9
n
er | my | nk dr su | o 10
[

Sumando las matrices 5 + 5° obtenemos que en la matriz resultado faltan elementos
nules, lo que significa que existen cadenas de longitud 1 o de longitud 2 entre cualquier par
de wvértices del grafo de Peterson. Por consiguiente, el grafo de Peterson es conexo y €5 un
of te de c¢ 16 s

El concepto de la cadena es principal para estudiar propiedades métri-
cas de un grafo.

Una [ongitud minimal de cadena que une los vértices v; y v; se denomina
distancia r(v, v;) entre los vértices v, vy

r(v, ) = min L(vi, ).
&
La distancia maximal entre los vértices del grafo G se denomina
didmetro del grafo d(G):
d(G) = max min (v, ;).
TR

La funcién r(w, v) introducida sobre el conjunto de todos los pares
de vértices (ui, v;) del grafo G determina su métrica. En efecto, esta funcion
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r(v, vj) satisface tres axiomas siguientes:
Vo, u)(r(v, ) = 0)=y =y,
(v, ud(r(u, u) = riu, v)),
VYo, v, (v, v) + rlv, ve) 2r{v, w))

El tltimo axioma suele llamarse desigualdad triangular.
Una matriz A4 se denomina de k células, si una permutacién de colum-
nas y filas la reduce a [a forma

A 0 0...0
0 A4, 0...0
o 0 As._..O

0 0 0 A

donde la matriz 4;, i = 1, . , ., kK no contiene ningln elemento nulo (excep-
to, tal vez, los elementos diagonales).

Teorema 3.2. Un grafo G comprende k componentes de conexidn si,
y solo si, su matriz de alcance D(G),

d(G) )
D(G) = le (SN’ (3.2)

(donde S(G) es la matriz de adyacencia, { = 1, d(G), es el didmetro del
grafo (G) es de k células.

Un ciclo se denomina euleriano, si cada arista del grafo participa en
su formacién una vez; un grafo que contiene tal ciclo se llama de Euler.

Teorema 3.3. Un grafo G = (¥, U) es euleriano si, y solo si, es conexo
¥ la potencia s(v;) de cada vértice vieV es un nimero par.

Un ciclo simple se denomina de Hamilton, si pasa por cada vértice del
grafo; un grafo que contiene tal ciclo lldmase hamiltoniano.

El teorema 3.3 determina un criterio simple para revelar la propiedad
de Euler para cada grafo. Para determinar la propiedad hamiltoniana se
tiene la siguiente condicién suficiente.

Teorema 3.4 (teorema de Dirac). Si un grafo G = (V, U, | V| =3,
es conexo y la potencia de cada vértice viEV,

sw) > [% | VI], (3.3)

donde [ ] es el proximo niumero entero, entonces el grafo es de Hamilton.

Un grafo compuesto de un vértice se llama frivigl. La eliminacion de
un vértice de un grafo no trivial G conduce a un subgrafo G\ v que con-
tiene todos los vértices del grafo G, excepto v, y todas las aristas del grafo
G, no incidentes a v. De modo andlogo, la eliminacién de una arista x
reduce a un subgrafo (subgrafo de esqueleto) que contiene todos los vértices
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y las aristas, excepto la arista x, es decir G\ x. La potencia minimal de
los vértices de un grafo se designa por 6(G) = min s(vi), v;€G. Si todos
i

los vértices de un grafo tienen la misma potencia n éste se llama grafo regu-
lar de potencia n.

Se denomina conexidn de un grafo x(G) el nimero minimo de vértices,
cuya eliminacién hace el grafo inconexo o trivial. De esta definicion se
desprende que para cualquier grafo inconexo »x(G) = 0. Un grafo completo
K. se hace trivial, si eliminar n — 1 vértices. Por eso, x(K,) = n — 1.

Si #(G)=n, el grafo G se denomina n-conexo.

Lldmase conexidn por aristas MG) del grafo G el nimero minimo de
aristas, cuya eliminacién reduce a un grafo inconexo o trivial. Para un grafo
inconexo o trivial MG) = 0.

Para cualquier grafo G la conexién, la conexidn por aristas y la potencia
minimal estdn relacionadas por la siguiente desigualdad:

2GS MG) < 8(G) 3.4

Entre todos los grafos de n vértices y m aristas la conexién minima
es igual a 0, si m<n — 1, y es igual a [2 m/n], si m>n — 1, donde los
corchetes [ ] significan que se toma la parte entera de la expresién.

" Las cadenas simples se denominan no intersecanies por aristas, si ningu-
nas dos de ellas tienen una arista comun. Pero, si tales cadenas tampoco
tienen vértices comunes se llaman no infersecantes por vértices.

Sean G un grafo conexo y u, v sus dos vértices distintos. Un conjunto
de aristas E del grafo G se denomina conjunto u, v-divisor en G, si cual-
quier cadena simple de u en v contiene una arista de E. Un conjunto de
vértices V del grafo que no contiene u, v se llama conjunto u, v-separador
en G, si cualquier cadena simple de « en v incluye un vértice de V.

Si un conjunto u, v-divisor E contiene k aristas, €l nimero de cadenas
simples no intersecantes por aristas de # en v no puede superar X, puesto
que en caso contrario alguna arista de E debe pertenecer a mas de una
cadena simple. Si un conjunto u, v-divisor tiene potencia minima, el nime-
ro de cadenas simples no intersecantes por aristas entre i ¥ v es exactamente
igual a k. .

Teorema 3.5. El niimero maximal de cadenas simples, no intersecantes
por aristas, que unen dos vértices distintos u, v de un grafo conexo G es
igual al nimero minimal de aristas en el conjunto u, v-divisor

Teorema 3.6. El ndmero maximal de cadenas simples, no intersecantes
por vértices, que unen dos vértices distintos no adyacentes u, v del grafo
G es igual al mimero minimal de vértices en un conjunto u, v-separador.

Yeorema 3.7. Un grafo es n-conexo si, y sélo si, cualquier par de sus
vértices se une, al menos, por n cadenas no intersecantes por vértices.

Teorema 3.8. Un grafo es n-conexo por aristas si, y sdélo si, cualguier
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o

Fig. 3.5,

par de sus vértices se une, al menos, por n cadenas no intersecantes por
aristas.,

Teorema 3.9 (teorema de Menger). Para cualesquiera dos conjuntos de
vértices Ve, Vg (Va, Va # & VaNVa = ) el mimero mdximo de cadenas
no intersecantes que unen V., y Vg es igual al nimero minimo de vértices
gue separan ‘V, y V.

Los teoremas 3.5—3.9 determinan la dependencia de conexidén de un
grafo respecto del mimero de cadenas no intersecantes. Por primera vez
la investigd Menger.

Se denomina conjunto divisor de un grafo G conexo a tal conjunto
de sus aristas que, al eliminarlas de G, éste se hace inconexo. Por ejemplo,
el conjunto {7, @9, @5, @3} en la fig. 3.5, @ es separador y su eliminacién
lleva a formar dos componentes de conexién.

Se denomina corte tal conjunto divisor que no tiene subconjunto divisor
propio. El conjunto  p+1, p9, 05, 03} NO s corte, ya que contiene subconjun-
to divisor [ g2, @9, gs}. Este subconjunto no tiene subconjuntos divisores
propios y por eso es corte. Un corte que consta de una arista se denomina
puente (fig. 3.5, b). A veces el corte se llama cociclo.

Examinemos un grafo orientado y su propiedad de ser fuertemente
conexo.

Se denomina cantino una sucesion de arcos (81, 8z, . . ., 8.) de la forma
=, viea i=1,2, ..., 0

Los vértices de un camino tienen la potencia igual a 1 6 2. Un vértice
v de potencia 1 se denomina extremo con ello, el vértice v, conicidente
al arco &, se denomina inicial, el vértice vs 41 coincidente al arco 8, se llama
Sinal,

El mimero de arcos que forman un camino se denomina longitud del
camino.

Lldmase circuito un camino, cuyos vértices extremos coinciden. Todos
los vértices del circuito tienen la potencia s(v)=2.

Un camino se denomina compuesto, si en ella se repite al menos un
arco, complejo, si se repite al menos un vértice y simple, en caso contrario.

Un grafo G = (V, U) se denomina fuertemente conexo, si cualquier
par de vértices se une por un camino.

8—6577
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Un subgrafo fuertemente conexo, maximal respecto a la inclusion de
vértices, de un grafo se denomina su componente de conexién fuerte. Un
grafo se denomina no fuertemente conexo, si el nimero de sus componentes
de conexién fuerte es més de 1. :

Examinemos el algoritmo de determinaciéon de conexién fuerte de un
grafo y del namero de sus componentes, de conexién fuerte. Lo mismo
que el algoritmo para determinar conexion de un grafo y el nimero de
sus componentes de conexién, examinados para el caso de un grafo no
orientado, este algoritmo se basa en el empleo de los teoremas 3.1 y 3.2

Ejemplo 3.2, Determi 5 la conexion fuerte del prafo orientado de Peterson (fig. 3.6),
cuya matriz de adyacencia tiene siguiente forma:

¥ 2 3 4 5 6 7 B 9 10

a 1

b 2

5 3

d 4

S(G) = e 5

k 3 6

1 ¥ 7

n s 8

2 7 9

r u 10

Para determinar los componentes de conexién fuerte basindose en el teorema 3.2, hay
que elevar la matriz de adyacencia del grafo 5(G) a la potencia maximal igual al didmetro
d(G) de esie grafo:

d(G) = méx min Kui, v, (3.9
J i

donde f{vi, ;) es longitud del camino del vériice v al vértice v,

Fig. 3.6
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En el casc examinado el didmetro d(G) del grafo G ¢s igual a 5, Calculamos la matriz
5

de alcance D(G) como 3, [S(G)):

s
D=2,5=5+5+5+5+8§ =

i=1

1 2 3 4 5 & 7 8 9 10
abede| a ab abe | abed 1
bede |bedea| b be bed 2
cde | cdea |cdeab| ¢ cd 3
de dea | deab |deabc| d 4
D(G) = e ea | eab | eabc |eabed 5
doy | dez | dsy | des | des | xtyus| xt | xtvu x Xty 6
diy | dhy | drs | drs | dhs | oyus | yu | pusxt | yusx ¥ i
diy | dsa | day | dha | das 5 sxt_|sxtyu | sx | sxiy 8
dsy | dea | des | doa | dos | tyus 4 ivi | tyusx |ty 9
dhoy | dogz | dhos | dioa | dios | us | usxt u usx | usxiy 10

ds, = Kk, xpde, xtyre, dsz = ka, xim, xpdea,

ds,3 = kab, xtmb, xtyun, dss = xp, kabc, xtmbe,

ds,s = xpd, xtyr, kabed, d> = yre, yusk, mbede,

drz = m, yrea, yuska, o3 = mb, yun, yreab,

die = mbe, yunc, Yusxp, d.s = yn mbed, yuned,

ds,1 = sk, nede, sxpde, ds: = ska, sxtm, ncdea,

dss = n, skab, sximb, dsa = nc, sxp, skabc,

ds,s = ned, sxpd, sxtvr, ds, = pde, (yre, tyusk,

de,z = tm, pdea, tyrea, doy = unb, tyun, pdead,

daa = p, tmbe, tyunc, des = pd, tyr, tmbcd,

dho = re, usk, uncde, diwz = rea, uska, usxim,

dhas = un, reab, uskab,

dio,s = unc, usxp, reabc,

dw,s = r, uncd, usxpd.

En la matriz de alcance, al componente de conexién fuerte le corresponde una submatriz
de dimensidén maximal, cada elemento de la cual no es igual a 0. Los elementos que muestran
la relacion entre estos submaltrices pueden ser distintos de 0.

En el ejemplo dado tenemos dos comp de conexidn fuerte con portadores |1,
2,3, 4, 5) vy (6,7, 8,9, 10] respectivamente,

Se denomina red un grafo orientado G = (¥, U), en el cual se escogen
dos conjuntos de vértices polares ¥* y V'~ tales que de cada vértice vV *
los arcos solamente salen, en cada vértice v € V'~ los arcos solamente entran
y cada vértice v;€ ¥\ (V*UV ) es coincidente tanto a los arcos entrantes,

fr
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como a los salientes. Ponemos en correspondencia a cada arco un nimero
positivo que determina su «capacidad». Entonces, se puede enunciar otra
variante del teorema de Menger para un grafo orientado ponderado por
los arcos.

Teorema 3.10. E! flujo maximal a través de una red es igual a la capaci-
dad minimal de su corte.

Un algoritmo de determinacién del flujo maximal se examina en el §3.5.

§ 3.3. Ciclomatica

Para investigar los ciclos en un grafo se usa la matriz ciclomatica
C(G) = [cy]. Ponemos en correspondencia biunivoca a cada ciclo del grado
un vector fila de la matriz C(G). Todo elemento de esta fila se define del
modo_siguiente:

s 1, si j-ésima arista se incorpora en i-ésimo ciclo;
z 0 en caso contrario.

Un conjunto C(G) de todos los vectores, cada uno de los cuales corres-
ponde a un ciclo del grafo G, forma un espacio vectorial llamado espacio
de los ciclos del grafo G. Ademds, se cumplen las signientes condiciones:

1. Para cualesquiera dos ciclos R;, Ri€C(G), RNR; = (J existe cierto
tercer ciclo (R:@® R;)€C(G), donde @ significa adicion segin el médule
dos por Srdenes,

2. La adicién segiin el médulo dos posee la propiedad conmutativa,
es decir, para cualesquiera dos R;, Ri€C(G)

R@®R; = Ri®R;.

3. La adicién segin el mddulo dos es asociativa, es decir, para cuales-
quiera Ri, R;, ReeC(G)

(R®OR)DR: = Ri®(R;@Ry).

Se denomina base de un espacio vectorial cualquier sistema de vectores
linealmente independientes que engendra el espacio dado. Un conjunto de
vectores es una base de un espacio vectorial cuando, y sélo cuando, cual-
quier elemento de este espacio se representa de manera unica en forma de
una combinacién lineal de vectores del conjunto. Si un espacio tiene base
de n vectores se denomina espacio n-dimensional.

Base de ciclos del grafo G es una base del espacio de los ciclos del grafo
G compuesto de ciclos simples.

Un vector R depende de ciclos simples Ry, Ra, . . ., Ra, i se representa
en forma de la combinacién lineal de vectores

n

R=YR.

i=1
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Cualquier vector de un ciclo del grafo G puede representarse en forma
de una combinacién lineal de los vectores de la base de los ciclos. Examine-
mos, por ejemplo, el grafo representado en la fig. 3.7, a. La matriz cicloma-
tica C(G) de este grafo tiene la forma

a b ¢ d e f m g h
01 1 0o 0 0 0 1 IR
1 0 0 0 O 1 1 1 0fR:
1 0 0 1 1 1 0 1 1| R
c=}{40 1 1 1 1 0 1 1 Of Ra
P11 0 0 1 1 0 1| Rs
00 0 1 1 0 1 0 1| Re
I 1 1 & 1 1 0 0 Ol Ry

En calidad del sistema bdsico de ciclos se puede tomar los ciclos Ry,

R», R3. Se puede comprobar que todos los otros ciclos se representan como
su combinacidn lineal segiin el mddulo dos:

RI®R@PR; = Re, Ri®DR2 = Rs, Ri® Ry = Ry, R:®R» = Rs.

Se denomina drbeofl un grafo conexo que no contiene ningln cico. Se
denomina subgrafo de esqueleto de un grafo un subgrafo que contiene to-
dos los vértices del grafo. Se denomina esqueleto un subgrafo esqueleto
que es un drbol. Se llama cuerda de un esqueleto D en un grafo conexo
G cualquier arista del grafo que no pertenece a D. Cualquier subgrafo com-
puesto de una cuerda y el esqueleto tiene exactamente un ciclo. El numero
ciclomdtico v(G) de un grafo G es igual al nimero de cuerdas de cualquier
esqueleto en G.

Si un grafo conexo G tiene n vértices y m aristas, se tiene

WG =m —n+ 1. 3.6)

Si el grafo G contiene k componentes de conexidn, su numero ciclomati-
co es

WG)=m—n + k. (3.7)

Fig. 3.7
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El nimero ciclomitico de un grafo inconexo puede determinarse como la
suma de los nimeros ciclomdticos de sus componentes de conexidn:
K

»G) =j21v(G.-) _ (3.8)
El nimero ciclomdtico determina la medida de conexion de un grafo. Indi-
quemos que las propiedades de los ciclos de un grafo y de sus cortes se
parecen. Se denomina bosque un grafo que no contiene ciclos. En otras
palabras, si un grafo comprende varios componentes de conexidn, cada uno
de los cuales es un arbol, este grafo es un bosque. Si un bosque G tiene
n vértices y k componentes de conexién, éste contiene n - k aristas.

Lldmase bosque de esqueleto un grafo, cada componente del cual es
un arbol de esqueleto.

El rango cociclico x(G) (rango de corte) de un grafo es el mimero de
aristas en su bosque de esqueleto:

x(Gy=n - k.

El nimero de ciclos de base en un grafo G se determina por el mimero
ciclomdtico (rango ciclico) del grafo »(G).

Teorema 3.11 (teorema de Euler). Ef miimero de ciclos de base de un
grafo es constante e igual a su nimero ciclomdtico.

Se denomina sistema bdsico de ciclos para un bosque de esqueleto D
dado de un grafo G el conjunto de todos los ciclos del grafo G, cada uno
de los cuales contiene solamente una cuerda de D. Este sistema forma base
del espacio de ciclos. En el ejemplo considerado los ciclos Ry, Rz, R; son

la base: - d i b i 5 5 P
1 o|lo| o 1 0| o 1 1 R,
Cp(G) = 0 1 0 1 0 0 1 1 0 Ry
] 0 1 1 0 1 1 1 1 R,
. cuerdas - esquglcto D ’

La matriz obtenida es la matriz ciclomdtica de base respecto al esqueleto
D,

Cumpliendo 2" — » — 1 veces la operacion de adicién segin el modulo
dos sobre los ciclos de base obtenemos todo el conjunto de ciclos de este
espacio. Escribamos el sisterma bdsico de cortes para ¢l grafo G y el 4rbol
de esqueleto D representado en la fig. 3.7, & (a. m, d), {b c), le 4},
& m, ¢ d}, {d h c), {f m d].
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Este sistema se obtiene de modo siguiente. Se quita una arista del es-
queleto D. Con esto, el conjunto de vértices se parte en dos subconjuntos
no intersecantes ¥, y V2. En G, el conjunto de todas las aristas, cada una
de las cuales une el vértice de Vi con el vértice de V2 es un corte del grafo
G. El conjunto de todos los cartes para cada arista del esqueleto I es el
sistema bdsico de cortes para el esqueleto dado D.

El sistema basico de cortes forma base en el espacio de cortes o bien
en el espacio de cociclos. Este sistema puede ser escrita en forma de una
correspondiente matriz bdsica de cortes o bien de una matriz cociclomdtica
bdsica: a 3 . i n r - & d

1 0 0 0 0 0 I ¢ 1

Ko(G) = 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 1 1 1
0 1] 0 0 1 0 0 1 1

0 0 0 0] 0 1 1 0 1

esqueleto cuerdas

Cumpliendo 2% =~ x — | veces la operaci6n de adicién segiin el médulo
dos sobre cociclos, engendramos todo el conjunto de cociclos (cortes) del
grafo.

Al prefijar en el grafo las propiedades de los ciclos se puede definir
la clase de los grafos. Examinemos, por ejemplo, los grafos de dos partes.
Lémase grafo de dos partes G(Vy, V3) un grafo, cuyo conjunto de vértices
se parte en dos subconjuntos no intersecantes Vi y Va de tal modo que
en G cada arista une dos vértices de subconjuntos distintos.

Para cerciorarse de que un grafo es de dos partes es suficiente compro-
bar sus ciclos.

Teorema 3.12. Un grafo es de dos partes si, y sdlo si, todos sus ciclos
tienen longitud par (son pares).

OSea G un grafo de dos partes. Entonces el conjunto de sus vértices
se descompone en subconjuntos ¥; y V2. Examinemos cualquier vértice
de V;. Para obtener un ciclo que incluye este vértice, hay que pasar k veces
por una arista de ¥; y Vi y por otra, de ¥z a V;. De este modo, en G,
cualquier ciclo tiene 2k aristas, o sea, €5 par.
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Sea ahora que todos los ciclos simples son pares; demostremos la afir-
macidn inversa que G es un grafo de dos partes. Supongamos que G es
un grafo conexo. Para cualquier vértice v;€6G designaremos mediante V;
un conjunto de vértices que comprende vy y todos los vértices que estdn
a distancia de una longitud par de u;; designaremos mediante V>.el conjunto
de los otros vértices, que se encuentran a distancia de una longitud impar
de v;. Sea ahora que tenemos dos vértices v;, ux€ V2 unidos por una arista.
Ya que entre v; y v; asi como entre v y v existe un nimero par de aristas,
el ciclo que comprende la arista (v, v) y el vértice v es impar, empero
esto contradice la condicidn segin la cual todos los ciclos son pares. Por
consiguiente, los vértices de ¥2 no se unen entre si. Se puede aducir una
demostracion andloga, si G tiene varios componentes de conexién. ll

En un grafo de dos partes no es obligatorio que cada vértice de V; se
una con cada vértice de V3. Sin embargo, si este hecho tiene lugar, el grafo
se denomina grafo completo de dos partes y se denota por medio de Km,»
donde m es el nimero de vértices de V,, mientras que #, es el nimero
de vértices de V2. El grafo Kin . tiene m + n vértices y mn aristas. El grafo
completo de dos partes K,,» se denomina grafo estelar (estrella) y es un
arbol. Seiialemos que cualquier drbol es un grafo de dos partes. Con fre-
cuencia el grafo de dos partes se llama grafo de Konig.

§ 3.4. Diferenciaciéon de los grafos y mografos

En el andlisis matemético el concepto de la derivada caracteriza el grado
de variacién de una funcién al realizarse una variacién pequefia de su argu-
mento. El concepto de la derivada se basa en el del limite. En [a matemética
discreta no existe el concepto del limite, por esta razén es imposible trasla-
dar mecdnicamente el concepto de la derivada de la matemadtica continua
a la discreta. Para resolver problemas de optimizacion de la matemadtica
discreta, introduciremos el concepto de la derivada basado en el uso del
concepto de la frecuencia de letras en las palabras de cierto modelo V.

Antes de la definicién formal de la derivada, examinemos el siguiente
ejemplo. Sea dado un grafo G (fig. 3.8, @). Nos interesa la frecuencia de
participacion de las aristas en la formacién de esqueletos del grafo G. El
grafo G contiene 8 esqueletos y se puede caracterizar la frecuencia buscada,
por ejemplo, por el nimero de inclusiones de cada una de las aristas en
estos esqueletos. Por ejemplo, la arista ¢ participa 5 veces en la formacién
de esqueletos; la arista ¢, 4 veces, etc. La frecuencia se caracterizard de
modo més completo, si a la par con los nimeros indicados anteriormente
calcular nimeros, cada uno de los cuales es igual al nimero de esqueletos
que contienen dos aristas fijadas. Por ejemplo, las aristas @ y b se contienen
en dos esqueletos, Con mds exactitud la frecuencia buscada de un par de
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b d b
a a [+
d
c ¢
a a (-
d & a
&
a e
o & d
z
& e
Fig. 3.8 8

aristas g; y g; se determina por ¢l nimero de esqueletos que comprenden
la arista g 0 g, pero no las comprenden simultdneamente en razén inversa
con el mimero de esqueletos que contienen tanto la arista ¢; como la arista
eir (i — 2fy + f)/fy, donde fi, fi, fij son los nimeros de esqueletos del
grafo que contienen las aristas gi, gj, ¢i ¥ @j» respectivamente,

Esta razén indica el grado de participacién no uniforme de los pares
de aristas en la formacién de esqueletos del grafo.

A continuacién nos acordemos llamar sucese S que ocurre cuando se
cumplen determinadas condiciones al proceso examinado. En el ejemplo
examinado el suceso S se representa por la «formacidén del esqueleto del
grafo G por un conjunto de aristas», y las condiciones, por la inclusién
de las aristas del grafo en el conjunto dado. El suceso S puede prefijarse
por el correspondiente predicado.

Cada uno de los sucesos determina una matriz binaria bidimensional
Q = [gijlmxn, & cada columna de la cual corresponde biunivocamente una
condicidn, comprendida enun suceso, y a cada fila, una coleccién de condi-
ciones, con las cuales el suceso tiene lugar (en las cuales el suceso es verda-
dero) y

1, si j-ésima condicién se incluye en i-ésima coleccién de
qyj = condiciones, en las cuales el suceso es verdadero;
0 en caso contrario.

En otras palabras, cada suceso determina un modelo, cuya matriz de
incidencia es una matriz Q, o sea, las condiciones que se comprenden en
el suceso son letras del modelo, las colecciones de condiciones, en las cuales
el suceso es verdadero, son palabras del modelo.
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La intensidad de participacién de las condiciones (letras) en los sucesos
(palabras) la caracterizaremos utilizando frecuencias dessu inclusién. Para
esto introduzcamos la matriz de frecuencia de relaciones F = [filax~ que
caracteriza un modelo ¥, cuya matriz de incidencia es Q(¥) = [gilmxn-

Se denomina matriz de frecuencia de relaciones F = [fijlax» una
matriz, a cada fila (columna) de la cual le corresponde biunivocamente
una letra, y un elemento fi; es igual al nimero de palabras que comprenden
las letras i y j, si i 3 j, en el caso contrario (i = j) equivale al nimero de
palabras que incluyen la letra i. Con ello, si i = j, f; es la frecuencia propia
de la letra, si i # j, fij es la frecuencia reciproca de las letras i y j.

De la definicion de la matriz de frecuencia de relaciones F = [fijlaxx
se desprende que ésta es simétrica respecto a la diagonal principal, es decir,
Ji = fu, ¥ que la frecuencia propia de cualquier letra no es menor que la
frecuencia reciproca de esta letra con cualquier otra letra: f;i= /.

Se puede mostrar que una matriz de frecuencia de relaciones F que ca-
racteriza un modelo con la matriz de incidencia Q satisface la relacién

Q"xQ=F (3.9)

donde Q7 es la matriz transpuesta Q(” es el signo de la matriz transpuesta).

Determinemos el grado de participacién de los componentes del grafo
G en un suceso S dade con anticipacién en el grafo G, en otras palabras,
el grado de heterogeneidad de componentes del grafo respecto al suceso
prefijado. Caracterizaremos esta heterogeneidad por la derivada 4G/3S del
grafo G respecto al suceso S.

Llamase derivada 8G/3S de un grafo G respecto a un suceso S un grafo
ponderado no orientado { ¥, (U, P)), cuyo portador coincide con el porta-
dor de un modelo determinado por este suceso y un par de vértices (v,
v;) estd ponderado por la razén de la frecuencia (fi — fi;} + (/i — fy) de su

participacién incompatible a la frecuencia f;; de la participacién compatible
en el suceso S:

oG fi-2fi+S

a5 (v, o) = 7o (3.10)

con la particularidad de gue

(v, v)¢ U, si % (v, 1) = oo

(ui, v)EeU, si —%% (vi, v;) es la magnitud finita diferente de cero;

. G
i = U S e (i, vy)) = 0.

El valor de la expresion (3.10) se llama valor de la derivada sobre la
arista (wy, ).
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Ilustremos el concepto de derivada de un grafo respecto a un suceso
con dos ejemplos.

Ejemplo 3.3. Sean prefijados un grafo & (fig. 2.8, @) v un suceso 5, «formacién del
esqueleto del grafo & por las aristas», Hallemos la derivada del grafo G segin el suceso S

que caracterizard la i idad de participacién de aristas en la formacién de esqueletos del
grafo G.
El suceso prefijado determina un modelo, cuya matriz de incidencia tiene signiente forma.
a b ¢ d e
1 1 0 1 0
1 1 0 1] 1
10 1 1 0
g=\1 0 1 0 1
1 0 1] 1 1
0 1 ] 1 0
(1] 1 i 0 1
0 1 0 1 i

En esta matriz, a cada columna le corresponde biunivocamente una arista del grafo G
{la condicién comprendida en el suceso), a cada fila, una coleccidn de aristas que forman
un esqueleto del grafo (la coleccién de condiciones, en las cuales el suceso prefijadoe tiene
lugar) (fig. 3.8, b).

La matriz de frecuencia de relaciones F que corresponde a la matriz Q es

a b ¢ d e

5 2. 2. 3 3].a

2 5 2 3 A}l
FaQ"x@=jl2 2 4 2 2{c¢

3 3 Z 5 254

3 3 2 2 5h e

Las elementos de esta matriz-determinan -%-gi- que es un grafo con porntador |a b, ¢

d, e} y dos vértices de este grafo son adyacentes, si el valor de |a derivada sobre el arco
formado por estos vértices es distinto de cero y del infinito. Calculando los valores de la

derivada sobre las aristas del grafo E s

as

G S Yt So _ 5-22+5
W (a, b) = T = 2 3
ﬁ(a.c)= So—2peH S _ 5-22+4 - 25,
as Sae 2
20 @ &) = Jo—YserSfo _ 5-22+5 i
a8 Jae 2

obtenemos el grafo 55 (fig. 3.8, ).

Ejemplo 3.4. Examinemos un grafo & (fig. 3.9, @), sobre el cual estd prefijade un suceso
S, «formacién por aristas de un ciclo de base respecto a un esqueleto G* (fig, 3.9, b) del
grafo G», Calculemos la derivada del grafe G respecto al suceso §.
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El nimero ciclomidtico »((G) del grafo G es igual a 3:
MG )=m-n+k=T-5+1=3,

Por consiguiente, el grafo contiene tres cictos de base, El suceso S determina un modelo de
tipo.

Q=

[=R= i~
—_———n
-
o=
[N N1
-oo X

a
1
]
0

A este modelo le comresponde la matriz de frecuencia de relaciones

a b ¢ d e g h
1 1 1 1 1 0 0] e
1 1 1 1 1 0 o &
t 1 3 3 2 1 1:0l,. ce
F=0"x@={l1 1 3 3 2 1 1| ¢4
1 1 2 2 2 1 0 e
o 0 1 1 1 1 of g
o o 1 1 0 0 1 h

Calculando el valor de la derivada obtenemos el grafo % {fig. 3.9, ¢). Analizando

el grafo fijemos que, por ejemplo, las aristas ¢ y o (@ y &) participan de manera

filel
a5
igualmenie intensa en el suceso prefijado.

De tal modo, para determinar la derivada de un grafo G segiin el suceso
S es necesario:

a) constriur un modelo determinado por el suceso prefijado;

b) hallar la matriz de frecuencia de relaciones que corresponde a este
modelo;

c) calculando los valores de la derivada ?3(83 sobre aristas del grafo
por la matriz de frecuencia de relaciones construir el grafo buscado %g-—

que caracteriza la intensidad de participacién de elementos del grafo G en
el suceso prefijado S.

4 o Fig. 3.9
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. ale; + .
Llamase derivada 55 de orden & seglin el suceso S la derivada de

la derivada de orden k — 1 segin aquel mismo suceso S:
kG - 'IG )

G _
EC as ‘"’
Se denomina derivada mixta segiin los sucesos S; y Sy la derivada segiin
el suceso S; de la derivada segin el suceso Sp:

a&aSb n aSa

De modo anélogo se determinan derivadas mixtas del grafo G segln
los sucesos Si, Sz, .. . Sn

El concepto introducido de la derivada de un grafo G segun el suceso
§ posibilita hallar también la derivada de un modelo ¥(Q) (de un mografo
G™(Q)). En el caso de determinar la derivada de un modelo, si no se
da otra indicacidn sobre el suceso S, en calidad de S consideramos la «for-
macién de una palabra por letras».

El valor de la derivada del modelo (del mografo G*(Q)) sobre un par
(i, j) es

6G

Ji = 26y + )y
G = —fi.."'_’

donde las frecuencias fi, fy ¥ 1, se determinan por la matriz de frecuencia
de relaciones F = [fij] (F = Q" x Q). Sobre el mografo G, las frecuen-
cias fi, fi ¥ fj son iguales al nimero de pesos del vértice v;, al nimero
de pesos comunes de los vértices v, 1 y al nimero de pesos del vértice
vj, respectivamente,

Ejemplo 3.5. Calculemos

PG

35,35 W, w2hy (02, ),

Fig. 3.10
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donde el mografo G est4 prefijado en la fig. 3.10, a, el suceso S; es el suceso en el mografo,
en ¢l entendimiento habitual (o sea, la «formacién de una patabra por letrasy); el suceso

)
Sz es la «formacidén de un ciclo de longitud impar en el grafo =(K ha»

1
La matriz de incidencia Q que prefija el mografo G (fig. 3.10, a) tiene forma
a b ¢ d
1 t I0
o 1 0 1
o 0 1 !

&=

Le corresponde la matriz de frecuencia de relaciones £ = Q7 x Q:

F, =

P -
—_p ==
W= =0o R

T ep—

aGen

1

Los valores de la derivada
aGHn GO

son, respectivamente, iguales a:

e—(a, B) = 1I; =2;
25, (a, &) a5, (b, ¢}

aG(M'I M(ﬂﬂ

—e—lac=1 , d)y = 2;
s Gl D

aGn aGHn

—ar (@, d) = eo; 75, (e d)y=12

] (M)
El grafe ik
1
la matriz @y de tipo

se representa el da fig. 3.10, b. En el grafo

el suceso § prefija

(g, B2) (02, w3) (on, v3) (o, L) (v, wa)

1 1 ] 0 0
Q=1 0 ; 1 1

En virtud del algoritmo del hallazgo de la derivada del grafo, obtenemos
(v, v2) (v, ) (o, ) (o, ) (v, W)

1 1 o 0

i I ] (1] 0
=1 I 2 1 1

0 a 1 1 1

0 0 1 1 1

d 3Gan 1=2141

—— ((n, w2), (2, = i = 0.
95,95, (v, t2), (o2, v3)) i

Hemos examinado la uniformidad de participacién de los pares de ele-
mentos en el suceso §. De modo andlogoe puede ser examinada la uniformi-
dad de participacion de ternas, cuaternas, . . ., n-ternas de elementos en
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¢l suceso S. Para deducir la férmula de la derivada sobre tres, cuatro,

n elementos generalizaremos el concepto de la matriz de frecuencia de rela-
ciones. Introduzcamos el concepto de la hipermatriz de frecuencia de
relaciones.

Examinemos ¢l modelo ¥ = (M, 5, S, - . ., Sk2. Tomemos una matriz
N-dimensional F = [fii...isly F1y 24 o o iv = 1, ..., | M| . Las posiciones
segin cada dimension de la matriz N-dimensional las enumeremos con ni-
meros de la serie natural 1, 2, ..., | M|. Pongamos en correspondencia
biunivoca a cada letra meM un nliimero de esta serie natural y colocaremos
las letras m;eM por las respectivas posiciones de cada dimension de la
matriz N-dimensional. Cada elemento fi,,...,;. de esta matriz es igual al
nimero de palabras que comprenden letras correspondientes a los nimeros
i1y f2, « - « in. No duplicamos los indices iguales por su escritura. La matriz
formada de este modo se denominard matriz N-dimensional de frecuencia
de relaciones o bien hipermatriz de frecuencia de relaciones, si no nos inte-
resa la dimension de esta matriz.

Si entre los indices i, &, f, . .., ixv y un elemento f;, ;... .i. existen al
menos dos indices de escritura distinta este elemento se llama frecuencia
reciproca de letras correspondientes y, en caso contrario, frecuencia propia
de estas letras. La frecuencia fi, ,....,iy Que tiene & indices diferentes se de-
nomina frecuencia de orden k.

Cuando se calculaba la derivada de un par de elementos se utilizaban
frecuencias de primer y segundo orden.

La derivada —?-3% de un grafo G respecto a un suceso S sobre las

ternas de elementos es
G 1

35 (mg, mp, N) =

5 Si=2 2 Ji+

fm.mw, = vy, g, PP 0 = i, e

+3 3 fw:)- @311

i#jivtk ek

i Kk = m,, ma,m.

La derivada —%% del grafo G respecto a un suceso S sobre las

cuaternas de elementos es

G, i ey m) = (Sfi =25+ 3 5 fix -
aS Sy
u!_: :#J,n#k.;:!.lr

- 4 Z fi‘.ﬂ‘f)n i j: k, = Mg, Mp, M, M4. {3'12)

ik
iR imk il ek jel kml
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La derivada %—.CS;'_ de un grafo G respecto a un suceso S sobre #

elementos es

aag (ml! mz, ... m") = -}':m];_'; : (Zf;l e’ s ‘Iz;:ﬂ\h

f iy

+ (-1l 3 fini A (D" T fl., ;»),

h-fl o fedz,.
Wt ooy ia B#hy. . ln- l?u.

By By < ouy by = ooy In =Py, M2, ..., M (3.13)

Las férmulas (3.11)—(3.13) estdn deducidas de la definicién de la deriva-

da —G de un grafo G respecto a un suceso S, al examinar las ternas,

cuaternas y n-ternas de elementos, respectivamente.

Cada modelo puede ser prefijado con ayuda de una hipermatriz de fre-
cuencia de relaciones.

Por ejemplo, un modelo ¥ = (M, S3),

M=[d‘,b,f-‘,a’, e]l

Sy = [{a b d], (b e d], {¢ d e}},

cuya matriz de incidencia

a b ¢ d e
1 1 0 1 0
Q)= |10 1 1 1 0
0 0 1 1 1

puede determinarse por la matriz de frecuencia de relaciones

F(y) =

NN Oon
LT S I S R -

e
0
0
1
1
1

(=R T~
L= S e e~
m o N

En el ejemplo examinado Q(¥) y F(¥) determinan biunivocamente una
a otra. En otras palabras, un modelo puede ser pref: ijado no sélo enumeran-
do sus palabras, sino también cuando se prefijan intersecciones de estas
palabras con ayuda de planteamiento de las frecuencias de letras en estas
palabras).

Si tenemos gran niimero de ceros es cémodo representar la hipermatriz
de frecuencia de relaciones en forma de anotacién en linea. Por ejemplo,



§ 3.5. Estabilidad, cubrimientos y combinaciones en pares 129

el modelo a examinar ¥ puede ser escrito como
F(¥) = g?<2b*<2ce3d*se”saboad=bc-2bd+2cd-ce-de.

Aqui el coeficiente para o es igual a f, y para of, fus, «, B =a, b, ¢
d, e, el simbolo « es distribuidor constructivo de dos frecuencias.

La anotacién en linea de una hipermatriz de frecuencia de relaciones
que prefija el modelo se denominard a continuacién descomposicion del
modelo por frecuencias o bien descomposicion de frecuencia del modelo.

§ 3.5. Estabilidad, cubrimientos y combinaciones en pares

En cualquier grafo se puede formar una coleccién de ciertos conjuntos que
se unen seglin algin criterio, por ejemplo, subconjuntos de vértices tales
en los que no hay dos vértices de un mismo subconjunto que sean adyacen-
tes. Andlogamente se puede partir un grafo en subconjunto de aristas de
tal modo que las aristas de un subconjunto sean no adyacentes de dos en
dos. En el caso general, el nimero de elementos en distintos subconjuntos
es distinto y existe un subconjunto, en gue el nimero de elementos adquiere
el maximo valor. Por eso se puede introducir dos invariantes del grafo para
vértices no adyacentes de dos en dos y aristas del mismo tipo.

Un conjunto de vértices se denomina interiormente estable, si éstos son
no adyacentes de dos en dos.

Un conjunto interiormente estable de vértices se denomina subgrafo va-
cio si, al anadir aunque no sea mas que un vértice no perteneciente a este
conjunto, se forma por lo menos una arista (un arco).

La potencia maximal de un subgrafo vacio del grafo G se denomina
numero de estabilidad interior o niimero vértice de independencia del grafo
£(G).

El nimero maximal de aristas no adyacentes de dos en dos de un grafo
G se denomina numero arista de independencia del grafo &,(G).

Si una arista es incidente a un vértice se dice que ellos cubren uno a
otro. Un conjunto de vértices que cubren todas las aristas de un grafo se
denomina cubrimiento vértice del grafo G. La potencia minimal del cubri-
miento vértice se llama numero del cubrimiento vértice del grafo wo(G).
Andalogamente un conjunto de aristas que cubren todos los vértices del gra-
fo G se denomina cubrimiento arista de un grafo. La potencia minimal
del cubrimiento arista del grafo G se denomina niémero del cubrimiento
arista mi(G).

Acordémonos considerar que cualquier vértice de un grafo cubre a si
mismo y dos vértices adyacentes cubren uno a otro. Entonces la potencia
minimal de un conjunto de vértices que cubren todos los vértices del grafo
G se llama mimero vértice de la estabilidad exterior del grafo Bu(G).

De manera anédloga consideremos que cada arista de un grafo cubre
9—6577
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a si misma y dos aristas adyacentes cubren una a otra; entonces la potencia
minimal de un conjunto de aristas que cubren todas las aristas del grafo
G se denomina numero arista de la estabilidad exterior B81(G).

Para resolver muchos problemas practicos es necesario calcular los inva-
riantes examinados del grafo. Por ejemplo, sea que los vértices de un grafo
son los médulos tecnolégicos de un proceso automatizado flexible y hay
que observarlos continuamente, mientras que dos vértices del grafo se unen
por una arista, si se puede observar sus respectivos mddulos encontrandose
al lado de uno de ellos. Se necesita colocar telecimaras de tal modo que
el operador del monitor en el panel de control pueda observar todos los
mddulos con tal que el niimero de telecAmaras sea minimo. Para resolver
este problema hay que determinar el mimero de vértice de la estabilidad
exterior del grafo dado.

Ejemplo 3.6. Para el grafo de Peterson G (véase la fig. 3.4), los invariantes introducidos
tienen siguientes valores:

&Gy =4, |{1,3,9 10}| =4 a(G) =5, ||la d n x pi| =5
To(G) =6, |11,3,5 789} =6 x(G) =5, |thmaprl] =5
BolGy =3, | 11,4, 101 | =3 681G =4, |{a ¢ x ul| = 4.

Teorema 3.13. Para cualquier grafo conexe no trivial G = (V, U) se
tiene

&(G) + 71o(G) = &i(G) + m(G) = | V|. (3.14)

Un conjunto de aristas de un grafo, en el cual ningiin par de aristas
es adyacente se denomina combinacion en par del grafo. Un conjunto de
aristas de una combinacién en par, en la cual el niimero de aristas es igual
a g se denomina combinacién mdxima en par del grafo.

Para los grafos de dos partes es vilido el siguiente teorema sobre combi-
naciones en par.

Teorema 3.14 (teorema de Kénig). Para un grafo de dos partes G, el
niumero de aristas en la combinacidn mdxima en par es igual al niimero
del cubrimiento de vértice, o sea, & = wo.

Lldmase combinacidn perfecia en parde Vi en V3 en grafo de dos partes
G(V1, V2) una correspondencia biunivoca entre los vértices de ¥, y un sub-
conjunto de vértices de V3, en la cual todo vértice de ¥, se une con un
vértice de V> mediante una arista.

El concepto de combinacién en par permite enunciar el siguiente
teorema.

Teorema 3.15 (teorema de Hall). Sea G = G(V,, V2) un grafo de dos
partes y para cualquier subconjunto AC V) sea también o(A) un conjunto
de aquellos vértices de V, que son adyacentes por lo menos a un vértice
de A. Entonces la combinacidn perfecta en par de V, en Va existe cuando,
¥ solo cuando, el mimero de elementos | A | < | ¢(A) | para cada subcon-
Junto A€V,.
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Examinemos como se escogen subgrafos vacios [E;} en un grafo G.
Se llama entorno G(wa) de un vértice vy del grafo G = (¥, I") un subgrafo
{ Vs, Ua), cuyo portador coincide con el entorno de radio unitario de este
vértice, Vo = 'ty y la signatura U, estd formada por todas las aristas del
grafo G que unen los vértices de V.

Llimase no_entorno G(vo) del vértice vy del grafo G = (¥, T') un
subgrafo (Vo, Up}, cuyo portador Vo = [vi/ui€Tw) y la signatura Us
comprende todas las aristas del grafo G que unen los vértices de V.

Teorema 3.16. Un subgrafo vacio G = (V, I') que no contiene el vértice
weV comprende al menos un vértice de su entorno.

Reduzcamos la formacién de subgrafos vacios en un grafo G prefijado
a la construccion de un drbol, en el cual todo camino entre un vértice pen-
diente (vértice v de la potencia igual a 1) y el fin de un arco que parte
de la raiz, se compone de vértices que forman un subgrafo vacio donde
la raiz es un vértice que no es el fin de ningin arco.

En virtud del teorema 3.16 construyamos este drbol del modo siguiente:

1) pongamos el grafo prefijado en correspondencia a la raiz del drbol;

2) fijemos un vértice arbitrario v del grafo dado G = (¥, I') y los vérti-
ces de su entorno Vp. Pongamos un vértice del conjunto { g, ¥o} en corres-
pondencia biunivoca al fin de todo arco que parte de la raiz del 4rbol;
__ 3) cada extremo v, de arcos construidos ponderemos por el no entorno
G(v,) del vértice v,;

4) consideremos el extremo v, del nivel construido como raiz de un ér-
bol nuevo.

Repetiremos los puntos 2)—4) hasta que cada extremo de arcos cons-
truidos sea ponderado por el simbolo . Este simbolo significa la ausencia
del no entorno correspondiente. Segiin el teorema 3.16 el camino entre el
fin de un arco que parte de la raiz del arbol construido y un vértice pendien-
te ponderado por el simbolo (J consta de los vértices del grafo vacio.

En el caso de fijar arbitrariamente un vértice cuando se construye un
nivel del drbol no se puede establecer la correspondencia biunivoca entre
los vértices pendientes y subgrafos vacios, puesto que los ultimos pueden
repetirse, es decir, un mismo subgrafo vacio puede ponderar varios vértices
pendientes. Para evitar la repeticién de subgrafos vacios, introduzcamos
la ley de absorcién de subdrboles.

Ley de absorcién. Si en el k-ésimo nivel de un drbol los vértices v; y
v son ne adyacentes y un subdrbol de la raiz v, estd construido y si en
un subdrbol de la raiz v; aparece un arco con el vértice vi, la rama corres-
pondiente no se construye.

La ley es vilida, ya que el subdrbol de la raiz v; no contiene el vértice
v, del entorno del vértice v, v.€G(v), ¥, en virtud del teorema 3.16, se
contiene en un subgrafo vacio del subdrbol ya construido de la raiz v

y®
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©
&:0 n{"!é}

Fig. 3.11

Ejemplo 3.7. Hallar la-distribucidn de subgrafos vacios en el grafo G representado en
la parte superior de la fig. 3.11,

Pongamas el grafo prefijado & en correspondencia a la raiz del drbol que se construye
Fijemos el vértice va. Su entorno consta de cuatro vértices vy, vs, Ua, Us), por eso de ia
primera raiz trazamos cinco arcos. Aftadimos a los extremos de los arcos unc de los vértices
¥ ponderamos los arcos por el no entorno de estos vértices (fig. 3.11). El no entorno Giw)
contiene solamente el vértice vs, por eso en el lercer nivel obtenemos el vértice pendiente
vs. El vértice v tiene un no entorno con el portader (vs, ta, #s}. Fijamos el vértice vy, Su
no entorno V¥, = {71, por esta razén en e! tercer nivel oblenemos el vértice pendiente vs. For-
mamos dos mds arcos de la segunda raiz vy con el vértice vy ¥ el no entorno compuesto
de vs y con el vértice 15 ¥ el no entorno vy Segiin la ley de absorcién, uno de los subdrboles
se absorbe. En la figura, la cruz significa que la rama no sigue construyéndose y no se tiene
en cuenta cuando se calculan subgrafos vacios. En el cuarto nivel obtenemos el vértice pendien-
te vs. Para un vértice del segundo nivel tenemos el no entorno compuesto del vértice vy y
el proceso se termina por el vértice w5 en el tercer nivel.

El vértice vy del segundo nivel con su no entorno se trunca segiin la ley de absorcién.
Para el vériice v; con el no entorno ¥y = [, vs, Us) construyamos el tercer nivel. Obtenemos
tres ralces: vs, vi(vs), vs{vi). Todos ellos se truncan segin la ley de absorcién v no se tienen
en cuenta cuando se calculan subgrafos vacios,

De tal modo, tenemos los subgrafos vaclos:

E) =125}, Ea=[1,4]), Es= {1, 3, 5} y Ex = |3, 6}.

Establezcamos las propiedades de un grafg que determinan el cardcter
ramificado del drbol que sintetizamos. En el ejemplo examinado, cuando
se construia el siguiente nivel, en cada raiz se fijé un vértice de la potencia
maximal., Para eliminar la repeticion cinco veces de subgrafos vacios en
el 4rbol fue utilizada la ley de absorcién, En el primer paso de la construc-
cion del drbol fijemos un vértice no de la potencia maximal, sino el de
la minimal: el vértice &7, s(v1)<s(w). Al construir el drbol después de fijar
el vértice vy (fig. 3.12, a) vemos que es mds simple que el anterior; en su
construccién la ley de absorcidn se utilizaba sélo una vez. Si en la construc-
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a) Ey=f135} n
Fig. 3.12

¢i6n del siguiente nivel en cada raiz fijamos el vértice de la potencia mini-
mal (fig. 3.12, b), en el ejemplo considerado el nimero de vértices pendien-
tes coincide con el nimero de subgrafos vacios; incluso sin emplear la ley
de absorcion. Expongamos un algoritmo de engendrar todos los subgrafos
vacios, en el cual para reducir la densidad del trabajo, fijaremos cada vez
¢l vértice de la potencia minimal.

1. Ponemos un grafo prefijado G en correspondencia a la raiz del drbol
a sintetizar.

2. En el grafo, fijamos el vértice v de la potencia minimal, poniéndola
en correspondencia al extremo del arco que parte de la raiz. Construimos
|Fwg | de arcos que parten de la raiz y el extremo de cada uno de ellos
ponemos en correspondencia biunivoca a un vértice del entorno G(w).

3. Cada extremo v, de los arcos construidos lo ponderamos por el no
entorno G{v,) del vértice v, del grafo puesto en correspondencia a la raiz
examinada.

4. Analizamos el extremo v, del nivel construido como la raiz de un
arbol nuevo.

5. Consideramos, si el vértice v, es ponderado por el simbolo . Si
«no», pasamos al punto 2, si «si», al punto 6.

6. Los caminos entre los extremos de los arcos que parten de la raiz
del drbol sintetizado y los arcos pendientes determinan univocamente los
subgrafos vacios del grafo prefijado.

A base de este algoritmo, se puede determinar el nimero de estabilidad
interior go(G) del grafo G = { ¥, I') como potencia maximal de un subgrafo
vacio &(G) = méx | Ei| y el nimero del cubrimiento vértice mo(G) como

i

diferencia | ¥| — &(G) (en virtud del teorema 3.13).
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Para el ejemplo examinado &(G) = 3 Enae = |1, 3, 5); mo(G) =
[£2, 4, 6} | =

En el grafo, mucha.s veces se necesita determinar no el nimero maximal
de los vértices, entre los cuales faltan conexiones, sino, al contrario, el mi-
mero maximal de los vértices adyacentes de dos en dos. Se denomina densi-
dad p(G) de un grafo G = (¥, T') la potem:la maximal del portador de
un subgrafo completo Fr.uCG:

p(G) = mfix D(F).

El algoritmo para engendrar subgrafos vacios, aducido anteriormente,
y la ley de absorcién pueden utilizarse con éxito, después de hacer corres-
pondientes cambios para determinar la densidad p(G) del grafo G.

Expongamos un algoritmo para engendrar subgrafos completos.

1. Ponemos un grafo prefijado en correspondencia a la raiz del arbol
que sintetizamos.

2. En el grafo fijamos el vértice vp con la potencia maximal, poniéndola
en _coi'nespondencia al extremo de un arco que parte de la raiz. Construimos
|Fvo| arcos que parten de la raiz (]1"uo| es la potencia del portador
del no entorno del vértice vp). El extremo de cada uno de estos arcos se
pone en correspondencia biunivoca a un vértice del no entorno G(w).

3. Cada extremo v, de los arcos construidos se pondera por el entorno
G(v.) del vértice v, del grafo puesto en correspondencia a la raiz que
analizamos.

4. Constderamos el fin v, del nivel construido como la raiz de un 4rbol
nuevo. z

5. Establecemos, si el vértice v, es ponderado por el simbolo 7. Si
«no», pasamos al punto 2, si «si», al punto 6.

6. Los caminos entre los extremos de los arcos que parten de la raiz
del drbol sintetizado y los arcos pendientes determinan univocamente los
subgrafos completos del grafo prefijado.

La ley de absorcién. Si en el k-ésimo nivel de un drbol los vértices v;
¥ vj son adyacentes, el subdrbol de la ralz v; estd construido y si en el subdr-
bol de la rafz v; aparece un arco con el vértice vi, lu rama correspondiente
no se construye.

Ejempio 3.8. Hallemos la distribucién de subgrafos completos en ¢l grafo G representado
en la mitad superior de la fig. 3.13, Al fijar, en el punto 2, un vértice de la potencia maximal
en cada nivel sintetizado (fig. 3.13, @), no se repitieron los subgrafos completos en el drbol.
Si en ¢l punto 2 fijamos un vértice de Ja potencia no maximal, tenemos la repeticién de los
subgrafos completos. Cuando fijamos el vértice vy, de la potencia mumimal vs (1) = 1, en
la construccién del segundo nivel tenemos la repeticién del subgrafo compleo /3 = {1, 2,
6) (fig. 3.13, b); en la construccién de cada nivel, ¢l nimero de repeticiones aumenta todavia
mds: Fi = (2, 3, 4], Fa = 14, 5, 6], Fi = {4, 5, 6] (fig. 313, ¢). La densidad de) grafo
considerado G es igual a 3.
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Fig. 3.14

Ejemplo 3.9. Hallar el flujo maximal a cravés de la red G (fig. 3.14, a), si la capacidad
de los arcos es, respectivamente, igual a: @ = (v, t2) = 5,0 = (v, w) = 2, ¢ = (1, va) = 4,
d={m w) -3 e=(n, vs) =2, k=(vs, Us) — 4, m = {1, %) - 3, n = (2, ) = 7,
p={n v -2

Para determinar el flujo maximal a través de una red prefijada construimos el grafo de
alcance Gy = { ¥y, Uy}, cada vértice del cual corresponde biunivocamente a un arco del grafo
prefijado G y dos vértices se unen por una arista si, y s6lo si, sus arcos correspondientes
se incluyen en el camino en el grafo de partida G (fig, 3.15, @). Entonces un subgrafo vacio
del grafo de alcance determina biunivocamente un corte de la red de partida. La suma minimal
de las capacidades de los arcos incluidos en el corte es igual, en virtud de! teorema 3.10,
al flujo maximal buscado. Empleando el algoritmo para engendrar todos los subgrafos vacios
los formamos en e} grafo de alcance {fig. 3.15, b) ¥y calculamos Ja capacidad del corte, Tenemos:

E=jnpbed-T+24+2+24+3=16E=§{npbcl-T+2+2+4=15
Es=|nmpmel=-T+2+3+2=W E=inkbdi-T+4+2+13=16
Es=|n k m)—-—7+4+3=14 Es=1la b del-—5+2+3+2=12,
E=labcecl-5+2+4=1l,E=|ame}-5+3+2=10

El corte {a, m, e} con la capacidad minimal igual a 10 determina el flujo maximal
Pmax = 10 a través de la red G.

a)
Fig. 3.15
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Se denomina matriz modificada de adyacencia S la disyuncidn de la
matriz de adyacencia S y la matriz diagonal unitaria {1, 1, ... /}:

S=8viL 4 ..., 1},

La determinacion del nimero de estabilidad exterior se reduce a la cons-
truccién de la matriz modificada de adyacencia y a la formacién del cubri-
miento con el nimero minimal de elementos.

Ejemplo 3.10. Determinemos el nimero vértice de la estabilidad exterior 86(G) de un
grafo G (fig. 3.16), cuya matriz S(G) tiene siguiente forma:

a b ¢ d e f

1 0 1 0 o 1 |a

o 1 1 1 o 1]

1 1 1 1 1 0|e
S@a=Uo 1 1 1 o 1 |a

6 0 1 0 1 t e

1 1 0 1 1 s

Cubrimos filas por columnas o columnas por filas de la matriz de adyacencia que es
equivalente en virtud de su simetria con respecto a su diagonal principal. Empleando el algo-
ritmo de Petrick obtenemos

@+c+Nb+c+d+fNa+brcrd+e)b+c+d+Mecre+ flx

x@+brdre+fl=lc+fraeda+b+rdre+cNb+re+d+ )=

=(c+Sf+aeb+drac+f+af+ecere)=bc+ed+ac+ef+ce+

+ & + df + af + ef + abe + ade.

Cada término multiplicativo de la expresion obtenida determina un conjunto exteriormen-
te estable de vértices; la potencia minimal de este conjunto ¢s igual al nimera vértice de la
estabilidad exterior Sy(G), BulG) = 2.

En el caso de un grafo orientado, excepto el nimero de vértice de la
estabilidad exterior 8¢(G) del grafo G se distinguen los nimeros vértice de
la estabilidad exterior positivo §¢ (G) y negativo 3s (G).

Se denomina mimero vértice positivo de la estabilidad exterior 3¢ (G)
de un grafo G = (¥, I'} la potencia minimal de un conjunto de vértices
¥V* = {wo) tal que

(v JUTu" ) =¥ (3.15)

Fig. 3.16
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y eliminando al menos un vértice de V™ la relacién (3.15) no se cumple.
Este mimero determina el mimero minimal de vértices, desde los cuales
se puede «observar» (son alcanzables a un paso) todos los vértices del grafo.
Se denomina niimero vértice negativo de la estabilidad exterior 8¢ (3]
de un grafo G = (¥] I'} la potencia minimal de un conjunto de vértices
V™ = fui ] tal que
for UM 'w ) = (3.16)

y eliminando al menos un vértice del conjunto ¥~, la relacién (3.16) no
se cumple. Este nimero ‘es igual al mimero minimal de vértices que «se
observan» desde todos los vértices del grafo.

Es obvio que el nimero 8¢ (G) se calcula como potencia minimal del
cubrimiento de columnas por filas en la matriz de adyacencia $(G) del
grafo G.

