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Prefacio

En anos recientes se ha visto la aparicion de un buen ntimero de textos en el tema de
Lenguajes Formales y Autématas (Ver al final referencias [10], [7], [23], [8], [3], [21], etc.). Por
una parte, esto indica la importancia y riqueza que el tema tiene; por otra, ante tal variedad
de oferta todo nuevo libro en el area requiere una justificacion que indique su aporte con
respecto a lo existente.

Este texto se sitiia en una generacién de textos que tratan de poner el estudio de los
lenguajes formales y automatas al alcance de estudiantes que no necesariamente son avezados
matematicos buscando establecer nuevos teoremas, sino que buscan una iniciacién a estos
temas, que ademas les sirva como un ejercicio en el arte de formalizar, en particular en
nociones relacionadas con la computacién. Entre estos textos “accesibles”, encontramos, por
ejemplo, a [23]. Estos nuevos textos han reemplazado en muchas universidades a los “clésicos”
[6] y atin [I0] -que ya era més accesible-, y han permitido que la teorfa de la computacién se
estudie a nivel profesional en carreras relacionadas con computaciéon y matematicas.

El presente libro es resultado de una experiencia de impartir el curso de Teoria de la
Computacion por més de 10 semestres en el ITESM, E] en Monterrey, México. Durante este
lapso, aunque ciertamente se fue enriqueciendo el contenido técnico, el principal refinamiento
consistié en ir detectando cuidadosamente las dificultades principales a las que se enfrenta-
ban los estudiantes, para poder estructurar y presentar el material de forma que aquellos
estuvieran en condiciones de comprenderlo de manera eficiente. Aqui el énfasis no esta tanto
en hacer el curso “mas facil” para los estudiantes, sino en asegurarse de que éstos cuenten
con los elementos para que ellos mismos reconstruyan estos contenidos dentro de su cabeza;
no se trata, pues, simplemente de “vaciar” informacién en la cabeza del estudiante. La teoria
educativa que sustenta esta forma de trabajo esta basada en el “aprendizaje por reestruc-
turacién” [18].

El texto estd presentado de manera tal que es posible para el alumno estudiar el material
antes de cubrir el tema en clase; de hecho esta es la forma en que se utiliza en el ITESM,
contrariamente a muchas clases tradicionales, en las que el alumno se presenta a la exposicién
del profesor y ya luego estudia el texto. En el ITESM la clase no se utiliza principalmente
para exposicion del profesor, sino que se hacen ejercicios, problemas en equipo, miniexamenes
semanales, etc. Esta situacion exige del texto que sea comprensible sin tener ninguna nocion
del tema adquirida previamente, por lo que tuvimos que incluir explicaciones claras que
permitan al alumno reconstruir en su mente la idea intuitiva, y -sobre todo- ejemplos. A
lo largo del texto, cada una de las nociones presentadas es seguida inmediatamente por un
ejemplo ilustrativo.

Este texto es aplicable tanto al nivel de maestria en computacion o equivalente, como
a clases de nivel profesional (licenciaturas, ingenierias). De hecho en el ITESM se aplica en
ambos niveles. La diferencia fundamental entre el enfoque del curso de nivel profesional y el

L Abreviatura de “Instituto Tecnolégico y de Estudios Superiores de Monterrey”.
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de maestria estriba en que el curso de nivel ingeniero enfatiza los aspectos de “saber hacer”,
(por ejemplo, saber comparar dos autématas deterministas), mientras que el curso de nivel
maestria enfatiza el “saber justificar” (por ejemplo, probar por induccién que una gramatica
es correcta).

El material cuyo nivel es propiamente de maestria es identificado por medio de una
barra vertical al margen, como en el presente parrafo. Esto incluye también las secciones de
ejercicios.

En breve, los puntos que caracterizan a este libro, y que en cierta medida lo hacen
particular, son:

= La presentacién didactica ha sido -en nuestra opinion- mas pulida que en la mayoria
de textos en Teoria de la Computaciéon. Por ejemplo, primero se presentan las nociones
de manera intuitiva, y solamente después se procede a su formalizacion.

= Es aplicable tanto al nivel de maestria como en carreras de ingenieria en computacién,
mostrando en forma explicita y grafica qué secciones estan destinadas a cada nivel.

= Siendo un libro ma&s orientado a estudiantes de ingenierfa que de matematicas, se
enfatizan los temas que tienen comunmente aplicacién en su campo profesional, como
los automatas finitos. Esta es la razén por la que se cubren con mucho mas detalle estos
temas que otros de interés mas tedrico, como la calculabilidad en maquinas de Turing.
Sabemos de alumnos que han conseguido un buen empleo no universitario gracias a su
conocimiento de autématas finitos.

= Por la misma razén del punto anterior, ciertos temas que tradicionalmente se exponen
con una motivacion matematica, como las propiedades de los “Lenguajes Regulares”,
en este texto se presentan en el contexto de métodos de diseno, lo que es consistente
con nuestro enfoque ingenieril. Es este aspecto lo que justifica el subtitulo “un enfoque
de diseno” de este texto.

= Ofrecemos metodologias para resolver ciertas clases de problemas, tales como el diseno
de expresiones regulares y graméticas, que no son presentadas en otros libros de teoria
de autématas, o lo hacen de forma mucho més escueta. Inclusive algunos temas, tales
como las propiedades de cerradura de los lenguajes regulares a la unién de conjuntos,
se presentan aqui como una herramienta de soluciéon de problemas de diseno, y no
simplemente por el interés matematico del tema.

= Presentamos errores frecuentes de los estudiantes de esta materia, permitiendo de este
modo que el lector se beneficie de una extensa experiencia directa en la ensenanza de
la materia.

= Los algoritmos no se presentan en forma de “pseudocdédigo”, es decir, usando estruc-
turas de control de lenguajes imperativos (p.ej. while, for, etc.), sino que damos una
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interpretacion intuitiva de los resultados intermedios obtenidos por los algoritmos. Pen-
samos que este enfoque brinda una mejor comprension de los algoritmos, pues es mas
facil recordar ideas que lineas de codigo.

» El texto estd en espafiol en el original! (es decir, no se trata de una traduccién de un
texto en inglés). Las traducciones son muchas veces desventajosas respecto al original.

= El libro, en tanto que libro electronico, es un archivo estandar de tipo PDF, con “hiperli-
gas” que permiten localizar rapidamente figuras, citas, paginas del texto, etc.

= jEl libro es gratuito! En efecto, no se distribuye con fines de lucro. Esto no pretende
atentar contra la industria editorial, sino apoyar el aprendizaje del area de autématas y
lenguajes en América Latina, region que no estd sobrada de recursos como para querer
engrosar los flujos de capital hacia los grandes centros editoriales del mundo.

La estructura de este texto es la siguiente: después de una breve revision de las nociones
preliminares de matematicas, en los primeros capitulos veremos la clase mas simple de
lenguajes, los Lenguajes Regulares, junto con las maquinas abstractas que les corresponden
—los Automatas Finitos—, y al mismo tiempo introduciremos una metodologia de anélisis de
las maquinas abstractas y de los lenguajes, metodologia que volveremos a utilizar en las
siguientes secciones del curso, para otros tipos de lenguajes y de méaquinas.

En los capitulos [ y [f] veremos los Lenguajes Libres de Contexto y los Autématas de Pila.

Finalmente, a partir del capitulo [f] estudiaremos el tipo de maquinas mas poderoso, las
Maquinas de Turing, que son en cierta forma el limite tedrico de lo que es posible de hacer
con maquinas procesadoras de informacién.

Tipicamente, en un curso de nivel profesional se inicia con el capitulo de preliminares,
y se continda con los capitulos 23] Se enfatizan los capitulos [] y 3 asi como la teorfa de
los compiladores. A continuacion se cubren los aspectos basicos de las Maquinas de Turing
(inicio de capitulo @

En el curso de maestria, la revisién de preliminares casi se omite, y se cubren los capitulos
solo que en un nivel de profundidad mayor que en el caso del nivel profesional. E|Luego
se procede a estudiar los Autématas de Pila, las Maquinas de Turing y la Tesis de Church
(capitulos , y @, con énfasis en las pruebas.

Agradezco la colaboracion del Dr. José Luis Aguirre en la correccién de los errores en
versiones previas, asi como en sugerencias para mejorar la exposicién de ciertos temas. Tam-
bién agradezco al Comité del Fondo de Apoyo a Proyectos en Didactica su apoyo financiero.
Finalmente doy las gracias a muchos alumnos que ayudaron a depurar el escrito mientras
sirviéo como apuntes de la materia.

2Recordar que el material de nivel maestria estd indicado con una barra vertical en el margen.
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Capitulo 1

Preliminares

En esta parte repasaremos brevemente algunas nociones y notaciones que seran necesarias
para comprender adecuadamente el resto del material de este libro. Debe, sin embargo,
quedar claro que este repaso queda fuera del area de automatas y lenguajes formales. Por otra
parte, no es nuestra intencién hacer una introducciéon para un lector que no tenga ninguna
base en matematica, especialmente en teoria de conjuntos, sino que tnicamente haremos
un repaso, ayudando al lector a detectar sus puntos débiles, ademéds de recordar nociones
que pueden no estar frescas. Un objetivo adicional del presente capitulo es uniformizar la
notacion, que varia bastante de libro a libro. Para los lectores que requieran una introduccion
méas exhaustiva a la teorfa de conjuntos y temas afines, recomendamos textos como [19].

1.1. Conjuntos

El fundamento mas importante para el estudio de los lenguajes y autématas es la Teoria
de Conjuntos. En efecto, siempre que hablemos de “formalizar” una nocién, estaremos di-
ciendo en realidad “expresar en términos de la Teoria de Conjuntos”. Es por esto que en este
capitulo presentamos los conceptos mas bésicos de dicha Teoria de Conjuntos.

La idea de un conjunto como una coleccion de individuos u objetos no es, para un
verdadero matematico, suficientemente precisa, y se parece a la nocién de clase; sin embargo,
para nuestros propésitos es suficiente.

Un conjunto que vamos a utilizar con frecuencia es el de los nimeros naturales, {1,2, 3, ...},
denotado por N.

Los conjuntos pueden expresarse de dos maneras basicamente:

= En extension, lo cual quiere decir que citamos explicitamente cada uno de sus elementos,

3
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como en el conjunto {1, 3,5} que contiene exactamente los nimeros 1, 3 y 5.

= En intencion, dando una descripcion precisa de los elementos que forman parte del
conjunto, en vez de citarlos explicitamente. Por ejemplo, el conjunto del punto anterior
puede ser visto como {i € N|impar(i),i < 6}, donde se supone que los niimeros impares
cumplen la condicién impar(7).

Representamos a los conjuntos con letras mayusculas, como en A = {2,4}. Los conjuntos
pueden contener conjuntos como elementos, como en B = {{a},{b,c}}. El conjunto sin
elementos (vacio) se representa por () o bien por {}.

La notaciéon a € B significa que a es elemento o estd contenido en el conjunto B; por
ejemplo, {2,3} € {1,{2,3},4}. Para indicar que a no esté en B se escribe a ¢ B.

El tamano de un conjunto es el nimero de elementos que contiene, y se representa como
|A| para un conjunto A. Por ejemplo, el tamano de {a, b, c} es 3, y el tamano de ) es cero. Por
ejemplo, el tamano de {{a}, {b,c}} es 2 y no 3, pues tiene 2 elementos, siendo el primero {a}
y el segundo {b, c}. La definicién de “tamano” parece muy clara, pero hay conjuntos que no
tienen un nimero determinado de elementos; estos se llaman “infinitos” y seran discutidos
mas adelante.

Dos conjuntos A y B son iguales, A = B, si y sélo si tienen los mismos elementos, esto
es, x € Assiz € B. E] Por ejemplo, {1,{2,3}} = {{3,2},1}; vemos que en los conjuntos el
orden de los elementos es irrelevante.

Se supone que en los conjuntos no hay repeticiones de elementos, y que cada elemento del
conjunto es distinto de todos los otros elementos. Sin embargo, si decimos, por ejemplo, i € A,
j € A, no estamos suponiendo que i sea distinto de j, pues tanto i como j son elementos
cualquiera de A. Si necesitamos que sean distintos, hay que indicarlo explicitamente, como
en la expresion i,j € A, i # 7.

La notacion A C B significa que el conjunto A esta “contenido” en el conjunto B, o més
técnicamente, que A es subconjunto de B. Por ejemplo, el conjunto {a,c} es subconjunto
de {a,b,c}, indicado como {a,c} C {a,b,c}. En otras palabras, A C B cuando siempre que
x € A, tenemos también x € B. Obsérvese que de acuerdo con esta definicién, A C A para
cualquier conjunto A: todo conjunto es subconjunto de si mismo. Un caso extremo es el
conjunto vacio, que es subconjunto de cualquier conjunto.

Para indicar que un subconjunto contiene menos elementos que otro, es decir, que es un
subconjunto propio de éste, se escribe A C B. Por ejemplo, {a,c} C {a,b,c}. Claramente,
A=Bssi AC By B C A. Obsérverse también que si A C B, entonces |A| < |B|, y si
A C B, entonces |A| < |B|.

Las relaciones de inclusion entre conjuntos se acostumbran representar graficamente me-
diante los llamados “diagramas de Venn”, que denotan mediante dreas cerradas (por ejemplo

L“A ssi B” se lee “A si y s6lo siB”, y significa que A implica B y también B implica A.
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C®B

Figura 1.1: Diagrama de Venn

elipses) los conjuntos. Por ejemplo, en la figura se ilustra la situacion donde un conjunto
A es subconjunto de B, y B es subconjunto de C.

En los diagramas de Venn es facil visualizar relaciones que de otra forma pueden parecer
complejas; por ejemplo, si un conjunto A es subconjunto de B y éste es subconjunto de C,
se espera que A C (', como se aprecia intuitivamente en la figura [I.1], pues el drea de A
estd obviamente contenida dentro de la de C.

1.1.1. Operaciones

Llamamos operaciones a formas estandar de combinar o transformar objetos matematicos.
Por ejemplo, una operacién habitual es la suma, que en la expresion “3 + 77 combina los
objetos 3 y 7 dando como resultado el objeto 10. El 3 y el 7, que son los objetos que se
combinan, son los operandos, el “+” es la operacion, y el 10 es el resultado. Una operacion
es binaria cuando tiene dos operandos. Es wnaria si tiene un solo operando, como en la
operacion de la raiz cuadrada.

Una operaciéon “®” es conmutativa si z ® y = y @ x, como es el caso de la suma o la
multiplicacién de nimeros. Se dice que es asociativa si x® (y® z) = (x ®y) ® z; por ejemplo,
la suma es asociativa, pero no la resta, pues podemos ver que 8 — (4 — 3) # (8 —4) — 3.

1.1.2. Operaciones con conjuntos

Sean A y B conjuntos. Se definen las siguientes operaciones con los conjuntos:

Union de conjuntos, denotada por A U B, que contiene los elementos del conjunto A y
también los del conjunto B, es decir, AUB = {z|x € A o x € B}. Por ejemplo,
{1,2,3} U{3,4} = {1,2,3,4}. La unién de conjuntos es conmutativa, lo cual se com-
prende facilmente visualizando las areas correspondientes en el diagrama de Venn de
la figura [1.2] P También es asociativa.

2En seguida se presenta una prueba matemdtica de esta propiedad.
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Interseccion de conjuntos, escrita A N B, que contiene los elementos que pertenecen si-
multdneamente al conjunto A y al conjunto B, es decir, ANB = {z|zr € Ayz € B}.
Por ejemplo, {1,2,3} N {3,4} = {3}. En un diagrama de Venn la interseccién de dos
elipses se ilustra por el area que ambas comparten, como es el area sombreada de la
figura[I.2] La interseccién es conmutativa y asociativa.

Diferencia de conjuntos, A — B, que contiene los elementos de A que no estan en B, esto
es, A— B = {zlr € Ay x ¢ B}. Por ejemplo, {1,2,3} — {3,4} = {1,2}. La
resta o diferencia de conjuntos no siempre le “quita” elementos al primer conjunto;
por ejemplo {1,2,3} —{4,5} = {1,2,3}. La diferencia de conjuntos no es ni asociativa
ni conmutativa, lo cual se puede probar ficilmente con un ejemplo (ver seccién de
ejercicios).

Complemento de un conjunto, es un caso particular de la diferencia, cuando el primer
conjunto es considerado como el “universo” que contiene todos los elementos posibles.
Sea U un universo, entonces el complemento del conjunto A, denotada por A¢ contiene
los elementos del universo que no estdn en A. Por ejemplo, si el universo son los
nimeros naturales {1,2,3,...}, complemento de los ntimeros pares son los nimeros
nones: {2,4,6,...}¢ = {1,3,5,...}. Claramente AU A° = U, para todo conjunto A;
ademds, AN A¢ = (.

Potencia de un conjunto A, denotada como 24, contiene como elementos a todos los sub-
conjuntos de A, esto es, 24 = {z|z C A}. En otras palabras, 24 es un conjunto de
conjuntos. Por ejemplo, 2523 = {9 {1} {2} {3} {1,2},{1,3},{2,3},{1,2,3}}. Re-
cuérdese que el conjunto vacio siempre forma parte de todo conjunto potencia. La
notacién “24” recuerda que el tamano del conjunto potencia de A es 2 elevado a la
potencia del tamafio de A, esto es, [24| = 214,

Producto Cartesiano de dos conjuntos, A x B, es el conjunto de pares ordenados (a, b)
tales que a € A y b € B. Por ejemplo,

{1,2} x {3,4,5} ={(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)}

El tamano de un producto cartesiano A x B es |A| multiplicado por | B|, como se puede
verificar en el ejemplo anterior. El producto cartesiano no es conmutativo, pues no es
lo mismo un par (a,b) que uno (b, a), ni asociativo, pues no es lo mismo (a, (b, c)) que

((a,b),c).

Con ayuda de diagramas de Venn es facil comprender las operaciones de conjuntos. Por
ejemplo, usando la figura [1.2] es facil verificar una relacién tan compleja como A N B =
(A°UB°)¢, identificando las dos maneras de obtener el drea sombreada de la figura, siguiendo
ya sea el lado izquierdo o derecho de la ecuacion.

A un elemento (a,b,c) de un producto cartesiano A x B x C se le llama tripleta, y
similarmente a un elemento (a, b, ¢,d) de un producto cartesiano A x B x C' x D se le llama
cuddruplo, a un elemento (a,b,c,d,e) de un producto cartesiano A x B x C' x D x FE se le
llama quintuplo, etc.
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Figura 1.2: Interseccién de dos conjuntos

Ahora probaremos la conmutatividad de la unién de conjuntos. Esto es, queremos probar
que AU B = B U A para conjuntos cualesquiera A y B.

La igualdad AU B = B U A puede descomponerse en AUBC BUAy BUAC AU B,
por definiciones que hemos visto antes. Entonces vamos a probar una de ellas, por ejemplo
AU B C BU A, siendo la otra parte enteramente similar. Hemos visto que AUB C BU A
es equivalente a decir que si un elemento x es parte de A U B, entonces x también debe
ser parte de B U A. En consecuencia, lo que tenemos que probar es lo siguiente: suponiendo
que z € (AU B), debemos llegar a concluir que x € (B U A). Vamos a hacer esta prueba
enseguida.

Como z € (AU B), entonces, de acuerdo con la definicién de unién, z € A o bien x € B
(o ambos a la vez). Si z € A, entonces seguramente x € AU B, pues AU B contiene todos
los elementos de A. Similarmente, si x € B tendremos x € AU B. Es decir, en los dos casos
podemos concluir que = € AU B, que era lo que necesitabamos para nuestra prueba.

1.1.3. Equivalencias de conjuntos

La igualdad AU B = BU A es una de las llamadas “equivalencias de conjuntos”, que son
muy utiles para reemplazar una expresion con operaciones de conjuntos por otra equivalente
pero méas conveniente —por ejemplo més simple. En la lista siguiente presentamos algunas de
las equivalencias de mas frecuente uso:

Leyes conmutativas AUB =BUA, AN B = BN A, para los conjuntos A y B.
Leyes distributivas AU(BNC)=(AUB)N(AUC), AN(BUC)=(ANB)U(ANC).
Leyes de De Morgan (AU B)° = A°N B°, (AN B)¢ = A° U B°.

Doble complemento (A%)¢ = A.

Ejemplo.- La interseccién de conjuntos puede expresarse usando la unién y el comple-
mento, de la manera siguiente: AN B = ((AN B)Y)¢ = (A° U BC)°.
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Las equivalencias de conjuntos pueden verificarse facilmente usando los diagramas de
Venn, de la forma que hemos comentado antes, esto es, compaginando el area asociada a
cada uno de los lados de la ecuacion.

1.1.4. Relaciones y funciones

Las nociones de relacionesy funciones pueden derivarse directamente del producto carte-
siano de conjuntos. En efecto, se llama relacion a todo subconjunto de un producto carte-
siano; por ejemplo la relacién “<” contiene los pares de niimeros naturales tales que el primer
componente es menor o igual al segundo, esto es, < = {(1,1),(1,2),(1,3),(2,3),...}.

Esta definicién matematica de relaciéon no parece tener mucho que ver con la idea intu-
itiva de que una cosa “tiene relacion con otra”, pero en realidad ambas nociones si corre-
sponden. Por ejemplo, estamos familiarizados con la familia vista como una relacién entre
personas. Consideremos mas especificamente la relacién “z es padre de y”. Dado un con-
junto de personas, por ejemplo P = {Leonor, Elias, Arturo, Marta}, el producto cartesiano
P x P es {(Leonor, Leonor), (Leonor, Elias), (Leonor, Arturo), (Leonor, Marta), (FElias,
Leonor), (Elias, Elias), (Elias, Arturo), (Elias, Marta), (Arturo, Leonor), (Arturo, Elias),
(Arturo, Arturo), (Arturo, Marta), (Marta, Leonor), (Marta, Elias), (Marta, Arturo), (Marta,
Marta)}. Un subconjunto de este producto cartesiano es, por ejemplo, {(Leonor, Arturo),
(Leonor, Marta), (Elias, Arturo), (Elias, Marta)}, cuyos pares (z,y) corresponden, en la fa-
milia del autor, a relaciones “x es padre de y”, pues Leonor y Elias son padres de Arturo y
Marta.

Desde luego, en el ejemplo anterior de las relaciones familiares no cualquier subconjunto
del producto cartesiano podria ser candidato a corresponder a la relacién “x es padre de y”.
Por ejemplo, el par (Elias, Elias) seria inaceptable, pues nadie puede ser padre de si mismo, ni
siquiera en las liberales familias modernas. Cabria preguntarnos qué caracteristicas deberia
tener una relacién para ser aceptable como “x es padre de y”. A continuacién discutimos
algunas caracteristicas que las relaciones pueden tener o no, y que nos permitirian contestar
a esta pregunta (ver seccion de ejercicios).

Se llama inverso de una relacién R, denotado por R~!, a aquella en donde se invierte el
orden de los pares ordenados, esto es:

R ={(y,2) | (z,y) € R}

Por ejemplo, el inverso de la relacién {(1,2), (2,3),(1,3)} es {(2,1),(3,2),(3,1)}.

Se dice que una relacion binaria en D x D es refleriva cuando contiene todos los pares de
la forma (x,x), para x € D. Por ejemplo, si D = {1, 2,3}, la relacién en {1,2,3} x {1,2,3}
con los elementos {(2,2), (2,3), (3,3), (1,2), (1,1), (1,3)} es reflexiva, pero {(2,2), (2,3),
(1,2), (1,1), (1,3)} no lo es.
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Una relacion es simétrica si y solo si siempre que contiene un par (x,y) también contiene
(y,x). Por ejemplo, {(2,2), (1,2), (1,1), (2,1)} es simétrica, pero {(2,2), (2,3), (3,3), (1,2),
(1,1)} no lo es.

Una relacion es transitiva cuando siempre que contiene los pares (z,y) y (y,z) tam-
bién contiene (z,z). Por ejemplo, la relacion {(2,3),(1,2),(1,1),(1,3)} es transitiva, pero
{(2,3),(1,2), (1, )} no lo es.

Llamamos cerradura reflexiva de una relaciéon R, la menor extension de R, es decir, RUA,
tal que R U A es reflexiva, aunque inicialmente R no lo haya sido. En otras palabras, a R
se le agregan los pares ordenados que sean necesarios hasta que se vuelva reflexiva. Por
ejemplo, la cerradura reflexiva de Ry = {(2,3),(1,2),(1,1),(1,3)} es {(2,3), (1,2), (1,1),
(1,3), (2,2), (3,3)}. Decimos que la cerradura reflexiva es la menor extension de la relacién
original porque no deben anadirse mas pares ordenados que los estrictamente necesarios para
volverla reflexiva. Por ejemplo, la relacion {(2,3), (1,2), (1,1), (1,3), (2,2), (3,3), (3,1)},
aunque cumple con ser una extensién de R; y tambien con ser reflexiva, no es la cerradura
reflexiva de Ry, porque tiene el par (3,1) que no era indispensable agregar.

Similarmente definimos la cerradura simétrica de una relacion, anadiendo los pares es-
trictamente necesarios para que se vuelva simétrica. Por ejemplo, la cerradura simétrica de

{(2,3), (1,2), (1,1), (1,3)} es {(2,3), (1,2), (1,1), (1,3), (3,2), (2,1), (3, 1)}-

La cerradura transitiva también se define de una manera enteramente similar. Por ejem-
plo, la cerradura transitiva de la relacién {(1,2), (3,1), (2,1)} es {(1,2), (3,1), (2,1), (1,1),

(2,2),(3,2)}.

Se pueden tener también combinaciones de varias cerraduras, como la cerradura reflexiva
y transitiva, que en el caso de {(2,3), (1,2),(1,1), (1,3)} serfa {(2,3), (1,2), (1,1), (1,3),
(2,2), (3,3)}.

Un caso particular de las relaciones son las funciones, que son relaciones en que no hay
dos pares ordenados que tengan el mismo primer componente. Es decir, los pares ordenados
asocian a cada primer componente un unico segundo componente. Por ejemplo, la relacién
{(1,2),(2,3),(1,3)} no es una funcién, pero {(1,2),(2,3),(3,3)} sf lo es.

Tomando como ejemplo las familias, la relacion de hermanos no es una funcién, pero la
relacién de cada quien con su padre si lo es (cada quien tiene a lo més un padre).

La notacién habitual para las funciones es f(a) = b, en vez de (a,b) € f, para una funcién
f, pero en realidad ambas notaciones son equivalentes.

Muchas veces consideramos que las funciones “obtienen una salida a partir de una en-
trada”. Asi, si f(1) = 2, se considera que a partir de la entrada 1 se obtiene la salida 2.
Esta manera de conceptualizar las funciones no se contrapone a la idea de funciones como
relaciones especiales (esto es, conjuntos de pares ordenados), sino que mas bien en ciertas
situaciones es mas util tomar uno u otro punto de vista.
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Escribimos f : A — B para indicar que si (a,b) € f entonces a € Ay b € B; decimos que
A es el dominio de la funcién y B es el codominio. Una funcién f : A — B puede verse como
un mapeo que relaciona cada elemento del dominio A con un elemento del codominio B. Por
ejemplo, la funciéon cuadrado : N — N relaciona cada ntimero natural con su cuadrado, es
decir, cuadrado = {(1,1),(2,4),(3,9),...}.

Se dice que una funcién es total cuando esta definida para todos los elementos del dominio,
como en el ejemplo de la funcion cuadrado, mientras que una funcion es parcial cuando no
estd definida para todos los elementos del dominio, como seria el caso de la funcién de resta
en los naturales: resta : N x N — N, pues por ejemplo, resta(3,5) no tiene un resultado en
los naturales, y por lo tanto el par (3,5) no forma parte del dominio de la funcién.

Una funcion es inyectiva, también llamada uno a uno, cuando para cada elemento del
codominio hay un unico elemento del dominio. Esto es, no se presenta el caso de que
dos pares como (z,z) y (y, z) tengan el mismo segundo elemento. Por ejemplo, la funcién
{(1,2),(2,3),(3,3)} no es inyectiva, pero {(1,2),(2,3),(3,1)} st lo es.

Siguiendo el ejemplo de las familias, la funcién que asocia a cada persona con su padre
no es inyectiva, pues varios hermanos comparten un mismo padre.

Una funcién es sobreyectiva si cada elemento del codominio aparece en algiin par orde-
nado. Por ejemplo, la funcién cuadrado que presentamos antes no es sobreyectiva, pues hay
muchos ntimeros, como el 7, que no son el cuadrado de ningin otro.

Si una funcién f es a la vez sobreyectiva e inyectiva, entonces su inverso f~! es tam-
bién una funcién (total). A las funciones que cumplen con ambas propiedades se les llama
biyectivas.

Una secuencia es una sucesion ordenada de elementos, como “1,3,5,7,9”, que es la se-
cuencia de nimeros naturales impares menores que 10, ordenados de menor a mayor. La
diferencia entre un conjunto y una secuencia es que en una secuencia el orden si importa y
en un conjunto no. Asi, 1,2,3 # 2,3, 1. Ademas, en una secuencia si es relevante la repeticion
de los elementos, por lo que 1,2,3 # 1,2,2,3.

1.1.5. Conjuntos infinitos

Ademads de los conjuntos “finitos” —esto es, con un nimero de elementos determinado—
también puede haber conjuntos infinitos, cuyo tamano no puede expresarse con un numero;
un ejemplo es el conjunto de los nimeros naturales N = {1,2,3,...}. Atn a estos conjuntos
pueden aplicarse todas las operaciones antes descritas.

Sin embargo, la comparacién de tamanos de conjuntos infinitos no es tan simple como
en el caso de los conjuntos finitos, pues no se puede expresar su tamano como un numero.
En estos casos se aplica lo que se conoce como “el principio del palomar”, que sirve para
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comprobar si dos conjuntos tienen o no el mismo tamano. Supéngase que se quiere comprobar
si en un palomar la cantidad de palomas con que se cuenta es mayor, menor o igual a la
cantidad de lugares disponibles en el palomar. Una manera simple de verificarlo es asignar a
cada una de las palomas un sitio disponible, y si es posible hacerlo para todas las palomas, se
sabe que no hay mas palomas que lugares. Similarmente se puede ver si no hay mas lugares
que palomas. Asi verificamos que el conjunto de palomas tiene el mismo tamano que el de
lugares disponibles.

Esta idea tan sencilla puede aplicarse para comparar el tamano de conjuntos infinitos.
Asi se puede verificar, por ejemplo, que el conjunto de los pares tiene el mismo tamano
que el de los naturales, un resultado dificil de aceptar intuitivamente. En efecto, sean N
y P los naturales y los pares, respectivamente. Es facil ver que |P| < |N|, pero es mucho
menos evidente que |N| < |P|, cosa que vamos a mostrar usando el principio del palomar. A
cada nuimero natural le debemos poder asignar un niimero par distinto; esto se puede hacer
de muchas maneras, pero una muy simple consiste en asignar a cada numero el doble de
si mismo; por ejemplo, al 7 le asignamos el par 14, etc. Como esto se puede hacer para todos
los niimeros, y no va a haber dos nimeros que compartan el mismo par, concluimos que no
hay mas niimeros naturales que pares.

Definicion.- Un conjunto infinito es contable, también llamado enumerable, cuando sus
elementos pueden ponerse “en una fila”, o dicho de una manera mas técnica, cuando sus
elementos pueden ponerse en correspondencia uno a uno con los nimeros naturales. En
otras palabras, los conjuntos contables infinitos tienen el mismo tamano que el conjunto de
los nimeros naturales. Adicionalmente los conjuntos finitos también son contables.

Otro ejemplo de conjunto infinito contable es el conjunto de pares de nimeros, esto es,
NxN={(1,1),(2,1),(1,2),(1,3),(2,2),(3,1),(4,1),.. .}

(La prueba de que es contable se deja como ejercicio, ver seccién de ejercicios).
Aunque resulte sorprendente, hay conjuntos infinitos “mas grandes” que los conjuntos
infinitos contables, en el sentido de que no van a alcanzar los elementos del conjunto contable

para asignar uno a cada elemento del conjunto “grande”. A estos conjuntos se les llama
incontables.

Un ejemplo de conjunto incontable es 2V, esto es, el conjunto potencia de los naturales;
el llamado “Teorema de Kantor” establece este hecho.

La prueba del Teorema de Kantor es muy simple y se basa en empezar suponiendo que
N sf es contable, y se llega a una contradiccién, concluyendo entonces que 2N en realidad es
incontable.

En efecto, si 2V es contable, sus elementos pueden ser puestos en una sucesiéon como sigue:
N = (5,,5,,8
= {51, 5,83,...}

Supéngase ahora el conjunto D = {n € N|n ¢ S}, que esta formado por aquellos niimeros
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n que no aparecen en el conjunto .S,, que les corresponde. Como por hipétesis todos los sub-
conjuntos de los naturales fueron puestos en la sucesion Sy, s, ..., tenemos que el conjunto
D, —que esta formado de naturales— debe hallarse en dicha sucesién, es decir, debe ser igual
a Sy para una cierta k. Ahora nos preguntamos si k aparece o no en el conjunto D:

= Si la respuesta es afirmativa, entonces, por la definicién de D, tenemos que k ¢ Sk, lo
que es una contradiccion;

= Si la respuesta es negativa, entonces, por la definicién de D, k € Si, lo que también es
una contradiccion.

Concluimos que 2N es incontable.

Atn dentro de los conjuntos incontables hay unos conjuntos “més grandes” que otros.
En efecto, se sabe que para todo conjunto infinito A, se tiene que |A| < [24], por lo que hay
toda una jerarquia de “infinitos”:

IN| < |2V < 22| < ...

1.2. Manejo légico de enunciados

En el proceso de solucién de problemas, un aspecto clave es comprender cabalmente el
enunciado, lo cual en ocasiones no es sencillo, ya sea por la complejidad de aquel, o bien
porque la forma poco rigurosa en que manejamos el lenguaje cotidiano puede provocar errores
de interpretacion. Mas aun, en muchas situaciones es necesario transformar el enunciado en
otro equivalente, de forma que la solucion al problema planteado sea mas sencilla.

Por ejemplo, consideremos el conjunto de nimeros naturales tales que, si son pares o
terminan en 7, entonces contienen algin cero (0). Algunos de estos nimeros son el 2307, el
400, asi como el 1023 y el 175. Hay que comprender, por ejemplo, porqué el 175 corresponde
al enunciado. La idea es que un nimero cumple la condicién cuando, ya sea contiene algin
cero, como el 1023, el 2307 o el 400, o bien ni es par ni termina en 7, como en el caso del

175.

Razonamientos logicos como el anterior pueden sistematizarse haciendo uso de simbolos
que representan afirmaciones, que se llaman proposiciones en el llamado Cdlculo proposi-
ctonal, que es una rama de las matematicas. ﬁ

En el ejemplo presentado arriba es crucial comprender el significado logico de la llamada
implicacion: Si A es cierto, entonces también B es cierto. Esto se representa mateméaticamente

3No estudiaremos aqui el célculo proposicional, limitdndonos a revisar los aspectos realmente indispens-
ables para manejar el material de este texto. El lector interesado en estudiar el calculo proposicional puede
consultar textos como [19].
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usando el simbolo “=" como en “A = B”. La implicacién A = B es cierta siempre que B
es cierto —independientemente de si A es cierto o no—, y también cuando A es falso, como
era el caso del numero 175 en el ejemplo presentado.

La implicaciéon no es manejada rigurosamente en el lenguaje cotidiano. Por ejemplo, si un
papa dice a su nino: “Irds al cine si haces tu tarea”, en realidad no estd dando informacion
sobre qué pasara en caso de que el nino no haga la tarea, aiin cuando ambos interlocutores
sobreentienden que en ese caso el nino no ird al cine. Representando “ir al cine con el
simbolo C' y hacer la tarea con T, la frase se representaria con la férmula 7" = C'. Si quisiera
el papa dar informacién para atender el caso en que no se hace la tarea, tendria que decir
algo como “Sdlo si haces tu tarea irds al cine”’, representado por la implicacién C = T,
aunque en este caso se deja abierta la posibilidad de que el nino no vaya al cine aunque haya
hecho su tarea...Si el papa quisiera considerar todos los casos posibles, tendria que decir
algo como “iras al cine si y sélo si haces tu tarea”.

Resumiendo, algunas formas en que se expresa frecuentemente la implicacion “A = B”
son las siguientes:

= “Si A entonces B”

= “Bsi A7

= “B cuando A”

= “B siempre y cuando A”

n “Asélo si B”

Otras frases tales como “Vamos a Yucatin o a Oazaca” o “El clima es cdlido y seco”
también se pueden representar con simbolos matematicos, mediante la llamada disyuncion
(V), para las frases unidas con “0”, o bien con la conjuncidn (A), para las frases unidas con
“y”. Por ejemplo, si ir a Yucatan se representa con Y e ir a Oaxaca con O, la primera frase se
representaria como Y V O. Similarmente se pueden representar frases mas complejas, como
“Si vamos a Yucatan el clima serd cdlido pero no seco, mientras que si vamos a Qazaca
serd calido y seco”, con la férmula (Y = (C'A=S)) A (O = (C AS)), donde el simbolo “—”
representa la negacién de lo que sigue a su derecha.

Otro simbolo légico de utilidad es la llamada “doble implicacién”, denotado por “&”,
que significa que sus dos argumentos son equivalentes logicamente. Asi, A < B quiere decir
que A es cierto exactamente en los mismos casos en que B es cierto.

La implicacién, la negacién, la conjuncién, etc., son llamados genéricamente conectivos
l6gicos.
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1.2.1. Tablas de verdad

Una herramiente 1til para comprender y utilizar los conectivos légicos son las llamadas
tablas de verdad, que tienen en los renglones cada caso posible de valores “cierto” o “falso”
de las proposiciones elementales, y en las columnas a la derecha aparece el valor correspon-
diente de la proposicion compuesta. Por ejemplo, en la siguiente tabla de verdad se define el
comportamiento de los conectivos l6gicos de conjuncién, disyuncién, negacién e implicacién:

ANB|AVB|-A| A= B

Al B
010
01
110
111

—_ o o o>
— = = o<
S O = =

HO}—‘}—‘U,

En esta tabla de verdad el valor “cierto” se representa con 1 y el “falso” con 0. Podemos
ver ahi que, por ejemplo, el conectivo de disyuncién da “cierto” en todos los casos menos
cuando los dos argumentos son falsos. Por cierto, esto contradice la manera en que a veces
se maneja la disyuncién en el lenguaje cotidiano; por ejemplo, cuando se dice “O pagas lo
que debes o no te vuelvo a prestar”, se sobreentiende que ambas cosas no pueden ser ciertas
a la vez. Sin embargo, viendo la tabla de verdad en la columna del “AV B”, vemos que tiene
el valor “cierto” cuando tanto A como B son ciertos.

Es importante entender que los valores que aparecen en la tabla de verdad presentada
arriba son definiciones, que por lo mismo no tienen que probarse. Desde luego que no son
valores arbitrarios, sino que pretenden precisar el significado que tienen intuitivamente la
disyuncién, la conjuncion, la negacién y la implicacién. En esa tabla de verdad también
podemos ver que la implicacién es simplemente un conectivo que tiene valor cierto en todos
los casos menos cuando A es cierto y B falso. Esto es congruente con la interpretacion que
dimos de la implicacién parrafos antes.

Como en el caso de los conjuntos, en las féormulas con proposiciones también hay equi-
valencias muy utiles, que nos permiten modificar enunciados, pero teniendo la garantia de
que el enunciado modificado es equivalente al original. Vamos a considerar las siguientes
equivalencias:

Conmutatividad ANAB=BANA, AV B=BVA.

Distributividad AAN(BVC)=(AAB)V(ANC), AV(BANC)=(AVB)AN(AVC).
Implicacién A= B = (-A)V B.

Leyes de De Morgan —(AA B) =—-AV =B, =(AV B) = -AA-B.