Ejemplo 3.11. Calculemos los mimeros 83 (G) y85 (G) del grafo G (fig. 3.17), cuya matriz
de adyacencia tiene forma

a b ¢ d e f
1 0 1 0 0 0|a
o 1 1 0 0 1 ||s
e o 1 1 1 0 f|e
Siey = o 1 0 1 0 1 |a
o 0 0 0 1 1 je
1 0 0 0 o0 1 |r

Seglin la definicidn del conjunto exteriormente estable, en el cual los vértices pertenecien-
tes a este conjunto «se observan» por ellos mistos, los elementos diagonales s, de la matriz
de adyacencia S(G) tienen el valor 1 aunque en el grafo G no hay lazos. Cubriendo columnas
por filas de la matriz modificada de adyacencia por medio del algoritmo de Petrick

e+ Mo+ dila+b+edc+dic+eb+d+e+ f)=

={a + Mc + editd + ad + dc) = (a + fich + dc + ebd + aed) =

= abe + adc + ade + bef + cdf + bedy,

obtenemos Fg (G) = 3.
Cubriendo filas por columnas de la matriz §(G)

@+e)pb+c+Nic+d+e)b+dF NHe+ NHa+f)=
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=f(c+ab+afie+cf +d)f +ab+ ad) = (ef + af + ab + acd)e + of + df) =
= cf + aef + abe + acde + adf,

obtenemos 8¢ (G} = 2. En estas expresiones, todo término multiplicativo determina corres-
pondiente conjunto exteriormente estable.

El niimero arista de la independencia £;(G), el nimero del cubrimiento
arista 1y(G) y el nimero arista de la estabilidad exterior 8,(G) de un grafo
G = (¥, T') se determina de manera anéloga, sé6lo en vez de la matriz modi-
ficada de adyacencia de los vértices en calidad de informacién de partida,
se toma la matriz modificada de adyacencia de aristas $,(G) del grafo G:

S(G) = SAGWIL I, ..., 1},

donde S,(G) es la matriz de adyacencia de aristas, (1, 1, . .., 7] es la matriz
diagonal unitaria.

Ejemplo 3.12. Hallemos £{(G), mi(G) y 8.(G) del grafo G = {¥ I'} representado en
la mitad superior de la fig. 3.18.

Para determinar el mimero arista de la independencia £:(G) del grafo G utilizamos el
algoritmo para engendrar subgrafos vacios. anemos el grafo prefi jado en correspondencia
a la raiz del 4rbol y determinamos la arista ady al ng imal de aristas. Esta
es la arista k, adyacente s tres aristas: £ p, m, Pongamos los extremos de arcos que parten
de la raiz del drbol en correspondencia a las aristas &, f; p y m y ponderamos cada vértice
del nivel construido por un subgrafo parcial, toda arista del cual y la arista correspondiente
a este vértice (ﬁg 3.18) no son adyacentes, En otras palabras, al fijar una arista del grafo
dado, ponemos en correspondencia a ella y a su entorno los vértices de un nivel del drbol,
cada uno de los cuales se pondera por el no entorno de la arista correspondiente. Repetimos
esta descomposicién del grafo hasta obtener no entornos iguales a & y engendramos asi todos
los conjuntos independienies en cuanto a aristas (fig. 3.19)

Fig. 3.18
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Fig. 3.19

Ey = [b k n), B2 = {d, k n), Es = (¢ k n), & = {a, ¢ k],

Es=1ta e k), Es= (d e k), B = {b f p}, Bs = {d, [, pl,

Ey = {c £ pl, Exo = |d & fl, Eu = |& £ m],

Ep=|b f, m), Es = {a ¢ p), B = |a & m),

Eis = [b m, n}.

Por consiguiente, el nimero arista de la independencia &,(G) es igual a 3 y, debido a
(3.14), el ntmero del cubrimiento arista 7y(G) = 7 — 3 = 4 (| (b, m, n, k] | = 4). Cubriendo
filas por columnas de la matriz modificada de adyacencia de aristas del grafo prefijado G

a b

e d e kK f m n p

1 1 0 1 0o 0 1 0 1 0lla

1 1 1 1 1 Q 0 Q 0 ol b

0 1 ] 1 1 0 0 1 0 0 e

1 1 1 1 0 L] 0 1 0 oll d

g 1 0 1 0 0 0 1 e
o 0 o o0 0 1 1 1 0 1| &

1 ¢ 0 0o o 1 1 Q 1 o)f

o 0 1 1 0 1 0 1 0 1fjm

1 0 0o o 1 o 1 0 1 0fln

6 0 0 0 1 1 o0 1 o0 ifp

ob que el nd arista de la estabilidad exterior 81(G) del grafo G esiguala 3 (| {5,

m, n)| =

§ 3.6. Encaje de los grafos

Examinemos propiedades topoldgicas de los grafos. La topologia examina
las propiedades de los grafos que son invariantes respecto a las transforma-

ciones homeomorfas. Estas propiedades se determinan por invariantes
topolégicas.
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Dos grafos son homeomorfos, si son isomorfos con exactitud de hasta
vértices de la potencia dos. En otras palabras, dos grafos son homeomorfos,
si se transforman hasta los grafos isomorfos uno a otro, cambiando unas
aristas por cadenas de longitud correspondiente.

El género de una superficie es el mimero miximo de curvas cerradas
simples sobre una superficie. Estas curvas no dividen la mencionada super-
ficie. La esfera y el plano son las superficies de género nulo, ya que se
dividen por cualquier curva cerrada. El toro es una superficie de primer
género. Toda superficie de p-ésimo género es equivalente a una esfera con
P mangos.

El género de un grafo v(G) es un género minimal entre todas las superfi-
cies, sobre las cuales se puede representar el grafo G de tal modo que sus
aristas se intersequen solamente en vértices. Un grafo es planar, si se repre-
senta en el plano de tal modo que sus aristas se intersequen solamente en
vértices. El problema de caracterizacién de grafos planares quedaba irreso-
luble mucho tiempo. En 1927 L.S. Pontriaguin demostrd (pero no public6)
el criterio del cardcter planar que, independientemente de él, fue descubier-
to y publicado por el matemético polaco Kuratowski en 1530.

Teorema 3.17 (teorema de L.S.Pontriaguin). Un grafo es planar si, y
solo si, no contiene un subgrafo homeomorfo a Fs o K3 (fig. 3.20, g, b).

A base del criterio de Pontriaguin se puede obtener otro criterio del
cardcter planar, si se introduce el concepto de junta elemental que consiste
en lo siguiente. Cuando se junta cualquier arista del grafo, ésta se elimina
y los dos vértices a y & (fig. 3.21) coincidentes a ésta se identifican; el vértice
obtenido es coincidente a las mismas aristas que a y b (excepto la arista
eliminada).

Teorema 3.18. Un grafo es planar si, y sdlo si, no contiene los subgrafos
que se juntan en Fs 0 Ki .

En 1932 el norteamericano Whitney introdujo otro criterio del cardcter
planar, empleando el concepto del grafo dual. El grafo G* es absfractamen-
te dual a G, si entre las aristas de los grafos G y G* existe una corresponden-
cia biunivoca; a un subconjunto de aristas de G que forman un ciclo en
G le corresponde un subconjunto de aristas de G* que forman un corte
en G*.

Si G contiene un vértice pendiente v, s(v) = 1, en G* se obtiene un
lazo. En la fig. 3.22 se representan los grafos G y G* con tal que el grafo
G estd punteado.

Teorema 3.19 (tecorema de Whitney). Un grafo es planar si, y sélo si,
existe un grafo abstractamente dual a él.

Analicemos un problema que surge cuando se proyecta un circuito
impreso. En la fabricacién de aparatos electrénicos, los conductores de co-
nexion se ponen sobre la superficie plana de material aislante por un proce-
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B Fig. 3.20

dimiento impreso. Los conductores impresos no son aislados, por eso no
deben intersecarse. Sin embargo, puede ser que en la disposicién de apara-
tos en una placa es imposible evitar la interseccidén; por esta razén para
proyectar correctamente un circuito impreso, hay que saber, si es planar
el grafo, en el cual los dispositives interpretan el papel de vértices y las
conexiones entre fos dispositivos sirven de aristas. Si el grafo no es planar,
se tiene que imprimir en varios planos y es necesario conocer o bien el
numero de cruzamientos del grafo (el mimero minimo posible de intersec-
ciones en la representacion del grafo en el plano), o bien su espesor. Se
denomina espesor del grafo G el mimero minimo de grafos planares, cuya
unién da G. El espesor del grafo planar es igual a 1. La estimacién inferior
del espesor 1(G) del grafo G = (¥, U) se determina por la igualdad

X3 X3 A
- X

% ” % gy BN (=__»
—_—
aib,
X X5 X Xg 646" 5"

Fig. 3.21 Fig. 3.22
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Fig. 3.23

é s — 2
HGy21 + ]-;6727— [ (3.17)

donde ][ es la parte entera, | V| = n, s; s la potencia del i-ésimo vértice.

Examinemos el grafo representado en la fig. 3.23, a. Determinemos,
si se puede realizar la impresién en una capa; en caso contrario aclaremos
cudntas capas necesitamos y qué aristas debemos eliminar para que el grafo
se haga plano.

Debido al criterio de Pontriagiun este grafo no es planar, puesto que
contiene subgrafos homeomorfos a Fs (fig. 3.24, @) y K33 (fig. 3.24, b).
El espesor del grafo G no es menos de dos:

2-2 [
f(G);l + ]a;};__—z)[ =2, H{G)=2.

Para determinar qué aristas necesitamos eliminar para transformar el
grafo en grafo planar, escogemos todas las figuras prohibidas y formemos
una tabla bidimensional, cada fila de la cual corresponde biunivocamente
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a una figura prohibida Q; y cada columna, a una arista g;. Entonces el
cubrimiento de filas por columnas de esta tabla determinard qué aristas
necesitamos eliminar para hacer el grafo planar. El cubrimiento minimal
correspondera a una resolucion minimal, puesto que eliminando cualquier
arista sacamos la figura prohibida de la clase de subgrafos homeomorfos
a Fsy K.

Para el grafo considerado, esta tabla tiene forma (tabla 3.1}

Tabla 34
@ [
L2263 1233|1060 (6731011241 [127) [#2.61 13,74 |134) |1a.61{1a.51]1571
(2] 1 1 1 i 1 i 1 1 1 1 1
[2-3 1 1 1 I 1 1 1 1 1 i

El cubrimiento minimal contiene una de las aristas {2, 31, {2, 4], [3,
6}, (3, 73, {4, 6}, {4, 5} 6 {5, 7]. Por ejemplo, después de eliminar la
arista [3, 6} obtenemos el grafo planar, cuya representacién plana se ve
en la fig. 3.23, b. La conexidn correspondiente a la arista eliminada (linea
punteada} se realiza en el segundo plano. El espesor #(G) del grafo G
equivale a 2,

Tiene gran interés practico el problema de encaje de grafos en otros
grafos que tienen propiedades estructurales especiales. Una clase importan-
te de estos grafos es la clase de cubos n-dimensionales. Estos ultimos se
aplican en la teoria de codificacién para trasmitir los datos y para proyectar
autématas. Designemos un cubo n-dimensional por medio de H,. La poten-
Cia”del su portador es igual a 2", la potencia de su signatura equivale a
Ha2ET 2

Introduzcamos una métrica sobre un grafo H, del modo siguiente. Sea
que una funcién no negativa de dos variables d(a, b) determina la distancia
entre dos vértices @, b€, igual al nimero de aristas en la cadena simple
mds corta que une a y b. Con esto se cumplen las siguientes condiciones:

1. dia, a’) = 0 si, y sdlo si, los vértices @ y a’ coinciden.

2. d(a, b) = d(b, a).

3, Para cualesquiera tres @, b, ¢ € H, d(a, b) + d(b c)=d(a c).

Por consiguiente, el conjunto de vértices de un n#-cubo junto a la métrica
introducida de este modo es un espacio métrico que se denominara espacio
booleano. Si una métrica introducida en un conjunto dado, ella esta intro-
ducida también en cualquier de sus subconjuntos como una restriceién de
la funcién d. Por esta razén cualesquier subgrafo de n-cubo también es
el espacio métrico.

Analicemos el problema del encaje del grafo G en un espacio booleano
H,. Un grafo G = (¥, U) se denomina encajable en el espacio booleano
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Fig. .25

H, = (Vu, Un) 0 cubicable, si existe una correspondencia ¢ entre los vérti-
ces del grafo G y los del hipercubo H,, tal que si (va, vg)eU, entonces
(¢(va), ¢(vs))eUy. No se debe confundir el grafo cubicable con el cuibico,
es decir el grafo, cada vértice del cual tiene la potencia igual a 3.

Ya que el n-cubo es el grafo de dos partes, en virtud del teorema de
Koénig, todos sus ciclos simples son pares y por eso cualquier grafo con
un subgrafo que es ciclo impar no se cubica. Puesto que el n-cubo es iso-
morfo a un reticulo distributivo el grafo de Konig K>3 (fig. 3.25) es, tam-
bién el grafo no cubicable. Pero cualesquier grafo parcial del ciclo impar
y el grafo K>3 son encajables en un espacio booleano. Por consiguiente,
los ciclos de la longitud impar y el grafo de Kénig K3 3 son las figuras
prohibidas del encaje del grafo en un espacio booleano. En este caso, una
figura prohibida significa un grafo criticamente no encajable, es decir, un
grafo no cubicable que tiene todos los grafos parciales cubicables. Examine-
mos procedimientos para engendrar figuras prohibidas en la base de las
conocidas.

Teorema 3.20 (teorema de Graham). En lg cara de una figura prohibida
el cambio de una arista ¢ por un grafo de Kénig K 3, sin esta arista o,
o sea, K33 o, engendra nueva figura prohibida T\(Q) (fig. 3.26).

En la fig. 3.27 se muestra la generacidn de figuras prohibidas del encaje
de grafos en un espacio booleano empleando el procedimiento de Graham
(teorema 3.20).

La caracterizacién de los grafos cubicables es bastante complicada debi-
do a las dificultades que surgen en el andlisis de estas estructuras combina-
torias. Para determinar las razones que impiden a un grafo de ser cubicable,

10—6577
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Ko3 Tr(#25) T T(Kasl) Fig. 3.27

hay que encontrar sus propiedades estructurales enunciando, por ejemplo,
las condiciones que describen la interrelacién entre sus parametros que por-
tan la informacién de estas razones. b

Analicemos unas propiedades de un n-cubo que influyen en la estructu-
ra de figuras prohibidas, La longitud maximal de la cadena que une dos
vértices v, vg del n-cubo es igual a 2” — 1. Esta cadena la representa el
esqueleto del grafo A,. La distancia d(x, y) entre dos vértices x, yeH, es
iguala i i =1, 2, ..., n El didmetro del n-cubo es igual a n. Dos vértices
x e y del n-cubo alejados uno del otro a la distancia equivalente al didmetro
se unen entre si jcon n! cadenas.

Teorema 3.21. Si fijamos cualquier vértice de un n-cubo x€H,, el con-
Junio de todos los otros vértices se parte en n subconjuntos VieH, tales
que todo vértice del i-ésimo subconjunto, w€V,, tiene una distancia hasta
el vértice fijado igual a d(x, v;) = i y, en el i-ésimo subconjunto, ef nimero
de tales vértices es igual a (V) para todos los i,

CPongamos un vector binario de la longitud n en correspondencia a
cada vértice del n-cubo. Puesto que el n-cubo es un grafo regular, todo
vértice del cual tiene la potencia igual a », tomemos, sin perder la generali-
dad, el vértice 0, 0, . . ., 0 en calidad del vértice fijado. Partiendo el conjun-
to de vértices del n-cubo en subconjuntos de vértices, a los cuales correspon-
den vectores de niimero igual de unidades, sefialemos que entre todo vértice
del i-ésimo subconjunto, al cual corresponde un vector con § unidades, y
el vértice considerado media una distancia igual a i. El nimero de tales
vértices equivale a (7). W

Teorema 3.22. En un n-cubo, el niimero de cadenas simples de longitud
k, k<n, enire vértices v,, Ug, la distancia entre los cuales d(ve, vg) = k,
Y que no tienen olros vértices comunes, excepto los v. y s, es igual a k.

Gi{Todas las k! de las cadenas de longitud & entre los vértices v, ¥ vg,
d(ve, Ug) = k, forman un k-cubo. En este cubo, la potencia minimal del
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Fig. 328

conjunto de vértices separadores es igual a & (vértices adyacentes a v, 0
vg). De aqui, en virtud del teorema 3.9, el nimero de cadenas simples no
intersecantes por vértices entre los vértices v, y vs es igual a &, Ml

E! resultado obtenido es importante cuando se estudian grafos prohibi-
dos. Notemos que el mimero de las cadenas simples mds cortas (geodésicas)
entre dos vértices « y 8 de un hipercubo es igual a la distancia entre estos
dos vértices. El niimero de cadenas simples no intersecantes entre los vérti-
ces de un n-cubo para las cuales segin Hamming, la distancia entre cllas
es menos que sus longitudes, depende de la dimensién del n-cubo. En la
fig. 3.28(a) se dan las tres cadenas mds cortas que unen los vértices 000
y 111 en un cubo tridimensional. En la fig. 3.28(h, ¢, d) se ilustra el creci-
miento del nimero de cadenas de la longitud 3 en los cubos de la dimensién
4, 5, 6, respectivamente.

Teorema 3.23. El grafo G = (V, U) que incluye en si' k cadenas simples
no intersecantes por vértices de longitud k entre los vértices o, B€V, do(a,
8) = k, es encajable en un n-cubo H, con la particularidad de que la distan-
cia, segiin Hamming, entre los vértices o y $ queda constante, es decir,
dula, B) = dola, B) = k, si, y sdlo si, cualesquiera dos vértices adyacentes
del grafo G a, b€V forman parte de un ciclo de la longitud 4 (a, b)ef a,
b}, th cl, la d), ld a}} (fig. 3.29), ral que si dula, a) = mfixdg(u, i) =

= i=d b ¢ d entonces
dulee, b) = dula, d) = 1 ~ |, dula, €) =t — 2.
Teorema 3.24. En un grafo critico Q = (¥, U) existen dos vértices a,

Tk
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Fig. 329

Fig. 3.30

B, la distancia entre los cuales es igual al didmetro d(e, 8) = d(Q) y el
ntimero k de caminos simples es la unidad mayor que k = d(Q) + 1.

Enunciaremos varios teoremas que permiten generar los grafos prohibi-
dos del encaje en un a-cubo.

Teorema 3.25. Si G es un grafo critico, el grafo T:(G) es también critico
si, y solo si, la potencia de un vértice a es mayor que la potencia de un
vértice b, es decir, s(a)>s(b) (fig. 3.30) y la transformacién no lleva a for-
mar un subgrafo critico (es decir, G no contiene 4 cadenas simples no inter-
secantes por vértices de longitud 3 entre los vértices a, b y un subgrafo
H del grafo T;(G) no se compone de dos cadenas simples no intersecantes
por vértices de longitud 3).

Teorema 3.26. La sustitucion de cualquier arista (a, b)eG de un grafo
critico G por k cadenas simples no intersecantes por vértices de longitud
3 lleva a formar el grafo critico TA(G) si, y solo si, k satisface una de las
condiciones siguientes:

1) k = 1, si la arista eliminada es la arista comiin de dos ciclos de longi-
tud 4;

2) k = 2, si s(a) = 3, s(b) = 2 y los vértices a, b pertenecen a un ciclo
de longitud 4;

N k=m+2~-s(a) si s{a)>s(b) y m=d(G’) donde d(G’) es el
didmetro del grafo G’ obtenido del grafo G cambiando la arista eliminada
por una cadena de longitud 3;
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Fig. 332 /8

4) k = 4, si la arista eliminada es incidente a los vértices de la potencia
2 s{a) = s(b) = 2.

Teorema 3.27. El grafo Ta(G) (Ti(G)) (fig. 3.31) es critico si, y solo si,
el grafo G es también critico.

Teorema 3.28. El grafo Ts(G) es critico si, y sélo si, el grafo G es critico
(fig. 3.32).

Teorema 3.29. Si G es el grafo critico, Te(G) es también critico si, y
sdlo si, un subgrafo H contiene punto de acoplamiento y el nimero de
cadenas arfiadidas se determina partiendo de la condicion

k=d(G')+ 1 — s(a),
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& 4
a &
g &
————
4
Fig, 3.33

donde a, beH para s(a)<s(b) y el grafo G' se obtiene del grafo G al cam-
biar una cadena de longitud 2 entre los vértices a, b por una cadena de
longitud 4 (fig. 3.33, a).

En la fig. 3.33, b se pone un ejemplo de tal transformacion prefijado
por el teorema dado para un subgrafo & donde s(¢) = s(b) = 2, el didmetro
dG')=4yk=4+1-2=3.

Un conjunto de grafos prohibidos del encaje en un n-cubo es numerable.
En la fig. 3.34 se ofrece el catdlogo de los grafos criticos con la potencia
del portador variada de 8 a 17 que frecuentemente se encuentran en la
préctica.

Entre ellos existen tanto los grafos obtenidos por medio de las transfor-
maciones dadas 73, i= 1, 2, ... 6 como los grafos sin precedentes.

Cuando se generan las figuras prohibidas es indispensable verificar el
isomorfismo de los grafos obtenidos. Examinemos un algoritmo para es-
tablecer el isomorfismo entre dos grafos G,, Gp basado en la descomposi-
cién en frecuencia de modelos ¥.(G;) y ¥s(Gy) construidos segiin estos
grafos.

1. Empleando el algoritmo dado antertormente escogemos los subgrafos
completos en los grafos G, y G». Los subgrafos escogidos forman palabras
en los modelos correspondientes ¥.(Ga) v ¥5(Gs). )
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=45

n=f7

n=fg n=f7

Fig. 3.34, Terminacién

Fig. 3.35

2, Hallamos descomposiciones en frecuencia de los modelos ¥,(G,) y
¥:(Gp). Determinemos la igualdad de los coeficientes en las descomposi-
ciones. Si las descomposiciones en frecuencia son iguales, los grafos Gg
y Gp son isomorfos.

De la igualdad de las composiciones determinamos trivialmente el iso-
morfismo. Si las descomposiciones en frecuencia no son iguales, los grafos
Gz y Gs no son isomorfos.

lustremos ¢l algoritmo con el ejemplo del establecimiento del isomorfismo entre los gra-
fos G» y Gy (fig. 3.35).

El primer punto del algoritmo se cumple trivialmente, ya que los grafos son de dos partes
(subgrafos completos son las aristas). De aqui se deduce que los modelos ¥, y ¥, coinciden
respectivamente con los grafos Go y Ga!

Vo= (Vo S2), Vo= o, B, ..., E},

52 = {la, B, la, §), 1a £). 18, €}, by, nb b, EL

tm €}, e, 8}, Le, vl (o 9, 9, £
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Yo= (Vs S5{), Vo= la b, ..., m),

54 = [{a b}, ta ¢}, la 4}, la e), b 1), |c g},

id, g}, te kY, {4, m), 1g m), [k m)i.

Las descomposiciones en frecuencia de los modelos . v s tienen s1gU|cnt: forma;
Flye) = 300202970 2u e dg?e25%020% 0 27233
soficabeafsfe-yu-yt-peeebograrnent,

F(p) = da*e2b*e2¢2d% 26+ 2f*s3g% 2k« ImPeabeacs
sadege=bf-cgedgeeksfmogmakm.

Las descomposiciones en frecuencia son iguales a: F(ya) = Fiys). Los grafos G, vy Gy
son isomorfos. Para determinar el isomorfismo establecemos la correspondencia biunfvoca
entre las letras con espectros iguales de frecuencias:

c+a, p=bie), Frec(d), verelb), bedic),

yoSk), amg gekib), fem,

Para determinar el isomorfismo de los grafos orientados, al algoritmo
expuesto se le adiciona el tercer punto. Si los grafos G, v G, son isomorfos
sin tener en cuenta la orientacién, examinando los pares correspondientes
de vértices determinamos la conservacion del isomorfismo contando con
la orientacién.

Otro algoritmo para determinar el isomorfismo de los grafos consiste
en una particién consecuente de las clases de vértices del grafo, cada una
de las cuales comprende los vértices de igual potencia; la particién se base
en ¢l cdleulo del niimero de aristas que unen el vértice considerado con
vértices de estas clases.

Analicemos dos grafos: Ge y Gp (fig. 3.36, a, b). El portador del grafo G, se parte, segiin
los valores de las potencias de vértices, en cuatro clases: K, = (I, 2, 6}, K:= (4],
Ky = [3}, Ku = [5}. El pontador del grafo Gy, también se parte en cuatso clases: K{ = |b,
¢ f1, Ki = [e), K{ = {a}, Ki = [d). El nimero de clases y sus potencias coinciden; por
consiguiente, los grafos G, y Gy pueden ser isomorfos y, ademds, el isomorfismo 7 aplica,
obviamente, los vértices 3, 4, 5 en a4, ¢ 4, respectivamente: a = 5(3), e = 3(4), d = n(5).

a ] ]
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Determinemos el nimero de conexiones de los vértices 1, 2, 6 en el grafo G, y los vértices
b, ¢ fen el grafo Gy con vértices de las clases escogidas. Para realizarlo formemos una 1abla
bidimensional (tabla 3.2), a cada fila de la cual se le corresponde biunivocamente una clase
escogida; a cada columna, un vértice ¥ en la interseccién (/, j) se indica el nimero de cone-
xiones del j-ésimo vértice con los vértices de la i-ésima clase.

Tabla 3.2
K Y ) Kt
1 2 6 b P 5
K, 2 1 1 1 2 1 K
K (4] 0 0 4] o 0 Ki
K 0 1 I 1 0 1 Ki
Ka i 1 1 1 1 1 Ky

Analizando [a tabla notemos que la clase K; se parte en dos clases: £; = (2, 6] ¥
KEs = [1]; la clase K también se parte en dos clases: X{ = (b f] y K{ = [¢]. Sl estos grafos
son isomorfos, ¢ = 5(1). Para establecer los vértices correspondientes de los grafos Ga, Gb,
formemos la tabla (tabla 3.3) de la particién obtenida de los vértices.

Tabla 3.3
£ & v Kj
2 6 b 7
K 0 o 1] Ki
K: 0 v] 0 0 Ki
K 1 1 1 1 Ki
K 1 1 1 1 Ki
Ks 1 1 1 1 K¢

Las columnas iguales sefialan que el vértice 2(6) puede ponerse en correspondencia tanto
al vértice » como al f. Como ltado ot 105 dos correspondencias n ¥ n’, ya que los
entornos de los vértices 2 y 6 coinciden. Escogiendo una de ellas y comprobandola de isomor-
fismo, deducimos que los grafos considerados son isomorfos (fig. 3.36, ¢).

§ 3.7. Coloracién de los vértices y de las aristas del grafo.
Caracterizacion de la propiedad de arista

Se denomina coloracidn de los vértices de un grafo G = (V, U) en k colores
una particion del portador V del grafo G, realizando la cual todo subcon-
k

junto ¥; fL,l Vi=V VinV,=@, b, ib=1,2, ..., k) no contiene nin-
=1



156 Capitulo 3. Teorfa de los grafos y mografos

gun par de vértices adyacentes. A todo subconjunto se le pone en corres-
pondencia un color con que se pintan todos los elementos de este subcon-
junto. Los vértices pintados de un mismo color se denominardn
concoloreados.

Se llama niimero cromdtico h(G) del grafo G un nimero minimal »,
para el cual el grafo tiene n-coloracidn. Un grafo con el nimero cromdtico
n se denomina n-cromdtico; pero, si A(G)<#n, el grafo G se denomina
n-colorable.

Es obvio, que un grafo puede ser l-cromatico si, y sélo si, éste es un
grafo vacio.

Para los grafos 2-cromaticos es vilido el siguiente teorema.

Teorema 3.30 (teorema de Konig). Un grafo es 2-cromdtico si, y sdlo
si, no contiene ciclos de longitud impar.

Sefialemos que un teorema andlogo expresa también la condicidn de
dos partes. Por esta razon todos los grafos 2-cromiticos (bicolor) son de
dos partes. Cualquier drbol, siendo un grafo de dos partes, es bicolor. Apre-
ciamos el nimero cromdtico de un grafo por medio de sus pardmetros.

Teorema 3.31. Si la potencia maximal de los vértices de un grafo G
es igual a (), el mimero cromdtico de este grafo no supera la magnitud
(G + 1t

MG)<s(G) + L (3.18)

Para la mayoria de los grafos se puede mejorar esta estimacion.

Teorema 3.32 (teorema de Brooks). Un grafo G de la potencia s(G) es
s-colorable, excepto dos casos:

1) para s(G)>2, el grafo G contiene un componente que es el grafo
completo de densidad igual a s(G) + 1;

2) para 5(G) = 2, el grafo G contiene un componente que es ciclo de
longitud impar.

Sin embargo, las estimaciones obtenidas empleando estos teoremas dan
una buena aproximacién solamente si las potencias de todos los vértices
del grafo tienen valores préximos. En caso contrario la estimacion puede
tomar valor considerablemente exagerado. Por ejemplo, debido al teorema
de Brooks, el grafo estelar K,. es n-colorable, mientras que, en efecto, es
de dos partes y por eso basta emplear dos colores para su coloracion.

Teorema 3.33 (teorema de Berge, Ore, Harary). Para cualguier grafo
G=(K U

Jﬁ—':Lsh(G)s V] = B0+ 1, (.19)

donde o es el mimero vértice de independencia del grafo.
Teorema 3.34 (teorema de Gaddum, Nordhaus). La suma y el producto
de los miimeros cromdticos de un grafo G = (V, U), y su complemento
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G = (V, U) satisfacen las desigualdades
I2VTVT ISh(@G) + k@G | V] + 1,
_ 2
V| <m@h@< |20, (3.20)

donde ][ es la parte entera.
Teorema 3.35. El mimero cromdtico h(G) de un grafo G es:

R(G) < M(G.)-W(Gy), donde G = GGy (3.21)
h(G) = h(G,) + H(Gs), donde G = G, + Gp; GNGp = @ (3.22)
RHG)<min{h(Ga), h(Gp)), donde G = G, X G (3.23)

Andlogamente a la coloracién de los vértices de un grafo se define la
coloracién de sus aristas.
Se denomina coloracion de las aristas de un grafo G = (¥, U} una par-

ticién de la signatura U del grafo: U = | JU U.NU, = &, a = 8, reali-
i

zando la cual todo subcenjunto U; no contiene ningun par de aristas adya-
centes. A cada subconjunto se le pone en correspondencia un color; con
esto las aristas pertenccientes a un mismo subconjunto se denominan
concoloreados.

Un grafo & se denomina k-colorable por aristas, si se puede pintar sus
aristas con k colores de tal modo que ningunas aristas adyacentes estén
pintadas de un mismo color.

Llamase clase cromiditica ((ndice cromdtico) de un grafo un nimero k
tal que el grafo es k-colorable por aristas, pero no se puede pintar sus aristas
en k ~ 1 colores. La clase cromdtica del grafo & se designa mediante H{G).

Por ejemplo, la clase cromdtica para los grafos de dos partes
H(K\4) =4, H(Kz3) = 3.

La clase cromdtica A(G) de un grafo G coincide con el nimero crométi-
co del grafo G' = (X', I'') definido del modo siguiente: sus vértices X’
corresponden biunivocamente a las aristas del grafo G y x7eI'xy, si las aris-
tas correspondientes del grafo & son adyacentes. Por consiguiente, el
problema de determinar la clase cromética se reduce al problema de deter-
minar el nimero cromatico.

Al respecto de reducir la coloracién de aristas de un grafo a la colora-
cion de sus vértices examinemos una propiedad importante de los grafos,
es decir la propiedad arista.

Un grafo G = (¥, U) posee la propiedad arista si, y sélo si, existe una
correspondencia biunivoca, realizando la cual todo vértice €V del grafo
G corresponde a una arista &€ del grafo G = (¥, U) y, ademds, la matriz
de adyacencia de los vértices del grafo G es semejante a la matriz de adya-
cencia de las aristas del grafo G. Dos matrices son semejantes, si coinciden



158 Capitulo 3. Teoria de los grafos y mografos

a e
d
8
Fig. 3.37

con exactitud de hasta la permutacién de filas (columnas). En el caso gene-

ral, el grafo G puede ser multigrafo, es decir, un grafo de aristas paralelas.

Teorema 3.36. Un grafo G posee la propiedad arista si, y solo si, se

puede descomponerio con respecto a la operacién aditiva «unién» G =\ JF;
i

en subgrafos completos | F;}, en los cuales cada vértice no se incluye mds
de dos veces.

Ejemplo 3.13 (fig. 3.37). Consideremos la propiedad arista del grafo

G=<(V, Uy V=|abcd e,

U= ({a bl, la cl, {a d}, la el, |b cl, (& d],

le, dl, lg el, |4 ell.

Se puede descomponer ¢] grafo G en dos subgrafos completos G = FUFs (fig. 3.37, a):

Fo = (Va, Udd, Va= I8 b ¢ dj,

Us = (la B), la cl, [a d}, {b ¢, {b 4], (o d]],

Fg = (Vo Ugdy Va=1g, ¢, 4 &),

Uz = tla c), la, d), {a el, [c di, {c e], {d, e]].

VuVs = fa, ¢ di.

Las condiciones del teorema 3.36 estan cumplidas, el grafo G posee la propiedad arista,
su correspondiente grafo G derivado por aristas se representa en la fig. 3.37, b

Si ponemos las restricciones sobre la descomposicion del grafo inicial
G (a saber: descomponiendo el grafo G en subgrafos completos no admitir
la repeticién de aristas en subgrafos completos), el grafo derivado por aris-
tas G no contendrd aristas paralelas.

Teorema 3.37. El grafo G posee la propiedad arista y su correspondiente
grafo G derivado por aristas es grafo comuin si, y sélo si, existe una parti-
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Fig. 3.38 Fig. 3.39

cion de la signatura del grafo G en subgrafos completos, en los cuales todo
vértice no se incluye mds de dos veces.

Ejemplo 3.14. Determinemos, si ¢l grafo G = (¥, U (fig. 3.38) tiene un grafo derivada
por aristas. Se puede descomponer el grafo G en cuatro subgrafos completos:

-
G = U~

Fo={ W, U), Vi=la b el,

U = (ta b, la e}, [b el);
F={V:, U), Va= |a ¢ d],
U = (Ha, <), la d}, e dil;

Fy=(Vs, Us), Va= (b o ki,
Us = {1b ¢}, L& k), o k),
Fy= (Va, Ud, Va= [d, & k],
Us = {d e}, id, k], (e k}).
Cada vértice v, v€V, se incorpora en subgrafos completos F, { = 1, ..., 4, dos veces

(fig. 3.38, a). Las condiciones del teorema 3.37 estdn cumplidas, el grafo G derivado por
aristas se representa en la fig. 3.38, b

Al realizar la construccién de un grafo G = (V, U) derivado por
aristas, a cada vértice y;€ )V de la potencia s(v;) > 1 se le pone en correspon-
dencia un grafo completo F; C G escogido en el grafo G. Las aristas inciden-
tes al vértice €V corresponden biunivocamente a los vértices del grafo
G que forman este subgrafo completo F;. El vértice v,€ ¥V de la potencia



160 Capitulo 3. Teor{a de los grafos y mografos

s{v;) = 1 es coincidente a la arista gj;, a la cual le corresponde el vértice
v€ V incorporado una vez en los subgrafos completos escogidos.

Empleando las propiedades de la coloracién por aristas del hipercubo,
propongamos un algoritmo 6ptimo para encajar un grafo G en un hipercu-
bo. Es obvio, que la clase cromética H(H,) de un cubo n-dimensional H,
es igual a su dimensién n, H(H,) = n. Al mismo tiempo, las aristas conco-
loreadas del hipercubo forman su corte. Por ejemplo, para n = 3 cada con-
junto de aristas concoloreadas a = {{0, 4}, (1, 51, (2, 6}, {3, 7]}
b = [[0! 2]» {l: 3!! {4! 6]: lsl 7! }: = {’0’ 1;’ [2! 3}I !4’ 5’! [6I
71} forma el corte {fig. 3.39).

Teorema 3.38 (teorema de M.LSmirnov). Un grafo G es encajable en
un hipercubo si, y sélo si, todo conjunio de aristas concoloreadas forma
Su corte,

A base de este teorema, obtengamos el algoritmo para encajar el grafo
G en un hipercubo compuesto de las siguientes transformaciones:

1. Construyendo el arbol correspondiente, escogemos subconjuntos in-
dependientes por aristas (subconjuntos vacfos por aristas). A las aristas de
cada uno de estos subgrafos se les puede poner en correspondencia el mis-
mo color.

2. De la lista obtenida en el punto 1 escogemos subconjuntos, cada uno
de los cuales forma corte del grafo G.

3. Empleando subconjuntos escogidos en el punto 2 coloramos las aris-
tas del grafo prefijado.

4. Verificamos, si todo conjunto de aristas concoloreadas forma corte
del grafo. Si «no», mediante la reduccién minimal de la signatura o la exten-
¢i6n minimal del portador hacemos el grafo G equivalente al grafo prefija-
do G (& debe satisfacer las condiciones del teorema 3.38). Si «si», pasamos
al punto 5.

5. Realicemos el encaje de hecho del grafo obtenido en el punto 4 ¢n
el espacio booleano. Con ello, la coloracién de la arista corresponde biuni-
vocamente al orden del vector binario que identifica el vértice de un hiper-
cubo. Al transpasar la arista [ v, v} pintada del i-ésimo color, los cddigos
binarios de los vértices v; y v se diferencian en el i-ésimo orden.

6. El fin.

Ejemplo 3.15. Encajamos el grafo G (fig. 3.40, ) en un espacio booleano H empleanda
¢l algoritmo considerado.

1. El 4rbol que determina la distribucidén de subgrafos vacios de arista contiene 20 vértices
pendientes, cada uno de los coales corresponde a un subgrafo vacio de arista (fig. 3.40, 5).

2. Cuatro subgrafos vacios de arista forman cortes del grafo dado: E; = {2, 5, B),
E; = 1,6 8}, Ea=[4,79], Ec= (3, 7, 10}.

3, Coloramos las aristas del grafo dado G empleando el cubrimiento de columnas por
filas de una tabla binaria, en la cual a una fila le corresponde biunivocamente un subgrafo
vacio de arista obtenido en e] punto 2, a una columna le corresponde una arista; en la intersec-
cién de la i-ésima fila con la j-ésima columna se halla 1, si el j-ésimo subgrafo vacio de arista
contiene la j-ésima arista y O en el caso contrario (tabla 3.4).
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Fig. 3.40
Tabla 3.4
E @i

1 2 3 4 3 6 7 8 9 10
12, 5, 8] 1 1 1
{1, 6, 8) 1 1 i
{4, 7, 9 1 1 1
13, 7, 10) 1 1 1

Tenemos cuatro coloraciones Ri(G} del grafo G:

Ry(G) = |2, 5, 8}, |1, 6), (4, 7, 9], |3, 101},

R:AG) = [[2, 5, 8), [L 6], (4, 9), (3, 7. 10)}.

R3(G) = ((2, 5], (1, 6, B], (4,7, 9], (3, 10}},

R(G) =-[12, 5], {1, 6, B}, {4, 9], {3, 7, 10}).

4, Camprobameos, si cada conjunto de.aé‘:as concoloreadas forma corte del grafo. En

cada coloracién existen vértices concoloreados que no son corte del grafo dado: |1, 6], (3,
10}, |4, 91, (2, 5). Para cumplir las condiciones del teorema 3.38 es necesario eliminar del

11—6577
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{7} ) {39) {9519 (519 {49 Fig. 3.41

grato cualquier elemento del conjunto 173, (8], [3, 4], (9, 10), {3, 10}, (4, 9}) eligiendo
la correspondiente coloracidén de aristas del grafo G (fig. 3.41). Si la interpretacién de objeto
del problema requiere que se haga realidad esta equivalencia no por medio de reducir la signa-
tura, sino por extender el portador, entonces tas correspondientes aristas se sustituyen por
una cadena; ademds, es indispensable que no se interrumpa el principio par. El problema
de determinar la reduccién minimal de la signatura o la extensidn minimal del portador del
grafo G se reduce al cubrimiento de la correspondiente tabla binaria. En el ejemplo dado
escogemos la arista 7y, cambidndola por una cadena de longitud 3, obtenemos el grafo home-
omorfo & equivalente al grafo dado G y ) que posee la propiedad encajable en el espacio
booleano. Empleando la primera coloracién R((G) coloramos las aristas (2, 5, 84, {1, 6,
1], (4, 7, 91, §3, 10, 12| del grafo G (fig. 3.42, a).

5. Ponemos los conjunios de aristas concoloreadas en correspondencia a los drdenes del
vector binario: x; = 2,5, 8}, 0 = {1, 6, 11),x3 = [4,7,9}, x = (3, 10, 12). Condificando
las vértices del grafo G, realicemos el encaje factico del grafo G en el espacio booleano (fig.
3.42, b).

Teorema 3.39. Si G es un grafo de dos partes y su potencia es igual

a s(G),
H(G) = s(G). (3.24)

Fig. 3.42
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Teorema 3.40. La clase cromdtica de cualquier grafo completo sobre
n vértices H(K;,) = n, si n es impar (n # 1) y H(K,) = n ~ 1, si n es par.

Demos el algoritmo exacto de la coloracién minimal de los vértices (fas
aristas) del grafo G, es decir, el algoritmo para determinar ¢l nimero cro-
mdtico h(G) (la clase cromdtica H(G)):

1. Escogemos el conjunto de subgrafos vacios (vacios de arista) del grafo
G.

2. Construimos una tabla bidimensional, a cada fila de la cual le pone-
mos en correspondencia biunivoca un subgrafo vacio: a cada columna, un
vértice (una arista): en la célula (i, /) escribimos la unidad, si el j-ésimo
vértice (j-ésima arista) se contiene en el i-ésimo subgrafo vacio, en caso
contrario, la célula queda vacia.

3. Determinamos el cubrimiento de columnas por filas. Todo cubrimien-
to genera la coloracién. El cubrimiento de potencia minimal determina el
nimero cromatico (la clase cromdtica) del grafo G.

En el caso de un grafo grande G = (¥, U}, cuyo portador es de poten-
cial igual a varios centenares o millares, examinemos el algoritmo siguiente
que emplea propiedades de frecuencia del grafo:

1. Realizando | U| comparaciones determinamos un par de vértices
adyacentes v, y vg del grafo G = (¥, U}, para el cual la funcional

| Tw, N o

o(fva, vaf) = To.| + | Tws

(3.25)
toma el valor maximal. La igualdad de esta funcional a cero significa que
la arista {v., vg] no se incluye en el tridngulo. Cuanto mayor es ¢l valor
(3.25), tanto mas denso es un subgrafo que puede comprender esta arista.

2. El par de vértices hallados se pinta y los ponemos en correspondencia
biunivoca a las columnas de una tabla bidimensional, a las filas de [a cual
comparemos biunivocamente los vértices adyacentes, por lo menos, a un
vértice colorado; en la célula (f, /) ponemos 1, si el i-ésimo y ¢l j-ésimo
vértices son adyacentes y 0, en caso contrario.

3. Escogemos la fila con el mimero maximal de unidades.

4. Si para la i-ésima fila escogida en el p. 3 existe una j-ésima columna
en la interseccién con la cual se halla 0, coloreamos el i-ésimo vértice en
el j-ésimo color y encolamos los vértices pintados con el mismo j-ésimo
color. En caso contrario coloramos el i-ésimo vértice en un color nuevo
aumentado en una unidad el nimero de columnas en la tabla.

5. Si queda por lo menos un vértice no coloreado pasamos al punto
3, en caso contrario, al punto 6.

6. El fin.

El niimero de colores para pintar los vértices del grafo G = (¥, U) es
igual al nimero de columnas en [a tabla final.

e
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Fig. 3.43

Ejemplo 3.16. Coloramos los vértices del grafo G = (¥, U) (fig. 3.43, a) empleando
el algoritmo examinado.

I. Debido a (3.25), el vator maximal de la funcional ¢{( s, vg}) es igual a 0,25 cuando
consideramos los vértices 1 y 4,

méx | Eey vg}) = 0,25 cnando v, = 1 y 15 = 4.
o, &

2. Obtenemos la 1abla (tabla 3.5).

3. Escogemos ta primera Ffila.

4. Pintamos el vértice 2 de un color nuevo ot
(tabla 3.6).

5. Existen los vértices no colorados; por lo tanto, pasamos al punto 3.

3. Escogemos la primera fila, :

4. El vértice 3 correspondiente a la primera fila es del mismo color que el wvértice 1,
pintamos el vértice 3 y lo adherimos al vértice 1. Obtenemos la tabla 3.7,

do como resultado una tabla nueva

Tabla 3.5 Tabla 3.6 Tabia 3.7
el e wel'y i wel'y bl
1 L 1 4 2 [1,3]] 4 1
2 | 1 k) 0 1 1 5 1 1 0
3 0 1 5 1 i 0 6 0 110
5 1 1 6 0 | 0 7 1 oo
6 0 1 8 el 0 1 8 0|0 1

Realizando sucesivamente este algoritmo obtenemos las tablas 3.8 {a, b, ¢).

Tabla 3.8a Tabla 3.8,b Tabla 3.8c
el i vely o wel'y W
1] 4 {125 1L 3, 61412 5 (4, 3, 61]14, 7}](2, 5)
6 0|1 1 7 1 0 8 0 1 1
7 1|0 |0 8 0 0
8 010 |1




§ 3.8 C izacibn. de la coloracién 165

En definitiva se obtiene la coloracién del grafo dado G = (¥, U/) en tres colores (fig.
343, b)ia= (1,3,6, 8}, b= (4 7). ¢ = (2, 5]. La densidad del grafo G es igual a tres.
Por consiguiente, la coloracidon obtenida es minimal.

§ 3.8. Caracterizacién de la coloraciéon de los grafos

El problema de caracterizacion (el mds importante en la matemadtica discre-
ta) se considera como resuelto, si estdn halladas las construcciones que de-
terminan el sentido de la transformacidén que se realiza.

Examinemos la estructura de subgrafos que determinan el nimero cro-
mético del grafo.

Se denomina grafo casi compieto Q(g) un grafo Q, para cuya coloracién
minimal se necesitan g colores, mientras que para la coloracién de todo
grafo parcial propio Q’, Q' C CQ, basta tener g’ colores, g’ <gq. En este
caso, el nimero de colores g se llama casi densidad del grafo casi completo
23

La casi densidad g(G) de un grafo G se determina por la expresion

¢(G) = mix gi(Q), A CG. (3.26)
i

El orden k(Q) del grafo casi completo Q(g) es

k(Q) = ¢(Q) — p(Q). (3.27)

El orden £(G) del grafo G es

k(G) = q(G) — p(G). (3.28)

Acordémonos designar el grafo casi completo Q de la densidad p y del
orden & por medic de Q(p, k) y el grafo de las mismas caracteristicas, me-
diante G{p, k).

Los grafos casi completos Q(2, 0), O(2, 1), Q(2, 2) vy O(2, 3) estdn repre-
sentados en la fig. 3.44 (g, b, ¢ d).

Teorema 3.41 (propiedad principal de los grafos casi completos). Para
cualquier vértice v; de un grafo casi completo Q existe tal coloracidn de
sus vértices que no deja que exista el vértice v, (a # i) que sea del mismo
color que v;.

CJRealizamos la demostracién partiéndonos de 1o contrario. Sea que tal
coloraciéon no existe, es decir, realizando toda coloracién de los vértices
del grafo Q existe un vértice v, (o 3 /) del mismo color que v;. Pero enton-
ces, al eliminar las aristas incidentes al vértice v;, obtenemos que el mimero
de colores no varia, lo que contradice a la definiciébn de grafo casi
completo. M

Corolario. Al eliminar cualquier arista de un grafo casi completo, su
casi densidad disminuye en 1.
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Oo—=0
@0 /2.0)
a2} §(2,3)
&.91) Fig. 3.44

El tecrema 3.41 es base de la demostracidn de la estructura de un grafo
casi completo O(g) con la casi densidad g; el grafo casi compleio Q(g)
comprende la base es decir un grafo casi completo Qg — 1) y las capas
sustituyente y cerradora. En virtud de la propiedad principal de los grafos
casi completos, los vértices de la capa sustituyente corresponden biunivoca-
mente a los vértices de la base con tal que los vértices correspondientes
son adyacentes a los mismos vértices pertenecientes a la base Q(g — 1).
Los vértices de la capa sustituyente y los de la base parecen ser «sosias».
La capa cerradora representa los vértices que conifican los vértices de la
capa sustituyente. En el limite, la capa cerradora es un vértice que conifica
toda la capa sustituyente.

Examinemos la formacion del grafo casi completo Q(2, k) que posee
propiedades extremales, es decir, las potencias de su portador y su signatura
son minimales en comparacién con otros grafos casi completos de densidad
2 v orden k. En virtud del teorema 3.41, cuanto menos sea la potencia
del portador o de la signatura de la base, (2, ¥ — 1) tanto menores serdn
las respectivas potencias del grafo casi completo Q(2, k). La base del grafo
Q(2, 1) la representa el grafo Q(2, 0) (fig. 3.44, a) que es la arista {a, b};
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la capa sustituyente la representan dos vértices a’ y b’ que son respectiva-
mente adyacentes a b y 4. La capa cerradora es un vértice que conifica
los vértices @’ y b’. Como resultado obtenemos un ciclo de longitud 5
(fig. 3.44, b).

De manera andloga continuamos el proceso de construccién de los gra-
fos, tomamos Q(2, 1) como la base (fig. 3.44, b) y asi obtenemos el grafo
Q(2, 2) (fig. 3.44, ¢); tomando el grafo Q(2, 2) como base obtenemos el
grafo casi completo Q(2, 3) (fig. 3.44, d). Continuando este proceso se
puede construir el grafo casi completo Q(2, k) con potencias minimales
del portador y de la signatura: para cualquier k.

Determinemos la dependencia de la potencia minimal del portador del
grafo Q(2, k) respecto de su orden k. Tenemos

k| VolQ@, k0 |,

0 2,

1 22+,

2 222+ 1)+ 1,

3 22224+ 1)+ 1D+ ),

k22222 + D+ 1)+ D+ L
N’

(k — 1) lave
Por lo tanto,
| Vil @2, &) | = 22222+ D+ L)+ 1) + 1 =25+1 4 k-1 4

k+1 2k+l.2 i 20
2522k 420420 22'—2"=ﬁ—2&=
i=0 =
=425 - 2 - | =3.2F - |,
Asi, en definitiva tenemos
| Vol @2, )| = 3:2F — 1. (3.29)

Hallemos la dependencia de la potencia minimal de la signatura del
grafo Q(2, k) respecto de su orden. Conforme a la estructura de los grafos
casi completos y su propiedad principal, ia suma de las potencias de la
signatura de la base Q(2, k¥ — 1) y de la signatura de la capa sustituyente
es igual a la potencia triplicada de la signatura de la base Q(2, k — 1),
cuando se construye el grafo Q(2, k) con la potencia minimal de la signatu-
ra. En virtud de (3.29), la potencia de la signatura de la capa cerradora
es igual a la potencia del portador de la base 3-2~V — |,

De aqui la potencia minimal de la signatura | Una(Q(2, k)) | del gra-
fo Q(2, k) es igual a



168 4 Capitulo 3. Teoria de los grafos y mografos

1 cuando k¥ =0,

3.1 +3:2° — 1 cuando k = 1,

3-(3-1 + 3-2° -~ 1) + 3.2' — 1 cuando & = 2,

3331+ 32— 1)+ 32" — 1) + 32 — 1 cuando k = 3.

333,331 + 32—+ 32" - 1) + 322 —
\‘\---'-"‘\ﬂ‘-m-)I

k — 1) llave
— 1)+ . #3272 _ 1) 4 3.2¢"1 — | cuando k = k.
Simplificando sucesivamente la expresion para | Uno(Q(2, k)|,
obtenemos
| Unin(Q(2, k)| = 3% + 35.20 — 3%—1 4 gk—1p1 _ 3k-2 4

k
+ 367202 gk gy 3Lk 3% o gk S alok-d L
i=1

k=1

- X3 =3*4+3.03F-2) - 0503 -1,
=0

2| Unek Q2. k)| = 7-3% — 2% + 1. (3.30)

Sumando el grafo casi completo Q(2, k) y un grafo completo de densi-
dad p — 2, obtenemos el grafo casi completo Q(p, k) que posee las pro-
piedades extremales a examinar:

QR, )+ Qw~20-=Q@p k. (3.31)

Al generalizar (3.31) tenemos el teorema siguiente.
Teorema 3.42. La suma de los grafos casi completos es el grafo casi
completo:

20pi ki) = Q(‘Ep:, ;"‘)' ‘ (3.32)

En virtud de (3.31), la potencia minimal del portador del grafo casi
completo Q(p, k) es igual a

| VolQ@, k)| = 3-2* - 1) + p. (3.33)
La potencia minimal de la signatura del grafo Q(p, k) se representa como
suma de la potencia minimal de la signatura del grafo Q(2, k) y la potencia
minimal de la signatura de un grafo completo de densidad (p - 2), cada
vértice del cual conifica el grafo Q(2, k). Debido a (3.29) y (3.30), se tiene

| UnolQ@, K)) | = 0,5-(7-3* — 6:2 + 1) +

+0,5(p — 2)(p — 3) + (p — 2)-(3-2¥ - 1).

En definitiva, obtenemos

2| Unal@@ K| =73+ 62 =N+ (p-37-p+2. (334
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Fig. 3.45

En virtud de (3.33), todo grafo casi completo de primer orden vy de den-
sidad p contiene no menos de p + 3 vértices. El grafo Q(p, 1) que tiene
exactamente p + 3 vértices es la suma de un ciclo de longitud 5 y de un
grafo completo de densidad p — 2:

Las correlaciones (3.33) y (3.34) son vilidas para todos grafos casi
completos de densidad 2 ¢ 3 y para grafos casi completos indescomponibles
segin la operacién aditiva «suma». Anteriormente fue considerada la
estructura de estos grafos. Estas férmulas no son vélidas para los grafos
casi completos descomponibles que, debido al teorema 3.42, tienen la densi-
dad no menos de 4 y por lo menos dos sumandos ;> 0. Por ejemplo, el
grafo casi completo Q(4, 2) que es la suma de dos grafos Q.(2, 1) y Gs(2,
1) (fig. 3.45) Q(4, 2) = Q.(2, 1} + Qu(2, 1), tiene la potencia del portador
igual a 10 y la potencia de la signatura igual a 35, mientras que las potencias
minimales del portador y de la signatura del grafo casi completo indescom-
ponible O(4, 2) son iguales a 13 y 43, respectivamente [de acuerde con
(3.33) vy (3.34)].

Teorema 3.43. El mimero cromdtico h(G) del grafo G es igual a su casi
densidad q(G).

h(G) = g(G). (3.35)
CODebido a la definicién del grafo casi completo,
HG)=2q(G).

Demostremos que en esta correlacion siempre tiene lugar la igualdad. Esco-
gemos todos los grafos casi completos no incluibles, es decir, los grafos
para cada (, de los cuales no existe un grafo casi completo Q. tal que
Q;C CQ,. En virtud de (3.26), entre los subgrafos escogidos existe por lo
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menos uno gue necesita g colores para pintarlo. Mostremos que para la
coloracién minimal de la parte restante de G\ Q son sifucientes los mismos
¢ colores. En efecto, si para la coloracién minimal del subgrafo G ™ Q nece-
sitamos al menos un color nuevo, (g + 1)-ésimo, eso significa que en el
subgrafo G\ Q existen las capas sustituyente y cerradora, lo que lleva a
formar un grafo casi completo de casi densidad ¢ + 1. Lo dltimo contradice
a la correlacion (3.26). M

Empleando las formulas (3.33)—(3.35) para los grafos G; de densidad
p(Gi)<4 y para los grafos que no contienen subgrafos casi completos des-
componibles segiin la cépula «sumay, se puede proponer estimaciones lo-
garitmicas del nimero cromitico. Tenemos:

h(G) = q(G) = rniix P(Q) + kN <

<max P(Q) + max k(Q), (3.36a)
h(G;ép(GJ + mf\; k(Q), QCG, G= (K U). (3.36b)
Segtin (3.33)

méx k(Q)< [1(:.,32 _lﬁ_;ﬂ + 1].

De aqui

h(G)<p(G) + [mgz Jl'—-;—p—(ﬂ + 1]‘ (337

En la expresion (3.34) (p - 3 — p + 2>0y para p>4, p= 4y cual-
quier k 6-2¥ — 1>0, por eso

mix k()< [1ogs ZLEL ], pir>4

por consiguiente,

2| U|
h(G)<p(G) + | logs —=| p(G)=4. (3.38a)
Cuando p(G) = 3 tenemos

WG)<3 + [mg, il%ILI_] (3.38b)

Cuando p(G) = 2 la expresién (3.34) obtiene la forma
2| Uninl@Q2, k)| =7-3* — 625 + 1573 = 63% + 1 = 3% 4 |,
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por eso
max k(Q)<[logs(2| U| - D).

De aqui cuando p(G) = 2 obtenemos

h(G)<2 + [logs2 | U] - 1) (3.38¢)

De acuerdo con la estructura del grafo casi completo Q(p, k) la potencia
s(v;) de cada vértice v; de este grafo satisface la desigualdad

sw)zq(@) - 1=p+ k- L (3.39)

Entonces, segiin la férmula (3.33) la potencia de la signatura | U(Q(p,
kYy| del grafo casi completo indescomponible satisface la igualdad

U@ k)] 20,53 - D)+ p)(p + k = 1) (3.40)

Para los grafos completos se puede lograr esta estimacién cuando k& = 0.
En virtud de (3.33), (3.36a) y (3.40),

2- | U(GY |
h(G)s{ G| +1, 6CG, (3.41)

donde el subgrafo G verifica todas las desigualdades del sistema
| VG| >3- - 1) + p(G),
2| U@G) | 273 + 62:((G) — 3 + (V(G) - 3 - p(G) + 2,
s(w)=2p(G) + k — 1, v€G, (3.42)
es decir, conforme a sus recursos, tanto de vértices como de aristas, y segin

la topologia local (potencias de los vértices), el subgrafo G puede incluir
un grafo casi completo Q(p, &), donde

o [logz (M % 1) ] (3.43)

Aqui, [ ] es la parte entera del nimero. Es obvio, que

21U ] ] _ 1 & )
[ [ V()| ] N [ [VAGY] ,,,g%;f”d] = [smea(O)].