Doble negaciéon —(—A4) = A.
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Doble implicacién A< B = (A= B)A (B = A)

Ejemplo.- El conjunto de nimeros naturales tales que, si son pares o terminan en 7,
entonces contienen algin cero (0), que presentamos antes, puede ser expresado de una forma
mas simple usando las equivalencias. Sea P que el nimero es par, T' que termina en 7, C'
que contiene alguin cero. Entonces el enunciado original es:

(PVT)=C
Usando la equivalencia de la implicacion, esta féormula es equivalente a:
(=(PVvT))VvC
Aplicando una equivalencia de De Morgan, queda como:
(=PAN-T)VC

Esto es, ya sea que el nimero contiene algin cero (proposicién C'), o bien ni es par (—=P) ni
termina en 7 (=7).

Las equivalencias de conectivos logicos se pueden probar haciendo las tablas de verdad
para las dos férmulas que se supone que son equivalentes. Por ejemplo, probamos la equiv-
alencia de la implicacién con la siguiente tabla de verdad, en la que se puede observar que
los valores de A = By de (mA) V B son los mismos:

-A (—|A VBl A

A B )
01]0 1
011 1
110 0
111 1

}—tO»—tr—tu

SO = =

1.3. Pruebas por induccion

Una forma de prueba que utilizaremos repetidamente en este texto es la prueba por in-
duccion. Sirve para probar que una cierta propiedad es valida para todos los elementos de un
conjunto infinito contable. Hacemos notar que el material indicado como “nivel profesional”
no incluye pruebas por induccién a lo largo del libro. Esto es debido al enfoque predominan-
temente ingenieril que se da al material de profesional, dejando las pruebas por induccion
para los estudiantes de posgrado.

Supongamos que se quiere probar que una propiedad P es cierta para todos los elementos
de un conjunto infinito contable (C).
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Inicialmente se prueba que es cierta para el primer elemento de (C'), sea ¢, esto es, se
verifica P(cy). Este paso se llama “base de la induccién”.

Después se supone que la propiedad P es cierta para algin elemento ¢; de (C'), y con
base en esta suposicion, llamada “hipotesis de induccion”, se prueba que P también es cierta
para el siguiente elemento, c¢; 1.

Con base en los dos pasos anteriores se concluye que la propiedad P es cierta para todos
los elementos del conjunto (C'). Esta conclusién no es gratuita. En efecto, supongamos un
elemento de (C'), por ejemplo c45. Para probar que satisface la propiedad, ya sabemos que se
cumple para ¢y, y como tenemos que se cumple para el siguiente elemento, entonces también
se cumple para ¢, y como también se cumple para el siguiente elemento, se cumplird para cs,
y asi sucesivamente, hasta llegar a c45. Lo mismo se puede hacer con cualquier otro elemento

de (C).

Como un ejemplo simple de la aplicacién de la induccién matematica, supongamos que
queremos probar que todo nimero natural es menor que el doble de si mismo, esto es,
n < 2n, n € N. Lo hacemos en dos pasos:

(base) Primero comprobamos que para el caso del 1 se cumple, pues 1 < 2.

(induccién) Ahora, suponiendo que para un ndimero i la propiedad se cumple, esto es,
1 < 21, debemos comprobar que también se cumple para el siguiente niimero, esto es,
i+1 < 2(i+1). En efecto, sii < 2i, entonces i+1 < 2i+1, pero 2i+1 < 2i+2 = 2(i+1),
por lo que ¢ + 1 < 2(i + 1), como debfamos probar.

Las pruebas por induccién no siempre son, como en los ejemplos que vimos en esta
seccién, para probar propiedades de los nuimeros naturales. En nuestro caso, utilizaremos
pruebas por induccién para probar, por ejemplo, la correccion de gramaticas. Por otra parte,
existen muchas variantes de la induccion, como tener varias “bases”. No entraremos aqui en
detalles de esto, postergando su estudio para las secciones donde se le utiliza directamente.

1.4. Lenguajes

Uno de los conceptos méas importantes de este texto es el de Lenguaje. Para llegar a este
concepto es necesario definir antes otras nociones mas elementales. Para todas las definiciones
utilizaremos extensivamente la teoria elemental de conjuntos.
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1.4.1. Alfabeto, cadena de caracteres

La nociéon més primitiva es la de simbolo, que es simplemente una representacién distin-
guible de cualquier informacién. Los simbolos pueden ser cualesquiera, como w, 9, #, etc.,
pero nosotros vamos a utilizar las letras a,b,c, etc. Un simbolo es una entidad indivisible.

Un alfabeto es un conjunto no vacio de simbolos. Asi, el alfabeto del idioma espanol,
E = {a,b,c,...,z}, es s6lo uno de tantos alfabetos posibles. En general utilizaremos la
notacion X para representar un alfabeto.

Con los simbolos de un alfabeto es posible formar secuencias o cadenas de caracteres, tales
como mzzxptlk, balks, r, etc. E] Las cadenas de caracteres son llamadas también palabras.

Un caso particular de cadena es la palabra vacia, ¢, la cual no tiene ninguna letra.

Lalongitud de una palabra es la cantidad de letras que contiene, contando las repeticiones;
se denota por |w| para una palabra w. Por ejemplo, |perro| es 5.

Cuando escribimos varias palabras o caracteres uno a continuacioén de otro, se supone que
forman una sola palabra (se concatenan). La notacién usada para denotar la concatenacién
de dos cadenas 'y 0 es af. Por ejemplo, si w = abra y v = cada, entonces wvbra es la
palabra abracadabra.

La concatenacién de palabras es asociativa, esto es, (zy)z = x(yz), pero no conmutativa
en el caso general. La longitud de una concatenacién cumple la propiedad: [uv| = |u| + |v].[]

Una palabra v es subcadena de otra w cuando existen cadenas x,y - posiblemente vacias-
tales que xvy = w. Por ejemplo, “bora” es subcadena de “vibora”, y ¢ es subcadena de toda
palabra.

El conjunto de todas las palabras que se pueden formar con un alfabeto ¥ es denotado

convencionalmente por >*. E] Por ejemplo, si ¥ = {a,b}, ¥* = {¢, a, aa, aaa, aaaa, ..., b,bb,
...,ab,aba,abd, ...}. El conjunto ¥* es infinito, pero enumerable. [Z]

1.4.2. Lenguajes, operaciones con lenguajes

Un lenguaje es simplemente un conjunto de palabras. Asi, {abracadabra} es un lenguaje
(de una sola palabra), {ali, baba, y, sus, cuarenta, ladrones} es otro, X* es otro, etc. Puesto

4Las secuencias fueron definidas en la seccién de preliminares. Formalmente, la palabra “casa” es la
secuencia de letras ¢, a, s, a.

5La prueba de estas propiedades requiere de una definicién formal de las secuencias de caracteres, lo que
nos desviaria demasiado de nuestros temas.

6Luego veremos una operacién llamada Cerradura de Kleene, que se parece a la notacién ¥*, aunque hay
pequenas diferencias técnicas.

"Ver seccién de ejercicios.
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que los lenguajes son conjuntos, podemos efectuar con ellos todas las operaciones de los con-
juntos (union, interseccion, diferencia). Definiremos ademads la operacién de concatenacion
de lenguajes, escrita como L; e Ly, como una extension de la concatenacién de palabras:
Lie Ly ={wlw=uzay,x € L,y € La}.

Por ejemplo, dados los lenguajes Ly = {ca,ma} y Ly = {nta, sa}, la concatenacion Lj Lo
seria {canta, casa, manta, masa}. Como se ve en este ejemplo, para calcular la concatenacién
de dos lenguajes hay que concatenar cada palabra del primero de ellos con cada una del
segundo.

Una operacién mas complicada es la llamada “estrella de Kleene” o “cerradura de Kleene”,
en honor al matematico norteamericano S. C. Kleene, quien la propuso.

Definicion.- Si L es un lenguaje, L*, llamado “cerradura de Kleene” de L, es el mas
pequeno conjunto que contiene:

= La palabra vacia, ¢

= El conjunto L

= Todas las palabras formadas por la concatenacién de miembros de L*

Por ejemplo, si L = {abra, cadabra}, L* = {e, abra, abraabra, abracadabra, cadabraabra,

3

Obsérvese que la definicion de la estrella de Kleene es recursiva, pues en la tercera regla
estamos suponiendo que ya hay palabras en L*, las cuales concatenamos para producir una
nueva palabra. Esta nocién se puede conceptualizar facilmente de la siguiente forma: Supong-
amos que inicialmente L* contiene sélo la palabra vacia y los elementos de L. Entonces de
ahi tomamos dos elementos cualesquiera, que no necesitan ser distintos, y los concatenamos,
para producir una palabra, la cual anadimos a L* si no estaba ya. Continuando indefinida-
mente con esta accién, se irfan obteniendo todos los elementos de L*.[]

Esta definicion es congruente con la notacion X* que se utilizé para definir el conjunto de
todas las palabras sobre un alfabeto, pues de hecho ¥* es la cerradura de Kleene del alfabeto,
tomando los simbolos de éste como palabras de una letra.
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LENGUAJES
REGULARES

LENGUAJES
RECURSIVAMENTE
ENUMERABLES

LENGUAJES
LIBRES DE
CONTEXTO

LENGUAJES

Figura 1.3: Los LR en la jerarquia de Chomsky

1.5. La jerarquia de Chomsky

Llamamos “clase de lenguajes” a conjuntos de lenguajes que comparten una cierta propiedad
dada. Esta nocién es muy abstracta, pues ya los lenguajes son en si mismos conjuntos de
secuencias de simbolos, y las clases de lenguajes son entonces conjuntos de conjuntos de
secuencias de simbolos.

La clasificacién de lenguajes en clases de lenguajes es debida a N. Chomsky [4], quien
propuso una jerarquia de lenguajes, donde las clases mas complejas incluyen a las mas sim-
ples.

De las clases de lenguajes propuestas en la jerarquia de Chomsky, nosotros estudiaremos
las que aparecen en la figura[1.3] que son:

= Los “Lenguajes Regulares”, que es la clase mas pequena, e incluye a los lenguajes mas
simples. m Un ejemplo de lenguaje regular es el conjunto de todos los nimero binarios.

= Los “Lenguajes Libres de Contexto”, que incluyen a los Lenguajes Regulares. Por ejem-
plo, la mayoria de los lenguajes de programacién son Lenguajes Libres de Contexto.

= Los “Lenguajes Recursivamente Enumerables”, que incluyen a los Libres de Contexto
(y por lo tanto a los Lenguajes Regulares).

Todas estas clases de lenguajes son representables de manera finita (mediante cadenas
de caracteres que sirven como representacién). Ahora bien, como veremos méas adelante,

“

8Debe quedar claro que la descripcién de L* en este ejemplo no es formal, pues los
puerta a muchas imprecisiones.

9Claro que este proceso no terminaria nunca, pues L* es infinito para cualquier L que tenga al menos un
elemento.

0T nego veremos en qué sentido son mas simples que las otras clases de lenguajes.

...” dejan abierta la
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hay mas lenguajes que posibles representaciones finitas, por lo que podemos saber que hay
lenguajes mas alla de los Recursivamente Enumerables. Sin embargo, desde un punto de
vista practico, los lenguajes mas utiles son aquellos que tienen una representacion finita, por
lo que los demas lenguajes son sélo de interés tedrico.

En capitulos posteriores veremos que cada una de estas clases de lenguajes esté asociada
a un tipo de “autémata” capaz de procesar estos lenguajes. Esto ha hecho pensar que las
categorias de lenguajes de Chomsky no son completamente arbitrarias.

1.6. Ejercicios

1. Expresar en extensién el conjunto {x|z € N,z < 10}.
2. Expresar en intencién el conjunto {4,6,8,12,14,16}.
3. (Cuadl es el tamano del conjunto {0} (esto es, cudntos elementos contiene)?

4. Sean los conjuntos A = {a,b}, B = {1,2,3}. Calcular las siguientes operaciones:

a) (AUB)-A
b) AU(B-—A)
C) 2AUB

d) Ax(AUB)

5. Calcular los conjuntos potencia de los siguientes conjuntos:

a) {a,b,c}
b) {a,{b,c}}
) {0}

) {0,{0}}

6. Sea el conjunto A = {a,b,c}. Proponer:

o

d

a) Una relacién en A x A
b) Una funcién en A — A

¢) Una relacion en A x A que no sea funcién.

7. Proponer las caracteristicas, en términos de reflexividad, simetria y transitividad, que
debe tener la relacién “x es padre de y” (se entiende que “padre” incluye también a
“madre”).

8. Un juego infantil consiste en proponer simultaneamente ya sea “piedra”, “tijeras” o
“papel”. Se supone que tijera gana sobre papel, piedra sobre tijera, y papel sobre
piedra. Determinar si la relacién “gana sobre”, que es un subconjunto de {piedra,
tijeras, papel} x {piedra, tijeras, papel} es:
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9.

10.

11.

12.

13.

14.

a) Reflexiva
b) Simétrica

c) Transitiva

Considérese la relacién {(a,d), (b,d), (c,a), (d,d), (c,b)}. Calcular su cerradura:

a) Reflexiva
b) Simétrica
c¢) Transitiva

SH

Reflexiva y transitiva

Transitiva y simétrica

)

¢

S~ N N N

~

Reflexiva, transitiva y simétrica (estas son llamadas “relaciones de equivalencia”.

Considérese la relacion {(a,d), (b,d), (d,d), (¢,b)}, siendo el dominio y el codominio el
conjunto {a, b, c,d}. Indicar si esta relacién es:

a) Una funcién

S
~— ~— ~— ~—

Funcion total

Funcion inyectiva

o

d

Funcién sobreyectiva

Considérese la funcién madre(x), que obtiene la madre (bioldgica) de cada persona.
Indica para esta funcion:

a) Cuéles son el dominio y el codominio

b) Si es una funcién total

c) Si es una funcién inyectiva, sobreyectiva o biyectiva

Considera el conjunto de nimeros naturales tales que si son mayores que 5 o bien
terminan en 5, entonces contienen algin 1 o 2.

a) Propon 3 nimeros que cumplan la condicién y 3 que no la cumplan.

b) Expresa el enunciado como una férmula proposicional, donde M significa “mayores
que 57, T es “terminan en 57, U es “contienen algin 17 y D es “contienen algtin
277

¢) Transforma la férmula del inciso anterior de manera que no tenga una implicacién,
y aplica una ley de De Morgan al resultado.

Dar tres ejemplos de lenguajes basados en el alfabeto {a, b, c}.

Explicar la diferencia -si la hay- entre un lenguaje vacio y uno que contiene sélo la
palabra vacia (tomar en cuenta que dos lenguajes son distintos sélamente cuando uno
de ellos contiene una palabra que el otro no contiene).
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15.

16.
17.
18.
19.
20.
21.

22.

23.
24.

CAPITULO 1. PRELIMINARES
;La palabra vacia es elemento de cualquier alfabeto? ;Puede la palabra vacia ¢ formar
parte de un alfabeto? ; Puede un alfabeto contener palabras?
Calcular la concatenacion del lenguaje {e, aba} con {a,bb,c}.
Obtener {a, bb}* (dar los primeros 10 elementos).
Mostrar 3 elementos de 2{®b}",
Probar que la resta de conjuntos no es conmutativa ni asociativa.
Probar que la interseccion de conjuntos es asociativa y también conmutativa.

Probar que la concatenacion de lenguajes es asociativa pero no conmutativa.

Probar que el conjunto N x N = {(1,1),(2,1),(1,2),(1,3),(2,2),(3,1),(4,1),...} es
contable.

Probar que el conjunto ¥* es infinito contable.

Probar por induccién la propiedad de los naturales 1 +2+3+...+n = ”("T’Ll), para
todon € N



Parte 1

Lenguajes regulares y sus maquinas
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Capitulo 2

Autématas finitos

El término maquina evoca algo hecho en metal, usualmente ruidoso y grasoso, que eje-
cuta tareas repetitivas que requieren de mucha fuerza o velocidad o precision. Ejemplos
de estas maquinas son las embotelladoras automaticas de refrescos. Su diseno requiere de
conocimientos en mecdanica, resistencia de materiales, y hasta dindmica de fluidos. Al disenar
tal maquina, el plano en que se le dibuja hace abstraccién de algunos detalles presentes en
la maquina real, tales como el color con que se pinta, o las imperfecciones en la soldadura.

El plano de diseno mecanico de una méaquina es una abstraccion de ésta, que es 1til
para representar su forma fisica. Sin embargo, hay otro enfoque con que se puede modelar la
maquina embotelladora: como funciona, en el sentido de saber qué secuencia de operaciones
ejecuta. Asi, la parte que introduce el liquido pasa por un ciclo repetitivo en que primero
introduce un tubo en la botella, luego descarga el liquido, y finalmente sale el tubo para
permitir la colocacién de la capsula (“corcholata”). El orden en que se efectia este ciclo es
crucial, pues si se descarga el liquido antes de haber introducido el tubo en la botella, el
resultado no sera satisfactorio.

El modelado de una maquina en lo relacionado con secuencias o ciclos de acciones se
aproxima mas al enfoque que adoptaremos en este curso. Las maquinas que estudiaremos
son abstracciones matematicas que capturan solamente el aspecto referente a las secuencias
de eventos que ocurren, sin tomar en cuenta ni la forma de la maquina ni sus dimensiones,
ni tampoco si efectiia movimientos rectos o curvos, etc.

En esta parte estudiaremos las maquinas abstractas mas simples, los automatas finitos,
las cuales estan en relacion con los lenguajes regulares, como veremos a continuacion.

25
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2.1. Modelado de sistemas discretos

Antes de definir los autéomatas finitos, empezaremos examinando las situaciones de la
realidad que pueden ser modeladas usando dichos autématas. De esta manera, iremos de lo
mas concreto a lo mas abstracto, facilitando la comprensién intuitiva del tema.

El modelado de fenémenos y procesos es una actividad que permite:

Verificar hipétesis sobre dichos procesos;

Efectuar predicciones sobre el comportamiento futuro;

Hacer simulaciones (eventualmente computarizadas);

Hacer experimentos del tipo “;qué pasaria si...?”, sin tener que actuar sobre el proceso
o fenémeno fisico.

Llamamos eventos discretos a aquéllos en los que se considera su estado solo en ciertos
momentos, separados por intervalos de tiempo, sin importar lo que ocurre en el sistema
entre estos momentos. Es como si la evolucién del sistema fuera descrita por una secuencia
de fotografias, en vez de un flujo continuo, y se pasa bruscamente de una fotografia a otra.

Usualmente se considera que la realidad es continua, y por lo tanto los sistemas discretos
son solamente una abstraccion de ciertos sistemas, de los que nos interesa enfatizar su aspecto
“discreto”. Por ejemplo, en un motor de gasolina se dice que tiene cuatro tiempos: Admision,
Compresion, Ignicién y Escape. Sin embargo, el pistén en realidad no se limita a pasar por
cuatro posiciones, sino que pasa por todo un rango de posiciones continuas. Asi, los “cuatro
tiempos” son una abstraccion de la realidad.

La nociéon més basica de los modelos de eventos discretos es la de estado. Un estado es
una situacion en la que se permanece un cierto lapso de tiempo. Un ejemplo de la vida real es
el de los “estados civiles” en que puede estar una persona: soltera, casada, viuda, divorciada,
etc. De uno de estos estados se puede pasar a otro al ocurrir un evento o accién, que es el
segundo concepto basico de la modelacion discreta. Asi, por ejemplo, del estado “soltero” se
puede pasar al estado “casado” al ocurrir el evento “boda”. Similarmente, se puede pasar de
“casado” a “divorciado” mediante el evento “divorcio”. En estos modelos se supone que se
permanece en los estados un cierto tiempo, pero por el contrario, los eventos son instantaneos.
Esto puede ser mas o menos realista, dependiendo de la situacién que se esta modelando.
Por ejemplo, en el medio rural hay bodas que duran una semana, pero desde el punto de
vista de la duracién de una vida humana, este tiempo puede considerarse despreciable. En
el caso del evento “divorcio”, pudiera ser inadecuado considerarlo como instantaneo, pues
hay divorcios que duran anos. En este caso, el modelo puede refinarse definiendo un nuevo
estado “divorciandose”, al que se llega desde “casado” mediante el evento “inicio divorcio”.



2.1. MODELADO DE SISTEMAS DISCRETOS 27

@ boda

boda

muerte

conyuge
divorcio boda

divorciado @

Figura 2.1: Modelo de estados civiles de una persona

YD

COLGADO

OCUPADO

HABLANDO
SONANDO

Figura 2.2: Modelo en eventos discretos de un teléfono

Es sumamente practico expresar los modelos de estados y eventos de manera grafica. Los
estados se representan por 6valos, y los eventos por flechas entre los évalos, llamadas transi-
ctones. Dentro de cada estado se escribe su nombre, mientras que al lado de las transiciones
se escribe el nombre del evento asociado, como en la figura 2.1 El estado donde se inicia
tiene una marca “>", en este caso “soltero”.

En la figura se presenta un modelo simplificado del funcionamiento de un aparato
telefénico. En esta figura los nombres de los estados se refieren al aparato desde donde llamo,
contesto, etc., y en caso contrario se especifica que es el otro (“suena otro”, que se refiere al
aparato telefénico del interlocutor). En las transiciones, la “Y” inicial se refiere a acciones que
hace uno mismo (por ejemplo, “YD”, que es “yo descuelgo”), mientras que la “O” se refiere
al otro teléfono. La “C” de “YC” se refiere a “colgar”, mientras que la “M” es “marcar”.
Asi, el significado de las transiciones YC, OC, YM, OM, YD y OD deben quedar claras.

En este ejemplo suponemos que el estado en que inicia el proceso (que llamaremos estado
inicial) es con el auricular colgado, sin sonar ain. A partir de esa situacién, pueden ocurrir
varios eventos que nos lleven a un nuevo estado, como por ejemplo que empiece a sonar o
bien que alguien descuelgue para marcar un nimero.

Desde luego, elaborar modelos “adecuados” de un proceso real es un arte que requiere



28 CAPITULO 2. AUTOMATAS FINITOS

practica, pero en general los siguientes lineamientos pueden ser tutiles:

1. Diferenciar entre los eventos que se consideran instantaneos y aquellos que tienen una
duracién considerable: estos tltimos se asocian a los estados. Los estados son la base
de un diseno de los modelos que estamos estudiando, pues “recuerdan” las situaciones
bésicas por las que pasa el proceso.

2. Las condiciones asociadas a los estados deben ser excluyentes, esto es, no deben veri-
ficarse varias simultaneamente. Por ejemplo, una persona no es soltera y casada a la
vez.

3. Las condiciones asociadas a los estados de un modelo bien hecho deben ser compren-
sivas, lo que quiere decir que entre todas ellas cubren todos los casos posibles. Por
ejemplo, en el modelo de estados civiles suponemos que una persona es ya sea soltera,
o bien casada, o bien divorciada, sin haber otras opciones. Si necesitamos considerar
el concubinato como otra condicién, habria que modificar el modelo.

4. Los eventos instantaneos son asociados a los eventos. En el ejemplo, el levantar el
auricular (que se supone una accién instantdnea) es una transicién, mientras que se
supone que puede transcurrir un tiempo antes de que el usuario marque un numero,
por lo que hay un estado entre estos dos eventos.

En el ejemplo del teléfono, estamos considerando que al descolgar el auricular, el tono de
marcar estda inmediatamente disponible, aunque en ciertas ciudades esta suposicién puede
ser una simplificacién inaceptable. En cambio, en el mismo ejemplo consideramos que la
persona que contesta el teléfono no lo hace inmediatamente, sino que hay un inicio y un fin
del timbre -aunque mi suegra acostumbra contestar el teléfono antes de que se complete el
primer timbrazo. Para los eventos con duracién, es necesario identificar un evento de inicio
y otro de terminacién, como en el ejemplo del divorcio que mencionamos antes. Desde luego,
la decision de qué eventos son instantaneos y cuales tienen duracién depende enteramente
de qué es importante en el problema particular que se desea modelar.

Los errores que mas frecuentemente se cometen al hacer modelos de estados y eventos
son:

= Confundir estados con eventos; por ejemplo, tener un estado “salir de casa”, que ra-
zonablemente corresponde a un evento instantaneo. |I|

= Proponer conjuntos de estados no excluyentes, esto es, que se traslapan, como seria
tener estados “Se encuentra en Acapulco” y “Se encuentra fuera de Guadalajara”, pues
pueden verificarse ambos simultaneamente, lo que no es posible en los estados.

1Si no se quiere que “salir de casa” sea un evento instanténeo, se debe reexpresar de forma que su duracién
sea evidente, como en “preparandose para salir de casa’.
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Figura 2.3: Modelo con estados finales

= Proponer conjuntos de estados no comprensivos, donde falta algin caso o situacién por
considerar.

En situaciones muy complejas, donde varios procesos evolucionan concurrentemente, el
modelado de eventos discretos por medio de estados y eventos no es adecuado, pues los
diagramas son demasiado grandes. En estos casos se requieren herramientas mas sofisticadas,
como las llamadas “redes de Petri” [16].

2.1.1. Estados finales

El propdsito de algunos modelos de estados y eventos es el de reconocer secuencias
de eventos “buenas”, de manera que se les pueda diferencias de las secuencias “malas”.
Supongase, por ejemplo, que se quiere modelar el funcionamiento de una maquina automatica
vendedora de bebidas enlatadas. Dicha maquina acepta monedas de valor 1, 2 y 5, y el precio
de cada lata es de 5. Vamos a considerar que el evento llamado “1” es la introduccion de
una moneda de valor 1 en la maquina, el evento “2” para la moneda de valor 2, etc.

La primera cuestion que hay que resolver para disenar nuestro modelo es decidir cémo son
los estados. Una buena idea seria que cada estado recordara lo que se lleva acumulado hasta
el momento. El estado inicial, desde luego, recordaria que se lleva acumulado 0. Con estas
ideas podemos hacer un diagrama de estados y eventos como el de la figura [2.3] Muchas
transiciones en dicho diagrama son evidentes, como el paso del estado “1” al “3” tras la
introduccion de una moneda de valor 2. En otros casos hay que tomar una decision de diseno
conflictiva, como en el caso en que en el estado “4” se introduzca una moneda de valor 2. En
el diagrama presentado, se decidié que en ese caso se va al estado “5”, lo que en la practica
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Figura 2.4: Notacién grafica

puede querer decir que la maquina entrega un cambio al usuario, o bien simplemente se
queda con el sobrante.

Un aspecto muy importante del modelo de la figura [2.3| es que el estado “5” es un
estado especial, llamado estado final, e identificado por un 6valo de doble trazo. Los estados
finales indican que cuando se llega a ellos, la secuencia de eventos que llevé hasta ahi puede
considerarse como “aceptable”. Por ejemplo, en la maquina vendedora de latas, la secuencia
de eventos “meter 2”7, “meter 1”7, “meter 2” puede considerarse aceptable porque totaliza 5.
En la figura puede observarse que dicha secuencia hace pasar por los estados 0, 2, 3 y 5,
donde este ultimo es final. De este modo el diagrama nos permite diferencias las secuencias
aceptables respecto a otras que no lo son, como la secuencia “meter 1”7, “meter 2”7, “meter
17, que lleva al estado 4, que no es final. Obsérverse que la secuencia “meter 5”7, “meter 57,
“meter 5”7 también es aceptable —desde luego, desde el punto de vista de la maquina, aunque
seguramente no lo sea desde el punto de vista del cliente.

2.2. MaAquinas de estados finitos

A partir de ahora vamos a considerar modelos de estados y eventos un poco mas ab-
stractos que los que hemos visto antes. Retomemos el ejemplo de la maquina vendedora de
latas, que vimos en la seccién En ese modelo pudimos reconocer secuencias de eventos
“aceptables”, como la secuencia de monedas 2, 2, 1 con respecto a secuencias no aceptables,
como 1, 1, 1. A partir de ahora los nombres de los eventos van a estar formados por un car-
acter, y les llamaremos transiciones en vez de “eventos”. De este modo, en vez de un evento
“meter 17 vamos a tener una transicion con el caracter “1”7, por ejemplo. Desde luego, la
eleccion de qué caracter tomar como nombre de la transicion es una decisién arbitraria.

ma uenci ventos van a representar r con nacion r r
Ademas, las secuencias de eventos van a representarse por concatenaciones de caracteres,
esto es, por palabras. Asi, en el ejemplo de la maquina vendedora la palabra “1121” representa
a secuencia de eventos “meter meter meter meter 17.

l d t 14 t 177 , 13 t 177 , 13 t 277 , 13 t 177
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blalalbla|b]

Figura 2.5: Componentes de una maquina abstracta

Desde el punto de vista abstracto que vamos a adoptar a partir de ahora, nuestras
méquinas pueden ser visualizadas como dispositivos con los siguientes componentes: (ver

figura

= Una cinta de entrada;
» Una cabeza de lectura (y eventualmente escritura);

= Un control.

La cabeza lectora se coloca en los segmentos de cinta que contienen los caracteres que
componen la palabra de entrada, y al colocarse sobre un caracter lo “lee” y manda esta
informacién al control; también puede recorrerse un lugar a la derecha (o a la izquierda
también, segin el tipo de méquina). El control (indicado por una cardtula de reloj en la
figura) le indica a la cabeza lectora cudndo debe recorrerse a la derecha. Se supone que hay
manera de saber cuando se acaba la entrada (por ejemplo, al llegar al blanco). La “aguja” del
control puede estar cambiando de posicién, y hay algunas posiciones llamadas finales (como
la indicada por un punto, ¢3) que son consideradas especiales, por que permiten determinar
si una palabra es aceptada o rechazada, como veremos mas adelante.

2.2.1. Funcionamiento de los autématas finitos

Como se habia comentado antes, el funcionamiento de los autématas finitos consiste en
ir pasando de un estado a otro, a medida que va recibiendo los caracteres de la palabra de
entrada. Este proceso puede ser seguido facilmente en los diagramas de estados. Simplemente
hay que pasar de estado a estado siguiendo las flechas de las transiciones, para cada caracter
de la palabra de entrada, empezando por el estado inicial. Por ejemplo, supongase que
tenemos el autémata de la figura y la palabra de entrada “bb”. El autémata inicia su
operacién en el estado gy —que es el estado inicial—, y al recibir la primera b pasa al estado
¢2, pues en el diagrama hay una flecha de gy a ¢o con la letra b. Luego, al recibir la segunda
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b de la palabra de entrada, pasara del estado ¢ a él mismo, pues en la figura se puede ver
una flecha que de ¢, regresa al mismo estado, con la letra b.

Podemos visualizar el camino recorrido en el diagrama de estados como una “trayecto-
ria” recorrida de estado en estado. Por ejemplo, para el autémata finito de la figura la
trayectoria seguida para la palabra ab consiste en la secuencia de estados: qo, q1, ¢1-

Los estados son el tinico medio de que disponen los AF para recordar los eventos que
ocurren (por ejemplo, qué caracteres se han leido hasta el momento); esto quiere decir que
son maquinas de memoria limitada. En ltima instancia, las computadoras digitales son
maquinas de memoria limitada, aunque la cantidad de estados posibles de su memoria podria
ser enorme.

2.3. Definicion formal de automatas finitos

Al describir una maquina de estados finitos en particular, debemos incluir las informa-
ciones que varian de un autémata a otro; es decir, no tiene sentido incluir descripciones
generales aplicables a todo autémata. Estas informaciones son exactamente las que aparecen
en un diagrama de estados y transiciones, como los que hemos presentado antes.

En esta secciéon vamos a presentar un formato matematico para representar las mismas
informaciones que contiene un diagrama de estados. Como se utiliza terminologia matematica
en vez de dibujos, decimos que se trata de una notacion formal. En particular, utilizamos
nociones de la teorfa de conjuntos que fueron ya presentadas en el capitulo [I}

Definicion.- Una méaquina de estados finitos M es un quintuplo (K, %, 4, s, F'), donde:

» K es un conjunto de identificadores (simbolos) de estados;

Y es el alfabeto de entrada;

s € K es el estado inicial;

= ' C K es un conjunto de estados finales;

0: K x X — K esla funcién de transicion, que a partir de un estado y un simbolo del
alfabeto obtiene un nuevo estado. [

La funcién de transicién indica a qué estado se va a pasar sabiendo cudl es el estado actual
y el simbolo que se estd leyendo. Es importante notar que d es una funcion y no simplemente
una relacién; esto implica que para un estado y un simbolo del alfabeto dados, habra un y
solo un estado siguiente. Esta caracteristica, que permite saber siempre cudl sera el siguiente

2que puede ser el mismo en el que se encontraba.
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estado, se llama determinismo. La definicién dada arriba corresponde a los automatas finitos
deterministas, abreviado “AFD” ﬂ

Ejemplo.- El autémata finito determinista de la figura puede ser expresado formal-
mente como: M = (K, ¥, 6, q, F), donde:

= K ={q,q, ¢}

» ¥ ={a,b}

" 0= {((%, a)a ql)? ((QU, b)a QQ)a ((QM a)> Q1)7 <<Q17 b)a Q1)> ((Q% a)v q0>> ((Q27 b)a QZ)}
= F'={q, ¢}

La funcién de transiciéon 0 puede ser expresada mediante una tabla como la siguiente,
para este ejemplo:

q o 4(q,0)
q a q1
@ b 02
q a q1
@ b q1
g2 a qo0
@ b q2

Es facil ver que la diferencia entre los diagramas de estado y los AFD en notacion formal
es solamente de notacion, siendo la informacion exactamente la misma, por lo que es sencillo
pasar de una representacién a la otra.

Tanto en los diagramas de estado como en la representacién formal hay que tener cuidado
en respetar las condiciones para que tengamos un autémata vélido; en particular, el nimero
de transiciones que salen de cada estado debe ser igual a la cantidad de caracteres del
alfabeto, puesto que 0 es una funcién que esta definida para todas las entradas posibles. H

Para el ejemplo de la figura , donde el alfabeto es {a,b}, de cada estado deben salir
exactamente dos transiciones, una con a y otra con b.

Otra condicién es que debe haber exactamente un estado inicial. En cambio, la cantidad
de estados finales puede ser cualquiera, inclusive cero, hasta un maximo de |K| (la cantidad
de estados).

3Después veremos otros autématas finitos, llamados no deterministas.
4Recuérdese que una funcién no puede tener mas de un resultado (en este caso, un estado de llegada)
para cada entrada (en este caso, un estado de salida y un caracter consumido).
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En la notacién formal también hay que seguir las transiciones, que ahora no son represen-
tadas como flechas, sino como elementos del conjunto ¢ de transiciones. Tomando nuevamente
el automata de la figura y la palabra de entrada bb, la operacién se inicia en el estado
inicial qo; luego, al recibir la primera b, usando la transicién ((qo,b), g2) pasa a g, y luego,
al recibir la segunda b de la palabra de entrada, por medio de la transicién ((go,b), ¢2) pasa
al estado g» —de hecho permanece en él.

De una manera mds general, si un AFD se encuentra en un estado ¢ y recibe un caracter
o pasa al estado ¢’ ssi d(q,0) = ¢/, esto es, si ((¢,0),¢') € 0.

Palabras aceptadas

Los autématas finitos que hemos visto pueden ser utilizados para reconocer ciertas pal-
abras y diferenciarlas de otras palabras.

Decimos que un AFD reconoce o acepta una palabra si se cumplen las siguientes condi-
ciones:

1. Se consumen todos los caracteres de dicha palabra de entrada, siguiendo las transiciones
y pasando en consecuencia de un estado a otro;

2. al terminarse la palabra, el estado al que llega es uno de los estados finales del autémata
(los que tienen doble circulo en los diagramas, o que son parte del conjunto F' en la
representacion formal).

Asi, en el ejemplo de la figura [2.4] el autémata acepta la palabra bb, pues al terminar de
consumirla se encuentra en el estado go, el cual es final.

El concepto de lenguaje aceptado es una simple extension de aquel de palabra aceptada:

Definicion.- El lenguaje aceptado por una maquina M es el conjunto de palabras acep-
tadas por dicha maquina.

Por ejemplo, el autémata de la figura[2.4 acepta las palabras que empiezan con a, asi como
las palabras que contienen aa, y también las que terminan en b, como por ejemplo abab,
aaaaa, baaa, etc. En cambio, no acepta baba ni bba, babba, etc. Notese que tampoco acepta

la palabra vacia €. Para que un AFD acepte ¢ se necesita que el estado inicial sea también
final.

Formalizacion del funcionamiento de los AFD

El funcionamiento de los AF lo vamos a definir de manera analoga a como se simula el
movimiento en el cine, es decir, mediante una sucesion de fotografias. Asi, la operacién de un
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Figura 2.6: La configuracion es como una fotografia de la situacién de un autémata en medio
de un céalculo

AF se describira en términos de la sucesién de situaciones por las que pasa mientras analiza
una palabra de entrada.

El equivalente en los AF de lo que es una fotografia en el cine es la nocion de configuracion,
como se ilustra en la figura [2.6) La idea bésica es la de describir completamente la situacién
en que se encuentra la maquina en un momento dado, incluyendo el contenido de la cinta,
la cabeza lectora y el control.

Las informaciones relevantes para resumir la situacién de la maquina en un instante son:

1. El contenido de la cinta,
2. la posicion de la cabeza lectora,

3. el estado en que se encuentra el control.

Una configuracién seria entonces un elemento de ¥* x N x K, donde el primer elemento
es el contenido de la cinta, el segundo describe la posicién de la cabeza, y el tercero es el
estado.

Sélo nos interesara incluir en las configuraciones aquellas informaciones que tengan rel-
evancia en cuanto a la aceptacion de la palabra al final de su andlisis. Asi, por ejemplo, es
evidente que, como la cabeza lectora no puede echar marcha atras, los caracteres por los
que ya paso no afectaran mas el funcionamiento de la méquina. Por lo tanto, es suficiente
con considerar lo que falta por leer de la palabra de entrada, en vez de la palabra completa.
Esta solucién tiene la ventaja de que entonces no es necesario representar la posicion de la
cabeza, pues ésta se encuentra siempre al inicio de lo que falta por leer.

Entonces una configuracion serda un elemento de K x ¥*. Por ejemplo, la configuracién
correspondiente a la figura [2.5] serfa: (¢, abab).
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Para hacer las configuraciones mas legibles, vamos a utilizar dobles corchetes en vez de

paréntesis, como en [[q;, abab].

Vamos a definir una relaciéon entre configuraciones, C; 3, Cs, que significa que de la
configuracion C4 la maquina M puede pasar en un paso a la configuracion Cs. Definimos
formalmente esta nocién:

Definicion.- [[q1, ow]] Far [[go, w]] para un o € ¥ si y sélo si existe una transicién en M
tal que 0(q1,0) = q2. (0 es el caracter que se leyd).

La cerradura reflexiva y transitiva de la relacion ), es denotada por 3,. Asi, la expresion
C1 F3 Oy indica que de la configuracion C) se puede pasar a Cy en algin nimero de pasos
(que puede ser cero, si C7 = Cy). Ahora ya tenemos los conceptos necesarios para definir
cuando una palabra es aceptada.

Definicion.- Una palabra w € ¥* es aceptada por una maquina M = (K,X,0,s, F') ssi
existe un estado ¢ € F tal que [[s, w]] k3, [[¢, €]]. Ndtese que no basta con que se llegue a un

estado final ¢, sino que ademés ya no deben quedar caracteres por leer (lo que falta por leer
es la palabra vacia).

Ejemplo.- Probar que el AFD de la figura acepta la palabra babb.

Solucion.- Hay que encontrar una serie de configuraciones tales que se pueda pasar de
una a otra por medio de la relacion j;. La tnica forma posible es la siguiente: E|

[0, babd]] Far [[g2, abb]] Far [[go, 0]
Far [lg2, 1] Fas [[ge, €]]-

Como ¢» € F, la palabra es aceptada.

Definicion.- Un cdlculo en una méquina M es una secuencia de configuraciones C, Cy,
..., Oy, tales que C; - (1. Generalmente escribimos los calculos como C} Fpy Co bFpp oo py
Ch.

Teorema.- Dados una palabra w € ¥* y una maquina M = (K,X,6,s, F'), s6lo hay un
calculo [[s,w]] Far ... Far [[g, €])-

Prueba.- (por contradiccién): Sean dos calculos distintos:
[[s,w]] Far - .. Far [[p, ow']] Far [[r, '] Far - (g, €]]

[[s,w]] Far ... Far [[p, ow']] Far [[s,w']] Far - - [[gs, €]]

5En los AFD’s, para cada palabra de entrada sélo hay una secuencia posible de configuraciones, precisa-
mente porque son deterministas.
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y sean [[r,w']] y [[s,w']] las primeras configuraciones distintas en los dos calculos. [f| Esto
implica que d(p,o) = r y también §(p,0) = s, y como 4 es funcidn, se sigue que r = s, lo
que contradice la hipotesis. QED.

2.4. Métodos de diseno de AFDs

Considérese el problema de construir un AFD que acepte exactamente un lenguaje dado.
Este problema es comtinmente llamado “problema de disenio”. No es conveniente proceder
por “ensayo y error”, puesto que en general hay que considerar demasiadas posibilidades, y
es muy facil equivocarse. Mas aun, hay dos maneras de equivocarse al disenar un AFD: |Z]

1. Que “sobren palabras”, esto es, que el autémata acepte algunas palabras que no deberia
aceptar. En este caso decimos que la solucion es incorrecta.

2. Que “falten palabras”, esto es, que haya palabras en el lenguaje considerado que no
son aceptadas por el AFD, cuando deberian serlo. En este caso decimos que la solucion
es incompleta.

Por ejemplo, supongamos que alguien propone el autémata de la figura[2.4] para el lengua-
je de las palabras en el alfabeto {a,b} que no tienen varias a’s seguidas. Esta solucién es
defectuosa, porque:

1. Hay palabras, como “baa”, que tiene a’s seguidas y sin embargo son aceptadas por el
AFD;

2. Hay palabras, como “ba”, que no tienen a’s seguidas y sin embargo no son aceptadas
por el AFD.

Como se ve, es posible equivocarse de las dos maneras a la vez en un sélo autémata.

La moraleja de estos ejemplos es que es necesario disenar los AFD de una manera més
sistematica.

El elemento mas importante en el diseno sistematico de autématas a partir de un lengua-
je consiste en determinar, de manera explicita, qué condicion “recuerda” cada uno de los
estados del AFD. El lector debe concientizarse de que este es un principio de disefio impor-
tantisimo, verdaderamente bésico para el diseno metoédico de autéomatas.

Es decir, los cdlculos son iguales hasta cierto punto, que en el peor caso es la configuracién inicial [[s, w]].
"Estos errores no son excluyentes, y es posible que se presenten ambos a la vez.
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b
b a
e a
(a) Diseno de estados (b) AFD completo

Figura 2.7: Diseno de AFD para palabras con nimero impar de a’s

Recuérdese que la tnica forma de memoria que tienen los AFD es el estado en que
se encuentran. Asi, el diseno del AFD inicia con la propuesta de un conjunto de estados
que “recuerdan” condiciones importantes en el problema considerado. Posteriormente se
proponen las transiciones que permiten pasar de un estado a otro; esta tultima parte es
relativamente sencilla una vez que se cuenta con los estados y sus condiciones asociadas.

Ejemplo.- Disenar un AFD que acepte las palabras en el alfabeto {a, b} en que la cantidad
de a’s es impar.

Solucion.- Las condiciones relevantes para este problema -que deben ser “recordadas” por
los estados correspondientes- son:

» El nimero de a’s recibidas hasta el momento es par (estado P);

» El nimero de a’s recibidas hasta el momento es impar (estado I);

Al iniciar la operacion del automata no se ha recibido atin ninguna a, por lo que debemos
encontrarnos en el estado P (el cero es un niimero par), y por lo tanto el estado P es inicial.

Para determinar qué estados son finales, debemos fijarnos en cuales corresponden con el
enunciado original de las palabras aceptadas. En este caso vemos que el estado I es el que
corresponde, por lo que es final, mientras que P no corresponde y no es final.

Los estados P e I aparecen en la figura (a). Esta es la primera etapa del diseno de un
AFD. En nuestro método de diseno es importante trazar las transiciones unicamente después
de haber determinado cudles son los estados y sus caracteristicas. Ahora ya podemos trazar
las transiciones, lo cual es una tarea relativamente sencilla, si ya tenemos el diseno de los
estados. Por ejemplo, si estamos en P y recibimos una a, claramente debemos irnos a I, porque

la cantidad de a’s pasa de ser par a impar. Similarmente se hacen las otras transiciones. El
resultado se muestra en la figura 2.7(b).

Ejemplo.- Disenar un AFD que acepte exactamente el lenguaje en el alfabeto {0, 1} en
que las palabras no comienzan con 00.
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Figura 2.8: AF para palabras que no empiezan en “00”

Solucion.- Para emprender el diseno en forma metddica, comenzamos por determinar
las condiciones que es importante recordar, y asociamos un estado a cada una de estas
condiciones, segun la tabla siguiente:

Estado | Condicién

qo No se han recibido caracteres

Q1 Se ha recibido un cero al inicio

q2 Se han recibido dos ceros iniciales

qs Se recibi6 algo que no son dos ceros iniciales

Claramente tanto gy como ¢ deben ser estados finales, mientras que ¢ no debe ser final.
Ahora hay que completar el AF, agregando las transiciones que falten. A partir de qq, si
llega un 1 habra que ir a un estado final en el que se permanezca en adelante; agregamos al
AF un estado final ¢3 y la transiciéon de qg a g3 con 1. El estado ¢3 tiene transiciones hacia
si mismo con 0 y con 1. Finalmente, al estado ¢; le falta su transicién con 1, que obviamente
dirigimos hacia g3, con lo que el AF queda como se ilustra en la figura [2.8]

En este ejemplo se puede apreciar que en ocasiones es necesario completar el conjunto de
estados al momento de hacer las transiciones.

2.4.1. Diseno por conjuntos de estados

Es posible llevar un paso mas alld el método de asociar una condicién a cada estado:
vamos a asociar condiciones a grupos de estados mas que a estados individuales. De esta
manera aumentaremos el grado de abstracciéon en la etapa inicial de diseno, haciendo posible
en consecuencia atacar problemas mas complejos con menos posibilidades de equivocarse.

Este método consiste en identificar inicialmente condiciones asociadas al enunciado del
problema, aunque éstas no sean suficientemente especificas para asociarse a estados individ-
uales.

Describiremos este método mediante su aplicacién a un ejemplo particular: Disenar un
AFD que acepte las palabras del lenguaje en {0,1} donde las palabras no contienen la
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00 pero no 11

(a) Grupos de estados (b) Detalle de estados
Figura 2.9: Diseno de AFD por grupos de estados

subcadena 11 pero si 00.

Inmediatamente a partir del enunciado identificamos las siguientes situaciones:

» Las letras consumidas hasta el momento no contienen ni 00 ni 11.
= Contienen 00 pero no 11

= Contienen 11.

Estas condiciones cumplen dos requisitos que siempre se deben cumplir en este tipo de
disenos:

= Las condiciones deben ser excluyentes, lo que quiere decir que no deben poder ser
ciertas dos o mas al mismo tiempo.

= Las condiciones deben ser comprensivas, lo que quiere decir que no faltan casos por
considerar.

Los grupos de estados, asi como las transiciones que provocan que se pase de uno a
otro, se representan como “nubes” en la figura 2.9(a). En dicha figura también se ilustran
unas nubes “dobles” para indicar que son condiciones finales —en este ejemplo, la condicién
“Contienen 00 pero no 11”—, asi como la condicién inicial con un simbolo “>”.

Estos diagramas no son ain AFD, pero casi. Lo que falta por hacer es refinar cada grupo
de estados, considerando lo que ocurre al recibir cada uno de los posibles caracteres de
entrada. La forma en que se subdivide cada grupo de estados (“nube”) en estados individuales
se detalla a continuacion:
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» Las letras consumidas hasta el momento no contienen ni 00 ni 11.

1. Inicial, no se han recibido caracteres.
2. Se acaba de recibir un 0.

3. Se acaba de recibir un 1.
= Contienen 00 pero no 11.

1. Se acaba de recibir un 0.

2.  Se acaba de recibir un 1.

» Contienen 11 (no hay subcondiciones).

Esto nos da un total de 6 estados, cada uno de los cuales tiene una condicién muy
especifica asociada (son los estados “A” a “F” en la figura 2.9(b)). El siguiente paso es
hacer el diseno detallado de las transiciones, lo que por experiencia consideramos que es
relativamente facil para cualquier alumno. El resultado se muestra en la figura (b) En
este diagrama se puede notar que los estados de una nube “final” son también finales; esto
debe verificarse siempre.

Hacemos notar que en este ejemplo en particular, encontrar directamente las condiciones
asociadas a los estados puede ser algo dificil; por ejemplo, encontrar directamente la condicién
“Las letras consumidas hasta el momento no contienen ni 00 ni 11 y se ha recibido un 0”
(estado “B” en la figura 2.9(b)) requerirfa ciertamente mds inventiva de la que tenemos
derecho a presuponer en el lector. En este sentido el disenar primero los grupos de estados
permite manejar la complejidad del problema de manera més modular y gradual.

En cualquier caso, ya sea que se encuentren directamente las condiciones para cada estado,
o primero para grupos de estados, consideramos importante que primero se determinen los
estados con sus condiciones asociadas, y solamente después se tracen las transiciones, en
vez de ir proponiendo sin ningin orden los estados y las transiciones a la vez, lo que muy
frecuentemente conduce a errores.

2.4.2. Diseno de AFD por complemento

En ocasiones, para un cierto lenguaje L, es méas sencillo encontrar un AFD para el lenguaje
exactamente contrario —técnicamente hablando, complementario L¢ = ¥*— L. En estos casos,
una solucién sencilla es hallar primero un AFD para L¢, y luego hacer una transformacion
sencilla para obtener el autémata que acepta L.

Si M = (K,X,0,s,F) es un autémata determinista que acepta un lenguaje regular L,
para construir un autémata M€ que acepte el lenguaje complemento de L, esto es, ¥* — L,
basta con intercambiar los estados finales de M en no finales y viceversa. Formalmente,
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Me¢ = (K,%,d,s, K — F). Asi, cuando una palabra es rechazada en M, ella es aceptada en
M¢ y viceversa. [J

Ejemplo.- Obtener un AF para el lenguaje en {a,b}* de las palabras que no contienen la
cadena “abaab”.

Solucion.- Primero obtenemos un AFD M, para el lenguaje cuyas palabras si contienen
la cadena “abaab”. Disenamos M; sistematicamente usando grupos de estados, uno que
recuerda que la palabra no contiene aun abaab y otro que recuerda que ya se reconocio dicha
cadena, como aparece en la figura (a). Luego detallamos cada uno de estos grupos de
estados, introduciendo estados individuales que recuerdan lo que se lleva reconocido de la
cadena abaab, como se muestra en la figura m(b) —el grupo de estados que recuerda que ya
se reconoci6 la cadena abaab tiene un soélo estado, pues no hay condiciones adicionales que
recordar. Finalmente, la solucién sera un AFD donde cambiamos los estados finales por no
finales y viceversa en M, como se muestra en [2.10]c).

Desde luego, el ejemplo descrito es muy sencillo, pero luego veremos otras herramientas
que se pueden usar en combinacion con la obtencién del complemento de un AF, para resolver
en forma sistemética y flexible problemas de disefio aparentemente muy dificiles.

2.5. Equivalencia de autématas finitos.

Decimos que dos automatas que aceptan el mismo lenguaje son equivalentes.

Definicion.- Dos autématas My y My son equivalentes, My ~ My, cuando aceptan exac-
tamente el mismo lenguaje.

Pero, puede haber de hecho varios AF distintod”] que acepten un mismo lenguaje? La
respuesta es afirmativa, y una prueba consiste en exhibir un ejemplo.

Por ejemplo, los autématas (a) y (b) de la figura aceptan ambos el lenguaje a*.

En vista de esta situacion, dados dos AF distintos existe la posibilidad de que sean
equivalentes. Pero jcémo saberlo?

De acuerdo con la definicion que hemos presentado, la demostracién de equivalencia de
dos autématas se convierte en la demostracion de igualdad de los lenguajes que aceptan. Sin
embargo, demostrar que dos lenguajes son iguales puede complicarse si se trata de lenguajes
infinitos. Es por esto que se prefieren otros métodos para probar la equivalencia de autématas.

8 Es muy importante notar que el método de disefio por complemento sélo se aplica a los autématas
deterministas, y no a los llamados “no deterministas”, que veremos luego.

9, Qué se quiere decir por “distintos”? ;Si dos AF sélo difieren en los nombres de los estados se consideraran
distintos?
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Figura 2.10: Disenio del AF para palabras sin abaab
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Figura 2.11: Autématas equivalentes

El método que aqui propondremos para los AF se basa en el siguiente teorema:

Teorema de Moore.- Existe un algoritmo para decidir si dos autématas finitos son equiv-
alentes o no.

El algoritmo mencionado en el teorema de Moore consiste en la construccion de un drbol
de comparacion de automatas. Este arbol permite convertir el problema de la comparacion
de los lenguajes aceptados en un problema de comparacion de estados de los autématas.

Definicion.- Decimos que dos estados g y ¢’ son compatibles si ambos son finales o ninguno
de los dos es final. En caso contrario, son estados incompatibles.

La idea del algoritmo de comparacién de AF' D, y AF D, consiste en averiguar si existe
alguna secuencia de caracteres w tal que siguiéndola simultdneamente en AF D, y AF D,
se llega a estados incompatibles. Si dicha secuencia no existe, entonces los autématas son
equivalentes.

El tnico problema con esta idea estriba en que hay que garantizar que sean cubiertas
todas las posibles cadenas de caracteres w, las cuales son infinitas en general. Por ello se
pensoé en explorar todas las posibles combinaciones de estados mediante un arbol. Dicho arbol
de comparacién se construye de la manera siguiente, para dos autématas M = (K, %, 4, s, F)
y M = (K' Y0, F):

1. Inicialmente la raiz del drbol es el par ordenado (s, s’) que contiene los estados iniciales
de M y M’ respectivamente;

2. Sien el drbol hay un par (r,7'), para cada caracter en 3 se anaden como hijos suyos
los pares (r,,r!) donde r, = §(r,0), rl. = 6(r', o), si no estén ya.

3. Si aparece en el arbol un par (r,7’) de estados incompatibles, se interrumpe la con-
struccion del mismo, concluyendo que los dos autéomatas no son equivalentes. En caso
contrario se contintia a partir del paso [2]
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Figura 2.12: Arbol de comparacién de AF
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Figura 2.13: AFDs no equivalentes

4. Sino aparecen nuevos pares (r,, ) que no estén ya en el drbol, se termina el proceso,
concluyendo que los dos automatas son equivalentes.

Ejemplo.- Sean los autématas M y M’ de la figuras2.11|(a) y (b) respectivamente. El drbol
de comparacién se muestra en la figura [2.12l En dicho arbol se muestran adicionalmente,
con linea punteada, las ramas que van a nodos ya existentes, como la que va de (go,70) a
(qo,70). Estas ramas con linas punteada no son, estrictamente hablando, parte del érbol,
pero pensamos que mejoran la comprension del diagrama.

Se concluye que M y M’ son equivalentes.

En el caso de que los autématas que se comparan no sean equivalentes, la construccion del
arbol de comparacién permite encontrar al menos una palabra en que los lenguajes aceptados
por ellos difieren. Considérense, por ejemplo, los autématas de las figuras (a) y (b). Una
parte del arbol de comparacion se muestra en la figura (c), hasta donde se encuentra el
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primer par de estados incompatibles.

Analizando el arbol de la figura (C), vemos que para llegar desde la raiz del arbol
hasta el par incompatible (1,6), hay que gastar los caracteres b, b y a, esto es, la palabra bba.
Asi llegamos a la conclusién de que el autémata de la figura m(a) no acepta la palabra
bba, mientras que el de la figura (b) si la acepta, y por lo tanto sus lenguajes aceptados
difieren al menos en la palabra bba.

Para probar que este método constituye un algoritmo de decisién para verificar la equiv-
alencia de dos autéomatas, hay que mostrar los puntos siguientes:

1. La construccién del drbol siempre termina (no se “cicla”)

2. Sien el drbol aparecen pares de estados incompatibles (uno final y el otro no final),
entonces los lenguajes aceptados por los automatas son efectivamente distintos.

3. Sise comparan dos automatas que no son equivalentes, entonces en el arbol apareceran
estados incompatibles.

El punto 1] se prueba facilmente porque, los nodos del arbol siendo todos distintos, son un
subconjunto de K x K, que es finito, por lo que el drbol no puede extenderse indefinidamente.

Para probar el punto [2| basta con recorrer en el arbol la trayectoria que lleva al par
de estados incompatibles, (r,7'), r € F, v ¢ F’. Simplemente concatenamos los caracteres
de entrada o en dicha trayectoria, y obtendremos una palabra wtal que si la aplicamos
como entrada al automata M llegaremos al estado r, es decir, w sera aceptada. En cambio,
si aplicamos la misma w a M’, llegaremos al estado r/, que no es final, por lo que w no
serd aceptada. Esto muestra que los lenguajes aceptados por M y por M’ difieren en al
menos una palabra, w.

En cuanto al punto [3] si los lenguajes £(M) y L£(M’) son diferentes, entonces existe
al menos una palabra, sea w, tal que es aceptada por uno y rechazada por el otro. En
consecuencia, siguiendo la palabra w en el arbol, caracter por caracter, debemos llegar a un
par incompatible. m

Por otra parte, el punto |3|implica que si no hay pares incompatibles en el arbol, entonces
los lenguajes son idénticos. En efecto, por propiedades de la logica elemental, al negar la
conclusion de [3] se obtiene la negacion de su premisa. QED.

10Reflexione porqué se estd seguro de que es posible seguir w sobre el arbol, caracter por caracter. ;No
podria “atorarse” el proceso?.
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2.6. Simplificacién de Autématas finitos

Una de las mejores cualidades de los AFD es que existen métodos mecanicos para sim-
plificarlos, hasta poder llegar al AFD mas sencillo posible para un lenguaje dado.

En el caso de los AFD, vamos a entender por simplificacion la reduccién en el nimero de
estados, pero aceptando el mismo lenguaje que antes de la simplificacién. Mas aun, llamare-
mos minimizacion a la obtencion de un autémata con el menor niimero posible de estados.

[

Como un primer ejemplo, considérense los AFD de las figuras[2.11] (a) y (b). En el AFD de
(a), los estados qo y ¢2 son en cierto modo redundantes, porque mientras se estén recibiendo
a’s, el AFD continta en gy o en g9, y cuando se recibe una b se pasa a ¢;. Se puede pensar
entonces en eliminar uno de ellos, por ejemplo go, y obtener el autémata de la figura[2.11](b),
que tiene un estado menos.

Esta idea de “estados redundantes” se formaliza en lo que sigue:

Definicion.- Dos estados son equivalentes, q1 = ¢, ssi intercambiar uno por otro en
cualquier configuracién no altera la aceptacion o rechazo de toda palabra.

Formalmente escribimos: Dos estados p y ¢ son equivalentes si cuando [[s, uv]] F3; [[g, v]]
L ell v [p, v]] By ([t €]] entonces r y ¢ son estados compatibles.

Esta definicién quiere decir que, si p &~ ¢, al cambiar ¢ por p en la configuracion, la
palabra va a ser aceptada (se acaba en el estado final ¢ ) si y sélo si de todos modos iba a
ser aceptada sin cambiar p por ¢ (se acaba en el estado final r ).

El tnico problema con esta definicion es que, para verificar si dos estados dados p y ¢
son equivalentes, habria que examinar, para cada palabra posible de entrada, si intercam-
biarlos en las configuraciones altera o no la aceptaciéon de esa palabra. Esto es evidentemente
imposible para un lenguaje infinito. La definicién nos dice qué son los estados equivalentes,
pero no cémo saber si dos estados son equivalentes. Este aspecto es resuelto por el siguiente
lema:

Lema: Dado un AFD M = (K, X,6,q, F) y dos estados ¢1,¢2 € K, tendremos que ¢; = ¢o
ssi (K,3,0,q1, F) ~ (K,3,8,¢, F). [

Es decir, para saber si dos estados ¢; y g2 son equivalentes, se les pone a ambos como
estado inicial de sendos automatas M; y My, y se procede a comparar dichos autéomatas.
Si éstos tltimos son equivalentes, quiere decir que los estados ¢; y ¢» son equivalentes. Por
ejemplo, para el autémata de la figura [2.11)(a), para verificar si gy & g2, habria que comparar

E] hecho de que para todo lenguaje regular existe un AFD minimo, es un hecho para nada evidente, que
rebasa los alcances de este libro. Esto se discute en la referencia [7].
12No damos la prueba, ver seccién de ejercicios.
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Figura 2.14: Cambio de estado inicial

dicho AFD con el de la figura en el que se cambié el estado inicial por el otro estado
que se quiere comparar. En este ejemplo, dicha comparacién de AFDs da un resultado de
equivalencia, por lo que se concluye que los estados son redundantes.

Una vez que se sabe que dos estados son equivalentes, se puede pensar en eliminar uno de
ellos, para evitar redundancias y hacer mas eficiente al AFD. Sin embargo, la eliminacién de
un estado en el AFD plantea el problema de qué hacer con las flechas que conectan al estado
eliminado con el resto del automata. Esta cuestion se resuelve con los siguientes criterios:

1. Las flechas que salen del estado eliminado son eliminadas;

2. Las flechas que llegan al estado eliminado son redirigidas hacia su estado equivalente.

Por ejemplo, en el autéomata de la figura [2.11)(a), si verificamos que gy y ¢2 son equiva-
lentes, y pensamos eliminar ¢s, hay que redirigir la flecha que va de ¢y a ¢» para que vaya al
mismo ¢y (se vuelve un ciclo). Asi se llega al autémata de la figura [2.11{(b).

La eliminacién de estados redundantes de un AFD es una manera de simplificar AFDs, y
puede usarse iteradamente para simplificar al minimo. Sin embargo, el trabajo que implica
es mucho, y para AFDs grandes, examinar cada par de estados es poco practico.

Vamos, en consecuencia, a examinar métodos mas organizados para localizar los estados
redundantes y minimizar los AFDs.

2.6.1. Tabla de estados distinguibles

Vamos a definir la nocién de estados distinguibles, que intuitivamente quiere decir que si
dos estados son distinguibles, ya no pueden ser equivalentes. La definicién es inductiva:

» Los estados p y ¢ son distinguibles si son incompatibles (es decir, uno es final y el otro
no final). Esta es la base de la induccién.
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Figura 2.15: AFD a simplificar

» Si tenemos transiciones d(pg,0) = p y d(qo,0) = ¢q donde p y ¢ son distinguibles,
entonces también py y qo son distinguibles. Este es el paso inductivo.

Por ejemplo, considérese el AFD de la figura 2.15] Claramente los estados 1 y 3 son
distinguibles, porque no son compatibles. Puede ser menos obvio ver que los estados 4 y 3
son distinguibles, pero podemos ver que, aunque ambos son finales, el caracter b nos lleva de
4 a 2, y similarmente de 3 a 1, y vemos que 2 y 1 son distinguibles al no ser compatibles.

En ocasiones se requieren varios pasos intermedios para determinar que un par de estados
es distinguible (esto no ocurre en el ejemplo recién visto).

Teorema.- Dos estados son equivalentes (o “redundantes”) ssi no son distinguibles. Este
resultado se prueba en la referencia [7]. Su utilidad estriba en que es relativamente sencillo
verificar si dos estados son distinguibles.

Una manera de organizar el trabajo de verificar qué pares de estados de un AFD son
distinguibles, consiste en construir una tabla en que los renglones y las columnas son los
nombres de los estados, y en cada cruce de renglén con columna se indica con una x cuando
son distinguibles.

Por ejemplo, para el AFD de la figura [2.15] empezamos con la tabla vacia de la figura
2.16|(a). Obsérvese que en la tabla se omite la diagonal principal, pues no tiene caso confrontar
cada estado contra sf mismo. En la tabla [2.16[b) se aprecian signos “x” en las celdas (2,1),
(3,1), (4,1) y (5,1) que se obtienen directamente del hecho de que son pares de estados
incompatibles —por lo tanto distinguibles. En la figura M(C) se ha agregado una marca en
la casilla (4,2), que viene del hecho de que con el caracter b las transiciones nos llevan de
2 al,yde4 a2, pero el par (2,1) ya estaba marcado como distinguible. Finalmente, en la
tabla [2.16|(d) se pusieron marcas en (4,3), (5,2) y (5,3), haciendo anélisis similares. Es facil
convencerse de que no hay forma de hacer distinguibles los pares (3,2) y (5,4), los cuales, de
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2 2 X
3 3 X
4 4 X
5 5 X
1 2 3 4 1 2 3 4
(a) (b)
2 X 2 X
3 X 3 X
4 X X 4 X X X
5 X 5 X X X
1 2 |3 4 1 2 |3 ] 4

() (d)

Figura 2.16: Tabla de estados distinguibles

acuerdo con el teorema presentado, son pares de estados equivalentes.

Una vez que detectamos los pares de estados equivalentes, podemos proceder a eliminar
uno de ellos, de la forma que hemos visto. En el ejemplo de la figura [2.16(d), como hay dos
pares de estados redundantes, el AFD minimo tiene 3 estados.

En autéomatas grandes, el procedimiento puede volverse algo complicado, pues es necesario
examinar repetidamente cada celda de la tabla para verificar que los cuadros aiin no marcados
siguen sin ser distinguibles, hasta que en una de las iteraciones ya no se agregue ninguna
marca a la tabla.

2.6.2. Simplificacion por clases de equivalencia

Existe otro método de simplificacion de estados, de hecho més comiunmente usado que el
que hemos presentado, debido a que permite organizar mas sistematicamente el trabajo.

Este algoritmo, que llamaremos “simplificacién por clases de equivalencia’, sigue un
orden de operaciones inverso a la eliminacion gradual de estados redundantes que hemos
visto antes: en vez de ir reduciendo el nimero de estados, comienza con grupos de estados,
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o0 “clases”, que se van dividiendo en clases mas pequenas, hasta que el proceso de division
) )
ya no pueda continuarse.

La idea es formar clases de estados de un autémata que, hasta donde se sabe en ese mo-
mento, podrian ser equivalentes. Sin embargo, al examinar las transiciones de varios estados
de una misma clase, puede a veces inferirse que después de todo no deben permanecer en
la misma clase. En ese momento la clase en consideraciéon se “divide”. Luego se examinan
las transiciones de las clases que se formaron, a ver si es necesario dividirlas nuevamente, y
asi en adelante, hasta que no se halle evidencia que obligue a dividir ninguna clase.

Al terminar el proceso de division de clases, cada una de las clases representa un estado
del autémata simplificado. Las transiciones del autémata simplificado se forman a partir de
las transiciones de los estados contenidos en cada clase.

Antes de formalizar el proceso, vamos a explicarlo con ayuda de un ejemplo.

(a) AFD a simplificar (b) Clases iniciales

(c) Clases al final (d) AFD simplificado

Figura 2.17: Simplificacion por clases de equivalencia

Ejemplo.- Considérese el AFD de la figura[2.17|(a). Las primeras dos clases de equivalencia
que se forman contienen, respectivamente, a los estados finales y a los estados no finales,
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los cuales evidentemente no podrian ser equivalentes (esto es, estar en una sola clase de
equivalencia [)). Estas dos clases se encuentran indicadas en la figura [2.17(b).

Ahora vamos a examinar si todos los estados de cada clase tienen transiciones “similares”,
lo que en nuestro caso quiere decir que van a una misma clase de equivalencia. Por ejemplo,
tomemos los estados 3 y 4 de [2.17(b). Al recibir el simbolo a, desde 3 nos vamos a la
clase {2,3,4,5}, lo que también ocurre desde el estado 4. Hasta aqui 3 y 4 se comportan
similarmente. Ahora examinamos las transiciones con b: desde 3 nos irfamos a la clase {1},
mientras que desde 4 irfamos a la clase {2, 3,4,5}. Concluimos que 3 y 4 no pueden coexistir
en una misma clase de equivalencia, por lo que la clase {2, 3,4, 5} debe dividirse. Haciendo el
mismo anélisis con los demds estados, dividimos {2,3,4,5} en {2,3} y {4,5}, como aparece
en la figura (c) En este punto ya no es posible dividir alguna de las 3 clases existentes,
pues las transiciones de sus estados son “similares”. Concluimos que estas son las clases de
equivalencia mas finas que pueden formarse.

Tomando las clases de equivalencia de [2.17|(c) como estados, formamos el AFD que
aparece en [2.17](d). Obsérvese que las transiciones de [2.17(d) son las de cualquiera de los
estados contenidos en cada clase; simplemente registramos a qué clase de equivalencia se
llega con cada simbolo de entrada. El estado inicial corresponde a la clase de equivalencia
que contenga el antiguo estado inicial, y los estados finales del nuevo AFD vienen de las
clases de equivalencia que contienen estados finales del antiguo AFD.

Formalmente, el procedimiento es como sigue, para un AFD (K, >, 0, s, F'):

1. Inicialmente se tienen las clases F'y K — F
2. Repetir para cada clase:

= Sea ¢ un estado de la clase. Para cada uno de los otros estados, ¢', verificar si
d(q,0) va a dar a la misma clase de equivalencia que 6(¢’, o), para cada caracter
o.

= Si la respuesta es si, la clase no necesita dividirse.

= Si la respuesta es no, dividir la clase en dos subclases: la que agrupa a los estados
)
ue tuvieron transiciones “similares” a g, a de los estados con transiciones
t t “similares” la de 1 tad t
“diferentes” a ¢ (que no van a dar a la misma clase de equivalencia con un mismo
simbolo o).

Por ejemplo, consideremos la clase {2,3,4,5} de la figura (b) Tomando como refer-
encia al estado 2, nos damos cuenta de que el estado 3 tiene transiciones similares (con a a
la clase {2,3,4,5}, con b a la clase {1}), mientras que los estados 4 y 5 tienen transiciones
diferentes a las de 2 (con a y con b van a la clase {2,3,4,5}); esto ocasiona que la clase
{2,3,4,5} se parta en dos. Luego habria que examinar las nuevas clases, {1}, {2,3} y {4,5};
en este caso sucede que ya no se necesita dividir ninguna de ellas.

13; Porqué?
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Figura 2.18: Clases de equivalencia organizadas en arbol

En la préactica, en vez de trazar lineas sobre el diagrama de estados, es conveniente
organizar la informacion de las clases de equivalencia en arboles, en donde cada nodo contiene
los estados de una clase de equivalencia. Inicialmente estan todos los estados del AFD en
una clase, como en la raiz del arbol en la figura , para el AFD de la figura (a), e
inmediatamente se dividen en finales y en no finales, como en el seguiente nivel en esa misma
figura. Luego, para el nodo {2,3,4,5} examinamos si las transiciones con los caracteres de
entrada, en este caso a y b, llevan a las mismas clases, y verificamos que en el caso de
b los estados 2 y 3 van a un no final, mientras que 4 y 5 van a un final, por lo que ese
nodo se divide en dos, como se aprecia en el tercer nivel de la figura. Ahi también se puede
apreciar un simbolo b bajo el nodo {2,3, 4,5}, indicando a causa de qué caracter la clase de
equivalencia se dividié. Examinando las transiciones en las clases de equivalencia que quedan
en las hojas del arbol, vemos que ya no hay razon para dividirlas méas. Finalmente, las clases
de equivalencia resultantes son {1}, {2,3} vy {4,5}, que corresponden a los 3 estados que
tendra el AFD minimizado.

2.7. Autdmatas finitos con salida

Hasta donde hemos visto, la Unica tarea que han ejecutado los autématas finitos es la
de aceptar o rechazar una palabra, determinando asi si pertenece o no a un lenguaje. Sin
embargo, es posible definirlos de manera tal que produzcan una salida diferente de “si”
o “no”. Por ejemplo, en el contexto de una maquina controlada por un autémata, puede
haber distintas senales de salida que correspondan a los comandos enviados a la maquina
para dirigir su accién. En los compiladores, [[1] el analizador lexicogréfico es un autémata
finito con salida, que recibe como entrada el texto del programa y manda como salida los
elementos lexicogréficos reconocidos (“tokens”). Hay dos formas de definir a los autématas
con salida, segun si la salida depende de las transiciones o bien del estado en que se encuentra
el autémata. En el primer caso, se trata de los autématas de Mealy, y en el segundo, de los

automatas de Moore, propuestos respectivamente por G. Mealy [13] y E. Moore [15].

4 Haremos una breve descripcién de los compiladores en la seccién
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(¢) Moore transformado en Mealy

Figura 2.19: Autématas de Moore y Mealy

2.7.1. Maquinas de Moore

En las maquinas de Moore la salida depende del estado en que se encuentra el autéma-
ta. Dicha salida es producida una vez, y cuando se llega a otro estado (o al mismo) por
efecto de una transicion, se produce el simbolo de salida asociado al estado al que se llega.
Algunos estudiantes encuentran 1til la analogia de los autématas de Moore con nociones de
electricidad: es como si cada estado tuviera un “nivel de voltaje” que se produce en la salida
mientras el control se encuentre en dicho estado.

Las maquinas de Moore se representan graficamente como cualquier AFD, al que se
anade, al lado de cada estado, la salida asociada, que es una cadena de caracteres. Por
ejemplo, consideremos un autémata que invierte la entrada binaria recibida (esto es, cambia
un 1 por 0 y un 0 por 1). Dicho autémata se representa graficamente en la figura (a).

Para formalizar los autématas de Moore una idea sencilla es anadir a un AFD estdndar
una funcién que asocie a cada estado una palabra de salida; llamaremos A\ a esta funcién.
También vamos a agregar un alfabeto de salida I', que puede ser distinto al de entrada. Todos
los demas aspectos permanecen igual que en un AFD.

Definicion.- Una méaquina de Moore es un séxtuplo (K,%,T,d,\, qo), en donde K, ¥y
0 son como en los AFD, y g es el estado inicial; ademas tenemos a I' que es el alfabeto de
salida, y A\, que es una funcién de K a I'*, que obtiene la salida asociada a cada estado; la
salida es una cadena de caracteres tomados de T'.

Ejemplo.- La siguiente maquina de Moore formaliza el diagrama de la figura 2.19|(a):
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K={q,q}, X=T={0,1}, A(q0) =0, M(q1) = 1, y 0 estd tabulada como:

q | 6(q,0) (g, 1)
qo | 1 qo
G| Q1 qo

La salida de una maquina de Moore M ante una entrada a; ...a, es la concatenacién de
A(qo) Ma1) ... Mgn), donde q; = 0(gi—1,a;),a; € ¥, para 1 <i < n.

2.7.2. Maquinas de Mealy

En las maquinas de Mealy la salida producida depende de la transicion que se ejecuta, y
no solamente del estado. Por esto, en la notacién grafica las etiquetas de las flechas son de
la forma o/w, donde o es el caracter que se consume de entrada, y w es la palabra que se
produce en la salida. Por ejemplo, el diagrama para el inversor binario, implementado como
mdquina de Mealy, se presenta en la figura 2.19(b).

Para formalizar las maquinas de Mealy, una idea podria ser aumentarle a las transiciones
la palabra producida en la salida. Sin embargo, por modularidad se prefiere definir una
funcién de salida A, pero que, a diferencia de las maquinas de Moore, ahora toma como
entrada un estado y un caracter de entrada. En efecto, podemos darnos cuenta de que es lo
mismo que la salida dependa del estado y un caracter, a que dependa de una transicion. [%]

Definicion.- Una maquina de Mealy es un séxtuplo (K,%,T",6, A, qo), en el que todos los
componentes tienen el mismo significado que arriba, a excepcién de A, que es una funcién
A K x Y — I'*, esto es, toma un elemento de K X ¥ —que incluye un estado y un caracter
de entrada— y produce una palabra formada por caracteres de I'.

Ejemplo.- El inversor de Mealy de la figura [2.19(b) se puede representar formalmente de
la siguiente forma:

K= {QO}7 Y= {07 1}75(610) =4qo, Y )\(Qm 1) =0, )\(QO,O) =1

La salida de una maquina de Mealy ante una entrada a; ...a, es A(qo,a1) A(q1,a2) ...
AM@n—1,an), donde q; = 6(gi—1,a;), para 1 <i < n.

Obsérvese que, a diferencia de las méquinas de Moore, en las maquinas de Mealy la salida
depende de la entrada, ademas de los estados. Podemos imaginar que asociamos la salida a
las transiciones, mas que a los estados.

Los criterios para disenar tanto maquinas de Moore como de Mealy son basicamente los
mismos que para cualquier otro AFD, por lo que no presentaremos aqui métodos especiales

15Esto suponiendo que no hay varias transiciones distintas entre dos mismos estados.
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X—=— f —=1f(X)

Figura 2.20: Funciéon como “caja negra”

de diseno.

2.7.3. Equivalencia de las maquinas de Moore y Mealy

Aunque muchas veces, para un mismo problema, la maquina de Mealy es mas simple que
la correspondiente de Moore, ambas clases de maquinas son equivalentes. Si despreciamos la
salida de las méquinas de Moore antes de recibir el primer caracter (o sea, con entrada ¢), es
posible encontrar, para una maquina de Moore dada, su equivalente de Mealy, en el sentido
de que producen la misma salida, y viceversa.

La transformacion de una maquina de Moore en maquina de Mealy es trivial, pues hace-
mMOS Anseaty (¢ @) = Atoore(Onioore(q, @)), es decir, simplemente obtenemos qué salida pro-
ducird una transiciéon de Mealy viendo la salida del estado al que lleva dicha transicién en
Moore. Por ejemplo, la maquina de Mealy de la figura (b) se puede transformar de esta
manera a la mdquina de Moore que aparece en la figura [2.19(c).

La transformacion de una maquina de Mealy en Moore es més complicada, pues en
general hay que crear estados adicionales; remitimos al alumno a la referencia [7].

2.7.4. Calculo de funciones en AF

Ya que las maquinas de Mealy y de Moore pueden producir una salida de caracteres dada
una entrada, es natural aplicar dichas maquinas al calculo de funciones, donde la funcion es
vista como una forma de relacionar una entrada, que es una palabra de un cierto alfabeto 3,
con una salida, que es otra palabra formada por caracteres del alfabeto de salida I". Podemos
asi ver una funcién como una “caja negra”’, como se ilustra en la figura [2.20] que a partir
del argumento x entrega un resultado f(z).

Ejemplo.- Representamos los ntimeros naturales en el sistema unario, es decir, 3 es 111,
5 es 11111, etc. Queremos una méaquina de Mealy que calcule la funcién f(z) = = + 3. Esta
maquina esta ilustrada en la figura (a). En efecto, al recibirse el primer caracter, en la
salida se entregan cuatro caracteres; en lo subsecuente por cada caracter en la entrada se
entrega un caracter en la salida, hasta que se acabe la entrada. Debe quedar claro que los
tres caracteres que le saca de ventaja la salida al primer caracter de entrada se conservan
hasta el final de la entrada; de este modo, la salida tiene siempre tres caracteres mas que la
entrada, y en consecuencia, si la entrada es z, la salida sera x + 3.
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11 111
11111

(a) f(x)=2+3 (b) Funcién f(z) = 2z

Figura 2.21: Funciones aritméticas en Mealy

1711 171"
111111 1/qmen

(a) f(z) =2w+3 (b) f(z) = nz+m

Figura 2.22: Funciones lineales en Mealy

Seria interesante ver si los AF pueden calcular funciones aritméticas mas complejas que
la simple suma de una constante. Por ejemplo, ;jse podra multiplicar la entrada en unario
por una constante?