De aqui tenemos la estimacién superior del nimero cromatico h(G) del
grafo G:

h(G) < [5mea(G) + 1], (3.44)
donde el 'grafo G C G satisface el sistema de desigualdad (3.42). La estima-
cion (3.44) es mas eficaz que las dadas anteriormente #(G) <Snu(G) + 1

y para una clase determinada de grafos, la estimacion de Brooks
(G) < Smaxl G).
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Al componer las estimaciones (3.37), (3.38) y (3.44), obtenemos estima-
ciones del nimero cromdtico A(G) del grafo G = (¥, U):
cuando p(G)=4

h(G) <min(p(G) + [mgz( "G -2@ . y)],
pG) + [1083 Z—L—b:fﬂ'—] ) (3.45a)

[-fmed.(G)I + ]):
cuando p(G) = 3

#(G)<min (p(G) + [logz Y(G) ’3 - PG , 1)]
p(G) + [log: E-L@l‘“—’] (3.45b)

lsm:d(d) + 1)
cuando p(G) =2

RG)<min (2 + [Iagz (_U_’LQ;J—_2 + |) ] y

2 + [loga(2- | U(G) | — 1), [SmeaG) + 1) (3.45¢c)

Para calcular la estimacién del ntumero cromdtico #(G) del grafo G,
basandose en la férmula (3.44), hallamos la densidad p(G) del grafo G
y disminuyendo p de p(G) a 2 con el paso 1, segin la formula (3.43) halla-
mos k para cada uno de estos valores. Debido a (3.36a), la suma maximal
de p y del valor correspondiente de k, para los cuales se cumplen las desi-
gualdades del sistema (3.42), determina Ia estimacién superior del mimero
cromatico #(G). Si el grafo estimado es casi completo o la estimacidn supe-
rior obtenida coincide con la inferior, ésta es igual al niimero cromdtico.

La estimacién inferior del niimero cromético

mG)2p(G) (3.46)

se minora por la estimacion de Geller, como lo fue mostrado por Mayers
y Lean,

HG | V(G| * ] -
(}2[1V(G)I2—2|U(G)| ¥ (3.47)
0
| V(G) ]
e : 3.48
& );[ | (G)| — SmealG) (3.48)

Las estimaciones del numero cromdtico (3.37), (3.38), (3.44) y (3.45)
minoran las estimaciones superiores conocidas del A(G).
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Ejemplo 3.17. Examinemos el grafo G = ¢¥ U} (fig. 3.46, a).

Segiin Jas estimaciones de Brooks y Geller, su nimero cromdtico A(G) se encierra en
el segmento [1, 7):

| vigy | _ 10% .
| viG)|? - 2| KGY | 1w -220 |

SmaclGY = 75 1SA(G)<T,

Estimemos el niimero cromdtico #(G) empleando las estimaciones superiores obtenidas,
La densidad del grafo G es igual a 4: p(G) = 4, Conforme a (3.43),

KG) = I:]ogz (m—;"- + 1)] =4,

Si es posible incluir Q(4, 1) en e} prefijado dado @, la potencia de todo vértice no tiene
que ser menor que 4. Los vértices ¢, d, f tienen potencia menor que 4 y, por consiguiente,
no se incluyen en el grafo ©(4, 1. Eliminando estos vértices en el grafo obtenido (fig. 3.46,b),
k conserva su valor:

7 -4
k= [1032(— 3

)] - :

Fig. 3.46 o )
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pero con esto los vértices b, p, e no pueden incluirse en este grafo, ya que su potencia (fig.
3.46,b) es menar que 4. Eliminamos los vértices b, p, e det grafo G* (fig. 3.46,8) y obtenemos
el grafo representado en la fig.3.46,c que no puede contener el grafo ({4, 1) conforme al
recurso de vértices, ni conforme al de ar:sms, ni conforme a la topologia local, Por consiguien-
te Kmix = 0 cuando p = 4.

Disminuimos la densidad en una unidad y definimos el valor méximo de k:

kG) = [log;(m;s + 1)] =l

Por lo tanto, ¢l grafo prefijado no puede contener ¢l grafo casi completo @(3, 2). Disminuimos
otra vez la densidad en una unidad y definimos el valor maximo de &, cuando p = 2. Tenemas

o2 9] -

De este modo el grafo dado incluso no contiene el grafo casi completo @Q(2, 2). De aqui
la estimacion superior del nimero cromatico h(G) del grafo & es igual a 4. Esta coincide
con la estimacién inferior p(G) < MG); por consiguiente, el niimero cromético de) grafo prefi-
jado es también igual a 4: k. | d p gl ka=to c e, ka=|m fl, ka = Lk} (g
3.46, d).

Asf pues, ¢l empleo de caracterizacidn de la coloracién de vértices del grafo permite, en
el caso dado, determinar su mimero cromdtico sin buscar el cubrimiento minimal de los
subgrafos vacios por los vértices del grafo,

Segiin el teorema 3.42, para un grafo G que contiene un grafo casi
completo descomponible, con dos sumandos por lo menos, cuyo >0, el
numero cromdtico A(G) es igual a la suma de los nimeros cromaticos de
los grafos casi completos que son sumandos del grafo Q(g)C G de casi
densidad maxima. Por esta razén

h(G) = m:ix al(Q) = mfixJE_QU(Qu)-

QuCQi, Qi = ?Qﬁ-

Gy = mf-x;(ﬂv(QU) + ka(Qu})Sm?xJZ_pu(Q&) + miixz?.kff(QuL

HGY<p(G) + max 2 ki(Qy), (3.49)
donde mftx}E_kg(Qu)‘ s¢ determina basdndose en (3.33), (3.34) y (3.39).

Ejemplo 3.18, Determinemos el nimero cromdtico A(G) del grafo G = (¥, L) con los
siguientes pardmetros: | V| = 90, | U] = 1000, p(G) = G, la distribucién de potencias de
los vértices es tal: 20 vértices son de potencia §; 61 vértices son de potencia 21, los demis
9 wvértices tienen la potencia igual a 86.

Analicemos los casos de la descomposicién de 6 en sumandos: 1) 6 =6 + 0; 2) 6 =
=24+43)6=2+2+2;4)6=3+3.

Caso 1. Determinemos ¢l orden méximo knq del grafo casi completo indescomponible
016, kwix) de densidad 6. Segin (3.33),

k,,”].os,(”‘ﬁﬂ)[”.
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Establezcamos si ¢l grafo G prefijado puede contener el grafo casi completo (6, 4) segiin

los recursos de aristas y la topologia local (segin las potencias de los vértices).
Tenemos:

| U] >0,57-3* + 62°(6 ~ 3) + (6 ~ 3)F —
— 6+ 2) = 0,5:(567 + 288 + 5) = 430,
| Vmio @6, 4} | = 32" — 1) + 6 = 51,
(Vo0 EQ(6, ANMs(u)26 + 4 — 1 = 9),

De este modo se obtiene la respuesta positiva. Por lo tanto, resulta determinada la estima-
cién superior: A{(G) < 10.

Caso 2. El grafo casi completo Q(g.n4,) de casi densidad maxima puede descomponerse
en dos sumandos:

Qa2(2, ko) + Qul4, ko

ademds, A(G)<6 + mix(k. + k»). Hallemos médx (k. + k). Para eso determinamos
o b

i [.Ds,(wo_-;u+ .)] Gl

| Vel @02, 40| = 3-(2* = 1) + 2 = 47,

El segundo do contiene 43 vértices:
90 — 47 = 43,
Cuando

me Jom 5] | <

| Vainl@(4, 30| = 342° — 1) + 4 = 25,
(Yui(vi€ Qa(2, HNG)2p. + ke — 1 +

+ | VoirlQu(4, ] =2+ 4 -1+ 25 =30),
(Yu{BiEQuld, INNSW)Zps + ko — 1 +

4+ | VanlQQ2, 4) | =443 — 1 + 47 = 53).

En ¢l grafo G no existen vértices de tales potencias. Continuamos los cilculos andlogos

y hallamos méx (k; + ks) = 2 + 2 = 4, es decir, el grafo G puede contener el grafo casi
a b "

completo Q10) descomponible en forma de suma:
Qa(2, 2) + Q{4 2).

En efecto,

| Vel @2, 2)) | =322 =D +2=11,

| Voo @s(4, 20| = 322 = D + 4 =13,

(ve0a(2, 2N(s(u) =22 + 2 - 1 + 13 = 16),

(VHEOu(4, 2N(s(u) 24 + 2 — 1 + 11 = 16),

| Uninl@a(2, 20} | + | Unin @o(4, 2} | + | Venind @a(2, 2) | - | Vel @e(4, 20 | =
05(T# + 6222 -3 +(2 =3P ~2+2) + 05(73 + 6224 - ) +

+ (@ =3 -4+ 2) + 113 = 206

En este caso, la estimacidn cromdtica #(G) no cambia, Ofrecemos al lector que él mismo

examine los demds casos. En definitiva, obtenemos mdx (&, ks) = 4.
ab
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Por lo tanto, debido a (3.46) y (3.49), 6<Ah(G)<10. Empleando las estimaciones de
Geller— Brooks obtendriamos el segmento [}, 86]; 1 <Ah(G) <86,

Segin (3.35), los grafos casi completos de casi densidad « + 1 son figu-
ras prohibidas de la coloracién de los vértices del grafo con « colores.

Citemos las propiedades de los grafos casi completos.

1. Propiedad de inclusion

QW BDQG j)hi=1 ...pJi=0 ...k (3.50)

2°. Propiedad idempotente de la capa sustituvente, Cambiando la capa
sustituyente guedamos en la clase de los grafos casi completos, con tal gue
esta sustitucidn puede realizarse muchas veces (fig. 3.47).

Teorema 3.44. Si en vez cada vértice v; de un grafo casi completo Q(q)
ponemos uno de los elementos del conjunto {Qig)/g(Q) = «), obtene-
mos el grafo casi completo Qfw-g).

Teorema 3.45 (teorema de M.V.Gorbdtova). E/ grafo casi completo Q(p,
kY, k> 1, no posee el cardcter arista.

S1 un grafo posee cardcter arista, su orden no supera 1. Cuando se cons-
truye el grafo derivado en arista G segun el grafo G, las aristas incidentes
a un mismo vértice del grafo G corresponden a los vértices de un subgrafo
completo del grafo G.

Por consiguiente,

a<H(G)<s + 1, 3.5

donde H(G) es la clase cromdtica del grafo G, s es su potencia, 5 = max
s(v), vi€G. i
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Para un multigrafo
SSH(G)Ss + p, (3.52)

donde p es paralelismo del multigrafo, o sea, el nimero méximo de aristas
paralelas.

En la correlacion (3.52), la potencia del grafo G y su paralelismo satisfa-
cen las siguientes correlaciones (fig. 3.48):

{s =0 (mod p),

s % p, (3.53)

donde la notacién s = 0 (mod p) significa que el niimero s es compatible
segiin el médulo p con el mimero 0. Segiin (3.52) y (3.53), obtenemos la
estimacion de Shannon.

H(G)< [% s] . (3.54)

Teorema 3.46. E/ grafo casi completo de casi densidad q contiene un
subgrafo homeomorfo a un subgrafo completo, cuya densidad equivale a q.

Este teorema permite enlazar la coloracion de los grafos con la pro-
piedad de su encaje en las superficies.

Teorema 3.47. Ef grafo G(p, k), k> 1, p>2 es no encajable en el plano.

OEn efecto, el grafo G(p, k) contiene el subgrafo casi completo Q(3,
2) el cual, a su vez, contiene un subgrafo Gg(F(5)) homeomorfo a un
subgrafo completo de densidad 5:

G(p, k)2 Q(3, 2)D Gu(F(5)).

Por consiguiente, segiin el teorema 3.17 el grafo & no es encajable en el
plano.

Teorema 3.48. El grafo G(p, k), p>3, k>0, no es encajable en el plano.

CJEn efecto, ¢l grafo G(p, k) contiene un subgrafo Q(4, 1), cuya base
y el vértice de la capa sustituyente se incluyen en el subgrafo Gg(F(5)) ho-
meomorfo a un subgrafo vacio de densidad 5:

G(p, k)20, 1)DGul(F(5)).

Por consiguiente, segin el teorema 3.17, el grafo G no es encajable en
el plano. Il

A base de los teoremas 3.47 y 3.48, obtenemos la demostracion del
problema de cuatro colores (teorema 3.49),

Teorema 3.49. El niimero cromdtico del grafo planar no supera a cuatro.

[Segin el teorema 3.17, el grafo planar G no contiene el subgrafo
Gy(F(5)) homeomorfo a un subgrafo completo de densidad 5: G
D Gu(F(5)). Por lo tanto, este grafo no contiene los subgrafos Q(3, 2)
y Q(4,1): De aqui en virtud del teorema 3.41, el niimero cromdtico A(G)
no supera a cuatro.

12—86577
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§ 3.9. Problemas y ejercicios

3.1. Demostrar la igualdad
S=(A*)(PA47)
donde 5 es una matriz de adyacencia; 4 * y A~ son matrices de incidenciaé inicial y final,

respectivamente; £ es una matriz diagonal de los pesos de los arcos; © es el signo de
transposicidn.

3.2, Demostrar que

q
5= 2 R,
k=)
donde S es la matriz de adyacencia; R* es la mairiz del paso por los arcos de peso &.
3.3. Demostrar que un subgrafo G es un ciclo si, y sélo si, €l producto matricial l6gico
(regla de multiplicacién de fila por columna se define mediante la multiplicacién ordinaria
¥ la adicidn segiin ¢l médulo dos) de la matriz de incidencia y la matriz ciclomdtica transpuesta
es igual a la matriz cero.
3.4. Demostrar que las cadenas simples de longitud #/<g) de un grafo prefijado por

una matriz de incidencia § se determina mediante la matriz S; = is‘.
k=1l

3.5, Sea dado un trapsmisor que puede transmitir cinco sefiales: a, b, ¢ d, e. Al recibirlas
cada una de estas sefiales puede interpretarse de dos maneras: }a sefial @: como po g, ha
sefial b: como g o r, la sefial c: como r o s, la sefial d: como 5 o ¢, la sefal e: como p
o ¢. (Qué nimero médximo de sefiales se puede recibir sin correr el riesgo de confundirlas
una con otra?

3.6, Demostrar que

alGy X Gp) 2 olGa) o Go),
donde o(Gi) es el nimero de estabilidad interior del grafo Gi = Ga, Gs.

3.7. Determinar el nimero de la estabilidad exterior de un grafo G prefijado por la matriz
de adyacencia

ctrtoo0c 1010
10100010
0101 0011
S‘:OOIOIDOI
1 001 0101
00001 010
11 0001 0
0011101 O

3.8, ;Cudnias reinas baste colocar en el tablero de ajedrez para que todo escaque del
tablero esté amenazado de ataque por lo menos de una de cllas? Creemos que el escaque
ocupado por una pieza estd también bajo amenaza de ser atacado por esta pieza.

3.9. Demostrar que sobre n vértices dados se puede construir n”~ 2 drboles distintos.

3.10. En el grafo ponderado & prefijado por las matrices

010001
F a5 40 1 9
0101 11
SG) =llg 01 01 0"
o1 1101
10101290
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P(G) =

[=R-N-R-N_-R-3 -]
OO0 OO 40
SCoOoCoO OO
000 owWwo OO
COoOCcCO=0o0oQQ
SCoOoCVwoDDOoD
DONOODORODO
=R - -R—-R-N-R-N-K-]
a-A-X-E-N-E-N-K-]

hallar el subgrafo conexo G que tiene la suma minimal de los pesos de sus aristas,

3.11. Un vértice de un grafo se llama punto de articulacidn, si ¢l grafo se hace inconexo
al eliminar este vértice junto con sus aristas incidentes. Se denomina blogque un grafo conexo
no trivial que no tiene puntos de articutacién. ;Puede ser blogue un grafo, cuyo nimero
ciclomatico #(G) = 2?7 Poner un ejemplo del bloque, en el cual la eliminacién de una arista
conduce a la aparicidn del punto de articulacién. ;Existe un blogue, en &l cual la aparicién
del punto de articulacidn se desprende de la eliminacién de cualquiera de sus aristas?

3.12. Cizar ejemplos de grafos conexos, para los cuales existen cortes cuyo nimero de
aristas es igual al numero de cuerdas de los esqueletos.

3.13. Demostrar gue la eliminacién de una arista pertencciente a cierto ciclo de un grafo
conexo no hace este grafo inconexo.

3.14. Un grafo conexo se denomina de Euler, si en & existe una cndena cerrada que pasa
por cada una de sus aristas (todas las aristas de la cad son di ). Mostrar que un
grafo gque contiene un puente no puede ser euleriano.

3.15. Un grafo se denomina hamiltoniano, si él contiene un ciclo simple de esqueleto.
Poner ejemplos de los grafos que son de Hamilion y de Buler simulidneamente,

3.16. Hallar el numero de esqueletos no isomorfos del grafo K; s de dos partes.

3.17. Demostrar que si un grafo es n-conexo, existe un par de vértices no adyacentes,
entre los cuales se encuentran a1 cadenas simples no intersecantes en vértices. Mostrar que
esta condicién se cumple para cualesquiera dos vértices no adyacentes del grafo n-conexo.
Dar un ejemplo del grafo 3-conexo.

3.18. Mostrar que la precisién de hasta el isomorfismo la tienen exactamente cuatro grafos
(uno de los cuales ¢s completo} sin aristas paralelas ni lazos sobre tres vértices, y once grafos,
sobre cuatro vértices. Hallar ¢l nimero de grafos sobre cinca vértices.

3.19. Se denomina nucleo arista de un grafo G un subgrafo gue es la unidn del conjunto
de aristas y; tales que las aristas de tode conjunto no son adyacentes dos a dos y

| #| = e(G). Dar ejemplos de los grafos que no tienen nicleo arista,

3.20. Hallar condiciones necesarias, para las cuales el nimero de aristas en el grafo es
igual al producto agSo.

3.21. Demostrar o refutar que para cualguier grafo conexo o <eo.

3.22. Determinar xi(Kown) ¥ E1(Kim,n)-

3.23. Demostrar que el ciclo de longitud impar es incajable en un hipercubo
n-dimensional.

3.24. Mostrar que el didmetro del n-cubo d(Gy) no puede ser mayor que A,

3.25. Sea que un grafo & comprende k cadenas simples no intersecantes en vértices entre
dos vériices o, beG; las longitudes de todas las cadenas son diferentes, ;Bajo qué condicidn
este grafo cs cubicable?

3.26. Determinar la densidad del grafo que es suma de una arista y un ciclo de longitud 5.

3.27. Hallar ¢l niimero de la estabilidad interior para ¢l grafo determinado en el ejercicio
anterior,

3.28. Hallar el numero de la estabilidad exterior para el grafo que es producto de una
arista y un ciclo de longitud 4.

12¢
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3.29. Hallar la coloracion minimal de las aristas del grafo de Peterson.

3.30. ;Posee el cardcter arista el grafo que es suma de un vértice aislado y un ciclo de
longitud 57

3.31. Hallar el nimero cromdtico del grafo de Peterson.

Comentarios

La teoria de los grafos en calidad de una parte de la matemdtica discreta tiene muchas interpre-
taciones. Se aplica con éxito en los problemas de control de la produccidn, para proyectar
redes de los ordenadores, para diseflar modutos electronicos modernos y proyectar sistemas
fisicos con pardmetros localizados (acisticos, mecdnicos, eléciricos), para resolver problemas
de genética y problemas de automatizacion de ta proyeccidn (SAPR). La teoria de los grafos
€5 la base del apoyo matemdtico de los sistemas modernos de procesamiento de la informa-
cién. Esta teoria se aplica con éxito en las investigaciones nucleares (técnica de diagramas
de Feynman), etc. -

Informacion mis detallada sobre los modelos tedricos de grafos y sus suplementos se
1a puede hallar en la literatura de bibliografia.



«¥ lo mismo que el concepto de numero, el
de figura estd i« lo exclusi del
mundo exterior ¥ no ha brotado en la cabeza
por obra del pensamiento puros.

Federico Engels

CAPITULO 4

Teoria de las gramaticas formales
y de los dispositivos automaticos

§ 4.1. Gramdticas formales

Examinemos un sistema de sustituciones prefijado por el alfabeto
M= {m/i=1, ..., p)y por las sustituciones bdsicas

oG, 4.1)

donde i, 8: son las férmulas (palabras) tal vez vacias en el alfabeto M.

Comprenderemos toda sustitucién «;;—8; como una regla de deduccién.
Con frecuencia el sistema de sustituciones se denomina semisisternas de
Thue, en honor del matemdtico noruego Aksel Thue. Empleando estos se-
misistemas Chomsky formd y desarrollé el aparato de gramdticas formales.

Definamos el concepto de la gramdtica formal que a continuacién se
llamara simplemente graméatica. Examinemos un alfabeto finito M = {m,
M2, ... Mp}, cuyos elementos se denominardn simbolos (letras) y suce-
siones finitas de simbolos, palabras.

Designemos todo el conjunto de palabras, cuyas longitudes no tienen
ningunas restricciones mediante 4. Digamos que .2"C.4 es un lenguaje
en el alfabeto M.

Sea G una coleccion de reglas, con ayuda de las cuales en M se en-
gendran todas las palabras pertenecientes al lenguaje .’y solo ellas. Lldma-
se gramdtica del lenguaje #"la coleccién de reglas G.

Denominaremos equivalentes a dos lenguajes si coinciden los conjuntos
de palabras gque integran estos lenguajes. Dos gramdticas G, y Gz sobre
.Z’se denominan equivalentes, si se engendran por éstas los lenguajes
equivalentes. .

Acordémonos decir que G es la gramadtica del niimero finito de estados,
si las reglas de engendrar palabras de alfabeto M = {my, ma, . .., Mg} se
prefijan del modo siguiente. Existe un conjunto finito de estados [So, Si,
..oS)yacada S{(= 1,2, ... r) lepone en correspondencia un juego
de pares de tipo (m, Sg), donde i€f1, 2, ..., n],g€(0, 1,.. ., r}. Alestado
So le pone en correspondencia los pares de tipo (o, Sz), donde A€(1, 2,

. . r). El simbolo m, es un signo especial del blanco entre las palabras.
La construccidén de las palabras se realiza del modo siguiente: del estado
So pasa a cualquier estado S;, uno de aquellos S; que son segundos
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miembros de los pares de tipo {mo, S;), y se pone el signo del blanco en
el inicio de la palabra. Partiendo de los pares, puestos en correspondencia
al §; elegido, se toma cualquier (r, 5;). Esta eleccidn determina el siguiente
estado S; y el primer simbolo de la palabra m;. En adelante, el proceso
de la construccién de la palabra se realiza de modo andlogo. La palabra
se termina pasando al estado final, que es, como regla, So.

El lenguaje generado por una gramética con el niimero finito de estados
se denomina lenguaje con el nimero finito de estados. Es comodo represen-
tar la estructura de tales lenguajes en forma de un grafo, cuyos vértices
se ponen en correspondencia a S; y los arcos, en correspondencia a los pares
(my, S;). En la fig. 4.1 se da un ejemplo de tal grafo. Utilizando la gramdti-
ca, prefijada por este grafo, se engendra un lenguaje compuesto del siguien-
te conjunto de palabras: [ nyny, mypmsmy, mymamsm,; ). Se puede exami-
nar la generacién de las cadenas de los simbolos como resultado del trabajo
de un dispositivo hipotético (fig. 4.2). A lo largo de una cinta infinita (a
una o dos direcciones) dividida en células se mueve la cabeza de control
(CC). Estan prefijados un alfabeto exterior M = {mo, rm, mz, ..., mal,
cuyos simboles se denominan lefras, un alfabeto interior § = (s, 51, .. .
s-], cuyos simbolos se denominan estados y un alfabeto de traslaciones
E = [D I, N). Todas las células se llenan con los simbolos de M, uno en
cada célula. El simbolo 72 juega el papel del simbolo vacfo (si en una célula
se halla m,, entonces «en esta célula no estd escrito nada»). Se supone que
toda la cinta infinita est4 llena siempre con los simbolos my, excepto aquellas
células, en las cuales estdn escritos cualesquier otros simbolos de M.

La cabeza de control puede mantenerse en varios estados que se caracte-
rizan por los simbolos de S. El estado s es especifico. Si la CC se mantiene
en el estado 5, «la mdquina no hace ningun trabajo (estd desconectada)».
Se supone que al final del trabajo la méquina pasa siempre en el estado

”m, Im! |m'r EACNEA A A |m,|m,1

N
10C | — Fig. 4.2
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sp. Durante el trabajo de la maquina la CC puede moverse a lo largo de
la cinta en tiempos discretos. Se mueve ora una célula a la derecha (D),
ora una célula a la izquierda (7). Puede ocurrir que en un tiempo dado
del trabajo la CC no se mueve (N).

En todo tiempo del trabajo la CC realiza las siguientes operaciones:

1) lee el simbolo m; que estd en la célula «vista» por la CC en este
tiempo; 2) en relacién con el simbolo leido rm; y su estado s; escribe el simbo-
lo m en esta célula; 3) se mueve (0 no) a lo largo de la cinta; 4) pasa
al estado siguiente sp.

Se puede representar todo el trabajo de la maquina utilizando una tabla
funcional T, en cuyas células se encuentran las ternas de tipo musge;, donde
g€E es un simbolo que determina la traslacién. De este modo, la tabla
funcional determina la aplicacion M X Sen M x § x D. El sentido enjun-
dioso de la aplicacion (m, s}~ (mesp€) consiste en que permaneciendo en
el estado s; y leyendo el simbolo m1; de la célula, la CC escribe el simbolo
my en la célula dada de la cinta, pasa al estado s, y realiza la traslacidén
determinada por el simbolo ¢. Acordémonos que la tabla funcional estd
siempre hecha de modo que tiene lugar la aplicacidn (m;, so)— (i1, so, N).
Esto significa que en el estado «desconectado» la maquina no funciona.

Hasta que la mdquina empiece a funcionar es necesario llenar (si esto
es indispensable) unas células de la cinta con los simbolos diferentes de
my, trasladar la CC a un estado distinto de sy ¥ prefijar la posicién inicial
de la CC respecto a la cinta. Después de esto la mdquina funcionard en
correspondencia con la tabla 7. El funcionamiento de la miquina puede
ser prefijado utilizando también un grafo, cuyos vértices se ponen en corres-
pondencia biunivoca a los estados de este dispositivo, los arcos, en corres-
pondencia con las traslaciones de un estado a otro. Con ello cada arco
(s}, 5p) estd ponderado por el par (m, mxer). Segun Chomsky, frecuentemen-
te el estado se denomina simbolo no terminal (auxiliar) y el simbolo meM
se denomina rerminal, El dispositivo hipotético descrito se denomina md-
quina de Turing.

Tesis de Post. Un semisistema arbitrario de Thue puede representarse
como una miguinag de Turing y viceversa.

En el capitulo 1 fue examinada la definicidén intuitiva del concepto de
algoritmo. Empleando la mdquina de Turing, precisemos este concepto.

Tesis de Turing. Para cualquier algoritmo comprendido en sentido in-
tuitivo, se puede construir una mdguina de Turing, cuyo funcionamiento
es equivalente a este algoritmo.

El concepto de la mdquina de Turing es una especificacion estricta del
concepto del algoritmo. El paso del concepto intuitivo del algoritmo al con-
cepto exacto de la maquina de Turing posibilita llegar a la resolubilidad
algoritmica (de maquina) de uno u otro problema.
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En 1936, el cientifico norteamericano Church, examinando el problema
de reconocer la deducibilidad en la légica matematica, obtuvo uno de los
primeros resultados negativos.

En el calculo 16gico para cualesquiera férmulas dadas R y S determine-
mos, si existe 0 no una cadena deductiva que conduce de R a S.

A y B son las férmulas adyacentes, si se puede transformar la férmula
A en la B, y viceversa, utilizando una sola vez la sustitucion admisible.
Una sucesién (A4, i = 1, 2, . . ., n) de formulas, entre las cuales las conti-
guas son adyacentes, se denomina cadena deductiva que conduce de A4;
a A,. Como la resolucién del problema de reconocer la deducibilidad se
comprende un algoritmo que responde existe 0 no una cadena deductiva
(para cualesquiera R y S).

Un problema es irresoluble algorftmicamente, si no existe ningtin algo-
ritmo (correspondiente méquina de Turing) para resolverlo. La méquina
de Turing independiente puede ser representada como un programa de for-
ma arbitraria para un ordenador con la memoria potencialmente infinita.

Teorema 4.1 (teorema de Church). El problema de reconocimiento de
la deducibilidad es algoritmicamente irresoluble.

Siguiendo a Chomsky, introduzcamos las restricciones de las sustitu-
ciones a— 3, observando al mismo tiempo, la correspondencia entre la gra-
miética obtenida y el dispositivo automatico.

Restriccion 1. Si a— satisface la expresion (4.1), o sea, €s una regla
de deduccion, entonces

{aal, az, + . m, b'l: bZ) ey bﬂ(m S H))((C{ =
i v RO = Bibs s B 4.2)

En lenguaje generado por la gramdtica que satisface (4.2) se realiza por
la maquina de Turing.

Restriccidn 2. Si «—f es una regla de deduccidén, entonces (3yi, ¥z,
a, w(¥1, 2, w son las cadenas, a es un simbolo independiente; w no es vacia).

(o = y1av2)&(B = yiwy2)). (4.3)

Las gramdticas que satisfacen la relacién (4.3) se denominan de contexto
(vinculadas por el contexto).

Las gramdticas de contexto se realizan mediante los dispositivos tipo
de autémata de Myhill.

Sea (i, j, k, I p) una de las reglas que determina el funcionamiento
del dispositivo automadtico: si el bloque de mando permanece en el estado
S; v la cabeza exploradora estd frente a la célula que contiene el simbolo
m;, entonces el bloque de mando puede pasar al estado Sy, mientras que
la cinta avanza hasta / células a la izquierda y m, sustituye el simbolo a
examinar. El dispositivo que funciona segin este principio se llama aurdma-
ta de Myhili,
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Restriccion 3. Si a«— 3 es una regla de deduccidn, entonces « es la letra
no terminal y § no es vacia:

B=@ (4.4)

La gramdtica que satisface (4.4) se llama sin confexto (libre del
contexto).

De acuerdo a (4.4), cada regla de gramdtica afirma que cierto sfmbolo
no terminal puede sustituirse por una cadena de simbolos independiente-
mente del contexto.

Un lenguaje generado por una gramadtica sin contexto se realiza por
un dispositivo automdtico de Myhill de tipo especial que utiliza [a memoria
jerdrquica. Segiin Newell, Shaw y Simon, este disposivo automatico se de-
nominard qutdmata ferdrquico.

El autémata jerdrquico es una composicion de un dispositivo automdti-
co de mando y de tres cajas, cada una de las cuales representa de por si
una cinta infinita dirigida a un lado. En la cinta estd escrita una palabra,
cuya primera letra se encuentra en la primera célula, la segunda estd en
ia segunda célula, etc. Leyendo la palabra el dispositivo antomadtico percibe
la primera letra, luego la borra y el resto de la palabra se desplaza bacia
la primera célula. Cuando en la caja se graba una palabra de la longitud
k, las primeras & células se libran como resultado de haber trasladado en
k células la palabra anteriormente inscrita. La caja de entrada estd vincula-
da con los canales de entrada del dispositivo automdtico de mando, la de
salida, con los canales de salida, la interior se vincula tanto con los canales
de entrada, como con los de salida del dispositivo automdtico de mando.
El conjunto de estados interiores del dispositivo automético de mando se
parte en dos subconjuntos A y B. Si el estado del dispositivo automdtico
de mando pertenece al subconjunto A, se lee la informacién de las cajas
de entrada e interior. Si su estado pertenece a B, S€B, la lectura se hace
solo de la caja interior. Al mismo tiempo, el dispositivo automatico pasa
al estado siguiente y escribe palabras en las cajas interior y de entrada.

Una regla de la gramatica sin contexto se denomina fineal, si tiene forma

A—xBy; 4.5)
lineal derecha, si

A—xB, (4.6)
y lineal izquierda, si

A—Bx. 4.7

La regla de forma A —x lldmase conclusiva. Seguin las restricciones de-
terminadas por las reglas (4.5)—(4.7), la gramatica sin contexto puede ser:

a) lineal, si cada regla suya no conclusiva es lineal, en particular, si es
lineal izquierda o lineal derecha;
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b) unilateralmente lineal, si cada regla suya no conclusiva es lineal iz-
quierda o lineal derecha;

¢) metalineal, si todas sus reglas no conclusivas ora son lineales, ora
tienen forma S—§ y, ademds, la gramatica no posee reglas tipo A-raS@
para ningunos A4, «, 8, donde «, 3 no son vacias.

La gramdtica unilateralmente lineal se realiza por el dxsposrt:vo automd-
tico finito y engendra un lenguaje llamado automdtico finito.

Consideremos una gramdtica unilateralmente lineal, cuyas reglas son
todas lineales derechas (para mas precision) o todas conclusivas. Sin perder
la generalidad, se puede suponer que toda regla lineal tiene forma A=vaB
{donde B es un simbolo no inicial) y cada regla conclusiva de la gramdtica
tiene forma A—a.

Sean A, Az, ..., A, los simbolos no terminales de la gramatica, con
la particularidad de que A, es el simbolo inicial, A la gramitica le ponemos
en correspondencia un dispositivo automatico finito, cada uno de los esta-
dos interiores del cual corresponde biunivocamente a un simbolo no termi-
nal de la gramatica, y el simbolo de entrada corresponde a un simbolo
terminal de la misma. Ademds, si A;—aA; es una regla de la gramdtica,
la terna (g, A, A;) determina el funcionamiento del dispositivo automadtico
y se comprende como el paso del estado A; al estado A;, cuando se lee
el simbolo de entrada a.

Para mds generalidad, consideraremos que, pasando del estado §; al es-
tado S; como resultado de la influencia de entrada a, el dispositivo automa-
tico elabora un simbolo b a su entrada. Entonces el dispositivo automdtico
puede ser como una cuaterna (@, b, Si, ).

Si se fija el estado inicial S, ¢l dispositivo autdmatico realiza un opera-
dor T

= T(a, 5, S

A continuacién lo denominaremos de autdmata.

fx,a@)

Fig. 4.3
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El operador de autémata T traspasa una sucesion de simbolos de entra-
da (@) en una sucesion de salida (b;) segiin el estado inicial y la gramética
unilateralmente lineal realizable. Es cémodo representar el dispositivo auto-
matico en forma de la funcién T sobre un grafo G = { ¥, U), a cada vértice
del cual le corresponde biunivocamente un estado del dispositivo automati-
co. Si éste pasa del estado §; al estado §; bajo la influencia de entrada
a, elaborando, al mismo tiempo, el simbolo de salida b, entonces los vérti-
ces correspondientes v y vy se unen mediante el arco (v, v;) ponderado
por el par (g, b). De tal modo, el campo de definicién de esta funcién
Tes el grafo G = {V, U) construido por medio del procedimiento anterior-
mente examinado. El campo de valores son los simbolos de entrada y salida
y los identificadores de fos estados del dispositivo automatico.

Por ejemplo, examinemos una gramatica unilateralmente lineal con el
alfabeto de simbolos terminales M7y = {x, 3, @, &], con el alfabeto de los
simbolos no terminales My = {8, 52, S3} y las siguientes reglas de deduc-
cién: §—ybS,, Si—xaS:, S=+xaS:;, S:—yaS;, S3—~xbS;. Un dispositivo
automdtico finito realiza esta gramadtica. Si ponemos este autémata en el
estado inicial S; y a la entrada transmitimos una sucesidn de simbolos ter-
minales () x, y, x), obtenemos a la salida la sucesién de los simbolos termi-
nales (b, a, a, b), cuando los simbolos no terminales forman la sucesién
(S1, 81, 8, 83). El operador de autémata realizable T puede representarse
en forma de la funcién correspondiente sobre el grafo G = (V, U (fig.
4.3).

Si no examinemos el dispositivo automidtico como un dispositivo que
realiza una gramadtica correspondiente, sino estudiemos su estructura, en-
tonces hay'que representar éste no en forma de la mdquina de Turing, sino
en forma del esquema en bloque representado en la fig. 4.4, donde M, es
¢l conjunto de simbolos terminales de entrada; M, es el conjunto de simbo-
los terminales de salida; M: es el conjunto de simbolos no terminales
(M: = Mz': Mz')‘
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§ 4.2. Etapas principales del diseiio
de los dispositivos automsticos

Analicemos el problema de disefio del dispositivo automatico. En la fig.
4.4 tenemos M,, significa el conjunto de vectores de entrada

X =x"8 ...
M, es el conjunto de vectores de salida
Y= ... ¥

M- es el conjunto de vectores que caracterizan los canales de entrada de
realimentacioén (canales de memoria)

Z7 =z @)™ ... (=0

M+ es el conjunto de vectores que caracterizan los canales de salida de
realimentacidn

Zt =@ ... @)

Si tenemos la logica de & signos, cada uno de los canales puede estar
en uno de sus &k valores o€(@, 1, ..., & = 1).

Acordémonos designar la variable «, igual a ¢€(0, 1, 2, . . ., kK — 1) co-
mo «°. Entonces, para la gramdtica de automata, es mas coémodo definir
las reglas de deduccion como sustitucién XZ* —=Z " Y, en la cual el valor
inicial del vector Z* y sus valores sucesivos se obtienen al igualarlos al
valor del vector Z~ calculado en el paso anterior, o sea,

Z (=0 =Zg Z*(t + N = Z7 (1),

donde 7 es una constante de tiempo.

Los vectores XZ* y Z~ Y se obtienen afiadiendo los vectores Z* e Y
a la derecha de X v Z~, respectivamente.

A continuacidn, los estados de los canales de realimentacion se denomi-
naran estados interiores del dispositivo automdtico, mientras que la cons-
tante de tiempo r se llamard tiempo de transicion de un estado interior
en otro con la particularidad de que, segun la destinacion del dispositivo
automatico y su realizacién, r puede ser constante para el dispositivo auto-
mitico dado o depender de la variacion del vector X. En el primer caso
el dispositivo automatico se denomina sincrdmico, en el segundo,
asincronico.

Para un (Z * ) prefijado, la sucesién de los vectores de entrada X(suce-
sidn de entrada) determina univocamente la sucesion de los vectores de
salida Y(sucesion de salida). Lo ilustremos analizando el siguiente ejemplo.
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Sea que tenemos un dispositivo con et canal de entrada x, un canal de realimentacién
z y un canal de salida ¥ que realiza la aplicacién XZ* —=Z " Y prefijado en forma de una
tabla (tabla 4.1},

Tabla 4.1 Tabla 4.2

x £ z” ¥ Tiempo X z* £ P
1] 0 1 1 ] 1 0 0 1
0 1 1 0 T 0 Q 1 L
) 0 0 1 2r 1 1 ] 0
1 1 0 0 3r 0 0 1 1

4r [3] ] 1 0

5r 1 1 0 0

Determinemos la sucesidn de salida, si la de entrada tiene forma 101001 y el valor inicial
del vector Z 7 esigual a 0. En el instante inicial de tiempo, el vector XZ*, igual a 10, determina
Z~ Y = 01 (la tercera fila de la tabla). Dentro de un intervalo de tiempo r, XZ* = 00 determi-
nard Z2° Y = 11 (la primera fila), etc. Anotemos la definicién de la sucesién de salida en
forma de la tabla 4.2. .

Por consiguiente, 101001 2110100,

Segiin la aplicacidon de autdmata prefijada para Zg = | la sucecidn de entrada 101001
s¢ ransforma en la sucesidén de salida 010100.

De tal modo, la aplicacién de autémata XZ ™ —Z ~ ¥ determina univo-

camente la sucesién de salida (Y;) por la sucesion de entrada dada (X})

+
y el estado interior inicial Zgt (X7) ) (Y5).

Una de las caracteristicas principales del dispositivo antomatico es la
capacidad de su memoria. El nimero de estados interiores del dispositivo
automdtico se denomina capacidad de memoria del dispositivo automdtico.

Como se sabe, la transformacién de la informacidn es resultado de ha-
ber realizado un algoritmo, con ello el autdmata operacional realiza los
pasos del algoritmo y el dispositivo automdtico de mando, el orden de
cumplir los pasos. Los dispositivos autométicos operacional y de mando
difieren por su destino y también por la capacidad de memoria. En el dispo-
sitivo automdtico operacional se transforma la informacién prefijada en
forma de cierto conjunto de niimeros inscritos en registros. La capacidad
de memoria del dispositivo automatico operacional es practicamente infini-
to. Por ejemplo, el blogue de registros de un ordenador moderno, que in-
tegra el dispositivo automatico operacional y consta de 22 registros binarios
de 16 6rdenes, tiene capacidad de memoria igual a 2%¥2>10'™ bitios. La
capacidad de memoria de los dispositivos automdticos de mando suele te-
ner de unas decenas a unas decenas de miles de bitios, o sea, no es grande
en comparacion con la capacidad de memoria de los dispositivos automati-
cos operacionales.

Examinemos la interaccidn de los dispositivos automaticos operacional
y de mando (fig. 4.5). A la entrada del dispositivo automdtico operacional
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Zesp. quigmal. Diso. automdy_
wperacional a8 mande

& Fig, 4.5

(canal /) llega una informacién que se transforma; de la salida del dispositi-
vD automdltico operacional (canal 2) se toman los resultados de las transfor-
maciones; por el canal 3 llegan las acciones de mando correspondientes
al algoritmo que se realiza; por el canal 4 llegan a la entrada del dispositivo
automatico de mando los indicios que caracterizan la informacién que estd
por transformar; por €l canal 5 llega la sefial que determina la transforma-
cién a cumplir y su comienzo; por ¢l canal 6 sale la sefial fin de la opera-
cion. Los canales / y 2 se denominan informativo, los de 3 a 6 se denominan
de control. Por ejemplo, examinemos como se cumple la operacién de adi-
cién en el dispositivo aritmético (DA) de un ordenador. En este caso el
dispositivo automdtico operacional es el dispositivo aritmético, o sea, los
registros, el sumador y las comunicaciones entre ellos, ¢l dispositivo auto-
matico de mando es el de mando del DA. Cuando se efectiia el algoritmo
de adicion, el primero y el segundo sumando sacados del dispositivo de
memoria (DM) del ordenador se inscriben por el canal [ en los correspon-
dientes registros del DA; por el canal 5 del dispositivo central de mando
{DCM) del ordenador llega el codigo de la operacion («adicién»), por el
canal 3 del dispositivo de mando del DA, conforme al algoritmo de adicion,
se envian las sefiales de mando: el desplazamiento de registros, la excitacidn
de las barras correspondientes en el sumador, la inscripcién de la suma
en el registro del resultado y otras senales. Por el canal 4 llegan los indicios
(por ejemplo, el contenido de los drdenes de signo en el sumador que se
utiliza para detectar la infraccién de la normalizacién) que determinan la
marcha del mando sucesivo. Por el canal 6 se transmite al DCM la seiial
de que la operacién se ha realizado.

El ordenador es un transformador complejo de la informacién. Segiin
V.M.Glushkov, es conveniente considerarlo como una composicidn de pares
de los dispositivos automdticos, cada uno de los cuales comprende los dis-
positivos automaticos operacional y de mando. Ademads, cada dispositivo
del ordenador (de entrada, de salida, el DM, el DCM) se representa, de
modo anélogo al dispositivo aritmético, como un par o varios pares de
tales dispositivos automaticos, Tal representacion del ordenador es cdmoda
para el andlisis y la sintesis del ordenador y, también, es el desarrollo 16gico
de la estructura de los ordenadores modernos. Actualmente, en calidad de
un método de aumentar la productividad del ordenador, se utiliza el régi-
men de programas maultiples, 1o que, en particular, disminuye retardos pro-
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vocados por la baja velocidad de los dispositivos exteriores y la falta de
correspondencia entre las velocidades de funcionamiento de los dispositivos
aritmético y exteriores. Para realizar el régimen de programas muiiltiples del
ordenador, es indispensable cierta «autonomia» de unidades separadas, es
decir, la posibilidad de almacenar y transformar la informacion y controlar
esta transformacion dentro de la misma unidad. En otras palabras, es necc-
sario que toda unidad sea una composicion de los dispositivos automaticos
operacional y de mando. Para ilustrar todo lo dicho, demos el esquema
en bloque del ordenador CDC-6600 (fig. 4.6), en el cual la informacién
de entrada llega por 12 canales de entrada y salida y se da primeramente
a los dispositivos periféricos de procesamiento de la informacién. Cada
uno de estos dispositivos es una composicion de los dispositivos automdti-
cos operacional y de mando. Estos dispositivos de volumen pequeiio
pueden ora entregar los resultados transformados en el dispositivo de sali-
da, ora transmitirlos, a la memoria central que es toda una jerarquia de
dispositivos de memoria. La ultima operacion se cumple con ayuda del sis-
tema centralizado de mando que distribuye el «trabajo» entre los dispositi-
vos especializadoes de procesamiento de la informacidn que tienen alta velo-
cidad de funcionamiento. Cada uno de estos dispositivos s una composi-
cién de los dispositivos autématicos operacional y de mando. Cada par
de tales dispositivos realiza una o varias operaciones, por ejemplo, la opera-
¢ion de multiplicacién.
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Cuando el ordenador funciona en el régimen de programas muiltiples,
se realiza el principio del funcionamiento descentralizado de dispositivos
separados. En el limite, el principio de descentralizacién pasa al principio
de la descentralizacién absoluta o al principio de Holland que propuso la
red completamente distribuida de los dispositivos de procesamiento de la
informacién, cada uno de los cuales es una composicién de los dispositivos
automdticos operacional y de mando. Todos estos blogues funcionan inde-
pendientemente. Esta estructura del ordenador realiza la concepcién de los
«programas de trabajo nadando en el mar de equipos».

Una de las etapas de desarrollo de esta tendencia es la concepcion del
procesamiento distribuido de la informacion que en el presente se realiza
en forma de redes de ordenadores, centros de cdlculos de uso colectivo, etc.

En el disefio de los ordenadores se puede destacar tres etapas principa-
les: sistémica, logica y técnica.

En la etapa de disefio sistémica se construye la composicion de pares
de los dispositivds automadticos operacionales y de mando (el esquema ge-
neral en bloque del ordenador), se determihan la capacidad necesaria de
memoria de los dispositivos automaticos, su interaccién basada en la selec-
cion de sistema de instrucciones, lenguajes interiores y exteriores del orde-
nador, etc. En esta etapa, la informacion de partida es un conjunto de clases
de problemas los que deben ser resueltos por el ordenador a disefiar v de
sus parametros (velocidad de funcionamiento, costo, dimensiones extremas,
etc.).

Los dispositivos automadticos examinados en la etapa de disefio sistémi-
ca tienen gran capacidad de memoria que supera, como ya lo indicamos,
10'% bitios. Por esta razén en el presente los problemas de Ia etapa sistémica
se resuelven empleando la simulacién en programas.

En el etapa sistémica, el proceso de resolver el problema por el método
de simulacién en programas suele tener los siguientes pasos:

a) la composicién de un modelo matemdtico que refleja las propiedades
principales del dispositivo en simulacién o del ordenador en total;

b) la elaboracion de un algoritmo simulador, su registracién en un len-
guaje destinado para describir los modelos de los ordenadores;

¢) la realizacién del algoritmo simulador en un ordenador;

d) el andlisis de los resultados y la correccién del modelo del dispositivo
o del ordenador.

La simulacién en programas permite determinar las caracteristicas prin-
cipales del ordenador a disefiar y los puntos «flacos» de su estructura.

En la etapa de disefio logico de los ordenadores se sintetizan directa-
mente los esquemas légicos (funcionales) de todos los bloques del ordena-
dor. Para esta etapa, como la informacién de partida se presentan los algo-
ritmos de funcionamiento de los blogues.
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En la etapa de disefio técnico se construyen, basindose ¢n los esquemas
logicos, los esquemas principales de montaje y se prepara la documentacién
técnica para fabricar los ordenadores.

El disefio ldgico consiste en la sintesis de los dispositivos automaticos
operacionales y también de los de mando. Debido a que la capacidad de
memoria de los dispositivos automdticos operacionales es prdcticamente
infinita, en el presente estos ultimos se sintetizan con ayuda de la simula-
cion en programas. Para realizar la sintesis formalizada de los dispositivos
automaticos operacionales es necesario desarrollar la teoria de los dispositi-
vos automdticos infinitos, mientras que para formalizar la sintesis de auté-
matas de mando es posible aplicar la teoria de los dispositivos automaiticos
finitos.

Segun esta teoria, en la proyeccidn de los dispositivos antomdticos de
mando distinguiremos dos etapas principales: la construccién del operador
de autdmata y la sintesis estructural del dispositivo automdtico.

I. Etapa de la construccicn del operador de autémata. En esta etapa~
se construye ¢l sistema de funciones de salida Y = f(X, Z*) y el sistema
de funciones de excitacion Z~ = ¢(X, Z*).

Una aplicacidn de autdmata escrita en forma de un sistema de funciones
de salida y funciones de excitacion se denominari operador de autémata.

A su vez, esta etapa se compone de tres subetapas: algoritmica, abstrac-
ta y de codificacidn (distribucion) de estados interiores de autdmata.

En la etapa de la proyeccién algoritmica un operador dado A4 se formali-
za como un algoritmo, partiendo de las exigencias planteadas (la simplici-
dad de cumplimiento de las operaciones, la velocidad de funcionamiento,
la reduccién mdxima de gastos para los aparatos, etc.). La biisqueda del
algoritmo éptimo por el operador dado 4 se puede representar en forma
de un drbol, cada vértice pendiente del cual corresponde a un algoritmo
determinado, es decir, a una composicién determinada de los dispositivos
automaticos operacional y de mando. Para hallar el algoritmo éptimo, tene-
mos que realizar el sondeo de todos los vértices pendientes, cuyo nimero
no es sabido y se determina por el grafo de desarrollo de las transforma-
ciones que se examinan. o

Por ejemplo, sea que es necesario sintetizar un dispositivo aritmético
que realiza la operacién cuadriddica de sumacién. En funcién del algoritmo
elegido para cumplir este trabajo, obtenemos un esquema en bloque deter-
minado del dispositivo a sintetizar que se caracteriza por la velocidad de
funcionamiento y gastos para los aparatos. En este caso se puede proponer,
por ejemplo, tres variantes del algoritmo.

Variante 1. Sumamos dos primeros nimeros, adicionamos el tercer nii-
mero a la suma obtenida y otra vez adicionamos el dltimo ndmero a la
suma obtenida. Esta variante del algoritmo se caracteriza por el tiempo

13 6577
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Fig. 4.7

de cumplimiento de la operacién 7, y los gastos para los aparatos en forma
de uwn sumador, cuatro registros, bloque de mando y canales de comunica-
cién necesarios. A este algoritmo le corresponde el esquema en bloque
representado en la fig. 4.7, a.

Variante 2. Sumamos simultineamente el primer nimero y €l segundo,
el tercero y el cuarto; inscribimos los resultados en el primero y el tercer
registro, respectivamente, y luego los sumamos en el primer sumador. El
resultado final lo inscribimos en el primer registro. Esta variante de cumpli-
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miento del trabajo A se caracteriza por el tiempo de cumplimiento 72 y
los gastos para los aparatos representados en ¢l esquema en bloque de esta
variante (fig. 4.7, b).

Variante 3. Sumamos dos primeros niimeros en un sumador, dos segun-
dos en el segundo sumador, las sumas obtenidas, en el tercer sumador. Ins-
cribimos el resultado en el primer registro. Esta variante se caracteriza por
el tiempo de cumplimiento de la operacién 73 y los gastos para los aparatos
dados en la fig. 4.7, c.

Una u otra variante del algoritmo que realiza el trabajo 4 se escoge
partiendo de las restricciones concretas para los gastos de aparatos y el
tiempo de cumplimiento de las operaciones dadas.

Cada vértice pendiente del drbol de hisqueda se estima por el tiempo
de cumplimiento de una transformacién dada y la complejidad de los apa-
ratos (la complejidad de los dispositivos automaticos operacional y de man-
do). La complejidad del dispositivo automdtico operacional se aprecia por
el célculo inmediato de los gastos de aparatos. Utilizando el concepto de
derivada del modelo, se puede apreciar la complejidad del dispositivo auto-
matico de mando.

En la ctapa abstracta se resuclve el problema de minimizar la capacidad
de memoria del dispositivo automadtico. En la etapa de codificacién (distri-
bucién) de los estados interiores del autémata a cada uno de ellos se les
pone en correspondencia un cddigo, es decir, un conjunto determinado de
estados (valores) de elementos de la memoria,

Al cumplir las etapas consideradas componemos los sistemas de fun-
ciones de salida y de funciones de excitacién del dispositivo automatico,
0 sea, construimos ¢l operador de autémata y luego pasamos a la sintesis
estructural.

II. Etapa de la sintesis estructural del autdmata. Esta etapa consiste en
gue de los elementos dados se construye el esquema logico (funcional) del
dispositivo automadtico que realiza el operador de autémata obtenido. A
continuacion consideremos la sintesis estructural con mds detalles.

§ 4.3. Fundamentos aritméticos de los dispositivos
automiticos operacionales

El proceso de calculo, que realiza un programa en el ordenador represenia
en si las transformaciones de niimeros en paralelo y en serie. Cada numero
es una sucesién de cifras.

La palabra «cifra» proviene de la palabra drabe «sefr» traducida al latin.
Esta, a su vez, es traduccién de la palabra sinscrita «sufia» (alfabeto «deva-
nagari»} que significa «lugar vacio» («orden»), en el cual se pone un signo
numérico al dar relaciones cuantitativas.

Lldmase sistema de numeracidn o numeracidn una coleccién de procedi-
13+
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mientos y reglas para denotar y denominar los nimeros. El sistema de nu-
meracion de las reglas de inscripcion codificada de equivalentes cuantitati-
vos permitiendo obtener univocamente para toda cantidad su inscripcion
en codigo y por toda inscripcidn en cddigo, su respectivo equivalente cuan-
titativo. Un conjunto de signos elementales que se utilizan para codificar
se denominan cifras del sistema de numeracion.

Sistemas de numeracidén son posicionales y no posicionales. En los siste-
mas no posicionales a cada cifra se le ha puesto univocamente en corres-
pondencia un equivalente cuantitativo estdndar, mientras que el equivalente
cuantitativo del codigo del nimero se calcula como una funcién de los
equivalentes cuantitativos de las cifras que integran la inscripcion de este
codigo. Un ejemplo de tal sistema es el sistema de numeracion, en la que
se utiliza s6lo una cifra, por ejemplo, 1. A esta cifra se le ha puesto en
correspondencia el equivalente cuantitativo igual a la unidad. Entonces el
codigo 111 111 significa el equivalente cuantitativo seis; aqui la funcidn para
calcular el equivalente cuantitativo del codigo es la funcidn de adicién. En
los sistemas posicionales un equivalente cuantitativo se pone en correspon-
dencia no univoca a cada cifra dependiendo de su posicién en el codigo
del nimero. Examinaremos solamente inscripciones linealmente ordenadas.
En la inscripcién escojamos el comienzo de la lectura (orden nulo). Los
érdenes a la izquierda de éste enumeremos con I, 2, ... y a la derecha, con
—1, -2, .... A cada cifra a situada en el orden de numero j se le pone
en correspondencia un equivalente cuantitativo ¢(e;, /). La funcién ¢ ora
es igual para todos los ordenes, ora su forma cambia de orden a orden.
A continuacién se examinaran solamente los sistemas posicionales de una
funcién ¢ igual para todos los érdenes. Cualquier sistema posicional se
prefija por tres componentes: (A, ¢, F). Aqui A es el conjunto de las
cifras del sistema; ¢ es 1a funcion que para las cifras en cada orden determi-
na su eguivalente cuantitativo; F es la funcién que por los equivalentes
cuantitativos de la inscripcion del numero determina el equivalente cuanti-
tativo del propio niimero.

Seguin la forma de la funcién F elijamos dos tipos de sistemas de nume-
racién: aditivos y multiplicativos. En los sistemas del primer tipo F es la
funcién de adicion, en los del segundo F es la funcién de multiplicacion.
No examinaremos otros tipos de F.

Si para cualesquiera cifras A y cualquier j tiene lugar la igualdad e{ai,
/) = §-ela;, 0), se trata del sistema de numeracion de la base S. Si o(a;,
7 = pielar, 0} y py no coinciden para distintos j, ¢l sistema es de tipo de
valores ponderables y p; son pesos de los érdenes.

Si en un sistema de la base S el conjunto de cifras comprende 0, 1,...
vy § = 1, el sistemna tiene el conjunto Idgico de cifras (sisterna Idgico de
numeraciény, si S = m + k + 1y el conjunto de cifras es { —m, —m + L,..
oy =1,0, 1, ..., k}, entonces para m = k el sistema tiene el conjunto simétri-
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€o de cifras (sistema simétrico de numeracion), cuando k>nt 0 m>k el
sistemna tiene el conjunto de cifras asimétrico en sentido positivo o negativo,
respectivamente, (sisterma asiméirico de nurneracion).

Con la mayor frecuencia se usan sistemas Iégicos de numeracién de la
base natural. En un sistema de la base S cualquier nimero x puede represen-
tarse en la forma siguiente:

o
X = Z (aa')s*a (4.8)
fm =0
donde (@) es el equivalente cuantitativo de la cifra & en el orden nulo.

En un sistema 16gico de numeracién de la base natural S, el desplaza-
miento de un nlimero entero x en un orden a la derecha significa la divisién
en nimeros enteros de x por S. El resto obtenido es una cifra situada antes
del desplazamiento en el orden nulo. El algoritmo de traspasar mimeros
enteros de un sistema de numeracién de la base natural R a otro de la
base natural Q consiste en lo siguiente. Un niimero x escrito en el sistema
de numeracién de la base R se divide por O seguin las reglas de divisién
en este sistema hasta obtener el resto. Si el cociente de la divisién no es
igual a 0, pasa a ser divisible y el proceso de la divisién por @ continta
hasta que el cociente obtenido sea igual a 0. Los restos escribimos en el
orden inverso de obtenerlos («del tiltimo al primero») v asi tenemos la de-
notacién del nimero x en el sistema de numeracién de la base Q.