La respuesta es si. El AF de la figura [2.21(b) entrega una salida que es la entrada
multiplicada por dos. Aun més, el AF de la figura [2.22(a) calcula la funcién f(z) = 2z + 3.

Estos resultados pueden ser generalizados para mostrar que una maquina de Mealy puede
calcular cualquier funcién lineal. En efecto, el esquema de AF de la figura [2.22(b) muestra
cémo calcular una funcién f(z) = nz + m.

Cerca del final de este texto veremos que un AF no puede calcular funciones mucho mas

complejas que las que hemos visto; ni siquiera pueden calcular la funcién f(z) = 2.

Formalizacion del cdlculo de funciones

Decimos que una maquina M calcula una funcién f : ¥* — ¥* si dada una entrada
x € X* la concatenacién de los caracteres que entrega a la salida es y € ¥*, donde y = f(x).

La definicién anterior puede ser formalizada en términos de las configuraciones y del paso
de una configuracion a otra. En efecto, la “concatenacion de los caracteres a la salida” puede
ser tomada en cuenta en la configuracion, anadiendo a ésta un argumento adicional en el
que se vaya “acumulando” la salida entregada. Esto nos lleva a una definicién modificada de
configuracion.

Definicion.- Una configuracién de una maquina de Mealy (K, X, T, 6, A, s) es una tripleta
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m’b Da,b
e abbab @

Figura 2.23: AFN para palabras que contienen abbab

[[q,a, B]] € K x ¥* x I'*, donde ¢ es el estado en que se encuentra el AF, « es lo que resta
por leer de la palabra, y  es lo que se lleva acumulado a la salida.

De este modo el funcionamiento del autémata que permite concatenar caracteres a la sal-
ida se define de una manera muy simple, utilizando la relacién del paso de una configuracién
a otra, escrita “F”, como sigue:

Definicion.- [[p,ou,v]] + [[q,u,v€]] si g =0d(p,0)y &= Ng,o0).

Por ejemplo, dado el AF de Mealy de la figura [2.19(b), tenemos que [[go, 101,0]] +
[[q0701700“

Utilizando la cerradura transitiva y reflexiva de la relacién “H” ue se denota por “H*”
) )
podemos definir formalmente la nocién de funcién calculada:

Definicion.- Una maquina M = (K, 3, T, 0, A, s) calcula una funcién f : ¥* — ¥* si dada
una entrada x € ¥, se tiene:
(s, z, €]l =" llg, &, 9]l

donde ¢ € K, siempre que y = f(x).

Por ejemplo, para el AF de Mealy de la figura[2.19(b), se pasa de una configuracién inicial
[[q0, 1101, ¢]] a una configuracion final [[qo, e, 0010]] en cuatro pasos, lo que quiere decir que
la funcién que calcula —sea f— es tal que f(1101) = 0010.

2.8. Automatas finitos no deterministas

Una extension a los automatas finitos deterministas es la de permitir que de cada nodo
del diagrama de estados salga un nimero de flechas mayor o menor que |X|. Asi, se puede
permitir que falte la flecha correspondiente a alguno de los simbolos del alfabeto, o bien que
haya varias flechas que salgan de un sélo nodo con la misma etiqueta. Inclusive se permite
que las transiciones tengan como etiqueta palabras de varias letras o hasta la palabra vacia. A
estos autématas finitos se les llama no deterministicos o no deterministas (abreviado AFN),
por razones que luego veremos.

Al retirar algunas de las restricciones que tienen los automatas finitos deterministicos, su
diseno para un lenguaje dado puede volverse mas simple. Por ejemplo, un AFN que acepte
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las palabras en {a, b} que contienen la subcadena abbab se ilustra en la figura [2.23]

Hacemos notar en este punto que, dado que los AFN tienen menos restricciones que los
AFD, resulta que los AFD son un caso particular de los AFN, por lo que todo AFD es de
hecho un AFN. [

Hasta aqui s6lo vemos ventajas de los AFN sobre los AFD. Sin embargo, en los autématas
no deterministicos se presenta una dificultad para poder saber qué camino tomar a partir
de un estado dado cuando se presenta un simbolo, pues puede haber varias opciones. Por
ejemplo, tomando el automata de la figura si se nos presenta una palabra como abbaba,
no sabremos si tomar la transicién del estado 1 al 2, gastando abbab, y ya en 2 gastar a, o
bien gastar en 1 todas las letras de la palabra de entrada, siguiendo las transiciones de 1 a
si mismo. El problema en este ejemplo es particularmente grave porque en uno de los casos
se llega a un estado final y en el otro no. Veremos més adelante como enfrentar este tipo de
situaciones.

Ademas, puede ocurrir que, estando en un nodo n, y habiendo un simbolo de entrada a,
no exista ninguna flecha que salga de n con etiqueta a (esto no ocurre en el ejemplo de la

figura [2.23)).

Estas diferencias con los AFD se deben reflejar en la definicién formal de los AFN, como
se hace en seguida.

2.8.1. Representacion formal de los AFN

Definicion.- Un autémata finito no determinista es un quintuplo (K, %, A, s, F') donde
K, %, sy F tienen el mismo significado que para el caso de los automatas deterministicos,
y A, llamado la relacion de transicion, es un subconjunto finito de K x ¥* x K.

Por ejemplo, el AFN de la figura quedaria representado matematicamente por el
siguiente quintuplo:

({1,2},{a,b},{(1,a,1),(1,b,1), (1, abbab, 2),(2,a,2),(2,b,2)},1,{2})

El punto esencial es que A es una relacion, no una funcién. Obsérvese también que el
segundo elemento de la relacion de transicién es una palabra, no un caracter del alfabeto.
Esto significa que cada tripleta (g1, w,g2) € A, que es una transicién representada como una
flecha de etiqueta w en el diagrama de estados, permite pasar de ¢; a ¢ “gastando” en la
entrada una subcadena w. []

Vamos a definir la nocién de palabra aceptada en términos de la representacion grafica

16Sin embargo, la representacién formal de los AFN no es idéntica a la de los AFD.
1"Nétese que w puede ser la palabra vacia.
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de los autématas no deterministicos.

Definicion.- Una palabra w es aceptada por un autémata no deterministico ssi existe una
trayectoria en su diagrama de estados, que parte del estado inicial y llega a un estado final,
tal que la concatenacion de las etiquetas de las flechas es igual a w. @

Ejemplo.- Verificar si la palabra baabbaba es aceptada por el AFN de la figura [2.23]
Solucién: La palabra baabbaba puede ser dividida en cuatro pedazos, p; = b, p» = a, p3 =
abbab, y p, = a, cuya concatenacién produce la palabra original. Ahora bien, podemos seguir
la siguiente secuencia de estados (trayectoria) en el AFN dado:

Estado | Cadena que consume | Produce estado
1 b 1
1 a 1
1 abbab 2
2 a 2

Asi probamos que la cadena baabbaba si es aceptada por el autémata. Probar que una ca-
dena no es aceptada por un autémata no deterministico es mas dificil, pues hay que mostrar
que no existe ninguna trayectoria que satisfaga los requisitos; la cantidad de trayectorias
posibles puede ser muy grande como para examinar una por una. En este ejemplo en partic-
ular es posible ver que la cadena ababab no es aceptada por el autémata, pues la transicion
que liga el estado inicial 1 con el final 2 incluye dos b’s seguidas, que no hay en la palabra
dada, por lo que no es posible llegar al estado final y la palabra no podra ser aceptada.

2.8.2. Diseno de AFN

Como sugerimos al inicio de esta seccién, en los AFN es posible aplicar métodos modulares
de diseno, que permiten manejar mejor la complejidad de los problemas. Son estos métodos
modulares los que describiremos en esta seccion. m

AFN para la union de lenguajes

Si ya contamos con dos AFN, sean M7 y Ms, es posible combinarlos para hacer un nuevo
AFN que acepte la uniéon de los lenguajes que ambos autématas aceptaban.

18 Se puede expresar la definicién de palabra aceptada en términos de la nocién de configuraciéon (ver
ejercicios).

19En muchos libros estos temas se agrupan, desde un punto de vista més matematico que ingenieril, en una
seccién de “propiedades de los lenguajes regulares”, pero nosotros hemos preferido aplicarlos directamente
a mejorar las habilidades de diseno de AFN de los alumnos de computacion.
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Figura 2.24: AFN para la uniéon de dos lenguajes

Sean My = (K1,%1,Aq,81, F1) y My = (K3, X9, Ag, o, F5) dos autématas que aceptan
los lenguajes Ly, Ly. PY] Podemos entonces construir un AFN Mj que acepte L; U Ly de la
siguiente manera: Sea ¢ un nuevo estado que no esta en K; ni en K,. Entonces hacemos un
autémata M; cuyo estado inicial es ¢, y que tiene transiciones vacias de ¢ a s; y a So. Esta
simple idea le permite escoger en forma no determinista entre irse al automata M; o a Mo,
segun el que convenga: si la palabra de entrada w estd en L;, entonces escogemos irnos a
My,,,,, y similarmente a My para Ls.

Formalmente M3 = (K; U Ko U{q}, £1UXs, Ay UAU{(q,¢,51),(q,¢,82)}, ¢, F1 U Fy).
En la figura [2.24] se representa graficamente M.

Ejemplo.- Disenar un autémata no determinista que acepte las palabras sobre {a,b} que
tengan un numero par de a o que terminen en bb.

Solucion.- En la figura M(a) se presenta un AFN que acepta las palabras que con-
tienen un numero par de a’s, y en M(b) otro que acepta las palabras que terminan en bb.
Finalmente, en [2.25(c) esta el AFN que acepta el lenguaje dado.

AFN para la concatenacién de lenguajes

Similarmente al caso anterior, sean M; = (K1, %1, Ay, 81, F1) y My = (Kg, 35, Ay, 89, Fy)
dos autématas que aceptan los lenguajes Ly, Ly respectivamente. Podemos entonces construir
un AFN M3 que acepte Ly Lo de la siguiente manera: Aniadimos unas transiciones vacias que
van de cada uno de los estados finales de M; al estado inicial de M,; también se requiere
que los estados finales de M; dejen de serlo.

Formalmente M3 = (K7 U Ky, 1 U Yo, Ay UAs U{(p,e,s2)|p € F1}, s1, F2)

El funcionamiento de M3 es como sigue: cuando se recibe una palabra w = wywsq, wy € Ly,
wy € Lo, entonces se empieza procesando w; exactamente como lo haria M, hasta llegar

29Gin pérdida de generalidad podemos suponer que K; y Ky son disjuntos.
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O a,b
(@ (0
(a) Ndmero par de a (b) Terminan en bb

(¢) Combinacién de los dos

Figura 2.25: Combinacién de AFNs

hasta alguno de los antiguos estados finales de M;; entonces se empieza procesando ws como
lo haria M,; forzosamente debe ser posible llegar a un estado final de Ms, ya que por hipdtesis
M, acepta wq. En la figura se representa M3.

Ejemplo.- Construir un AFN que acepte el lenguaje en {a,b} donde las a’s vienen en
grupos de al menos dos seguidas, y los grupos de a’s que son repeticiones de aaa estan a
la derecha de los que son repeticiones de aa, como en baabaaa, aaa, baab o baaaaa. Esta
condicién no se cumple, por ejemplo, en bbaaabaa ni en aaabaaaa.

Solucion.- Un AFN, ilustrado en la figura 2.271(&), acepta palabras que contienen b’s y
grupos de aa en cualquier orden. Otro AFN —figura 2.27|(b)— acepta un lenguaje similar, pero
con grupos de aaa. La solucién es su concatenacién, que se presenta en la figura [2.27|c).
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Figura 2.26: AFN para la concatenacién de dos lenguajes

Figura 2.27: Concatenacion de dos AFN
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Figura 2.28: AFN a transformar en AFD

2.8.3. Equivalencia de AFD Y AFN

Los autématas finitos deterministicos (AFD) son un subconjunto propio de los no deter-
ministicos (AFN), lo que quiere decir que todo AFD es un AFN. @ Podria entonces pensarse
que los AFN son “mas poderosos” que los AFD, en el sentido de que habria algunos lenguajes
aceptados por algin AFN para los cuales no habria ningiin AFD que los acepte. Sin embargo,
en realidad no sucede asi.

Teorema.- Para todo AFN N, existe algin AFD D tal que L(N) = L(D).

Este resultado, sorprendente, pero muy tutil, puede probarse en forma constructiva, pro-
poniendo para un AFN cémo construir un AFD que sea equivalente.

El método que usaremos para pasar de un AFN a un AFD se basa en la idea de considerar
el conjunto de estados en los que podria encontrarse el AFN al haber consumido una cierta
entrada.

El método de los conjuntos de estados

Dado un AFN M, consideremos la idea de mantener un conjunto de estados @); en los que
seria posible estar en cada momento al ir consumiendo las letras de una palabra de entrada.

Por ejemplo, considérese el AFN de la figura [2.28, Queremos analizar qué sucede cuando
este AFN recibe la palabra baaaaab. Para ello, vamos llevando registro de los conjuntos de
estados en los que podria encontrarse el AFN. Inicialmente, podria encontrarse en el estado
inicial gg, pero sin “gastar” ningun caracter podria estar también en el estado ¢;, o sea que el
proceso arranca con el conjunto de estados Qo = {qo, ¢1}. Al consumirse el primer caracter,
b, se puede pasar de gy a gy o bien a ¢; (pasando por el ), mientras que del ¢; sélo se
puede pasar a ¢;. Entonces, el conjunto de estados en que se puede estar al consumir la b es
Q1 ={qo, 1} Y asi en adelante. La tabla siguiente resume los conjuntos de estados por los
que se va pasando para este ejemplo:

21Galvo por el hecho de que J es una funcién y A una relacién.
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Entrada FEstados

{CIO,%}
{QO7Q1}
{Q2,CI4}
{Qm qi, qg}
{Ch, q2, CI4}
{20, 01,43, 0u}
{Qh 42, 43, Q4}

{Q1}

e e|Ieie|eo

Puesto que el dltimo conjunto de estados {¢;} incluye a un estado final, se concluye que
la palabra de entrada puede ser aceptada. Otra conclusion —mucho mas 1til que la anterior—
es darse cuenta de que si consideramos a los conjuntos de estados (); como una especie de
“mega-estados” de cierto autémata, entonces hemos estado en realidad siguiendo los pasos
de ejecucion de un AFD con “mega-estados”.

Una vez que comprendemos lo anterior, nos damos cuenta de que, si en vez de considerar
una palabra en particular, como fue baaaaab, consideramos cada posible caracter que puede
llegar al estar en un “mega-estado”, entonces podremos completar un AFD, que debera ser
equivalente al AFN dado. E] Para poder ser exhaustivos, necesitamos organizar las entradas
posibles de manera sistematica.

Vamos a describir inicialmente el método sobre un ejemplo. Considérese el problema de
transformar a AFD el AFN de la figura[2.28 Vamos a considerar el conjunto de estados del
AFN en los que podria encontrarse éste en cada momento. El conjunto inicial de estados
estard formado por los estados del AFN de la figura [2.28 en los que se pudiera estar antes
de consumir el primer caracter, esto es, ¢y v ¢;. Dicho conjunto aparece en la figura M(a).

A partir de ahi, tras recibir un caracter a, el AFN pudiera encontrarse ya sea en ¢, 0 en
¢, los cuales incluimos en un nuevo conjunto de estados, al que se llega con una transicién
con a, como se ilustra en la figura (b); similarmente, a partir del conjunto inicial de
estados {qo,q1} con la letra b llegamos al mismo conjunto {qo, ¢;}, lo cual se representa con

un “lazo” a s{ mismo en la figura [2.29(b).

Con este mismo procedimiento se siguen formando los conjuntos de estados; por ejemplo,
a partir de {¢2,q4}, con una a se pasa a {gs, qo,q1}. Continuando asi, al final se llega al

diagrama de la figura [2.29(c).

Un detalle importante a observar en este procedimiento es que en ocasiones no hay estados
adonde ir; por ejemplo, a partir del conjunto de estados {¢2, ¢4}, con b no llegamos a ningun
estado. En casos como éste, consideramos que habra una transicion con b a un nuevo conjunto
de estados wvacio, esto es {}, como se aprecia en la figura M(c) Por supuesto, este estado
vacio tendra transiciones con a y con b a si mismo.

22La equivalencia formal se discute mas adelante.
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Ahora tomemos una pausa y respiremos hondo. Si nos alejamos del dibujo de manera
que no observemos que son conjuntos de estados, sino que vemos los circulos como estados,
nos daremos cuenta de que jhemos construido un AFD!. Unicamente falta determinar cuéales
de los nuevos estados son finales y cuales no. Obviamente, si uno de los conjuntos de estados
contiene un estado final del antiguo AFN, esto muestra que es posible que en ese punto el
AFN hubiera aceptado la palabra de entrada, si ésta se terminara. Por lo tanto, los estados
finales del nuevo autémata seran aquellos conjuntos de estados que contengan algtiin estado
final. Asi, en el AFD de la figura (d) marcamos los estados finales; ademéas borramos los
estados del antiguo AFN de cada uno de los circulos, y bautizamos cada conjunto de estados
como un estado.

Una transformacion inofensiva

Cuando queremos aplicar el método descrito en los parrafos precedentes, una dificultad
que puede presentarse es que algunas flechas del autémata tienen como etiquetas palabras de
varias letras, y desde luego no podemos tomar “un pedazo” de una transicion. Esta situacion
se aprecia en el AFN de la figura [2.30] En efecto, si a partir del estado inicial intentamos
consumir la entrada “a”, vemos que no hay una transicion que permita hacerlo, atiin cuando
hay una transicién (qo, aa,q;) cuya etiquete empieza con a.

Una solucién a esta dificultad es normalizar a 1 como méaximo la longitud de las palabras
que aparecen en las flechas. Esto puede hacerse intercalando |w| — 1 estados intermedios en
cada flecha con etiqueta w. Asi, por ejemplo, de la transicién (¢, aaa, q;) de la figura ,
se generan las transiciones siguientes: (¢1,a, ¢2), (¢2, @, q3), (¢3,a, ¢1), donde los estados ¢» y
g3 son estados nuevos generados para hacer esta transformacién.

Con esta transformacion se puede pasar de un AFN cualquiera M a un AFN M’ equiva-
lente cuyas transiciones tienen a lo més un caracter. Esta transformacion es “inofensiva” en
el sentido de que no altera el lenguaje aceptado por el AFN. 7]

Por ejemplo, para el AFN de la figura se tiene el AFN transformado de la figura
228

Formalizaciéon del algoritmo de conversion

Vamos ahora a precisar el método de conversiéon de AFN a AFD con suficiente detalle
como para que su programaciéon en computadora sea relativamente sencilla. Sin embargo,
no vamos a describir el algoritmo en términos de ciclos, instrucciones de asignacion, condi-
cionales, etc., que son tipicos de los programas imperativos. Mds bien vamos a presentar un
conjunto de definiciones que capturan los resultados intermedios en el proceso de conversién
de AFN a AFD. Estas definiciones permiten programar en forma casi directa el algoritmo

23Probar que esta transformacién preserva la equivalencia (ver ejercicios).



2.8. AUTOMATAS FINITOS NO DETERMINISTAS

Figura 2.29: Transformacion de AFN a AFD
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aa

Q asa
(s
Figura 2.30: AFN con transiciones de varias letras
.
E /b
ao b €
€

s
O

Figura 2.31: AFN con transiciones vacias

de conversion, si se utiliza un lenguaje de programacion adecuado, preferentemente de tipo
funcional, como por ejemplo Scheme [22].

Vamos a ir presentando las definiciones partiendo de la mas sencilla, hasta llegar a la
mas compleja.

Primero introducimos una funcién transicion(q,o), que a partir de un estado ¢ y un
caracter dado o obtiene el conjunto de estados a los que se puede llegar desde ¢ directa-
mente gastando el caracter o. Por ejemplo, tomando el AFN de la figura [2.31], tenemos que
transicion(qo,b) = {qo, q1}. Similarmente, transicion(qi,b) = {q:}, y transicion(gs,a) = {}.
Se puede definir matematicamente de la forma siguiente:

transicion(q,0) = {p | (¢,0,p) € A}

Sin embargo, esta definiciéon no toma en cuenta el hecho de que a veces es posible tener
transiciones que no gastan ningun caracter -aquellas marcadas con e. Asi, en la figura [2.2§]
se puede pasar de g3 a qo y luego continuar “gratis” de gy a g1, por lo que en realidad se tiene
que considerar a ¢; como uno de los estados a los que se puede llegar desde {q1, g2} gastando
una a. Por lo tanto, hay que modificar la definicién anterior.

Vamos a definir una funcién auxiliar cerr-(q) que es el conjunto de estados a los que
se puede llegar desde el estado ¢ pasando por transiciones vacias. Ademds, si con una tran-
sicion vacia se llega a otro estado que también tiene transiciones vacias, hay que continuar
anadiendo a cerr-¢(q) los estados a los que se llegue, hasta que no sea posible anadir nuevos
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estados. Por ejemplo, en la figura 2.31] cerr-e(q1) = {q1,q,}, cerr-e(q2) = {q2,q4}, y
cerr-£(qo) = {qo}-

cerr-€(q) se acostumbra llamar cerradura al vacio porque matematicamente es la cer-
radura de ¢ con la relacién {(z,y) | (z,¢,y) € A}. ]

La funcién cerr-(q) se puede definir como sigue:

Definicion.- La cerradura al vacio cerr-£(q) de un estado ¢ es el mas pequenio conjunto
que contiene:

1. Al estado ¢;

2. Todo estado r tal que existe una transicién (p,e,r) € A, con p € cerr-(q).

Es facil extender la definicion de cerradura al vacio de un estado para definir la cerradura
al vacio de un conjunto de estados:

Definicion.- La cerradura al vacio de un conjunto de estados CERR-¢({qi,...,q.}) es
igual a cerr-e(q)U, ..., U cerr-(qy,).

Ejemplo.- Sea el AFN de la figura Entonces CERR-c({q1,q3}) = {q1, 92,93, q4}-

Con la funcién de cerradura al vacio ya estamos en condiciones de proponer una versién de
la funcién transicion que tome en cuenta las transiciones vacias. Llamaremos a esta funcién
“transicion-¢”, y la definimos de forma que transicion-¢(q, o) sea el conjunto de estados a
los que se puede llegar desde ¢ gastando o, inclusive pasando por transiciones vacias. El
algoritmo es como sigue, para un estado g y un caracter o:

1. Calcular Qo = cerr-¢(q)

2. Para cada estado de Qq, obtener transicion(q, o), y unir todos los conjuntos obtenidos,
dando por resultado un conjunto Q.

3. transicion-e(q,0) = CERR-¢(Q1).

Por ejemplo, tomando la figura [2.31] para calcular transicion-¢(qi,a), los pasos serian
como sigue:

L. Qo={q1,9,q}

2. transicion(q1,a) = {q}, transicion(qz,a) = {qo2,q3}, v transicion(qs,a) = {}, por lo
que uniendo estos conjuntos, Q1 = {q1, 2, q3}

24Consultar la definicién de cerradura de una relacién en el capitulo de preliminares.
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3. transicion-¢(q1,a) = CERR-¢({q1,q2,3}) = {q1, G2, q3, qu }-

Como tltima definicién, es directo extender la funcién transicion-¢(q,0), que se apli-
ca a un estado y un caracter, a una funciéon que se aplique a un conjunto de estados y
un caracter; llamamos a esta funcién TRANSICION-¢£(Q,c), para un conjunto de estados
@ y un caracter o. Simplemente aplicamos transicion-¢(q, o) para cada uno de los esta-
dos ¢ € @, y juntamos los resultados en un solo conjunto. Por ejemplo, en la figura [2.31
TRANSICION-£({qo, 2}, a) = {40, 42, 43, G }-

Finalmente resumimos el proceso global de transformacion de un AFN a un AFD en el
siguiente algoritmo.

Algoritmo de transformacion AFN — AFD:

Dado un AFN (K, X, A, s, F), un AFD equivalente se obtiene por los siguientes pasos:

1. El conjunto de estados inicial es cerr-e(s).
2. El alfabeto del AFD es el mismo del AFN.
3. Para cada conjunto de estados () ya presente, hacer:

a) Anadir el conjunto de estados TRANSICION-¢(Q, o) para cada caracter o del
alfabeto, si no ha sido creado aun.

b) Anadir transiciones ((Q,0),Q,) para cada conjunto de estados @, creado en el
paso anterior.

4. Los conjuntos de estados que contengan un estado en F' seran finales.

Recuérdese que lo que llamamos “conjunto de estados” en el algoritmo se refiere a con-
junto de estados del AFN original, pero que seran simplemente estados en el AFD que se
estd creando.

Ahora bien, se supone que el AFD que hemos construido acepta el mismo lenguaje que el
AFN original. Para garantizar la infalibilidad del procedimiento descrito falta atn justificar
los siguientes puntos:

1. El procedimiento de construccion del AFD termina siempre
2. El grafo es un AFD

3. El AFD asi construido acepta el mismo lenguaje que el AFN original.
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La construccién de este grafo tiene que acabarse en algiin momento, porque la cantidad
de nodos est4 limitada a un maximo de 2%l donde K son los estados del AFN (;Porqué?).

El segundo punto se justifica dando la definicién completa del AFD: (Kp, X, dp, sp, Fp),
donde:

= Cada elemento de Kp es uno de los conjuntos de estados que aparecen en el grafo;
= Kl alfabeto X es el mismo que el del AFN original;

» Hay una tripleta (p,o,q) en dp y sélo una por cada flecha con etiqueta o que va del
conjunto de estados p al conjunto ¢ ;

» El estado inicial sp del AFD es igual a cerr-¢(s), donde s es el estado inicial del AFN;

= ['p es el conjunto de conjuntos de estados tales que en ellos aparece al menos un estado
final del AFN.

Finalmente, queda pendiente probar que el AFD (que llamaremos D) acepta el mismo
lenguaje que el AFN original N = (K, %, A;s, F). E Esta prueba se puede dividir en dos
partes:

L(N) C L(D). Si una palabra w = 040y . ..0,,0; € XU{e}, es aceptada por N, entonces
existe una secuencia estados qo, q1, - .., qns1, por los que pasa N en el calculo:

(90,0001 ... o] F {[q1, 01 o]l B E {lgn, o]l F [[gnaa, €]

Esta misma secuencia de estados puede seguirse en D, de la manera siguiente (vamos a
denotar con () mayusculas los “estados” de D):

Iniciamos el recorrido de N en ¢y —su estado inicial- y el recorrido de D en cerr-(qo),
que es el estado inicial de D. Hay dos posibilidades:

1. Sien N estamos en un estado ¢ € K —que aparece en () € Kp — y se presenta una
transicién vacia de ¢ a ¢/, en D vamos a permanecer en (), que va a contener tanto a
g como a ¢'.

2. Sien N estamos en un estado ¢ € K que aparece en () € Kp, y de ¢ pasamos a ¢, con
el caracter o, entonces en D pasamos a @), = TRANSICION-¢(Qp,0), que va a ser
un “estado” de D que va a contener a ¢, (;Porqué?).

25Se supone que N ya sufrié la “transformacién inofensiva” definida el la pagina
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Siguiendo este procedimiento, cuando la palabra de entrada se acaba al final del célculo,
en una configuracion [[gy, €]], g5 € K, habremos llegado en D a un estado Q5 € Kp que debe
contener a ¢, y que por ello es estado final, aceptando asi la palabra de entrada.

L(D) C L(N). Se puede seguir el procedimiento inverso al del punto anterior para re-
construir, a partir de un calculo que acepta w en D, la secuencia de estados necesaria en N
para aceptar w. Los detalles se dejan como ejercicio. QED

2.8.4. Mas diseno de AFN: Interseccion de lenguajes

Los problemas de disenio de AFN en que se combinan dos condiciones que se deben cumplir
simultaneamente son particularmente dificiles de resolver. Un ejemplo de estos problemas
seria: “obtener un AFN que acepte las palabras que contengan la cadena abb un niimero
impar de veces y ba un nimero par de veces”.

En los métodos de diseno de AFD propusimos trabajar con grupos de estados, y desde
luego esto es aplicable también a los AFN. Sin embargo, seria ain mejor contar con un
método modular que nos permitiera combinar de una manera sistematica las soluciones
parciales para cada una de las condiciones. Ahora bien, esto es posible, si consideramos la
siguiente propiedad de la interseccién de conjuntos:

Ly N Ly = (LU L5)*

Esta féormula sugiere un procedimiento préactico para obtener un AFN que acepte la
interseccion de dos lenguajes dados. Esto se ilustra en el siguiente ejemplo.

Ejemplo.- Obtener un AF para el lenguaje en el alfabeto {a, b} en que las palabras son de
longitud par y ademas contienen un nimero par de a’s. Este problema parece bastante dificil,
pero se vuelve facil utilizando la formula de interseccién de lenguajes. En efecto, empezamos
calculando los AFD para los lenguajes que cumplen independientemente las dos condiciones.
El AFD M, de la figura (a) acepta las palabras de longitud par, mientras que M, de
2.32(b) acepta las palabras con un nimero par de a’s.

Ahora obtenemos los AFD que aceptan el complemento de los lenguajes de M; y Mo,
cambiando los estados finales por no finales y viceversa; sean M y M.

Es muy importante notar que sélo es posible complementar AFD’s y no cualquier AFN.
En efecto, si en un AFN simplemente cambiamos estados finales por no finales y viceversa, en
general llegaremos a un resultado erréneo (esto es, el autémata resultante no es equivalente

al original). [

26Verifiquese  esto  tratando de  hacer  directamente la  complementacién del ~AFN
({1},{a,b},{(1,a,1)},1,{1}), el cual originalmente acepta las palabras con a’s, pero al cambiar fi-
nales por no finales ya no acepta ninguna palabra, en vez de aceptar las palabras con 0’s, como podriamos
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Figura 2.32: Interseccion de dos AFN

Combinamos estos automatas utilizando el procedimiento para la unién de lenguajes,
dando un AFN M; (figura [2.32(c)), el cual es convertido a un AFD M. Finalmente, este
AFD es simplificado y “complementado”, dando MY (figura [2.32(d)), que es el autémata
buscado.

2.9. Ejercicios

1. Trazar un diagrama de estados y eventos que modele:

a) El paso de una persona de un estado civil a otro: considere al menos los estados
civiles “soltero”, “casado”, “divorciado”, “viudo”. Considere al divorcio como un
proceso con duracién (no instanténeo).

b) El proceso de conexién de una terminal a un servidor Unix, desde el punto de
vista del usuario (esto es, recibir mensaje pidiendo nombre de usuario, suministrar
nombre de usuario, recibir peticién de “password”, etc.).

c) El proceso de retiro de dinero en un cajero automatico.

haber supuesto.
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Disenar directamentemAFD’s que acepten los siguientes lenguajes; para cada ejemplo,
establecer claramente lo que “recuerda” cada estado antes de trazar las transiciones.
Escribir ademas cada AFD resultante usando la notacion formal.

a) Las palabras en {a, b} que contienen un nimero par de a.

b) Las palabras del lenguaje en {0,1} con a lo mds un par de unos consecutivos.

c) las palabras del lenguaje en {a, b} que tienen un nimero impar de ocurrencias de

la subcadena ab.

Disenar usando el método del complemento un AFD que acepte las palabras en {a, b}
que no inicien con abab.

Utilizar el método de los grupos de estados (“nubes”) para disenar directamente (sin
pasar por AFN) AFD’s para los siguientes lenguajes:

a) lenguaje en {0, 1} donde las palabras no contienen la subcadena 11 pero si 00.

b) lenguaje en {a,b} donde las palabras son de longitud par y tienen un nimero par
de a.

c) lenguaje en {a,b} donde las palabras que contienen aba terminan en bb.

Minimizar cada uno de los AFD’s del problema anterior:

a) Por eliminacién de estados redundantes, usando la tabla.

b) Por clases de equivalencia.

Se puede usar el algoritmo de minimizacién para comparar dos AFD M; y Ms: dos
AFD son equivalentes ssi sus AFD minimos son iguales. Aqui la igualdad de M; y
M, se entiende en cuanto a la estructura de los AFD, pero los nombres de los estados
pueden ser diferentes.

Para simplificar un autémata M = (K,%,4, s, F'), que tiene dos estados equivalentes
G, qr € K, se quiere eliminar uno de ellos, sea ¢;. Definir formalmente cada uno de
los componentes del autémata M’, en que se ha eliminado de M el estado ¢;. Poner
especial cuidado en definir las transiciones en M’.

Calcular en detalle los autématas My, My y M3 del ejemplo de la seccién [2.4.2]

En comunicaciones digitales, la derivada de un tren de pulsos, p.ej. “0011100”, es una
senal que tiene “1” en las cifras que cambian, y “0” en las que permanecen constantes,
como “0010010” para el ejemplo. Disene un autémata de Moore para obtener la deriva-
da de la entrada.

Disenar un autémata de Mealy o de Moore que recibe un flujo de “1” y “0”, y cada
vez que recibe una secuencia “11” la reemplaza por “00”.

2TAqui “directamente” quiere decir que no se haga por transformacién de otro tipo de soluciones, tales
como las AFN.
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11. Decimos que los lenguajes de dos AFD son “casi iguales” si difieren unicamente en
una palabra. Dados M; y Ms, un procedimiento para decidir si L(M;) es casi igual a
L(Ms,) consiste en:

a) Hacer la comparacion de My y Ms, y detectar una palabra aceptada por M; pero
no por My, sea w.

S

Hacer un AFN que acepte unicamente w, sea M,,.

)
Combinar M, con M, dando un AFN M) que acepta L(Ms) U {w
2
)
)

o

SH

Convertir M) a AFD, dando M/

e) Comparar MJ con M;.

Pruebe la receta anterior con los AFD siguientes:

a) M= ({1,2},{a,b},{((1,a),2)((1,0),2),((2,0),2),((2,0),2)},1,{1})

b) é\%;)({&‘l, 5} {a, b}, {((3,0),4), ((3,0),5), (4, 0),5), ((4,0),5), ((5,),5), ((5,0),)},

12. Decimos que dos AFD M y M, son iguales —atencién: no “equivalentes”— si sélo difieren
eventualmente en el nombre de los estados. Definir formalemente la igualdad de AFDs
como una relacién de isomorfismo entre los estados de ambos.

13. Definir “lenguaje aceptado” para los AFN en términos de las configuraciones y del
paso de una configuracién a otra.

14. Dada la representacion formal de un AFD (K, X, 4, s, F'), obtener la representacién
formal de un AFN tal que los diagramas de ambos sean idénticos (esto es, hacer los
ajustes necesarios para poder considerar al AFD como AFN).

15.  Sean dos autématas finitos no deterministas AFN; y AF Ny

a) {Coémo es posible determinar si el lenguaje que acepta AF'N; es subconjunto del
que acepta AF N,? Justifique su respuesta. Ayuda: Utilizar la propiedad de los
conjuntos A C B ssi AUB = B.

b) Aplicar el procedimiento anterior para determinar si los AFN siguientes aceptan
0 no lenguajes complementarios:

1) ({1,2},{a,b},{(1,a,1),(1,b,1),(1,aa,2),(2,a,2),(2,b,2)},1,{2})
2) ({1,2,3},{a,b},{(1,a,2),(1,b,1),(2,a,3),(2,b,1), (3,a,3),(3,b,3)}, 1, {1,2})

16. Probar que al reemplazar toda transicién (p,uv,q) por (p,u,i) y (i,v,q), creando un
nuevo estado no final 7, el AFN seguird aceptando todas las palabras que aceptaba antes
de hacer la transformacién. (Sugerencia: hay que examinar los célculos que permitian
aceptar una palabra antes de la transformacién, y mostrar que en el AFN transformado
debe haber un calculo modificado que permite aceptar la misma palabra).
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18.

19.

20.
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Suponga una variante de los autématas finitos, los autématas con aceptacién (AA), en
que, ademas de los estados finales, hay estados de aceptacion, tales que si el autémata
pasa por uno de ellos, aunque sea una vez, la palabra sera aceptada, independiente-
mente del tipo de estado al que se llegue al agotar la palabra.

a) Dibuje un AA que acepte las palabras sobre {a,b} que comienzan por “bb” o
terminan con “aaa”’. (Marque los estados de aceptacién por nodos @).

b) Defina formalmente los AA, asi como la nocién de lenguaje aceptado por un
AA, usando para ello la relacién entre configuraciones C'1 + C2. (Evite en sus
definiciones el uso de “...").

c) Pruebe que los AA son equivalentes a los AF, dando un procedimiento para con-
struir un AF a partir de cualquier AA dado.

d) Pruebe su procedimiento del inciso anterior transformando el AA del primer inciso

a AF.

Suponga otra variante de los autématas finitos deterministas, los automatas con rec-
hazo (AR), en que, ademés de los estados finales, hay estados de rechazo, tales que si
el autémata pasa por uno de ellos, aunque sea una vez, la palabra es rechazada, inde-
pendientemente de que al final se llegue o no a un estado final o de rechazo. Se supone
que si no se pasa por un estado de rechazo, la aceptacion de una palabra depende de
que al final se llegue a un estado final.

a) Dibuje un AR que acepte las palabras sobre {a,b} que no contengan las cadenas
“abaab” ni “abba”. Marque los estados de rechazo por nodos ®.

b) Defina formalmente los AR, asi como la nocién de lenguaje aceptado por un
AR, usando para ello la relacién entre configuraciones C; F Cy. (Evite en sus
definiciones el uso de “...” ).

Un autémata finito casi determinista (AFCD) es un AFN en el cual nunca hay la posi-
bilidad de elegir entre dos caminos a tomar. Los AFCD son de hecho una abreviatura
de los AFD, donde se omiten los “infiernos”, y se pueden incluir varios caracteres en
un arco. Un ejemplo de AFCD esta en la siguiente figura [2.33]. ; Es posible probar que

a ¢}

Figura 2.33: Ejemplo de AFCD

un AFN dado es AFCD? Si es asi, proponga un método sistematico para probarlo.

Suponga unos autématas no deterministas con salida (AFNDS), en que las flechas son

(1992 (139

de la forma “w/y”, donde “w” y “y” son palabras formadas respectivamente con el
alfabeto de entrada y de salida (pueden ser la palabra vacia).
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21.

22.

23.

24.

25.

26.

27.

a) Defina formalmente los AFNDS.
b) Defina formalmente la nocién de funcién calculada.

c) Se dice que un AFNDS es “confluente” cuando la salida obtenida es la misma
independientemente de qué trayectoria se siga cuando haya varias opciones.

1) Pruebe que todo autémata de Mealy, visto como AFNDS;, es confluente.

2) (Es posible decidir si un AFNDS es confluente? Pruebe su respuesta pro-
poniendo un procedimiento para decidir, o mostrando porqué es imposible.

Un estado “q” de un AFD es “inaccesible” si no hay ninguna trayectoria que, partiendo
del estado inicial, llegue a “q”. Esta, sin embargo, no es una definicién formal.

a) Definir formalmente cudndo un estado “q” es inaccesible, utilizando para ello la
relacion de paso entre configuraciones.

b) Proponer un procedimiento para obtener el conjunto de los estados accesibles en
un AFD. (Ayuda: considerar cémo evoluciona el conjunto de “estados accesibles”
ante posibles transiciones).

Decimos que un AFN “se traba” cuando no hay una transicién que indique adonde ir
ante el simbolo de entrada. Pruebe que es posible/no es posible saber, dado un AFN
M en particular, si M podria o no “trabarse” para alguna palabra w (proponga un
método de decision).

Para una palabra w, un sufijo de w es cualquier subcadena s con que termina w, es
decir zs = w, tal que w, z,s € ¥*. Si L es un lenguaje, Sufijo(L) es el conjunto de
sufijos de las palabras de L. Demuestre que si hay un AFN que acepte R, Sufijo(R)
también es aceptado por algin AFN.

Hemos visto que es posible disenar modularmente un AFN que acepte la interseccién
de los lenguajes aceptados por M; y M,. jSera también posible combinar My y M, de
manera que obtengamos un AFN que acepte la diferencia L; — Ly de sus lenguajes?
Proponga un método para hacerlo.

i Es regular el reverso de un lenguaje regular? (El reverso de una palabra oy03 .. .0, €s
Op .. 01).

Consideremos el problema de saber si el lenguaje aceptado por un AFD M es vacio o
no lo es.

a) Una primera idea seria simplemente verificar si el conjunto de estados finales es
vacio jPorqué no funciona esta idea ?

b) Proponer un procedimiento que permita decidir si L(M) = () (Ayuda: Utilizar la
comparacion de autématas).

¢) Aplicar el procedimiento de (b) para verificar si el lenguaje del siguiente AFD
M es vacio: ({1,2,3}, {a,b}, {((1,a),2), ((1,b),1), ((2,a),2), ((2,0),1), ((3,a),2),
((3,0), D}, 1, {3})

Probar el lema de la seccién 2.6l
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Capitulo 3

Expresiones Regulares y Gramaticas
Regulares

En este capitulo estudiaremos la clase de lenguajes aceptados por los AF, la de los
lenguajes regulares, que es al mismo tiempo una de las de mayor utilidad practica. Como se
aprecia en la figura [I.3] los Lenguajes Regulares son los més simples y restringidos dentro
de la jerarquia de Chomsky que presentamos anteriormente. Estos lenguajes pueden ademas
ser descritos mediante dos representaciones que veremos: las Fxpresiones Regulares y las
Gramdaticas Regulares.

3.1. Lenguajes Regulares

Los lenguajes requlares se llaman asi porque sus palabras contienen “regularidades” o
repeticiones de los mismos componentes, como por ejemplo en el lenguaje L, siguiente:

Ly = {ab, abab, ababab, abababab, . . .}

En este ejemplo se aprecia que las palabras de L; son simplemente repeticiones de “ab”
cualquier numero de veces. Aqui la “regularidad” consiste en que las palabras contienen “ab”
algiin nimero de veces.

Otro ejemplo mas complicado seria el lenguaje Lo:
Loy = {abe, cc, abab, abcee, ababe, . . .}

La regularidad en Ly consiste en que sus palabras comienzan con repeticiones de “ab”,

79
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seguidas de repeticiones de “c”. Similarmente es posible definir muchos otros lenguajes basa-
dos en la idea de repetir esquemas simples. Esta es la idea basica para formar los lenguajes
Regulares.

Adicionalmente a las repeticiones de esquemas simples, vamos a considerar que los lengua-
jes finitos son también regulares por definicion. Por ejemplo, el lenguaje L3 = {anita, lava, la, tina}
es regular.

Finalmente, al combinar lenguajes regulares uniéndolos o concatendndolos, también se
obtiene un lenguaje regular. Por ejemplo, L; U Ly = {anita, lava, la, tina, ab, abab, ababab,
abababab, ...} es regular. También es regular una concatenacion como LsLs = {anitaanita,
anitalava, anitala, anitatina, lavaanita, lavalava, lavala, lavatina, }E]

3.1.1. Definicién formal de Lenguajes Regulares

Definicion.- Un lenguaje L es regular si y solo si se cumple al menos una de las condiciones
siguientes:

= [ es finito;

= [ es la unién o la concatenacion de otros lenguajes regulares Ry y Ry, L = Ry U Ry o
L = Ry R, respectivamente.

» L es la cerradura de Kleene de algtn lenguaje regular, L = R*.

Esta definicién nos permite construir expresiones en la notacién de conjuntos que repre-
sentan lenguajes regulares.

Ejemplo.- Sea el lenguaje L de palabras formadas por a y b, pero que empiezan con a,
como aab, ab, a, abaa, etc. Probar que este lenguaje es regular, y dar una expresién de
conjuntos que lo represente.

Solucion.- El alfabeto es 3 = {a, b}. El lenguaje L puede ser visto como la concatenacién
de una a con cadenas cualesquiera de a y b; ahora bien, éstas ultimas son los elementos de
{a,b}*, mientras que el lenguaje que sélo contiene la palabra a es {a}. Ambos lenguajes son
regulares. | Entonces su concatenacién es {a}{a, b}*, que también es regular.

'Recuérdese que la concatenacién de dos lenguajes L, v Lo se define como el conjunto de las palabras
formadas concatenando una de L; con una de Lo, ver seccidn [1.4.2

2En efecto, {a} es finito, por lo tanto regular, mientras que {a,b}* es la cerradura de {a, b}, que es regular
por ser finito.
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3.2. Expresiones regulares

La notacién de conjuntos nos permite describir los lenguajes regulares, pero nosotros
quisiéramos una notaciéon en que las representaciones de los lenguajes fueran simplemente
texto (cadenas de caracteres). Asi las representaciones de los lenguajes regulares serfan sim-
plemente palabras de un lenguaje (el de las representaciones correctamente formadas). Con
estas ideas vamos a definir un lenguaje, el de las expresiones regulares, en que cada palabra
va a denotar un lenguaje regular.

Definicion.- Sea ¥ un alfabeto. El conjunto E'R de las expresiones regulares sobre 3
(1P k)

contiene las cadenas en el alfabeto XU {“A”, “47, “@” 7«7 )" “dp”}1 que cumplen con
lo siguiente:

1‘ (C/\” y Léq)” G ER
2. Sio e X, entonces 0 € FR.

3. Si El,EZ 6 EIR’ eIltOIlCeS (C(?DEl 4(+77E2 44)77 E ER7 (L(??El “.”EQ 46)77 e ER’ (L(??El L()*?J
€ ER.

W

Las comillas enfatizan el hecho de que estamos definiendo cadenas de texto, no
. " : . . .
expresiones matemaéticas E] Es la misma diferencia que hay entre el caracter ASCII “0”, que
se puede teclear en una terminal, y el nimero 0, que significa que se cuenta un conjunto sin
ningin elemento.

Ejemplos.- Son ER en {a,b, c} las siguientes: “a”, “((a+b))*”, “((a®b)ec)”. No son FR:
“ab”’ (4((a PY b(c)*)77 .

3.2.1. Significado de las ER

Las E'R son simplemente formulas cuyo propdsito es representar cada una de ellas un
lenguaje. Asi, el significado de una E'R es simplemente el lenguaje que ella representa.

Por ejemplo, la ER “®” representa el conjunto vacio {}.

Para comprender intuitivamente la manera en que las F'R representan lenguajes, consid-
eremos el proceso de verificar si una palabra dada w pertenece o no al lenguaje representado
por una F'R dada. Vamos a decir que una palabra “empata” con una expresion regular si es
parte del lenguaje que esta representa.

La palabra vacia € “empata” con la ER A.

3Este tltimo es el caso de las expresiones de conjuntos para describir los conjuntos regulares.
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Una palabra de una letra como “a” empata con una E'R consistente en la misma letra
((b?? empata Ltb”

(( 2

Luego, una palabra w = wuw, esto es w esta formada de dos pedazos u y v, empata con
una expresién (U e V) a condicién de que u empate con U y v empate con V. Por ejemplo,
abc empata con (a e (be c)) porque abe puede ser dividida en a y be, y a empata con a en la
ER, mientras que bc empata con (b e ¢) separando b y ¢ de la misma manera.

Similarmente, cuando la ER es de la forma (U + V'), puede empatar con una palabra w
cuando esta empata con U o bien cuando empata con V. Por ejemplo, bc empata (a+ (bec)).

Una palabra w empata con una expresion U* cuando w puede ser partida en pedazos
w = wiws, ... de tal manera que cada pedazo w; empata con U. Por ejemplo, caba empata
con (((c + b) @ a))* porque puede partirse en los pedazos ca y ba, y ambos empatan con
((c+b) ®a), lo cual es facil de verificar.

A continuacién definiremos formalmente la correspondencia entre la representacién (una
ER) y el lenguaje representado.

Definicion.- El significado de una EFR es una funcién £ : ER — 2% (esto es, una funcién
que toma como entrada una expresion regular y entrega como salida un lenguaje), definida
de la manera siguiente:

1. L(“®") =0 (el conjunto vacio)

2. L(*A”) = {e}

3. L(%07) ={o},0€X.

4 L(“CR*e"S*Y ) = L(R)L(S),R,S € ER

5. L(“("R“47S%) ) = L(R)UL(S), R, S € ER
(

6. L£(“("R%)* )=L(R)*,ReER

Para calcular el significado de una E'R en particular, se aplica a ella la funciéon L. Las
ecuaciones dadas arriba se aplican repetidamente, hasta que el simbolo £ desaparezca.

Ejemplo.- El significado de la ER “(((a+b))* @ a)” se calcula de la manera siguiente:

L“(((a+0b)*ea)”)=L(“((a+b)”")L(“a”) -usando

= L(“(a+1b)")"{a} -por[fy

= (L(“a”) UL(“b"))*{a} -aplicando [f]

= ({a} U {b})*{a} = {a,b}*{a} -usando [3| y simplificando.
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Este es el lenguaje de las palabras sobre {a, b} que terminan en a.

Con objeto de hacer la notacién menos pesada, vamos a simplificar las ER de la manera
siguiente:

W

s Omitiremos las comillas

= Se eliminan los paréntesis innecesarios. Se supone una precedencia de operadores en el

(1Pl

orden siguiente: primero “*”, luego “e” y finalmente “4”. Ademas se supone que los

L7

operadores “o” y “+” son asociativos.

(19X

= Eventualmente omitiremos el operador “e”, suponiendo que éste se encuentra implicito
entre dos subexpresiones contiguas.

Ejemplos.- a, (a + b)*, abe, ac* son tomados como “a”, “((a + b))*”, “((a @ b) @ ¢)” y
“(a ® (c)*)”, respectivamente.

Ejemplo.- Encontrar una expresién regular para el lenguaje en {a,b}* en el que inmedi-
atamente antes de toda b aparece una a.

Solucion.- Una posible ER es (a + ab)*

Una solucién aceptable para este tipo de problemas debe cumplir dos caracteristicas:

1. Correccion.- Las palabras que represente la ER propuesta deben satisfacer la descrip-
cién del problema (por ejemplo, para el problema del ejemplo, la solucién a*(a + b)*
no es adecuada porque representa algunas palabras, como abb, que no satisfacen la
condicién de que toda b esté inmediatamente precedida por una a;

2. Completez.- La ER propuesta debe representar todas las palabras que satisfagan la
condicién. Asi, para el problema del ejemplo, la solucién (ab)* no es adecuada porque
hay palabras tales como aab, pertenecientes al lenguaje, que no son representadas por
dicha ER.

3.2.2. Metodologia de diseno de las ER

Al tratar de encontrar una ER para un lenguaje dado, mientras mas complejo sea el
lenguaje es obvio que resulta mas dificil encontrar por pura intuicién dicha ER. En estos casos
puede ser conveniente trabajar en forma metodica. Una técnica que funciona en muchos casos
consiste en determinar primero la estructura de la ER, dejando unos “huecos” pendientes
para resolverse luego. Estos huecos, que llamaremos contexrtos, son también lenguajes para
los que habréa que encontrar una ER.
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Ejemplo.- Obtener una ER para el lenguaje en el alfabeto {a, b, ¢} en que las palabras con-
tienen exactamente una vez dos b contiguas. Por ejemplo, las palabras aabb, babba, pertenecen
al lenguaje, pero no aaba, abbba ni bbabb.

Para resolver este problema, expresamos primero la estructura de la ER de la manera
siguiente:
< contexto; > bb < contextoy >

Podemos ver que en esta expresion aparecen directamente las bb que deben estar en la ER,
rodeadas por otras dos ER, que son < contexto; > y < contextos >. Ahora el problema es
determinar qué ER corresponden a < contexto, >y < contextos >, lo cual es un subproblema
del problema original.

El lenguaje de < contexto; > comprende a las palabras que no tienen bb y ademas no
terminan en b. E| Esto es equivalente a decir que toda b esta seguida de una a o una c. Esto
quiere decir que la ER de este contexto va ser de la forma:

(...0(a+c)..)"

13

donde los detalles que faltan estan representados por las “...”. Lo que falta por considerar
es que puede haber cualquier cantidad de a’s o ¢’s en el < contexto; >, por lo que dicho
contexto queda como:

(bla+c)+a+c)

Similarmente se puede obtener la expresién para < contextos >, que es (a + ¢+ (a + ¢)b)*,
por lo que finalmente la ER del problema es:

(bla+c)+a+c)bbla+c+ (a+c)b)”

Un importante elemento de metodologia -que se aplico en este ejemplo- consiste en trans-
formar los enunciados de lenguajes de manera que sean mas facilmente representables por
ER. En particular, los enunciados “negativos”, del tipo “...las palabras que no contengan
bb” son particularmente dificiles, porque en las ER no hay ningiin operador para representar
“lo que no forma parte del lenguajes”, sino que los operadores (como la unién o la estrella de
Kleene) tienden a anadir més palabras. En consecuencia, es necesario convertir un enunciado
sobre lo que no se permite en otro enunciado sobre lo que si se permite. Por ejemplo, si en un
lenguaje las palabras no deben contener la cadena “bb”, ;qué es lo que si pueden contener?
Aqui podemos hacer un analisis por casos, considerando que podemos tener una b sola, o
también una b seguida de una a. Como hay dos casos, podemos pensar en utilizar el operador
“4+7” para combinar esos casos, y asi en adelante.

También puede ser util modificar la forma légica en que se enuncian los lenguajes. Por
ejemplo, el enunciado “palabras que si empiezan en 00, terminan en 11”7, puede modificarse
de la manera siguiente: “palabras que ya sea no empiezan en 00 o bien terminan en 117,
utilizando la conocida equivalencia de légica P = (Q = =P V (). Lo que aqui se gana es que

4Pues si terminaran en b, esta tltima b se juntaria a la bb de la mitad, violando la condicién del problema.
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hacemos evidente la estructura de casos, que se puede resolver usando el operador “4” de las
ER. Por supuesto, ademas aparecié en este enunciado una parte expresada negativamente,
“...no empiezan en 00", pero ésta es facil de transformar en un enunciado positivo, como
por ejemplo “...son la palabra vacia, o bien empiezan en 1, o bien empiezan en 017, el cual
también se resuelve facilmente por casos.

Ejemplo.- Obtener una ER que represente el lenguaje en {a,b} tal que si una palabra
contiene la subcadena aa, entonces no debe contener bb.

Solucién: Transformando légicamente el enunciado, representamos la condicién “contiene
la subcadena aa” por el simbolo C, la condicion “no contiene bb” por —Cy,. Entonces la
aas bb
condicién del problema es:

Caa = _‘Cbb

Por las equivalencias légicas vistas en la seccién [1.2] esta condicion es equivalente a:

ﬁC’aa \% ﬁC’bb

Es decir que las palabras no contienen aa o bien no contienen bb. Esto corresponde a la
estructura:
< sinoaa > + < sin bb >

Vamos a resolver la primera parte, siendo la otra enteramente similar. Para que las
palabras no contengan aa, pueden contener cualquier secuencia con b, o bien secuencias
en que toda a esté separada de otra a por al menos una b. Como la cantidad de a’s es
cualquiera, necesariamente debemos hacer intervenir una estrella de Kleene, como en la
estructura siguiente:

b+ a )T

Una idea para precisar mas esta estructura seria pensar que antes y después de la a debe
haber una b, como en la expresién (b + bab)*. Aunque esta ER es correcta, no es completa,
pues hay palabras como ab que no son representadas por ella. Entonces pensaremos que
después de la a esté la b que la separa de otras eventuales a’s. La estructura asi se precisa: E|

o (b+ab) ...

Ahora bien, pensando en qué puede aparecer al inicio y al final de una palabra, la subex-
presion (b4 ab)* por si misma es ya capaz de representar palabras que comiencen ya sea con
a o con b, por lo que podemos omitir el contexto del lado izquierdo. En cambio, (b+ ab)* no

[13

5 Los “contextos” aqui fueron representados simplemente con “...”. El uso de puntos suspensivos o de
nombres para representar un contexto es simplemente cuestiéon de conveniencia en cada caso.
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es capaz de representar palabras terminadas en a, como ba. Habria que anadir esta posibili-
dad. Pero si hacemos que el contexto derecho sea a, vamos a excluir palabras tales como ab.
Entonces el contexto derecho puede ser a o b, que se resuelve con la expresiéon a + b, dando
como resultado:

(b+ ab)*(a+b)

Pero atin esta expresion presenta un problema, que es el no poder representar a la palabra
vacia. Esto se puede resolver de dos maneras: la menos elegante, que es simplemente anadir
“+A” ala ER, quedando como (b+ ab)*(a+b)+ A, o una solucién més elegante que consiste
en observar que la expresion (b + ab)* ya representaba palabras terminadas en b, por lo que
en realidad el contexto derecho consistiria en agregar una a o nada en absoluto, quedando
la ER como (b+ ab)*(a 4+ A). Este es un resultado correcto y completo. Dejamos pendiente
la solucion del contexto < sin bb >.

En la seccién de ejercicios de este capitulo se proponen muchos problemas de diseno
de ER. Es importante emprender estos ejercicios siguiendo los elementos de metodologia
que hemos presentado (adaptar expresiones conocidas, diseniar estructuras con “contextos”,
transformar los enunciados), y no dejandose llevar por la primera “corazonada genial”, que
generalmente nos lleva a expresiones erréneas, principalmente por incompletez.

3.2.3. Equivalencias de Expresiones Regulares

Las expresiones regulares no representan en forma tnica a un lenguaje -esto es, la funcion
L : ER —2% descrita arriba no es inyectiva. Esto quiere decir que puede haber varias ER
para un mismo lenguaje, lo cual desde luego no es conveniente, pues al ver dos ER distintas
no podemos aun estar seguros de que representan dos lenguajes distintos. Por ejemplo, las
ER (a+b)* y (a*b*)* representan el mismo lenguaje.

Peor ain, a diferencia de los AFD que vimos en el capitulo [2| no existen procedimientos
algoritmicos para comparar directamente dos ER; la comparacion tiene que hacerse pasando
por una conversion a AFD que veremos mas adelante.

Sin embargo, en algunos casos resulta 1util aplicar ecuaciones de equivalencia entre las
ER, que son expresiones de la forma FR; = FR,, cuyo significado es que el lenguaje de ER;
es el mismo que el de ER, (contienen las mismas palabras).

Por ejemplo, la equivalencia R + S = S + R quiere decir que la suma de expresiones
regulares es conmutativa, por lo que si tenemos dos ER especificas, como a* y b*ab, entonces
la ER a*+b*ab sera equivalente a la ER b*ab+a*, y ambas representaran las mismas palabras.

La equivalencia R + S = S + R puede ser muy obvia, pues se basa directamente en la
conmutatividad de la unién de conjuntos, pero hay otras como (R*S)* = A+ (R+ 5)*S que
son mucho menos intuitivas.
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A continuacién damos una lista de las principales equivalencias de ER, clasificadas en [J]
grupos:

. R+S=S+R, (R+S)+T=R+(S+T), R+®=®+R=R, R+R=R
2. ReA=NeR=R Reb=0eR=, (ReS)eT =Re(SeT)

3. Re(S+T)=ReS+ReT, (S+T)eR=SeR+TeR

4, R*=R'eR* =(R)" =(A+R) & =np"=¢

5. R*=AN+RR*

6. (R+S)" = (R + 5%)* = (R*S*)* = (R*S)*R* = R*(SR*)* # R* + S*

7. R*R=RR*, R(SR)*=(RS)*R

8. (R*S)*=A+ (R+5)*S, (RS*)*=A+RR+59)"

90 R=SR+TssiR=5T, R=RS+Tssi R=TS5"

La prueba de varias de estas equivalencias sigue un mismo esquema, que vamos a ejem-
plificar demostrando R(SR)* = (RS)*R (grupo[7)). Esta equivalencia se puede probar en dos
partes: R(SR)* C (RS)*Ry (RS)*R C R(SR)*.

la. parte- Sea x € R(SR)*. Entonces x es de la forma x = r¢s171827r3 ... s,7,. Pero
esta misma palabra puede agruparse de otra manera: x = (r¢s1)(r1S2) ... (rp—15,)7r,. Por lo

tanto, x € (RS)*R.
2a. parte.- Se prueba similarmente. QED.

Las equivalencias de estos [J] grupos pueden usarse para verificar que dos ER denotan el
mismo lenguaje. La técnica a usar para verificar que P = @), donde P,Q) € ER, es formar
una serie de equivalencias P = Ry = Ry = ... = R, = @, usando las equivalencias dadas
arriba para hacer reemplazamientos.

Ejemplo: Verificar que las ER (ab+ a)*a y a(ba + a)* son equivalentes, usando las equiv-

alencias presentadas arriba.

Solucion:
(ab+ a)*a = (a + ab)*a -por (1))
= (a*ab)*a*a -por (6));

= ([a*a]b)*[a*a] -agrupamos términos;
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Figura 3.1: Representaciones de lenguajes

— [o*a] (bfaal)* -por (@
= aa*(baa*)* - aplicando (7)) a los términos entre corchetes;
= [a][a*(baa*)*] -agrupando;

= a(a + ba)* - por (©);

= a(ba + a)* - por (1)).

El uso de estas equivalencias para verificar que dos ER denotan el mismo lenguaje en
general no es muy practico, pues en muchos casos es dificil ver intuitivamente qué equivalencia
conviene aplicar, ademaés de que hay el riesgo de que al aplicarla nos alejemos de la solucién
en vez de acercarnos a ella. Para empeorar la situacion, no hay metodologias generales que
nos ayuden a disenar estas pruebas. Es por esto que normalmente probaremos la equivalencia
de dos ER usando el procedimiento de conversiéon a AFD que veremos en la seccién [3.4]

3.3. Limites de las representaciones textuales

Nos podemos preguntar qué tantos lenguajes se pueden representar con las ER. En otras
secciones mostraremos que dichos lenguajes coinciden con los que pueden ser aceptados por
algin autémata finito. Por lo pronto, en esta secciéon vamos a establecer un limite que existe
no sélamente para las ER, sino para cualquier forma de representar lenguajes mediante texto.

En la figura|3.1|se ilustra el mapeo que pretendemos entre los lenguajes, que son elementos
del conjunto 2%, y las cadenas de caracteres que los representan, que son elementos de X*.
Desde luego, quisiéramos que una cadena de caracteres no pudiera representar a mas de un
lenguaje, pues de otro modo no sabriamos a cuél de ellos representa. En cambio, es aceptable
que un lenguaje tenga varios representantes.

Por ejemplo, el conjunto de todas las palabras formadas por a’s y b’s, que es el conjunto
infinito {e, a, b, ab, ba, aaa, aab, . ..}, puede ser representado mediante la cadena de caracteres
“la,b}«", que es una palabra formada por caracteres del alfabeto {“a”,“b”,“{”,“}” “x” «7”
}. Como vemos en este ejemplo, una cadena de caracteres de 6 caracteres puede representar
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todo un lenguaje infinito.

En vista del éxito obtenido, quisiéramos tener, para cada lenguaje posible, ya sea fini-
to o infinito, un representante que fuera una de estas cadenas finitas de caracteres. Existe
sin embargo un problema: para poder hacer lo anterior se necesitaria que hubiera tantos
representantes (cadenas de caracteres) como lenguajes representados. Ahora bien, aunque
parezca sorprendente, jhay mas lenguajes posibles que cadenas de caracteres para represen-
tarlos! Esto se debe a que la cantidad de lenguajes posibles es incontable, mientras que las
representaciones de dichos lenguajes son contables.

Vamos a probar el siguiente
Teorema.- El conjunto de los lenguajes en un alfabeto X finito es incontable.

Nos apoyaremos en el célebre teorema de Cantor, que establece que el conjunto potencia
de los nimeros naturales, 2V, es incontable. En efecto, observamos que el conjunto de todos
los lenguajes, que es 2%, tiene el mismo tamano que 2V, pues N y ¥* son del mismo tamaiio,
que es lo mismo que decir que X* es contable, lo cual es sencillo de probar E] Asi podemos
concluir que, como 2V es incontable, 2% también lo es. QED.

Se sabe que los conjuntos incontables son propiamente méas “grandes” que los contables,
en el sentido de que un conjunto contable no puede ser puesto en correspondencia uno a
uno con uno incontable, pero si con subconjuntos de éste. Asi resulta que la cantidad de
lenguajes a representar es mayor que la cantidad de cadenas de caracteres que pudieran
ser representaciones de aquellos. La conclusion es que no todos los lenguajes pueden ser
representados en forma finita.

3.4. Equivalencia de expresiones regulares y autématas
finitos

Aun cuando por varios ejemplos hemos visto que lenguajes representados por expre-
siones regulares son aceptados por autéomatas finitos, no hemos probado que para cualquier
expresion regular exista un autémata finito equivalente, y viceversa. Esto se establece en el
siguiente

Teorema de Kleene.- Un lenguaje es regular si y solo si es aceptado por algiin autémata
finito.

Vamos a presentar una prueba de esta afirmacion, no tanto por el interés matematico que
tiene, sino porque nos brinda procedimientos estandar extremadamente 1tiles para transfor-
mar una expresion regular en autémata finito y viceversa.

6La prueba es uno de los ejercicios al final de esta seccién.
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A n)—

Figura 3.2: Una grafica de transicién
3.4.1. Conversion de ER a AF

La prueba de que si un lenguaje es regular entonces es aceptado por un AF consiste en
dar un procedimiento para transformar en forma sistematica una expresion regular en un
autémata finito que acepte su lenguaje. Dicho procedimiento se describe a continuacion:

La idea es hacer una transformacion gradual que vaya conviertiendo la ER en AF.

Para hacer la transformacion gradual de ER a AFN se requiere utilizar alguna repre-
sentacion de los lenguajes regulares que sea intermedia entre las ER y los AFN.

Una posible solucion es el uso de las grdficas de transicion. Estas iltimas son esencial-
mente AFN en que las etiquetas de las flechas tienen expresiones regulares, en lugar de
palabras. Las gréficas de transiciéon (GT) son por lo tanto quintuplos (K,%, A, s, F) en
donde A € K x FR x K.

En la figura se ilustra un ejemplo de GT. En este ejemplo en particular es facil ver
que debe aceptar palabras que tienen primero una sucesion de a’s, luego repeticiones de ab,
y finalmente repeticiones de b’s. Esta GT se representaria formalmente como el quintuplo:

({QOa QI}7 {CL, b}7 {(QO, a, QO); <QO7 (ab)*, QI)v <QI7 b7 QI)}; qo, {QI})

Los AFN son un subconjunto propio de las GT, puesto que las palabras en las etiquetas
de un AFN pueden ser vistas como expresiones regulares que se representan a si mismas.

Ahora procederemos a describir el procedimiento de transformacién de ER a AFN.

A partir de una ER es trivial obtener una GT que acepte el mismo lenguaje. En efecto,
sea R una ER; entonces, si

G = ({90, a}, 2, {(q0, R, q1)}, 00, {1 })

entonces L(G) = L(R). Por ejemplo, la GT asociada a la ER (a + ba)*bb se ilustra en la

figura [3.3(a).

Lo que falta por hacer es transformar gradualmente Gy en Gs, luego en Gj, etc., hasta
llegar a un G,, tal que en las flechas no haya més que caracteres solos (o bien la palabra
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Cuadro 3.1: Eliminaciéon de operadores para pasar de ER a AF

Reemplazar Por

R, R R R
(D ——>
. R1+R2 . e 0

O Uk

vacia). En efecto, G,, €AFN. Este es un proceso de eliminacion gradual de los operadores de
las ER.

Para eliminar los operadores de las ER en G;, aplicamos reemplazamientos de ciertas
transiciones por otras, hasta que no sea posible aplicar ninguno de estos reemplazamientos.
Las transformaciones elementales se ilustran en la Tabla [3.1]

Ejemplo.- Dada la ER (a + ba)*bb, obtener el AFN que acepta el lenguaje de dicha ER.
Solucidn: Aplicamos una sucesién de transformaciones, ilustradas en las figuras[3.3((a)-(d).

La equivalencia de G4, Gs, ..., G, se asegura por el hecho de que cada una de las
transformaciones preserva la equivalencia.

3.4.2. Conversion de AF a ER

La prueba de la parte “si” del teorema consiste en dar un procedimiento para trans-

formar en forma sistematica un autémata finito en una expresion regular equivalente. Un
procedimiento para hacerlo consiste en ir eliminando gradualmente nodos de una GT, que
inicialmente es el AFN que se quiere transformar, hasta que unicamente queden un nodo
inicial y un nodo final.

Dicho procedimiento comprende los siguientes pasos:

1. El primer paso en este procedimiento consiste en anadir al autémata finito un nuevo
estado inicial ¢, mientras que el antiguo estado inicial gy deja de ser inicial, y un nuevo
estado final f, mientras que los antiguos estados finales ¢; € F' dejan de ser finales;
ademads se anade una transicién vacia del nuevo estado inicial al antiguo, (i,¢,qg), v
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: . (a+ba) bb ‘
(a)
— . (a+ba)” . bb

(b)

atba

()

Figura 3.3: Transformacion ER—AF
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@ a (But - +B) Vs }@

(¢) GT tras la eliminacién de nodos intermedios

Figura 3.4: Eliminacién de nodos

varias transiciones de los antiguos estados finales al nuevo: {(¢;,¢, f)|¢; € F'}. Esta
transformacion tiene por objeto que haya un estado inicial al que no llegue ninguna
transicién, y un solo estado final, del que no salga ninguna transicién. Esta condiciéon
se requiere para llevar a cabo el siguiente paso. [| Desde luego, hay muchos autématas
que ya cumplen estas condiciones sin necesidad de anadir un nuevo estado inicial o un
nuevo estado final.

2. El segundo paso consiste en eliminar nodos intermedios en la GT. Se llama nodo inter-
medio a aquel que se encuentra en una trayectoria entre el estado inicial y el final. El
procedimiento de eliminacién de nodos intermedios es directo. La idea es que al suprim-
i el nodo en cuestion, no se alteren las cadenas que hay que consumir para pasar de
uno a otro de los nodos vecinos. En otras palabras, al suprimir dicho nodo, se deben
reemplazar las transiciones que antes tomaban ese nodo como punto intermedio para
ir de un nodo vecino a otro, por otras transiciones que vayan del nodo vecino origen
al nodo vecino destino, pero ahora sin pasar por el nodo eliminado. Para comprender
cabalmente el procedimiento, hay que seguir el ejemplo dado mas adelante. En la figura
3.4|a) se representa un nodo ¢ intermedio que se quiere eliminar, y los nodos entre los
que se encuentra. Este esquema se adapta a todos los casos que pueden presentarse. En
dicha figura, «;,3;, 7; son expresiones regulares. Para eliminar el nodo ¢, reemplazamos
la parte de la G'T descrita en la figura (a) por el subgrafo representado en la figura

"Mas adelante se presenta un ejemplo de cada una de las operaciones involucradas en este procedimiento.
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3.4(b). Los nodos intermedios se pueden eliminar en cualquier orden.

3. Cuando después de aplicar repetidamente el paso 2 ya no sea posible hacerlo, tendremos
una GT de la forma de la figura[3.4]c). Esta GT se puede transformar en otra con una
sola transicion, fusionando todas las transiciones en una sola, con etiqueta R; + Ry +
...+ R,. Esta etiqueta sera la ER buscada.

Ejemplo.- Obtener una ER para el AFD de la figura siguiente:

Paso 2.- Eliminacién de nodos intermedios. Eliminamos primero el nodo ¢;. Para ello,
consideramos qué trayectorias o “rutas” pasan por el nodo a eliminar. Por ejemplo, en la
figura de arriba vemos solamente una trayectoria que pasa por ¢y, la cual va de ¢g a f. Ahora
nos proponemos eliminar el nodo ¢;, pero sin modificar “lo que se gasta” para pasar de qq
a f. Es facil ver que para pasar de gy a f se gasta primero una a y luego algin ntimero de
repeticiones de a o b (para llegar de ¢; a f no se gasta nada). Esto corresponde a la ER
a(a + b)*, que serd la etiqueta de la nueva “ruta directa” de gy a f, sin pasar, por ¢;, como
se aprecia en la siguiente figura:

Paso 3.- Después eliminamos el nodo gs:
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a(a+b)

Paso 4.- Eliminamos qq:
(bb*a) "a(a+hb) *

(bb*a)*bb *

Paso 5.- Finalmente fusionamos las expresiones que estan en paralelo:

(bb*a)*a(a+b)* + (bb" a)" bt
20 -

Por lo que finalmente la ER buscada es (bb*a)*a(a + b)* + (bb*a)*bb*.

La correccion de cada paso de transformacion se desprende del hecho de que tanto la
eliminaciéon de nodos como la fusion de transiciones que se hace al final, preservan ambos la
igualdad del lenguaje aceptado.

Con este resultado establecemos la completa equivalencia entre las ER y los automatas
finitos (no deterministas). Al establecer la equivalencia de los AFN con las ER, autométi-
camente queda establecida la equivalencia entre las ER y los AFD. Este es un resultado de
gran trascendencia tanto tedrica como practica, pues por una parte muestra la importancia
de la clase de los lenguajes regulares, y por otra ofrece un grupo de herramientas practicas,
tales como la minimizacién de AFD, que pueden ser puestas al servicio de las ER.

3.5. Gramaticas regulares

En esta secciéon veremos otra manera de representar los lenguajes regulares, ademas de
las Expresiones Regulares que ya vimos.
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3.5.1. Gramaticas formales

La representacién de los lenguajes regulares que aqui estudiaremos se fundamenta en la
nocién de gramdtica formal. Intuitivamente, una gramaéatica es un conjunto de reglas para
formar correctamente las frases de un lenguaje; asi tenemos la gramatica del espanol, del
francés, etc. La formalizacion que presentaremos de la nocién de gramatica es debida a N.
Chomsky [4], y estd basada en las llamadas reglas gramaticales.

Una regla es una expresién de la forma o« — (3, en donde tanto a como [ son cadenas
de simbolos en donde pueden aparecer tanto elementos del alfabeto ¥ como unos nuevos
stmbolos, llamados wvariables. Los simbolos que no son variables son constantes. [[| ~ Por
ejemplo, una posible regla gramatical es X — aX. La aplicacién de una regla o — 3 a una
palabra uawv produce la palabra ufv. En consecuencia, las reglas de una gramatica pueden
ser vistas como reglas de reemplazo. Por ejemplo, si tenemos una cadena de simbolos bbX a,
le podemos aplicar la regla X — aX, dando como resultado la nueva cadena bbaXa.

3.5.2. Gramaticas regulares

Nosotros nos vamos a interesar por el momento en las gramaticas cuyas reglas son de la
forma A — aB o bien A — a, donde A y B son variables, y a es un caracter terminal. A
estas gramaticas se les llama regulares.

Ejemplo.- Sea una gramética con las siguientes reglas:

1. S—aA
2. §S—0bA
3. A—aB
4. A—bB
5. A—a

6. B—aA
7. B—10bA

La idea para aplicar una gramaética es que se parte de una variable, llamada simbolo
inictal, y se aplican repetidamente las reglas gramaticales, hasta que ya no haya variables en
la palabra. En ese momento se dice que la palabra resultante es generada por la gramaética,
o en forma equivalente, que la palabra resultante es parte del lenguaje de esa gramaética.

8En la terminologia de los compiladores, se les llama, “terminales” a los elementos de X, y “no terminales”
a las variables.
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Por ejemplo, en la gramatica que acabamos de presentar, si consideramos que las variables
son S (que sera el simbolo inicial), A y B, y las constantes a y b, partiendo de S podemos
producir bA (por la segunda regla), luego de bA podemos pasar a ba (por la quinta regla).
Como ba tiene sélo constantes, podemos concluir que la palabra ba es parte del lenguaje
generado por la gramatica dada. De hecho el lenguaje generado por esta gramatica es el de
las palabras en {a, b} de longitud par terminadas en a. ﬂ

Formalizamos estas nociones con las siguientes definiciones:

Definicion.- Una gramética regular es un cuadruplo (V, 3, R, S) en donde:
V' es un alfabeto de variables,

> es un alfabeto de constantes,

R, el conjunto de reglas, es un subconjunto finito de V' x (X¥V U X).

S, el simbolo inicial, es un elemento de V.

Por ejemplo, la gramatica que presentamos arriba se representaria formalmente como:

({S, A, B}, {a, b}, {(S,aA), (S,bA), (A, aB), (A,bB), (A, a), (B,aA), (B,bA)}, S)

Usualmente las reglas no se escriben como pares ordenados (4, aB), como lo requerirfa la
definicién anterior, sino como A — aB; esto es simplemente cuestion de facilidad de notacién.

La aplicacion de una gramatica se formaliza con las siguientes nociones:

Una cadena uXwv deriva en un paso una cadena uaw, escrito como uXv = uawv, si hay
una regla X — a € R en la gramatica.

Una cadena w € ¥* (esto es, formada exclusivamente por constantes) es derivable a partir
de una gramatica G si existe una secuencia de pasos de derivacién S = a3 = as = ... =
w.

A una secuencia de pasos de derivacion le llamamos simplemente derivacion.

Dicho de otra manera, una palabra w € ¥* es derivable a partir de G ssi S = w, donde
= denota la cerradura reflexiva y transitiva de =.

Definicion.- El lenguaje generado por una gramatica G, L(G), es igual al conjunto de las
palabras derivables a partir de su simbolo inicial.

Esto es, L(G) = {w € *|S = w}.

9Mis adelante veremos cémo probar rigurosamente que una gramética efectivamente corresponde a un
lenguaje dado.
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Frecuentemente es facil mostrar que una palabra dada w es derivable a partir del simbolo
inicial S; por ejemplo, en la gramatica presentada arriba, se puede mostrar que S = ... =
bababa (esto es, que la palabra bababa puede ser derivada a partir del simbolo inicial S, por
lo que bababa € L(G). Dejamos este ejemplo como ejercicio (ver seccién de ejercicios).

Ejemplo.- Proponer una gramética que genere el lenguaje de las palabras en {a, b} que
contienen la subcadena bb, como abb, ababba, etc.

Vamos a utilizar las variables de una manera similar a como se utilizaban en los AF los
estados, esto es, como memorias para “recordar” situaciones. Asi tendremos las siguientes
variables:

= A, que recuerda que aun no se produce ninguna b.
= B, que recuerda que se produjo una b.

= (', que recuerda que ya se produjeron las dos b’s.

Ahora podemos proponer reglas, preguntandonos a qué situacion se llega al producir una
a o b. Por ejemplo, a partir de A, si se produce una a se debe llegar a la misma A, pero si
llega una b se llegara a la variable B. Con estas ideas se proponen las siguientes reglas:

1. A—adA
2. A—bB
3. B—aA
4. B —bC
5. C —aC
6. C—bC

Finalmente, para terminar la produccion de una palabra hecha solamente de constantes
es necesaria al menos una regla que no produzca variables en su lado derecho. Tal regla no
se encuentra aun en la gramatica dada. Como las palabras correctas tienen bb, pensamos que
una regla adicional podria ser C' — a y también C' — b. En efecto, con tales reglas podemos
producir, por ejemplo, la palabra abba, mediante la derivacion siguiente:

A = aA = abB = abbC = abba

Sin embargo, también podemos verificar que la palabra abb, que pertenece al lenguaje,
no puede producirse con las reglas dadas. Hace falta atin otra regla, B — b, con la que se
completa nuestra gramatica.
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Al disenar gramaticas regulares, podemos incurrir en los mismos errores que en los AF,
es decir, que sean incorrectas (producen palabras que no deberfan) o bien incompletas (no
pueden generar palabras que pertenecen al lenguaje), o bien ambas cosas a la vez.