En el sistema 16gico de numeracién de la base natural S, el desplaza-
miento del nimero fraccionario x en un orden a la derecha significa la
multiplicacién de x por S. La parte entera obtenida, tal vez igual a 0, es
una cifra situada en el orden —I antes del desplazamiento. De aqui, e algo-
ritmo de traspasar nimeros fraccionarios (fracciones R-arias) de un sistema
de numeracion de la base R a otro de la base Q consiste en lo siguiente.
La denotacién fraccionaria de un niimero x se multiplica por Q segiin las
reglas de multiplicacion en el sistema de numeracion de la base R. En el
producto obtenido se separa la parte entera (tal vez, nula). La parte frac-
cionaria del producto se multiplica otra vez por Q, luego se separa la parte
entera del producto, etc. multiplicando k veces con el traspaso de exactitud
hasta QO ~*. Para obtener la denotacién del niimero x en el sistema de nume-
racién de la base Q (con exactitud de Q ~*), después de la coma se escriben
todas las partes enteras de los productos segin el orden de su obtencién.

Examinemos un ejemplo de emplear estos algoritmos para traspasar el niimero decimal
11,87 al sistema quinario. Dividimos el numero 11 por 5 en nimeros enteros: 11 = 2-5 4 1,
2 =05+ 2. En el sist juinario el n 11 se denota como 21, Se puede iraspasar
la parte fraccionaria de 0,87 con exactitud hasta de 5~ 2: 0,875 = 4,35; 0,355 = 1,75. Por
consiguiente, en el sistema quinario €l numero 0,87 se denota como 0,41. En definitiva, tene-

mos (11,8730 = (21,41},

1
En los sistemas légicos de numeracién que adquirieron la maxima pro-
pagacidn, se puede escribir los mimeros (si la base es natural) .solamente
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de un signo. En estos sistemas para representar niimeros del otro signo se
utiliza el signo especial «+» o «~», Es mds conveniente codificar el signo
del nimero con ayuda de cifras utilizadas para escribir el nimero. Para
esto, en la denotacidén del niimero se escoge un orden especial llamado de
signo. La cifra situada en él no codifica el equivalente cuantitativo y no
participa en cdlculos del equivalente por medio de la funcién F

Codificamos el signo «+» con el cero y el signo «—» con la cifra
(S — 1) en el orden nulo cuando representamos numeros x, | x| < 1. Para
esto determinemos el cédigo directo de un mimero x, | x| <1 del modo
siguiente:

_{0. x1x» ... Xp, cuando x=0
¥lb = {S et q
. X1X2 ... X, cuando x< 0.

Teniendo en cuenta que | x| <1, esta correlacién puede escribirse en la
forma
x, cuando x>0,
X
o = [S -1+ |x]|, cuando x<0.

En el presente se usa ampliamente la forma semilogaritmica de represen-
tacién de los numeros o la representacién de punto flotante.

En un sistema de numeracién de la base natural S, cualgquier nimero
x puede expresarse (multiformemente) como $P®m(x), donde | n(x) | <1.
Denominaremos m(x) y p(x) respectivamente mantisa y orden del nimero
X en el sistema de la base S. Si para un § fijado damos p(x) y mix), el
numero x se determina univocamente. El par p(x) y m(x) estd ailmacenado
en la memoria det ordenador. Para representar univocamente los nimeros
en forma semilogaritmica habitualmente es necesario que la mantisa satis-
faga la desigualdad §~'<m(x)<1. La mantisa de este tipo se denomina
normalizada.

Representando el nimero para la mdquina en el orden mas izquierdo
se codifica el signo del orden, después en m 6rdenes se anota el valor del
orden, después van el orden para el signo de la mantisa y m drdenes para
escribir el valor de la mantisa.

Examinemos la realizacion de las operaciones de adicién, sustraccion,
multiplicacién y divisién en las aritméticas posicionales con el conjunto
l6gico de cifras. Para cualquier base S, las operaciones de adicion y mul-
tiplicacion se determinan por las tablas de cumplimiento de estas opera-
ciones en un orden y por las reglas de formar traslados a los 6rdenes supe-
riores. Ademds, es necesario que en la operacién participen los érdenes
correspondientes de los sumandos. Por eso, cuando se realiza la adicién _
es también necesario justificar los érdenes de los sumandos (desplazar las
mantisas de modo que se sumen los 6rdenes de niimeros iguales),

Para realizar la adicién algebraica, los drdenes se justifican cuando se
aumenta un orden inferior hasta un superior. Para que no cambie en este
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caso el equivalente decimal del mimero, es necesario que cada aumento
del orden en una unidad se compense por e] desplazamiento de la mantisa
a un orden a la derecha.

El resultado obtenido toma el orden justificado. Normalizando la man-
tisa del resultado es necesario desplazarla a la derecha (en un orden) o a
la izquierda hasta que se cumplan las condiciones de normalizacién. Para
que al mismo tiempo se conserve ¢l equivalente cuantitativo del nimero,
es necesario aumentar (al desplazar la mantisa a la derecha) o disminuir
(al desplazar la mantisa a la izquierda) el orden del resultado en el niimero
de unidades que coincide con el nimero de desplazamiento.

Durante la sustraccion de dos niimeros surgen las complicaciones vincu-
ladas con que se toman prestadas unidades de drdenes superiores. Esta ope-
racion se realiza mal en los ordenadores modernos para los sistemas de
numeracién con un conjunto 16gico de cifras y una base natural. Para los
sistemas con una base negativa o con una base natural y un conjunto si-
métrico (asimétrico) de cifras es fécil realizar esta operacién: el sustraendo
se invierte (o sea, en vez de denotar el niimero x se denota el niimero —x
en este sisterna) y se suman los cédigos obtenidos. Para los sistemas con
una base natural y un conjunto légico de cifras, las operaciones de la adi-
cién algebraica se realizan por medio de los cddigos complementario e in-
verso de estos numeros.

Cambiemos la operacién de sustraccién y — x por la operacién de adi-
cién y + (S —~ x) después de que sigue la disminucién del resultado en S:

Y~x=y+(§-x)-8. (4.9a)

Introduzcamos el concepto del cddigo complementario de un niimero x:
_ {x x=0,

[xle = _S+x. x<0.

La operacién de sustraccién puede cambiarse por la de adicidén también
a base de la siguiente correlacién:

y=—x=y+4+(§-8"-x)-S+8"" (4.9c)

De aqui obtenemos la definicion de! cddigo inverso del niimero x:

x, cuando x>0,
xh = {S + x — 87", cuando x<0 (@.94)
De las correlaciones (4.9b) y (4.9d) obtenemos
[¥le = xIt + $7", x<0. (4.9¢)

Segin la férmula (4.9b) el codigo complementario del nimero negativo
XexiX2 ... X, |x| <1, tiene la siguiente forma:

Ke=E-D.(S—1-x)S~1-2)...(5—ux)
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Segiin la correlacién (4.9¢e) el cédigo inverso de este niimero tiene la forma
Dh=@-0D.E=1—-1a)}S—=1=-x)...(=<1=x)

De esta manera tenemos las siguientes reglas de formacion de los cddi-
gos complementario g inverso para los mimeros negativos.

1. Para obtener el cédigo inverso de un nimero negativo €s necesario
en cada orden de la denotacién S-aria del nimero cambiar la cifra de este
orden por la que la complementa hasta S — 1. En el orden de signo hay
que escribir la cifra § — 1.

2. Para obtener el c6digo complementario de un mimero negativo, es
necesario sumar la unidad al orden inferior de su cédigo inverso.

Basdndose en las formulas (4.9a) y (4.9¢) tenemos, respectivamente, las
siguientes reglas de la adicidn algebraica.

1. Para realizar la adicion algebraica de dos nimeros x e y de signo
arbitrario en el sistema de numeracién de la base natural S y un conjunto
l6gico de cifras es suficiente escribir estos nimeros en el cédigo comple-
mentario, sumar los c6digos obtenidos segun las reglas de adicién de nime-
ros en el sistema de la base S y omitir la unidad de traslado del orden
de signo, si ella aparece. El resultado obtenido es el cédigo complementario
de la suma algebraica de los nimeros x e .

2. Para realizar la adicién algebraica de los nimeros x e y de signo
arbitrario en el sistema de numeracién de la base natural § y un conjunto
natural de cifras, es suficiente escribir estos nimeros en el cddigo inverso,
sumar los c6digos obtenidos segun las reglas de adicién de los nimeros
en el sistema de la base S y afiadir una unidad en el orden inferior de la
expresién obtenida, si al sumar aparece la unidad de traslado del orden
de signo. El resultado obtenido es el cédigo inverso de la suma verdadera
(algebraica) de los nameros x € y.

Para multiplicar, es necesario sumar érdenes de los factores, multiplicar
mantisas segiin las reglas de multiplicacién de los niimeros, normalizar el
resultado y, si la mantisa del resultado se ha desplazado, cambiar respectiva-
mente el orden del producto. Cuando se realiza la divisién, del orden del
dividendo se sustrae el orden del divisor. La division de mantisas se sustitu-
ye por sustraer el divisor del dividendo hasta obtener la diferencia negativa
como resultado de la sustraccion de turno. Luego suman el divisor y la
diferencia negativa (esta operacidon se llama restablecimiento del resto) y
en calidad de cifra del cociente se escribe el niimero de sustracciones del
divisor sin tener en cuenta la ultima sustracciom. Luego el resto se hace
dividendo y el papel de divisor lo juega el divisor antiguo desplazado en
un orden a la derecha, etc. La mantisa del cociente se normaliza y, respecti-
vamente, cambia el orden del cociente.

Como ya hemos sefialado, un sistema de numeracién es de valor ponde-
rable, si para todo orden de mimero j se puede indicar un mimero p; tal
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que el equivalente cuantitativo correspondiente a una cifra a; escrita en este
orden es igual a p;(4;), donde (:) es un equivalente cuantitativo correspon-
diente a la misma cifra en el orden nulo. A la correlacién (4.8) le es andloga
la siguiente expresion:

-]
x= 32 (a)p.
Ji

En la técnica de célculo tienen interés los sistemas bidecimales de nume-
racién, en los cuales cada cifra decimal se codifica con cuatro cifras bina-
rias y, por consiguiente, cada orden de la inscripcién decimal se sustituye
por cuatro érdenes. Si a estos cuatro érdenes les corresponden unos pesos,
tiene lugar un sistema de valor ponderable para estos cuatro dérdenes
binarios.

Al utilizar los sistemas bidecimales en los ordenadores, es deseable que
la codificacién (es multiforme puesto que para codificar diez cifras se puede
usar cualesquiera de 16 tétradas de ceros y unidades) satisfaga unas restric-
ciones. Citemos cinco exigencias principales formuladas por Rutishauser.

1. Unicidad. Es necesaria la correspondencia univoca entre las cifras
y las tétradas. Si esta exigencia no se cumple es imposible codificar y deco-
dificar los nimeros. En otras palabras, hace falta codificar distintas cifras
decimales con las tétradas diferentes.

2. Ordenacidn. A cifras decimales mayores les deben corresponder tétra-
das mayores (seglin el equivalente cuantitativo). Es necesario cumplir esta
exigencia cuando se comparan los nimeros codificados.

3. Paridad. A las cifras decimales pares les deben corresponder las tétra-

.das pares (que tienen cero (unidad) en el orden derecho extremo), mientras
que a las cifras impares, las tétradas impares.

4. Propiedad complementaria. Si la suma de cifras del sistema decimal
es igual a nueve, a estas cifras les hay que poner en correspondiencia las
tétradas mutuamente invertidas (es decir, obtenidas una de otra sustituyen-
do unidades por ceros y viceversa). Es necesario cumplir esta exigencia para
introducir el cédigo complementario o inverso en el sistema bidecimal.

5. Valor ponderable. Deben existir cuatro pesos py, p2, 1 ¥ ps tales que,
si a una cifra decimal x se le ha puesto en correspondencia una tétrada
ajonasag, tiene lugar la igualdad x = ayp; + azps + aaps + cupa.

Una codificacion que satisface todas las cinco exigencias se denomina
perfecta.

Acordémonos designar [a tétrada puesta en correspondencia a una cifra
decimal x'mediante g(x). Consideremos las reglas de adicién para los mime-
ros escritos en el sistema bidecimal. Sean tomadas cifras x e y en el sistema
decimal. Entonces x 4+ y es ora una cifra nueva de este sistema (si
X + y<10), ora el resultado de sumar estas cifras es la cifra correspondiente
ax + y — 10 y aparece la unidad de traslado al orden siguiente. Entonces,
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en el sistema bidecimal, las reglas de adicién tienen forma

= [q(x + ), cuando x + y<10, @.10)

g{x + y — 10) + 16, cuando x + y= 10,

Aqui la adicién de 16 corresponde al traslado de la unidad al orden
siguiente (el traslado al orden derecho de la tétrada que estd a la izquierda
de la dada). Segtin se desprende de la correlacion (4.10), es necesario hacer
correcciones, sumando los nimeros en tal sistemas.

Por ejemplo, sea que toda cifra decimal se codifica con su inscripcidn
en el sistema binario empleando cuatro drdenes binarios. En este caso la
cifra 5 se codificard con la tétrada 0101. Tal procedimiento de codificacion
se denomina cddigo de sustitucidn directa (8421). En este caso, teniendo
en cuenta que para el cédigo de sustitucion directa g(x) = x, la correlacién
(4.10) puede escribirse en la forma

_ fx+y, cuando x + y<10,
o) +90) {x + y + 6, cuando x + y=10.

De este modo, sumando en €l codigo de sustitucion directa, es necesario
en todo par de tétradas sumar segiin las reglas de la adicién binaria, tenien-
do en cuenta el traslado entre las tétradas, si este dGltimo surge. Después
de esto, a los drdenes, donde la suma de las cifras codificadas supera 10,
hay que aiiadir la correccién 0110. Lo ilustremos con el siguiente ejemplo.
Sea que haga falta hallar la suma de los niimeros 205 y 768. Cumplamos
las operaciones necesarias:

205 — 0010 0000 0101
768 — 0111 . 0110 1000

1001 OI10 1101 primera sumacién
0000 0000 0110

973 — 1001 0111 0011 resultado.

codificacidén,

+

El codigo de sustitucion directa satisface todas las exigencias de Ru-
tishauser excepto la cuarta. La infraccién de esta exigencia no permite intro-
ducir el cédigo complementario o inverso, lo que, a su vez, no permite susti-
tuir la sustraccién por la operacién de adicién. Para cumplir la propiedad
complementaria, codifiquemos toda cifra decimal x con la tétrada g(x),
igual a x + 3. El cédigo obtenido se denomina cddigo por exceso de tres
0 cddigo de Stibitz. En este caso la correlacion (4.10) toma la siguiente
forma:

X + y+ 3, cuando x + y< 10,
909 +90) = {(x +y=10) + 3 + 16, cuando x + y=10.

De tal modo, en el cédigo por exceso de tres se necesita la correccién
+3(0011), cuando x + y>10 y la correccidén —3(—0011:1100 en el codigo
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inverso y 1101 en el complementario), cuando x + y< 10. Pongamos por
ejemplo la sumacién de los nimeros —~471 y 607 utilizando el ¢édigo
complementario:

— 471 : 1000 0101 1100
+ 607 : 1001 0011 1010

] codificacion,

10001 1001 0110 primera sumacién,
+ 0001 1001 0110 9mit_imos el traslado del orden
izquierdo,
0011 1101 0011 correcciones,

136 — 0100 0110 1001 obtencién del resultado después de ha-

cer correcciones.

La codificacidén por exceso de tres no posee del valor ponderable. La
linica codificacién que tiene todas las cinco propiedades es la codificacidn
de Aiken-Emeriax. Sus pesos son 2 4 2 1,

En calidad de ejercicio, demostrar gue la codificacion de pesos 2 4 2 1 es perfecta:
0—0000,1—0001,2—0010,3—0011,4—0100,
5—1011,6~1100,7—1101,8—11109—1111,

Analizando los c6digos, notemos que
) = [x, cuando x<35,

X + 6, cuando x> 5;

para determinar las reglas de adicionar las tétradas en este cddigo, es nece-
sario considerar los siguientes casos:

2.

Xx<5, <5, x+y<5,

gx) +qQ)=x+y; gx +y)=x+y; A=0.
x<35, y<5, 5€x 4+ y<10,

gx) +qO)=x+y, gx+y)=x+y+ 6 A=6

L x<5, y=5 5<x+ y<l10,

X} + g0)=x+ (@ +6), gx+y)=x+y+ 6 A=0.

. x<5, y=25, 10<x + y<15,

qx) + g(y) = x + (¥ + 6), g(x + ¥) + 6 (traslado,
véase (410)) =x+y+ 6, A=0.

. x=25, y25, 10gx + y<15,

g+ g = +6) +(+6), glx+ P+ 6=(x+y) + 6
A = —6.

. X225, y25 x + y=15,

) +q0) =x+6+(+6),gx+y)+6=(x+y+6+6
A=0
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Por lo tanto, si sumamos x + y en el codigo de Aiken—Emeriax necesi-
tamos la correccién -+6 en las tétradas, donde x<35, y<3§, 5<x + y<10
y la correccion —6, donde x=35, y=5, 10g<x + y<15.

En este cGdigo sumamos el par ya examinado anteriormente de los nd-
meros —471 y 607 empleando, ademds, el cédigo complementario. Tenemos

- 471 : 1011 0010 1
+ 607 : 1100 0000 1101

0111 0011 1100  sumacidn,
oll1 0011 1100 pmlt_xmns el traslado del orden
" izquierdo,
1010 0000 0000  correcciones,
+ caso 5 casol caso 8

136 : 0001 0011 1100.

Un sistema de numeracion que permite hacer cilculos en cada orden
independientemente de los resultados obtenidos en otros 6rdenes es el codi-
20 en restos. Lldmase conjunto de mddulos de un ¢6digo en restos un con-
junto / de los nimeros maturales mutuamente simples: g, gz, ..., @

Designemos el resto de la divisién del nimero x por g; mediante
s qi . Se denomina cddigo en restos de un numero x conforme a un

i

. & Y X

conjunto de mdédulos g1, gz, . . ., g una expresion de tipo res Y res %
1

;s res—;—. Si res-";—=ayres—él-=ﬁ,se tiene x =ngi+aey=

{3 i i

} codificacion,

]

= mg; + 8. Sumemos estas igualdades. Resulta x + y = (n + m)g; +(a +
+ £). Ahora multipliquemos respectivamente los miembros derechos e iz-
quierdos de las igualdades iniciales xy = (mng: + nf + ma)gi + of. Si
o + B<q y af<g; se puede afirmar que, sumando y multiplicando dos
nimeros, sus restos de la division por g se suman o se multiplican también.
Sia + 8>g; 0 B> g, dividiendo cada una de ellas por g; v determinando
el cociente entero obtenemos que la afirmacién sobre la adicién y la mul-
tiplicacién de los restos coincide con la afirmacién anterior, si considera-
mos que después de cumplir estas operaciones se realiza [a divisién por
el mé6dulo del orden dado y la seleccion del resto verdadero. La operacion
semejante puede tener lugar para cada g; independientemente, por eso el
cddigo en restos permite sumar y multiplicar por érdenes, lo que, a su vez,
permite aumentar la velocidad de cumplir las operaciones en los
ordenadores.

Por ejemplo, sea que existe el sistema de tres médulos: 7, 8, 9. Entonces,
para los numeros x = 11 e y = 6, los cddigos en restos son 432 y 666, res-
pectivamente. Sumemos y multipliquemos por 6rdenes los codigos de x e
¥; entonces obtenemos 10 9 8 y 24 18 12. En cada orden, dividamos el
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resultado por el médulo de este orden y saquemos el resto verdadero; obte-
nemos 318 y 323, respectivamente. La suma y el producto (iguales a 17
y 66) de x ¢ y tienen codigos en restos 318 y 323.

Para obtener la correspondencia biunivoca de los nimeros en el cédigo
en restos debemos tener en cuenta que si el producto de todos los médulos
g utilizados para codificar es igual a N, en el cédigo en restos se puede
codificar biunivocamente con estos médulos s6lo N mimeros distintos (de
0aN-1, de Na2N — 1, etc). El nimero N se denomina potencia del
sistema de mddulos.

§ 4.4. Etapa algoritmica del disefio

El disefio del operador de autémata consiste ‘en construir una aplicacién
de autémata segiin una descripcién verbal prefijada que incluye el objetivo
del disefio, la destinacién del dispositivo automdtico que se sintetiza y las
propiedades de funcionamiento del objeto controlado que junto al disposi-
tivo automatico disefiado realiza el objetivo planteado.

Por regla general, la aplicacién de autémata se prefija en forma de un
grafo de transiciones. El grafo de transiciones es un grafo G = (V(X, YD,
cada vértice del cual corresponde biunivocamente a un estado interior de
dispositivo automatico; si éste pasa de un estado S; al estado S, sus vértices
respectivos v; y vy se unen mediante un arco (v, y)eU ponderado por un
par de vectores de (X, Y), mediante los cuales se realiza este paso.

En la etapa algoritmica, Ia informacién no formalmente prefijada se
transforma en un sisterna formal como un operador de autémata. Al mismo
tiempo se emplea el principio de analogias. Formalmente este paso puede
basarse en aplicar las gramiticas, cuyas reglas de sustitucién formalizan
las propiedades dadas del objeto controlado. Resulta que se engendran las
composiciones de los grafos de transiciones que satisfacen la descripcién
verbal prefijada. Muchas veces esta composicién es una jerarquia de dos
niveles. El primer nivel comprende los grafos de transiciones, cuya reaccion
es una accién directa de mando sobre el objeto controlado. El segundo
nivel es el grafo de transiciones, cuya reaccién corresponde a la exitacion
de los vértices iniciales de los grafos del primer nivel.

Examimenos la formacion de los grafos de transiciones para los disposi-
tivos automdticos que realizan las unidades de la técnica de célculos y de
la automdtica industrial.

Sea prefijado un dispositivo automatico operacional en forma de un dispositivo aritméti-
co de accién sucesiva representado en la fig. 4.8. Este dispositivo contiene cuatro regisiros
RI, R2, R3, R4 y un sumador de un orden de tipo combinado que se comunican entre si
mediante los canales y las valvulas controlados, En el dispositivo los nimeros de cuatro orde-
nes se representan en el codigo binario 8421

Sinteticemos el dispositivo automédtico que controla la calculacién de la mantisa del co-
ciente. Antes de empezar a cumplir la operacion, el dividendo a estd en el registro RI, el
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divisor b, en el registro R2, los nimeros a y 4 estén normalizados y el cociente se forma
en el registro R3.

Durante €l cumplimiento de la operacidn de divisidn sustituimos la sustraccidén por la
adicidn en ¢l cédigo complementario y empleamos el siguiente atgoritmo.

1. En el cédigo compl io sust el ido del registro R2(%) del contenido
del registro Ri{a), copiando simull4 el et ido del registro RY en el registro R4,

2. S5i @ = 520 cumplimos el punto 3, ¢n caso contrario, €1 punto 4.

3. lnscribimos la diferencia @ — b en el regisiro RI, ponemos el regisiro R4 en «ceron,
inscribimos 1 en el registro R3, desplazamos el divisor en un orden a la derecha y el registro
del resultado a la izquierda, pasamos al punio 5.

4, Inscribimos el contenido del registro R4 en ¢l registro RI y 0 en el registro R3, desplaza-
mos ¢l divisor en un orden a la derecha y el regisiro del resultado a la izquierda, pasamos
al punto 5.

5. Si el punto 1 se ha cumplide menos que cinco veces, pasamos al punte 1, en caso
contrario al punto 6.

6. El fin {en caso general, €] conirol se transmite al bloque de normalizacidn del cociente).

Para simplificar, consideremos que ¢l cddigo del nulo estd inscrito de antemano en el
regisiro R3.

Si conocemos el dispositivo automético operacional y el algoritmo que
se realiza, componemos el diagrama temporal de funcionamiento del dispo-
sitivo automadtico de control que es el algoritmo para cumplir esta opera-
cion en términos de puntds de control, microoperaciones. A cada microope-
racion le corresponde un canal de salida del dispositivo automdtico de man-
do. De aqui el mimero de canales de salida del dispositivo automdtico que
se sintetiza es igual al nimero de todas las microoperaciones.
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El conjunto de microoperaciones del dispositivo considerado es el siguiente: DR! es el
desplazamiento del regisiro R1; DR2 es el desplazamiento del registro R2; DDR3 es el despla-
zamiento derecho del registro R3; £/R3 es el desplazamiento izquierdo del registro R3; DR4
es el desplazamienta del registro R4 (la presencia del registro R4 permite omitir el restableci-
miento del resto); CDI es el codigo directo del contenido del registro Ri; CD2 es el cddigo
directo del contenido del registro R2; CI{ es el codigo inverso del contenido del registro RI;
CI2 es el codigo inverso del contenido del registro R2; ER] es la entrada del registro RJ;
ER2 es la entrada del registro R2; P«O» RI es la puesta en wcero» del registro RI; EIR3
es la entrada del regisiro R3 a la izquierda; EDR3 es la entrada del registro R3 a la derecha,
CR1 es el ciclo del registro RI; CR2 es el ciclo del registro R2, +1 Z es la entrega de la
unidad en la cadena de traslado de! sumador; £4 es el funcionamiento con los vectores de
longitud 4; LS es el funcionamiento con los vectores de longitud 5; L6 es el funcionamiento
con los vectores de longitud 6; L7 es el funcionamienio con los vectores de longitud 7; R4— R/
es la transmisién del contenido del registro R4 at registro R/

La fila del diagrama temporal corresponde biunivocamente a una
microoperacion.

El conjunto de microoperaciones que se cumplen simultaneamente se
denomina microinstruccidn, el conjunto de sucesiones de microinstruc-
ciones que corresponde a una operacidn para cumplir se denomina
microprograina. Cada microprograma corresponde biunivocamente a un
valor del vector de entrada X. Por lo tanto, el mimero de operaciones que
se cumplen, el mimero de canales de entrada es igual a [logz | {x:] | ] donde
[ 1 es el signo del nimero entero mas proximo.
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Para sintetizar un dispositivo automdtico de mando que realice un algoritmo prefijado,
s¢ componen con anticipacién diagramas temporales detallando cada punto del algoritmo.
El diagrama temporal correspondiente a la catculacién del orden nule del cociente en el dispo-
sitivo automético aperacional (fig. 4.8) segun el algoritmo de divisién mencionado estd repre-
sentado en la fig. 4.9. Los diagramas temporales correspondientes a las calculaciones de los
Grdenes consecuentes del cociente se diferencian de los diagramas representados en la fig.
4.9 s6lo en el primer bloque, a saber: calculando i-ésimo orden del cociente en vez de cumplir
la rmicrooperacidn L4 cuatro veces se cumple respectivamente la microoperacién L{3 + §)
4 + i veces, es decir, calculando el primer orden se cumple la excitacién de L5 cinco vecss,
ete. Por consiguiente, para utilizar el primer bloque temporal hace falta «sintonizarlo» antes

de calcular el orden correspondiente del cociente,
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La sintonizacién del primer bloque temporal consiste en lo siguiente: L, s¢ examina como
un parametro de entrada de este bloque y antes de calcular el orden nulo se adjudica a j
el valor de 4 y después de calcular todo orden del cociente e] valor de j se aumenta en 1.
Sintonicemos ¢l primer bloque temporal introduciendo un regisiro complementario de cuatro
drdenes RS, antes de empezar a cumplir la operacidn de divisidn se inscribe 1 en este registro
¥ al cabo de calcular cada orden del cociente el registro R5 se desplaza en un orden. La
salida del i-ésimo orden del registro RS se transmite a la valvula L(| 7| %3).

Para hallar el niimero de érdenes calculados del cociente, introduzcamos un contador
de tres drdenes (C.C), cuyo estado 101 indica que cinco drdenes del cociente estdn caleulados
y hace falta transmitir el mando al blogue de normalizacidn.

Basandose en el andlisis realizado, es 3 cambiar el conjunto de microopera-
ciones, a saber: en vez de las microoperaciones L4, L5, L6 y L7 introducir las microopera-
clones DRS (desplazamiento del registro R5) y 1 en RS (inscripcién de la unidad en e registro
R3) y, también, introducir complementariamente las microoperaciones +1 C,C (adicion de
la unidad al contader de ciclos CaC) ¥ CiC en «O» (puesta del contador de ciclos en «On).

De las transformaci consideradas resutia que el diagrama dado en la fig. 4.9 se trans-
forma en el diagrama temporal representado en la fig. 4.10.

El diagrama temporal no da la ap]icaciéﬁ de automata. En efecto, a
un valor del vector de entrada que determina la operacién para cumplir
le corresponde varios valores del vector de salida (de las microinstruc-
ciones), es decir, el diagrama temporal prefija una transformacién no uni-
voca del vector de entrada en el de salida. Por consiguiente, esta transfor-
macién no es aplicacién de autémata. Para obtenerla es necesario introdu-
cir la memoria en el dispositivo automdtico que se sintetiza. Con ello, el

Fig. 4.11
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volumen de la memoria, igual al nimero de todas las microinstrucciones,
es premiditadamente suficiente. El conjunto del vector de entrada y del esta-
do de la memoria determina univocamente la microinstruccion.

En correspondencia con el diagrama temporal construyamos el grafo
de transiciones del dispositivo automadtico. Su estado interior se pone en
correspondencia biunivoca a una columna del diagrama temporal.

El grafo de las transiciones del dispositivo automético que realiza el diagrama temporal
(fig. 4.10) se representa en la fig. 4.11. En esta figura, las microinstrucciones se denotan por
letras latinas y tienen siguiente forma:

a = [l en RS, CaC en «On); .

b = [DR1, DR2, CD1, CR2, CRI, CR2, +1L; +1C,C];

¢ = |ERI]; d = (DR1, DR2, CD\, CR, CR2);

e = (+1X); f = {EDR3); g = (DR2, DIR3, DRa};

h = |AO»en RI}; k = |DR2, DIR3, DRA, R4—R1}; m = | DR5].

Consideremos gue si la unidad (x = 1) ltega a Ya entrada del dispositivo automdtico de
mando, éste controla la divisidn.

Las variables légicas (etiquetas) gue determinan el mando las designaremos mediante
ay, contenido del i-ésimo orden del registro RS5; 3 es el estado convencional del cantador C,C;

= 1, si el estado del contador es 101,
0 en caso contrario;

7o es el traslado al orden nulo cuando se suman los nimeros.

Examinemos un sistema grande de la automdtica industrial, sistema para quemar el com-
bustible sélido en una capa densa. El sistema comprende cuatro hogares semigaségenas, insta-
laciones de ali tacion de combustible y de aire, asi como la instalacién de desescoriado.
En la fig. 4.12 se representa ¢l esquema del hogar semigasdgeno, donde 7 es el transportador;
2 es el arado; 3 es la tolva de entrada; 4 es el combustible; 5 es el alimentador; &6 es el cargador;
7 es el semigas; & es la alimentacidn de aire; 9 es la cdmara de trabajo, 70 es la escoria; 1
es la capa del combustible recién curgado; /2 es la zona de reduccidn; /3 es la zona de combus-
tibn; 14 es la zona de escoria; IS5 es el emparillado.

Los hogares semigaségenos son un tipo de los hornos industriales y forman parte del
servicio de gas de una fébrica. La automatizacion del mando de los procesos de combustién
en los hogares es una de las tareas de automatizacién de todo el proceso tecnoldgico. La
completitud de gasificacién la determina ¢l porcentaje de bidxido carbdnico en el semigas.
Si el porcentaje aumenta, el calor de combusuon del semigas disminuye y la temperatura
del hogar aumenta. Antes de salir del hogar, el semigas se mezcla con el aire secundario y
se suminisira a la cdmara de trabajo. El hogar se alimenta con combustible por medio de
un sistema compuesto de un transportador, un lanzador de tipo arado, una tolva de entrada,
un alimentador y un cargador. La escoria se quita empleando sacudidoras, una vélvula de
arrangue y vagones. El aire destinado para quemar el-combuslible se suministra utilizando
la vdlvula de alimentacién del aire primario.

El mando del proceso de gasificacién se realiza manteniendo un espesor determinado
de la capa del combustible que se quema (de 200 a 400 mm para antracita, de 400 a 800

mm para hulla y lingito), es decir, se determina por la i idad de ati i6n de comb
tible, del aire primario y de extraccidn de escoria de la zona de combustidn.
El si de do de combustion tiene los siguientes canales (fig. 4.13) que son micro-

operaciones en el disefio del dispositivo automdtico de mando: K/ es el arrangue y la parada
del proceso de gasificacion; K2 es la indicacidn del funcionamiento del proceso de gasifica-
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cidn; K3 es el arranque y la parada de llenado de las tolvas de entrada; K¢ es ta indicacion
de llenado de las tolvas de entrada; K5 es el arranque y la parada de alimentacidn de los
hogares con combustible; X6 es la indicacién de alimentacién de los hogares con combustible;
K7 es la detencidn de gasificacidn en el primer hogar; K8 es la indicacién del estado del
canal X7; K9 es la detencidn de gasificacidn en el segund tolva; K10 es la indicacién del
estado del canal K9, K1/ es la detencidin de gasificacion en la tercera hogar; K72 es la indica-
cion del estado del canal K7/; KI3 es la detencidn de gasificacién en el cuarto hogar; K55
es la indicacion del estado del canal K/3; Ki4 es ) arado del primer hogar; KI5 es el arado
de la segunda tolva; KJ6 es el arado de la tercera tolva;, K17 es el arado de la cuarta tolva;
K18 es el transportador; K/9..K22 son los alimentadores de la primera, ..., la cuarta tolva,
respectivamente; K23..K26 son los cargadores; K27..K30 son las vilvulas de alimentacién
con aire secundario; K3/..K34 son los captadores del nivel superior en las tolvas de entrada;
K39..K42 son los captadores de alimentacién con combustible; K43..K46 es la indicacién
de averia de [a instalacién para llenar las tolvas de entrada; K47, K30 es la indicacidn de
averia de la instalacién para alimentar hornos con combustible; K57 y K52 es el arranque
¥ la parada del proceso de control, respectivamente; K53 es la indicacion de contral; K54
son las instalaciones iniciales de los elementos ejecutivos.

En Ja fig. 4.13: [ es el transportador; 2 es el arado; 3 es la tolva de entrada; 4 &5 el
sistema de alin ion de combustible; 5 es el hogar; 6 es la vdlvula de alimentacion de
aire; 7 es la vilvula comiin,

El conjunto enumerado de canales se incluye en el portador de un mode-
lo ¥z que formaliza el funcionamiento del objeto controlado. Ademas de
este conjunto, el portador del modelo ¥, puede incluir un conjunto de ele-
mentos complementarios que son identificadores de los canales interiores,
de entrada y salida introducidos para lograr el control eficaz de autémata.
Partiendo de esta informacién obtenida del tecndlogo en el portador se
establecen relaciones de cuasa-efecto tipo A — B que determinan la signatu-
ra del modelo ¥.. Es obvio, que este modelo es simétrico y puede represen-
tarse en forma del mografo G*(¥,). Se puede también expresar las rela-
ciones de causa-efecto en forma de diagramas temporales. El paso del
mografo o diagramas temporales al grafo de transiciones es andlogo al paso
de diagramas temporales (que pueden representarse en forma del mografo)
al grafo de transiciones de un dispositivo de control de microprograma.

Asi, pues, en esta etapa de disefio de los dispositivos automdticos se
realiza el paso de la aplicacién 4-=B a una aplicacién de autdémata
X8*—5"Y, donde X es el vector de entrada, Y es el vector de salida,
o reaccion del dispositivo automatico, S* es el identificador del estado
interior, en el cual pasa el dispositivo automatico en el momento examina-
do, §~ es el identificador del estado interior, al cual el dispositivo automati-
co pasa del estado S* bajo la influencia del vector de entrada X.

§ 4.5. Disefio abstracto del dispositivo antomaditico

La capacidad de memoria {5:} de un dispositivo automatico introducida
en la etapa de disefio algoritmica puede ser excesiva, lo que se puede elimi-
nar encolando estados equivalentes. La transformacién dada se refiere a
la etapa de disefio abstracto.
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Los estados se denominan eguivalenies cuando el dispositivo autométi-
co, encontrandose en éstas, elabora una misma sucesion de salida para cual-
quier sucesién de entrada.

De esta definicién se desprende gue si, encolando los vértices correspon-
dientes, se sustituye cada clase de estados equivalentes por un estado, el
grafo obtenido de transiciones representard la misma aplicacién X— ¥ que
el grafo inicial.

Huffman propuso el método de minimizacidn abstracta del dispositivo
automdtico basado en el encolamiento de estados equivalentes. Este méto-
do consiste en formacién sucesiva de clases de estados equivalentes con
ayuda de tablas de salidas y de transiciones. Examinemos el método de
Huffman en un ejemplo.

Ejemplo 4.1. Sea que después de realizar la etapa algoritmica de sintesis sc ha obtenido
el grafo de iciones rep do en la fig. 4.14, a.

Construimos la tabla de salidas que es una tabla bidimensional (tabla 4.3), a cada fila
de la cual le corresponde biunivocamente un vator del vector de entrada X a cada columna,
un estado interior del dispositivo automatico, y en la interseccién de i-ésima fila con j-ésima

columna se halla un valor del vector de salida ¥ que se elabora a la salida cuando el dispositivo
automético estd en el j-ésimo estado interior y a la entrada se da el i-ésimo vector,

Tabla 4.3
X 5
Si 5z 51 54 S5 Se 5
0 1 1 0 a 1 0 0
1 0 o 1 1 0 1 1

Si, en la tabla de salida, a dos estados interiores del dispasitivo automatico les correspon-
den distintos valores de las columnas, los estados no son equivalentes, puesto que en ellos
las aplicaciones X— Y son distintas, De antemano partamos tedo cl conjunto de estados en
1as clases de estados convencionalmente equivaly a saber: en una misma clase se incluyen
los estados, a las cuales les corresponden los valores iguales de las columnas en la tabla de
salidas: Xy = | S, S Ss); Kz = |83, Sa. 56 571,

Fig. 4.14
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Si la tabla de salidas se examina como una matriz de incidencia de un
modelo, los estados interiores se hallan en una misma clase cuando en su
respectiva matriz de frecuencia de las relaciones las frecuencias propias y
mutuas de los estados interiores son iguales una a otra:

aG™ _ Juo = 2fab + oo _
TS“(&nSb)‘-—'}:;—— 0.

Para que los estados interiores del dispositivo automaético sean equiva-
lentes es insuficiente tener una misma correspondencia X = ¥ solamente
en estos estados; es necesario que para cualquier otra transicién posible
de estos estados la aplicacion X— Y sca la misma.

Para verificar este dato construimos la tabla de transiciones (labla 4.4). En esta tabla,
a cada fila y colummna les corresponden los mismos valores que en la tabla de salidas y en
la interseccién de i-ésima fila con j~ésima columna se encuentra una clase de estados conven-

cional equival bajo la infl ia X el dispositivo automdtico pasa del estado §;
a esta clase.

Tabla 44
X &
S 52 & Sy s S 5
o K, K, K3 K, K, K K,
1 K2 K2 Kz Kz Kz K K;

Si la clase de estados convencional equi gida en el paso anterior no
es clase de dos equival , @ Sus dos les corresponden valores distintos de las colum-
nas; esto significa que, para las siguientes transiciones, las aplicaciones X— Y son diferentes
para los estados dados.

Cada clase K; se parte en nuevas clases de estados convencionalmente equivalentes con
la particularidad de que una misma clase comprenda todos los estados de la clase X; con
los nimeros iguales de columnas: K| = (5, 5z, Ss), Ki = |5, Ss], Kf= [5, 51,

Componemos la matriz de frecuencia de las relaciones segun esta tabla
de transiciones determinando, al mismo tiempo, la multiplicacién como
Ki x Ki =1, Ki x K; = 0 (i ## j). Entonces cuando se parten las clases ob-
tenidas en el paso anterior los estados interiores se encuentran en una mis-
ma clase, si las frecuencias propias y mutuas de estos estados son iguales
una a otra, o sea,

M
8 (Su S5 =0,

Al formar las clases K;, Ki, K{ volvemos a construir la tabla de transiciones, etc. hasta
que cada clase de estados ionall equival formada en el paso anterior sea
constante.

Construyamos la tabla de transiciones {tabla 4.5) teniendo en cuenta la particion de la
clase K>
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Tabla 4.5
X i
5 5 S Sa Sy S 5y
0 K K, Kf X K Ky £
1 Ki Ki Kf K{ Ki K Ki

Del andlisis de esta tabla deducimos que todos los estados de cada una de las clases
formadas «se portan como amigosw»: bajo la influencia de X pasan a la misma clase que
en la salida permite oblener un mismo valor de Y para 1odos los estados de la clase al realizar
una t icidn. Por gui , todos los estados de una clase se portan como un estado
que los sustituye.

Sustituyamos las clases K, K3, K¢ por los estados interiores S;, S5, S;, respectivamente.
Como resultado obtenemos el grafo minimizado de transiciones (fig. 4.14, b) que prefija la
misma aplicacidn X — ¥ que el grafo inicial de transiciones (fig. 4.14, a). Para ilustrarlo reatice-
mos ires experimentos.

Sea dada la sucesidn temporal en forma X(¢) = 011010 a la entrada del dispositivo automa-
tico. En los casos primero y segundo el dispositivo automdtico estd prefijado por el grafo
inicial de transiciones (fig. 4.14, @) respectivamente a los estados iniciales 5; ¥ S2. En el tercer
caso €l dispositivo automdtico esta prefijado por el grafo minimizado (fig. 4.14, b) con el
estado inicial S.. Determinemos sucesiones temporales de salida Y{r) para cada caso.

Reduzcamos los resultados de todos los tres experimentos en la tabla (1abla 4.6).

Tabla 4.6
T f 2 3 1" 151 3
X{f) 0 1 1 0 1 0
S, = S, St + 1) Sz Ss ] S5 Ss -
¥(t) 1 0 I o 0 0
5 St + 1 S Se o] 8s Ss S
¥ir) I 0 1 0 0 0
S, = 5. S+ 1) Sa Sp Se Sa Sa Se
Y | 0 1 0 0 0

Si las dimensiones de la tabla de salidas y transiciones son grandes para
la minimizacién necesaria del grafo de transiciones por medio del ordena-
dor, es conveniente emplear matrices de frecuencia de las refaciones corres-
pondientes a estas tablas, lo que simplifica los cdlculos. Con ello, se minimi-
zan los grafos de transiciones basdndose en la afirmacidn siguiente.

Los estados interiores S; y Sp son equivalentes si, y sélo si, las derivadas

% (Sz, Sp) de los grafos modelos, correspondientes a las tablas de salidas
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y transiciones, son iguales a cero

G _ e — 2fap + Son _
W(Sg, Sp) —T_o

en todo paso de la particién del conjunto de estados interiores en clases,

La minimizacién de la capacidad de la memoria, por ejemplo, cuatro
veces, ahorra sélo dos elementos de la memoria. Un medio mas actual y
potente para optimizar toda la estructura del dispositivo automadtico es la
descomposicion abstracta de los dispositivos automdticos, especialmente
descomposicién paralela de los dispositivos automdticos. Por una parte,
la necesidad de buscarla se debe a las exigencias modernas que deben satis-
facer la accidn rapida del control (que condiciona el uso del control paralelo
de objeto). Por otra parte, el aumento de la fiabilidad del control automati-
co exige la particién del dispositivo automaético en una serie de los dispositi-
vos automdticos de dimensiones menores que no son ligados entre s{ fun-
cionalmente y garantizan la realizacién del operador obtenido de autémata.

La bisqueda de la descomposicion paralela de los dispositivos autom4-
ticos abstractos se reduce a la descomposicidn del grafo de transiciones
en el producto cartesiano parcial de los grafos m4s simples conforme al
numero de vértices. Descomponer el grafo G en ¢l producto cartesiano par-
cial significa hallar los grafos G, i = 1, ..., n, tales que GC G X Gz X
X uew X G

Para una clase de los dispositivos automadticos de mande de
microprogramas, importante en la técnica de cdlculos, se puede resolver
el problema de construir la descomposicién paralela utilizando las pro-
piedades tipicas de los dispositivos autométicos de esta clase.

Al examinar los dispositivos automadticos de microprogramas referire-
mos a los elementos de los cuales se toma la informacién que caracteriza
la marcha de célculos a las cadenas de reaccién incluidas en el bloque de
memoria del dispositivo automdtico. Los dispositivos autométicos de
microprogramas poseen una propiedad especifica: el vector de entrada X
no cambia desde el comienzo hasta el fin del funcionamiento del dispositivo
automatico hasta que se cumpla la operacion prefijada. Empleando esta
propiedad detallemos el concepto del dispositivo automdtico de
microprogramas.

Introduzcamos con anticipacién alqunos conceptos. Se denomina zung
G: un grafo ponderado en el que existe al menos un vértice, a través del
cual pasan todos los circuitos del grafo, y no existe ningiin camino que
no sea parte de tal circuito,

Un grafo se denomina reducible al zung, si transforma en el zung cuan-
do se introducen en él no mds de un vértice y sus arcos incidentes.

Un dispositivo automdtico se denomina de microprogramas, si su grafo
de transiciones se reduce al zung con el vértice inicial que corresponde al
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comienzo y al fin del funcionamiento del dispositivo automético para cual-
quier vector de entrada X que determina la operacion realizada y no varia
en estados intermedios. En caso pgeneral el dispositivo automdtico de
microprogramas realiza varias operaciones a cada una de las cuales le
corresponde un microprograma. Durante la construccién del grafo de tran-
siciones que realiza estos microprogramas encolaremos los estados
compatibles. -

Estados interiores S; y §; se denominan compatibles S; = 5}, si cualquier
vector de entrada que llega al dispositivo autématico en estado S; no coinci-
de y no integra ningin vector de entrada que llega al dispositivo automitico
en estado Sy Xy, £ X,

Un subgrafo G* = {(V’, U’} de un grafo G = { V¥, U) se llama binci-
dente, si a toda su vértice le son incidentes dos, y sélo dos, grupos de arcos
paralelos que entran y salen, tal vez excepto un elemento minimal v* ¢ V"
¥ un elemento maximal v~ €V’ del conjunto V' con la particularidad de
que en el vertice v* pueden entrar y del vértice v~ pueden salir varios

Sumacidn (X=01)

(hx2,8)  (BX2,8) (Gx Fiol lixnd) (% ape)

/% X2 &l [Xpxp, 8]
{Fy xp, k) [0 X5, 8115 %3, 8] (X, Ny, &)

Resta [ A=) al
/I{’bm} /xy’zfd) /*rlpﬂ'} f{l’t-a’/

(re ), 8] (% Xs, 8/

Xy X2.8] [h,8] I "}r"}f‘th‘?/’! A df

Adicidn por graenes x=18/
inal 5,e) [ F0d) 14 i, 8/
DuaDaaDoa® 2
d
Fig. 4.15
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arcos no paralelos. Las sucesiones de microinstrucciones que ponderan el
subgrafo bincidente se denominan microrrayo y el niimero de microinstruc-
ciones que integran la sucesién se lama su longifud,

Al sintetizar el dispositivo automatico de mando que realiza varios
microprogramas encolamos estados interiores compatibles teniendo en
cuenta dos restricciones. En primer lugar, debemos encolar empezando por
los estados finales correspondientes a operaciones distintas. En segundo
lugar, encolamos los estados compatibles que se elaboran en la salida del
dispositivo automdatico mediante una misma microinstruccién.

Examinemos el dispositivo automético de microprogramas para controlar el procesor del
ordenador que cumple las operaciones «Sumacidn» (@ + b), «Sustraccién» (@ — b) y «Adi-
cién por érdenes». En la fig, 4.15 se representan los grafos de transiciones construidos por
diagramas temporales. En este dibujo las microinstrucciones se designan por letras latinas:
a= (BD); b= (CR);c=(SE); d = {C.B, BC, B~C); e = (CC, R); k = [BD, C.8
BA, +1T30D); m = [CA, BD}; p = {CA, CB); r = |CR, C.B].

2 ) ) L IR 0%, 8
o (% x3,%) (%, %,8) Mhefc)  Mmred)  Mreel

O—0—®
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'Vlrd/ /‘:’r.fr"y
M ip, ¢/

Nep?
O
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XU LT _lowl)  _iwfid (4 (8 o~
K‘J : \../)
I dp i g)
hurél
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~ s S Ga) - /’?Q x4 £
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4
Fig. 4.16
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Las microoperaciones, que son los elementos de microinstrucciones, se descifran del mo-
do siguiente: CA es el complemento del registro A; BD es el borrado del registro £, CR
es el comienzo del recorrido; CB es el complemento del registro B; CuB cs el cdlculo del
registro B; ST es la salida de la suma I; B4 es el borrado del registro 4; +1730D es «+ln
en el trigger 30 del registro D; 8C es ¢l borrado del registro C; B—C es la transmision del
registro B al registro C; Cy B es el célculo del registro C; R es la respuesta sobre el cumplimiento
de la operacidn. N
El resultade de los cdleulos que se realizan se caracteriza por una variable légica TOD,
valor del trigger de cero del registro D (en la fig. 4.15 v, a continuacion, TOD se denota por +)
Encolemos los estados compatibles. Como resultade obtenemos el grafo unido de transi-
clones G (fig. 4.16, a). Sobre este grafo en los estados 5, S. ¥ Sz completamos la definicién
de la aplicacion X'— Y afladiendo (%, X2, ), (¥, X2, d) ¥y (%1, %, e), respectivamente, (fig.
4,16, b), Después de haber encolado los estados compatibles contraigamos los subgrafos binci-
dentes. Como coniraccion de subgrafos bincidentes se comprende la sustitucién de este
subgrafo por un vértice, al cual pondera el microrrayo correspondiente. Los microrrayos tienen
siguiente forma: A = abe; B = de; D = kb, E = mb; M = par,

Como resultado de la contraccién de los subgrafos bincidentes obtene-
mos el grafo del dispositivo automético de mando (fig. 4,17, @) con la deter-
minacién interrumpida: varias microinstrucciones corresponden a un esta-
do que, a su vez, corresponde al vértice, al cual esta contraido el subgrafo
bincidente.
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El grafo inicial de transiciones (fig. 4.16, b) se obtiene como el producto
cartesiano parcial del grafo G (fig. 4.17, @) y un grafo bincidente, cuyos
fin y origen se unen por un arco y el nimero de vértices es igual a la longi-
tud maximal de microrrayos considerados (en este caso a tres). El grafo
bincidente, cuyos fin y origen se unen por un arco se realiza como un
contador. .

De tal modo conservamos el cardcter determinado del dispositivo auto-
mético y la equivalencia de su funcionamiento utilizando en la realimenta-
cién del dispositivo automdtico el contador de microinstrucciones en el
microrrayo que aumenta su valor hasta el nimero igual a la longitud maxi-
mal del microrrayo lna (fig. 4.17, b).

Pasando al vértice vg, que corresponde a un subgrafo bincidente
contraido Gi, en el contador se pone el numero igual a /ns — /i, donde
I; es la longitud del microrrayo que pondera este subgrafo. Con ello, los
I; estados del contador se ponen en correspondencia biunivoca a las
microinstrucciones correspondientes al vértice vg,. Después de cada tran-
sicién en el subgrafo bincidente se suma 1 al contenido del contador. Por
lo tanto, el conjunto del cadigo del vértice vg, y el contenido del contador
determina biunivocamente la microinstruccién en ejecucién. El relleno en
exceso del contador indica que el dispositivo automdtico ha salido del esta-
do correspondiente al vértice vg,.

Las transiciones organizadas de tal modo permiten no excitar las salidas
de la parte de combinacién del dispositivo automatico que'van a la reali-
mentacién cuando se cumple el microrrayo, puesto que el estado que memo-
riza el vértice vg, no cambia y el contador pasa automaticamente de un
estado a otro al adicionar 1 o con ayuda de la microoperacién +1Cqp (al
contador de microinstrucciones se suma la unidad) que amplia el conjunto
de microoperaciones. Durante la utilizacion del ultimo procedimiento se
excita sélo una salida orientada a la reaccion.

Realicemos transformaciones sucesivas del grafo de transiciones con-
centrando estados no encadenados. Dos estados interiores (dos vértices)
del grafo de transiciones se denominan no encadenados, si no integran nin-
gin camino simple del grafo de transiciones cuando funciona el dispositivo
automdtico sintetizado.

Para realizar la transformacién propuesta del grafo de transiciones
construyamos el grafo G; del modo siguiente. A cada vértice del grafo de
transiciones le pongamos en correspondencia biunivoca un vértice del grafo
Gs; un par de vértices va, vn(va = ) del grafo G es adyacente, si en el
grafo de transiciones existe un camino simple que pasa por los vértices
correspondientes a vs ¥ up cuando funciona el dispositivo automatico sinte-
tizado. Denominaremos grafo de encadenamiento el grafo Gy construido
de tal modo.
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Empleando la operacidon de colorar los vértices del grafo partamos todo
el conjunto de vértices del grafo de encadenamiento en subconjuntos, cada
uno de los. cuales comprende vértices correspondientes a los estados inte-
riores no encadenados del dispositivo automatico que sintetizamos.

En la fig. 4.18, @ se dan el grafo de encadenamiento y su coloracién
para el dispositive automadtico representado en la fig. 4.17, a. Al colorar
¢l grafo de encadenamiento tenemos los subconjuntos siguientes de estados,
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cada uno de los cuales consta de los estados no encadenados entre si:
W= 18, 82, S}, Vu= (S, S}, Vin= (S:], Viv={5].

De cada subconjunto Vi(i = 1, . . ., 1V} tomamos por un elemento, por ejemplo, S, Ser
Sy, 8y, de éstos formemos el subconjunto ¥3; = (S5, S, S S, 1. Luego de cada subconjunto
Vi volvemos a tomar por un elemento entre los que se quedan y a formar un subconjunto
de éstos. Elegimos hasta que cada uno de los subconjuntos ¥, se transforme en un conjunto
vacio. Los subconjuntos formados como resultado constan de estados encadenados. En este
caso tienen siguiente forma:

Vig = |8, S S0 851, Va2 = 522, S), Vs = |5

Cada subconjunto compuesto de estados encadenados se sustituye por
un estado, cuyo peso es un conjunte de microrrayos correspondientes a
los vértices que se unen (en caso particular el microrrayo puede comprender
una microinstruccién). Esta sustitucién se denominard concentracién de
estados encadenados. Después de concentrar los estados encadenados del
grafo de transiciones (fig. 4.17, @) obtenemos el grafo de transiciones G,
(fig. 4.18, b).

Las concentraciones de estados encadenados interrumpen también la
determinacién del dispositivo automatico. Conservamos la determinacién
y la equivalencia del dispositivo autom4tico que se sintetiza utilizando en
la realimentacién un elemento de memoria que fije el color correspondiente
al microrrayo que se cumple en ¢l momento dado (fig. 4.18, ¢). Entonces
el codigo del vértice en el grafo final de transiciones, el color y el contenido
del contador de microinstrucciones del microrrayo en su conjunto determi-
nan biunivocamente la microinstruccién que se cumple. Después de esta
transformacion, el grafo de transiciones puede representarse como el pro-
ducto cartesiano parcial de los grafos correspondientes (fig. 4.18, ¢), lo que
simplifica el proceso de la codificacion de estados interiores y disminuye
de hecho los gastos para aparatos cuando se sintetiza el esquema de excita-
c16n de canales a reaccién inversos del dispositivo automditico.

Sien el grafo de transiciones correspondiente a los microprogramas que
se realizan no hay circuitos, es conveniente descomponerlo sélo en dos gra-
fos excluyendo el grafo que indica el cambio de colores. Al mismo tiempo,
se realiza la contraccién de los subgrafos bincidentes en cada grafo de tran-
siciones correspondiente a la operacidn que se realiza y, después, se encolan
los estados compatibles.

Si el grafo de transiciones es un arbol, en la realimentacion del dispositi-
vo automdtico se queda solamente el contador. Ademds, el contador realiza
¢l grafo de transiciones, si se memorizan o presentan valores de las variables
l6gicas gue caracterizan los calculos. Al estado interior inicial del dispositi-
vO automatico se le pone en correspondencia un cddigo inicial en el conta-
dor, por ejemplo, el cédigo 0. Los estados interiores, a los que el dispositivo
automatico pasa del estado S; con el cédigo A, se codifican como A4 + 1.
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Los cédigos cambian por medio de adicionar la unidad al contador a cada
transiciéon. Entonces, si existe la ramificacion, ciertos estados interiores
tendrdn cédigos iguales. Ademads, la determinacidn del dispositivo automé-
tico no se interrumpe debido al almacenamiento de los indices l6gicos que
caracterizan los calculos. Las indicaciones del contador y los valores de
las variables 16gicas determinan univocamente la microinstruccién necesa-
ria. Esta afirmacion es vilida, ya que el grafo de transiciones es un 4rbol, -
o0 sea, no contiene ciclos. Al finalizar las operaciones se realiza la extincién
de contadores.

Representando el grafo de transiciones correspondiente al dispositivo
automatico de mando de una operacién en forma del producto cartesiano
parcial, realizamos las siguientes transformaciones:

1) encolamiento de estados pseudoequivalentes;

2) contraccién de los subgrafos bincidentes, ademés como resultado de
cambiar la sucesién de aplicacion de estas transformaciones, surgen algunas
variantes equivalentes.

Examinemos el grafo de transiciones para controlar la operacién de divisidn (vease la
fig. 4.12). Concentrando los subgrafos bincidentes, obienemos ¢l grafo de transiciones G (fig.
419, @). A los vértices de este grafo les corresponden los siguientes microrrayos: 5, — a;
8. — bededede;, Sy — de; 8q — de; 8. — de; 5 — hk; 8, — efg; 851 — m. Por consiguiente,
para restablecer el funcionamiento equivalente hace falta tener el contador de ocho estados.