No vamos a examinar métodos particulares de diseno de gramaticas regulares; en vez de
ello mejor vamos a examinar métodos por los que es muy simple convertir las gramaticas
regulares a AF y viceversa.

3.5.3. Autématas finitos y gramaticas regulares

De manera similar a como hicimos en la secciéon anterior, aqui vamos a establecer la
equivalencia entre las gramaticas regulares y los lenguajes regulares -y por ende los automatas
finitos. Este resultado es establecido por el siguiente

Teorema.- La clase de los lenguajes generados por alguna gramética regular es exacta-
mente la de los lenguajes regulares.

La prueba de este teorema consiste en proponer un procedimiento para, a partir de una
gramatica dada, construir un automata finito, y viceversa.

Dicho procedimiento es directo, y consiste en asociar a los simbolos no terminales de la
gramatica (las variables) los estados de un autémata. Asi, para cada regla A — bC' en la
gramédtica tenemos una transiciéon (A, b, C) en el autémata.

Sin embargo, queda pendiente el caso de las reglas A — b. Para estos casos, se tienen
transiciones (A, b, Z), donde Z es un nuevo estado para el que no hay un no terminal asociado;
Z es el tinico estado final del autémata.

Ejemplo.- Obtener un autémata finito para la gramatica regular G siguiente:

1. S—aA
2. S—0bA
3. A—aB
4. A—bB
5. A—a

6. B—aA

7. B —bA
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Figura 3.6: AFD que acepta palabras que no contienen 3 a’s seguidas

Dicho autémata aparece en la figura [3.5]

Similarmente, es simple obtener, a partir de un AFD (K, 3,0, s, F'), la gramatica regular
correspondiente. Para cada transicién de la forma ((p,0),q) € J, habra en la gramética una
regla X, — 0X,, donde X, es la variable en la gramadtica que corresponde al estado 7 del
AFD. Queda, sin embargo, pendiente cémo obtener las reglas de la forma X, — o, que son
las que permiten terminar una derivacién. Nos damos cuenta de que la aplicacién de este
tipo de reglas debe corresponder al consumo del tltimo caracter de una palabra aceptada
en el AFD. Ahora bien, al terminar una palabra aceptada en un AFD, necesariamente nos
encontraremos en un estado final. De ahi concluimos que hay que incorporar a la gramatica,
por cada transicién ((p, o), q), donde ¢ € F, una regla adicional X,, — o, ademds de la regla
X, — 0X, que se mencion6 anteriormente.

Ejemplo.- Para el AFD de la figura[3.6] la gramadtica regular correspondiente contiene las
reglas:

1- Qo —aly 8- Q3 — bQs
2- Qo — bQo 9-Qo—a

3.- Ql — CLQQ 10.- QO — b

4.- Q1 — bQo 11- Q1 — a

.- QQ — (IQ3 12.- Ql — b

6.- QQ — bQO 13.- QQ — b

7- Q3 — aQs
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Nétese que en este ejemplo el AFD acepta la palabra vacia, mientras que la GR no es
capaz de generarla. De hecho ninguna GR puede generar €. En estos casos nos tenemos que
contentar con generar un lenguaje igual al aceptado por el AFD excepto por la palabra vacia.

3.6. Limitaciones de los lenguajes regulares

Los AF estan limitados a los estados de que disponen como tinico medio para “recordar”
la serie de simbolos recibidos hasta un momento dado. Puesto de otra manera, debemos
considerar que, en un AF, la tnica traza de los simbolos recibidos es el estado en que se
encuentra. Por lo mismo, varias secuencias distintas de caracteres que llevan a un mismo
estado son consideradas como indistinguibles. Por ejemplo, para el AFD de la figura las
secuencias de caracteres bab y bbbbb son indistinguibles, pues ambas llevan al estado ¢;. Esta
limitacion de los AF los hace finalmente incapaces de distinguir las palabras aceptables de
las no aceptables en ciertos lenguajes, mas complicados que los lenguajes regulares.

Por ejemplo, para el lenguaje {a™b™} no es posible construir un autémata finito que lo
acepte, ni representarlo por una expresién regular o gramatica regular. En efecto, supongamos
que un AFD esta recorriendo una palabra a"b", entonces al terminar el grupo de a’s el
autémata debe recordar cudntas encontrd, para poder comparar con el nimero de b’s. Ahora
bien, como la cantidad de a’s que puede haber en la primera mitad de la palabra es arbitraria,
dicha cantidad no puede recordarse con una cantidad de memoria fija, como es la de los
autématas finitos.

3.6.1. El teorema de bombeo

Formalmente, vamos a establecer un teorema que precisa cudl es la limitacion de los
autématas finitos.

Teorema.- Si L es un lenguaje regular infinito, entonces existen cadenas x, y, z tales que
y # e,y xy"z € L, para algun n > 0. (Teorema de bombeo).

Lo que este resultado establece es que, suponiendo que cierto lenguaje es regular, en-
tonces forzosamente dicho lenguaje debe contener palabras en que una subcadena se repite
cualquier nimero de veces. Es decir, hay palabras del lenguaje en que podemos insertar
repetidamente (“bombear”) una subcadena (y en el teorema) sin que el autémata se dé cuen-
ta. Esta situacion permite hacer pruebas por contradiccion de que un lenguaje dado no es
regular.

Pero veamos en primer lugar la prueba del teorema de bombeo. Supongamos que L es un
lenguaje regular. Entonces existe un autémata M que lo acepta. Sea m el niimero de estados
de M. Ahora supongamos una palabra en L, w = 0105 ...0,, 0; € X, donde n > m. Como
w debe ser aceptada, debe hacer un céalculo de la forma:
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g1, 0102 ... o]l Far [[g2,02 - - 0n]] Foy [[@nt1,€]]

Como M tiene solamente m estados, y el calculo tiene longitud n + 1, por el principio de
correspondencia debe haber algunos estados que se repitan en el calculo, es decir, ¢; = gj,
para 0 <7 < 7 <n+ 1. Entonces podemos detallar mas el calculo anterior, el cual tiene la
forma:

g1, 0102 0. ..on]l Fag i, 00 - onll Bag s, 05 - - - o] B @1, €]

Como M regresa al mismo estado, la parte de la entrada que se consumié entre g; y g;, que
es 0;...0j-1 puede ser eliminada, y por lo tanto la palabra oy ...0;_10;...0, serd aceptada
de todas maneras, mediante el célculo siguiente:

1,01 0i10; . 0]l For [lgg, 05 - - 0al] Fi [[Gns1, €]]

De igual manera, la subcadena o; ... 0;_1 puede ser insertada cualquier nimero de veces;
entonces el autémata aceptara las palabras de la forma:

01092 .. -O-i—l(o-z‘ c. .O'j_l)kO'j ...0p

Entonces, haciendo x = 0102...05-1, Yy = 0;...0,_1 Y 2 = 0j...0, tenemos el teorema
de bombeo. Esto termina la prueba. QED.

Ejemplo.- Como un ejemplo de la aplicacion de este teorema, probaremos que el lenguaje
{a™b"} no es regular. En efecto, supongamos que fuera regular. Entonces, por el teorema de
bombeo, debe haber palabras de la forma xyz, a partir de una cierta longitud, en que la
parte y puede repetirse cuantas veces sea. Existen 3 posibilidades:

[}

1. Que y no contenga caracteres distintos a “a”, es decir, y = aa...a. En este caso, al
repetir varias veces y, habra més a’s que b’s y la palabra no tendra la forma deseada. Es
decir, suponiendo que {a"b"} es regular hemos llegado a la conclusién de que contiene
palabras con mas a’s que b’s, lo cual es una contradiccion.

2. Que y no contenga caracteres distintos de b. Este caso es similar al caso (1).

3. Que y contenga a’s y b’s, es decir, y = aa...abb...b. Pero en este caso, al repetirse
y, las a’s y b’s quedaréan en desorden en la palabra, la cual no tendra la forma a™b".
También en este caso hay contradiccion.
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Por lo tanto el suponer que {a™b"} es regular nos lleva a contradiccién. Se concluye que
{a™"} no es regular.

Es muy importante notar que para las pruebas por contradiccién usando el teorema de
bombeo hay que explorar exhaustivamente todas las posibles maneras de dividir la palabra w
en ryz, y encontrar contradiccion en cada posible division. Con una sola division posible en
que no se encuentre una contradiccion, la prueba fracasa. Al fracasar la prueba, no se puede
concluir ni que el lenguaje es regular ni que no lo es; simplemente no se llega a ninguna
conclusion.

Otros lenguajes que tampoco son regulares son : {ww}, que es el lenguaje cuyas palabras
tienen dos mitades iguales, {ww®} | que es el lenguaje cuyas palabras tienen dos mitades
simétricas m ; el lenguaje de las palabras palindromas, que se leen igual al derecho y al revés,
como por ejemplo ANITALAVALATINA, E el lenguaje de los paréntesis bien balanceados,

como ()(()), 000, ((())), ete.

3.7. Ejercicios

1. Convertir la ER a*ab+ b(a + A) en notacion “facil” a ER estricta.

2. Encontrar Expresiones Regulares que representen los siguientes lenguajes (se presentan
en orden de dificultad creciente):

a) Conjunto de palabras en {0, 1} terminadas en 00.

b) Conjunto de palabras en {0,1} que contengan tres ceros consecutivos, como
“0001000”, “000001”, etc.

c) El lenguaje {101,1110}.
d) El lenguaje {w € X*|w = a"ba*,n, k > 0}

e) Conjunto de palabras en {a, b} que no contienen dos b consecutivas, como “ababab”,
“aaaa” , etc.

f) Conjunto de cadenas en {a, b} que no contienen ni aa ni bb.

g) El lenguaje sobre {0,1} en que las palabras no vacias empiezan o terminan en
cero.

h) El conjunto de las palabras en {a, b} tales que toda a esté precedida por alguna
b, como por ejemplo “c”, “b”, “bba”, “babaa”, etc. E

i) Conjunto de palabras en {0,1} con a lo mas un par de ceros consecutivos y a lo
mas un par de unos consecutivos.

10 wT es el reverso de w, es decir, (abaa)® = aaba

i Atencién! este lenguaje no es igual a {ww?}
12La b que precede a la a no necesita estar inmediatamente antes.

)R
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El lenguaje sobre {a, b} en que todas las palabras son de longitud impar.
Conjunto de cadenas en {a, b} que contienen un nimero impar de b.
El lenguaje en {0, 1} en que las palabras contienen més de tres ceros.

El lenguaje en {0, 1} en que las palabras no contienen un cero exactamente (pero
pueden contener dos, tres, etc.), como “1111”7, “1010”, etc.

Conjunto de palabras en {0, 1} tales que no hay ningin par de ceros consecutivos
después [1—_3-] de un par de unos consecutivos, como “0000110”, “0001000”, etc.

{w e {a,b,c}" [ |w] # 3}
El lenguaje en {0,1} en que las palabras contienen un ntimero de ceros distinto
de 3, por ejemplo “0107, “11117, “00100”, etc.

{w € {a,b,c}* | w # aabcfB}, donde o y [ representan cualquier cadena de
caracteres (esto es, las palabras en este lenguaje no deben contener la subcadena
abe).

Lenguaje en {a, b} tal que |w| es par, y ademds la cantidad de a’s que aparecen
en w es par.

El lenguaje sobre {a,b} en que las palabras contienen la subcadena “baaab’ o
bien la subcadena “abbba’”.

El lenguaje sobre {a,b} en que las palabras pueden contener pares de a’s con-
secutivas, pero no grupos de 3 a’s consecutivas; por ejemplo, “baabaab”, pero no
“baaaab” .

[P}

El lenguaje en {a,b} en que toda “b” tiene a su izquierda y a su derecha una “a
(no necesariamente junto), y ademés el nimero de “b” es impar.

Lenguaje de las palabras en {a,b} que no contienen la subcadena “abaab”.

3. Demostrar la siguiente equivalencia por identidades de Expresiones Regulares:

(ab*)*a =a+ ala+b)*a

4. Verificar si los siguientes pares de ER son equivalentes, usando equivalencias o bien
encontrando un contraejemplo:

a)
b)

a*+b*y (a+b)*

a* y (aa*)*a*

5. Probar que a* + b* no es equivalente a (a + b)*

6. Convertir la ER (a 4 ab)*aba(a + ba)* a AFN.

7. Convertir a ER el AFD siguiente: ({1,2,3}, {a,b}, {((1,a),1), ((1,b),2), ((2,a),3),
((2,0),1), ((3,0),2), ((3,0),3)}, 1, {1,3}).

13En cualquier posicién a la derecha
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10.

11.

12.

13.

14.

15.

Demostrar la siguiente equivalencia (ab*)*a = a + a(a + b)*a por equivalencia de
autématas (Primero hay que convertir las ER a AFN, luego estos a AFD, los cuales
pueden ser comparados).

Encuentre una Expresién Regular que represente las palabras en {a,b}* que no con-
tienen ni la subcadena “aaa” ni “bab” y que son de longitud impar, por el método
siguiente:

a) Encontrar un AF que acepte las palabras que contienen “aaa”

S

Encontrar un AF que acepte las palabras que contienen “bab”

o

)
) Encontrar un AF que acepte las palabras de longitud par
)

d) Combinar los AF de (a),(b) y (c) en un AF que acepta las palabras que contienen

“aaa” o “bab” o son de longitud par
e) Obtener un AF que acepte el complemento de lo que acepta (d)
f) Convertir el AF de (e) a ER

Para la gramética de la pdgina [96] mostrar una derivacién de la palabra bababa.

Comprobar si la ER (a + A)(ba)*(b + A) es equivalente a la GR cuyas reglas son:
A — bB,B — aA,A — a,B — b, convirtiendo ambas a AFN, luego a AFD, y
comparando.

Verificar si es vacia la interseccion del lenguaje representado por la ER (A+b)(a+ab)*,
con el lenguaje representado por la GR cuyas reglas son: S — aS, S — b1, T —
aS,T — bU, U — aU,U — bU,U — a,U — b, utilizando el método siguiente: Primero
se convierten a AFD tanto la ER como la GR. Luego se calcula su interseccién, uti-
lizando el método expuesto en el capitulo precedente. Finalmente, el resultado del
paso anterior, que es un AFD, se compara con el AFD ({qo}, {a,b}, {((q0,a),q0),

((g0s b), @0)1}: a0, {3), ctue acepta el lenguaje vacio.

Probar las equivalencias:

a) Red=>eR =7 parauna ER R
b) P*=A

Demostrar que para todo alfabeto 3, el lenguaje ¥* es contable. (Ayuda: Tratar de
ordenar las cadenas de ¥* de menor a mayor).

Suponer que anadimos a las ER un operador, “—” que significa que R; — Ry representa
las palabras representadas por R, pero no por Rj.

a) Definir formalmente el significado del operador “—”, usando el mapeo L(ER)
como se hizo con los deméds operadores de las ER.

b) Usando este operador, proponer una ER para el lenguaje en {a,b} donde las
palabras no contienen la subcadena “abaab” ni la subcadena “bbbab”.
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16.

17.

18.

19.

20.

21.

22.

23.
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“_m

c) Probar que el operador
para toda ER con operador

no aumenta el poder de las ER, en el sentido de que
“—” hay una ER equivalente sin

«_»

Lo mismo del problema anterior, con un operador de interseccién, “&” tal que R1&R»
representa las palabras representadas simultaneamente por R; y por Rs. En este caso
proponer una ER para el lenguaje en {a, b} donde las palabras contienen la subcadena
“abaab” y un nimero impar de b’s.

Proponer una definicién formal de configuracion, calculo y palabra aceptada para las

GT.

Describir formalmente la construccién del autémata (K, %, A, s, F') a partir de la
gramética regular (V, 3, R, S).

Hacer la prueba de correccion de la gramética de la pagina 100l Esto proveerda una
prueba de correccion del AFD de la figura [3.6

Usando el teorema de bombeo pruebe que los lenguajes siguientes no son regulares

a) {a"b™ | m > n} (Ayuda: En algin momento se puede necesitar considerar las
palabras de la forma a™0"*1).

b) {a"b"tmc™m}.
c) {a"b™[|n—m| <3}

d) {a,b}" —{a"b"}

Pruebe que los siguientes lenguajes son / no son regulares:

a) A={we{a,b}*||w| >7}

b) {a"b"}NA

c) {w # a™"} (Ayuda: use los métodos para combinar AFN’s)
d) {a™"|n<T}

Sean dos lenguajes, L4 v Lp tales que L4 es subconjunto de Lg.

a) Si Ly es regular, jtambién lo serd necesariamente Lg? (Probar)

b) Si Lp es regular, jtambién lo serd necesariamente L,? (Probar)
Sean dos lenguajes no regulares, Ly v Lg.
a) ;Su unién podria eventualmente ser regular? (Ayuda: considere dos lenguajes

complementarios).

b) {Su interseccién podria eventualmente ser regular? (Ayuda: considere intersec-
ciones finitas).

¢) {Su concatenacién podria ser regular? (Ayuda: tomar {a"b™|n > m} como Ly, y
buscar un Lg “adecuado”).
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24.

25.

Supdngase un tipo de graméaticas que llamaremos “semirregulares”, por asemejarse a
las gramaticas regulares, en que las reglas son de alguna de las siguientes formas:

a) A—oB
b) A— Bo
c) A—o

donde ¢ es un terminal, y A y B son no terminales. jSeran equivalentes a las gramaticas
regulares? Pruebe su respuesta.

Suponga las Expresiones Regulares con Salida (ERS), que son como las ER, pero tienen
asociada una salida a la entrada que representan. Se tiene la siguiente sintaxis: FR/S
significa que cuando se recibe una palabra representada por ER, se produce una salida
S. Las subexpresiones de una ERS se consideran similarmente. Por ejemplo, en la ERS
“(a/14b/0)*/00”, por cada “a” que se recibe se saca un “1”; por cada “b”, un “07”,
y al terminarse la cadena de entrada se produce un “00”. El operador “/” tiene la
precedencia mds alta, o sea que la ERS “ab/0” significa que el “0” estd asociado a
la “b”; puede ser necesario usar parentesis para establecer la precedencia deseada. En
general hay que distinguir entre el alfabeto de entrada ({a,b} en el ejemplo) y el de
salida ({0,1} en el ejemplo).

a) Defina una ERS que al recibir cada par de “aa” consecutivas emita un “0”, mien-
tras que al recibir un par de “bb” consecutivas emita un “1”. (“aaa” contiene sélo
un par).

b) Defina formalmente el conjunto de las ERS (Las ERS que se definirian son las
ERS “formales”, con todos los parentesis y operadores necesarios, sin tomar en
cuenta cuestiones de precedencia de operadores, simplificaciones, etc.).

¢) Proponga un procedimiento general para pasar de ERS a autématas de Mealy.

d) Muestre su funcionamiento con la ERS del inciso (a).
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Parte 11

Lenguajes libres de contexto y sus
maquinas
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Capitulo 4

Gramaticas y lenguajes libres de
contexto

Los Lenguajes Libres de Contexto (abreviado LLC) forman una clase de lenguajes més
amplia que los Lenguajes Regulares, de acuerdo con la Jerarquia de Chomsky (ver seccién
. Estos lenguajes son importantes tanto desde el punto de vista tedrico, por relacionar
las llamadas Gramdticas Libres de Contexto con los Automatas de Pila, como desde el punto
de vista practico, ya que casi todos los lenguajes de programacion estan basados en los LLC.
En efecto, a partir de los anos 70’s, con lenguajes como Pascal, se hizo comun la préactica
de formalizar la sintaxis de los lenguajes de programacion usando herramientas basadas en
las Gramdticas Libres de Contexto, que representan a los LLC. Por otra parte, el anélisis
automatico de los LLC es computacionalmente mucho mas eficiente que el de otras clases de
lenguajes més generales.

Retomaremos aqui las nociones relacionadas con las gramaticas, que fueron introducidas
en la seccién pero haciendo las adaptaciones necesarias para los LLC.

Una regla es una expresion de la forma o — [, en donde tanto a como (3 son cadenas
de simbolos en donde pueden aparecer tanto elementos del alfabeto 3 (llamados constantes)
como unos nuevos simbolos, llamados variables. [

Una gramética es basicamente un conjunto de reglas. [

Consideremos, por ejemplo, la siguiente gramatica para producir un pequeno subconjunto
del idioma espanol:

1. <frase> — <sujeto> < predicado >

!Tratandose de los compiladores, se les llama “terminales” a los elementos de ¥, v “no terminales” a las
variables.
2 Adelante precisaremos las definiciones.

111
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2. <sujeto> — <articulo > < sustantivo >
3. <articulo> — el | la

4. < sustantivo> — perro | luna

5. <predicado> — <wverbo>

6. <werbo> — brilla | corre

donde el simbolo “|” separa varias alternativas. rﬂ En esta gramatica se supone que las
variables son < frase >, <sujeto>, < articulo >, < sustantivo>, < predicado>y <wverbo>,
mientras que las constantes son el, la, perro y luna. La variable < frase > sera considerada

el simbolo inicial.

Como vimos en la seccion [3.5] la idea para aplicar una gramatica es que se parte de una
variable, llamada simbolo inicial, y se aplican repetidamente las reglas gramaticales, hasta
que ya no haya variables en la palabra. En ese momento se dice que la palabra resultante
es generada por la gramatica, o en forma equivalente, que la palabra resultante es parte del
lenguaje de esa gramatica.

Por ejemplo, podemos usar la gramatica que acabamos de presentar, para generar la frase
“el perro corre”. En efecto, partiendo del simbolo inicial < frase >, aplicando la primera regla
podemos obtener < sujeto> < predicado >. Luego, reemplazando < sujeto > por medio de la
segunda regla, obtenemos < articulo> < sustantivo> < predicado>; aplicando la tercera
regla, llegamos a el < sustantivo> < predicado>. Por la cuarta regla se llega a el perro
< predicado >; por la quinta a el perro <wverbo>, y finalmente, por la sexta, llegamos a el
perro corre.

Desde luego, usando esta misma gramética podemos producir frases que tienen menos
sentido, como “la perro brilla”. Para asegurar la coherencia en el uso de articulos, sustantivos
y verbos se requeriria una gramatica mas sofisticada, y atun asi seria posible producir frases
sin sentido. [4

4.1. Gramaticas y la jerarquia de Chomsky

Es posible restringir la forma de las reglas gramaticales de manera que se acomoden
a patrones predeterminados. Por ejemplo, se puede imponer que el lado izquierdo de las
reglas sea una variable, en vez de una cadena arbitraria de simbolos. Al restringir las reglas
de la gramatica se restringen también las palabras que se pueden generar; no es extrano

3La notacién
y X — (.
4Muchos politicos son versados en estas artes. . .

LL|”

es en realidad una abreviatura; una regla X — «|8 es equivalente a las dos reglas X — «
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que las reglas de formas mas restringidas generan los lenguajes mas reducidos. N. Chomsky
propuso [4] varias formas estandares de reglas que se asocian a varias clases de lenguajes, que
ordend de manera tal que forman una jerarquia, es decir, los lenguajes mas primitivos estan
incluidos en los mas complejos. E] Asi tenemos las siguientes clases de gramaticas, asociadas
a familias de lenguajes:

1.  Gramaticas requlares, o de tipo 3: las reglas son de la forma A — aB o bien A — a,
donde Ay B son variables y a es constante. E]Estas gramaticas son capaces de describir
los lenguajes regulares.

2. Gramaticas Libres de Contexto (GLC), o de tipo 2: las reglas son de la forma X — «,
donde X es una variable y « es una cadena que puede contener variables y constantes.
Estas graméticas producen los lenguajes Libres de Contexto (abreviado “LLC”).

3. Gramaticas sensitivas al contexto o de tipo 1. las reglas son de la forma a A — al'j3,
donde A es una variable y «,0 y I' son cadenas cualesquiera que pueden contener
variables y constantes.

4. Gramadticas no restringidas, o de tipo 0, con reglas de la forma a — 3, donde a no
puede ser vacio, que generan los lenguajes llamados “recursivamente enumerables”. []

Los lenguajes de tipo 0 incluyen a los de tipo 1, estos a los de tipo 2, etc. En la figura
ya se habia presentado la relacién entre los lenguajes de tipo 0, 2 y 3.

4.2. Lenguajes y gramaticas libres de contexto (LLC y
GLC)

Podemos ver que la gramatica del espanol dada arriba es una GLC, pero no podria ser
una gramatica regular, pues hay varias reglas que no corresponden al formato de las reglas
de las gramaticas regulares. Se ve por lo tanto que el formato de las reglas es menos rigido
en las GLC que en las gramaticas regulares, y asi toda gramaética regular es GLC pero no
viceversa.

Por ejemplo, el lenguaje {a™b"} —que no es regular, como vimos en la seccién tiene
la gramatica libre de contexto con las siguientes reglas:

1. S —aSh
2. S —ab

®La jerarquia de Chomsky fue presentada inicialmente en la seccién
SEstas graméticas ya fueron discutidas en el capitulo
"Las dos tltimas clases de lenguajes seran discutidas en el capitulo @
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Como vimos en el caso de las gramaticas regulares, aplicar una regla X — « de una
gramatica consiste en reemplazar X por « en una palabra. Por ejemplo, la regla S — aSbh
se puede aplicar a una palabra aaSbb para obtener la palabra aaaSbbb, en donde es facil ver
que reemplazamos S por a.Sbh.

Al proceso de aplicar una regla se le conoce como “paso de derivacién”, y se denota
usando una flecha gruesa “=", como en aaSbb = aaaSbbb (aplicando una regla S — aSb).
Una secuencia de pasos de derivacién a partir de una variable especial de la gramética
llamada “simbolo inicial” se llama simplemente derivacion. Por ejemplo, una derivacién de
la palabra “aaabbb” utilizando la gramatica de {a"b"} seria (suponiendo que S es el simbolo
inicial):

S = aSb = aaSbb = aaabbb

Como un ejemplo adicional, la gramética con las reglas siguientes permite generar expre-
siones aritméticas con sumas y multiplicaciones de enteros:

1. E—=FE+T
2. E—-T

3. T'—=TxF
4. T — F

5. F—=CF
6. F—C

7. C — 0[1]2/3]4]5/6]7|8|9

El simbolo inicial aqui es F, las constantes son +, * y las cifras 0 ...9; E, T, F,C son
variables.

Con esta gramatica podemos generar, por ejemplo, la expresién 25 4 3 *x 12 de la manera
siguiente:
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EXPRESION | JUSTIFICACION

E Simbolo inicial, inicia derivacion
= FE+T Aplicacién 1a. regla

=T+T 2a. regla, sobre la

= F+T 4a. regla, sobre la T izquierda
= CF+T ba. regla, sobre F'

= 2F+4+T Ta. regla

=20+T 6a. regla

=25+T Ta. regla

=25+ T F | 3a. regla
= 25+ F'x I | 4a. regla
= 254+ C x I | 6a. regla, sobre la F' izquierda
=20+ 3 F Ta. regla
= 25+ 3« CF | ba. regla
=25+ 3% 1F | Ta. regla
= 25+ 3% 1C | 6a. regla
= 25+3%x12 | Ta. regla

Maés adelante veremos una herramienta, los “arboles de derivacién”, que permiten en-
contrar mas facilmente y visualizar mejor la derivacién de las palabras a partir del simbolo
inicial, aunque su formalizacién es menos directa que la simple derivacién paso a paso que
hemos mostrado.

4.3. Formalizacion de las GLC

Definicion.- Una gramética libre de contexto es un cuddruplo (V, X, R, S) en donde:

V' es un alfabeto de variables, también llamadas no-terminales.

Y) es un alfabeto de constantes, también llamadas terminales. Suponemos que V' y X
son disjuntos, esto es, VN X = (.

R, el conjunto de reglas, es un subconjunto finito de V' x (V U X)*.

S, el simbolo inicial, es un elemento de V.

Ejemplo.- La gramética de {a"b"} que presentamos antes se representa formalmente como:

({5}, {a, 0}, {(5,aSb), (S, ab)}, 5)

Usualmente las reglas no se escriben como pares ordenados (X, @), sino como X — «;
esto es simplemente cuestion de notacion.
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Definicion.- Una cadena o € (V UX)* es derivable a partir de una gramética (V, %, R, S)
si hay al menos una secuencia de pasos de derivacién que la produce a partir del simbolo
inicial S, esto es:

S= ...«

Definicion.- El lenguaje L(G) generado por una gramatica (V, %, R, S) es el conjunto de
palabras hechas exclusivamente de constantes, que son derivables a partir del simbolo inicial:

L={we¥|S=..=uw}

Es posible formalizar la definicién de lenguaje aceptado sin tener que recurrir a los puntos
suspensivos “...”, que son un recurso poco elegante en la formalizacion matematica desde el
punto de vista de que recurren a la imaginacion del lector para reemplazarlos por la sucesion
que se representa. A continuacién damos esta formalizacién alternativa.

Las reglas permiten establecer una relacién entre cadenas en (V' U |X)*, que es la relacion
de derivacion, = para una gramatica G. Esta relacion se define de la siguiente manera:

Definicion.- o =g [ ssi existen cadenas z,y € (V U X)*, tales que a = zuy, f = zvy, y
existe una regla u — v en R.

La cerradura reflexiva v transitiva de =& se denota por =%. Una palabra w € X* es
y G p G p
derivable a partir de G si existe una secuencia de derivaciéon S =¢ w.

Definicion.- El lenguaje generado por una gramdtica G, esto es, L(G), es igual a {w €
XS = wh.

4.4. Diseno de GLC

El problema del diseio de GLC consiste en proponer, dado un lenguaje L, una GLC
G tal que su lenguaje generado es exactamente L. Decimos que una GLC G es correcta
con respecto al lenguaje dado L cuando el lenguaje generado por G no contiene palabras
que estén fuera de L, es decir, L(G) C L, donde L(G) denota el lenguaje generado por
G. Similarmente, decimos que G es completa cuando G es capaz de generar al menos las
palabras de L, es decir, L C L(G) Al disenar gramaticas, es posible cometer las mismas dos
clases de errores que hemos mencionado para el diseno de expresiones regulares y autématas
finitos:

1. Que “sobren palabras”, esto es, que la gramatica genere algunas palabras que no deberia
generar. En este caso, la gramatica seria incorrecta.
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2. Que “falten palabras”, esto es, que haya palabras en el lenguaje considerado para las
que no hay ninguna derivacion. En este caso, la gramatica seria incompleta.

Aun cuando no hay métodos tan sisteméticos para disenar las GLC como los que vi-
mos para diseniar Expresiones Regulares o Autématas Finitos, es posible al menos reutilizar
gramaticas conocidas, y ya sea modificarlas para ajustar el lenguaje generado, o combinar
varias en una sola. Este tltimo es un método particularmente eficaz, en el que profundizare-
mos en esta seccién.

4.4.1. Adaptacién de GLC

Muchas veces es posible hacer modificaciones sencillas a una gramatica conocida para
obtener la del lenguaje requerido. Por ejemplo, supéngase que queremos obtener una gramatica
que genere el lenguaje {a"0™|n > m}. Una buena idea serfa partir de la gramatica que hemos
visto anteriormente, para el lenguaje similar {a™b"}, cuya gramdtica tiene las siguientes re-
glas:

1. S —aSh
2. S —ab

Observamos que es necesario prever alguna regla para producir cualquier cantidad de a’s
antes de las b’s, pues hay palabras como aaaab que necesitan ser generadas. Para esto pro-
ponemos una regla S — aS. Aplicando iteradamente esta regla podemos producir palabras
como la mencionada:

S = aS = aaS = aaaS = aaaab

Sin embargo, ain anadiendo esta regla subsiste el problema de que podriamos generar
palabras incorrectas, pues cualquier palabra con igual cantidad de a’s y de b’s se genera
utilizando unicamente las reglas de la gramatica para {a"b"}.

Hay al menos dos maneras de solucionar este problema:

1. Podemos pensar en que la a que asegura que haya mas a’s que b’s se produzca al inicio
de la derivacién, mediante la inclusion de un nuevo simbolo inicial, sea Sy, que produce
aS, mediante una regla Sp — aS. Por ejemplo, generariamos aaaab del modo siguiente:

So = aS = aalS = aaasS = aaaab
2. Otra manera es producir la a que garantiza mas a’s que b’s al final de la derivacion,
reemplazando la regla S — ab por S — a. La misma palabra se derivaria como:

S = aS = aaS = aaaSb = aaaab
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4.4.2. GLC para unién de lenguajes

Muchos lenguajes pueden ser expresados en forma 1til como la unién de otros dos lengua-
jes, para los cuales conocemos las gramaticas que los generan. Por ejemplo, el lenguaje
{a™™|n # m} se puede expresar como la unién de los lenguajes:

{a"0™|n #m} = {a"b"|n < m} U {a"b"|n > m}

Para cada uno de los lenguajes que se unen es facil obtener una graméatica —de hecho ya
hemos disenado aqui gramaticas para lenguajes como éstos.

La manera de combinar dos gramaticas con simbolos iniciales S y Sy respectivamente,
para producir la unién de los lenguajes originales, consiste en crear un nuevo simbolo inicial
S (S1 y Sy dejan de ser iniciales), tomar las reglas tanto de una gramética como de otra,
y anadir dos nuevas reglas, S — S; y S — Ss, para que el nuevo simbolo inicial sea capaz
de generar cualquiera de los dos antiguos simbolos iniciales; a partir del primer paso, se
continia la derivacién utilizando alguna de las dos gramaticas originales, sin utilizar las
reglas de la otra. Para garantizar esto ultimo se supone que las dos gramaticas originales no
tienen ninguna variable en comun.

Definimos formalmente la gramatica que genera la unién de lenguajes de la manera
siguiente: Sean G; = (V1,%51, Ry1,S51) vy Go = (V2, 3, R, S3) dos GLC; se puede suponer,
sin pérdida de generalidad, que las variables de G; y G5 son disjuntas. La GLC que genera
L(G1) U L(Gs) es

G:(%U%U{S},ElUEQ,R1UR2U{S—>51,S—>SQ},S)

En efecto, para una palabra w € L(G;) la derivacién comienza aplicando S — S, y
después se continta con la derivacion a partir de Sy Ff] Similarmente se hace para una palabra
w € L(GQ)

Por ejemplo, para el lenguaje {a"b™|n # m} = {a"b"|n < m} U {a"b™|n > m}, las
gramaticas originales tendrian reglas:

{a™™"|n >m} | {a"b"|n < m}
1) Sl - aSlb 4) SQ - CLSQb
2) Sl — CLSl 5) SQ — Sgb
3) Sl — a 6) 52 — b

La gramatica combinada tendria las reglas 1-6, mas las reglas S — S; y S — S;5. El
simbolo inicial es S. Asi, por ejemplo, para derivar la palabra aaaab seguimos los pasos:

8recuérdese que por hipétesis w € L(G).
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S = 5] = aS; = aaS; = aaaS; = aaaaS; = aaaab

4.4.3. Mezcla de gramaticas

En ocasiones es necesario combinar dos gramaticas, de una manera similar a la uniéon que
acabamos de presentar, pero permitiendo que las graméticas a combinar tengan un mismo
simbolo inicial. Llamamos a esto mezcla de graméticas.

Ejemplo.- Disenar una GLC para el lenguaje {a"b™, n < m < 2n}, esto es, donde la
cantidad de b’s estd entre la cantidad de a’s y el doble de ésta, como en las palabras aabbb,
aabb y aabbbb. Una solucién es “mezclar” una GLC para el lenguaje {a"b"™ con otra para el
lenguaje {a"v*", cuyas GLC son respectivamente:

{anbn} {aann}
1) S —aSb | 3) S — aSbb
2) S — ¢ 4) S — ¢

La GLC “mezclada” contendria simplemente la unién de todas las reglas de las dos
gramaticas. ﬂ Asi, por ejemplo, para generar la palabra aabbb, se tendria la siguiente derivacion:

S =1 aSb =3 aaSbbb =5 aabbb

En esta derivacion puede apreciarse que es posible obtener una palabra “intermedia”
entre aabb y aabbbb, como es aabbb simplemente aplicando algunas veces la regla 1, y otras
la regla 3, segin se requiera para la palabra que hay que derivar.

4.4.4. GLC para la concatenacién de lenguajes

En ocasiones un lenguaje L puede ser expresado como la concatenacion de otros dos L
y Lo, esto es, L = Ly L,. Por ejemplo, el lenguaje {a™b™|n > m} puede ser expresado como
la concatenacién de a* con {a"b"}, y desde luego es facil encontrar una gramatica para a*,
mientras que la de {a"b"} ya la conocfamos. [[Y] Ahora bien, hay una manera de combinar

modularmente las graméaticas de L; y Lo para obtener la de L.

9Desde luego, siendo las reglas 2 y 4 idénticas, resultan en una séla regla al unir las gramaticas, pues en
los conjuntos no hay repeticion.

10¥Ya habfamos obtenido la gramética de {a™b™|n > m} por modificacién de otra gramética, pero el método
aqui mostrado tiene la ventaja de que es modular.
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En efecto, para obtener las reglas de la nueva gramatica, simplemente juntamos las reglas
de las originales —las cuales tienen simbolos iniciales S7 y So— y agregamos una nueva regla
S — 5155, haciendo ademas a S el nuevo simbolo inicial.

Ejemplo.- Definimos el lenguaje de los “prefijos palindromos” como aquel formado por
palabras que tienen una parte izquierda de més de un caracter que es palindromo (se lee
igual de izquierda a derecha que de derecha a izquierda). Por ejemplo, las palabras aabab,
aba y aabaa E] son prefijos palindromos, mientras que las palabras baa, a y abbb no lo son.
Proponer una GLC que genere exactamente el lenguaje de los prefijos palindromos en el

alfabeto {a, b}.

El problema parece dificil, pero podemos considerar cada palabra de este lenguaje como
formada por dos partes: la parte palindroma y el resto de la palabra. Dicho de otra forma, el
lenguaje Lpp de los prefijos palindromos es igual a la concatenacién de Lp y Ly, donde Lp
es el lenguaje de los palindromos y Lz genera la parte restante de las palabras. El lenguaje
de los palindromos en {a, b} tiene una gramatica muy simple, con las siguientes reglas:

1. S—aSa
2. S—=bSb
3. S — a (palindromos impares)
4. S — b (palindromos impares)

5. S — ¢ (palindromos pares)

Por ejemplo, la palabra aabaa se puede derivar de la siguiente manera:

S =1 aSa = aaSaa =4 aabaa

Por otra parte, como la “parte restante” que viene después de la parte palindroma puede
ser cualquier cosa, estd claro que Lg es simplemente {a,b}*, que por ser regular es LLC,
y que tiene una GLC con las reglas: T" — a1, T — 0T, T — ¢. La GLC de Lpp es la
combinacion de ambas gramaticas, de acuerdo con la férmula de concatenacién dada mas
arriba.

Formalmente, si tenemos las graméticas G = (V1,31, Ry, 51) y Gy = (Va, 3, Ro, S), el
lenguaje L(G1)L(G3) es generado por la siguiente GLC:

G:(%U%U{S},ZlUEQ,R1UR2U{S—>5152},S)

1 Esta ultima puede ser vista de dos maneras distintas como prefijo palindromo.
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Figura 4.1: Paréntesis bien balanceados

4.5. Arboles de derivacion

Las GLC tienen la propiedad de que las derivaciones pueden ser representadas en forma
arborescente. Por ejemplo, considérese la gramatica siguiente para producir el lenguaje de
los paréntesis bien balanceados, que tiene palabras como (()), ()(), (()())(), pero no a (() ni

[

1. § — S§
2. S — (S)
3. 5§ — ()

Usando esta gramatica, la palabra (()())() puede ser derivada de la manera que se ilustra
en la figura[4.1} En dicha figura se puede apreciar la estructura que se encuentra implicita en
la palabra (()())(). A estas estructuras se les llama drboles de derivacion, o también drboles
de compilacion —por usarse extensivamente en los compiladores— y son de vital importancia
para la teoria de los compiladores de los lenguajes de programacion.

Se puede considerar que un arbol de derivacién es mas abstracto que una derivacion
“lineal” —es decir, una sucesiéon S = ... = w— en el sentido de que para un solo arbol de
derivacion puede haber varias derivaciones lineales, segtin el orden en que se decida “ex-
pandir” los no terminales. Por ejemplo, para el arbol de la figura arriba, hay al menos las
derivaciones siguientes (anotamos como subindice de = el nimero de regla aplicado):

L 8 =1 58=5(5)5 =3 (5)() =1 (59)() =3 (S0)0) =3 (00)0-
2. §=158=35() =2 (50 =1 (55)0) =3 (05)() =3 (00)0.
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Formalmente, un drbol de derivacién es un grafo dirigido arborescente [| definido de la
manera siguiente:

Definicion.- Sea G = (V, X, R, S) una GLC. Entonces un arbol de derivacién cumple las
siguientes propiedades:
1. Cada nodo tiene una etiqueta []
La raiz tiene etiqueta S.

La etiqueta de los nodos que no son hojas debe estar en V', y las de las hojas en X U{e}.

- W N

Si un nodo n tiene etiqueta A, y los nodos ng,...,n,, son sus hijos (de izquierda a
derecha), con etiquetas respectivamente Ay, ..., A,,, entonces A — Ay,..., A, € R.

Definicion.- La cadena de caracteres que resulta de concatenar los caracteres termi-
nales encontrados en las etiquetas de los nodos hoja, en un recorrido en orden del arbol
de derivacién, se llama el producto del arbol.

Es decir, al efectuar un recorrido en orden del arbol de derivacion recuperamos la cadena
a partir de la cual se construyé dicho arbol. Asi, el problema de “compilar” una cadena de
caracteres consiste en construir el arbol de derivacién a partir del producto de éste.

4.5.1. Ambigiiedad en GLC

La correspondencia entre los arboles de derivacion y sus productos no es necesariamente
biunivoca. En efecto, hay GLC en las cuales para ciertas palabras hay mas de un arbol de
derivacion. Sea por ejemplo la siguiente GLC, para expresiones aritméticas sobre las variables

Ty Y.

1. F—-FE+FE
2. E—=ExE
3. E—=x
4. F —y

Con esta gramatica, para la expresion x + y * x existen los dos arboles de derivacion de
las figuras [1.2(a) y (b).

12Esta gramética puede ser disefiada adaptando la de {a™b"}, reemplazando a por (y b por ), y agregando
la primera regla, que toma en cuenta la posibilidad de tener varios grupos de paréntesis anidados.

13Un grafo arborescente se caracteriza por no tener ciclos, y por el hecho de que existe una trayectoria
Unica para llegar de la raiz a un nodo cualquiera.

4 Formalmente, una etiqueta es una funcién que va del conjunto de nodos al conjunto de simbolos de
donde se toman las etiquetas, en este caso VUX U {e}.
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AN /TA

(a) (b)

Figura 4.2: Dos arboles para x +y * x

En este ejemplo, el hecho de que existan dos arboles de derivaciéon para una misma expre-
sién es indeseable, pues cada arbol indica una manera distinta de estructurar la expresion.
En efecto, en el drbol de la izquierda, al resultado de la suma (x + y) se multiplica con z,
mientras que en el de la derecha sumamos x al resultado de multiplicar x con y; por lo tanto
el significado que se asocia a ambas expresiones puede ser distinto.

Se dice que una gramatica es ambigua ssi alguna palabra del lenguaje que genera tiene
mas de un arbol de derivacién. Nétese que la ambigiiedad, como la estamos definiendo, es
una propiedad de la gramatica, no de su lenguaje generado. Para un mismo lenguaje puede
haber una gramatica ambigua y una no ambigua.

Existen técnicas para eliminar la ambigiiedad de una GLC; en general estas técnicas con-
sisten en introducir nuevos no-terminales de modo que se eliminen los arboles de derivacién
no deseados. Para nuestro ejemplo de los operadores aritméticos, es clasica la solucién que
consiste en introducir, ademds de la categoria de las Expresiones (no-terminal £), la de los
términos (T') y factores (F'), dando la gramética con las reglas siguientes:

1. E—FE+T
2. E—=T

3. T—=TxF
4. T —-F

5. F — (F)
6. F—=x

7. F—uy

Con esta nueva GLC, el drbol de derivacién de la figura [1.2(a) se elimina, quedando
finalmente una adaptacién del drbol de [1.2b) a la GLC con términos y factores, lo cual se
deja como ejercicio al lector.
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Sin embargo, estas técnicas de eliminacién de ambigiiedad no son siempre aplicables, y de
hecho hay algunos LLC para los que es imposible encontrar una gramatica libre de contexto
no ambigua; estos lenguajes se llaman inherentemente ambiguos. Un ejemplo, dado en [7]
junto con la prueba correspondiente, es el siguiente:

L={a""c"d™} U{a"b"c™d™}, n>1,m>1

4.5.2. Derivaciones izquierda y derecha

En una gramética no ambigua G, a una palabra w € L(G) corresponde un sélo érbol
de derivacién Ag; sin embargo, puede haber varias derivaciones para obtener w a partir del
simbolo inicial, S = ... = w. Una manera de hacer tinica la manera de derivar una palabra
consiste en restringir la eleccion del simbolo que se va a “expandir” en curso de la derivacién.
Por ejemplo, si tenemos en cierto momento de la derivacién la palabra (S())(S), en el paso
siguiente podemos aplicar alguna regla de la gramatica ya sea a la primera o a la segunda de
las S. En cambio, si nos restringimos a aplicar las reglas solo al no terminal que se encuentre
mas a la izquierda en la palabra, entonces habra una sola opcién posible.

Desde luego, el hecho de elegir el no terminal méas a la izquierda es arbitrario; igual
podemos elegir el no terminal més a la derecha.

Definicion.- Se llama derivacion izquierda de una palabra w a una secuencia S = w; =
... = w, = w en donde, para pasar de w; a w;y1, se aplica una regla al no terminal de w;
que se encuentre mas a la izquierda. Similarmente se puede definir una derivacién derecha.

Ejemplo.- Para la gramética no ambigua con reglas S — AB, A — a, B — b, la palabra
ab se produce con la derivacion izquierda:

S = AB = aB = ab
mientras que también se puede producir con la derivacién derecha:

S = AB = Ab= ab

Teorema.- Para una gramética no ambigua G, y una palabra w € L(G), existe solamente
una derivacion izquierda S =* w.

Prueba: La derivacién izquierda corresponde a un recorrido en preorden del arbol de
derivacion, expandiendo los no terminales que vamos encontrando en el camino. Ahora bien,
se sabe que existe un solo recorrido en preorden para un arbol dado.
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4.6. Pruebas de correccion y completez

Es posible en general hacer pruebas matematicas de que una gramatica corresponde a
un lenguaje dado. Esto tiene la gran ventaja de que dicha correspondencia ya no es una
simple conviccion intuitiva, sino que adquiere el rango de certeza matematica. En ciertas
aplicaciones, donde es extremadamente importante asegurarse de que no hay errores, las
pruebas que garantizan esta certeza son de un gran valor.

Las pruebas que permiten establecer la correspondencia entre un lenguaje y una gramatica
dados requieren dos partes:

1. Prueba de correccion, que garantiza que todas las palabras que se producen al utilizar
la gramatica efectivamente corresponden a la descripcion del lenguaje dado;

2. Prueba de completez, que se asegura de que al producir palabras con la gramatica, no
falten palabras del lenguaje dado.

En general las pruebas de correccion son mas sencillas y siguen un patréon méas predecible
que las de completez, como podremos constatar en los ejemplos que siguen. Las pruebas
de correccién se hacen por induccion, mas precisamente por induccién en la longitud de la
derivacion.

La idea de una prueba por induccién basada en la longitud de la derivacién es esencial-
mente mostrar que todas las palabras por las que se pasa en medio del proceso de derivacion
cumplen una propiedad, que es basicamente el enunciado del lenguaje. Dichas pruebas siguen
el siguiente esquema:

1. Lo primero que hay que hacer es establecer un enunciado, relacionado con la definicion
del lenguaje considerado, pero algo modificado de manera que se pueda aplicar a las
palabras intermedias en el proceso de derivacion, las cuales pueden contener variables
tanto como constantes.

2. Luego se prueba, como base de la induccion, que para las palabras intermedias de la
derivacién producidas en al menos kg pasos, la propiedad se cumple.

3. A continuacién se hace el paso de induccién propiamente dicho. Para esto primero se
supone que la propiedad se cumple tras haber hecho 7 pasos de derivacion (esto es la
hipdtesis de induccidn), y luego se prueba que también se cumple al hacer un paso mas
de derivacion (esto es, para las palabras derivadas en i+ 1 pasos). Al concluir este paso,
se ha probado que todas las palabras intermedias en el proceso de derivaciéon cumplen
con la propiedad.

4. Finalmente, hay que particularizar la propiedad para la wltima palabra de la derivacién,
que es la que sélo contiene constantes. Con esto se termina la prueba.
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Ejemplo.- Probar la correccién de la gramética siguiente que genera el lenguaje P de los
paréntesis bien balanceados (presentamos las reglas):

1. §— (S)
2. §—-9¢9
3. S — ()

Prueba de correccion.- Para hacer la prueba por induccién en la longitud de la derivacién,
necesitamos primero generalizar el enunciado de forma que sea aplicable a las palabras con
variables que aparecen a la mitad de la derivacién. Esto es, necesitamos un lenguaje extendido
donde se admita que las palabras contengan variables. Hacemos la siguiente definicion:

Py = {a e (VUX)*|elim(S,a) € P}

Es decir, eliminando las “S” de las palabras de Py, obtenemos palabras de paréntesis
bien balanceados.

Base de la induccion.- En 0 pasos, se tiene (trivialmente) una palabra en Py.

Hipotesis de induccion.- En k pasos, se generan palabras en Py, de la forma oS, con

a, e V™,

Paso de induccion.- A la palabra aS[, generada en k pasos, se le pueden aplicar las
reglas 1-3. Evidentemente la aplicacion de las reglas 2 y 3 genera palabras aSS@ y af en
LX. Aunque es menos evidente, la aplicacion de la regla 1 produce palabras «(S)3, que
también estan en L.

Finalmente, la ultima regla que debe aplicarse es la 3, lo que nos da una palabra con los
paréntesis bien balanceados. QED

Las pruebas de completez muestran que todas las palabras del lenguaje en cuestion
pueden efectivamente ser generadas utilizando la gramatica dada. Esto puede ser en ocasiones
dificil, y no hay “recetas” tan uniformes como para las pruebas de correccién.

Notese que la completez y la correccién de una gramatica son propiedades independientes,
y una gramatica dada puede tener una, las dos o ninguna. Por ejemplo, si eliminamos la regla
2 de la gramatica, de todas maneras la prueba de correcciéon que acabamos de hacer seguiria
funcionando, pero en cambio no habré completez, porque algunas palabras, como (())(()) no
pueden ser generadas por la gramética.

Vamos a presentar un ejemplo de prueba de completez para la gramatica de los paréntesis
bien balanceados dada més arriba, para mostrar el tipo de consideraciones que hay que hacer
para llevar a término la prueba.
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Prueba de completez.- En el caso que nos ocupa, vamos a hacer una prueba por induccién
sobre la longitud de la palabra.

Base de la induccion: La gramética puede generar todas las palabras de longitud 2 (Por
la regla 3).

Hipotesis de induccion: La gramatica puede generar todas las palabras de longitud menor
o igual a k. (Claramente k es par).

Paso de induccion: Notamos que para una palabra dada w en P (esto es, que tiene los
paréntesis bien balanceados), |w| = k + 2 s6lo hay dos posibilidades: [7]

1. w se puede partir en wy y wy, w = wiwse, de forma tal que wy,wy € P.

2. w no se puede partir en dos partes.

En el caso 1, aplicando inicialmente la regla S — S5, se debe poder generar w; a partir
de la S de la izquierda, por hipétesis de induccion, ya que |wi|<k. Similarmente para ws,
con la S de la derecha.

En el caso 2, w = (w’), donde w’ € P, es decir, al quitar los dos paréntesis mas externos se
tiene una palabra con paréntesis bien balanceados (;Porqué?). Como |w’'| = k, por hipétesis
de induccién w’ se puede generar con la gramética. La palabra w se puede entonces generar
aplicando primero la regla S — (S), y luego continuando con la derivacién de w’ que existe
por hipdtesis de induccién.

Esto completa la prueba. QED

4.7. Gramaticas libres y sensitivas al contexto

Las GLC deben su nombre a una comparacién con otro tipo de gramaticas, las llamadas
sensitivas al contexto, definidas arriba, donde para una regla a;Aas — aqfas , el simbolo
A solo puede generar [ cuando se encuentra rodeado por el “contexto” «; ...as. En cambio,
en las GLC no es necesario especificar un contexto, por esto se llaman “libres de contexto”.

Las gramaticas sensitivas al contexto son estrictamente més poderosas que las GLC; un
ejemplo es el lenguaje de las cadenas de la forma a™b"c", para el que no hay ninguna GLC.
En cambio, una gramadtica sensitiva al contexto seria la siguiente (sélo damos las reglas): H

15E] paso de induccién se hace en k + 2 y no en k + 1 porque todas las palabras en P tienen longitud par
6Esta gramdtica produce palabras de al menos 6 caracteres, o sea de el lenguaje {a™b"c"|n > 1}.
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1.S—aBTc 6.YX — AX
2. T — ABTc 7. AX — AB
3.T — ABc 8. aA — aa
4. BA— BX 9.aB — ab
5. BX - YX 10.bB — bb

En esta gramadtica, las reglas 1 a 3 generan A, a, B y ¢ no necesariamente en orden (las
Ay B van a estar alternadas). Luego las reglas 4 a 7 permiten reordenar las A y B, para que
todas las A queden antes que todas las B, E y finalmente las reglas 8 a 10 permiten generar
los terminales solamente cuando las letras estan en el orden correcto. Como un ejemplo, la
palabra aaabbbcce se puede generar de la forma siguiente:

S =, aBTc¢ =9 aBABTcc =35 aBABABcce =4 aBXBXBcece =5 aY XY X Bece
=6 aAXAX Bcce =7 aABABBcee =4 aABX BBcce =5 aAY X BBceee =¢ aAAX BBcce
=- aAABBBcce =g aaABBBcce =5 aaaBBBcce =9 aaabBBccee =1 aaabbBcece =19
aaabbbccc.

4.8. Transformacion de las GLC y Formas Normales

En muchas situaciones se considera conveniente modificar las reglas de la gramaética,
de manera que cumplan las reglas con propiedades tales como no producir la cadena vacia
del lado derecho, o bien simplemente por cuestiones de estandarizacion o facilidad de im-
plementacion computacional. Desde luego, cuando hablamos de “modificar las reglas de la
gramatica”, se entiende que esto debe hacerse sin modificar el lenguaje generado.

Por ejemplo, la presencia de reglas que producen vacio en la gramatica puede ser fuente de
dificultades tales como la ambigiiedad, o la posibilidad de tener derivaciones arbitrariamente
largas. Tomemos por ejemplo la siguiente gramética para los paréntesis bien balanceados
(damos sélo las reglas):

1. §— 99
2. S—>(S)
3. S —e¢

Con esta gramatica es posible hacer derivaciones arbitrariamente largas de una palabra
tan sencilla como “()” (el subindice de las flechas indica la regla utilizada):

"De hecho bastarfa con una regla BA — AB, salvo que ésta no cumple con el formato de las graméticas
sensitivas al contexto.
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S=1899=185855=1...=235859=355=35=45(5)=3()

Si pudiéramos tener una gramatica equivalente, pero sin reglas que produzcan la cadena
vacia, ya no seria posible hacer derivaciones arbitrariamente largas. Esto puede ser una
ventaja a la hora de determinar si una palabra se deriva o no de una gramaética (ver seccién
4.10]).

4.8.1. Eliminacion de reglas A — ¢

Consideremos nuevamente la gramética para los paréntesis bien balanceados. Si queremos
una GLC equivalente, pero sin emplear producciones vacias (como S — ¢), una idea seria
analizar “en reversa”’ la derivacién de donde viene la S que queremos cambiar por . Sélo
hay otras dos reglas en la gramatica, de modo que esa S tuvo que ser generada ya sea por
S — (S) opor S — SS. En el caso de S — (.9), una solucién seria, en vez de hacer la
derivacion

S= ... =aSf=aS)f=a()f, aeX,fe(DUV)

mejor hacer directamente la derivacion

S=...=aS=a()p

agregando una regla S = () a la gramdtica. Y en caso de que la S provenga de la regla
S — 55, se puede cambiar la derivacion

S=...=aSf=aSSE = asSi

por la derivacion

S=...=aSf=aSp

usando una nueva regla S — S, o mejor aun, simplemente reemplazarla por

S=...=aSp

sin ninguna regla adicional (la parte de la derivacién S8 = aSSf = aSf desaparece por
completo, pues no sirve de nada).

Resumiendo, la idea que permite eliminar las reglas A — ¢ es la de irse un paso atras,
para examinar de dénde provino el no-terminal A que queremos eliminar, y por cada regla
B — «aAS de la gramatica agregar una regla B — /3 , en que directamente ya se reemplazo A
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por €. Una vez hecho esto, se pueden suprimir todas las reglas de la forma A — &, pues
resultan redundantes.

Por ejemplo, sea la GLC de los paréntesis bien balanceados:
S—(S), S— 85, S—e
Aplicando mecanicamente la transformacion a dicha gramatica, se tiene:

S—(S),S—85 S—(,5S—S

La regla S — S es evidentemente intitil y se puede eliminar, pero dejemos esto para el
siguiente parrafo, en que nos ocuparemos de la eliminacion de reglas de esa forma.

Otra cuestion mas importante atin debe haber saltado a la vista escrutadora del lector
perspicaz: jla nueva GLC no es exactamente equivalente a la anterior! En efecto, la GLC
original generaba la palabra vacia ¢, mientras que la GLC transformada no la genera. Desde
luego, el hecho de que una GLC contenga reglas de la forma A — ¢ no significa que el lenguaje
contenga forzosamente a la palabra vacia; considérese por ejemplo la siguiente gramatica:

S—(A), A— (A), A— AA A—¢
cuyo lenguaje no contiene a la palabra vacia.

En caso de que el lenguaje en cuestién realmente contenga a la palabra vacia, no es
posible estrictamente eliminar todas las producciones vacias sin alterar el significado de la
gramédtica. En estos casos vamos a expresar el lenguaje como la unién {¢} U L(G"), donde G’
es la gramatica transformada. Este pequeno ajuste no modifica los resultados que obtuvimos
arriba.

4.8.2. Eliminacion de reglas A — B

Supongamos ahora que se tiene la gramética con las reglas siguientes:

S—(S),S—BB,S—(),B—S

Claramente esta GLC es equivalente a la gramatica dada anteriormente para generar los
paréntesis bien balanceados. La tinica diferencia es que, en vez de utilizar la regla S — S5, se
tiene una regla S — BB, y luego las B se transforman en S por la regla B — S. Pero, jpara
que usar esos intermediarios, como B en este caso, cuando es posible generar directamente
SS a partir de S? La idea de eliminar las reglas de la forma A — B viene de observar que
dichas reglas no producen nada 1til, simplemente introducen simbolos intermediarios, que
es posible eliminar. A continuaciéon veremos cémo.
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Supongamos que hay reglas A — By B — I'; en la gramatica, entonces es posible anadir
reglas A — I'; sin modificar el lenguaje. Ahora bien, si hacemos esto siempre que sea posible,
las reglas de la forma A — B se vuelven intitiles, pues toda derivacion:

.= adAf=aBf=ali\f= ...

puede transformarse en:

.= A= ol = ...

sin modificar el lenguaje. Esto prueba que la gramatica modificada es equivalente a la original.

Por ejemplo, aplicando esta transformacion a la gramatica del ejemplo, la regla “intutil”,
que tratamos de eliminar, es B — S. Se producen las nuevas reglas siguientes:

» B — (95), al combinar B — S con S — (5)
» B — BB, al combinar B — S con S — BB
» B — (), al combinar B — S con S — ()

La gramatica queda entonces con las reglas:

S—(S), S— BB, S— (), B—(S), B— BB, B— ()

4.8.3. Eliminacion de reglas inaccesibles

Considérese una gramatica con reglas:

S — aXbb, X — bSa, Y — SX

Es facil comprender que la tercera regla es inttil, porque no hay nadie que produzca la
Y necesaria para que dicha regla se aplique. A reglas como éstas se les llama inaccesibles.

Definicion.- Una regla X — « de una gramética (V, X, R, .S) es inaccesible si no hay una
derivacién S = a; Xay, donde ay, as € (V U X)*.

En términos practicos, si vemos que una variable X no aparece en el lado derecho de
ninguna regla de la gramética, podemos asegurar sin arriesgarnos que la regla X — « es
inaccesible.

Para eliminar una regla inaccesible no se necesita hacer ninguna otra modificacién a
la gramatica mas que simplemente borrarla. La equivalencia de la gramatica sin la regla
inaccesible y la original esta garantizada por el hecho de que dicha regla no participa en
ninguna derivacion.
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4.8.4. Formas Normales

En ocasiones es necesario expresar una GLC siguiendo un formato mas preciso de las
reglas que la simple forma A — «. Estos “estandares” reciben el nombre de formas normales.
Vamos a estudiar una de las formas normales més conocidas, la forma normal de Chomsky
(FNCH).

La FNCH consiste en que las reglas pueden tener dos formas:

1. A—a,aeX
2. A— BC,con B,CeV

Esta forma normal, aparentemente tan arbitraria, tiene por objeto facilitar el analisis
sintactico de una palabra de entrada, siguiendo la estrategia siguiente: Se trata de construir
el arbol de derivacién de w de arriba hacia abajo (llamada “top-down” en inglés), y por
consiguiente se supone inicialmente que el simbolo inicial S puede producir la palabra w. En
seguida se procede a dividir la palabra de entrada w en dos pedazos, w = af3 , para luego
tomar alguna regla S — AB | y tratar de verificar si se puede derivar a a partir de Ay b a
partir de B, es decir: S = ... = w ssi:

1. w € %, hay una regla S — w

2. w=af, hayunaregla S — AB,con A= ...=a,yB=...=0

Por ejemplo, considérese la siguiente gramatica para el lenguaje de los paréntesis bien
balanceados, en forma normal de Chomsky (damos sus reglas): H

1. S—XY
2. X — (
3. Y > 57
1. 7 =)
5. §— S8
6. S—XZ

Supongamos que tenemos una palabra como (())(), y queremos verificar si se puede derivar
a partir de esta gramatica. Hay que “partir” dicha palabra en dos pedazos, y escoger alguna

18T uego veremos cémo calcular esta forma normal.
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|1
C )
Figura 4.3: Arbol de la palabra (())()

regla que produzca dos variables. Escogemos la quinta regla, S — S5, y partimos la palabra
en los pedazos (()) y (). Para que SS pueda generar (())() ahora se necesitara que la primera
S pueda generar (()), y la segunda pueda generar (). Estos son subproblemas muy similares
al problema inicial. Tomemos el primero, es decir, a partir de S generar (()). Escogemos la
regla S — XY, y partimos la palabra en (y ()). Ahora X tiene la responsabilidad de generar
(v Y la de generar ()). Por la segunda regla, X genera directamente (. Ahora tomamos el
problema de generar ()) a partir de Y. Escogemos la regla S — SZ, y la separacién en los
pedazos () y ). Entonces Z produce directamente ), y queda por resolver cémo S produce ().
Para ello, escogemos la regla S — X Z, y finalmente X produce (y Z se encarga de ), con
lo que terminamos el analisis. El arbol de compilacién se presenta en la figura 4.3]

Esta manera de generar dos nuevos problemas similares al problema inicial, pero con
datos mas pequenos, es tipicamente un caso de recursion. Este hecho permite pensar en
un sencillo procedimiento recursivo para “compilar” palabras de un LLC. Sea C'C(A,u) la
funciéon que verifica si A = ... = wu. Entonces un algoritmo de analisis sintactico seria el
siguiente:

CC(A,w) :
1. Si|w|>1,dividirla en u y v, w = uv;
Para cada regla de la forma A — UV, intentar CC(U,u) y CC(V,v)
2. Si|w| =1, buscar una regla A — w.
Si en el punto 1 la divisién de la palabra no nos llevé a una compilacién exitosa (es decir,

los llamados recursivos CC(U,u) y CC(V,v) no tuvieron éxito), puede ser necesario dividir
la palabra de otra manera. Dicho de otra forma, puede ser necesario ensayar todas las formas
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posibles de dividir una palabra en dos partes, antes de convencerse de que ésta pertenece o
no a nuestro lenguaje. Ain cuando esto puede ser muy ineficiente computacionalmente, es
innegable que el algoritmo es conceptualmente muy sencillo.

El siguiente problema a examinar es si efectivamente es posible transformar una GLC
cualquiera G en otra GLC G’ que estd en la FNCH. Vamos a efectuar esta transformacién en
dos etapas: en una primera etapa, llevaremos G a una forma intermedia Giey,p, para pasar
después de Giemp a G'.

En Giemp las reglas son de las formas:

1. A—a,cona€eX

2. A—fB,congeVV*

En Giemy, los lados derechos de las reglas son, ya sea un terminal, o una cadena (no vacia)
de no-terminales. La manera de llevar una GLC cualquiera a la forma intermedia consiste en
introducir reglas A — a, B — b, etc., de modo que podamos poner, en vez de un terminal
a, el no-terminal A que le corresponde, con la seguridad de que después sera posible obtener
a a partir de A. Por ejemplo, considérese la siguiente GLC:

1- 5 —aX
2-8 —=bYy
3-X —-Ya
4- X — ba
5-Y - bXX
6.- Y — aba

Como se ve, el obstaculo para que esta GLC esté en la forma intermedia es que en los
lados derechos de varias reglas (1, 2, 3, 5) se mezclan los terminales y los no-terminales.
Por otra parte, hay reglas (4, 6) que en el lado derecho tienen varios terminales. Entonces
anadimos las reglas:

7-A—a
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8-B—b

y modificamos las reglas (1,2,3,5), reemplazando a por A y b por B:

-5 — AX
2'-S — BY
J-X—->YA
4-X — BA
5-Y - BXX
6.-Y — ABA

con lo que la gramatica ya esta en la forma intermedia. La equivalencia de la nueva
gramatica con respecto a la original es muy facil de probar.

Luego, para pasar de Gienp a la FNCH, puede ser necesario dividir los lados derechos
de algunas reglas en varias partes. Si tenemos una regla X — X;X5...X,, la dividimos
en dos reglas, una X — XjW y otra W — X,...X,, donde W es una nueva variable,
es decir, no debe formar previamente parte de la gramatica. Cada vez que se aplica esta
transformacién, el lado derecho de la regla afectada se reduce en longitud en una unidad,
por lo que, aplicandola repetidas veces, se debe poder llegar siempre a reglas cuyo lado
derecho tiene exactamente dos no-terminales. Para el ejemplo visto arriba, la regla 5 se
convierte en:

5'-Y — BW

"-W — XX

Similarmente se puede transformar la regla 6’, dejando la gramética (reglas 1’, 2/, 3/, 4/,
575" 6", 6", 7, 8) en la FNCH.



136 CAPITULO 4. GRAMATICAS Y LENGUAJES LIBRES DE CONTEXTO

4.9. Limitaciones de los LLC

En esta seccién veremos cémo verificar que un lenguaje dado no es LLC. Esto puede ser
muy util, para evitarnos el trabajo de tratar initilmente de disenar GLCs de lenguajes que
no tienen ninguna. Una herramienta para esto es aplicar el llamado “teorema de bombeo”,
que se presenta enseguida.

4.9.1. Teorema de bombeo para los LLC

Teorema.- Existe para cada G € GLC un nimero £ tal que toda w € L(G), donde |w| > k,
puede ser escrita como w = wwvxyz, de tal manera que v y y no son ambas vacias, y que
w"xy"z € L(G) para cualquier n>0.

Este teorema es similar en esencia al teorema de bombeo para los lenguajes regulares.
Nos dice que siempre hay manera de introducir (“bombear”) subrepticiamente subcadenas
a las palabras de los LLC. Nos sirve para probar que ciertos lenguajes no son LLC.

Prueba.- Basta con probar que hay una derivacion

S =" uAz =" wAyz =" wryz = w

pues al aparecer el mismo no-terminal en dos puntos de la derivacién, es posible insertar ese
“trozo” de la derivacién cuantas veces se quiera (incluyendo cero). Esa parte de la derivacion,
que tiene la forma uAz =* uvAyz, es una especie de “ciclo” sobre el no-terminal A, que
recuerda lo que ocurria con el teorema de bombeo para los lenguajes regulares.

Para probar que existen en la derivacién ciclos de la forma uAz =* wwAyz, la idea
serd verificar que el tamano vertical del drbol (su profundidad) es mayor que la cantidad de
no-terminales disponibles. En consecuencia, algin no-terminal debe repetirse.

Primero, la cantidad de no-terminales para una gramética (V, %, R, S) es |V].

A continuacién examinemos el problema de verificar si los arboles de derivacion pueden
tener una profundidad mayor que |V].

Sea m = maz({|a|] |A — « € R}). Ahora bien, un arbol de profundidad p tiene a lo més
mP hojas (;porqué?), y por lo tanto un arbol A, para w, con |w| > m? tiene profundidad
mayor que p. Asi, toda palabra de longitud mayor que m!Vl tendrd necesariamente una
profundidad mayor que |V|, y por lo tanto, algiin no-terminal estard repetido en la derivacién;
sea A ese no-terminal. Vamos a representar el arbol de derivacién en la figura |4.4]

Como se ve, hay un subérbol del arbol de derivacion (el tridngulo intermedio en la figu-
ra en el que el simbolo A es la raiz y también una de las hojas. Esta claro que ese
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Figura 4.4:

subarbol puede ser insertado o quitado cuantas veces se quiera, y quedard siempre un arbol
de derivacion valido; cada vez que dicho subarbol sea insertado, las subcadenas v e y se repe-
tiran una vez mas. Esto completa la prueba. En la figura se aprecia porqué es importante
que v e y no sean ambas vacias. QED

Ejemplo.- El lenguaje {a™b"c"} no es LLC. Esto se prueba por contradiccién. Supéngase
que {a"b"c"} es LLC. Entonces, de acuerdo con el teorema de bombeo, para una cierta k,
ak/3bk/3ck/3 puede ser escrita como wvzryz, donde v v y no pueden ser ambas vacias. Existen
dos posibilidades:

1. v oy contienen varias letras (combinaciones de a, b o ¢). Pero, segtin el teorema, uv?zy?z
es de la forma a™b"c", lo cual es imposible, ya que al repetir v o y, forzosamente las
letras quedaran en desorden;

2. Tanto v como y (el que no sea vacio) contienen un sélo tipo de letra (repeticiones de a,
b o c). En este caso, si uvzyz es de la forma a™b"c", uv?zy*z no puede ser de la misma
forma, pues no hemos incrementado en forma balanceada las tres letras, sino a lo mas
dos de ellas.

En ambos casos se contradice la hipétesis de que {a"b"c"} es LLC.

Al haberse probado que el lenguaje {a"b"c"} no es LLC, podemos probar que la inter-
seccién de dos LLC no es necesariamente un LLC:

Teorema.- La interseccién de dos LLC no es necesariamente LLC.

Prueba.- Los lenguajes Ly y Ly formados por las palabras de la forma a™b"c™ y a™b"c"
respectivamente son LLC. Sin embargo, su interseccion es el lenguaje {a"b"c"}, que acabamos
de probar que no es LLC.

Algo similar ocurre con respecto a la operaciéon de complemento del lenguaje, que si se
recuerda, en el caso de los lenguajes regulares, su complemento daba otro lenguaje regular:

Teorema.- El complemento de un LLC no necesariamente produce otro LLC.

Prueba.- Si el complemento de un LLC fuera también LLC, lo mismo ocurriria con la
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interseccién, ya que, de acuerdo con las identidades de la teoria de conjuntos, Ly N Ly =

(Ls U Ls)°. [T

Debe tenerse cuidado al interpretar estos resultados. En efecto, esto no quiere decir, por
ejemplo, que el complemento de un LLC necesariamente no serd LLC. En el siguiente ejemplo
se da un caso especifico.

Ejemplo.- Probar que el complemento del lenguaje {a"0"} es LLC. Para esto, vamos a
clasificar las palabras de L = {a"b"}¢ en dos categorias:

1. Las que contienen la cadena “ba”, esto es, w = aba(

2. Las que no contienen “ba”, esto es, w # abaf

Claramente esta clasificacion es exhaustiva. El objetivo de esta clasificacion es distinguir
las causas por las que una palabra en {a,b}* no es de la forma a"b": la primera es que tiene
letras en desorden —esto es, contiene la cadena “ba”— como en “abba’; la segunda es que,

no habiendo letras en desorden, la cantidad de a’s y b’s no es la misma, como en “aaaa”,
“abbb” | etc.

El caso (1) es muy simple, pues el lenguaje L; cuyas palabras contienen la cadena “ba”
es regular y por lo tanto LLC.

Es facil ver que el caso (2) corresponde al lenguaje Ly = {a"b™|n # m}, pues como
no tiene b inmediatamente antes que a, todas las a estan antes de todas las b. Ly puede
ser expresado como la uniéon de dos lenguajes LLC, como se vio en un ejemplo presentado
anteriormente, y por la cerradura de los LLC a la unién, se concluye que L; es LLC.

Finalmente, {a"0"}¢ = L1 U Ly, y por la cerradura de los LLC a la unién, se concluye que
L es LLC.

4.10. Propiedades de decidibilidad de los LLC

Hay ciertas preguntas sobre los lenguajes libres de contexto y sus gramaticas que es
posible contestar, mientras que hay otras preguntas que no se pueden contestar en el caso
general. Vamos a examinar primero dos preguntas que si se pueden contestar con seguridad
y en un tiempo finito. Para estas preguntas es posible dar un algoritmo o “receta” tal
que, siguiéndolo paso por paso, se llega a concluir un si o un no. Tales algoritmos se llaman
algoritmos de decision, pues nos permiten decidir la respuesta a una pregunta. Las preguntas
que vamos a contestar son las siguientes:

19L¢ es una abreviatura para ¥* — L.
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Teorema.- Dadas una gramaética G y una palabra w, es posible decidir si w € L(G)
cuando las reglas de G cumplen la propiedad: “Para toda regla A — «, |a| > 1, o bien
a € X, es decir, el lado derecho tiene varios simbolos, o si tiene exactamente un simbolo,
éste es terminal.”

Prueba: La idea para probar el teorema es que cada derivacién incrementa la longitud de
la palabra, porque el lado derecho de las reglas tiene en general més de un simbolo. En vista
de que la longitud de la palabra crece con cada paso de derivacion, sélo hay que examinar
las derivaciones hasta una cierta longitud finita. Por ejemplo, la gramatica de los paréntesis
bien balanceados cumple con la propiedad requerida:

1. S—()
2. §—8SS
3. 9 —=(9)

Como en esta gramatica el lado derecho mide 2 o mas simbolos, la aplicacién de cada regla
reemplaza un simbolo por dos o més. Por lo tanto, para saber si hay una derivacién de la
palabra ()(()), que mide 6 simbolos, sélo necesitamos examinar las derivaciones (izquierdas)
de 5 pasos a lo més -y que terminan en una palabra hecha tnicamente de terminales. Estas
derivaciones son las siguientes:

1 paso:
S=()

2 pasos:

S =(5)=(0)

3 pasos:
S =(5)=((5)) = ()
S=55=(05= ()

4 pasos:
5= (5) = ((9))
S = (9)=(59)
S=55=
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S=8585=0)5=(055=005= 00(
S=55=(9)5=(()
S=85=(9)S=(
S=55= 555 =(

Es facil ver que éstas son las tnicas posibles derivaciones. ]

Con base en este grupo de derivaciones es simple probar que la palabra “(()()(” -de 6
caracteres de longitud- no pertenece al lenguaje generado por la gramatica, pues si asi fuera,
estarfa entre alguna de las palabras derivadas en 5 pasos o menos.

En el caso general se incluyen reglas de la forma A — a, con a € Y. Para empezar
observamos que las reglas de la forma A — a producen exclusivamente un terminal, por lo
que, en el peor caso, se aplicaron tantas veces reglas de este tipo como letras tenga la palabra
generada. Por ejemplo, sea la gramatica de las expresiones aritméticas:

1. E—-FE+E
2. F—FExFE
3. E—=x
4. FEF —y

Esta gramatica tiene reglas, como £ — z y E — y que tienen en su lado derecho un
caracter. Entonces, dada una expresion aritmética como x * y + x, que tiene 5 simbolos, a
lo més se usan ese tipo de reglas en 5 ocasiones (de hecho se ve que en una derivacién de
x %y + x ese tipo de reglas se usa exactamente en 3 ocasiones). Ahora bien, para generar 5
terminales con reglas de la forma A — a se requieren 5 no-terminales. Esos 5 no-terminales
se generan con las reglas de la forma A — a, donde |a| > 1. En el peor de los casos, |a| = 2,
por lo que se requeriran 4 pasos de derivaciéon para llegar a los 5 no-terminales. Eso da un
total de 5+4 = 9 pasos de derivacion. Asi, si queremos determinar en forma segura si la
palabra x % y + x pertenece o no al lenguaje generado por la gramatica, sélo tenemos que
examinar las derivaciones de longitud menor o igual a 9.

En general, para una palabra w de longitud [ hay que examinar las derivaciones de
longitud hasta 2 [ — 1. Si la palabra se encuentra al final de alguna de esas derivaciones, la
palabra pertenece al lenguaje, y en caso contrario no pertenece al lenguaje. Esto termina la
prueba del teorema. QED

Noétese que en el enunciado del teorema nos estamos restringiendo a las GLC que satis-
facen la condicién: para toda regla A — a, |a| > 1, o bien a € ¥, es decir, el lado derecho
tiene varios simbolos, o si tiene exactamente un simbolo, éste es terminal. Cabe preguntarse

20Ejercicio: hallar el método que se siguié para obtener las derivaciones mostradas, y probar que no se
puede “escapar” ninguna derivacién.
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si esto constituye una limitacién, en el sentido de que hay muchas GLC que no cumplen
dicha condicién. De hecho la respuesta es no, pues existe un procedimiento para pasar de
una GLC arbitraria a una GLC que satisfaga la condicion del teorema.

Corolario .- Dada cualquier GLC G, es posible decidir si w € L(G).

La prueba de este corolario consiste en dar un procedimiento para transformar una GLC
cualquiera G en una GLC G’ que satisface las condiciones del teorema arriba enunciado.

4.11.

Ejercicios

1. Proponer una gramatica libre de contexto que genere las palabras binarias que comien-
zan con 1.

2. Considerar el lenguaje en {a,b} en que las palabras tienen la misma cantidad de a’s
que de b’s. Proponer:

Una GLC incorrecta para este lenguaje, esto es, que genere palabras que no de-
beria;

Una GLC incompleta, esto es, que no pueda generar algunas de las palabras de
este lenguaje;

Una GLC que sea a la vez incorrecta e incompleta para este lenguaje.

Una GLC correcta y completa;

Una derivacién izquierda de la palabra abaababb usando esta tltima gramatica.

3. Proponer gramaticas libres de contexto para los siguientes lenguajes:

El lenguaje {a'b/'c* | =(i = j = k)}
El lenguaje en {a,b}* en que las palabras tienen la misma cantidad de a’s y b’s.

Las palabras en {a, b, c} en que hay més a’s que ¢’s (la cantidad de b’s puede ser
cualquiera).

Un lenguaje de paréntesis, llaves y corchetes bien balanceados. Por ejemplo, las
palabras “()[]”, “([))” v “O[[]]” son correctas, mientras que “[[]” y “(])]” no lo son.
Notese que en esta ultima palabra los paréntesis solos estan balanceados, asi como
los corchetes solos, pero su combinacién no lo esta.