Se puede encolar los vértices correspondientes a los estados S y S, del grafo de transi-
ciones al haber memorizado el indicio go; la determinacién del dispositivo automdtico con

Fig. 4.19
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ello, no se interrumpe. En definitiva, tenemos el grafo de transiciones G, representado en
la fig. 4.19, b. Los estados del contador, ¢l indicio oy el codigo del vértice del grafo de
transiciones (fig. 4.19, &) determinan univocamente la microinstruccién que se cumple,

Los estados interiores se denominan pseudoeqguivalentes, si una misma microinstruccién
se realiza en ellos. Para el grafo de transiciones G (véase la fig. 4.11) tenemos los siguientes
conjuntos de estados pseudoequivalentes: M. = {53, S5, S, S5, Sii. S1s, Sis, Sp7); Ma =
= [58s, 5, S5 Si0, S12, Sis, S}

Al encolar los estados pseudoequivalentes (fig. 4.20, a) se interrumpe la determinacién
del dispositivo automético. Para restablecer ia determinacién y equivalencia del funci i
to del dispositivo automdtico introduzcaros el contador organizando ciclo de longitud va-
riable. En la fig. 4.20, b se ofrece el programa de funcionamiento de contadores; en el dispositi-
vo automdtico a examinar & = 7. El contador de longitud del ciclo C.LC realiza ¢l ciclo extes
rior. El contador del nimero de ciclos C,C realiza e} ciclo interior, En el bloque que incluye
estos contadores (fig. 4.20, ) se calcula el indicio v que restablece la determinacién del disposi-
tivo automdtico. En este mismo bloque se calcula ¢l indicio # del fin de la operacidn (como
seiial de relleno de! contador €,LC con la particularidad de que su estado inicial es igual
a dos).

Después de restablecer la determinacién del dispositivo automético encolamos los subgra-
fos bincidentes (fig. 4.21, a, b). Para restablecer la determinacién de] funcionamiento del dis-
positivo automdtico una vez rados los subgrafos bincidentes, introduzcamos otros dos
contadores que tienen tres y dos estados, respectivamente,
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Fig. 4.21

Al restablecer la determinacién del dispositivo automatico introducien-
do contadores, surge el problema de minimizacién del nimero de contado-
res que se reduce al problema de coloracién del grafo de borrade Gy. A
cada contador se le pone en correspondencia biunivoca un vértice del grafo
Gy: dos vértices del grafo G, son adyacentes, si los subgrafos del funciona-
miento de contadores correspondientes tienen al menos un vértice comin
(el subgrafo G, es el subgrafo del funcionamiento del contador «, si para
realizar transiciones correctan en este subgrafo es necesario saber el estado
del contador o).

En el caso examinar a los contadores C,C, C,LC, Ca(Sa) ¥ Cn(Ss) les corresponden
subgrafos, cuyos portadores tienen, respectivamente, forma sigulente: §S:, Sai. |82, Se Sa
Say Sgy S23), [Sa) ¥ §8g). El grafo de borrado G para ¢l caso considerado esta representado
en la fig. 4.21, c.

Es obvio, que dos «contadores», que corresponden a los vértices no
adyacentes en el grafo de borrado, pueden ser examinados como un conta-

15—8577
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dor fisico, ya que no existe ningiin estado, en el cual sea imprescindible
saber los estados de los dos contadores para que el dispositivo automatico
funciones correctamente. De este modo, la minimizacién del nimero de
contadores se reduce a la coloracién de los vértices del grafo de borrado,

En virtud de la coloracién minimal de vértices del grafo de borrado (fig. 4.21, ©), en

esle caso es sufici tener dos c¢ lores: C,LC y C.CK que se conecta en los momenios
del funcionamiento de los contadores CoC, Cul(Su) ¥ CalSa) (fig. 4.21, d).

El empleo de los contadores en el circuito de realimentacién de los dis-
positivos automdticos de mando posibilita utilizar nudos estdndares del or-
denador ejecutados en forma de microcircuitos integrados.

Como resultado de la biisqueda de la descomposicién Optima de los
dispositivos automdticos obtenemos algunas variantes equivalentes, entre
los cuales escogemos la variante final que tiene valor minimal p(GMy:

I=1 i

u
My _ 1 i 1 Ji — 2y + f
p(GY) ToT - .(__—!{f_ 1) Z Z——-’—f; l (@.11)

=1 Jmigl

donde | /| es el niimero de palabras en el mografo, cada una de las cuales
corresponde a una transicién de autémata y se representa como XS* 5" Y;
{ es el numero de letras (termas) que forman la palabra XS* S~ Y; por
el signo exterior T se halla una expresién que es valor medio de la derivada
8GM/aS calculada sobre los pares de letras que forman la palabra
XS* 87 Y. A esta variante la corresponde una realizacion estructural més
sencilla.

§ 4.6. Codificacién de los estados interiores

En la etapa de codificacion de los estados interiores, una aplicacién
XS* -8 Y obtenida en la etapa del disefio abstracto se transforma en
una aplicacién XZ* —+Z~ Y, donde §*, §~ son los identificadores de esta-
dos interiores considerados en los momentos del tiempo ¢ y f + 7, respecti-
vamente; Z*, Z~ son codigos de estos estados, cuyos elementos son letras
del alfabeto estructural que se sintetiza; son 0 y 1 para la légica de Boole.

Se puede codificar estados interiores del dispositivo automatico partien-
do de las exigencias de reducir gastos para aparatos o bien de aumentar
la fiabilidad del funcionamiento del dispositivo automético, o bien de satis-
facer simultdneamente las dos exigencias.

Analicemos ¢l método de codificacion que satisface la primera exigen-
cia. El mimero de procedimientos de codificar V vértices del grafo de transi-
ciones G = (¥, U) aumenta, mientras que aumenta | V|:

» i@ M~ 1yt
"IN yiioga | V] 1)

(4.12)
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donde [ ] es el nimero entero proximo. Cada procedimiento de codificacién
determina sus gastos de aparatos para realizar el dispositivo automatico.

Hartmanis, Stearns propusieron el m4ds interesante método de codifica-
cion con empleo de parficiones sustituyentes, Este método se basa en dismi-
nuir la dependencia funcional de las funciones de excitacién. Lamentable-
mente, cuando se codifican los estados del dispositivo automatico de gran
capacidad de memoria este método necesita mucho trabajo, lo que no per-
mite utilizarlo para codificar estados interiores de los dispositivos autométi-
cos de mando.

Examinemos el método de frecuencias y matrices para codificar los esta-
dos. Sea que como resultado de la sintesis abstracta fue construido un
mografo que determina la aplicacién XS* =5~ Y. Después de la codifica-
cién obtenemos un mografo que prefija la aplicacion XZ* —Z ~ Y, es decir,
en el mografo inicial sustituimos los vértices correspondientes a los identifi-
cadores de los estados interiores S; por subgrafos completos correspondien-
tes a los codigos Z; de los estados interiores. Este método de codificacién
puede realizarse empleando el siguiente algoritmo de sintetizar el arbol
codificante.

1. Construimos una matriz bidimensional Q = [gy], a cada fila de la
cual le corresponde biunivocamente una microoperacién o un valor del ca-
nal de entrada (elementos del vector ¥ o X), a cada columna, un estado
interior

1, si la terma primaria correspondiente a la i-ésima fila
que se incluye en cada par de vectores (X, Y)}(X—=Y)
que ponderan los arcos salientes del vértice j;

0 en caso contrario.

qy =

Arbitrariamente a cada estado interior (una columna de la matriz) le
ponemos en correspondencia biunivoeca un vértice maximal del drbol codifi-
cante que se sintetiza. Ponemos Q = Q.

2. Por la matriz  encontramos la matriz de frecuencia de las relaciones

F=0"0.

3. Calculamos valores de la derivada del modelo prefijado por la matriz

4. Escogemos un par de estados interiores con el valor calculado mini-
mal de la derivada.

5. Eliminamos el par escogido de estados y en el 4rbol codificante le
ponemos en correspondencia un vértice, origen de los arcos, cuyos extremos
son los estados escogidos. Al vértice construido le ponemos en correspon-
dencia biunivoca una columna de la matriz Q- que se construye. Esta co-
lumna es igual al producto vectorial de las columnas de la matriz  que
corresponden a los vértices escogidos.
15¢
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6. Comprobamos, si se quedan los estados interiores no considerados,
para los cuales se calcularon valores de las derivadas. Si «si», pasamos al
punto 4, en caso contrario, al punto 7.

7. Comprobamos, si estd formada la matriz Q.. Si «si», consideramos
Q- = Q y pasamos al punto 2, en caso contrario, al punto 8.

8. Ponemos 0 y 1 en correspondencia a cada dos arcos que salen de
un vértice del drbol construido partiendo de los arcos salientes de la raiz
del 4rbol.

El camino que une la raiz del 4rbol y un elemento maximal estd ponde-
rada por el ¢6digo que se pone en correspondencia al estado interior que
corresponde a este elemento maximal del arbol.

9. Fin.

Ilustremos el algoritmo propuesto en el siguiente ejemplo.

Ejemplo 4.2. Sea que después de ]a sintesis abstracta fue obtenido el grafo de transiciones
G (fig. 4.22, a). Empleando el algoritmo propuesto codifiquemos estados interiores del dispo-
sitivo automético. Proponemos construir individualmente la matriz Q correspondiente al grafo
dado. La matriz de frecuencia de relaciones correspondiente a la matriz ) tiene siguiente
forma:

Co=tonn

—_- o wa

——Rwmo N

R N <

—wm——waln

W= o
o

Calculamos valores de la derivada para cada par de estados:
s+fn  2-2245
S 2

acH -
5 (5, S) = Ju =1,5;

[ 101,001

(110, 67

o

Fig. 4.22



§ 4.6. Cadificacién de los estados interiores ‘229

%t&-&)= i —?I’:m-f.... .. 2-2;1 Lk TP

0 =520 suso-6 207 (51 59 = 0%

_&_:;g‘_ (5, 85) =T 8;;"" {5z, S) = 4 a:}; (Ss. Sg) = 0,33;

-E-;i'i {53, Ss) = 2,5, % {55, Se) = 6 a;}‘: (S3, Ss) = 8.

Los demas valores de la derivada son iguales a ==, La derivada a;;“ (Si, Sj) tiene

valor minimal sobre el par (Ss, Ss). A este par de estados Je ponemos en correspondencia
1a winterseccién» de los vértices correspondientes del arbol en construccién, Segin el algorit-
mo juntamos en pares de estados Sz, Ss y 51, 5. Como resultado construyamos el siguiente
nivel del drbol.

La matriz Q. correspondiente a los vértices del nivel construido tiene forma:

SNS: §NS8 S:aNSs

0 1 1 A
1 1] 0 X
0 i 0 X2
0 o 1 X
O = 0 0 o x3
0 0 o X3
i 0 0 »n
1] 1 0 i
0 o 4] ¥
0 0 1 |3

La matriz de frecuencia de relaciones correspondiente a la matriz Q. tiene sigviente
forma:

20 0
Fo=)0 3 1
o il 3

La derivada del modelo ¥(Q:) sobre los pares de estados es
3— 214
_"6% (SiSs, SaSe) = —il—i =6

Los demas valores de la derivada son iguales a e, El drbol codificante buscado estad
representado en la fig. 4.22, b. Segun el 4rbol codificante construido tenemos siguientes cédi-
g0s de los estados interiores de! dispositivo automatico: §,—010, 5;—100, S;—011, $—110,
85101, Ss—l1L

Examinemos la codificacién de estados interiores del dispositivo auto-
mético partiendo de la satisfaccién de las exigencias de fiabilidad. El fun-
cionamiento del dispositivo automatico puede interrumpirse debido al re-
tardo desigual en el esquema real que realiza el dispositivo automdtico en
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[N — ~ 1
-

Fig. 4,23

virtud del efecto de carreras, cuya esencia puede ser ilustrada en el siguiente
ejemplo (fig. 4.23). Sea que en el momento examinado dos triggers 4 y
B se conmutan (la primera condicién), con la particularidad de que la fun-
cién de excitacién ¢ de uno de éstos (por ejemplo, B) contiene en calidad
de una variable el valor del trigger A, ¢g = ¢(..., 24, ...) (1a segunda condi-
cion) y el tiempo de retardo en los esquemas de excitacién de los triggers
Ay B se determina por la siguiente desigualdad: Apa> £4(Aga ¢s €l tiempo,
durante ef cual el valor «viejo» del trigger 4 existe en el esquema de excita-
cién del trigger B; 14 es el tiempo de retardo de la sefal de excitacién del
trigger A) (la tercera condicién).

Cumpliendo estas tres condiciones el valor del trigger no seré calculado
correctamente (ya que para el cdlculo correcto es necesario que el trigger
A conserve su valor «viejo» por lo menos durante 27 (después de empezar
la transicién del dispositivo automdtico), pero el trigger A «renueva» su
valor dentro de 7). Esto es el llamado efecto de carreras. Al haber dicho
efecto el dispositivo automatico no pasa al estado indicado para la transi-
cidén dada, lo que interrumpe la correspondencia de autémata.

Se puede eliminar las carreras interrumpiendo una de las tres condi-
ciones de éstas. Para interrumpir la tercera condicién, o sea, para cumplir
la desigualdad Aps<t4 €5 necesario tener esquemas de excitacion de los
triggers A y B para determinar Aps ¥ £4. Se puede obtenerlos s6lo en la
etapa de la sintesis estructural, para cuya realizacién son necesarios los re-
sultados de codificacidn de los estados interiores. Por consiguiente, elimi-
nando légicamente las carreras es imposible interrumpir la tercera condi-
cion. Técnicamente se puede realizarlo introduciendo la segunda cascada
de elementos de reaccidn o bien por medio del cumplimiento simultdneo
del esquema del dispositivo automatico.

La segunda condicién de carreras (s = ¢(..., z4, ...) puede ser in-
terrumpida por medio de desatar funcionalmente los elementos de memo-
ria, por ejemplo, empleando particiones sustituyentes,
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La primera condicién (conmutacién de dos, y més elementos de memo-
ria durante una transicién del dispositivo automadtico) se interrumpe, si du-
rante cualquier transicién del dispositivo automatico se conmuta sélo un
elemento de memoria. Esto significa que a cada estado interior del disposi-
tivo automatico se le pone en correspondencia un cédigo tal que si existe
la transicién del estado S; al estado S; (Si # §;), sus codigos correspondien-
tes se diferencian solamente en un orden. En otras palabras, durante la
realizacion del dispositivo automatico las carreras ausentan, si se puede
colocar el grafo correspondiente de tramsiciones en un hipercubo n-
dimensional de tal modo que las transiciones del estado S; al estado S;
(Si # S;) se realicen s6lo por las aristas del hipercubo y los cédigos de vérti-
ces correspondientes del hipercubo se hayan puesto en correspondencia a
Yos vértices del grafo de transiciones. Esta codificacién se denomina vecina.

Digamos que para un grafo de transiciones es posible la codificacién
vecina por los cédigos de longitud », si éste es encajable en un cubo n-
dimensional. Expongamos la condicién de encajabilidad del grafo de tran-
siciones en el hipercubo.

Del analisis del hipercubo se desprende que si el nimero cromético #(G)
de un grafo de transiciones G (sin contar los arcos que son los lazos} es
mdés que dos, para este grafo de transiciones no existe la codificacién vecina.
Por lo tanto, para que el grafo de transiciones G tenga codificacién vecina
hace falta que no contenga ciclos de longitud impar. Si los contiene, es
necesario eliminar todos los ciclos de longitud impar introduciendo estados
interiores complementarios, en los cuales no se realiza la aplicacién X—Y.
Estos estados se denominan estados interiores inestables.

Examinemos un algoritmo exacto de la codificacidén vecina basado en
contar figuras prohibidas que caracterizan el cardcter cubicable del grafo
codificado.

Ejemplo 4.3. Sea dado un grafo de transiciones del dispositivo automatico (fig. 4.24)
que se representa sin los lazos, arcos miiltiples y !a orientacidn (ya que todo esto no es sustan-
cial para resolver el problema de la codificacion vecina). En correspondencia con las codi-
ciones deducidas anteriormente para que sea posible la codificacién vecina, es necesario y
suficiente que el grafo no contenga subgrafos criticos prohibides. Al disefiar el dispositiva
automatico ¢5 necesario transformar estos grafos de tal modo que todos ellos se hagan cubi-
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cables. La transformacién dada no interrumpe el funcionamiento del dispositivo automdtico
sdlo en e! caso, cuando cada grafo nuevo es homeomorfo al anterior. De hecho la transforma-
cidn se reduce a afadir los vértices nuevos a unas aristas del cada grafo critico inicial que
es ¢l subgrafo del grafo dado de transiciones. De este modo introducimos los estados interiores
inestables del dispositivo automdtico. En e] diseflo dptimo el nimero de estados inestables
ntroducidos debe ser minimo.

La tabla bidimensional (tabla 4.7) de distribucién de aristas por las figuras prohibidas
(fig. 4.25) se cubre por dos filas {/i3, /). Adfladiendo entre los vértices w, the ¥ tha, th

los que corresponden a los estados inestables, encajamos el grafo obtenido en el espacio boole-
ano (fig. 4.26).

Tabla 4.7

Ry R R R Rs Re R;
h = {u, ) 1 0 0 0 0 o ]
b= {u, ) i Q 0 0 0 0 0
I = (v, w) | 1 0 0 4] Q 0
fa = [va, vs} 1 o 0 o 4] 0 0
fs = [us, vs) 1 0 [i] 0 ] ] o
Is = fus, vg) 1 0 0 0 o [¢] 0
h = {vs, ) 1 0 1} 0 0 0 0
= {w», wl 1 0 1] 0 0 0 0
s = tu, ] 1 4] 0 ] 0 3] 0
I = |uy, w} 1 ] 0 o 0 1] 0
ho = [v, vs) 1 0 0 0 0 1} 0
o= [, vo) 1 0 0 0 0 0 0
fa = [m, vw] 1 i 0 0 0 0 0
hs = {w, to) 1 1 | 0 1 1 1
ha = {1y, t33] 0 1 .| 1 0 1 1 1
hs = fvio, s} 0 0 1 0 0 1 1
I']s = {L’gu. Dl 1] 1 0 0 1 ] o
hs = |ve, w7} 0 0 1 0 1 1 1
his = [ws, vis) 0 0 1 1] 0 i 1
he = (v, ) 0 1 0 0 0 0 0
fo = fn, ts) 0 1 ¢ 0 0 1] 1]
by = fuvn, via} 0 1 1 1 0 1 Y]
Iz = {vnz, vis} 0 1 1 1 o 1 0
by = (v, via) 0 1 1 1 1 0 1
ha = [vi4, tis] 0 i 1 1 0 0 i
hs = [wns, vie) 0 0 0 | 0 I i
hs = [vn3, vio) 0 0 0 1 0 1 1
7 = vy, a7} 0 [+] 1 0 1 1 1

Al introducir los vértices complementarios en ¢l grafo no se interrumpen las figuras per-
mitidas (ciclos de longitud par).

§ 4.7. Disefio estructural de los dispositivos automdaticos

Examinemos el disefio del esquema l6gico como sintesis del grafo booleano
correspondiente, Partamos todo el conjunto de bases en dos clases: topoid-
gicas y funcionales.
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En las bases topolégicas para la sintesis se utilizan funciones, cuya
completitud puede lograrse por medio de la correspondiente simulacién
fisica de variables binarias y por la determinada agrupacién de los elemen-
tos prefijados. Todos los elementos de conmutacién, llaves de corriente,
criotrones, interruptores de alumbrado, espacistores, deplistores, unitrones
y otros elementos de vélvula, que en la técnica de cdlculos se utilizan como
elementos de accién rdpida, forman bases de este tipo.

En las bases funcionales, los elementos, independientemente de su agru-
pacion y la simulacién fisica de variables binarias, realizan las funciones
que forman un sistema completo de funciones booleanas. Por ejemplo, se
refieren a estas bases los elementos que realizan las funciones de Sheffer,
de Webb, de implicacién, etc.

Partamos, a su vez, el conjunto de bases topoldgicas en cuatro clases.
La primera y la segunda clase las forman elementos que dejan pasar la
sefial de informacién en un sentido cuando el valor de la sefial de control
coincide con la letra que pondera este elemento. Pero, en los elementos
de la primera clase, la seiial pasada se difunde por los canales de conductivi-
dad unilateral en los elementos de la segunda clase, por los canales de con-
ductividad bilateral.

La primera clase comprende elementos de vdlvula-diodo, en caso del
procesamiento 6ptico de la informacién con el empleo de la técnica de
fibras, es decir, los interruptores de alumbrado; la segunda clase comprende
elementos de védlvula (por ejemplo, espacistor-triodo).

En las entradas de un esquema compuesto de elementos que se exami-
nan y en las de un esquema construido de los elementos de cualquier base
topoldgica se usa la representacién parafdsica de la informacién binaria.

La tercera y la cuarta clase las forman elementos que dejan pasar la
sefial de informacién en los dos sentidos cuando coinciden el valor de la
sefial de control y la letra que pondera este elemento.

En los elementos de la tercera clase la sefial pasada se propaga por los
canales de conductividad unilateral y en los elementos de la cuarta clase,
por los de conductividad bilateral.

Entre los elementos de la tercera clase figuran, por ejemplo, los tuneltro-
nes y los elementos de contacto-diodo; entre los de la cuarta, elementos
conmutadores de conductividad bilateral (criotrones y contactos).

De este modo, todo el conjunto de bases topolégicas estd dividido en
cuatro clases segun dos caracteristicas: conductividad de elemento y con-
ductancia del canal de conexién.

Como resultado de la optimizacién abstracta y la codificacidén de esta-
dos interiores del dispositivo automdtico, un sistema de funciones de excita-
cién y de salida prefija el operador de autémata. La realizacién en es-
gquemas, 6ptima por su complejidad, de estas funciones es un proceso de
trabajo denso, lo que estd condicionado por el cardcter combinatorio del
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problema. Uno de los caminos eficaces para disminuir la densidad de traba-
jo de la realizacién en esquemas del operador de autémata es reducir di-
mensiones de los problemas empleando la descomposicién. Para las fun-
ciones que se obtienen como resultado de la descomposicién, se puede
construir los esquemas Optimos. La descomposicién éptima esté orientada
a lograr la optimicidad global de la resolucién del problema de realizar
el operador de autémata en esquema.

La descomposicién de la funcién f(X), X = {xi, ..., X»} €s su represen-
tacién en forma de superposicion de varias funciones de menor dimensidn:
X)) = Fle(Xa), 20X3)), ..., wx{X%), donde X;S X. La funcién F se deno-
mina exterior, las funciones ¢, ..., wi se llaman conjugadas. El criterio
de calidad de la descomposicidén es el minimo del nimero de las funciones
conjugadas.

La descomposicion debe satisfacer las siguientes exigencias practicas:

1) tener en cuenta las particularidades de las funciones que se en-
cuentran en la practica de la proyeccién;

2) aumentar la fiabilidad de los dispositivos automaticos en diseiio a
cuenta de bajar la probabilidad de surgimiento del riesgo.

La primera exigencia supone que se puede aplicar bien el método a las
funciones débilmente definidas, que aparecen con la mayer frecuencia en
la préctica, es decir, las funciones cuya potencia en un campo definido es
mucho menor que la del campo indefinido. La segunda exigencia impone
una restriccién sobre la longitud de los caminos en la realizacién en es-
quema de la funcién, los caminos que se determinan por la profundidad,
a que entran en la funcién los correspondientes argumentos. Por ejemplo,
la probabilidad de que surja el riesgo para la funcién f(X) = Flei(e1:(x1,
=)y eia(en2i0z..), @120 .., L), 13 L), @il L), o, X8), .., X6) e
proporcional a la suma de médulos de las diferencias de las profundidades
a que los argumentos entran en las subfunciones. Para la funcién dada,
la profundidad de entrada de la variable xs es igual a cero, de la variable
X3, a tres. La validez de esta afirmacién se basa en las siguientes suposi-
ciones: los sucesos en los que pueda surgir el riesgo en las funciones conju-
gadas son independientes; la probabilidad de que surja el riesgo en la fun-
cidn es proporcional al mddulo de diferencia de las longitudes de los cami-
nos por las que pasan las sefiales, es decir, en la representacién de la funcién
Fle1(xy, ...), x2) la probabilidad de que surja €l riesgo es dos veces menor
que en la representacion de la funcion F(gi(g2(x, ...), x1), X2). Por lo tanto,
la probabilidad de que surja el riesgo para la funcién f(X) es proporcional
al desbalance de longitudes de los caminos d; en el esquema que realiza
fX), di = E | lnca — | , donde Incq es la longitud media del camino, / es
la longitud del i-ésimo camino. El desbalance d; puede valorarse por el des-
balance de las profundidades de entradas d, que se obtiene de d; sustituyen-
do I por vy, lned POT ¥med, donde vmeq s la profundidad media de entrada
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de una variable en una tuncién, »; es la profundidad de entrada de la va-
riable x; en la funcién.

La segunda de las exigencias anteriormente aducidas se cumple automa-
ticamente en la descomposicion f(X) tipo

FlerXa), . 0p(Xa), E1(X8), .y £ X)), (4.13)

donde XAUXs = JY, )(J\Xa = @. %

Examinemos el método de la descomposicién estructural y funcional
tipo (4.13) orientado a las funciones débilmente definidas. Se basa en la
representacion de la funcién por un K-grafo. Lldmase K-grafo un grafo
de dos partes G¥ = (V*, V®, U;, Up), en el cual los conjuntos ¥4 y V2
determinan el conjunto de vértices G¥, mientras que U, y U son los con-
juntos que representan aristas de dos tipos que unen los vértices de V1 y V2.

De la particidén del conjunto X en X, v Xp se desprende la particién
de cada juego m;'del campo unitario de definicién de la funcién f{X) en
dos subjuegos mf'y mfque comprenden las variables entrantes en X4 vy
X, respectivamente. Los campos unitario y nulo se determinan mediante
las colecciones de los pares de subjuegos (m7l mf. De tal modo, la funcién
f(X} con la pamctén prefijada de X en X, y Xz se representa por el K-grafo

= (V4 V¥, U, Up), donde V" es el conjunto de subjuegos mfl V7
es cl conjunto de subjuegos m#f Uy, U son las relaciones binarias que deter-
minan los campos unitario y nulo de la funcién.

Examinemos la funcién booleana débilmente definida f(X), X = {xi,
X1, X3, Xa}. La funciéon f(X) toma el valor 1 sobre el conjunto de juegos

= {1010, 0111, 1101, 1100]; toma el valor 0 sobre el conjunto de juegos
Mp = (0001, 1000, 1011). Sean X4 = {x1, X2}, X = [x3, x4}. El K-grafo
G* que representa f(X) con la particién dada X aparece reflejado en la
fig. 4.27, a. Las aristas tachadas forman el conjunto Up, las no tachadas,
el conjunto U.

Definamos la operacién de encolamiento de los vértices en el K-grafo.
Dos vértices de una clase v, y v» pueden encolarse, si no existe el vértice
w de otra clase ligada con un vértice por la arista y con otro, por la arista
tachada. Como resultado del encolamiento los vértices se sustituyen por
uno y sus entornos se agrupan. Por ejemplo, después de encolar los vértices
correspondientes a los juegos X1.x2 ¥ X1 %, el K-grafo tiene forma dada en
la fig. 4.27, b. Notemos que el encolamiento de los vértices de una clase
cambia las condiciones del encolamiento de los de otra clase. Encolaremos
los vértices del K-grafo hasta que sea posible. El K-grafo resultante estd
representado en la fig. 4.27, c.

Teorema 4.2. Una funcién booleana f(X) = f(x1, X2, . . ., Xn) €s repre-
sentable en forma fiX) = FleXa), . ... ¢s(Xa), £1(Xa), ..., &(XB)),
XiXp = &, X4UXp = X, p< | Xa|, s< | Xg| si y sdlo si, existe una
sucesidn de operaciones de encolamiento que reduce el K-grafo G* = (V1
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Fig. 4.27

V8 Uy, Ups), que representa la funcién, al K-grafo G¥ = (V{, V¥, U{, Ug)
que tiene Vi| <2°, | VP| <2°.

El criterio de calidad de la descomposicién es ¢l minimo del nimero
de funciones ¢; y £ que se alcanza minimizando el nimero de vértices en
las clases del K-grafo después de encolar. El proceso de encolar los vértices
es equivalente a la coloracion de los grafos de incompatibilidad Ga = (V4
U*y y Gp = (V®, U®). Los portadores de estos grafos son las clases de
los vértices P y VB, Dos vértices v y v2 de un grafo de incompatibilidad
son adyacentes, si uno de ellos se une con un vértice de otra clase mediante
una arista y el otro, mediante una arista tachada. Los grafos de incompati-
bilidad para el K-grafo representado en la fig. 4.27, a se ofrecen en Ia fig.
427, d.

Si fijamos el mismo color de dos vértices del grafo de incompatibilidad,
esto es equivalente a encolarlos y por esta razén, en caso general, lleva
a introducir nuevas aristas en otro grafo de incompatibilidad. Si los vértices
v1 y 12 de un grafo G; (i = A, B) pasan a ser de un mismo color, en G
(j = A, B, j # i) se introducen las aristas (w:, ;) tales que en la configura-
cion de G4 v Gg los vi y w1 se unen mediante una arista, v2 y wz, mediante
una arista tachada. De aqui se deduce que en caso general la coloracién
de configuraciones de los grafos de incompatibilidad no se determina por
su coloracidn independiente. El proceso de encolamiento es equivalente a
la coloracién conexa de los grafos de incompatibilidad. Como coleracidn
conexa de la configuracién de grafos G4 y Gp se comprende una particién
de los vértices de los grafos en clases (y atribucién de un mismo color a
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A Fig. 4.28

los vértices de cada clase) tal que en cada clase, los vértices no son adyacen-
tes dos a dos y, ademds, en G, los vértices de cualguier clase no pueden
unirse simultdneamente mediante las aristas y aristas tachadas con los vérti-
ces de una clase Gp. Por lo tanto, la descomposicién de una funcién boole-
ana débilmente definida se reduce a la coloracién conexa de los grafos de
incompatibilidad.

Aunque en caso general la coloracién independiente de cada uno de
los grafos no determina la coloracidn conexa es muy interesante encontrar
las condiciones, en los cuales la coloracién independiente de los grafos de
incompatibilidad da la coloracién conexa, puesto que en este caso el proble-
ma de descomposicién se simplifica considerablemente.

Teorema 4.3. La coloracidn independiente de los grafos Ga y Gg deter-
mina su coloracion conexa si, y sdlo si, la configuracidn de G4 y Gs no
contiene la configuracion de Gap en calidad de subgrafo (fig. 4.28).

ClVecesidad. Sea que la coloracién conexa de los grafos G4 y Gp se
reduce a su coloracién independiente. Esto significa que la coloracién cone-
xa de cualquier subgrafo de la configuracién se determina también por la
coloracién independiente de los grafos que la integran. La coloracién cone-
xa de la configuracion de G4 no se determina por la configuracion inde-
pendiente, por eso la configuracién de Ga vy Gs no puede contener Gap
en calidad de subgrafo.

Suficiencia. Sea que la coloracidén conexa de los grafos G4, Gp no se
determina por su coloracién independiente. Sea también que fijando los
colores iguales de vértices no adyacentes vy, v; del grafo G4 llegamos a
introducir la arista (wy, w2) en el grafo Gp. Esto es posible s6lo en el caso
cuando uno de los vértices vy, 12 se une con uno de los vértices wy, wy
mediante la arista y el otro se vincula con el restante mediante la arista
tachada. Otras aristas entre vy, ¥z ¥ wi, w2 no pueden existir ya que en
caso contrario serian adyacentes a vy, vz 0 wy, w. Pero Ja configuracién
descrita de v, v» ¥ wy, w; es la configuracién de Gus con exactitud de
hasta la redesignacién. Por lo tanto, si Gas no se presenta en la configura-
cién de G4, G como un subgrafo generado, la coloracién independiente
de G4 y Gp determina su coloracién conexa. ll

Si sabemos la configuracién de Gap, podemos proponer el aparato
constructivo para reducir la coloracién conexa a la independiente. Para ca-
da subgrafo de la configuracion, isomorfo a Gas, con los vértices v, 2,
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wy, wy introduzcamos los vértices vf, vi, wi, wi. Unamos v{ con los vértices
de I'(v1); v4, con los de I'(w); wi, con los de I'(w); wi, con los de T'(wz).
Introduzcamos también las aristas (v{, v{} y (w{, wi). La configuracién
obtenida la denominaremos extension y denotaremos G4, Gs. Hallemos
la coloracién independiente de GX y Gp. Ahora realicemos la operacién
de reduccién: para toda configuracién de Gap eliminemos los vértices vy,
2 ¥ w1, Wa, 5i el vértice v; es del mismo color que v y wy es del mismo
color que wy. Pero, si por lo menos un par de vy, v2 ¥ wi, w2 no ¢s concolore-
ado, eliminemos vy, v, w{, wi. Resulta la coloracién conexa de la configu-
racion de G4, Gs. x

Ejemplo 4.4. La ion de G4, Ga para la configuracién de Ga, Ga dada en la fig,
427, @ y la coloracién independiente de G, Ga estan representadas en la fig. 4.29, Como
resultado de la extensién de Gy v Gp obtenemos el encolamiento del K-grafo ofrecido en
la fig. 4.27, c.

Codifiguemos Jos vértices de cada clase. La longitud de! codigo de ésta es jgual a |logas|,
donde 5 es el nimero de vértices en la clase. Cada cddigo determina un juego definido sobre
nuevas variables, obtenidas como resultado de la codificacién: ;, para una clase £, para
otra. De este modo, el K-grafo determina una nueva funcién K, exterior en la descomposicién
(4.13). La descomposicién de la funcién considerada se determina del modo siguiente:

Jon, X2, x5, Xa3) = Flola, x), exla, x2), e, ).

La funcién Fle:, 2, £) toma el valor unitario sobre el conjunto de juegos M, = {F1;2k,
Piezk, ezt v el valor nulo sobre el conjunto de juegos My = w1k, #1e2£]. Con ello,
¢z ¥ £ son las funciones débilmente definidas. Para ellas escribamos los conjuntos de juegos
unitarios y nulos:

Mg} = [xixi], Molen) = [Tixz, Ti¥e, XZz);
M) = [0k}, My(g2) = (Hx, %k, xaxal;
M) = {xox, Bk, Mo = (§) = (%, BGl:

La signatura de las &lgebras determina leyes de composicidn, cuyas pro-
piedades se prefijan por las identidades de las dlgebras. Las leyes de compo-

Fig. 4.29
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sicién permiten determinar el funcionamiento de un todo nico por el fun-
cionamiento de sus partes. Durante la sintesis de los sistemas el funciona-
miento de un todo inico estd prefijado y es necesario determinar el fun-
cionamiento de sus partes, o sea, construir una estructura que realiza el
funcionamiento prefijado. En la sintesis no tienen interés las leyes de com-
posicidn, sino las de descomposicion.

Examinemos un modelo

"P=<M P{y P{; '-‘tP{!)’
donde

Plimy, ma, - . ) = 1, cuando mx = fi(my, M2, ..., Me-1),
L 2 0 en caso contrario.

Analogamente al concepto del dgigebra
A(M fh .ﬁ.t LI ) ﬂl)!
introduzcamos el concepto de la codigebra

K =M o, »d, ..., xb,

donde M es el portador de la codlgebra, x{, x4, ..., x} es su signatura.
El procedimiento de determinar por m un conjunto {my, m, . . ., Mk-1},
tal que my = filmy, mz, ..., Mx-1), se denomina co-operacion adlime),

sflmey = Ly, ma, . Mx-a )

Es obvio que, si el resultado de operaciones f es estrictamenie unfvoco,
el de la co-operacién xf no lo es. El dlgebra determina las leyes de composi-
cién, la coalgebra, las de descomposicién.

Asi como existen, por ejemplo, las dlgebras de Boole, las de Webb, el
4lgebra implicativa, el dlgebra de Zhegalkin es légico, desarrollando la te-
oria de las codlgebras, esperar que aparezca la codlgebra de Boole, la de
Webb, la implicativa, la de Zhegalkin.

En el presente esta elaborada solamente la coalgebra de grafos que es
isomorfa a la codlgebra de Boole, cuyo portador esta prefijado por los
diagramas de Hasse o por los grafos estructurales.

En un grafo estructural, cada vértice estd ponderado por una terma pri-
maria x{" y el camino corresponde biunivocamente a un intervalo maxi-
mal (implicante simple) de una funcién booleana f(xi, X2, . .. Xn).

Llamase codlgebra de los grafos una coleccién de la forma

K=(M x¥, x7),
donde el portador M es el conjunto de todos los grafos estructurales po-
sibles, la signatura es la co-operacidn de disyuncién x¥ y la co-operacidn
de negacién x~ de los grafos estructurales. A continuacion, estas dos co-

operaciones se denominardn operacidn de descomposicidn x¥ y operacion
de inversion x~ de los grafos, respectivamente.
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Fig. 4.30 Fig. 4.31

Operacion de descomposicién x ~ de los grafos. Cumpliendo esta ope-
racion se indican las direcciones, en las cuales se transcurre la descomposi-
cién del grafo H. La direccién se prefija mediante los vértices que son los
elementos maximales de los subgrafos del grafo H.

La operacién de descomposicion x ~(H) del grafo A en direcciones V;
(i=1, ..., k) es la formacién respectiva de los subgrafos H; (i = 1, ...
- . ., k) compuestos de todos los vértices (v/j = 1, .. ., /] v los arcos que
los unen, para los cuales en el grafo H existe un camino que une
veely/i=1, ..., 01 y meW.

Por ejemplo, el resultado de la operacidén de descomposicién del grafo
estructural A en las direcciones [x3] y (X2, X3} estd efectuado en la fig.
4.30. El signo (') marca las letras repetidas, para que éstas identifiquen
los vértices del grafo.

La operacidn de inversidn de x ~ grafos. El grafo estructural representa-
do en forma de la superposicion de estructuras tipos = y ¢ se denomina
grafo tipo wo.

La operacién de inversion x ~ (H) de un grafo estructural / es la reduc-
cion del grafo dado a un grafo tipo we utilizando su descomposicidn, la
sustitucién.de cada subgrafo tipo o por un subgrafo tipo « y de cada subgra-
fo tipo 7 por un subgrafo tipo o; con ello, cada peso xi" del grafo inicial
se sustituye por el peso x©* V™42 on o5 vértices correspondientes del
grafo obtenido.

Para la propiedad de los grafos estructurales de ser grafos tipo wo son
prohibidas las figuras Hr (fig. 4.31). Por consiguiente, la desintegracién mi-

166577
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nimal de un grafo estructural, cuando éste se reduce al tipo wo-grafos, se
determina por el cubrimiento minimal de una tabla, en la cual los subgrafos
Hr son las figuras prohibidas, y sus componentes son los vértices de poten-
cia dos (vértices minimales y maximales de la diagonal), uno de los cuales
se desintegra durante la transformacion. .

En el ejemplo a examinar (véase la fig. 430) la tabla descrita puede representarse en
forma de la tabla 4.8,

Tabla 4.8
Componentes Hr, Hy, Hr, Hr,
a (1, x2) 1 0 0 o
b Xs 1 0 0 0
c X2 0 1 o 1
d (%5, x{) 0 ' ] 0
e X3 0 o 1 i}
& X5 0 o 1 1

Tenemos seis cubrimientos de esta tabla:
(avb)evdevicvs) = acevbecvbefvadfvbdfvafe.

Para ser precisos, gemos el cubrimientos | b, ¢, f1. E el grafo estructural considera-
do H es representable por la descomposicién de los subgrafos =, o :

H = a(x{xs, olx(x, Xs), ®(%1, o(Xs, XD,
olxz, X4, X§), wlolxi, Xa), xi, X))
En este caso, la inversidn del grafo x~ (M) = H (fig. 4.32) es la expresién de la forma
H = n{o(®s, *(o(%, F), olxi, a(x, X)),
o{%a, X, X, o(x(¥, x), X{, xi).
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Al sintetizar los esquemas logicos en una base funcional B, es necesario
determinar resultados de los co-operaciones tipo

P (b;eB), es decir,
¥ (H) = (Hy, Ha, ... Hi.), (4.14)

donde ken: es el coeficiente de entrada del elemento b,

Se puede obtener el resultado de la co-operacién »" empleando res-
pectivamente una serie de co-operaciones tipo x¥ y x ~ en el orden inverso
del que siguen las operaciones V y ~ en la descomposicidn de la operacidn
feen V y ~. Por ejemplo, determinamos los resultados de la co-operaciéon
de Sheffer x’(H) empleando la codlgebra de los grafos del modo siguiente.

Sea necesario hallar el resultado {F,, F2} de la co-operacién x ' (H),
es decir,

x'(HY = (Hy, H). (4.15)

Los grafos Hy y Hz son los resultados de x '(H) si, y s6lo, si segin la
definicién de co-operacion, sus funciones correspondientes fi(Fly) y (H:)
estdn ligadas como

SH) = fitH) | fo(H2).

Pero, por otra parte, f(H) = f[i(H)V.(H:). De aqui, segtn la definicidén
de la co-operacion y las igualdades

»¥(H) = [Hi, Hi], x~(H{) = Hi, x~ (H7) = Ha,
es decir, para la base de Sheffer la igualdad (4.15) puede reducirse al sistema

{ Hy = x™ (H{exV(H)),
Hy = x~ (Hiex"(H)).

A continuacion el j-ésimo componente del resultado de la co-operacién
x‘“’{H} = (Hh, F, ..., Hj, ..., Hi,) se designard por »x*(H) |4 es de-
cit, H; = »"(H) | ;.

En el caso que se examina la ecuacidn (4.15) estd reducida al sistema
de la forma

Hy= %~ (E) | ),
Hy = ™ (xV(H) | 2).

Reduciendo el problema de determinar el resultado (£, £, ...,
Hy,.) de la co-operacién »"*(H) al problema de determinar los resultados
de las co-operaciones xV y ¥~ se reduce, en esencia, la ecuacién estructu-
ral (4.14) resuelta respecto a {#, Hz, . .., He.} al sistema compuesto de
Ken: ecuaciones estructurales con la particularidad de que cada (j = 1, ...

16*
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. Kem) ecuacion estructural del sistema estd resuelta respecto a Hj, es
decir,

Hy = X0 L e (HD)
Ha = X L (oA HD)

Hy = %G . . (x“»{H}) ) '
Hio, = X . . (D)) -

(4.16)

donde x™v€(xY ¢, x" )3 i=1, ..., kenty = 1, ..., n;; 1 es el mimero
entero determinado por el elemento bdsico b para cualquier j.

El sistema (4.16) es ke ecuaciones estructurales independientes una de
otra. No se puede reducir la solucién de la ecuacion estructural (4.14) a
la solucidn del sistema de ecuaciones de la forma (4.16) para cada elemento
basico bi€B.

Determinando la forma del elemento bdsico, para el cual la solucién
de (4.14) se reduce a la solucién de (4.16), partamos todo el conjunto de
las bases funcionales en dos clases: bases conexas e inconexas.

De antemano, a cada elemento bdsico (b€ B) le ponemos en correspon-
dencia el grafo A, construido del modo siguiente. Expresemos la funcién
booleana f;, que se realiza por el elemento b mediante las cépulas V v
~. Representemos la expresién obtenida, en la que se tienen solo las opera-
ciones «disyuncién V» y «negacién” » en forma del grafo Hj, segin la in-
terpretacion geométrica de la operacion /-adica de disyuncion y de la opera-
cién de negacion (fig. 4.33).

Una base B = [bi/i = 1, ..., n] se denomina inconexqa, si ninguno de
los grafos Hp, que corresponden a las funciones f, realizados por medio
de los elementos de la base, contiene ciclo.

Por ejemplo, las bases de Webb, de Sheffer, implicativas y coimplicativas
(se llama operacidén de coimplicacidn a la negacidén de la implicacion).

La base B = [b/i = 1, ..., n] se denomina conexa, si al menos un
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grafo Hpf(ie{l, 2, ..., n}) correspondiente a la funcién fpi€l1, 2, ...,
n}), realizada por uno de los elementos de la base, contiene un ciclo.

Por ejemplo, la solucién de la ecuacion x*(H) = (Ha, Hy, He, Ha)
correspondiente a un elemento principal de SUANI (fig. 4.34) se reduce
a la solucién del sistema de la forma:

He = x " 00 eVH) | ) ),
Hy = x0Oc™ (¢ (e OV ED ) [ 20| s
He = %~ (¥~ (O VD [y [ 20 |

Hy = x~ (V™ (V(H) [ 20 ] 2),
x " O (VD ) | 2) = ¥l VED | 2D e

Aqui A es el signo de la operacion que se realiza por un elemento principal
de SUANI.

En este caso, cuando se realiza la sintesis en las bases conexas, la deter-
minacién de los resultados de las co-operaciones se reduce también a la
solucién de un sistema de ecuaciones estructurales, pero ya dependientes
una de otra.

Para ‘sintetizar los esquemas logicos en las bases funcionales cons-
truimos, por la funcién f realizada, un grafo estructural que luego transfor-
mamos en el funcional empleando la codlgebra de los grafos. El grafo fun-
cional obtenido es el esquema légico buscado. Proponemos el siguiente pro-
cedimiento de transformar el grafo estructural en el funcional. Examinemos
el algoritmo dado a continuacién en el ejemplo de la sintesis de un grafo
funcional que realiza una funcién booleana de tres variables del contador
de paridad en la base B = {—, 0}.

El algoritmo comprende los siguientes pasos:

1. El grafo estructural Hy que realiza la funcién booleana f se pone en
correspondencia a un elemento maximal del grafo Hy correspondiente al
elemento bdsico beB.

2. Conforme al grafo Hy que determina las propiedades funcionales y
estructurales del elemento b€ B se cumplen las operaciones correspondientes
de descomposicién y de inversién sobre el grafo Fy.

3. Como resultado del cumplimiento de las operaciones del punto 2
se determinan los grafos estructurales Hy, correspondientes a los elemen-
tos minimales del grafo Hj.

Sefialemos que el elemento maximal del grafo Hj corresponde a la sali-
da del elemento basico b, y los elementos minimales, a las entradas de
este elemento.

En la fig. 4.35 se ilustra el cumplimiento de los primeros tres pasos
para el ejemplo considerado.

Para cada uno de los grafos hallados Hj, los puntos 1, 2 y 3, se cumplen
hasta obtener grafos estructurales que realizan funciones booleanas admi-
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B3, W(S(X,, F), G4, 52)))

= = A3
X Xy
b7 X
%O
L7 Xy ke 2 Fig, 4.35

sibles en las entradas del esquema légico. Por lo general, tales funciones
son las variables x; o las variables y sus negaciones.

Si en /-ésimo paso de la transformacion de un grafo estructural en un
funcional fueron obtenidos NV grafos que realizan una misma funcién con
exactitud de hasta conjunciones idénticamente iguales a cero, estos grafos
se juntan en [N/ Kkend grupos ([ ] es el signo del nimero entero mds préximo;
kot €5 el coeficiente de salida (coeficiente de ramificacion) del elemento
basico). De tal modo, construyendo el grafo funcional se tiene en cuenta
el goeficiente de ramificacidén de k.ns elementos bésicos.

En la fig. 4.36 se muestra el resultado definitivo de la transformacién
del grafo estructural en el funcional en la base {—, 0}.

En las bases de la primera y la tercera clase topologica la conversion
H—+8 de un grafo estructural A a un esquema de conmutacién S se realiza
de una manera trivial, sustituyendo los vértices por los elementos conmuta-
dores y los arcos, por los canales de conexion de conductividad unilateral.

En las bases de la segunda clase topoldgica durante la transformacién
H—S pueden aparecer los caminos excedentes debidos a la conductividad
bilateral de los canales de conexidn, si el grafo estructural A contiene el
subgrafo Qg representado en la fig. 4.37, a. Al quitar la orientacién de
los arcos (fig, 4.37, b) los elementos incomparables se hacen comparables
y aparece un camino excedente, lo que hace el grafo salir de la clase de
los grafos equivalentes en el sentido de la realizacion de la funcién prefija-
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X5

Fig. 4.36

da. Para eliminar los caminos excedentes es mecesario orientar la arista
diagonal colocando un diodo de desacoplo en ésta (fig. 4.37, ¢).

El grafo Qp (fig. 4.37, a) es una figura prohibida de la transformacion
H-S§. Por consiguiente, la minimizaciéon de los diodos de desacoplo se
reduce al cubrimiento de la tabla semdntica, en la cual las figuras prohibi-
das son los subgrafos Qg y sus componentes son las aristas diagonales,
donde se colocan los diodos de desacoplo.

Fig. 4.37 aj b) c)
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En las bases de la segunda clase topolégica, la conversién H— § se reali-
za (igual que en las bases de la primera clase), orientando las aristas diago-
nales en las figuras prohibidas Qs. En las bases de esta clase, en la transfor-
macién H—S, la abstraccién del esquema de conmutacién (fig. 4.38, )
es un grafo lineal (fig. 4.38, b), cuyos arcos estan ponderados por las termas
primarias o unidades correspondientes a los diodos de desacoplo. El grafo
lineal se obtiene al sustituir los vértices del grafo estructural H por los arcos
con los mismos pesos conservando los caminos de partida.

En las bases de la cuarta clase topologica, durante la transformacién
H— S pueden aparecer los caminos excedentes no solamente en virtud de
la conductividad bilateral de los canales de conexidn, sino como resultado
de la conductividad bilateral de los elementos. En este caso, los caminos
excedentes surgen, si el grafo estructural contiene el subgrafo Qx, homeo-
morfo al subgrafo Qs. Por consiguiente, en las bases de-esta clase, la figura
prohibida complementaria de la conversién H— S es el subgrafo Qy. Para
eliminar los caminos excedentes provocadas por la conductividad bilateral
de los propios elementos, uno de éstos que estd en la diagonal de la figura
prohibida, se orienta conectdndole en serie el diodo de desacoplo.

En las bases de la clase considerada, la conversién F/~+ S se realiza (igual
que en las bases de la primera clase) orientando las aristas diagonales en
las figuras prohibidas Qs, Q.
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En las bases de la cuarta clase topoldgica; en la transformacion H—S$
la abstraccidn de esquemas de conmutacién es un grafo lineal, cuyas aristas
estdn ponderadas por las termas primarias o unidades correspondientes a
los diodos de desacoplo que se obtienen al sustituir los vértices del grafo
estructural A por las aristas con los mismos pesos conservando caminos
de partida.

En las bases de la primera y la tercera clase topologica, la complejidad
de los esquemas de conmutacion es igual a la complejidad del grafo estruc-
tural. En la segunda clase topoldgica se agrega a esta complejidad el niime-
ro de diodos de desacoplo determinado por la distribucién de los subgrafos
Q5. En la cuarta clase, la complejidad de los esquemas es igual a la comple-
jidad del grafo estructural correspondiente mas el namero de diodos de
desacoplo determinado por la distribucién de las figuras Qg y Qn menos
el nimero de circuitos de longitud 2, con la particularidad de que las aristas
de cada uno estan ponderadas por la misma terma primaria. Cada uno
de estos circuitos se sustituye por un elemento de conmutacidn de conducti-
vidad bilateral.

De este modo, contando solamente los elementos de conmutacion, en
las bases topoldgicas la complejidad de los esquemas l6gicos es igual a
la complejidad del correspondiente grafo estructural H. En las bases fun-
cionales, el grafo estructural H(f) que determina la funcidon booleana en
realizacién se transforma en un esquema légico por medio de la codlgebra
de los grafos.

Para describir el funcionamiento del dispositivo autematico en tiempo
utilizando funciones booleanas, pongamos que todas las seiiales que liegan
puedarn cambiarse en tiempo solamente de modo discreto. Al elegir interva-
los suficientemente cortos de tiempo consideremos que la sefial cambia so-
lamente en la frontera de los intervalos de tiempo y no cambia dentro del
intervalo,

Escogemos la duracién del intervalo, partiendo de los siguientes razona-
mientos. Desarrollemos una serie booleana en tiempo x(t) en la suma de
patrones de funcidn de la forma

x(1) = vayai(h).
I
Los patrones de funcién mas simples @, @, @, . .. se dan en la fig. 4.39

donde Ty es el tiempo del andlisis de funcionamiento del dispositivo auto-
mético; con ello,

T = T2, (4.17)
donde T; es el periodo del patrén de funcién @;. Segun (4.7) la duracion
del intervalo minimal

Te = To/2'*1,
donde ~ es la profundidad de cuantificacidn en tiempo.
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a,

a,

x(t,
/ 0 Fig. 4.39

Para cualquier dispositivo automaitico existe el tiempo minimo Ty
entre dos transiciones adyacentes, Para describir el funcionamiento del dis-
positivo automdtico en tiempo con el grado suficiente de exactitud, es nece-
sario que

Toin®> Ty © y&log: (4.18)

To
Tt .

Asi, pues, para la representacion analitica de las series booleanas en
tiempo con el grado dado de exactitud, es necesario tener la profundidad
de cuantificacién en tiempo y>logy (7o/ Tinin)-

Un intervalo temporal minimo T} se denominara cuanto en tiempo. En-
tonces, a cada cuanto le corresponde una constituyente de la unidad de
una funcién booleana temporal ¢(ay, a1, az, . . ., @,) cuyas variables son
patrones de funcién ay, @, @, .. ., a,. Por consiguiente, cualquier serie
booleana en tiempo con el grado dado de exactitud puede representarse
como una funcién booleana de ay, @i, . . ., @, y utilizarse como una funcién
booleana habitual. Por ejemplo, la serie booleana en tiempo x(t) {fig. 4.39)
puede representarse en la forma

x(1) = aolaVa:)Vao(di@:Vaaz).

Cada elemento real que integra el esquema l6gico que se sintetiza posee
una constante de tiempo, Por lo tanto, en los esquemas 16gicos préacticos
tienen lugar procesos transitorios que debemos tener en cuenta. Examine-
mos el empleo del concepto de la derivada para investigar los procesos tran-
sitorios en esquemas.

% = xy@xtt = 1), .19)

se llama derivada en tiempo —';J;— de una variable booleana x(¢f); x(¢) es

una sucesion booleana en tiempo que toma los valores 0, 1 en los momentos
de tiempo 0, 1, 2, . . . Para mds presicién, en (4.19) tomemos el $igno «—».



§ 4.7. Disefio esiructural 251

La derivada en tiempo muestra la variacidn de la sefial en tiempo. Examina-
remos las series booleanas periddicas.

Ilustremos el concepto de la derivada temporal en ¢l sig te gjemplo. Si la vanable
x{f)en tempo t = 0, 1, 2, 3, 4, 5 cambia respectivamente asi: x() = 0, 1, 0, 1, L, 1, la derivada
temporal cambia como % =1L1LLL00

Consideremos un esquema légico de dos entradas que se conmutan si-
multdneamente. Para mas precision examinaremos la transicién (0, 0)—(1,
1). La condicién de conmutacién simultdnea de los canales de entrada x;
y x: es ideal. En realidad, con la probabilidad casi igual a la unidad, cam-
bia, primero, una entrada y, dentro de un rato otra. En dependencia del
orden de su conmutacién, el camino de (0, 0) a (1, 1) puede pasar a través
de (1, 0) 6 (0, 1). Analicemos dos casos:

1. Las funciones A0, 0) y f(1, 1) no son iguales. La sefial de salida antes
y después de la conversién es diferente. Entonces, en los estados intermedios
puede tener lugar ora el valor «viejo» de la seiial, ora el «nuevor. Si en
el esquema faltan picos, en principio no puede haber ninguna sefial falsa.

2. Las funciones (0, 0) y f(1, 1) son iguales. La sefial de salida antes
y después de la conversion es igual, es decir, en la salida la conversién «no
se sienten. Pero, si en los estados intermedios la sefial de salida se difiere
de f(0, 0) (f(1, 1)), durante la conmutacién puede aparecer una sefial falsa,
la conversion es critica. Este fendmeno se denominara riesgo en el esquema
16gico. El camino, por el cual la sefial pasard del estado (0, 0) al (1, 1),
depende de los pardmetros fisicos de las sehales del esquema y de la suerte,
ya que los pardmetros tienen cardcter estadistico.

Siguiendo a Bochmann, pongamos las condiciones necesarias y sufi-
cientes de la conversién critica. Para que la conversion del estado (o1, 02)
en el (o1, 72) (o1, oz = 0, 1) sea critica es necesario y suficiente que

a) floi, 02) = flor, o2);
b) f(a1, 02) # flay, a2) o flo1, 02) # flow, 02).

Es facil enunciar estas condiciones empleando las derivadas. En caso de
la conversién critica tenemos:

a) la conmutacién simultinea de ambas entradas: %{r’— % =1;
b) el valor de la sefial de salida antes y después de la conversién es
: - 3
vt e ()
igual a 300) =
¢) la conmutacién solamente de una entrada lleva a la conmutacién de
la salida: Y L 1.

ax; axz
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Por lo tanto, el error se expresa del modo siguiente:
af ax dxx [ af af a*f

a ot \ax ¥ o ) dmx) (4.20)
donde Af es la funcidn del error.
En la expresion (4.20), la conjuncién ﬁ;.‘;'_ %—? determina las pro-

piedades de la seiial, a continuacién la denominaremos miembro de sefial.
2
La conjuncion (—BL af ) L determina las propmdades de la fun-
ax; ax1x2)
cién que se realiza; en adelame la denominaremos miembro funcional de
la férmula que define el error.

Uno de los procedimientos para aumentar el rendimiento del ordenador
es el incremento de la frecuencia de trabajo de los elementos utilizados.
Los elementos electrénicos moleculares modernos tienen frecuencia de tra-
bajo de miles megahertzios. Durante el funcionamiento de los esquemas
l6gicos, el retardo en el circuito de los elementos se hace comparable con
el periodo de trabajo del esquema, lo que lleva a la necesidad de tomar
en consideracion las sefiales falsas determinadas por la expresién (4.20).

El error no surge, si Af = 0, para lo cual es necesario hacer restricciones
en el miembro de sefial o en el funcional de la férmula,

Examinemos el caso de los esquemas 16gicos, en los cuales tres canales
de entrada se conmutan simultineamente. Segin (4.20) el error tiene lugar
cuando se conmutan dos entradas arbitrarias. Por consiguiente, en la con-
mutacién de tres entradas X, X», X la funcién de error contiene los siguien-
tes miembros:

O dxo (Of \, A\ _¥f .

Tae b g S v et S )

3t ot \ axa axp ) Fxaxy)
Oxa Ox (df |, O

A \ Ox ax: a(x,&-);

oxe dx (3 |, Of 3
a at oxp oxe J o(xpxe)

La férmula que determina las condiciones en que surgen los errores
al conmutar tres entradas, contiene otro miembro que tiene en cuenta la
conmutacién simultdnea de tres entradas:

e W W f B ¥ O af

at At At \ 3xaxs) A XaXc) B(xpxc) ) AaxsXe)
Por lo tanto, para la conmutacién de tres entradas la funcién de error tiene
forma:

_ Ax axp af azf
APS = ot ( axa (0xe)
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O x (3 ., of ) af
Tar af \ oxg Bxe ) 0(XaXe)
x dx (Of , _Of \_3F
Tar ar \axe  ox ) 90nx)
xa OX» 9% af & 82f f

ar 3 At \ A(xaxp) v AxaXc) v Axpxc) ) OxaxpXe)

Designemos el miembro funcional de la funcién de error que integra
OXa, OXa, DXt
ar  ar 7 ot

. . Xx). Entonces (4.21) puede escribirse en la forma

v

v (421

una misma conjuncién con

, como FiXa,, Xeyy + - »

A Xy OXp Ix, O

=3 “ar Fixz, xp)V 3t A Flxa, x) v
axy Ax: 0Xa  Oxp OX
S5t ot Flxp, xe) v~ —a- == FlXa X, Xe).

Generalizando la funcién de error para el caso de conmutacién de n
entradas en el esquema légico, obtenemos

_ y ai’l—l.f
marnnsi=l V¥ et

i dpeeornbu- .-x., Kays -+

Gy oopfa-z Fl.—
K
® 4,22
a(&l! xal) L x’dﬂ) ( )
y la funcién de error tiene forma
w afl 6:; aiy al'z 613
Af = 3 ot F(iy, )V T T T F(i, &, )V ..
Oxa,  0Xa, 3Xa, i _
v a3t ET; RO at F{xﬂn Kazy = o n -ﬁz.)» Iy B2y « v =
= @1, 02, - - . Gne (4.23)

De la férmula (4.23) se desprende que con el aumento del nimero de
canales de entrada que se conmutan aumenta la probabilidad de la conver-
sion critica. A la conmutacién de tres canales en la entrada del esquema,
la probabilidad de riesgo no es menor del 75%. La funcién de error Af
es de cardcter estadistico.

§ 4.8. Simulacién de los sistemas de autématas mediante
las redes de Petri

Debido al empleo cada vez mas amplio de los sisternas de cédlculo paralelos

y distribuidos adquieren especial actualidad las estructuras discretas que

representan los procesos en paralelo. Como aparato para describir los siste-
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mas complejos de los procesos en interaccidén se presentan los sistemas for-
males tipo redes de Petri que simulan las propiedades dindmicas de los
sistemnas.

El cardcter formal de las redes de Petri tipo comiin se basa en el concep-
to del acopio que es cierta generalizaciéon del concepto del conjunto. Al
igual que el conjunto, el acopio es un juego de los elementos, pero cualquier
elemento puede incluirse en este acopio mas de una vez. En otras palabras,
la relacién de inclusidén que une los elementos y conjuntos se sustituye por
una funcidn del nimero de ejemplares del elemento en el acopio que se
denota por medio de # (x, B) (se lee: «el nimero x en el acopio B»). El
conjunto es un caso particular del acopio.

Muchos conceptos de la teoria de los conjuntos se distribuyen también
en los acopios. Asi, el acopio vacfo es andlogo al conjunto vacio. La poten-
cia de un acopio es el nimero total de ejemplares de los elementos en el
acopio. El acopio 4 se incluye en el acopio B (es un subacopio), si para
cualquier x # (x, A)< # (x, B). Empleando la funcién # es facil determi-
nar las operaciones sobre los acopios: para la unidn de los acopios A ¥y
B # (x, AUB) = méx (# (x, A), # (x, B)); para la inferseccidn de los aco-
pios Ay B # (x, ANB) = min (¥ (x, A), # (x, B)); para la suma de los
acopios Ay B3 (x, A + B) = # (x, A) + # (x, B); para la diferencia de
los acopios Ay B# (x, A — B) = # (x, A) — #(x ANB). Si M es un con-
junto, M" es el conjunto de todos los acopios, construidos de los elementos
M, tales que 3# (x, BY<n, BeM™; M™ es el conjunto de todos los acopios
construidos de los elementos M sin limitar el ndmero de ejemplares del
elemento en el acopio.

La red de Petri es una cuaterna C = (£, T, I, O) donde P es un conjunto
finito de posiciones, T es un conjunto finito de transiciones, IT—P™ es
la funcién de entrada que aplica las transiciones a los acopios de posiciones;
O.T— P es la funcién de salida que aplica las transiciones a los acopios
de posiciones. La red de Petri se representa graficamente en forma de un
grafo miltiple con los vértices de dos tipos: los circulos corresponden a
las posiciones, las rayas, a las transiciones. Las funciones [ y O se represen-
tan por arcos (fig. 4.40).

Las posiciones desde las cuales los arcos llevan a la transicidn ¢ se deno-
minan de entrada para {; de manera andloga, las posiciones a las cuales
llevan los arcos desde la transicion 4 se llaman de salida para {;. El conjunto
de las posiciones de entrada se denota mediante J(;), de salida, por medio
de O(#). En la red de Petri representada en la fig. 4.40 se tiene /(1) = {1,
P 1hy O(t) = {p3, pa, ps). Bs comodo generalizar las funciones /' y O
sobre la aplicacidn de las posiciones en los acopios de transiciones (P—7T7),
lo que permite designar los conjuntos de las transiciones de entrada y de
salida de la posicién p; (que se determinan de modo anélogo a los conjuntos
de las posiciones de entrada y de salida de la transicion) por medio de
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Fig. 4.40

I(p)y vy O(pi), respectivamente. En la red de Petri representada en la fig.
4.40 se tiene f(p3) = (h, ), O(p) = [t ).

Los conceptos introducidos se refieren a la estructura estatica de la red
de Petri. Las propiedades dindmicas de esta red se determinan utilizando
el concepto de la marcacién. La marcacion u de la red de Petri C = (B
T, I, O} es una funcion que aplica el conjunto de posiciones P en el conjun-
to de los nimeros enteros no negativos N. La marcacidén se representa
empleando fichas (puntos) que se colocan dentro de las posiciones. Asi,
la marcacidén de la red de Petri dada en la fig. 4.40 se determina como
w1} = p(ps) = 1, p(p2) = p(ps) = plps) = 0.

Es comodo representar la marcacién ora como un n-vector p = (p1,
K2, -« ftn) (donde #n = | P|), cada elemento del cual »; es u(p;), ora como
un acopio x que comprenda las posiciones de lared piePy # (o, ) = pi(ps).
La red de Petri C, con la marcacién p determinada en ella, se denomina
red marcada de Petri.

El @arranque de iransiciones puede cambiar la marcacién de la red. La
transicion #; de una red marcada de Petri C con la marcacion x se denomina
permitida, $i I(#;)S p, es decir, en cada posicién de entrada p; hay nimero
de fichas que no es menor que el niimero de arcos salientes de esta posicidn
en 4. Se puede hacer arrancar cualquier transicién permitida. Como resul-
tado del arrangue de la transicién # la marcacién p de la red se sustituye
por una nueva: g’ = u — I(#) + O(f), es decir, de cualesquiera posicién
de entrada p; de una transicidn # se quitan tantas fichas, cuantos arcos
conducen de p; a ¥ en cada posicion de salida px se colocan tantas fichas,
cuantos arcos conducen de ¢ a pr. La sucesidn de arranques de las transi-
ciones se denomina cumplimiento de la red de Petri.

Examinemos el cumplimiento de ia red de Petri mostrada en la fig. 4.40. En la rmarcacidn
inicial se permite solamente la transicién ;. Durante su arrangue la ficha se quita de py y
luege en cada una de las posiciones p» y py se afiade una ficha mas, es decir, después del
arranque en la marcacién nueva p’ aparece también una ficha en py. Ahora las transiciones
f2, &4 5¢ hacen permitidas. Ya que se puede hacer arrancar cualesquiera transicién permitida
supongamos que tal es la transicidn /. Después de su arranque las fichas se quitan de las
posiciones pa ¥ ps ¥ en la posicidn ps aparece una ficha. En la marcacidn obtenida ¢ * ninguna
transicién es permitida. Asi se termina ¢l cumplimiento de la red de Petri.
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Analicemos la marcacién u de la red de Petri C = (B T, I, O). La marca-
cidn u se denomina directarmente alcanzable desde p, si existe una transi-
cién #€T, permitida en p, tal que después de su arranque se obtiene la
marcacion p’; en este caso el par (g, ') pertenece a la relacidn de alcance
directa determinada sobre P™. La clausura transitiva de esta relacion se
denomina relacidn de alcance. Las marcaciones u’, tales que (x, u') perte-
necen a la relacién de alcance y se llaman alcanzables desde p. El conjunto
de marcaciones alcanzables desde u de la red de Petri C se denomina con-
Jjunto de alcance y se denota mediante R(C p).

La interpretacién de las redes de Petri se basa en los conceptos de condi-
cidn y suceso. El estado del sistema se describe por una coleccion de condi-
ciones. El funcionamiento del sistema consiste en realizar la sucesion de
ciertas actuaciones, es decir, sucesos. Para que surja un suceso, €s necesario
cumplir unas condiciones llamadas precondiciones. El surgimiento del su-
ceso puede infringir las precondiciones y cumplir otras llamadas postcondi-
ciones. En la red de Petri las posiciones simulan las condiciones, las transi-
ciones simulan los sucesos. Las precondiciones del suceso se representan
por las posiciones de entrada de la correspondiente transicion, las poscon-
diciones, por las posiciones de salida. El surgimiento del suceso se simula
por el arranque de la transicién. En las correspondientes posiciones, la pre-
sencia de fichas representa el cumplimiento de condiciones, su ausencia,
el no cumplimiento.

Por ejemplo, analicemos un sistema simple de cdlculo que procesa en
serie lo0s trabajos llegados a la cola de entrada. Si el procesor esté libre
y hay trabajo en la cola de entrada, éste se trata por el procesor y después
sale. La red de Petri dada en la fig. 4.41 puede simular este sistema.

Establezcamos que particularidades de los sistemas tienen en cuenta las
redes de Petri. En primer lugar, es la asincronidad. En la red de Petri no
existe el concepto de tiempo. El tiempo de surgimiento de los sucesos no
se indica de ningin modo. No obstante, la estructura de la red de Petri

£t trabayo se pone
enlg colo de

antrada
Trebaso
E308ranT0
Trabajo en : Trabajo en
procesamients Procesor libre procesamients
Trabajo esperando
4q peyag Lomignzo del o Fin del U
Sotida der CUmPLEmLEnto ag, cumplémients de
trabdajo trasaje trabagio

Fig. 4.41 Fig. 4.42
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Fip. 4.43 i Fig. 4.44 Fig. 4.45

establece el orden parcial de surgimiento de los sucesos. Es mds, puesto
que el surgimiento de los sucesos se representa por el aranque de transi-
ciones, se supone que los sucesos transcurren en un instante. Si el suceso
que se simula tiene una duracién distinta de cero, por ejemplo, el suceso
«trabajo en procesamiento» (fig. 4.41), y esto es sustancial, lo representa-
mos en forma de dos sucesos instantaneos de tipo «comienzo del suceso»,
«fin del suceso» y la condicién «suceso transcurriendo» (fig. 4.42). Ade-
mas, se considera que los sucesos transcurren no simultdneamente (los suce-
sos instantaneos no pueden acontecer al mismo tiempo). En efecto, si admi-
timos el surgimiento simultdneo de algunos sucesos / y j, a los cuales en
la red de Petri les corresponden las transiciones # y #;, se puede introducir
una transicién complementaria #; con I(#;) = I(t;) + I(t)), O(ty) = O(t)+
+ O(t;) que se interpreta como el surgimiento simultineo de los sucesos
iy j. En este caso se puede hacer que las transiciones arranquen en serie.

Otra propiedad importante de las redes de Petri en calidad de instru-
mento de simulaciéon es su capacidad de representar el paralelismo y si-
tuaciones conflictivas. El paralelismo de dos sucesos se representa por dos
transiciones permitidas, cuyos conjuntos de posiciones de entrada no se
intersecan (fig. 4.43), el conflicto se representa por las transiciones con una
posiciéon comin de entrada (fig. 4.44).

En lo principal, las redes de Petri se utilizan como un aparato formal
en la simulacion de los sistemas de paralelismo inherente. Al examinar el
proceso de proyeccion en total son posibles dos enfoques, distintos en prin-
cipio, del empleo de las redes de Petri. En el primer caso, el sistema se
simula por una red de Petri que se transforma, segiin las reglas determina-
das, hasta Ilegar a un aspecto «6ptimo». La red obtenida de Petri se trans-
forma en un proyecto del sistema. Se supone que es también «optimo»,
Aqui las redes de Petri se aplican directamente para proyectar. Empero,
este enfoque tiene las dificultades vinculadas con la multiformidad de la
transformacién inversa, las redes de Petri en el proyecto del sistema, lo que
pone en duda la optimicidad del proyecto que se obtiene. En el segundo

17—6577
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enfoque mds conocido por todos primeramente se crea, empleando los me-
dios habituales, el proyecto del sistema y, segtin éste, se construye un mode-
lo en forma de la red de Petri. Después se investigan las propiedades de
la red obtenida vy se hacen deducciones sobre las propiedades y caracteristi-
cas del proyecto. Si no son satisfactorios, los datos obtenidos al investigar
las redes de Petri se utilizan para modificar el proyecto. El proyecto modifi-
cado vuelve a transformarse en la red de Petri y el ciclo se repite. Este proce-
s0 se termina cuando la red de Petri posea las propiedades necesarias.

Examinemos que propiedades de las redes de Petri en calidad de modelo
del sistema pueden interesar al disefiador. Una de las propiedades mas im-
portantes es la seguridad. La posicidn de la red de Petri se denomina segura,
si en ésta el nimero de fichas nunca supera 1. La red marcada de Petri
es segura, si todas sus posiciones son seguras. Esta propiedad es muy impor-
tante para interpretar las posiciones como condiciones simples: si en la posi-
cién hay una ficha, la condicién se cumple, si no hay, no se cumple, Si
la interpretacién de fichas es mas complicada (por ejemplo, el nimero de
fichas indica el niimero de unidades informativas), puede tener interés la
pregunta, si es limitado el mimero de fichas en la posicién dada vy, si lo
es, cudles son sus limites. De este modo, llegamos a la propiedad de limita-
cion. La posicién se denomina k-fimifada, si en ésta el mimero de fichas
no supera un k entero para cualquier marcacién alcanzable, Una red marca-
da de Petri se denomina k-limitada, si sus posiciones son k-limitadas. En
la red de Petri dada en la fig. 4.45 las posiciones p) ¥ p2 son seguras, la
posicion ps; es 2-limitada y toda la red es 2-limitada.

En el caso de interpretar las fichas como unos recursos, éstas no deben
crearse ni eliminarsc. En otras palabras, en la red debe actuar ia ley de
conservacién. Una red marcada de Petri se denomina estrictamente conser-
vante, si la potencia de marcacion (como de un acopio de posiciones) es
constante. En caso general la ficha puede interpretarse como un nimero
de recursos elementales con la particularidad de que este ntimero se varia
de una posicion a otra. Introduzcamos el concepto de ponderacion de posi-
ciones: un vector W = (wy, Wa, . . ., wx), donde w, es €l peso de la posicion
Pi. Una red de Petri se denomina conservante respecto al vector de pondera-
cion W, si el producto escalar del vector W y la marcacién (considerada
como un vector) es constante; una red de Petri es conservanfe, si es conser-
vante respecto al vector de ponderacién W, todos los elementos del cual
son positivos.

Las propiedades consideradas hasta ahora se refieren tanto a los siste-
mas sucesivos como a los paralelos. Pero pasando de los sistemas en serie
a los paralelos surgen nuevas dificuitades en principio: la posibilidad de
situaciones fope. Llamase fope en una red de Petri un conjunto de transi-
ciones que no son permitidas en una marcacidn alcanzable ¢’ y las marca-
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Fig. 4.46 8)

ciones posteriores alcanzables de x’. La posibilidad de que surjan topes
en el sistema se simula por la propiedad de actividad en las redes de Petri.
Una transicién ¢; se denomina activa, si no interga ningin tope. La transi-
cion se llama pasiva, si no es permitida en ninguna marcacion alcanzable.
En la investigacion detallada de la actividad de la red de Petri se usa tam-
bién el concepto de niveles de actividad. La transicién ¢ posee la actividad
del nivel 0, si no puede ser arrancada (es pasiva); del nivel 1, si potencial-
mente puede ser arrancada, o sea, si existe una marcacién alcanzable, en
la cual la transicidn es permitida; del nivel 2, si para cualquier X entero
existe und sucesidn de arranques de transiciones, en la cual esta transicion
estd presente no menor que k veces; del nivel 3, si existe la sucesién infinita
de arranques, en la cual esta trancisién estd presenta con la frecuencia infi-
nita; del nivel 4, si potencialmente puede arrancar de cualesquiera marca-
cién alcanzable (o sea, es activa). En la red de Petri dada en la fig. 4.46,
a la transicién 3 es activa, las #;, £, f, Is tienen nivel de actividad 3, la
1s es pasiva. En la red de Petri representada en la fig. 4.46, b la transicién
s es pasiva, la £ posee la actividad del nivel 1, la f, la del nivel 2, la ¢,
la del nivel 3. .

Uno de los problemas mds importantes en el andlisis de las redes de
Petri es el problema de alcance: jes alcanzable la marcacion u’ de la marca-
cién inicial g para la red de Petri dada? La importancia de este problema
se desprende de que la marcacién sirve de interpretacion del estado del siste-
ma, La solucién del problema de alcance permite determinar, si es alcan-
zable un estado determinado sea «bueno» o wmalo» para el sistema.

Las propiedades descritas y los problemas correspondientes del andlisis
de las redes de Petri son los mds comunes aunque no abarcan todo el con-
junto de cuestiones que pueden surgir al analizar las redes de Petri, Hay
dos procedimientos principales para resolver los problemas del andlisis. El
primero se basa en la construccién del drbol de alcance. Lldmase drbol
de alcance un arbol orientado con raiz, a los vértices del cual les correspon-
den las marcaciones posibles y a los arcos, las transiciones. Al vértice radi-
cal le corresponde la marcacién inicial. De cada vértice salen los arcos
correspondientes a las transiciones permitidas. La construccién del drbol

i7*
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se realiza sucesivamente, partiendo del vértice radical; a cada paso se forma
un nivel siguiente del 4drbol. Por ejemplo, después de tres pasos el arbol
de alcance para la red de Petri representada en la fig. 4.46, a tiene forma
dada en la fig. 4.47, a (los vectores representan las marcaciones). Es obvio,
que si construyendo un drbol no utilizamos acuerdos determinados, las re-
des activas (hasta limitadas) de Petri tendrdn un arbol infinito de alcance.

Llamaremos de frontera los vértices (y las marcaciones respectivas)
construidos a un paso siguiente del algoritmo. Si en una marcacion de fron-
tera no hay transiciones permitidas, la denominaremos ferminal. Si un vér-
tice de frontera tiene marcacién ya existente en el arbol, la llamaremos
duplicadora, Para los vértices terminales y duplicadores no construiremos
los arcos salientes de ellos. Esto asegura el 4rbol finito de alcance para
la red limitada de Petri (por ejemplo, fig. 4.46,a y 4.47.4). Para las redes
ilimitadas hace falta designar de cualquier modo el nimero infinito de fi-
chas en la posicion. Sea que « designa este nimero con tal que w + @ w,
w—-a=w a<w @<w, donde g es un nimero positivo entero arbitrario,
En la construccién del drbol de alcance usaremos la siguiente regla. Sea
que un vértice de frontera g no es terminal, ni duplicador. En la marcacion
p para cada transicién permitida ¢ construyamos un arco saliente de u y
lo denotemos por la transicién #;, La marcacién g’ del vértice nuevo se
determina del siguiente modo. Si u(pi) = w, p'{p:) = w. Si, en el camino
del vértice radical a p, existe un vértice p”, tal que después del arranque
de la transicién ¢ en g, el nimero de fichas en toda posicién no es menor
que en " y en la posicion p es estrictamente mayor, entonces p’(p) = w.
En caso contrario x’(p:) es el nimero de fichas en la posicidn p; que se
obtiene después de que 4 arranque de p (fig. 4.47, b).

Teorema 4.4. El drbol de alcance de cualesquiera red de Petri es finiia.

La demostracién de esta afirmacion se basa en las propiedades @ y en
las reglas de introducir este simbolo en la marcacién de los vértices de
frontera.
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El método de analisis basado en el drbol de alcance permite determinar
las propiedades de seguridad, limitacién, conservacion e investigar las pro-
piedades de actividad y de alcance.

La red de Petri es limitada si, v s6lo si, no hay simbolo « en el 4rbol
de alcance. Ademds, la posicién del simbolo « indica que posiciones son
ilimitadas. Si el simbolo @ estd ausente en el arbol, el nimero de marca-
ciones alcanzables es finito y todas las cuestiones del anilisis pueden resol-
verse mediante el sondeo simple. En particular, para hallar la frontera de
marcacién de la posicién dada p;, hay que encontrar el valor maximo del
i-ésimo componente entre todos los vértices del drbol. Si esta frontera no
supera 1, la posicidén es segura.

Para establecer si la red de Petri es conservante respecto a un vector
de ponderacion W = (wi, wa, ..., Wa), €s necesario resolver el siguiente
sistema de ecuaciones lineales con restricctiones:

5w wilp) = 5, cuando j = (1, ..., k),
i=1 w;>20, cuando i = (1, ..., n),

donde % es el niimero de vértices del drbol de alcance, a los cuales corres-
ponden distintas marcaciones. (Es evidente que si tenemos pip) = w,
wi=0.)

La posibilidad de resolver los problemas de actividad y de alcance esta
limitada por la existencia del simbolo « que esconde la informacion concre-
ta sobre el niimero de fichas. Por ejemplo, una vez instroducidos dos arcos
(t1, p2), (P2, ) en la red de Petri representada en la fig. 4.46, b, la red
obtenida de Petri tendré el mismo arbol de alcance que la inicial. Al mismo
tiempo, en la nueva red de Petri, en la posicién p2, puede encontrarse sola-
mente un nimero par de fichas, mientras que en la red inicial puede haber
cualquier nimero de fichas, es decir, los conjuntos de alcance para estas
redes de Petri no coinciden. Se puede aducir distintas redes con diferentes
propiedades de actividad, pero deben tener un mismo 4rbol de alcance.

No obstante, aunque el drbol de alcance no presta la informacién
completa sobre las propiedades de alcance y de actividad, en algunos casos
permite responder a las preguntas sobre el alcance y la actividad. Por
ejemplo, si tiene un vértice terminal, la red de Petri no es activa. Resolvien-
do el problema de alcance puede ocurrir que la marcacién x’ estd presente
en el irbol de alcance (la respuesta positiva) o que la marcacién g’ no
se cubre por ningin vértice del arbol de alcance, es decir, u”2 gpara todos
los vértices u* (la respuesta negativa).

Otro enfoque del andlisis de las redes de Petri se denomina matricial
y se basa en su representacién matricial. Introduzcamos las matrices D~
y D*, a cyuas columnas les corresponden las posiciones, a las filas, las
transiciones y D~ (, i) = # (o, J4)), DV, ) = # (pi, O()). Sea e(j) un
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vector-fila, cuyos componentes corresponden a las transiciones y todos son
iguales a cero, excepto el j-ésimo que es igual a 1. Entonces la transicién
{; est4 permitida, si u>e(j). D~ (x se examina como un vector) y el resulta-
do del arranque de t; desde pes p’ = p — e(HD~ + e()D* = p + e()x
X(D*~D") = p + e(j)-D, donde D = D* —D~ es una maliriz compue-
sta de cambios.

La marcacién p’ obtenida de g como resultado del arranque de la suce-
sién ¢ = Intpn ... bx se determina como

g =p 4 e(D + e(R)D + ... +e(i)D =
=p+ (e(h) + ... +e(Ee)D = p + flO)D,

donde f(o) = e(h) + ... + e(jx) es el vector de arranque, cuyo j-ésimo
componente es igual al nimero de arranques de z; en o.

Si una red marcada de Petri es conservante respecto a un vector de porn-
deracién W(W es vector-columna), se tiene uW = p' W para cualquier
p' = R(C w). Ya que g’ = p + f(e)D, entonces flo)DW = 0. Puesto que
esto es valido para todos los f(o), tenemos DW = 0. Por lo tanto, la red
de Petri es conservante respecto a un vector de ponderacién si, y sélo si,
existe un vector W tal que DW = 0. Esta ecuaci6én permite, hallar el vector
de ponderacion W.

Si la marcacion u’ es alcanzable de la marcacion inicial x de la red
de Petri debe existir una solucién entera no negativa de la ecuacién
u’ = p + xD, cuya solucién serd x = f(o).

[nvestiguemos ¢ problema de alcance para la red de Petri dada en la fig. 4.46, b con
la marcacion inicial (1, 0, 0, 0) para la marcacién u’ = (0, 2, 1, 2). La ecuacién p* = u + xD
toma la forma

o 1 00
_ 0 -1 0
©2L9=0000+x | ] o | o
6 0 -1 0

¥ liene sofucién x = (4, 2, 1, 0) que corresponde a la sucesion de arranques de las transiciones
HUUOGIUS

El enfoque matricial del analisis de las redes de Petri, igual que el enfo-
que basado en el arbol de alcance, en €l caso general no permite resolver
el problema de alcance y de actividad. Los problemas del andlisis matricial
consisten en que el vector de arranque obtenido durante la solucién de la
ecuacion 1) no proporciona informacién sobre el orden de arranque de tran-
siciones y 2) puede corresponder a la sucesién no permitida de arranques.

En el presente estd demostrado que los problemas de alcance y de activi-
dad son equivalentes pero no se conoce, si son resolubles en general, o
sea, no existe el algoritmo que permite resolver estos problemas ni la de-
mostracién de su ausencia.
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Fig. 4.48

Examinemos el uso de los métodos del andlisis de las redes de Petri
que simulan los sistemas prdcticos.

Un si paralelo especializado para realizar los p iterativos de cilculo compren-
de una coleccién de elementos de procesor (EO) y de médulos de memoria (de memoria de
datos (MMD) ¥ de instrucciones (MMI) unidas eén el anillo (fig. 4.48).El EO funciona en
dos regimenes. En el primer caso ocupa los dos MMD adyacentes usando el izquierdo para
sacar los dados de partida para nueva iteracion y el derecho para elegir los resultados de
la iteracion anterior. Terminada la iteracién, coloca el resuliado en ¢l MMD derecho y libra
los dos MMD. En el otro régimen ¢l EO funciona con los datos interiores. Una instruccidn
lefda del MM indica el régimen. Consideremos dos variantes para realizar unidades de mando
del EQ. En la primera variante, al realizar la iteracién, el MMD se ocupa sucesivamente. E}
EO puede estar en los siguientes estados: «elaboracidn de los datos interiores» (S;), «ocupado
el MMD izquierdow (S;), wocupado el MMD derechox (S3), «ocupados los dos MMD, elabora-
cién de los datos de la iteracion siguienter (Sa). El MMD puede estar ora libre, ora ocupado.
Consideremos la ocupacién y la liberacidén del MMD como sucesos. Esta variante del fun-
clonamiento se representa mediante la red de Petri, en la cual a cada EO le corresponden
cuatro posiciones que realizan las condiciones deseritas, y a cada MMD le corresponde una
posicién (en la cual la ficha significa que el MMD esid libre) (fig. 4.49), Se puede cerciorarse

Fig. 4.49
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Fig. 4.50
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que el 4rbol de alcance de esta red de Petri contiene dos marcaciones terminales: u = |84,
$2, S} y p2 = LS}, 8%, 51} que representan las situaciones de ocupar los MMD izquierdo
y derecho por todo EQ, respectivamente. Esto significa que la red de Petri no es activa, o
sea, en el sistema, las situaciones tope son posibles.

En otra variante del funcionamiento del sistema del EO se realiza solamente la ocupacién
simultanea de los MMD adyacentes (si es posible). En este caso a tode EQO le corresponden
solamente las condiciones S; y S« (fig. 4.50). El arbo) de aleance (fig. 4.51) no contiene marca-
ciones terminales, la red de Petri es activa. Ademds, de la consideracion del 4rbol de alcance
se desprende obviamente que la red de Petri es segura {las posiciones se interpretan como
las condiciones simples). En ¢} sistema se distribuyen los recursos que no aparecen ni desapare-
cen, es decir, se cumple la ley de conservacion. Determinemos si la red de Petri es conservante,
Para esto resolvamos la ecuacién DW = 0 que toma Ja forma
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Su resolucidén es W = (1, 1, }, 1, 3, 1, 3, 1, 3). En efecto, las posiciones ps, pr, po son las
condiciones vincutadas con tres dispositivas, las demds posiclones son condiciones vinculadas
con un dispositivo. De este modo, la red de Petri posee las necesarias propiedades principales,
lo que asegura la capacidad de trabajo de la segunda variante.

Las pruebas de simular sistemas reales condujeron a distintas defini-
ciones mas completas y modificaciones de las redes de Petri. En lo princi-
pal, estas modificaciones estdn ligadas con el cambio de la regla de arran-
que de transiciones.

La potencia de simulacidon de las redes habituales de Petri estd limitada
por la imposibilidad de probar las posiciones para el cero (o sea, de si la
marcacién de la posicién es nula). Uno de los procedimientos para superar
esta deficiencia es introducir arcos retenedores. Segin las nuevas reglas de
arranque, la transicion estd permitida, si las fichas estdn presentes en sus
posiciones habituales de entrada (de las cuales salen los arcos habituales)
v ausentes en las posiciones retenedoras de entrada (de las cuales salen los
arcos retenedores). El arco retenedor se refleja como el habitual pero en
su extremo tiene un circulo pequefio en vez de la flecha (esta designacién
ha sido adoptada de la teoria de los esquemas conmutadores donde el circu-
lo significa «no») (fig. 4.52). En las redes habituales de Petri la transicién
arranca segin la Idgica Y, en las redes de Petri con arcos retenedores la
légica se extiende incluyendo las negaciones. Ya que se puede representar
¢l suceso mediante unas transiciones se puede simular un suceso, cuya pre-
condicién se escribe como la unién de unas conjunciones de condiciones
y las negaciones de condiciones que corresponden a las posiciones de la
red de Petri con arcos retenedores. Por lo tanto, las redes de Petri permiten
simular las precondiciones en forma de la FND, es decir, las condiciones
de la forma mds general.

El probl inado de organizar el funci iento del sistema especializado de cat-
culo puede ser resuelio también por medio de la primera variante, en la cual se permite la
ocupacidn sucesiva del MMD (véase la fig. 4.49) pero previniendo situaciones tope. Es obvio,
que son posibles dos situaciones tope descritas mediante las marcaciones con fichas en las
posiciones S1, §2, 51 v 51, 3, 5] (véase la fig. 4.49). Para evitar la primera situacidn tope,
en las marcaciones 53, 5%}, 15, 3], (53, §3) es necesario evitar que aparezca la ficha

Fig, 4.52 5 s
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en las posicianes S3, 53, 51, respectivamente. Por lo tanto, la transicién ¢, debe tener en calidad
de precondicitn la conjuncién M “D;&S}&(S!&Sﬂ es decir, hace falta sustituirla por las tran-
siciones #{ y #{con precondiciones MMD,&S{&S! y MMD,&5!&57 (fig. 4.52). Hay que tratar
de modo andlogo las transiciones f5, fs (véase la fig, 4.49). Semejantes pasos se
para evitar la segunda situacidén tope.

Otras proposiciones para cambiar las reglas de arranque o bien son
equivalentes a la introduccion de arcos retenedores o bien tienen cardcter
mas particular, Por ejemplo, en las redes de Petri con campos de restriccién
se tienen conjuntos de posiciones (llamados campos de restriccidn), en las
cuales [as fichas no pueden encontrarse simultineamente. Las reglas de
arranque estan modificadas de tal modo que no interrumpan esta condi-
cion. St en la red de Petri dada en la fig. 4.49 incluimos dos campos de
restriccion {83, 83, S3} y (84, $%, S3), se puede evitar el surgimiento de
las situaciones tope.

§ 4.9. Problemas y ejercicios

4.1. Formar una 1abla funcional de la maquina de Turing cuando se suman | y el nimero
escrito en el sislema ternario.

4.2, En la cinta estd escrito un nimero en el sistema de numeracién de la base Q. Formar
tas 1ablas funcionales, empleando las cuales se puede escribir el nimero; a} que sigue inme-
diatamente al dado; b) que precede inmediatamente al dado.

4.3. En la cinta estd escrito un numero x en el sistema ternario. Formar la tabla funcional,
empleando la coal en la cinta se escribe 2x si x se divide por 3 sin resto y ¥ — 1 en el caso
contrario.

4.4, Escribir los nimeros 704, 21, 77 en los sistemas de numeracidn con las bases s = 3,
7, 11. El conjunta de cifras es simétrico.

4.5, Escribir los mimeros 0, 6; ~56, 1 en los sistemas de pumeracidn con las bases s = 5,
7. El conjunto de cifras es simétrico, ¢l ndmero de ordenes que se toma después de la coma
es igual a tres para los dos sistemas,

4.6. Escribir los mimeros 39, 88 v <101 en los sistemas de numeracidn con las bases

= 4, B, 12. El conjunio de cifras es asimétrico en la direccidn positiva.

4.7, Escribir los niimeros 88, 41 en el sistema de numeracidn con la base 6 y con las
cifras 1, 0, i, 2, 3, 4.

4.8, Escnibir el numere —0,77 en el sistema de numeracion con la base 10 y las cifras
4, 2, 1,0,1, 2,3, 4, 5 6. Tomar el nimero de drdenes después de la coma igual a cuatro.

4.9, En el sistema de numeracién con la base 5 estd escrito €] nimero 22001, Hallar su
equivalente decimal. ;A qué nimero corresponderd este mismo cddigo, si €] sistema de nume-
racion es nonario?

4.10. Establecer en qué sistema de numeracion se realizd la siguiente actuacion
(23 — 5} + {1 — 642) = 42 423. Sc desconocen las cifras sustituidas por guiones,

4.11. Escnbir los nimeros 71, =16 y 203 en el sistema de numeracién con la base -2.
LA gué esigual el equivalente decimal det cédigo obtenido, si lo consideramos comao la nota-
cion en ¢! sistema binario? El conjunto de cifras es natural.

4.12. Demostrar el siguienie teorema. en el sistema de numeracién con la base nataral,
el conjunto natural de cifras permite codificar univocamente cualquier equivalente
cuantitativo,

4.13. Argumentar las reglas de traslacidn de mimeros enteros y fraccionarios del sistema
con la base natural R al sistema con la base nalural Q
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4.14. Establecer las reglas de trasladar los ndmeros del sistema decimal de numeracidn
al sistema de numeracién con la base 2 y ¢l conjunto natural de cifras,

4.15. Estabiecer las reglas de trasladar las denotaciones del sistema de numeracién con
la base =3 v el conjunto natural de cifras al sistema de numeracidn con la base 3 y el mismo
conjunto de cifras.

4,16, Determinar cdmo cambia la denotacidn del nimero al pasar del sistemacon § = 3
y el conjunto simétrico de cifras al sistema con § = -3 y el mismo conjunto de cifras.

4.17. Establecer las reglas de trastadar del sistema de numeracidn con la base 2 y las
cifras 0, 1 al sistema de numeracidn con la base 4 y el conjunto asimétrico de cifras desplazado
a la direccién negativa.

4.18. Escribir €l nimero 61 en el sistema de numeracién con la base 0,25, Establecer
la relacidn entre la denotacidn de los mimeros en esle sistema » en el sislema cuaternario
con las cifras 0, 1, 2, 3.

4.19. Para €] snsl:ma de numeracién con la base 0,125, hallar eI conjunto de cifras que

la repr idn univoca de cualguier nimero.

4 20, Escribir los nimeras 60, —15, —607 en e} cadigo compl tario en el 51 de
numeracién con la base 5 v el conjunto natural de cifras.

4.21. Escribir el cero en el codigo complementario en el sistema de numeracién con la
base 6 y e} conjunio natural de cifras.

4.22. Escribir los mimeros 55, <70, 118 en el cadigo inverso en el sistema de numeracién
con la base 7 y el conjunto natural de cifras.

4.23. Escribir el cero en ¢l cddigo i en el sist der idn con s =11 yel
conjunto natural de cifras.

4.24. Escribir el numero —65 en ¢l codigo complementario en el sistema de numeracidn
con 5 = 4 y las cifras +3, -2, -1, 0.

4.25. Establecer 1a relacion entre los cddigos complementario e inverse de un nimero
x en el sistema con la base nawural § y el conjunio natural de cifras,

4.26. Escribir los siguienies nimeros: 75,5, —0,25; 0,125, —1000 en la forma semilogarit-
mica en el sistema binario de numeracién con las cifras 0, 1, Segin la condicién la mantisa
debe ser normalizada.

4.27. Establecer para que ndimeros x (no se supone que x es menor que el uno) el codigo
complemeniario de estos nimeros coincide con la denotacidn del propio mimera. Resolver
¢l problema andlogo para el cédigo inverso (por supuesto, x<0).

4.28. Trastadar ] cddigo complementario 6.1124 en la denotacién habitual. Resolver el
problema andlogo para el cddigo inverso 7,770045.

4.29. Hallar ta suma de dos nimeros 0,1101 y 0,0010 en el sistema binario con las cifras
0, 1 construyendo de antemano las reglas de adicién en un orden. Los drdenes de los nimeros
son iguales.

4.30. Hallar ¢l producto de los nimeros 0,3302 y 0,1102 en e} sistemna cuaternario con
e} conjunto natural de cifras. Construir con anticipacién la tabla de multiplicacién para este
sistema.

4.31. Hallar la suma y el producto de los mimeros 0, ZI.DDDO y 0,000009 en el sistema
de numeracién con S = 11 y el conjunto natural de cifras: (0, 1, 2, ..., 9, D], donde el
equivalente coantitative de la cifra D es igual a 10, La d i6n con ional de la cifra
con el equivalente cuantitative 10 es D. Construir con anticipacién las tablas de adicidn y
multiplicacién en el sistema undecimal de numeracidn.

4.32. Empteando el cddigo complementario, hallar la suma de los mimeros 0,101 y
-0,10000 en el sistema binario con las cifras 0, 1. Trasladar et resultado de sumacién a la
denotacion habitual.

4.33. Empleando el cédigo inverso, hallar la suma de los nimeros 0,2210 y +0,1122 en
el sistema ternario con las cifras 0, 1, 2. Trasladar el resultado a la denotacidn habitual.

4.34. Hallar la suma de los nimeros -0,00t1 y 0,1001 en €] cédigo inverso en el sistema
binario de numeracién con las cifras 0. 1.
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4,35, Hallar la suma de los nimeros 0,00065 y —0,01125 en el cédigo complementario
en el sistema septenario de numeracidn,

4,36. Hallar el producto de los nimeros 30,201 y —=3%:0,102 en e) sistema ternario de
numeracidn con las cifras 0, 1, 2. Trasladar el resultado a la denotacidén habitual.

4.37. Hallar la suma de los nimeros —7~" + 0,11066 y =7 + 0,11055 en el cédigo
complementario en ¢} sistema de numeracién con S = 7 y el conjunto natural de cifras. Nor-
malizar €] resultado.

4,38, Hallar la suma de los niimeros binarios —2'-0,1001 y 2%-0,1102 en el codigo inverso
en el sistema con las cifras 0, 1. Normalizar el resultado.

4.39. Hallar e cociente para los nimeros 0,0111 y 0,1100 limitdndose con cuatro cifras
del cociente, Trastadar el resultado a la denotacién decimal.

4,40, Hallar cuatro cifras del cociente para los niimeros 0,0442 y ~0,4343 ea el sistema
de numeracidn con la basé‘ y el conjunto natural de cifras. Trasladar el resultado a la denota-
cion decimal. ®

4.41. Hallar el coclente de la divisidn de 4-0,1101 por 4*-0,330). Buscando la mantisa
del cociente, calcular cinco cifras. Trasladar el resuliado a la denotacién binaria con las cifras
0,1

4.42. Hallar el cociente de la divisién de 2'-0,1101 por ~2*-0,1001, El resultado de la
divisién de la mantisas debe contener cinco 4rdenes y ser normalizado.

4.43. Determinar las reglas de adicidn y muliiplicacién para un orden en el sistema terna-
rio con el conjunto simétrico de cifras. Empleando las reglas obtenidas, hallar la suma y
el producto de los ndmeros 0,1T0T y 0,1101. En esta denotacién 1 corresponde a la cifra -1

4.44. Establecer las reglas de adicién y multiplicacién en el sisterna de numeracién con
la base 6 y el conjunto asimétrico de cifras desplazado a la direccidn negativa. Hallar la suma
y el producto de los nimeros —0,3012 y 0,T102. La raya sobre la cifra significa que la iltima
es negativa, )

4.45. Determinar Yas reglas de adicidn en &) sistema binario de numeracién con las cifras
-1, 0, 1. Hallar la suma de los niimeros 0,11017 y 0,170k,

4.46. ;Con cudntos procedimientos se puede codificar diez cifras decimales mediante las
téradas binarias?

4.47. ;Con cudntos procedimientos se puede realizar la codificacién del problema ante-
rior, si, ademds, exigimos la correspondencia biunivoca entre las cifras y las tétradas?

4.48. Hallar la suma de los niimeros 5764 y 2433 en ¢ cddigo del desplazamiento directo
y en el codigo por exceso de 3.

4.49. Hallar la suma de los nimeros —79 y -981 en el codigo por exceso de 3, ~

4.50. Establecer las reglas de adicién en el cédigo por exceso de 6. Empledndolas adi-
cionar los nimeros 203 y 479,

4,51, Demostrar la afirmacidn: si en la codificacién bidecimal todos los pesos pr son
no negativos, entonces son estrictamente positivos.

4.52, Demostrar que el unico codigo perfecto es el ¢ddigo con los pesos 24 2 L

4.53, Demostrar la afirmacién: si en el cddigo de valor ponderado exisien dos pesos
iguales, su suma no supera 9 (se supone que los pesos son positivos).

4.5d4, Demostrar la afirmacién: el codigo de pesos positivos no puede tener peso mayor
que 8,

4.55. Establecer las reglas de adicién y multiplicacién para el ¢cddigo por exceso de 5.
Determinar la suma y el producto de los numeros 87 y 56.

4.56. Escribir las tablas de cddigos por exceso de 1 a 15, Cerciorarse que solamente los
cédigos por exceso de menor que 7 satisf las exigencias de unicidad, paridad y ord i
v, ademids, s6lo el cddigo por exceso de 3 satisface Ja complementaridad.

4,57, Establecer las reglas de adicién y multiplicacién para el cddigo de Aiken Emeriax
(¢l codigo con los pesos 2 4 2 1). Empleando estas reglas, hallar la suma y ¢l producto de
los mimeros —401 y 587.
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4,58. Establecer las reglas de adicion para el cddigo 2521 (es decir, para el cédigo con
los pesos 2 § 2 1). Hallar la suma de los nuomeros 90 y 73,

4.59. Determinar las reglas de adicidn para el c6digo 3321 y hallar 1a suma de los niimeros
601 y ~670.

4.60. En el sistema de los madulos g, = 2, g2 = 3, g5 = 5, cierto nimero tiene cadigo
en restos tipo 010. Determinar este nimero.

4.61. En el sistema de los modulos g, = 7, @2 = 8, se dan los numeros x e y por medio
de sus cédigos en restos 31 y 03. Establecer gué nlimero es mayor, X 0 ».

4.62. Escribir ¢l algoritmo de traslacién de los cdigos en restos a la denotacién decimal
del nimero.

4.63. Hallar un procedimiento para determinar el signo del nimero en el codigo en restos.

4.64. Hallar un procedimiento para comparar los nimeros por el valor en el cédigo en
restos.

4.65. Establecer las reglas de division para ¢l cédigo en restos.

4.66. Sintetizar un esquema criotrénico que realiza la funcion f(x;, xz, X3, X} | 3 = V(l,
3, 7, 8 9, 10, 12, 15).

4.67. ;Como se tiene en cuenta el coeficiente de ramificacion que se determina por la
capacidad de carga del elemento bisico «dado cuando se utiliza la codlgebra de grafos X7

4.68. Comparar las complejidades de los contadores de paridad de tres variables en las
bases de Webb y de Sheffer.

4.69. Comparar la complejidad del contador de paridad de tres variables en la base de
Sheffer construido segim el método de simulacién de copulas del dlgebra de Boole y segin
el método que se basa en la aplicacidn de la codlgebra de los grafos K.

4.70. Determinar la derivada temporal de la funtidn booleana x() dada en la tabla 4.9,

Tabla 4.9
' 0 1 z |Va 4 5 6
W | 1 i 0 1 0 1 1

4,71. Hallar la funcion de ecror Af en la salida de un semisumador completo, si el primer
sumando x{r), el segundo xz(r) ¥ el traslado p(¢) del orden anterior se determinan segin
la tabla 4.10.

4.72. Hallar la funcién de error Af a las salidas del descifrador de cuatro salidas, s 2
su primera entrada llega la sucesidn boolezna temporal x(r) prefijada segin la tabla 4.11,
a y a su segunda entrada, la funcién y(¢) prefijada segin ta tabla 4.11, &

Tabla 4.10

i 1] 1 2 3 4 5 6 T

E10] 0 1 1 1 0 1] | 4]

xz2(¢) 1 1 Q 1 1 0 1] 1

P 1] ] 1 0 1 o 0
Tabla 4.1, a Tabla 4.1, b
t o1 |2|3]4]|5]617 [§ ol1]|2|3|4|5]|6]|7
oy |rjijrjojojrjof oy |vjojo|i]1|ojo|o
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4.73. Determinar fa Funcion de error a la salida del contador de imparidad que tiene
tres entradas x;, X2, X3, a las cuales Hegan las sucesiones booleanas temporales periddicas
prefijadas en la tabla 4.12.

Tabla 4.12
I 0 1 2 3 4 5 ] 7
xdf) I 1 0 1] I 0 1 Q
xalr) o | o 0o | o 1 i 0 1
xilt) i 0 1 0 1 1 0 1
Comentarios

Crear los sistemas de automatizacion de disefio, de produccién automatizada flexible, las redes
locales de cdlculo, los sistemas intelectuales de conocimiento y resolver otros problemas es
imposible sin la formalizacién, cuya base constituye la teoria de las gramdticas formales ¥
de los dispositivos automaticos. En el desarrollo de esta teoria un gran aporfe perfenece a
los cientificos saviéticos V.M. Glushkov, M.A. Gavrilov, V.A. Gorbatov, AV. Kalidev, V.G, L4-
zarev, PP. Parjdmenko, D.A. Pospélov, V.P. Chistov, E.A. Yakubaitis y otros.

Para los conocimientos mds detallados de las gramdticas formales y los dispositivos auto-
miticos se recomienda la literatura adicional indicada en el apartado de Bibliografia.



De la percepcién viva al pensamiento abs-
tracto, de éste a la prdctica: 1al es el camino
dialéctico del conocimiento de la verdad, del
conocimicnte de la realidad objetiva.

V. I Lemn

CAPITULO 5

Teoria aplicada de los algoritmos
Analisis de caracterizacion

§ 5.1. Principios del anilisis de caracterizacién.
Construccion de Jos algoritmos combinatorios

El rasgo caracteristico de la revolucién cientifico-técnica contemporineo
es el creciente papel de los cdlculos de cardcter combinatorio (de sondeo)
en los problemas aplicados. El problema actual de la matemética discreta
es la construccién de los algoritmos combinatorios, eficaces tanto por la
capacidad de la memoria necesaria como por la accién rdpida.

Se puede partir los problemas aplicados en los del andlisis y los de la
sintesis de los sistemas discretos. Por la resolucidn del problema del andlisis
se entiende la determinacién del hecho que el modelo ¥, gue representa
el sistema discreto posee las propiedades demandadas. Resolviendo el
problema de la sintesis, el modelo ¥4 se transforma en el modelo ¥ para
alcanzar el extremo de la funcional prefijada de calidad ¢(¥5). En ambos
casos se puede hablar sobre 1a equivalentizacién. En los problemas del an4-
lisis, segiin el modelo ¥, se construye su equivalente que revela las propieda-
des del modelo. En los problemas de la sintesis el modelo ¥, se hace equiva-
lente al modelo ¥, que se sintetiza. Tanto el andlisis como la sintesis se
realizan empleando algoritmos combinatorios.

La clase primitiva de los algoritmos combinatorios la representan los
FBl-algoritmos (FBI significa Fuerza Brutal e Ignorancia). Estos algorit-
mos no tienen ninguna «destreza», resuelven los problemas «a ciegas» reali-
zando el sondeo completo de las transformaciones posibles. En este caso
faltan las premisas teéricas, basindose en las cuales se podria proponer
un algoritmo «refinado» de solucién. En los algoritmos de esta clase se
realiza la equivalentizacion sintdctica.

La equivalentizacién sintactica llamada transformacidn equivalente co-
rresponde al nivel de conocimientos para el cual se conoce el sistema comp-
leto de axiomas y que consiste en la construccidn de la siguiente variante
para los problemas del andlisis ¥ en la sustitucion del modelo ¥, por ¥,
para ¢l problema de la sintesis basdéndose en uno u otro axioma o ley
obtenida del sistema de axiomas. El drbol de soluciones para la equivalen-
tizacién sintictica estd representado en la fig. 5.1, a.

Todo vértice pendiente del drbol corresponde a la resolucién tope. Las
propiedades tipicas de este drbol son:
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Fig. 5.1

1) el aumento combinatorio del nmimero de vértices pendientes con el
aumento lineal de la dimensién del problema;

2) 1a necesidad de «regresar» al (f — 1)-ésimo nivel anterior cuando se
calcula la informacidn que corresponde al vértice «vecino» en el i-ésimo
nivel, El corolario de esta propiedad es la necesidad principal de recorrer
todo el drbol buscando la resolucién minima.

Estas propiedades determinan el fendmeno denominado la «maldicién
de la dimensidn».

Durante la elaboracién del apoyo matemdtico y de programas para los
ordenadores, especialmente trabajando en escala concreta del tiempo,
creando sistemas de automatizacién de proyeccién (el problema de SAPR), -
etc,, lo actual es la proyeccién de paquetes de accién rdpida de los pro-
gramas aplicados. Para aumentar la rapidez de accién, se usan heuristicas
en forma de correspondientes funcionales hallados en la base de experien-
cia, analoglas y consideraciones sensatas. Como resultado se obtiene la
clase de algoritmos heuristicos. Los algoritmos de esta clase realizan la
equivalencia heuristica, cuando la rapidez de accién del algoritmo in-
crementa, pero es imposible estimar la calidad de la solucién obtenida; in-
cluso no se puede decir si es de tipo tope, o sea, imposible de ser
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simplificada mds. En la fig. 5.1, b est4 representado el drbol de soluciones
cada vértice del cual corresponde al trabajo dado, cada arco, a una variante
del sondeo o a una transformacion.

Los algoritmos de la tercera clase, que realizan la equivalentizacion
semdntica, permiten lograr la accidn mds rdpida de los algoritmos com-
binatorios sin engendrar todas las soluciones equivalentes, o sea,
simplificada mas. En la fig. 5.1, & esta representado el arbol de soluciones,

Durante la equivalentizacién semantica es conocido no sélo el sisterna
completo de axiomas, sino también el criterio constructivo que permite:

para el problema del andlisis comprobar la veracidad del predicado
Pﬂ{‘l’n)i

Po(¥a) = 1, si el modelo ¥, posee la propiedad prefijada,
ne 0 en caso contrario;

para ¢l problema de la sintesis vincular dos abstracciones distintas, los
modelos ¥, ¥y ¥», en un sistema inico empleando el predicado de la in-
tegridad funcional Po(¥., ¥»):

1, si la transformacién ¥,— ¥, existe junto
a la correspondencia biuvivoca entre los
elementos de los modelos ¥, y ¥,

0 en caso contrario.

Po(¥., ¥3) =

Lo comiin que caracteriza los modelos ¥, y ¥ y los diferencia de los
demads es el sentido de la transformacién ¥.—¥,. En otras palabras el sen-
tido de la transformacién ¥.—¥; es la propiedad de las expresiones
linglisticas, invariante respecto a sus representaciones modelos. La ldgica
semantica, parte de la metaldgica, investiga este sentido. Se comprende co-
mo semantica, por regla general, la semdntica descriptiva que examina la
conexion entre las combinaciones de signos del lenguaje formalizado y sus
interpretaciones en los términos del sistema de conceptos, cuya formalizaci-
on es el lenguaje dado. Aqui se comprende como semdntica el estudio de
la interpretaciéon de un lenguaje formalizado en las categorias
de otro con tal que los dos lenguajes son formalizacién de un sistema de
conceptos. Llamaremos proyectivo a este tipo de semdntica. En caso par-
ticular, cuando dos lenguajes coinciden y se investiga si se puede cumplir
la propiedad determinada del modelo de estudio, la seméntica proyectiva
se denominard reflexiva.

La semdntica reflexiva permite resolver los problemas del andlisis de
los modelos. La semdntica proyectiva de la transformacién ¥,— ¥, permite
calcular el valor extremal de la funcional de calidad ¢(¥3) de la resolucién
y construir el correspondiente modelo dptimo ¥ sin formar todos los
modelos equivalentes [¥5,) que disminuye considerablemente la densidad
de trabajo de los algoritmos.

18—6577
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Para determinar la seméntica proyectiva de la transformacion ¥.—¥p
es necesario:

1. Hallar las caracteristicas numéricas [»;} del modelo ¥p que determi-
nan univocamente el valor ¢(¥5).

2. Determinar las propiedades S, del modelo ¥, en cuya presencia se
puede calcular [m]}.

3. Revelar las propiedades S, del modelo ¥, que determinan
univocamente las propiedades Sp del modelo ¥,.

4. Hallar las caracteristicas numéricas del modelo ¥, que posee las pro-
piedades S, que determinan univocamente ¢(¥s).

De este modo, la presencia de las propiedades S, permite calcular univo-
camente ¢(¥3) sin construir de hecho ¥,.

Para hallar la semdntica reflexiva del anilisis del modelo ¥, es
necesario:

1. Revelar las propiedades S; del modelo ¥, que determinan univoca-
mente el predicado Po(¥s).

2. Hallar las caracteristicas numéricas del modelo ¥, que determinan
la presencia de las propiedades Si.

En ambaos casos, lo principal es establecer las propiedades S, del modelo
¥, que determinan la veracidad del predicado Po(¥2) 0 Po(¥a, ¥1). Estas
propiedades del modelo ¥, las buscaremos en forma de propiedades de
ausencia de las figuras prohibidas que forman la base del criterio de cumpli-
miento de las propiedades S;. Si conocemos las figuras prohibidas, pode-
mos resolver eficazmente los problemas del andlisis y calcular de manera
constructiva la funcional ¢(¥,) sin engendrar todos los modelos equivalen-
tes {¥p,] (véase la fig. 5.1, ¢) durante la solucién de los problemas de la
sintesis. La biisqueda y el estudio de las semdnticas reflexivas y proyectivas
basadas en figuras prohibidas los referiremos a la metalégica y denominare-
mos semdniica constructiva.

La figura 5.2 ilustra la relacion entre las tres semdnticas de
transformacion.

Semdnticas reflexivas

Semdntiwas

W descriptevas

Sistema formalizable.
el mundo exterior Fig. 5.2
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El problema de buscar las figuras prohibidas se denomina problema
de caracterizacion. Este problema se define por la clase de modelos
K; = [ ¥} que se examinan y por la propiedad S; que se caracteriza y que
determina el predicado Po(¥.) o Po(¥., ¥5). Para resolver el problema de
caracterizaciéon hay que determinar el conjunto de figuras prohibidas
K, = | ¥}, es decir, de tales modelos ¥;, cuya ausencia en el modelo dado
¥.€K, es la condicién necesaria y suficiente de que ¥, posee la propiedad
Sa con ello ninguno de los modelos ¥,€K|, estd presente en otra figura prohi-
bida: un modelo ¥;€K,.

Formalicemos los conceptos de ausencia y de presencia de un modelo
en otro. Sobre el conjunto de modelos K, se puede prefijar una relacién
de ordenacién #;, tal que (¥;, ¥,)€Ps, si ¥; estd presente en ¥, La relacién
P, se denomina relacidn de subordinacidn, el modelo ¥; se llama subordina-
do al modelo ¥;. La relacién de subordinacién de modelos es la generaliza-
cidn de la conocida relacion de ser submodelo. El modelo ¥, es el submode-
lo ¥; obtenido después de eliminar unos elementos del portador y de la
signatura del modelo ¥;. El problema de caracterizacién con la relacién
dada de subordinacién P se hace concreta sobre una clase de modelos,
transforméndose en la tarea de caracterizacién. Puesto gue sobre la clase
de modelos K, pueden darse muchas relaciones de ordenacién, el problema
de caracterizacion puede considerarse como todo un conjunio de tareas
de caracterizacién, cada una de las cuales tiene su propia solucién en forma
de un conjunto de figuras prohibidas.

Resolviendo la tarea de caracterizacién muchas cosas dependen de la
opcidén de la relaciéon de subordinacién: la compacidad del conjunto de
figuras prohibidas y la resolubilidad de esta tarea en general. El hecho de
que ¢l problema de caracterizacién es siempre resoluble tiene cardcter de
principio. Hace falta sélo escoger correctamente la relacién de subordina-
cién y obtener, conforme a esto, el planteamiento del problema resoluble
de caracterizacion. Mostremos cudl debe ser la relacién de subordinacién.

Teorema 5.1 (principio de localidad). Para una clase de modelos
K. = [{¥.] con una relacion de subordinacién P, y para una propiedad
Sa, el conjunto de figuras prohibidas K, = |¥,,) existe (la rarea de
caracterizacidn es resoluble) si, y sdlo si, es vdlido que todo modelo ¥;
subordinado a un modelo ¥; con la propiedad S. posee también esta
propiedad.

OSupongamos que el conjunto de figuras prohibidas existe. Entonces,
segin la definicién de figura prohibida ningiin modelo ¥, que posee la
propiedad S, tiene figuras prohibidas como las subordinadas.

Por otra parte, sea que la relacién de subordinacién es tal que a los
modelos ¥, con la propiedad S, inherente les estdn subordinadas sélo los
modelos que también la tienen (fig. 5.3). En este caso, segiin la definicién
de figura prohibida el conjunto de figuras prohibidas K, se forma de los
18* -
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Fig. 5.3

elementos minimales de la relacidon de ordenacién P sobre el conjunto
K.\ K., donde K.C K. es la subclase de modelos ¥, que poseen la pro-
piedad S,. W

En calidad del ejemplo examinemos el problema de caracterizacion de
los grafos de dos partes. Las tareas de determinar dos partes del grafo y
de transformar un grafo en el de dos partes tiemen muchas aplicaciones:
partiendo de la proyeccién de autdmatas seguros hasta la construccién de
sistemas informativos eficacés con el cese del procesamiento en paralelo.
Por ejemplo, sea que un sistema informativo de biblioteca se realiza en
el ordenador con dos dispositivos de discos (fig. 5.4, @). Para lograr la efica-
cia mdxima de trabajo del sistema informativo de biisqueda es necesario
descomponer la base de datos en dos partes de tal modo que se obtenga
el tiempo minimo de procesamiento de la demanda debido a la colocacion
simultdnea de las cabezas de lectura e inscripcién en dos dispositivos de
disco. A los ficheros de la base de datos les ponemos en correspondencia
los vértices del grafo. Dos vértices son adyacentes si los ficheros correspon-
dientes son necesarios para responder a la demanda de cierto tipo (fig. 5.4,
b). La distribucién éptima de ficheros por los discos se determina por la
particion del conjunto de los vértices del grafo en dos conjuntos, dentro
de los cuales se encuentra el mimero minimo posible de aristas (que corres-
ponde al paralelismo mdximo). Esta tarea se reduce a desentrafiar la semdin-
tica proyectiva de transformacién de los grafos en los de dos partes elimi-
nando el nimero minimo de aristas. La seméntica se determina resolviendo
el problema de caracterizacidon de los grafos de dos partes (fig. 5.4, ¢).

La clase K, se compone de los modelos, cuya signatura se forma por
una relacidn binaria simétrica antirreflexiva. La propiedad S,: ser de dos
partes. Examinemos dos relaciones de subordinacién: P, ser grafo parcial
y P? ser grafo reducible. Llamase reducible un grafo G, que se obtiene
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Fig. 5.5

de un grafo G después de encolar sucesivamente los vértices no adyacentes
{uniéndolos en un vértice) junto a la union correspondiente de sus entornos.
Las dos relaciones satisfacen el principio de localidad. Por lo tanto, en am-
bos casos el problema de caracterizacién es resoluble, En la fig. 5.5, a y
b se ofrecen los diagramas de las relaciones de subordinacién. En el caso
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de la relacién de subordinacion P} el conjunto de figuras prohibidas es el
conjunto de los ciclos impares, en el caso de la relacidon de subordinacién
P}, el conjunto de grafos completos del orden mas que dos.

Asi, pues, siempre se puede resolver el problema de caracterizacién v,
por consiguiente, obtener el conjunto de figuras prohibidas que determina
el criterio semantico constructivo para solucionar los problemas del anali-
sis. Es mds, ¢l conocimiento de los conjuntos de figuras prohibidas se utiliza
en el método de la equivalentizacién semdntica en los problemas de sintesis,
El principio fundamental de la equivalentizacién semantica consiste en co-
nocer los modelos prohibidos concretos que presencian en el modelo ¥,
y le molestan poseer la propiedad S, lo que permite determinar las estruc-
turas locales, cuya transformacién es necesaria para obtener el modelo ¥,
con la propiedad §; inherente. Al mismo tiempo, se realiza solamente el
sondeo minimo (inevitable) de variantes de transformaciones, es decir, no
se puede mejorar el proceso de cdlculo en el sentido de la densidad de traba-
jo. Durante la equivalentizacién semdntica el drbol de soluciones (véase
la fig. 5.1, ¢} comprende dos estrellas. La primera corresponde a la transfor-
macién 'Ifa-*'h. Py(¥,, ¥,) = 1, 1a segunda, ala ¥,— ¥,. Buscando la solu-
cién minimal es necesario recorrer todas las ramas de la primera estrella
¥, en la segunda, es suficiente tomar cualquier rama, ya que todas las ramas
de ésta ltima son equivalentes desde el punto de vista del cardcter minimal
de la solucién que se determina por el valor o(¥,). )

Analicemos detalladamente el proceso de la equivalentizacion semanti-
ca. En la base de éste estdn los procedimientos de transformar las figuras
prohibidas en las equivalentes permitidas. El sentido de la transformacion
¥,— ¥, determina la equivalencia. Como regla, el procedimiento de trans-
formar una figura prohibida en la permitida es la eliminacién, 1a introduc-
cién o la desintegracion del elemento del portador o de la signatura o bien
el paso a un modelo subordinado,

Durante la equivalentizacién semdntica para transformar un grafo en
el de dos partes son posibles varios procedimientos de transformacién de
las figuras prohibidas, o sea, ciclos de longitud impar. Empleando la trans-
formacién para encajar el grafo en el hipercubo durante la proyeccién de
autdmatas seguros, la figura prohibida se transforma en la permitida por
medio de introducir un nimero impar de vértices para una arista (estricta-
mente dicho, aqui tenemos el conjunto de transformaciones y no una sola).
Si la transformacidn se emplea para la descomposicién éptima de la base
de datos, el procedimiento de transformacion consiste en eliminar una aris-
ta. Es de principio que el procedimiento de transformacion de la figura
prohibida en la permitida existe siempre cuando Ia transformacién ¥,— ¥y
tiene sentido en general. En efecto, para todo modelo ¥, existe el modelo
equivalente ¥, que posee la propiedad S,. Por tanto, existe la transforma-
cién de ¥, en ¥, y cualquier transformacién del modelo ¥, en el modelo
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que posee la propiedad S, transforma obligatoriamente las figuras prohibi-
das en las permitidas. La localizacién de la transformacién global de ¥,
en ¥, sobre la figura prohibida ¥,C ¥, incluye su transformacién en la
permitida. De este modo, el procedimiento de la transformacién de la figura
prohibida en la permitida existe siempre.

En el caso general es posible el conjunto de transformaciones de la figu-
ra prohibida en la permitida. Sea R; = [} un conjunto de procedimien-
tos de transformar las figuras prohibidas ¥;6K, (es decir, para cualquier
J ri{¥) es figura permitida). Construyamos el conjunto de procedimientos
basicos de transformaciones R’C R;, es decir, un conjunto minimal por la
inclusién {rf} tal que para cualquier r; existe una sucesién de transforma-
ciones de R} que traspasa ¥; a r;(¥.).

Examinemos los procedimientos de transformar las figuras prohibidas
para transformar el mografo en el lineal lo que es importante en los proble-
mas de organizacién de los datos en los sistemas de bisqueda informativa
y en las bases de datos. Las caracteristicas principales del emplazamiento
de los datos en la memoria son la capacidad de memoria que se ocupa
y el tiempo de acceso. Cuando el sistema de blisqueda informativa se prefija
como un mografo la capacidad de memoria se determina por la potencia
del portador, y el tiempo de acceso se determina por el tiempo de lectura
de las palabras del modelo. Uno de los procedimientos de la organizacién
6ptima de los datos en la memoria es €l emplazamiento lineal que supone
una ordenacién lineal (completa) de los objetos de los datos tal que Ia res-
puesta a cada demanda es una cadena de datos asi ordenados. Pongamos
los elementos del portador en correspondencia a los objetos de datos, las
palabras, en correspondencia a las respuestas a las demandas. Un mografo
se denomina lineal si permite el emplazamiento lineal de los elementos del
portador, en el cual todas las palabras son cadenas. De este modo, para
obtener la organizacién éptima de los datos, es necesario transformar el
mografo en el lineal v, por lo tanto, resolver el problema de caracterizacion
de la linealidad del mografo.

Sin concretizar la forma de figuras prohibidas (lo que examinemos més
detalladamente a continuacion) seiialemos que son posibles dos procedi-
mientos de transformar las figuras prohibidas en las permitidas:

1) la desintegracion del elemento x del portador en x y x* con la corres-
pondiente sustitucién de x por x’ en unas palabras que comprendian x;

2) la desintegracién de la palabra M, es decir, su sustitucion por dos
palabras. .

Se puede mostrar que estos procedimientos forman un conjunto bésico
de procedimientos de transformar las figuras prohibidas en las permitidas.

Ejemplifiquemos los procedimientos de transformar las figuras prohibidas en las permiti-

das empleando cl mografo {fig. 5.6, &) que es un sistema informativo hipotético de biblioteca
que incluye la informacién sobre los siguientes libros:
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xi: VV.Rzhevski, Procesos de trabajo de la mineria a cielo, M., MNedra, 1978;

Xzt ALA.Samarski, Teorfa de los esquemas en diferencias, M., Nadka, 1977;

X3 G.L.Marchuk, Métodos de la matemdtica de cilculos, M., Nadka, 1977;

x: Fund s de la aut izacion del control de la produccion (Dirigido por
L.M.Makdrov, M., Visshaya shkola, 1983);

el sistema se destina para las siguientes demandas:

M: Libros de los métodos de cdlculo. Respuesta [xz, X33

M3y: Libros de automatizacidn de los procesos. Respuesta [xi, Xs};

Mj: Libros de autores (redactores), cuyos apellidos empiezan con A a M. Respuesta (X3,
Xali

Mj: Libros de autores (redactares), cuyos apellidos empiezan con N a Z. Respuesta {xi,
Xz},

El mografo dado no es lineal. Se puede mostrar que 1odo elemento del portador y toda
palabra integran la figura prohibida. La desintegracion del elemento del portador o de la
palabra debe transformar el mografo en el lineal. Por ejemplo, ¢ id os’lad
del elemento x;. El mografo transformado es lineal y se representa por la ordenacién lineal
dada en la fig. 5.6, b. Desintegrando cualquier palabra, por ejemplo M:, el mografo se hace
también lineal y se rep por la ord ion lineal dada en la fig. 5.6, ¢. En el primer
caso, a la capacidad de ia ocapada por los objetos de datos, en el segundo,
el promedio del tiempo de respuesta a las demandas.

Cada procedimiento de la transformacién r;, se caracteriza por el valor
¢i, La funcional de Ia calidad de transformacién ¢(¥;) se determina por
el valor de las transformaciones de las figuras prohibidas en las permitidas.

Para cumplir la transformacién ¥,~ ¥, es inevitable transformar cada
figura pmhibida en la permitida. Por eso, para toda figura prohibida
¥,,C Vo, escojamos uno de los procedimientos de su transformacién; su
coleccién determinard la transformacion global ¥,—¥,. En el caso general,
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esta transformacién posiblemente no logra el extremo de la funcional
¢(¥s), incluso si para cualquier ¥, estd elegido el procedimiento de trans-
formacién con el valor minimo, lo que esta condicionado por el posible
procedimiento de transformacion ¥, que, pese a no tener el valor mini-
mo, transforma al mismo tiempo otra figura prohibida ¥,. Adem4s, la
relacién entre los procedimientos de transformacion de las figuras prohibi-
das puede resultar muy complicada. Por eso la simple eleccién de procedi-
mientos de la transformacién, uno por cada ¥, C¥,, no asegura el logro
del extremo de la funcional de la calidad (¥s).

Estd propuesto el procedimiento de la equivalentizacion semantica ba-
sada en la construccion de la tabla seméntica. A las columnas de esta tabla
les corresponden figuras prohibidas presentes en el modelo; a las filas, pro-
cedimientos de la transformacién. El elemento (i, j) de la tabla es igual
a 1, si la i-ésima transformacion convierte la j-ésima figura prohibida en
la permitida v a 0 en caso contrario. El cubrimiento de las columnas por
las filas de la tabla semdntica determina un conjunto de transformaciones,
minimal por la inclusidén. Es necesario cumplirlo para obtener del modelo
¥, el ¥, con la propiedad S,. Tomando en consideracién que todo procedi-
miento de transformacidn puede tener valor propio, deducimos que para
llegar al extremo ¢(¥;) €s necesario hallar cubrimiento de la tabla seméanti-
ca, minimal por su valor. A veces, en esta tabla, a las filas les corresponden
figuras prohibidas, a las columnas, sus transformaciones en las permitidas.
Ya que esto no es de principio, utilizaremos las dos variantes de la construc-
cidon de la tabla seméntica.

Consideremos el problema de la equivalentizacion semdntica del grafo,
representado en la fig. 5.4, b, en un grafo de dos partes. La funcional de
la calidad es el minimo de aristas eliminadas. Las figuras prohibidas (ciclos
de longitud impar) estan formadas por los siguientes conjuntos de aristas:
¥y, = {a b c}, ¥, = (& b d e f]. El procedimiento de la transforma-
cion -eliminacion de la arista- tiene el valor 1; el procedimiento concreto
de la transformacion se designa indicando la arista para eliminar. La tabla
semantica tiene siguiente forma:

Tabla 5.1
¥p, ¥,

1 1
1 I b

1 c




282 C

pitulo 5. Teoria aplicada de los algoritmas

El cubrimiento minimal es, por ejemplo, # = {@}. Por consiguiente,
eliminando la arista @ obtenemos un grafo de dos partes (fig. 5.4, c); ade-
mads, alcanzamos el minimo @(¥) = 1.

En el caso general, el procedimiento de la transformacién puede vincu-
larse no con los elementos del portador o de la signatura del modelo, sino
con algunos de sus componentes. Por eso, en el caso general, la equivalenti-
zacién semdntica supone la construccion del sistema jerarquico de las tablas
de una profundidad &, determinada por el nimero de niveles en los procedi-
mientos de transformaciones. El cubrimiento de las columnas por las filas
de la primera tabla indica qué componentes de las figuras prohibidas deben
cambiarse cuando el modelo ¥, se reduce a la forma que se interpreta en
los términos del modelo ¥,. La determinacién de los componentes que de-
ben ser cambiados para cambiar los componentes hallados al paso anterior
se reduce al cubrimiento de la segunda tabla construida andlogamente, etc.,
hasta construir la k-ésima tabla, cuyas filas o columnas corresponden a
los elementos del portador o de la signatura que deben ser cambiados sin
falta cuando el modelo ¥, se reduce a la forma interpretada en los términos
del modelo ¥, (fig. 5.7).

Para determinar el nimero minimo de los elementos del portador o de
la signatura que corresponden a los elementos de la k-ésima tabla es necesa-
rio generar todos los conjuntos, cada uno de los cuales comprende las filas
(columnas) que se cubren en la 1iltima, k-ésima tabla. Esto corresponde
al sondeo de todos los cubrimientos de la (¢ — 1)-ésima tabla. Para obtener
todos los cubrimientos de la (k — 1)-ésima tabla es necesario generar todos
los cubrimientos de la (k — 2)-ésima tabla, etc. De este modo, para hallar
la solucién minimal, es necesario el sondeo de todas las combinaciones
de los cubrimientos de las primeras (k¥ — 1) tablas. Este procedimiento con-
tiene, en principio, el sondeo.

| Figuras pronibidas

Componentes

]

Elementos del portador y
(de La signatura) det modelo Fig. 5.7




§ 5.1. Principios del andlisis de caracterizacion - 283

¢ a) &)
Fig. 5.8

De tal manera, la determinacién de la complejidad de solucién es un
proceso estdndar, minimal por su densidad de trabajo. Este proceso requiere
el trabajo en varios 6érdenes menos que el de la generacién efectiva de todas
las estructuras equivalentes durante la bisqueda de la solucién minimal
por medio de la equivalentizacion sintdctica.

Los procedimientos de transformar las figuras prohibidas, siendo unfvo-
cos respecto a ellas, pueden ser en total tanto univocos como no respecto
al modelo. Por ejemplo, para el cardcter de dos partes del grafo, el procedi-
miento de transformar figuras prohibidas, ciclos impares, basado en la eli-
minacién de la arista es también univoco para el modelo en total. Conside-
remos el procedimiento de transformar ciclos impares que consiste en la
desintegracidon de uno de los vértices v y v’, cada uno de los cuales es
incidente a una de dos aristas x e y del vértice que se desintegra {fig. 5.8,
a) (designemos el procedimiento de transformacién por v(x, »)). Este proce-
dimiento de transformacidn se usa en la equivalentizacién semdntica cuan-
do se descompone el sistema informativo exigiendo la accién mds rapida,
es decir, el paralelismo médximo del procesamiento de la informacion. Esta
exigencia condiciona la colocacién de todas las partes de los datos corres-
pondientes-a los vértices adyacentes en los discos diferentes, es decir, lleva
a duplicar algunas partes. Este procedimiento de transformar figuras prohi-
hidas no es univoco para el modelo en total (para el grafo). Es que durante
la desintegracion del vértice v, incidente a las aristas x e y, la transforma-
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cién de la figura prohibida fija solamente, lo que el nuevo vértice v es inci-
dente a la arista x vy el nuevo vértice v’, a la arista y. Para el grafo en
total, eso significa la desintegracion del vértice ven vy v’ con la correspon-
diente particién del entorno I'v cuando x e y se encuentran en distintos
entornos nuevos. Este procedimiento de transformacién no indica la distri-
bucion de todos los vértices por nuevos entornos. En este procedimiento
de transformacién, la tabla seméntica para el grafo (véase la fig. 5.4, b)
tiene siguiente forma:

Tabla 5.2
Fo, ¥p,

! 1 uila, b)

1 valh, )

1 us(a, €)

1 wib, N

1 vite, )

1 wld, €}

1 vs{a, d)

En caso de procedimientos no univocos de transformaciones es necesa-
rio comprobar todos los cubrimientos de la tabla seméntica. Consideremos
tres cubrimientos: = = [vi(a, b)), 72 = {ta(h, ©), (b N, m3 = {vs(a, ¢),
vsle, N)).

El primer cubrimiento con la potencia minimal da la solucién minimal
(fig. 5.8, b). Empero el segundo cubrimiento con la potencia no minimal
también determina la solucién minimal. Ambas transformaciones que com-
ponen w; desintegran tv;. jCudntos vértices nuevos dan estas desintegra-
ciones juntas? Responden a esta pregunta la construccién y la coloracion
de un grafo especial construido sobre un conjunto de aristas, incidentes
a vs (fig. 5.8, ¢). La coloracién del grafo {b], [¢ f] determina el nimero
de vértices después de la desintegracion y la particion del entorno I'ts. La
solucién obtenida es minimal (fig. 5.8, ). La transformacién correspon-
diente a =3 (fig. 5.8, €) no es minimal.

De este modo, si aplicamos los procedimientos de transformaciones no
univocas para el modelo en total, para todo cubrimiento es necesario cons-
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truir grafos especiales y determinar su coloracién minimal. Por eso son
muy actuales estimaciones del nimero cromético del grafo (véase el capitu-
lo 3) que permiten separar ripidamente la mayor parte de cubrimientos
que corresponden a los grafos con gran nimero cromatico. Son también
importantes los métodos «rapidos» de la coloracién de los grafos. En total,
la equivalentizacidén semdntica permite obtener solucién absolutamente 6p-
tima junto al sondeo minimal (inevitable).

Basdandose en la equivalentizacién semdntica abtenemos la estructura
de dos circuitos del paquete de accidén rdapida de programas aplicados (fig.
5.9), en ¢l cual, empleando el mddulo «cardcters, se realiza la sintonizacién
automdtica de la estrategia dptima durante la transformacion ¥,—¥,.

Esto atribuye «cardcter intelectual» al paquete de programas aplicados
y permite catalogar estos paquetes en la clase de sistemas del intelecto
artificial.

En los capitulos anteriores fueron considerados los problemas de carac-
terizacion del encaje del grafo en el plano, en el espacio booleano, de carac-
terizacion de la estructura en serie-paralela de los diagramas de Hasse y
de la coloracién de los grafos. Examinemos ahora los problemas de caracte-
rizacién de la ordenacién parcial del mografo, de proyeccion de esquemas
16gicos en las bases funcionales inconexas, de proyeccién de esquemas logi-
cos de salidas multiples, de descomposicién de los grafos de transiciones
en el producto cartesiano parcial y, ademads, problemas de caracterizacién
que surgen durante el diseiioc de emplazamientos 6ptimos de los datos en
los sistemas informativos. La caracterizacion de los modelos permite revelar
causas objetivas que determinan la complejidad de solucion y la densidad
de trabajo de su busqueda.

§ 5.2. Caracterizacién de la ordenacién parcial del mografo

Antes de establecer las causas que llevan a la correspondencia entre una
terma primaria y dos (o mas) vértices en un grafo estructural (la desintegra-
cién de las termas primarias) examinemos la transformacion del mografo
en el grafo estructural prefijando la FND tope de la funcién booleana
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St X2, oa o Xs) = daXaXs Voxou VX V

V X1x3Xs V X3XaXs V X2XaXs,
| S——) | I ) | S
4 5 6
determinada por el modelo ¥, = (M, §;, 53);

M = {x, X1, X2, X3, X3, x4, Xa, Xs, Xs],
$2 = [{x, xal, [x2, 1)},
Sy = [{x, X, Xs), (X, x, Xs), X3, X, xs), {2, X, Xs)).

El mografo GM(¥,) se representa en la fig. 5.10, a.

Examinemos ¢l submografo (GM)' (fig. 5.10, &) que da la tercera, la
quinta y la sexta implicante simples. A la tercera implicante xa.xs le ponemos
en correspondencia la cadena v(xz) < v(x3). A la guinta implicante simple
x3¥sxs le ponemos en correspondencia la cadena v(x) S v(X)<v(xs), a la
sexta implicante x2xaxs, la cadena v(x;) < vlx)<v(xs). Prefijando asi las
relaciones de ordenacion, obtenemos que v(xz) < vlvs) <v(X), o sea, v{x)
es comparable con v(X), v{x2)Z v(X%) que contradice a la prefijacién.

Para responder si tal prefijacion de la relacién < es simplemente infor-
tunada, sin saber la semdntica de transformacién, es imprescindible cons-
truir completamente el 4rbol sintdctico de esta transformacién, a cuyos vér-
tices pendientes les corresponden diagramas F;; ademds se consideran no
s6lo estas tres implicantes sencillas, sino todo el mografo prefijado GM(¥,).
El nimero de vértices pendientes de este drbol es igual a 2!-21.3!-
-31.31.31 = 5184. Construyendo tal numero de diagramas se puede cer-
ciorarse que no existe modo de prefijacidn de la relaciéon < en el mografo
considerado GM(¥,), cuando tiene lugar una correspondencia biunivoca
entre los termas primarias x{" y los vértices de diagramas H tal que toda
cadena v(xz)<v(xp)< ... <u(x) corresponde biunivocamente a la impli-
cante sencilla X' Xp . .. X

]

() %5(34,5) tpy ko

X (8 X058 x3035)

a) 4 Fig. 5.10
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La densidad de trabajo en la revelacién de tales contradicciones y, por
lo tanto, en la construccién del esquema absolutamente minimo es conside-
rablemente menor, st s¢ conoce la semantica de transformacion determina-
da por la distribucién de las figuras prohibidas.

Teorema 5.2. Figuras prohibidas Qa, Qe de la transformacidn de un
mografe G™ en el diagrama H son los submografos tipos A y B (fig. 5.11).

El submografo tipo A es un ciclo de longitud impar con la conmutacién
ciclica de los pesos. El submografo tipo B es un tridngulo con vértices pen-
dientes, cada uno de los cuales tiene peso comun con el vértice pendiente
adyacente y todos los vértices del tridngulo tienen peso comiin con tal que
los vértices pendientes pueden coincidir tanto dos a dos como todos juntos
uniendo de modo correspondiente sus identificadores. La presencia de una
de estas figuras en el mografo hace imposible en principio la prefijacion
de la relacién < realizando la transformacién G* — H sin desintegrar ter-
mas primarias en el mografo G, lo que se realiza «a ciegas» sin saber
la semdntica de la transformacién G*— H. Ademas, excepto la eliminacion
de figuras prohibidas se desintegran los termas primarias en exceso, lo que
disminuye la optimicidad de la solucién obtenida. Como se miuestra a conti-
nuacién, en el grafo estructural H construido segin el mografo G sin
escoger las figuras prohibidas, se realizan las desintegraciones en exceso.

La seleccién de las figuras prohibidas de los tipos A y B se reduce a
la tarea de hallar los ciclos impar en el mografo junto a la verificacién
sucesiva de la distribucion de pesos sobre ellos. Escogiendo ciclos de longi-
tud impar en el mografo, los vértices de peso igual no se consideran como
los vértices que pueden corresponder sélo a los vértices pendientes de las
figuras tipo B.

En el ejemplo dado anteriormente, para escoger ciclos de longitud im-
par, es suficiente considerar el subgrafo (G*)” representado en la fig. 5.12,
a. Examinando este mografo, establecemos que las figuras prohibidas de
tipo A son los siguientes submografos:

Qi = [x(3, 6), x5(6, 5), x(5, 3)},
Q= (a3, 6), x(6, 2), xi(2, 1), Xs5(1, 4), x3(4, 3)},

Fig. 5.11
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Qs = {xs5(6, 5), %(5, 4), xs5(4, 1), xa(l, 2), (2, 6)};

la figura prohibida tipo B es el submografo {[xz, xa, Xs}, (x1, x}, [x,
x3}! (xs, xa] "

En adelante, la figura de tipo b se prefijard como un tridngulo corres-
pondiente. En este caso, la cuarta figura prohibida tiene la siguiente forma:
4D [xa(2, 6), x5(5, 6), x(3, 6)}.

La propiedad principal de las figuras prohibidas tipos A y b consiste
en que, al desintegrar cualquier vértice de una figura tipo A y cualquier
vértice del tridngulo de una figura tipo B, estos submografos dejan de ser
figuras prohibidas. De este modo, las desnitegraciones semejantes son pro-
cedimientos para transformar las figuras prohibidas tipos A y B en las per-
mitidas. El procedimiento de la equivalentizacion semdntica del mografo
en el parcialmente ordenado es estdndar. En la tabla semdntica, a las filas



§ 5.2. Caraclerizacidn de la ordenacidn del mografo 289

les corresponden las figuras prohibidas tipo A o B, a las columnas, los
vértices en desintegracién del mografo. La tabla semdntica para el caso a
examinar se ofrece en la tabla 5.3,

Tafria 5.3
2] xill, 2) | 223, 6) | a4, 5) [ xa(d &) | (3, 5) | w2, 6) [ xs(S, 6) | Tsll, @)
o] 0 1 0 0 1 0 1 0
O i 1 0 1 0 1 o 1
O 1 0 1 0 0 1 1 1
Os 1] 1 1] 0 0 I 1 Q

Para disminuir la densidad de trabajo de la determinacién del cubri-
miento de la tabla semdntica, eliminaremos filas y columnas que se absor-
ben. En este caso, las reglas de absorcién son las siguientes.

La columna o se absorbe por la columna §3, si no existe una tercera
columna ponderada por la misma letra que la columna o y, también, el
producto vectorial de las columnas « y 8 es igual a a.

La fila o se absorbe por la fila 3, si el producto vectorial de estas filas
es igual a la fila 3.

En el caso considerado, la primera y la octava columna se absorben
por la sexia. Borrando las columnas que se absorben, tenemos seis cubri-
mientos de la tabla semdntica: [x2(3, 6), (2, 6)], {x2(3, 6), x5(5, 6)],
[Xz(J, 6): x4, 5)} y [xa(2, 6), x!(-sl 6)' ] !X3(3, 4), xs(St 6) i! [x3(3! 5)» x(2,
6)]. Cada uno de estos cubrimientos engendra dos desintegraciones. Por
consiguiente, la potencia de la extensién del portador del modelo ¥, es
igual a 2 y la realizacién absolutamente minimal de la FND tope que consi-
deramos contiene 11 llaves L = | M, | + | AM, | = 11.

Para més precision, consideremos el dltimo cubrimiento y distingamos
la letra x3 en la tercera palabra de la x3 en la quinta afiadiendo la raya
en el indice superior: xi. A continuacién, esta redenominacién se llamara
rayado de la letra en la palabra correspondiente. Andlogamente, rayamos
la letra x4 en la segunda palabra. Como resultado obtenemos el modelo ¥,:

¥, = (M, S, 5,

Ma =[x, 5, X2, X3, X4, X3, x4, Xd, Xa, X5, X5},

8 = 1{.\:;, X“’;! [x2: X}'l],

Ss = {{x, X, %), (%1, X3, Xs), (x5, B, x5}, {%, X, x5) )5
que es equivalente al inicial y se interpreta en los términos de conjunto
parcialmente ordenado (fig. 5.12, b):

xieux), xaervn), X3 uv(xs),

X eruta), x3ev(xd), X3 u(Xs),
19—6577
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Xy (), xiev(xd), X o),
Xseru(xs), Xsor(Xs),

ademas,

X3 X3 Xs + (1) S v0h) < v(Xs),
X1x4 v{x) S v(xd), xaxiovin) < oxd),
x1aXs = () < v() < vEs),
Kx3Xas 4 v(x3) < v(xg) < vlxs),
XpX4.X5 0 v(2) < v{Xa) < vlxs).

Si el cubrimiento de la primera tabla tiene al menos dos letras iguales
en ¢l sentido lexicogrdfico, las palabras donde se realiza su rayado se deter-
minan por la coloracién del grafo G. El grafo G estd construido sobre el
conjunto de palabras que contienen esas letras. Dos vértices suyos son adya-
centes, si la letra debe desintegrarse por estas palabras.

De este modo, el conocimiento de la seméntica de la transformacion
GM-+ H permitié sustituir el sondeo de 5184 diagramas H, prdcticamente
construidos por el sondeo de seis cubrimientos de la tabla semdntica. En
el caso general, si se conoce la semdntica, la densidad de trabajo disminuye
por el nimero combinatorio de veces en comparacion con €l niumero de
todas las soluciones equivalentes.

Examinemos los ejemplos que ilustran el teorema 5.2.

Ejemplo 5.1. El mografo G* = (V, 5, 8, V = [a. b, ¢, d, €], 5 = [{aq, e], |b, d),
LI [ E—

1 2
l[d, cl{l. S = il la, b, c}! contiene las figuras prohibidas @y = {5{2, 4), c(4, 3), d(3, 2)};

T [
Q: = la{d, 1), b(4, 2}, c(4, 3 (fig. 5.13, a} que engendran la tabla semdntica (tabla 5.4).

Tabla 5.4
Figuras 1 4 b2 4 3, 4 @, 3
prohibidas “. 4 (% 4) €0 ) 143
(2] 0 i 1 |
& 1 1 I 0

La tabla 5.4 tiene tres cubrimientos: my = {5(2, )], 72 = {e(3, 9}, 72 = [a(l, 4), d(2,
33} con su ayuda el mografo de partida puede reducirse a la forma que se interpreta mediante
tres procedimientos (fig. 5.13, &),

Ejemplo 5.2. El mografo GM = (¥, 5, S,

V=1(abed,S= !llﬂ. dl‘, Eb, dl‘. ‘ic. d’lll'. S = (Iid'. b, L‘l]].
i 2 ] 4
contiene tres figuras prohibidas de tipo A y una tipo B: @y = la(l, 4), H(2, 4), d(l, 2)),

Qs = (52, 4), €3, 4), d(2, 1)), Oy = lall, 4), c(3, 4), d(1, 3)], Qs = |a(l, 4), b(2, 4}, c(3,
4)} que engendran la tabla semdntica (1abla 5.5).
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/] c a’
ee ' b e e( )b a
b)
Fig. 5.13
Tabla 5.5
pgg;’l::;s a(l4) 524 ] (3.4 40.3) di1,2) d@3)

o 1 1 o 0 1 0
O 0 1 1 0 0 I
O t 0 1 1 0 0
O | 1 1 0 0 0

La 1abla 5.% tiene scis cubnmientos: x, = [e(l, 4}, b(2, 4)], == = la{l, 4), (3, 4},
m o= [B(2, 4), c(3, 4], 7 = {a(), 4), d(2, 3}, = = §D2, 4), d(I, 3)), m = |c(3, 4), d{l,
2); cada uno de ellos engendra ¢] diagrama de Hasse de complejidad 6. Para ser precisos,
tomemos el primer cubrimiento, rayemos la letra @ en la primera palabra y la letra b, en
la segunda. Caomo resultado obtenemos el mografo,

G¥ = (V S, 53,
V=g a', bb,cdl) S=Ila,d}{b,d), [cd,S=1labc|l
e —

que equivalentiza al inicial ¥ se interpreta en las categorias del conjunto parcialmente ordena-
do (¥, £):

fa’, d] » vig’') € vid), (', d] ~ v(b’) € vid),
le d) = v(e) g wld), {a, b, c] + vlc) < v(a) < v(d).

Analicemos la estabilidad de figuras prohibidas en dependencia de las
condiciones de frontera, es decir, de las condiciones de interseccion de la
figura prohibida con otra parte del mografo.

19*
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(X, (7} Ay Xa
.,;/ /’. £, (12}
Xa(2.5)
X502 .74) '
X, X
Ons3%) - ’
a)
X (1)
X(135) X4 (42.5)
x2(2,%)
X5(2.34.5)
X5(5,%)

{5‘) Fig. 5.14

Condiciones de inestabilidad de una figura prohibida tipo A. La compo-
sicion de una figura de tipo A y una palabra, cuyos portadores coinciden,
no debe infringir condiciones de la interpretabilidad del mografo en catego-
rias del conjunto parcialmente ordenado.

Examinemos el mografo

M= (K_SJ).- V= [xh ;Z) X2, X3, X4, xﬁis
83 uixh X2, n!, fx2, X3, ), {xy, x5, xsi (x2, x3, xs]],
[ ] L L ]

] 2 3 5
que contiene la figura prohibida tipo A:

Qa = [x(l, 3), x(3, 2), xa(2, 1)].
Transformando este mografo en el grafo estructural, es necesario desin-

tegrar una de las letras x, x3, x4. Para ser precisos, desintegremos x: en
la segunda palabra. Como resultado obtenemos el mografo

GM = (¥, 83, V= [x1, X2, X2, X3, Xa, Xa! X5,

Sy = [, x2, ), bx, xa, XY, [x, x5, xs5], {x, x5, xs5) ),
L | L | | ] L ]

1 2 3 4
que se interpreta en categorias del conjunto parcialmente ordenado
(fig. 5.14, a).
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Introduzcamos el concepto del par de vértices exteriormente inestables.
Llamase par de vértices exteriormente inestables respecto a un submografo
(G*)’ de un mografo G™ a un par de vértices v, v ponderados por termas
primarias x;, x;, te(x:), wvlx;) tales que la unién de vértices adyacentes a
uk(x;) conforme a un identificador « y de vértices adyacentes a v (x;) con-
forme a un identificador # incluye el portador del submografo (G*)’.

En el ejemplo a examinar se tiene un par de vértices exteriormente
inestables v(x2), v{x;) respecto al portador de la figura prohibida selec-
cionada Q. El identificador 1 juega el papel de «, 2 6 4, el de 8.

Segun la relacién de Poretski

Axv Bx = AxV Bxv AB,
al mografo se le puede anadir la palabra AB sin infringir la equivalencia
de prefijacion por el de la funcién booleana.

En el caso de presencia de un par de vértices exteriormente inestables
en el mografo, la palabra 48 tiene la forma

(@ N x)U (BN x)

En este caso es x1x3x4 puesto que el mografo es un reticulo distributivo.

La palabra afiadida {x), x3, x4} despierta Ia inestabilidad de la figura
prohibida [xi(l, 3), x3 = (2, 3), x(l, 2)}. Como resultado el mografo

GM = (V. $3), V= {1, X2, X3, X3, Xa, X5},

S = {I!xl.xz.nll, (X2, X3, Xa ], ixl,x;. Xsll. (%2, x3, Xs}], [x1, x;’x.dli

1 : 2 ! 3 : 4 I 5
es interpretable en categorias del conjunto parcialmente ordenado (fig.
5.14,b).

Aifiadiendo palabras en el caso de un par de vértices exteriormente
inestables respecto a la figura prohibida debe considerarse también la afia-
didura de conexiones que pueden conducir a que aparezcan las figuras
prohibidas complementarias. En el mografo, las conexiones (aristas) se afia-
den, si la palabra que se afiade incluye estrictamente al portador de la figura
prohibida.

Condiciones de inestabilidad de la figura prohibida tipo B. 1. Una figu-
ra prohibida tipo B es inestable si, ponderando el vértice pendiente, el iden-
tificador de la palabra, conforme a la cual este vértice es adyacenie al vérti-
ce del tridngulo de la figura, pondera otro mds vértice del tridngulo.

Examinemos el mografo

GM=(V %, S, V=[x, X, 22, X3, Xa, Xs5],

S = flx, %), (¥, %)), S5 = ([ (X1, X, x5}, (%2 X3, X5},
izttt N L P ]
1 2 3 3

que satisface esta condicién. No contiene figuras prohibidas: la co-
rrespondencia biunivoca entre los terms primarios (letras) del mografo y
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los vértices del grafo estructural, con la cual cada palabra corresponde
biunivocamente al camino tiene la forma siguiente:

{2, X6} © va) < v(xs), (x5, %} & V() < V()

{x1, x3, x5 = v(a) < v(xs) < vixs),

[x2: X3, xs] e v(xlj < !.’(Xs] < U(x3)'

2. Unaq figura prohibida tipo b es inestable, si la condicion 1 se cumple
para dos vértices pendientes, pero es estable si esta condicion se cumple
para los tres vertices.

Analicemos el mografo

Gi=<¥, 5, V=1a b ¢ d e,

S5:=1{a ¢ di, la. b el, 1b ¢ fl, {a b ¢},

(] 1 j | ] 1 J

1 2 3 4

{a,bedef}
(edf
f
é
5

T

N
_(?/Jcﬁ) e Qe g i @

b14) 403 b a
S
a/ZJ) e{ag a o
LN £75) ; a b #
(efe) A £
a) e 7)

Fig. 5.15
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que contiene una figura prohibida inenstable de tipo A
Q4 = {a(l, 2), b(2, 3), c(l, 3))

¥ una figura prohibida estable tipo B, cuya base es el tridngulo con los
vértices @, b, ¢, y los vértices pendientes d, e, £ Esta figura sera inestable
si se afiade una de las palabras {b, ¢ f], (¢ d f], la d e}l.

El caso particular de la ordenacién parcial del mografo es Ja orientacién
transitiva del grafo. Aquf el mografo se considera sin simulacién, o sea,
las palabras del modelo obtenide son los subgrafos maximamente comple-
tos del grafo, sobre el cual se realiza la orientacién transitiva.

Para este caso tenemos tres figuras prohibidas. Dos primeras figuras
son tipo Qa ¥y Qg consideradas sin simulacién, la tercera es el grafo G
sin simulacién, el que es la composicién de una figura prohibida inestable
tipo A y una estable tipo B.

Examinemos la aplicacién del teorema 5.2 durante la orientacién transitiva de grafos
en el ejemplo de un representante de una de tas Familias transitivamente no orientadas de
grafos: un grafo que hace completo un ciclo de longitud mas que cinco. Consideremos un

. ciclo de longitud igual a seis. Lo hace completo el grafo G dado en la fig. 5.15, a.

Aplicando el algoritmo de formacién de subgrafos completos al grafo considerado (fig.
5.15, b), obtenemos el conjunto de subgrafos completos ({8, d, f1, (4 ¢ e}, |a, d], tb
e), (¢ S1) que forma la signatura del mografo (fig. 5.15, c):

GM=(V. 5, 8. V=1a b e def,

Sy= (18 d f), la. ¢ el}, S = ({a @1, |b ), fc f1).

IS J L i L i I_ J L J

i 1 3 4 5

El mografo G* = (¥, %, $)) contienc dos figuras prohibidas estables de tipo b:
Qg = b d f), (b e}, (g dl, [c S]], Qg = |la . e}, (a d}, (e f), |5 e)). Desin-
tegrando uno de los vértices del tridngulo de cada figura prohibida, obtenemos el grafo transi-
tivamente orientado. Son posibles nueve procedimientos de la desintegracién. En cada uno
de ellos hay que desintegrar dos vértices ya que estos tridngulos no se intersecan. Para ser
precisos, escogemos los vértices ¢ y f(fig. 5.15, ). Como resultado obtenemos el grafo transiti-
vamente orientado (fig. 5.15, €) que se transforma en el grafo estructural (fig, 5.15, /) después
de eliminar arcos de cierre transitivo.

§ 5.3. Caracterizaciéon de la conexién de salida
de los circuitos légicos. Minimizacién estructural

El disefio de los circuitos 16gicos de salidas muiltiples en las bases topoldgi-
cas no se distingue del disefio de los circuitos de una salida, si se puede
leer la informacién de elementos que no son minimales ni maximales v,
ademds, se pone una sola restriccién: no desintegrar los elementos del grafo,
ponderados por las letras de salida fi. Como regla, disefiando los circuitos
de salidas muiltiples en las bases funcionales el sistema realizado de fun-
ciones booleanas se reduce a una funcién o bien se buscan las intersecciones
de dominios unitarios de funciones booleanas y se sintetizan los circuitos
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por las funciones booleanas que describen estas intersecciones. El circuito
final es una composicién de los circuitos que realizan el comportamiento
de las funciones booleanas dadas en las intersecciones de las zonas de traba-
jo y los circuitos-montaje, cuyas salidas coinciden con los canales de salida
del circuito buscado. Si los dominios unitarios no se intersectan, en el
empleo de los métodos conocidos tiene lugar la realizacion inconexa del
sistema de funciones booleanas. Precisamente este caso se encuentra con
frecuencia en la prdctica. En el enfoque propuesto para el disefio de los
circuitos 16gicos tenemos realizacion conexa del sistema de funciones boole-
anas. Examinemos el siguiente ejemplo. Sea dado un sistema de funciones
booleanas de tipo G

A= xeax VX 2= X10xnx VXXX,
= - =y
1

Transformemos el mografo GY(ff;]) que prefija este sistema (fig. 5.16, a)
en un grafo estructural H([f;)) de tal modo que los elementos maximales

5(12)
A (134 X (13%)
Xy (44} Xa(423)
X3/23) i (%)
(3.4

a)

Fig. 5.16
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sean ponderados por las letras que identifican los canales de salida y ningu-
no de los vértices que no son elementos maximales sea ponderado por la
letra de salida f;. EI grafo estructural estd representado en la fig. 5.16().
Con ayuda de la codlgebra de grafos lo transformemos en el circuito légico
(fig. 5.16, c). Coloremos los vértices del mografo y del grafo estructural
que determinan el circuito légico de salidas miltiples con dos colores: los
vértices ponderados por las letras de entrada x;, x; sean blancos, los ponde-
rados por las letras de salida f; sean negros (en las figuras el rayado corres-
ponde al color negro).

Al transformar el mografo GM({f]), que prefija el sistema de las fun-
ciones booleanas, en el grafo estructural H({f;}), sobre este iiltimo se pone
la siguiente restriccion: los elementos maximales del grafo estructural y sélo
ellos, deben ser ponderados por las letras de salida i~ que no se desintegran
con eso.

Representemos un sistema de funciones booleanas f(x) = {fi} en forma
del modelo

Vg = {Ma, p, 81, 52, ..., Sn),
donde M, = [mu, Ma, . .., Plni Minaty oo Mnak}, SSICMe i=1,2,...
.., n, p es predicado monddico que parte M, en dos subconjuntos:
1.2, acp;
n+1), ... (n+ k).
El grafo estructural F(F(x)) puede representarse en forma del modelo
¥y = (M, <, q)

donde
_ {L si de p(mi) = p(m)) se deduce m; = m;,
0 en caso contrario.

_ {0 sobre los elementos m;, cuando /
~ 1 sobre los elementos rn;, cuando j

Investigar la transformacién del modelo ¥, en el ¥, y la construccion
del grafo estructural de salidas muitiples deben considerarse modelos con
las siguientes restricciones

1) si en el modelo ¥, existen dos palabras p. y pg tales que ps C pg,
estas palabras se sustituyen por una palabra p.;

2) si la palabra tiene por lo menos dos letras iguales mq. y mp(ma = my),
una de ellas sustituye la otra;

3) si en el modelo ¥, existen al menos dos palabras u. y pus tales que

oo = Iy, pg = My,
donde p{m;) = p(rm) = 1, o se compone de letras m;, p(m;) = 0, una de
estas palabras sustituye la otra.

Obviamente, para que sea posible ordenar parcialmente las letras del
modelo ¥,, es imprescindible que el mografo G* no contenga figuras
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Mafigta, ., boner}

(i3, 4a)

Tl sl oket)

mylla) 1, Cla) Fig. 5.17

prohibidas Qx, Qg (véase la fig. 5.11). En este caso ¢s posible la ordenacién
parcial de las letras de los modelos Q4, Os sin tener en cuenta el predicado
q en el modelo ¥,.

Hallemos las figuras prohibidas en el mografo GMF(x)) que caracteri-
zan la fijacién de los elementos maximales (minimales) en el grafo estructu-
ral correspondiente H(F(x) durante la transformacién GF(x)) —
= H(F(X)). Para ser mas precisos, fijemos los elementos maximales que
corresponden a los canales de salida del circuito l6gico en proyeccién.

El siguiente teorema establece la condicidén de ordenacién parcial de
las letras de un modelo ¥,, en la cual se toman en consideracién los elemen-
tos maximales dados.

Teorema 5.3. Enire las letras de un modelo

Y, = <Ma, y 2 S|, Sz, " w oy S,.),

cuyo mografo G no contiene los mografos Qx v Qy, existe la rélacidn de
ordenacién parcial si, y sélo si, el mografo G no contiene los subgrafos
modelos Qg (fig. 5.17).

En lo principal, la complejidad de los circuitos 16gicos se determina
por la complejidad del grafo estructural correspondiente £, Por consiguien-
te, la minimizacién estructural de una funcién booleana f se determina por
la distribucién de figuras prohibidas Oa y Qg en el mografo GM(/), la mi-
nimizacién estructural de un sisterna de funciones booleanas [f;}, por la
distribucién de figuras prohibidas Qa, Q5. Qe en el mografo G ).
De este modo, al circuito 1égico minimal le corresponderdn aquellas FND
de funciones booleanas, en las cuales es necesario realizar el mimero mini-
mal de desintegraciones de las termas primarias para que el mografo forma-
do sea interpretable en categorias de grafos estructurales,

Analicemos la minimizacién estructural exacta de la funcién booleana
J que se reduce al cubrimiento de la tabla semd4ntica de profundidad igual
a dos (fig. 5.18) y, si es imprescindible, a la coloracién de los grafos que
corresponden a los cubrimientos de la segunda tabla.
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Intervalos de la regiin

ag funcionamento Termas orimarias
Ui LI PR
Intervalos Frguras
muraimales arafnbides

Fig. 5.18

La primera tabla se forma basindose en el cubrimiento de la tabla de
distinciones para las funciones booleanas practicas. El cubrimiento de la
primera tabla genera una FND tope, a la cual corresponde el mografo G™.
Su transformacién en el parcialmente ordenado, es decir, interpretable por
el grafo estructural H, se cumple con ayuda del cubrimiento de la segunda
tabla. Consideremos un ejemplo.

Ejemplo 5.3, Determinemos la complejidad del grafo (diagrama) estructural absoluta-
mente minimal que realiza la funcién booleana flx, xz, X5, X} =V(0, 1, 2, 4, 9, 11, 13)
y es igual a cero sobre los otros juegos.

Formemaos intervalos maximales y construyamos la tabla de Quine para funcidn conside-
rada (tabla 5.6).

Tabla 5.6
Punios unitarios
Numeros Imervalos
de filas imal
0000 | DOOY | 0010 | OO0 4 JOOI 1011 1M
1 000— v v
2 00—0 v v
3 0—00 v — 3%
4 =001 v - v
] 10—l v v
6 1—01 v —_ v

En la tabla de Quine, el signo subrayado corresponde a un intervalo maximal obligatorio.
{(Un intervalo maximal es obligatorio si existe un punto unitario perteneciente a este, y solo
a este, intervalo). En conjunto de intervalos maximales obligatorios forma el nicleo del
cubrimiento. :

Hallamos tas FND tope de la funcién dada cubriendo las columnas de la tabla de Quine
por las filas de la tabla. Te dos cubrimientos: las primera, segunda, tercera, quinia y
sexta filas y las segunda, tercera, cuarta, quinta y sexta filas. A estos dos cubrimientos les
corresponden FNDT de la funcidn f de tipo

S G X2y X3y Xa) = XiXaXa V XiXa¥a V
1 i

V X Xska V XiXaxe V X1 X235
L J L J 1 J

3 4 5

SUa, X, X3, ) = 0xaxa V 0Xpa NV XXk V XXX V XXX,



300 Capitulo 5. Tearia ap_]_icada de los algoritmos

4

Fig. 5.19

A la FNDT le corresponde el mografo representado en la fig. 5.19, a. En este grafo se
tienen ciclos de longitud impar con la permutacién ciclica de pesos de la forma siguiente:

Qui = (X4, 5), Xs(5, 3), x(3, D)

Qaz = Lxi(ls 2), %202, 5), x:(5, 1));

Qus = {xa(l, 2), 22, 5) (5. D)

A la primera FNDT le corresponde la tabla semdntica {tabla 5,7).

Tabla 5.7.
o7 il 2) | X4, 5 | w2 5 [ 2.9 | W09 | B | a2
O 0 i 0 1 0 1 0
O ! 0 1 0 1 0 0
O 0 o 1 (] 1 0 1

Uno de tos cubrimientos minimales es « = (x2(4, 5), xz2(2, 5)}. Puesto que las transforma-
ciones que lo integran desintegran las letras iguales en el sentido lexicografico, construimos
el grafo sobre las palabras (2, 4, 5) (fig. 5.19, b). Coloramos este grafo con dos colores:
12, 4} y |5}

Por lo tanto, estd lograda la desintegracién minimal de letras. Después de rayar la letra
X2 en Ja quinta palabra obtenemos FND interpretable en categorfas del diagrama de Hasse
de la complejidad 7 (fig. 5.19, )

LG, X, X, ey XY = 03000 V N0XXs ¥ X0X V XXX V XixE X
Al examinar de manera andloga los demds cubrimientos y la distribucién de figuras prohi-
bidas en el mografo de la segunda FND tope obtenemos que la FND a ordenar hallada es

absolutamente minimal. Por lo tanto, Ja complejidad del diagrama que realiza esta funcién
es también igual a 7 (fig. 5.19, o).
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Citemos la solucién exacta del problema de la minimizacion estructural
del sistema de funciones booleanas basada en el uso de figuras prohibidas
cuando el mografo se transforma en el diagrama con los clementos
maximales fijados. Consiste en €l cumplimiento de las siguientes etapas:

1. Empleando uno de los métodos conocidos se forma el conjunto de
implicantes simples de salidas miiltiples (ISSM) (intervalos maximales de
salidas muiltiples).

2. Se construye la tabla implicante de Quine, en la cual a toda fila le
corresponden la ISSM, a la columna, las constituyentes de la unidad (o
de la implicante) de funciones booleanas de partida fi(X) € F(X). Ademas,
la constituyente de la unidad (la implicante) entre en la tabla tantas veces,
cuantas funciones tomen el valor unidad sobre ella.

3. Se hallan los cubrimientos de las columnas por las filas de la tabla
implicante. De este modo se separan las FNDT de sistemas de funciones
booleanas. !

4. Para toda FNDT del sistema de funciones booleanas, a la cual co-
rresponde el modelo ¥,, se construye una FND reticular (FNDR) del siste-
ma de funciones booleanas de la complejidad minimal, es decir, se realiza
la transformacion ¥, = ¥,

5. De todas las FNDR del sistema de funciones booleanas se escoge
la FNDR de complejidad minimal. Luego se construye el grafo estructural
H de salidas miiltiples.

Para eliminar todas las figuras prohibidas construyamos la tabla semdn-
tica R, a cada fila de la cual corresponde biunivocamente una letra (entre
paréntesis se indican los identificadores de dos ‘palabras que contienen esta
letra durante la transformacién de la figura prohibida), a cada columna
le corresponde la figura prohibida Qa, Gg, QCk;

1, si la letra correspondiente a la i-ésima fila integra
= la j-ésima figura;
0 en caso contrario.

A las filas les corresponden las letras del modelo m; € M,, para las cuales
p(m;) = 0. Entonces, ¢l cubrimiento de las columnas por las filas en la
matriz R corresponde al conjunto de letras que deben desintegrarse, si se
realiza la transformacién ¥, — ¥s.

llustremos el método exacto de la minimizacién de sistemas de fun-
ciones booleanas teniendo en cuenta sus propiedades tedricas y
estructurales.

Ejemplo 5.4. Sea prefijado el sistema de las funciones booleanas FLX) = (/1{X), ilX,
S X), £2(X)) que depende de cinco variables (tabla 5.8). Formemos todas las 13SM, después
construyamos la tabla de Quine y como resultado obtenemos dos FNDT del sistema dado:

FIlX) = xxsfi V xxfa V Xaxsfa v xXuxafa V xaxafa V xaxf,
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Tabla 5.8

=
F
=
-4
l{
=3
“-‘.‘
b

S

e T e R e === RN~

e e e - -]
et = B = B~ B R S =
T =~ - e e Ry SRy — I
Bl - - Tl - T T ey Sy Ay .
-, _- OO -~ 000000 ORROC
et - R - - - - N - - -
i~ B~ B =T T R W g gy
el - R Ll - L= R Sy ey e———

Examinemos la primera FNDT representdndola en forma del modelo ¥):

M, = (X0, X1, X2, X3, X3, Xa, X5, fo, S oo fo)s
Pl = pla) = plx) = p(e2) = pins) = pla) = plxs) = 0,
PUY = pUfa) = p(fs) = p(fa) = 1.
Las palabras del modelo ¥} corresponden a las conjunciones de la funcidn Fi{X). Cons-

truyamos el grafo modele G (fig. 5.20, @). Enumeremos las figuras prohibidas que sc
comprenden en G*:

Oar = tasll, 4), x(l, 3), 003, 4);
Qa2 = §x5(2, 4, x3{4, ), 222, N):
Qes O (xs(ly ) (L, 3); Qee D (3301, 4), x(3, OY;

Qes D [xs(2, 4), x3(3, N5 Qs D (1, 4), x(4, D;

7 D (2, 4, 14, M5 Qs D [x3(2, 4 x2(2, 5)1;

Qes D [xs(2, 4), 222, THE: Qeio D faall, 3), x(3, 4)):

Qe D fall, 3), x(3, D) Ceir D (22, 7, x(3, D);

Gri3 D [xa2(2, 7), x4, 7)),

Los cubrimientos de la tabla semdntica (tabla 5.9) son los conjuntos de palabras: {i,
2,3,8),11, 23,56}, (1,2, 4,56}, 11, 2,45 8),{3,4,6,7,8), (1,4,56 7, 8).
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As(82,4)

aj Fig. 5.20

Para las letras iguales en el sentido lexicografico construyamos grafos sobre los conjunios
de palabras que contienen esas letras. Su coloracién determina la extensién necesaria {AM;)
del portador M, en cada caso concreto.

Tubla 5.9
Figuras prohibidas
Letras

1 * 3 4 5 6 7 8 9 1 n 12 13
xs(l, 4) 1 0 ] 1 ] 1 0 0 0 li] o 0 Q
x5(2, 4) ] i [t] 4] 1 0 1 i | o o [ (]
xll, 3) 1 0 1 4] Q Q 0 o o i 1 1] o
x1(3, 4) i 0 0 1 1 0 o 0 0 1 0 0 0
x3(3, T) 0 0 0 o 0 0 0 0 0 0 1 1 0
x4, D 0 1 [¥] 0 0 i 1 ] 0 0 ] 0 i
x(2, 5) 0 0 0 0 0 o 0 1 [ o 4] ¢ ]
x(2, 7) ] 1 0 o 0 0 o 0 1 0 0 1 1

La potencia de la extensién del portador |AM.| para cada uno de los cubrimientos es
sespectivamente igual a 3, 3, 3, 3, 3, 4, Por consiguiente, la complejidad minimal L det grafo
estructural H es igual a 14 (fig. 5.20, b): L = |M,| + |AM.| = 4. Consideremos el modelo
¥ que corresponde a la segunda FNDT

Mo = (%, X1, X2 3o, Xa, X0, X5, o foo o, So);

pla) = pla) = p(xz) = pba) = plxs) = pla) = pxs) =

plfi)y = plf) = p(fy) = pli) = L.

El mografo G (fig. 5.21, a) que define este modelo contiene figuras prohibidas de la
siguiente forma:

Oar = [xs(1, 4), xall, 3), (3, 9]

ez D (xs(l, 4), xa(l, 3)}, Qey O fxs(l, 4), )3, 9}



304 Capitulo 5. Teoria aplicada de los algoritmos

X5{%2,%)

b)

Fig. 5.21

Qes D |xs(2, ), %303, 4)], Ogs D {xs(l, 4), x3(4, T3);
Qee 2 {xall, 3h 23, 7)), Qe D {xs(2, ), (2, S}
Cubriendo la tabla semdntica {1abla 5.10) obtenemos que la extension minimal del porta-

dor |AM| es igual a dos. La misma engendra el grafo estructural minimal (fig. 5.21, b) que
define el sistema dado de las funciones booleanas FUXY).

Tabla 5.10
Figuras prohibidas
Letras

1 2 3 4 5 6 7 B 9
xs(l, 4) | 1 1 0 1 ] o 0 0
xs(2, 4) 0 0 ] 1 o 1 0 0 1
xall, 3) 1 1 0 o o 0 1 1 |
x3(3, 4) 1 1] 1 1 0 o 1 0 0
x(3, 7 0 4] 0 0 4] 1] o 1 0
04,7 0 0 ] 0 1 1 0 0 0
x2(2, 5) 0 o 0 o 1] 0 0 0 1

Examinemos las funcionales de optimacién para truncar variantes cons-
truidas teniendo en cuenta la estructura de figuras prohibidas. Investi-
guemos mds detalladamente el proceso de reduccién del mografo arbitrario
a la forma ordenable.

El nimero de marcas de cada vértice v del mografo es igual a la frecuen-
cia propia de la letra correspondiente del modelo y el niimero de marcas
comunes para un par de vértices w; ¥ v; (de la arista (i, f)) es igual al valor
de la frecuencia mutua de letras correspondientes. Por lo tanto, la arista
(i, j) del mografo puede caracterizarse por tres colores: f, fj y fi, donde
fi es la frecuencia propia de la letra i, f; es la frecuencia propia de la letra
Ji fiy es la frecuencia mutua de las letras { y j (F # j).
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Observando el proceso de formacién de las figuras prohibidas Qa, Q,
Or notamos que cuanto mayor sea la suma f; + Jf; de las frecuencias propias
de las letras { y j para la frecuencia mutua dada f; o cuanto menor sea
la frecuencia mutua fj; de las letras i y j para la suma dada de sus propias
frecuencias, tanto mayor sera la probabilidad de que los submodelos tipos
Qa, O, QOr contengan las letras i y J.

Caractericemos cada arista (i, j) de un mografo ¥(f) por el valor de
la derivada de modelo calculada sobre el par correspondiente de letras:

fi—2f;+ 1
Sy )

Entonces cuanto mayor sea el valor de Ia derivada, tanto mayor seri el
grado de participacién desigual de las letras en las palabras, cuanto
mayor es fa heterogeneidad del mografo, tanto mayor serd la probabilidad
de formacién de submodelos tipo Qa, O, Qr en este modelo, tanto mas
complicado (en el sentido del nimero de elementos) sera el grafo sintetiza-
do correspondiente a este modelo. Por eso estimemos el intervalo maximal
I de la funcién f, al cual corresponde el subgrafo completo, por el valor
medio p([f) de la derivada calculada para cada arista de este subgrafo, es
decir, por la expresién

r—=1 r

1 Sfi=2 i+
P = rir— D Z Ju B

=1 j=i+1

donde r es el rango de la implicante simple [ (es igual al nimero de termas
primarias que forman la implicante). Por tanto, la estimacién (5.1} permite
sintetizar las FND éptimas de la funcién booleana teniendo en cuenta sus
propiedades tedricas y estructurales.

Empleando la funcional de optimacion representada en forma de la esti-
macién (5.1), pongamos el algoritmo aproximado de la minimizacion
estructural de la funcién booleana.

1. Prefijamos la FND dada de la funcién f en forma de la matriz de
incidencia Q.

2. Formamos las implicantes simples de la funcién f y las inscribimos
en la lista I

3. Construimos el micleo de la funcidén f. Si es vacio, pasamos al p.
6, en caso contrario, borramos elementos del micleo de la lista / y pasamos
al punto 4.

4, En la matriz Q, los intervalos unitarios de la funcién f, que se cubren
por las implicantes simples borradas de la lista 7, los sustituimos por estas
mismas implicantes.

5. Si cualquier fila de la matriz Q es implicante simple, pasamos al p.
8, en caso contrario, al punto 6.

OF e n
-él—s"(f;.l)—

20—0577
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6. Segiin la matriz Q construimos la matriz de frecuencia de relaciones
F=0"xQ

7. Conforme a (5.1) estimamos toda implicante simple de la lista /. Esco-
gemos la implicante simple de la estimacién minimal, la borramos de la
lista 7 y pasamos al p. 4.

8. La matriz  obtenida de la funcién booleana minimizada, teniendo
en cuenta sus propiedades tedricas y estructurales.

Ejemplo 5.5. T do en consideracién las propiedades tedricas y estructurales, minimi-
zamos la funcion booleana f{xi, X2, X3, Xs)ls = Vv (2, 3. 4, 5, 8, 9, 11, 12, 14, 15); sobse los
otros juegas es igual a cero,

1. La matriz Q tiene forma

B +]

Xy X2 X X o 5
¢t 0 1 1 0 0 1 2
g 1 0o 1 1 0 1 0 3
0110 0 1 o0 4
O 1 1 0 0 1 1 © 5
=1 00 1 01 0 1 8
I o ¢ ¥ 0 1 1 0 9
I 00 1 0 1 0 1
I o1 0 0 1 0 1t 12
I ¢t 0 1 0 0 1 14
o v 0 1 0 1 0 15
2. La lista / de ymplicantes simples de la funcién booleana es la siguiente:
001 —100—1t1—0
ClLl0——011 1 —11

=100 10—1 111—

3. La funcién f tiene un miclec compuesto de las implicantes simples obligatorias
010—,001--y100— Después de borrar los elementos del nvcleo, la lista f toma la farma

— 100 11 =20
—011 1—11
1o0—1 111—=

4. Como resultado de la sustitucién correspondiente de las filas, 1a matriz Q tiene signien-
te forma

RN TR - T < T < WS R =
e 1 0 1 1 0 0 0 001 —
¢ 11 0 0 1 0 O 010—
Q'=f¢t 00 1 0 1 0 0 100 —
Lo 0 1 v 0 1 0 1t
L0 1 0 0 1 0 1 12
10 1 0 1 0 0 1 14
L0 1 0 1 0 1 0 15

5. Las filas de la matriz Q', de la cuarta a la séptima, no corresponden a las implicantes
simples, por eso pasamos al punto 6. .

6. La mairiz de fi de la relacién F* (F' = (Q*) x Q') correspondiente a la
matriz Q' es tal:
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X X X2 X Xy Xy X X
50 3 2 3 2 2 2] m
0 2 1 1 1 1 0 0| x
31 4 0 2 2 1 2§ x
Frajlz 1 0 3 2 1 1 0f x
3 1L o 2 o4 2] X3
2 1 2 1 0 3 0 1] x»
2 01 ¢+ 2 0 2 Ol =
2 0 2 0 1 1 0 2| x

7. Estimamos cada implicante simple de la lista obtenida en el punto 3. En virtud de
(5.1} tenemos

p{=1000) = p(sz!Ja} = .3

1 4—2-2+3+4—2-2+2
3-2 2 2
3-2-1+2
— ) =091;
2
pl— 01 1)=09; p(1 0 — 1) = 198 p(l - 11)=0,58;
plll = 0) =058 p(1 11 —)=1067.
Escogemos la implicante simple | 1 — 0 y pasamos al punto 4,
4, En la matriz Q', las constituyentes de la unidad de la funcién f, que se cubren por

la implicante 1 | — 0, Jas sustituimos por esta misma implicante. Como resultado obtenemos
la matriz

XX A XX oM okox

g 1 0 1 1 0 0 Oof 001 —

0 1 1 0 0 1 0 Of 010—
Q" = I 0 01 0 1 0 0 100—.

1 01 0 0 0 0 1 11 =49

1 00 1 1 0 1 0 1

1 01 0 1 0 1 O 15

5. La matriz Q comprende las constituyentes de la unidad de la funcidn que -no son
implicantes simples, Pasamos al punto 6.
6. La matriz de frecuencia de la relacién F" correspondiente a Q% tiene forma

X1

T TR

[ = gy SRR |

O W= RS

&= W - A

SR ——=ONE

~oooo =0~
"]

SO W - —
COND =~ —~ =l

7. Segun la férmula (5.1) estimamos las implicantes simples de la lista J que cubsen las
demds constituyentes de la unidad de la funcién f. Tenemos

P—0 11 1) =075 p(l — 1 1) =05 pll 0 — 1) = 091;

p(l 1 1 —) = 1,16. Escogemos la implicante simple 1 —~ 1 1 y pasamos al punto 4.
4. Después de la sustitucidn correspondiente de las filas obtenemos la matriz

20+
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XX X2 Xy X3 X4 Xy

0101 1) 000 001 —
o~~|01100100f010—

L 001011 0O 100—"

L ¢1 00001 11 —0

rtoo0o01 01 0l 1—1 .

5. Cualquier fila de la matriz Q* corresponde a una implicante simple. Pasamos al punto
8. Realizamos ¢l punto 5 utilizando la siguiente posicién. Si la constituyente de la unidad
de la funcién f es una implicante simple, se contiene en el niicleo del cubrimiento. De aqui,
si en el punto 4 no ha cambiado ninguna fila de la mairiz, pasamos al punto 8.

8. La matriz Q" representa la funcién booleana f minimizada, teniendo en cuenta sus
propiedades tedricas y estructurales.

Empleando el método de la equivalentizacién semdntica establezcamos qué lejos estd
la FNDT obtenida de la funcién f{xi, xz. X3, xs) de la FNDT de la funcién f que corresponde
al grafo estructural minimal. Hallemos todas las FND tope de la funcién f Para hacerlo
construyamos la tabla implicante y determinemos sus cubrimientos. Representemnos toda
FNDT de la funcién f en forma de mografo. Formemos figuras prohibidas de los tipos A
¥ B y construyamos las tablas Anticas. Luego hallemos y estimemos sus cubrimientos.
Resultard que Ja FND tope obtenida con ayuda del algoritmo prop 1 de minimizacién
libre del sondeo de todas las FND tope, corresponde a la solucién absolutamente minimal.

Analicemos la minimizacién estructural del sistema de funciones boole-
anas F(X). En este caso, a toda implicante simple de salidas muiiltiples, igual
que a la implicante simple en la minimizacién de una funcién booleana,
le corresponde un subgrafo completo, cuyos vértices estdn ponderados por
el identificador de esta ISSM en el mografo G*. En el caso considerado,
el calculo de la distribucién de figuras prohibidas puede estimarse por la
expresion (5.1). Al mismo tiempo, se calculan las derivadas sélo para los
arcos que unen los vértices ponderados por las letras m; y m; para los cuales

p(mi) = p(my) = 0. Para simplificar, en la expresién (5.1) omitamos el com-
ponente constante de frecuencia y estimemos la ISSM por la siguiente
férmula: e

oD =gy (Z Z f+)5) (5.2)

=1 j=iwl
Propongamos el siguiente procedimiento de minimizacién de sistemas
de funciones booleanas teniendo en cuenta sus propiedades tedricas y
estructurales. Este procedimiento se basa en la aplicacién de la funcional
de optimacién.
1. Prefijamos el sistema de las funciones booleanas F(X) = {/i(X),
SuX), ..., filX)} por conjuntos M/, M{. Con ello,

X 1 sobre los elementos de M},
! 0 sobre los eclementos de MY,

2. Hallamos todas las ISSM de las funciones booleanas por uno de
los procedimientos conocidos del sistema y las inscribimos en la lista
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3. Construimos la matriz Q, a cada columna de la cual corresponde
la terma primaria, a la fila, la constituyente de la unidad (implicante) de
la funcién fi(X) € F(X) y

1, si x; integra /-ésima constituyente (implicante);
== »
o 0 en caso contrario.

4. Determinamos las 1SSM obligatorias en la lista I Si elias existen,
pasamos al punto 5 borrando las implicantes obligatorias de la lista /. En
caso contrario, pasamos al punto 7.

5. Hacemos correcciones en la matriz Q sustituyendo las constituyentes
de Ia unidad que se cubren por las ISSM borradas, por esas mismas ISSM.

6. Si cualquier fila de la matriz Q es una ISSM, pasamos al p. 9, en
caso contrario al punto 7.

7. Segiin la matriz Q construimos la matriz de frecuencia de relaciones
F=0"x¢Q

8. Estimamos cada ISSM calculando el valor de c(J). Escogemos la
I1SSM con el valor minimal ¢, (7). Borramos la ISSM escogida de la lista
I y pasamos al punto 5.

9. La matriz Q prefija el sistema minimizado de las funciones booleanas
F(X) tomando en consideracién las propiedades tedricas y estructurales.

Ejemplo 5.6. Prefiiado (zabla 5.11) el sistema de las funciones booleanas Fx = 1AlXD,
SaX), XD

Tabla 5.1
1 X x5 xn 0 fi S 5
0 o 0 0 1 0 1
1] o 0 ] 0 0 1
o 0 i 0 0 0 1
0 o 1 1 1 1} 1
0 1 Q 0 i 0 1
(1] 1 0 | V] 0 |
0 1 1 V] Q a 0
0 1 1 1 1 0 0
[ 0 0 0 1 1 ]
1 ] V] 1 1 0 0
1 ] 1 0 0 i 1
1 0 1 1 1 0 I
1 1 (1] 1 1 1 1
-1 1 V] I 1 ] 1
1 1 1 i} 0 I 1
| | | i 1 ] 1
2, La lista J de las implicantes simples de salidas mdltiples del si Fix) es la sig
L=00——(3),L=0-=0(Q)
h=——00(), ai=—01—@)ls=-10—(3),
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Is=1—=0—=~(Uhblh=1—=0@2)lsg=——11(1),
=1l——1(lo=1l—=—=1=@3%h=11——(3),
=101 — 1,3 hy=1—11(,3), hs=11—0(2 3),
Jis =110 —(L3), fis=1—10(23),hr=—011(,3,
fe=1—000,2), fis=— 1000, NL2w=0—00(l, 3),
hy=1100(, 2, 3).

Entre paréntesis se indican los nimeros de fas funciones, cuyos puntos de trabajo se
cubren por el intervalo correspandiente.

3. Componemos la matriz , en la cnal cada constituyente de la unidad se repite 1anzas
veces ( integre las funci booleanas.

4. La ISSM obligatoria es Ja implicante fs.

5. En la matriz Q sustituimos las filas GO0 1 L0 111,101 1,111 1 que corresponden
2 las constituyentes de la funcién booleana fy por la implicante simpte de salidas multiples
Is. Como resultado obtenemos la matriz:

L)u;:!)fz?z

X

=

ov =

o = = - T S N - S

D e e e —————_-O OO

L= e e = — R = R = = - ]

o = I~ = e - S o
=T N - e - N e~ =l -
_-—_ OO == Q00 -0 = 00—-0R2—=0—~00Q

CO0RRCOORC OO0 OM e — = = =
O OO OO OO O —m——m——D OO — - ———

6. Las filas de [a matriz, de la 1—-a a la 22—a, no son [S5M. Pasamos al punto 7.
7. La matriz de frecuencia de relaciones tiene forma

x

i
&

XX
0
14

4 Xy
7 X1
5
6

00O TA R o W

o]
Il
o b BB D
[P Y.
(- NV R Y- PO
L -
—
wWoo S = 00w -] &
cEom®aounl
Bk mix

L]
I
6
5
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8. Estimamos cada 1SSM calculando el valor de cff). Para la implicante /; = — — 0
0 (1) esta estimacién es minimal e igual a 1,55. Escogemos [ = — — 0 0 (1) y pasamoas
al punto 5.

5. En la matriz Q'V, las constituyentes de la unidad, cubierias por la implicante [, las
sustitvimos por esta misma implicante. Como resultado obtenemos ia matriz

1 o0t1to1 010
10101001
10100110
10100110
101001 01
10011010
1 ¢ 011 0 01
01101 01 0
o1 10 v 001
01100110
@¢=lo1 100110
01100101
0101 ¢t 010
01901 v 010
010 11001
0101 100
01010110
01010110
01 ¢ 1 01 01
¢C 00001 01
¢ o001 010
6. La matriz Q% contiene filas que no son ISSM. Pasamos al punto 7, elc.
Resulta la matriz
X Xs X3 XXz X2 XioX
o o0 0 0 0 1 0 1
o o0 0 0 1 0 1 0
o1 0 0 ¥ 0 0 O
0O 1 0 0 0 0 1 Of.
1 0 0 0 1 0 0 O
0 0 1L 0 0 1 0o O
0 1 01 0 0 0 O

que corresponde a la solucidn

F(X) = xixaf) V 0Xafy V Xexefi V Xk V XaXafs V xaxafs V X3,

Determinemos la distancia entre la solucién obtenida y la minimal, Para esto prefijemos
cada FNDT de este sistema por ¢l mografo y determinemos la distribucién de figuras prohibi-
das. Haciendo los mografos obtenidos equival de modo semdntico a los mografos in-
terpretados en categorias de grafos estructurates, obtenemos que ta FNDT sintetizada del siste-
ma de funciones booleanas F(.X) corresponde a la solucién absolutamente minimal sin realizar
¢l sondeo de todas las FNDT equivalentes.
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§ 5.4. Caracterizacién de la descomposicion del grafo
de transiciones en el producto cartesiano parcial

La complejidad y la seguridad del dispositivo automatico se determinan
en muchos aspectos por los cdédigos de estados interiores. Uno de los
problemas actuales es el de minimizacién de conexiones entre los elementos
de memoria. Consideremos dos elementos de memoria inconexos si la fun-
cion de excitacién de uno de ellos no depende del estado del otro elemento
de memoria y viceversa. En caso de la inconexién de un elemento de memo-
ria con los demads, su funcién de excitacién se determina por el estado de
este elemente y por el vector de entrada:

wi = we(ZJ X)

Caracterizaremos la memoria del dispositivo automdtico por su
conexidn

5
PR
i=l
donde s es ¢l nimero total de los elementos de memoria, «; es el nimero
de clementos de memoria, distintos del i-ésimo elemento, cuyos valores son
necesarios para calcular la funcién de excitacién del /-ésimo elemento de
mermaoria.

El valor de la conexion de memoria S, igual a cero, significa que los
elementos de memoria son funcionalmente inconexos y la funcién de excita-
cién de cualquier elemento de memoria se determina por su valor y por
el vector de entrada.

Examinemos el problema de descomposicién de un grafo arbitrario de
transiciones en el producto cartesiano parcial de » factores funcionalmente
inconexos uno con otro, cada uno de los cuales corresponde a un dispositi-
vo subautomdtico. La conexién funcional entre los bloques surge cuando
es infringido el cardcter determinado por lo menos en un grafo de transi-
ciones G;. Para describir las situaciones de infraccion del cardcter determi-
nado introduzcamos el grafo de enganche Gen, a cada vértice del cual le
corresponde biunivocamente un estado interior del dispositivo automatico
a la arista, un par de estados enganchados con la particularidad de que
cada arista estd ponderada mediante los vectores de entrada que enganchan
los estados correspondientes del dispositivo automdtico.

Dos estados S., Sg se denominan enganchados, si existen: un juego X;

X .
que transforma el estado Si en S,, S.—*S,, y un juego Xj, X; C X}, que

transforma Sz en S, Sg—‘& tales que S, = S; ¥ (S., S,) ¥ (Sa, 5;) no for-
man lazos simultineamente.
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El estado del grafo de transiciones G = (¥, (U, X)) después de su des-
composicién en el producto cartesiano parcial G =[] Gi
]

Gi = (Vi, (U, X))}

puede caracterizarse por un vector a /-ésimo orden del cual le corresponde
el estado del i-ésimo dispositivo subautomético. En la descomposicion cada
uno de los dispositivos subauntomaticos se caracteriza por el niimero tole-
rable de estados |Vi|. Es obvio que

I IVl >V

I

A los estados enganchados les deben corresponder los vectores distintos
uno de otro en cada orden. En caso contrario, si en f-ésimo orden los vecto-
res de estados enganchados coinciden al transmitir a la entrada del disposi-
tivo automadtico un vector X, por el cual ellos se enganchan, en el caso
general, séra infringido el cardcter determinado de transicién en este dispo-
sitivo subautomatico. Por lo tanto, la construccién de la descomposicién
paralela abstracta del dispositivo automatico se reduce a la coloracién de
componentes miiltiples (multicoloracién) del grafo de enganche, realizando
la cual a los vértices adyacentes se les ponen en correspondencia los es-
pectros de colores, distintos uno de otro, en todo componente.

La descomposicién del grafo de transiciones en el producto cartesiano
parcial no saca el grafo resultante de la clase de los grafos de transiciones.
Las figuras prohibidas de esta semdntica son los grafos casi completos.

Teorema 5.4. Si un grafo de enganche construido para cada uno de los
dispositivos subautomdticos no contiene grafo casi completo de la casi den-
sidad g + 1, el dispositivo automdtico correspondiente es descomponible
en el producto cartesiano parcial de los factores funcionaimente inconexos
entre ellos, o sea, de los dispositives subautomdticos, el niimero de estados
de cada uno de los cuales no supera gq.

De este modo, los grafos casi completos son las figuras prohibidas que
caracterizan la condicién suficiente de la inconexién funcional de subauté-
matas, cuando se busca la descomposicion paralela del autémata de mando.
A continuacién, esta clase de figuras prohibidas se designard mediante Q:x.
Al mismo- tiempo el grafo de enganche para el primer dispositivo subauto-
madtico a examinar es un grafo de enganche construido por el grafo de tran-
siciones segtin su definicién. El grafo de enganche del i~ésimo dispositivo
subautomadtico es un grafo de enganche del primer dispositivo subautomati-
co, en el cual se han afadido aristas que unen los vértices de espectro igual
de colores. Estas aristas se afiaden para identificar univocamente los esta-
dos del dispositivo automatico.

Analicemos la construccion de la descomposicion paralela abstracta del
dispositivo automdtico basada en la semdntica hallada, examinando el
ejemplo siguiente.



34 Capiwule 5. Teoria aplicada de los algoritmos

a} Fig, 5.23 @

El dispositivo automatico tiene tres canales de entrada. El grafo de transiciones estd repre-
sentado en la fig. 5.22, a. Los vectores de entrada se denotan por los equivalentes decimales
de los correspondientes juegos binarios. Hallemos la descomaposicidn paralela del dispositivo
automdtico en forma de dos dispositivos con el nimero de estados interiores igual a 3 y 4,
respectivamente.

En la fig. 5.23, a se da el grafo de enganche del primer dispositivo subautomdtico. No
contiene figuras prohibidas; por consiguiente, es posible colorarlo con tres colores [0, 1, 2%.
Cada color corresponde a un estade del primer dispositivo subautomiatico. Construimos su
grafo de transiciones Gy = (¥, (Uh, X)). Como resuliado de la coloracién del grafo G,
¢l conjunto de estados del dispositivo automdtico inicial se parte cn tres conjuntos concolo-
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reados, cada uno de los cuales corresponde al estado del primer dispositivo subautomatico.
Los designaremos por Sfg, S/, Siz. Tenemos: (Ss, Ss, 5o, Sul = Sio) 152, Se, S5, S10] = 8§y
(51, S, S, Sz} = Siz. De aqui se tiene que las condiciones de la ransicion gi; del estado
5% en el estado S{; (L / = 0, 1, 2) del primer bloque son las condiciones de la transicion
del estado S, € Sy; al estado 5z € 5y, que se determinan por el grafo wncial de transiciones:
w-0=0, woe1 =1VS, w-2=2v3VH - =3V5 p-0=2V5 g-2=4VT
¢1=2=1V3VS5 prog =6, g2—1 = DVS.

El grafo de enganche que corresponde al segundo blogue estd representado en la fig.
5.23, b. No contiene figuras prohibidas; por consiguiente, ¢l dispositivo automatico inicial
es realizable en forma de dos dispositivos subautomdticos funcionalmente inconexos que fun-
clonan en paralelo. La coloracién def segundo grafo de enganche parte el conjunto de estados
del dispositivo automdtica de partida en cuatro conjuntos siguientes:

530 = |51, Sie, Sul, S = {Ss, Se, S,

S = |8 5. &, 5 = |5, S, Suzl.

Para los estados del segundo dispositivo automdtice las funciones de transiciin tienen
siguiente forma: w-o =2, w-2=0, w-1=3, w1 =1V7, @-c=3 @-z=4
Pl-1=5 @-2=4V6 wmeo= =2V5 @ =0VT, pe3=6, ¢-0=2VS5
-1 =T a2 =4

En la fig. 5.22, b se ofrece la descomposicién del grafo dado de transiciones en factores
funcionalmente inconexos.

Construyamos la descomposicién abstracta del dispositivo automatico
utilizando la semdntica de la descomposicion del grafo de transiciones en
el producto de factores. Sea prefijado el grafo de transiciones G (fig. 5.24,
@) que debe descomponerse en el producto G = Gy X Gy, donde Gy y G
son los grafos de transiciones, la potencia del portador de cada uno de
éstos no supera 3.

Construyamos el grafo de enganche G, ¥ realicemos su coloracién por
el primer componente (fig. 5.24, b). Para ello formemos todos los subgrafos
vacios {8z, Sey S}, 153, Sa, [S1, Se), (Si, 83, Ss), U8, Sz, S}, (52
Ssl, 182, Ss S3), {S7, Sk] del grafo de enganche.
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Tabla 512
Vértices
Poriadores
vicios 5 5 5 S6 S LA 5 5
151, S5, 571 1 4 0 0 1 0 0 1
151, S5, Sl 1 0 | 0 i 0 0 0
151, Se) 1 0 0 1 0 0 0 0
15z, Sa, Sei 1] 1 0 1 0 1 0 0
|52, 86, Sal o 1 ] 1 0 0 1 0
(82, 8¢} 0 1 0 0 1 0 0 0
185, 541 0 0 1 0 0 ] 0 0
181, Sy 0 0 0 0 0 0 1 1

Cubrimos las columnas por las filas de la tabla (tabla 5.12), en la cual
a cada fila le corresponde biunivocamente un subgrafo vacio, a la columna,
un vértice, y en la interseccién de la i-ésima fila y la j-ésima columna se
halla 1, si el j-ésimo vértice se contiene en el portador del i-ésimo subgrafo
vacio y 0 en caso contrario. El numero de estados tolerables del grafo G;
no supera tres; por lo tanto, la potencia del cubrimiento de esta tabla tam-
poco debe ser mds que tres. El grafo de enganche no contiene figuras prohi-
bidas por el primer componente (grafos casi completos de la casi densidad
4); por consiguiente, tales cubrimientos existen, ya que el nimero cromético
del grafo es igual a su casi densidad. Estos cubrimientos tienen siguiente
forma:

m = {82, i Ssl, (81, 83, S5}, (S, Ss}),
w2 = ({81, S5, S7), §S2. 86, Ss), (S5, Sul).

Para ser precisos escojamos el primer cubrimiento. Le corresponde la
coloracién del grafo de enganche representada en la fig. 5.25, ¢. En virtud
de esta coloracién, las funciones de transiciones gk, donde i es el nimero
del componente de la descomposicidn, j es el estado (color), al cual se reali-
za la transicion del primer factor del grafo de transiciones Gy, tienen si-
guiente forma: @00 = 0V 1, 101 = 2V3IVAVSVE, 102 = 9V 10, 110 =
=1V3IVIVEVO, o1 =5VI0, 0112 =4V9, 120 =6, w121 = 2V35VT,
wiz2 = 8.

Para que el producto de grafos satisfaga 1a condicion de automata, antes
de colorar el grafo de enganche por el segundo componente es necesario
unir los vértices, concoloreados en el primer componente, por aristas (fig.
5.25, b). Para establecer si el grafo obtenido (fig. 5.25, ¢) contiene figuras
prohibidas, formernos subgrafos completos de densidad 4. Volvamos a utili-
zar el algoritmo dado anteriormente. Lo modifiquemos de tal modo que
en el nivel se hallen situados los vértices no adyacentes que, al mismo tiem-
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{s; Jiw k. 8]

Fig. 5.25

po, se ponderan por los vértices adyacentes. Rompamos los caminos, cuya
longitud es menos que cuatro (fig. 5.25, d). Ademds de los subgrafos
completos formados de densidad 4, cuyos portadores tienen respectivamen-
te forma de iSh Sﬂn SSy Ssis [Sll s‘h SSt Sﬁll {Sz| Sl\ Ss. s"l’ !Sz’ S“’
Ss, 57), el grafo de enganche, al realizar la coloracién por el segundo com-
ponente, contiene otras seis figuras prohibidas: grafos casi completos de
casi densidad 4 (fig. 5.26).

Construyamos la tabla semantica (tabla 5.13). A cada fila de ésta e
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Sy Sz 53
8
Sy S¢ 3,
Sg
Se S5
Sy
53 5?
S,
Sz S5 S, ; B
35
s? S_;
Sy
5,
Sy 5 Sg 5,
57
S S3 S 5,
5y
8 S5
35
S’ S‘
5 5 s, Fig. 5.26

corresponde biunivocamente una arista de figura prohibida, a cada colum-
na, una figura prohibida y

G D= 1, si la i-ésima arista se contiene en la j-ésima figura;
? 0 en caso contrario.

Tabla 5.13

Aristas Grafos casi « | de la casi densidad 4

18, &)
|81, 8s)
(81, S5)
18s, Sy)
[ 84, Sx)
|85, S3)
182, 57)
152, 83)
[5z2, 86}
|83, 5+
[ 86, 811

————— oo D90
—_—— - OO0 = -
- - - - e
[= =R B e B ]

[ - A e~ = =]
— o DD e

E OO OO = —————
o el i
el = — I — =T — ]
-~
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3%
-
s

Aristas Grafos casi pl de la casi d

153, 86
182, Sa)
153, Sa)
(S5s, Ss}
§Ss, Sei
{Su, S0
181, S
(54, Ss}
[Sl, 522
{ 5., S

cooooooDoC
cooooooLD0—
O e s
Do = DO - -
O S —
O - O ——O
- - E- -
o et DD
—-_—o oD ~,o00 -0
COD =00 = -0

La tercera y la séptima fila forman el cubrimiento minimal. Por consi-
guiente, eliminando del grafo de enganche sus aristas correspondientes {51,
Sz} v | S2, S7) es posible la coloracién del grafo mediante tres colores (véase
la fig. 5.25, b). Como resultado obtenemos la coloracién de dos componen-
tes del grafo de enganche (véase la fig. 5.25, a, b): Si: (1, 1), 52: (0, 0),
S3: (1, 2), Saz (0, 2), Ss: (1, 0), Ss: (0. 1), S7: (2, 0), Ss: (2, 1).

La eliminacién de las aristas (S, Se] y [ Sz, S7] significa que los estados
81y Sy del grafo inicial de transiciones no deben engancharse por el vector
de entrada 8 (véase la fig. 5.25, a) y los estados 52 y §7, por el vector 2.
Para desenganchar esos vectores, en las correspondientes cuatro transi-
ciones introduzcamos érdenes complementarios, segtin los cuales se distin-
guiran estos vectores. Es posible realizarlo usando las conexiones entre los
componentes {en el caso dado, ¢l estado del primer componente) o forman-
do un bloque desacoplador especial de memoria.

En el primer componente del espectro, a los estados S; y Sz se les han
puesto en correspondencia los coloves 7 y 2, respectivamente. Para desen-
ganchar estos estados, extendamos el vector 8 que pondera la transicién
del estado S hasta el vector 8’ = 8-5),; el vector 8 que pondera la transi-
cion del estado S lo extendamos hasta el vector 8” = 8-Sz, donde Si1,
812 son valores de los érdenes, en los cuales se difieren los codigos de los
colores 7 y 2 del primer componente del espectro (fig. 5.27, a). Para desen-
ganchar los estados S; y S; tenemos 2’ = 2.8, 2" =2-8a,
respectivamente.

En este caso, el blogue especial de memoria es un elemento de memoria
o (fig. 5.27, b), en el cual uno de los estados (por ejemplo, nulo) se pone
en correspondencia a los estados S) y Sz, el otro, a los estados Ss y Sr.
En este caso, 8’ = 8a, 8" = Bu, 2’ = 2, 2” = 2c. El valor del bloque
desacoplador especial de memoria se fija realizando la transicion al estado,
la salida, del cual es de cariter univoco, lo que se determina por el estado
de este bloque.
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Como resultado obtenemos las siguientes funciones de excitacion del
grafo de transiciones que determina el segundo factor de la
descomposicidn:

oo = 1LVOVI0, w00 =2'VIVY, 2 =2V
V3V8, ¢0=0V5VE” VY, ps =6,

w2 =3IVAVE’, vro=T7, w1 = 1v4ve,
w22 = 0 5,

La descomposicion paralela abstracta obtenida del dispositivo automa-
tico prefijado con los factores conexos estd representada en la fig. 5.28.

Para responder si es posible la descomposicién del dispositivo automati-
co a examinar en el producto cartesiano parcial de los factores inconexos
entre ellos, consideremos la coloracidn del grafo de enganche teniendo en
cuenta el cardcter de transiciones de estados enganchados, lo que permite
no tomar en consideracién la conexién en el grafo de enganche, si la transi-
cién se realiza de los correspondientes estados enganchados a los vértices
concoloreados. Por lo tanto, antes de extender el vector de entrada para
desenganchar los estados interiores es necesario comprobar la posibilidad
de eliminar esta conexién mediante la coloracién igual de aquellos estados,
a los cuales pasan los estados enganchados.

Construyamos la tabla de transiciones del dispositivo automatico prefi-
jado (tabla 5.14), a cada fila de la cual le corresponde biunivocamente un
valor del vector de entrada, a cada columna, un estado interior, y en la
célula ( f) de la tabla se situia el identificador del estado interior, al cual
pasa el dispositivo automatico del j-ésimo estado bajo la influencia del /-
ésimo vector de entrada.

La descomposicién inconexa tiene lugar si, debido al cubrimiento de
la tabla semantica, la conexidn de los pares (S, Ss} v [ Sz, 87} no se tiene
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Sio Sg0

Fig. 5.28

en cuenta en virtud de que los pares de vértices {Si. S7} ¥ [Si, S3) pueden
ser concoloreados. Los estados Ss v 57 estdn enganchados y, para que sean
concoloreados, es imprescindible que sean concoloreados los vértices S y
S, a los cuales pasan S; y S7. Los estados S, §; estdn enganchados v,
para que sean concoloreados, es imprescindible que sean concoloreados los
vértices S3 ¥ Ss. Los estados S3 ¥y Ss no estan enganchados; por lo tanto,
pueden ser concoloreados. Coloramos los vértices §3, Ss con un mismo co-
lor. Entonces, segin la propiedad transitiva de la relacién de concoloracién
obtenemos que cada uno de los subconjuntos Ko =7( 81, 5z, 831, Ki = {55,
Ss, 570, k2 = [Ss, Ss} se compone de los vértices concoloreados.

Para la coloracién hallada del grafo de enganche del segundo compo-
nente de descomposicién, los estados 82, $» son no concoloreados. Por con-
siguiente, estd también liquidada la segunda contradiccién que condiciona
el cardcter indeterminado del grafo de transiciones del segundo factor. En
definitiva obtenemos las siguientes funciones de excitacién del segundo
componente de descomposicién: ¢z = 0V 1V 2, ¢01 = 3V 8, ¢r02 =35,
@0=6VIVI0, @1 =0V2VS @mi=1 ¢ao=6V9 ¢ =4V8,
w22z = 10,

De este modo, tenemos la descomposicién inconexa del dispositivo
automatico prefijado que se determina por los sistemas obtenidos y la co-
loracién de dos componentes de la forma S, -— (1, 0), 84— (0, 1), $7— (2,
1), $1— (0, 0), Ss— (1, 2), Ss— (2, 0), S — (1, 1), Se—{(0, 2).

En el caso general, para construir la descomposicién abstracta paralela
de la conexién absolutamente minimal, es necesario estimar cada colora-
cién por el primer componente mediante las coloraciones por ¢l segundo

21—-6577
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Tabla 5.4

X 5 5 5 S 85 Sa ) S

4] Sz S

1 S: Ss

2 S 5

3 8 5 83

4 S

5 5 b

6 5 5 5

7 52 & M

8 M Sa 51

9 Ss
10 S Sy

y elegir una coloracidén de componentes miltiples que satisfaga las cantida-
des prefijadas de vértices de los grafos de factores y sus condiciones de
conexion. La descomposicién del grafo de transiciones en # componentes
es andloga.

Examinemos la descomposicion abstracta paralela limite de los disposi-
tivos automadticos cuando el dispositivo subatomdtico es un elemento de
memoria. La semdntica de esta descomposicién serd semdntica de la cone-
xién funcional de los elementos de memoria. Teniendo en cuenta la estruc-
tura de los grafos casi completos y el cardcter de dos signos de la I6gica
de Boole, la semdntica reflexiva de la conexion funcional de los elementos
de memoria del dispositivo automdtico se determina por la siguiente
afirmacién.

Teorema 5.5. Los grafos de enganche que no contienen ciclos de longi-
tud impar determinan la codificacidn, en la cual los elementos de memoria
son funcionalmente inconexos.

Este criterio permite determinar sucesivamente los valores de los dérde-
nes en los codigos de estados interidres de modo analogo a cémo se hacia
durante la bisqueda de la descomposicién abstracta paralela.

§ 5.5. Caracterizacién y métodos del emplazamiento 6ptimo
de los datos en la memoria del ordenador

Los sistemas modernos de informacion se caracterizan no sélo por grandes
capacidades, sino también por la complejidad de los datos almacenados,
la que consiste en que los datos estdn en diferentes interrelaciones. De tal
modo, los datos complejos se representan en forma de un juego de ciertos
objetos elementales v un conjunto de relaciones que unen los objetos de
datos. En otras palabras, los sistemas complejos de informacién se formali-
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) 45

a b}

Fig. 5.29

zan mediante los conceptos tales como grafe y mografo. La rica experiencia
practica de construccién de sistemas de informacion lo corrobora.

A menudo surge la necesidad de almacenar estructuras de grafos en
“forma pura”, por ejemplo, cuando en las bases de datos se usan los mode-
los de datos basados en grafos. Los objetos de datos se almacenan separa-
dos de sus relaciones que se representan por grafos. Se conocen varios pro-
cedimientos de prefijacion de los grafos: empleando matrices de incidencias
y de adyacencia, enumerando entornos de los vértices. Se puede mostrar
que el dltimo procedimiento es el més ahorrativo para los grafos de grandes
dimensiones, lo que es tipico para la practica. Pero la prefijacién del grafo
mediante la enumeracion de entornos es equivalente a la prefijacién del
mografo, cuyo portador es el del grafo y las palabras son los entornos de
sus vértices. La prefijacién del grafo puede tener variantes, pero en cual-
quier caso un mografo puede ser una abstraccién de representacién. Por
ejemplo, en las bases de datos que parten de un modelo de la red de datos
(un fragmento del esquema de la red de datos se refleja en la fig. 5.29,
a), la abstraccién de los datos es un grafo orientado. Tratando las deman-
das, la bisqueda de informacién se realiza en el sentide indicado por los
arcos (de los datos sobre los procesos a los de equipo), por esta razén hace
falta almacenar solamente los entornos positivos (los del nivel inferior del
grafo dado en la fig. 5.29, b). Esta informacién se da por el mografo repre-
sentado en la fig. 5.29, c

Como se ha mostrado anteriormente, el mografo es una abstraccion del sistema de bis-
queda informativa con un conjunto fijado de demandas, En calidad de otro ejemplo de la
representacion de un sistema informativo por un mografo sirve una organizacion de ficheros
con varias claves de acceso. El fichero es una sucesién de inscripciones compuestas de campos
idénticos (las incripciones pueden ser de longitud desigual). Lidmase clave un campo o con-
junto de campos, cuyos valores identifican las inscripciones. El acceso al fichero se realiza
indicando ¢l valor de la clave, Para acelerar el procesamiento de las demandas se organizan
{ndices (tablas en 1as cuales para cada valor de la clave se indican las direcciones de las inscrip-
ciones con este valor), Si el indice almacena las direcciones de todas las inscripciones con
¢l valor dado, esta organizacién se denomina listas invertidas. La informacién almacenada
en las listas invertidas se representa por un mografo, cuyo portador se compone de un conjunto

21*
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de las direcciones de inscripeiones y las palabras, de los conjuntos de las direcciones de inscrip-
ciones que tienen valores idénticos de la clave.

Examinemos un fichero de un sistema informativo de biblioteca (fig. 5.30) que tiene va-
rias claves de acceso: el apellido del autor, el nombre de la Editorial, la palabra clave, etc.
Para acelerar e! acceso se puede ordenar el fichero por una de las claves (habitualmente, por
el apellido). Por otras claves, las inscripciones estardn compl desordenadas. En el
¢jemplo a examinar, ¢l indice por la clave del acceso “palabra clave” se representa por el
mografo dado anteriormente (véase fig. 5.29, ¢), a la palabra M, le corresponde el valor “méto-
dos matemdticos”, a la My, “automatizacién”, etc.

El mografo puede prefijar tanto las lisias invertidas, como otras organizaciones de lista
para los indices: listas miiltiples, listas de secciones. En fin, una mamz binaria sencilla puede
representarse como la matriz de incidencia del mografo.

Para el emplazamiento de los datos en la memoria del ordenador los
criterios principales son la minimizacién de la capacidad de memoria y
la del tiempo de acceso. Los elementos del portador del mografo co-
rresponden univocamente a los objetos de los datos almacenados en la me-
moria. Por lo tanto, el criterio de la minimizacién de la capacidad de me-
moria determina la funcional de la calidad @(¥p), en la equivalentizacién
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semdntica, como el minimo de la potencia del portador ¥,. El mografo
¥y determina el emplazamiento, en el cual se puede hallar todas las palabras
lo mds posible. Si el mografo ¥, no admite este emplazamiento, la bisqueda
de cierta palabra es equivalente a la de varias palabras que significa la desin-
tegracion de la palabra dada en varias palabras. De tal modo, el criterio
de minimizacién del tiempo de acceso determina la funcional de la calidad
¢(¥p) como ¢l minimo de la potencia de la signatura ¥;.

En los ejemplos considerados de la organizacién de los datos representa-
dos por el mografo es importante minimizar la capacidad de memoria en
condiciones del tiempo minimo de acceso. Es posible el criterio inverso:
la minimizacion del tiempo de acceso contando con la capacidad constante
de memoria. Por ejemplo, es importante en el problema de una ordenacion
de las inscripciones del fichero (fig. 5.31), con la cual se realizaria mas rapi-
do la busqueda por la clave.

El acceso a los objetos de datos se realiza con ayuda de un procedimien-
to estdndar de busqueda, en la cual se cumple la transicion de un elemento
de memoria a otro. La transicion se realiza univocamente, por eso se puede
formalizar este procedimiento de bisqueda mediante una funcion de exa-
men de la memoria § que es una funcién parcial sobre el conjunto de los
elementos del portador de un mografo S: X — X; S(x) es un elemento, al
cual se realiza la transicion después del elemento x. Analicemos tal empla-
zamiento de los datos y tal funcién de examen de la memoria S (modelo
¥,), para los cuales existe un elemento x € M tal que

M = (x, S(n), §*(x), .. ., SMI~!(xp)}

para cada palabra M del modelo ¥,, es decir, cada palabra se busca con
ayuda de la funcién S basandose solamente en la informacion de la poten-
cia de la palabra y del elemento inicial xo.

Semejantes mografos se denominan admisibles. Es obvio que en la pric-
tica la mayoria de los mografos no son admisibles. Para su realizacion en
la memoria del ordenador se necesita desintegrar los elementos del portador
0 las palabras. Al mismo tiempo, se aumenta ora la capacidad de memoria,
ora el tiempo de acceso. En la memoria del ordenador, los mografos admi-
sibles se representan de modo sin exceso y requieren el tiempo minimo de
aACCEs0,

De tal modo, el problema del emplazamiento 6ptimo de los datos con-
siste en la transformacion del mografo en el admisible y en la construccién
de la funcién de examen de la memoria. Con ello, la funcional de la calidad
es la extension minimal del portador sin cambiar la signatura o la extension
minimal de la signatura sin cambiar el portador. Este problema puede in-
terpretarse por grafos. Consideremos la funcidn de examen de la memoria
S: X = X de un mografo admisible ¥, como la relacion de adyacencia
S € X x X de los vértices en el grafo orientado Gy = (X, §) construido
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sobre el conjunto de vértices X. El grafo Gy es funcional (f~grafo), o sea,
de cada uno de sus vértices no sale més que un arco.

Teorema 5.6. Un f~grafo conexo es aciclico o contiene exactamente un
ciclo.

De esta afirmacién se desprende que en la practica son importantes las
siguientes clases de f-grafos y mografos admisibles que se representan por
los f-grafos correspondientes: lineales (caminos), ciclicos (circuitos), acicli-
cos (arboles orientados).

En la préctica, la funcién de examen de la memoria se realiza habitual-
mente empleando las marcas o mediante la transicién al elemento adyacente
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de la memoria. Para representar en la memoria los f~grafos lineales se puede
utilizar la segunda variante de la realizacion de la funcién de examen de
la memoria. La representacién de los f-grafos ciclicos se basa también en
Ia transicién al elemento adyacente de la memoria, excepto S(x,) = x;, don-
de x1, x» son los elementos primero y iiltimo, respectivamente, en el empla-
zamiento. Para representar los f-grafos aciclicos son necesarias las marcas.
Sin embargo, la representacién de un f-grafo aciclico mediante los pares
{x, 8(x)) para cada vértice x es excedente (fig. 5.32, a, ). Para la representa-
cidn sin exceso, partamos el f~grafo en fragmentos lineales, dentro de los
cuales emplearemos como la funcién de examen la transicién al elemento
adyacente de la memoria e indicaremos la relacién entre los fragmentos
mediante las marcas (fig. 5.32, ¢).

Para resolver los problemas de caracterizacién de la prefijacién de los
mografos por f~grafos de diferentes clases, introduzcamos relaciones de su-
bordinacién. Un mografo ¥, se subordina a otro ¥» en cuanto a una rela-
cién de subordinacién P! si se obtiene del ¥; mediante una sucesién de
limitaciones, contracciones, extensiones y convoluciones, Como una limita-
cion del mografo se comprende la eliminacién de algunas de sus palabras,
como una contraccién se comprende la eleminacién de unos elementos del
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portador, como una extension se comprende la introduccién de una palabra
nueva que es la interseccién de Ias ya existentes, como una convolucién
se comprende el encolamiento de todos los vértices de cierta palabra con
la unidn de sus pesos, La figura 5.33 (a, b, ¢, d, €) ilustra las operaciones
introducidas. La relacion de subordinacién P} se usa para caracterizar
mografos lineales y aciclicos.

La relacién de subordinacién FPZ, salvo las operaciones usadas en P,
incluye otra operacién: la adherencia de la palabra, es decir, su sustitucion
por el complemento en el conjunto de los elementos del portador del

2.5
o LY al

Fig. 5.34 Fig. 5.35
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mografo (fig. 5.34). Ademads, impone la siguiente restriccion sobre la opera-
cién de extensiéon P7: se puede incluir solamente aquella palabra M que
es la interseccién de palabras M;, M; tales que su unidn no forma todo
el portador del mografo (la extension posible). Esta relacién de subordina-
cién se usa para caracterizar los mografos ciclicos.

El principio de localidad se cumple para las propiedades de linealidad
y de aperiodicidad cuando se tiene la relacion P! y para las propiedades
de periodicidad cuando se tiene la relacion P

Teorema 5.7. (teorema de V. L. Térjov). Para las clases de admisibilidad
de los mografos las figuras prohibidas son los siguientes mografos: 1} S;
v Ka, para la propiedad de linealidad y para la relacidn de subordinacion
Pl 2) Ka, para la propiedad de periodicidad y para la relacion de subordi-
nacidn Pt 3) S, Ki, Ks, para la propiedad de aperiodicidad y para la rela-
cion de subordinacion P..

En las fig. 5.35 (@ b, ¢ d) se aducen los mografos Ss, Ka, Ki, K.

Los precedimientos de transformacion de estas figuras prohibidas en
las permitidas consisten o sea en la desintegracién de un elemento del porta-
dor x y la correspondiente particién del conjunto de las palabras E(x), que
lo comprendian, en dos conjuntos £, {x) y E2(x) (designaremos este procedi-
miento mediante x(E;, Ez)), o sea en la desintegracién de la palabra M;
en dos MY y M{" con la correspondiente distribucion de los elementos por
estas palabras (lo designaremos mediante i (M7, M;")). Los procedimientos
de la transtormacion de las figuras prohibidas en las designaciones acepta-
das se unen en la tabla 5.15.

¥
2] (43

. (%) (x)
' (9] A@

(492.3)

Fig. 5.36
22—6577
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Tabla 5.15
Procedi de fe ]
Figura
prohibida
extension del portador extension de la signatura

x(2, 3) 1{xz, x3)

5 xa(1, 3) 2(xy, X3)
xal, 2) 3, x)
xof3, (1, 2)) 100, x1)

K xa(2, {1, 3) 2(xo, x2)
xoll, (2, 4)) Ixa, X3)
xift, 4) 1(x1, x0)
xa(2, 9 2(xz, Xo)

Ki (3, 4) 3(x3, Xo)
Xo(l, (2, 3, 4)) A(x1, X2, X3, Xo)
x(2, (1, 3, 4)) Axz, (0, X, X))
(3, (1, 2, 4) Alxs, (X1, Xz, Xo))
x(l, 3) 10x1, X}
x2(2, 5} 2{xz, xo)
x3(3, 6) 3(x3, X0}
Xa(4, 6) Ao, xa)

K xol(l, (2, 3, 4, 5, 6)) S (xo, x2))
x(2, (1, 3, 4, 5, 6)) S(xalxe, X))
x(3, (1, 2, 4, §, 6)) 6x3(x0, Xa)}
xo(d, (1, 2, 3, 5, 6)) 6(xs(xp, x3))
xofl, 2, 5), (3, 4, 6))

Se puede mostrar que estos procedimentos son basicos, o sea, cualquier
otro procedimiento de transformacién es una superposicion de estos proce-
dimientos. Para el modelo en total, los procedimicntos dados de las figuras
prohibidas no son univocos. La equivalentizacién semantica de un mografo
¥, en un mografo ¥, con las propiedades dadas de admisibilidad se realiza
con ayuda de un procedimiento habitual: construimos la tabla seméntica;
hallamos los cubrimientos; estimamos estos cubrimientos construyendo y
colorando grafos especiales. Como resultado obtenemos un mografo que
posee la propiedad dada de admisibilidad. Segun ella, construimos el f-
grafo correspondiente. Consideremos mds detalladamente el algoritmo de
la construccién de un f-grafo lineal segin un mografo lineal (aceptemos
que ¢l mografo es conexo). s
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Determinemos la relacion de subordinacién Pg sobre el portador de un
mografo que (x, x;) € Pg, si E(x;) C E(x;) (al mismo tiempo, no considere-
mos las palabras de un elemento). Hallemos el conjunto de elementos mini-
males X de la relacién de subordinacidén Pg. En él dejemos un elemento
de cada uno de aquellos que integran las palabras iguales y, después, sola-
mente tales elementos x;, cuya eliminacién junto con E(x;) no hace inconexo
el mografo. (Se puede mostrar que siempre no hay mds de dos elementos
de este tipo). Sea que se queden los elementos x; y xy. Fijemos uno de
ellos, por ejemplo, x,, como un vértice final del fgrafo. Eliminemos otro
elemento x; del mografo y lo introduzcamos en el f-grafo. Si el f-grafo ya
tiene vértices, unamos el anterior vértice introducido x; con x; por medio
de un arco. Continuemos realizando este procedimiento hasta que en el
mografo se quede un vértice x,. Lo tratamos de modo andlogo.

Examinemos el proceso de la equivalentizacién semdntica del mografo ¥, {véase la fig.
5.29, ¢} en un f-grafo lineal. Las figuras, prohibidas para la propliedad de linealidad, presentes
en ¥,, se dan en la fig. 5.36. Si el criterio es la minimizacidn de la funcional ¢{¥s) igual
a la potencia del portador ¥, bajo la condicién de no incremento de la potencia de la signatu-
ra ¥,, se puede aplicar sélo la transformacion basada en la desintegracién de los elementos
del portador. La tabla semantica tiene forma (tabla 5.16):

Tubla 5.16
¥ V2 ¥ Ya vs Vs ¥ ¥
1 1 1 1 x3(1, (2, 6)
1 1 1 1 x3(2. (1, 6)
1 1 1 x(6. (1, 2))
1 x(, 2)
i x5(2, 3}
1 x(l, 3)
1 x(l, 5)
1 u(l, 4
] x:(4, 5)
1 1 1 1 1 x(l, (3, 4))
1 1 i 1 X3, (1, )
1 1 1 1 xa(4, (1, 3))

27
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Examinemos el cubrimienio m = [x(2, (1, 6)), x(l, (3, 40)]. El cumplimienio de estas
transformaciones en ¥, conducira al mografo lincal ¥, (fig. 5.37, a). Construimos segin el
algoritmo propuesto, un f-grafo lineal que representa ¥,. Definamos la relacion de subordina-
cidn Pg (fig. 5.37, b). Sus elemenios minimales son xi, x4, X5, X3. Eliminando de la considera-
cifn xy & xa, con la palabra M ltegamos al mografo inconexo. Fijamos ¢} elemento x5 como
el vértice final del f~grafo. En el f-grafo introducimos el vértice xg, elimindndolo de ¥;. Luego,
volvemos a construir la relacidn de ordenacidn Pg (fig. 5.37, ¢). Sus elementos minimales
SON Xy, X3, Xa, X{. Los tres primeros integran un conjunto de palabras; escogemos el elemento
X3 y eliminamos los demas de la consideracion, Introducimos xa en el f-grafo (fig. 5.37, d).
Continuando este procedimiento, construimos el fgrafo (fig. 5.37, &).

El mografo ¥, representa un sistema de listas invertidas para el fichero
de un sistema informativo de biblioteca (véase la fig. 5.30). Si empleamos
la organizacién normal de lista con la funcién lineal de examen, las listas
invertidas (véase la fig. 5.31, @) ocupan 14 elementos de la memoria; si

(1) (1,5)

Fig. 5.38
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empleamos el emplazamiento Optimo que representa ¥; (véase la fig. 5.31,
b) se ocupan 9 elementos. De tal modo, el ahorro de la memoria sobre
las listas invertidas aproximadamente es igual al 35%.

Si el criterio es la minimizacidn de la funcional w(¥g), igual a la potencia de la signatura
¥ bajo la condicién de no aumento de la potencia del portador ¥, se puede aplicar solo
las transformaciones de las figuras prohibidas que desintegran las palabras. La tabla semantica
tiene forma (tabla 5.47):

Tabia 5.17
17 ¥z ¥ Vs ¥s Ve ¥ Vs

1 1{xy, x)

1 1 1 1 2(x3, x3)

1 1 1 6(x3, X5)

1 1xz, x3)

1 1 1 1{xa, xa}

1 1 I 1 36, X3}

1 1 xz, xa)

1 1 1 Axa, X7}

1 Sz, x1)

1 10x, x5}

Uno de los cubrimientos gue determinan una solucién minimal es el cubrimiento no mini-
mal (segun el nimero de ransformaciones) # = [1(x, x3), 10x2, ), 1x3, xa), Wxa, xa), 1xa,
x3)). Un grafo especial para la palabra M (todos los procedimientos desintegran sdlo esta
palabra) se da en !a figura 5,38, @, Su coloracién con tres colores determina la desintegracién
minimal My M{ = |x, x2], M = {x], M{" = {x); después de esto el mografo se hace
hineal (fig. 5.38;, b) y se representa media;ll.e el f-grafo lineal (fig. 5.38, o).

La solucién de este problema permite, conforme al f~grafo construido,
ordenar las inscripciones del fichero del sistema informativo de biblioteca
(fig. 5.39) de tal modo que las inscripciones con los valores idénticos de
la palabra clase se agrupan en el niimero minimo de cadenas. Si en el fiche-
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ro inicial(fig. 5.30) habia 10 cadenas de este tipo (para la palabra clave
“métodos matemdticos” se tiene 1 cadena, para la palabra clave “automati-
zacion, 2 cadenas, etc.), en el emplazamiento obtenido (fig. 5.39) hay 8
cadenas de este tipo (para la palabra clave “métodos mateméticos™ se tiene
3 palabras, para las demds, una para cada una). De este modo, como resul-
tado de la optimacién durante el procesamiento del fichero, la acciéon rapida
aumenté en el 20%. Para ambos criterios se ha obtenido la solucion
minimal.

Fig. 5.39

§ 5.6. Problemas y ejercicios

§.1. Determinar la densidad de trabajo v la complejidad capacitiva del algoritmo de la
equivalentizacién sintdctica de un grafo no orientado en el de dos partes mediante la elimina-
cidn de aristas, si la funcional de la calidad es el minimo de las anstas eliminadas.

5.2. Comprobar el cumplimiento del principio de localidad para el problema de caractcn-
zacion de la transformacidn de grafo en uno de dos partes y para la relacién de subordi 1
“ser subgrafo” (recordemos que un subgrafo se diferencia de un subgrafo parcial en que si
no tiene algin vértice del grafo, no tiene aristas que le son incidentes en el grafo). (Forman
un conjunto de figuras prohibidas los ciclos de longitud impar?

5.3. Determinar una relacién de subordinacidn que satisface el principio de localidad
para el problema de caracterizacion de los grafos de Hamilion,

5.4. Determunar una relacion de subrodinacién que satisface el principio de localidad
para el problema de caracterizacion de los grafos de Euler.

5.5. Proponer algoritmos de la equivalentizacidn sintdctica, heuristica y seméntica de
los grafos no orientados en los de Euler. Comparar la densidad de trabajo v la complejidad
capacitiva de algoritmos,

5.6. Cumplir la equivalentizacion semdntica de un grafo G,, que es el complemento del
grafo dado en Ja fig. 5.4(b), en e de dos partes Gz = { V3, Uz) para los siguientes procedimien-
tos de transformaciones de las figuras prohibidas en las permitidas y de las funcionales de
la calidad: a) eliminacidn de una arlsta de un ciclo impar, ¢(G:z) = mdx|L%|; b) desintegracién
de un vértice de un ciclo impar, ¢(Gz) = min |V: |.

5.7. Demostrar que al eliminar las filas ¥ columnas que se absorben (véase el § 5.2),
lo que se emplea para disminuir la densidad de trabajo para hallar ¢} cubrimiento de la tabla
seméntica la solucidn minima! no se pierde,
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5.8. Determinar si son inestables las figuras prohibidas los tipos A y B, presentes en
el mografo dado en la fig. 5.10, a.

5.9. Demostrar que la solucién del probl de la minimizacidn tedrica y estructural
de la funcién

S, 2, 23, 2)i = V(2, 3, 4, 5 08,9, 11, 12, 14, 15)

por medio de un procedimiento propuesto en el § 5.4 y basado en la funcional (5.1) es absoluta-
mente minimal.

5.10. Demostrar que la solucidn del problema de la minimizacién tedrica ¥ estructural
del sistema de funciones booleanas, dado por la tabla 5.12, mediante el procedimiento pro-
puesto en el § 5.4 y basado en la funcional (5.2), es absolutamente minimal.

5.11. Determinar la descomposicion paralela abstracta del dispositivo automdtico (véase
la fig. 5.24, a}, partiendo de la construccién del segundo dispositivo subautomético (que tiene
cuatro estados). ¢Cambia el resultado de la descomposicién?

§.12. Cumplir la equivalentizacién semdntica del mografo ¥, (véase la fig. 5.30, ¢) en

¢ ciclico ¥, con la funcional de la calidad (el minimo de las desinteg ¥ d

los siguientes procedimientos de la transformacién de las figuras prohibidas en las permitidas:
a) desintegracién de un el ) det portador, b) desi ién de una palabra.
Comentarios

La lucha contra el sondeo de variantes en la solucién de los problemas de la matemética
discreta es uno de los mis actuales del apoyo matematico moderno de los sistemas de trata-
miento de la informacién, Se puede lograr éxito, s6lo resolviendo el problema de caracteriza-
cidn de las transformaciones modelo en realizacién. Si el problema de caraclerizacidn no estd
resuelto se vsa el enfoque heuristico de la optimacién de los atgoritmos combinatorios.
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Précticas para resolver problemas matemdlticos
Algebra y trigonometria
El abjetivo de este manual consiste en prestar ayuda concreta alos estudiantes en el desarrollo
delos habitos para resolver problemas matemdticos del curso escolar de dlgebra y trigonometria,

La presencia del material tedrico y ejemplos analizados detalladamente ofrece |a posibilidad de
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Los matematicos, ingenieros, asi como los especialistas en otras ramas de la ciencia, saben
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