{a'ick | i=j—k}
El lenguaje {a"b"*t™c¢™} (Ayuda: usar la concatenacién de lenguajes).

El lenguaje {a"b*¢™, n < k < n+m} (Ayuda: usar la mezcla de gramaticas, y la
solucién al problema anterior).

4. Transformar las gramaticas del problema |3 a la forma normal de Chomsky. Para esto,
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5.

6.

10.
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S

Eliminar las producciones vacias,

Las reglas “inutiles”,

o

Las reglas inaccesibles,

IS >~
~— N N

Poner en la “forma intermedia” (sélo variables o sélo constantes en el lado derecho
de las reglas).

e) Limitar a 2 la longitud méxima del lado derecho de las reglas.

Mostrar que la siguiente gramética es / no es ambigua: G = (V, 3, R, S), con:
V = {PROG, IF,STAT}
Y. = {if, then, else, condicién, stat }

R = {PROG — STAT, STAT — if condicién then STAT,
STAT — if condicién then STAT else STAT, STAT — stat}

S = PROG
Contestar las siguientes preguntas, justificando la respuesta:

a) ¢La concatenacién de un lenguaje regular con uno libre de contexto serd necesari-
amente libre de contexto?

S

. Todo lenguaje libre de contexto tendra algiin subconjunto que sea regular?

. Todo lenguaje libre de contexto sera subconjunto de algin lenguaje regular?

[

Si AU B es libre de contexto, jsera A libre de contexto?

.La interseccién de un lenguaje regular con un libre de contexto sera regular?

V)

ISH
~— — ~— ~— ~—

=

,La union de un lenguaje libre de contexto con un lenguaje regular es libre de
contexto?

g) ¢La interseccién de un lenguaje libre de contexto con un lenguaje regular es reg-
ular?

h) iElreverso de un lenguaje libre de contexto es también libre de contexto? (Ayuda:
considerar una transformacién para obtener el reverso del lado derecho de las
reglas).

Probar la correccién de las gramdticas propuestas en el ejercicio [3] Poner especial
cuidado al generar el enunciado generalizado, asi como al aplicarlo a los casos especiales.

Sea L = {a"b™cPd? | n =m = p+ q}. ;Es L libre de contexto? Proponga (y explique)
una GLC o pruebe que no es posible.

Probar mediante el teorema de bombeo que el lenguaje {a"b"T™c"™™* nom k =
1,2,3,...} no es libre de contexto. (Ayuda: las cadenas v e y se pueden repetir 0
veces).

Llamamos “util” a un simbolo no terminal A de una gramatica libre de contexto que
cumple con dos propiedades:
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11.

a) S=%aAb,a,be (VUX)*" donde V es el alfabeto de las variables y ¥ (terminales
y no terminales),

b) A="w, we X"

Dada una cierta GLC y un simbolo no terminal A, ;Es decidible si A es 1til o no lo
es? Pruebe la respuesta, y en caso afirmativo proponga el método de decision.

(El lenguaje {w = a’b™c" | i > m > n} es libre de contexto? Probar la respuesta.
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Capitulo 5

Autématas de Pila

Puesto que los autéomatas finitos no son suficientemente poderosos para aceptar los LLC,
E]cabe preguntarnos qué tipo de autdomata se necesitaria para aceptar los LLC.

Una idea es agregar algo a los AF de manera que se incremente su poder de calculo.

Para ser mas concretos, tomemos por ejemplo el lenguaje de los paréntesis bien balancea-
dos, que sabemos que es propiamente LLC. E] ., Qué maquina se requiere para distinguir las
palabras de paréntesis bien balanceados de las que tienen los paréntesis desbalanceados?
Una primera idea podria ser la de una maquina que tuviera un registro aritmético que le
permitiera contar los paréntesis; dicho registro seria controlado por el control finito, quien le
mandaria simbolos I para incrementar en uno el contador y D para decrementarlo en uno. A
su vez, el registro mandaria un simbolo Z para indicar que esta en cero, o bien /N para indicar
que no esta en cero. Entonces para analizar una palabra con paréntesis lo que hariamos seria
llevar la cuenta de cuantos paréntesis han sido abiertos pero no cerrados; en todo momento
dicha cuenta debe ser positiva o cero, y al final del cdlculo debe ser exactamente cero. Por
ejemplo, para la palabra (())() el registro tomarfa sucesivamente los valores 1,2,1,0,1,0.
Recomendamos al lector tratar de disenar en detalle la tabla describiendo las transiciones
del autémata.

Como un segundo ejemplo, considérese el lenguaje de los palindromos (palabras que se
leen igual al derecho y al revés, como ANITALAVALATINA). Aqui la maquina contadora
no va a funcionar, porque se necesita recordar toda la primera mitad de la palabra para
poder compararla con la segunda mitad. Mas bien pensariamos en una maquina que tuviera
la capacidad de recordar cadenas de caracteres arbitrarias, no nimeros. Siguiendo esta idea,
podriamos pensar en anadir al AF un almacenamiento auxiliar, que llamaremos pila, donde
se podran ir depositando caracter por caracter cadenas arbitrariamente grandes, como se
aprecia en la figura 5.1} A estos nuevos autématas con una pila auxiliar los llamaremos

LiCuidado! Esto no impide que un LLC en particular pueda ser aceptado por un AF, cosa trivialmente
cierta si tomamos en cuenta que todo lenguaje regular es a la vez LLC.
2«Propiamente LLC” quiere decir que el lenguaje en cuestién es LLC pero no regular.

145



146 CAPITULO 5. AUTOMATAS DE PILA

Figura 5.1: Autémata con una pila auxiliar

Autématas de Pila, abreviado AP.

5.1. Funcionamiento de los Autématas de Pila (infor-
mal)

La pila funciona de manera que el 1iltimo caracter que se almacena en ella es el primero
en salir (“LIFO” por las siglas en inglés), como si empildramos platos uno encima de otro, y
naturalmente el primero que quitaremos es el iltimo que hemos colocado. Un aspecto crucial
de la pila es que sélo podemos modificar su “tope”, que es el extremo por donde entran o
salen los caracteres. Los caracteres a la mitad de la pila no son accesibles sin quitar antes
los que estan encima de ellos.

La pila tendra un alfabeto propio, que puede o no coincidir con el alfabeto de la palabra de
entrada. Esto se justifica porque puede ser necesario introducir en la pila caracteres especiales
usados como separadores, segin las necesidades de diseno del autémata.

Al iniciar la operacién de un AP, la pila se encuentra vacia. Durante la operacion del
AP, la pila puede ir recibiendo (y almacenando) caracteres, segin lo indiquen las transiciones
ejecutadas. Al final de su operacién, para aceptar una palabra, la pila debe estar nuevamente
vacia.

En los AP las transiciones de un estado a otro indican, ademas de los caracteres que se
consumen de la entrada, también lo que se saca del tope de la pila, asi como también lo que
se mete a la pila.

Antes de formalizar los AP, vamos a utilizar una notacién grafica, parecida a la de los
diagramas de los autématas finitos, como en los AP de las figuras (a) y (b). Para las
transiciones usaremos la notaciéon “w/a/B”, donde w es la entrada (secuencia de caracteres)
que se consume, « es lo que se saca de la pila, y § lo que se mete a la pila.

Por ejemplo, la transicién “a/e/b” indica que se consume de la entrada un caracter a, no
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se saca nada de la pila, y se mete b a la pila. Se supone que primero se ejecuta la operacién
de sacar de la pila y luego la de meter.

Al igual que los AF, los AP tienen estados finales, que permiten distinguir cuando una
palabra de entrada es aceptada.

De hecho, para que una palabra de entrada sea aceptada en un AP se deben cumplir
todas las condiciones siguientes:

1. La palabra de entrada se debe haber agotado (consumido totalmente).
2. El AP se debe encontrar en un estado final.

3. La pila debe estar vacia.

5.2. Diseno de AP

El problema de diseno de los AP consiste en obtener un AP M que acepte exactamente
un lenguaje L dado. Por exactamente queremos decir, como en el caso de los autématas
finitos, que, por una parte, todas las palabras que acepta efectivamente pertenecen a L, y
por otra parte, que M es capaz de aceptar todas las palabras de L.

Aunque en el caso de los AP no hay metodologias tan generalmente aplicables como era
el caso de los automatas finitos, siguen siendo validas las ideas bésicas del diseno sistematico,
en particular establecer claramente qué es lo que “recuerda” cada estado del AP antes de
ponerse a trazar transiciones a diestra y siniestra. Para los AP, adicionalmente tenemos que
establecer una estrategia clara para el manejo de la pila.

En resumen, a la hora de disenar un AP tenemos que repartir lo que requiere ser “recor-
dado” entre los estados y la pila. Distintos disenos para un mismo problema pueden tomar
decisiones diferentes en cuanto a qué recuerda cada cual.

FEjemplo.- Disenar un AP que acepte exactamente el lenguaje con palabras de la forma
a™b", para cualquier nimero natural n.

Una idea que surge inmediatamente es la de utilizar la pila como “contador” para recordar
la cantidad de a’s que se consumen, y luego confrontar con la cantidad de b’s. Una primera
version de este diseno utiliza un sélo estado ¢, con transiciones a/e/ay b/a/e de q a si mismo,

como en la figura[5.2{a).

Para verificar el funcionamiento del autémata, podemos simular su ejecucién, listando
las situaciones sucesivas en que se encuentra, mediante una tabla que llamaremos “traza de
ejecucién”. Las columnas de una traza de ejecucién para un AP son: el estado en que se
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alela
/i::>WWS a/ela b/al &
0 b/al €
(a) Incorrecto (b) Correcto

Figura 5.2: AP para el lenguaje a"b"

encuentra el automata, lo que falta por leer de la palabra de entrada, y el contenido de la
pila.

Por ejemplo, la traza de ejecucion del AP del ultimo ejemplo, para la palabra aabb, se
muestra a continuacién: Pl

Estado | Por leer | Pila
q aabb | €

q abb | a

q bb | aa

q a

q gle

Concluimos que el AP efectivamente puede aceptar palabras como a™b™. Sin embargo, hay
un problema: jel AP también acepta palabras como abab, que no tienen la forma deseadal! (es
facil construir la traza de ejecucién correspondiente para convencerse de ello). El problema
viene de que no hemos recordado cuando se terminan las a y principian las b, por eso ha sido
posible mezclarlas en abab. Una solucién es utilizar los estados para memorizar las situaciones

de estar consumiendo a o estar consumiendo b. El diagrama de estados correspondiente se
muestra en la figura[5.2(b).

Ejemplo.- Proponer un AP que acepte el lenguaje de los palindromos con un nimero
par de simbolos, esto es, palabras que se leen igual de izquierda a derecha y de derecha a
izquierda, y que tienen por tanto la forma ww®, donde w’ es el reverso de w (esto es, invertir
el orden), en el alfabeto {a,b}. Por ejemplo, las palabras abba, aa y bbbbbb pertenecen a este
lenguaje, mientras que aab y aabaa no.

Una estrategia de solucién para disenar este AP seria almacenar en la pila la primera
mitad de la palabra, y luego irla comparando letra por letra contra la segunda mitad. Ten-

driamos dos estados s y f, para recordar que estamos en la primera o segunda mitad de la
palabra. En la figura [5.2] se detalla este AP.

3Suponemos que el tope de la pila estd del lado izquierdo, aunque en este ejemplo da lo mismo.
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b/el/b alal €
alsla b/b/e

elele

Figura 5.3: AP para el lenguaje {ww!'}

Se puede apreciar en el AP de dicha figura la presencia de una transicién de s a f, en que
ni se consumen caracteres de la entrada, ni se manipula la pila. Esta transiciéon parece muy
peligrosa, porque se puede “disparar” en cualquier momento, y si no lo hace exactamente
cuando hemos recorrido ya la mitad de la palabra, el AP podra llegar al final a un estado
que no sea final, rechazando en consecuencia la palabra de entrada. Entonces, jcémo saber
que estamos exactamente a la mitad de la palabra?

Conviene en este punto recordar que en un autémata no determinista una palabra es
aceptada cuando existe un cdlculo que permite aceptarla, independientemente de que un
calculo en particular se vaya por un camino erréneo. Lo importante es, pues, que exista un
calculo que acepte la palabra en cuestion. Por ejemplo, la siguiente tabla muestra un célculo
que permite aceptar la palabra w = abba:

Estado | Falta leer | Pila | Transicion
s abba €

s bba a 1

S ba ba 2

f ba ba 3

f 5

f € € 4

5.2.1. Combinacion modular de AP

En los AP también es posible aplicar métodos de combinaciéon modular de autéomatas,
como hicimos con los autéomatas finitos. En particular, es posible obtener AP que acepten la
unién y concatenacion de los lenguajes aceptados por dos AP dados.

En el caso de la unién, dados dos AP M; y M, que aceptan respectivamente los lenguajes
Ly y Ly, podemos obtener un AP que acepte la unién Ly U Ly, introduciendo un nuevo estado
inicial sy con transiciones £/¢/e a los dos antiguos estados iniciales s1 y s2, como se ilustra

en la figura [5.4] [

4El procedimiento de combinacién de AP para obtener la unién de autématas puede ser descrito en forma
maés precisa utilizando la representacién formal de los AP, que se estudia en la siguiente seccién; sin embargo,
hacer esto es directo, y se deja como ejercicio (ver seccién de ejercicios).
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Figura 5.4: Unién de AP

Ejemplo.- Obtener un AP que acepte el lenguaje {a"b™|n # m}. Claramente este lenguaje
es la unién de {a"b™|n > m} con {a"b™|n < m}, por lo que basta obtener los AP de cada
uno de ellos, y combinarlos con el método descrito.

Ejemplo.- Disefiar un AP que acepte el lenguaje L = {a't/c*|-(i = j = k)}. Nos damos
cuenta de que L es la unién de dos lenguajes, que son:

L={a'Vc"i # jYu{a'v'c*|j # k}

Para cada uno de estos dos lenguajes es facil obtener su AP. Para el primero de ellos, el AP
almacenaria primero las a’s en la pila, para luego ir descontando una b por cada a de la pila;
las a’s deben acabarse antes de terminar con las b’s o bien deben sobrar a’s al terminar con
las b’s; las ¢’s no modifican la pila y simplemente se verifica que no haya a o b después de la
primera c. Dejamos los detalles como ejercicio para el lector.

También es posible obtener modularmente un AP que acepte la concatenacion de los
lenguajes aceptados por dos AP dados. De hecho ya vimos en el capitulo 4| que la unién de
dos lenguajes libres de contexto es también libre de contexto, pues tiene una gramatica libre
de contexto.

Sin embargo, la construccién de un AP que acepte la concatenacién de dos lenguajes a
partir de sus respectivos AP M; y Ms, es ligeramente mas complicada que para el caso de la
union. La idea bésica seria poner transiciones vacias que vayan de los estados finales de M,
al estado inicial de M,. Sin embargo, existe el problema: hay que garantizar que la pila se
encuentre vacia al pasar de M; a M, pues de otro modo podria resultar un AP incorrecto.
Para esto, es posible utilizar un caracter especial, por ejemplo “@Q”, que se mete a la pila
antes de iniciar la operacién de M, el cual se saca de la pila antes de iniciar la operacion de
M. Los detalles se dejan como ejercicio (ver seccién de ejercicios).
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5.3. Formalizacion de los AP

Un autémata de pila es un séxtuplo (K, %, I, A s, F'), donde:

K es un conjunto de estados

Y es el alfabeto de entrada

I es el alfabeto de la pila

s € K es el estado inicial

= 7 C K es un conjunto de estados finales,

» A C (K xX*xI™) x (K xI') es la relacién de transicién.

Ahora describiremos el funcionamiento de los AP. Si tenemos una transicién de la forma
((p,u, ), (q,7)) € A, el AP hace lo siguiente:

Estando en el estado p, consume u de la entrada;

Saca [ de la pila;

Llega a un estado g¢;

Mete ~v en la pila

Las operaciones tipicas en las pilas —tipicamente llamadas en inglés el “push” y el “pop”—
pueden ser vistas como casos particulares de las transiciones de nuestro AP; en efecto,
si s6lo queremos meter la cadena « a la pila, se harfa con la transicién ((p,u,¢),(q,7))
(“push”), mientras que si sélo queremos sacar caracteres de la pila se hara con la transicién

((p,u, B), (q,€)) (“pop”).

Ahora formalizaremos el funcionamiento de los AP, para llegar a la definicién del lenguaje
aceptado por un AP. Para ello seguiremos el mismo método que usamos en el caso de los
AF, método que reposa completamente en la nocién de configuracion.

Definicion.- Una configuracién es un elemento de K x ¥* x I'™.

Por ejemplo, una configuracién podria ser [[q, abbab, ®aa#ta]] —obsérvese que seguimos
la misma notacién que para representar las configuraciones de los AF. Puede verse que las
transiciones se definen como una relacion, no como una funcién, por lo que de entrada se les
formaliza como autéomatas no deterministas.

Ahora definimos la relacion = entre configuraciones de la manera siguiente:
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Definicion.- Sea M = (K, %, T, A, s, F) un AP, entonces [[p, uz, Sa]]| Far [[g, x, va]] ssi
existe ((p,u,3),(q,7)) € A. En general vamos a omitir el subindice de I,;, quedando sim-
plemente como F. La cerradura reflexiva y transitiva de - es F*.

Definicion.- Un AP M = (K, %, T, A, s, F') acepta una palabra w € ¥* ssi [[s, w, ]| Fi,
[[p,€,¢€]], donde p € F. L(M) es el conjunto de palabras aceptadas por M.

Ejemplo.- Formalizar el AP de la figura , que acepta el lenguaje {ww}, w € {a,b}.
Solucion.- E1 AP es el séxtuplo (K, %, T, A, s, F'), donde
K={s,f},F={f},2={a,b,c},I' ={a,b}

A esta representada en la siguiente tabla:

(s,a,e) | (s,a)
(s,b,e) | (s,b)
(s.e,e) | (f.¢)
(f,a.a) | (f,€)
(f,6,0) | (f,¢)

5.4. Relacién entre AF y AP

Teorema.- Todo lenguaje aceptado por un AF es también aceptado por un AP

Este resultado debe quedar intuitivamente claro, puesto que los AP son una extensién
de los AF.

Prueba: Sea (K, %, A, s, F) un AF; el AP (K,X,0,A’, s, F), con A" = {((p,u, ), (¢g,€)) |
(p,u,q) € A} acepta el mismo lenguaje.

5.5. Relacién entre AP y LLC

Ahora vamos a establecer el resultado por el que iniciamos el estudio de los AP, es decir,
verificar si son efectivamente capaces de aceptar los LLC.

Teorema.- Los automatas de pila aceptan exactamente los LLC.

Vamos a examinar la prueba de esta afirmacion, no solamente por el interés por la rig-
urosidad matematica, sino sobre todo porque provee un método de utilidad practica para
transformar una GLC en un AP. La prueba de este teorema se puede dividir en dos partes:
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1. Si M es un AP, entonces L(M) es un LLC

2. Si L es un LLC, entonces hay un AP M tal que L(M) = L

Vamos a presentar inicamente la prueba con la parte 2, que consideramos de mayor rele-
vancia practica. La otra parte de la prueba (que también es un procedimiento de conversién)
puede consultarse en la referencia [21].

Sea una gramatica G = (V,X, R,S). Entonces un AP M que acepta exactamente el
lenguaje generado por G se define como sigue:

M= ({p,q}, . VU, A, p,{q})

donde A contiene las siguientes transiciones:

1. Una transicién ((p,¢,¢), (q,5))
2. Una transicién ((¢,e, A), (q,z)) para cada A — = € R

3. Una transicién ((¢,0,0), (¢,€)) para cada o € 3

Ejemplo.- Obtener un AP que acepte el LLC generado por la gramatica con reglas:

1. S —aSa
2. S —0bSh
3. S—e¢

Las transiciones del AP correspondiente estan dadas en la tabla siguiente:

1| (p,e,e) | (g,9)
2| (q,¢,5) | (g,aSa)
31 (q,e,5) | (q,b5b)
4 (¢,€,9) | (g,¢)
51 (q,a,a) | (g,¢)
6 | (q,0,0) | (q,¢)
71 (gc0) | (g,9)

El funcionamiento de este AP ante la palabra abcba aparece en la siguiente tabla:



154 CAPITULO 5. AUTOMATAS DE PILA

Estado | Falta leer | Pila
P abcba €

q abcba S

q abcba aSa
q beba Sa
q beba bSba
q cha Sha
q chba cba
q ba ba

q a a

q € €

Vamos a justificar intuitivamente el método que acabamos de introducir para obtener un
AP equivalente a una gramética dada. Si observamos las transiciones del AP, veremos que
solamente tiene dos estados, p y ¢, y que el primero de ellos desaparece del calculo en el primer
paso; de esto concluimos que el AP no utiliza los estados para “recordar” caracteristicas de
la entrada, y por lo tanto reposa exclusivamente en el almacenamiento de caracteres en la
pila. En efecto, podemos ver que las transiciones del tipo 2 (transiciones 2-4 del ejemplo),
lo que hacen es reemplazar en la pila una variable por la cadena que aparece en el lado
derecho de la regla correspondiente. Dado que la (inica) transicién de tipo 1 (transicién 1
del ejemplo) coloca el simbolo inicial en la pila, a continuacién lo que hacen las reglas de
tipo 2 es realmente efectuar toda la derivacion dentro de la pila de la palabra de entrada,
reemplazando un lado izquierdo de una regla por su lado derecho. Una vez hecha la derivacion
de la palabra de entrada, —la cual estaria dentro de la pila, sin haber ain gastado un solo
caracter de la entrada— podemos compararla caracter por caracter con la entrada, por medio
de las transiciones de tipo 3.

Existe sin embargo un problema técnico: si observamos la “corrida” para la palabra abcba,
nos daremos cuenta de que no estamos aplicando las reglas en el orden descrito en el parrafo
anterior, esto es, primero la transicion del grupo 1, luego las del grupo 2 y finalmente las del
grupo 3, sino que mas bien en la cuarta linea de la tabla se consume un caracter a (aplicacién
de una transicién del grupo 3) seguida de la aplicacién de una transicién del grupo 2. Esto
no es casualidad; lo que ocurre es que las variables no pueden ser reemplazadas por el lado
derecho de una regla si dichas variables no se encuentran en el tope de la pila. En efecto,
recuérdese que los AP solo pueden accesar el caracter que se encuentra en el tope de la pila.
Por esto, se hace necesario, antes de reemplazar una variable por la cadena del lado derecho
de una regla, “desenterrar” dicha variable hasta que aparezca en el tope de la pila, lo cual
puede hacerse consumiendo caracteres de la pila (y de la entrada, desde luego) mediante la
aplicacion de transiciones del tipo 3.

De la construccion del AP que hemos descrito, concluimos con la siguiente proposicion:

S =" w ssi [[p7w78“ I_?\/[(G) HQ7€7€H
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NALIZADOR GENERADOR [ 1  _
LEXICO DE CODIGO
ANALIZADOR
SINTACTICO
TABLA DE
SIMBOLOS

Figura 5.5: Diagrama de un compilador

donde M (G) denota al AP construido a partir de la gramatica G' por el procedimiento
recién descrito.

Todavia nos queda por probar que para todo AP hay una gramatica equivalente. A este
respecto remitimos al lector a la referencia [10].

La equivalencia de los AP y de las GLC permite aplicar todas las propiedades de los LLC
para resolver problemas de diseno de AP.

5.6. Compiladores LL

El método que hemos visto para obtener un AP a partir de una GLC puede ser consid-

erado como una manera de construir un compilador para el lenguaje correspondiente a la
GLC dada.

De una manera muy general, un compilador —como los que se usan para traducir un
lenguaje de programaciéon al lenguaje de maquina— estd compuesto por las partes que se
ilustran en la figura [5.5] Sus principales partes son:

» Un analizador léxico, que recibe los caracteres del archivo de entrada, y entrega los lla-
mados “tokens”, que representan los elementos del lenguaje —tales como las palabras
claves (como “begin”, “integer”, etc.), los operadores (tales como “+7), los identifi-
cadores propuestos por el usuario, y otros elementos. Generalmente varios caracteres
corresponden a un sélo “token”. Asi, los demas componentes del compilador ya no
consideran la entrada como una secuencia de caracteres, sino como una secuencia de
“tokens”. Un beneficio adicional del analizador 1éxico es que “filtra” caracteres inttiles
desde el punto de vista de la traduccién que se quiere hacer, como por ejemplo los
comentarios del programador. El analizador 1éxico puede ser considerado como un
autémata con salida (como los autématas de Moore y de Mealy de la seccién , y
son muchas veces construidos a partir de la definicién de “tokens” mediante Expre-
siones Regulares.
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» Un analizador sintdctico, que toma como entrada los “tokens” y verifica que su secuen-
cia corresponde a la definicién del lenguaje dada por medio de una gramatica libre de
contexto. Mediante el uso de herramientas adecuadas, como el generador de compi-
ladores “yacc” [9], es posible producir un analizador sintactico a partir de la definicién
del lenguaje mediante una gramaética.

s Un generador de cdédigo, que guiado por el analizador sintactico, produce realmente
el resultado de la compilacién, que es la traduccién del lenguaje fuente al lenguaje
deseado (generalmente lenguaje ensamblador).

» Una tabla de simbolos, que registra las definiciones de identificadores dadas por el
usuario en su programa, y las utiliza posteriormente para resolver las referencias que
se hacen a ellos en el programa a traducir.

Para una descripcion detallada de los compiladores y de las técnicas usadas para con-
struirlos, véase la referencia [I].

5.6.1. Principio de previsién

Desde luego, para tener un verdadero compilador se requiere que se trate de un AP
determinista, pues seria inaceptable que un mismo compilador diera resultados diferentes al
compilar varias veces un mismo programa.

Una manera de forzar a que un AP no determinista se vuelva determinista consiste en
proveer un método para decidir, cuando hay varias transiciones aplicables, cual de ellas va a
ser efectivamente aplicada. En el caso de los compiladores esto se puede hacer mediante el
llamado principio de prevision.

El principio de prevision consiste en que podamos “observar” un caracter de la palabra
de entrada que ain no ha sido leido (esto es llamado en inglés “lookahead”, mirar hacia
adelante). El caracter leido por adelantado nos permite en algunas ocasiones decidir ade-
cuadamente cual de las transiciones del AP conviene aplicar.

FEjemplo.- Supongase la GLC con reglas S — aSb, S — ¢, que representa el lenguaje
{a™"}. La construccién del AP correspondiente es directa y la dejamos como ejercicio.
Ahora bien, teniendo una palabra de entrada aabb, la traza de ejecucién comenzaria de la
manera siguiente:

Estado ‘ Falta leer ‘ Pila
P aabb €
q aabb S

En este punto, no se sabe si reemplazar en la pila S por € o por aSbh, al ser transiciones
aplicables tanto ((¢, ¢, 5), (q,€)) como ((q,¢,S), (¢,aSb)). En cambio, si tomamos en cuenta
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que el siguiente caracter en la entrada serd a, es evidente que no conviene reemplazar S
por g, pues entonces la a de entrada no podria ser cancelada. Entonces hay que aplicar la
transicion ((g¢, ¢, 5), (¢, aSh)). Continuamos la ejecucién:

Estado | Falta leer | Pila

aabb aSh

q

q abb Sb

q abb aSbb
q bb Sbb

Al ver que el siguiente caracter de entrada sera una b, nos damos cuenta de que no
conviene reemplazar en la pila .S por aSb, pues la b de la entrada no podra cancelarse contra
la a de la pila. Entonces aplicamos la otra transicién disponible, que es ((q,¢,5), (¢,¢)). La
ejecucion continta:

Estado | Falta leer | Pila

q b b
q €

con lo cual la palabra de entrada es aceptada. Resumiendo, en este ejemplo la regla para
decidir sobre la transicién a aplicar, basandose en la previsién del siguiente caracter a leer,
fue esta: si el siguiente caracter es a, reemplazar en la pila S por aSb, y si es b, reemplazar
S por €. Esta regla puede ser representada mediante la siguiente tabla:

a b|e
S | aSb

En esta tabla, las columnas (a partir de la segunda) se refieren al siguiente caracter que
ha de ser leido (la “previsiéon”), habiendo una columna marcada “c” por si en vez de haber un
caracter siguiente se encuentra el fin de la palabra. La primera columna contiene la variable
que se va a reemplazar en la pila por lo que indique la celda correspondiente en la tabla. E]

A un AP aumentado con su tabla de previsién se le llama “compilador LL” por las siglas
en inglés “Left to right Leftmost derivation”, porque efectivamente dentro de la pila se lleva
a cabo una derivacion izquierda. El lector puede comprobar esto en el ejemplo anterior. A
un compilador LL que considera una previsiéon de un caracter, como lo que hemos visto, se

SEjercicio: hacer nuevamente la traza de ejecucién para la palabra abb, utilizando la tabla de previsién.
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le llama “LL(1)”; en general, un compilador de tipo LL que toma en cuenta una previsiéon
de k caracteres es LL(k).

La razén por la que es necesario a veces hacer una previsién de mas de un caracter es
porque para ciertas graméaticas no es suficiente una predicciéon de un solo caracter. Con-
sidérese, por ejemplo, la gramatica con reglas S — aSb, S — ab, que también genera el
lenguaje {a"b"}. Hacemos el inicio de la ejecucién del AP correspondiente:

Estado ‘ Falta leer ‘ Pila

P aabb €
q aabb S

En este punto, reemplazando S por aSb o por ab de todos modos se produce la a de la
prevision, por lo que dicha prediccién no establece ninguna diferencia entre las transiciones
((q,¢,95),(q,aSb)) v ((g,¢,95),(q,ab)). Este ejemplo en particular puede sacarse adelante
haciendo una transformacion de la gramatica, conocida como “factorizacién izquierda”, que
consiste en anadir a la gramdtica una variable nueva (sea por ejemplo A), que produce “lo
que sigue después del caracter comin”, en este caso a. Asi, la gramdatica queda como (sus
reglas):

1. S —aA
2. A— Sb
3. A—b

Con esta gramatica ya es posible decidir entre las distintas transiciones considerando una
prevision de un solo caracter, como se aprecia en la siguiente ejecucién del AP correspondi-
ente:

Estado | Falta leer | Pila | Comentario

P aabb €

q aabb S

q aabb aA

q abb A Se decide reemplazar A por Sb.
q abb Sb

q abb aAb

q bb Ab | Se decide reemplazar A por b.
q bb bb

q b b

q

La tabla de previsién entonces debe haber sido:
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a b|e
S | aA
AlSb |b

Ahora veremos de una manera mas sistematica cémo construir la tabla de prevision.
Supongamos una GLC sin producciones vacias —lo cual practicamente no representa una
pérdida de generalidad. Necesitamos hacer las siguientes definiciones:

Definicién.- Supongamos una gramética (V, X, R, S). El operador first : (VUX)T — 2%
cuyo argumento es una cadena de simbolos (al menos uno) que puede contener variables y
constantes, y cuyo resultado es un conjunto de caracteres, obtiene todos los caracteres con
los que puede empezar una cadena derivable a partir de su argumento. Por ejemplo, para
la GLC con reglas S — aA, A — Sb, A — b, nos damos cuenta de que las cadenas que se
pueden derivar a partir de S tienen que empezar con a, porque lo tinico que puede producir
S es aA, que empieza con a. Por ello, first(S) = {a}.

first(a) se calcula sistemdticamente a partir de las siguientes propiedades:

» Sia=o0,0 €, entonces first(a) ={o}
» Sia=av,z € (VUX),ve (VU first(a) = first(z)

» Si AeV, first(A) = first(on) U...U first(a,), para todas las reglas A — «;, para
t1=1...n

Ejemplos.- Seguimos utilizando la gramatica S — aA, A — Sb, A — b.

» first(aA) = first(a) = {a}, aplicando la segunda y luego primera regla.

n first(Ab) = first(A) por la segunda regla; first(A) = first(b) U first(Sb) por la
tercera regla, y first(Sb) = first(S) = first(aA) = first(a) = {a}, por lo que
finalmente first(Ab) = {a,b}.

Ahora estamos en condiciones de dar un procedimiento para construir la tabla de pre-
vision: supongamos que estamos tratando de llenar una celda de la tabla donde el renglon
corresponde a la variable X y la columna a la constante o. Si hay en la gramética una regla
X — «a donde o € first(a), el lado derecho a se pone en dicha celda:
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Por ejemplo, con este procedimiento se obtiene la siguiente tabla de previsiéon para la
gramatica con reglas S — aA, A — Sb, A — b:

a ble
S | aA
A|Sb |b

Esta tabla es idéntica a la que habiamos supuesto anteriormente para la misma gramatica.

Puede ocurrir que en una celda de la tabla de previsién queden los lados derechos de
varias reglas; esto es, si la celda corresponde a la columna de la constante o y al renglon
de la variable X, y hay dos reglas distintas X — ay X — (3, donde o € first(a) y
o € first([3), entonces tanto o como [ tendrian derecho a estar en esa celda de la tabla.
Cuando esto ocurre, simplemente se concluye que la tabla no se puede construir y que la
gramética no es del tipo LL(1).

5.7. Compiladores LR(0)

Como se puede apreciar en toda la secciéon precedente, los compiladores de tipo LL
son esencialmente “predictores” que tratan de llevar a cabo la derivacion en la pila, siempre
reemplazando las variables por lo que éstas deban producir. Pero atin en graméticas bastante
sencillas, se vuelve demasiado dificil adivinar, ain con la ayuda de la prevision, qué regla de
reemplazo hay que aplicar a una variable en el tope de la pila. Por esto, se han propuesto
otros compiladores, llamados LR (“Left to right Rightmost derivation”), que no tratan de
adivinar una derivacién, sino que tratan de ir “reconociendo” cadenas que correspondan
al lado derecho de una regla gramatical, para reemplazar por el lado izquierdo. Asi, estos
compiladores encuentran la derivacion “en reversa”, reemplazando lados derechos de reglas
por lados izquierdos, hasta llegar eventualmente al simbolo inicial. Entonces, los compiladores
LR recorren el arbol de derivacién de abajo hacia arriba, por lo que se llaman también
compiladores ascendentes.

De hecho, el reconocimiento del lado derecho de una regla no se hace respecto a la entrada,
sino respecto al tope de la pila, pero para esto se necesita primero haber pasado caracteres
de la entrada a la pila. Las dos operaciones basicas de un compilador LR son:

Desplazamiento que consiste en pasar un caracter de la entrada al tope de la pila,

Reduccion que consiste en reemplazar en el tope de la pila el lado derecho de una regla
gramatical por el lado izquierdo de la misma. E]

5De hecho se toma el reverso del lado derecho de una regla, ver mas adelante.
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Estas operaciones se aplican, en un orden “adecuado”, hasta que en la pila quede sélo
el simbolo inicial. Desde luego, la dificultad esta en encontrar las secuencias de desplaza-
mientos y reducciones que llevan a la situacién final deseada. La idea de cémo combinar los
desplazamientos con las reducciones se comprende en el siguiente ejemplo: Supongamos la
gramética para el lenguaje {a"b"} con las reglas S — aA, A — Sb, A — b. Dada la palabra
aabb, se tendria una traza de ejecucion como sigue:

Falta leer | Pila | Accién

aabb € Desplazar

abb a Desplazar

bb aa | Desplazar

b baa | Reducir por A — b
b Aaa | Reducir por S — aA
b Sa | Desplazar

€ bSa | Reducir por A — Sb
€ Aa | Reducir por § — aA
€ S Exito

Obsérverse, en el quinto renglon de la tabla, que en el tope de la pila esta la cadena Aa,
mientras que el lado derecho de la regla que corresponde es aA. Vemos asi que lo que se saca
de la pila es el lado derecho de la regla, pero “volteado” de izquierda a derecha; técnicamente
decimos que el reverso del lado derecho de una regla coincide con el tope de la pila. Esto se
refleja en las definiciones que damos en seguida.

En este ejemplo en particular es relativamente facil discernir cuando hacer cada una de las
acciones. Sin embargo, en otros ejemplos es mucho mas dificil determinar qué accion llevar
a cabo; existe un procedimiento para construir una tabla de previsién para compiladores
LR(1), que puede ser consultado en la referencia [I].

Ahora formalizaremos el procedimiento para construir el AP de tipo LR a partir de una

GLC (V,%, R, S):

» Hay 4 estados: ¢ (inicial), f (final), p y gq.

» Hay una transicion ((7,¢,¢), (p,#)) € A. Esta transicién coloca un “marcador” # en
el fondo de la pila, para luego reconocer cuando la pila se ha vaciado.

= Se tienen transiciones ((p,o,¢), (p,0)) € A para cada o € ¥. Estas transiciones per-
miten hacer la accién de desplazar.

» Hay transiciones ((p,¢e,a®), (p, A)) € A para cada regla A — a € R, donde o es el
reverso de a, esto es, a “volteado” de izquierda a derecha. Estas transiciones efectiian
las reducciones.
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Figura 5.6: AP de tipo LR

» Tenemos una transicién ((p,e,S),(g,€)) € A; esta transicién reconoce cuando se
llegé al simbolo inicial.

» Finalmente hay una transicion ((q, e, #), (f,€)) € A; esta transicién se asegura de que
se haya vaciado la pila antes de aceptar la palabra.

Este procedimiento es directo. Por ejemplo, en la figura se representa el autéomata
correspondiente a la GLC que hemos estado considerando, esto es, S — aA,A — Sb, A — b.
Maés que en la construccion del AP, las dificultades pueden estar en el uso del AP, pues al ser
éste no determinista, en ciertas situaciones puede presentarse un conflicto, en que no se sepa
si desplazar un caracter mas a la pila o bien reducir por alguna regla. Y atin en este caso
puede haber varias reducciones posibles. Por ejemplo, sugerimos hacer la traza de ejecucion
en el AP de la figura de la palabra aabb.

Una posible solucién a estos conflictos puede ser adoptar una politica en que —por
ejemplo— la reduccién tenga preferencia sobre el desplazamiento. Esto funciona adecuada-
mente en el ejemplo recién presentado, pero no funciona en otros casos. En el caso general,
es necesario usar técnicas mas complicadas, que incluyen previsiéon de caracteres (esto es,
LR(1), LR(2), etc.); dichas técnicas pueden consultarse en la referencia [I].

5.8. Ejercicios

1. Sea un autémata de pila M = (K,3, T, A, s, F') que acepta el lenguaje de paréntesis
bien formados, incluyendo los paréntesis redondos “(”, “)”, asi como los paréntesis

cuadrados “[", “]7, es decir: L(M) = {e, (). ], O, 00, (0), (D, [OL [0], - -}-
a) Dibujar el diagrama del AP que acepta el lenguaje descrito.
b) Representar formalmente, dando K, ¥, I', A, sy F.

¢) Dar un célculo producido por la palabra errénea “([]]”, con las columnas “Estado”,
“Por leer” y “pila”, como en los ejemplos dados.
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2. Proponga un autémata de pila para el lenguaje:
{a'bic" | i=j—k}]

3. Considere el lenguaje en {a,b}* en que las palabras tienen la misma cantidad de a’s
que de b’s, que es generado por la siguiente gramatica:

1- S —aSh
2-5 —bSa
3-8—258
4-85 — ¢

a) Disenar directamente (sin convertir a partir de una gramética) un AP que acepte
dicho lenguaje, usando una pila que almacene el exceso de a’s o de b’s (basta con
dibujar el diagrama de estados).

b) Construir otro AP, convirtiendo la GLC dada a AP de tipo LL.

c) Lo mismo que el anterior, para un AP de tipo LR.

d) Para cada uno de los incisos anteriores, hacer una traza de ejecucién para la
palabra “abbaba”, en forma de una tabla, usando las columnas “estado”, “por
leer”, “pila”, y “accion aplicada”.

4. Considere el lenguaje {a"b™c?d? | n+m =p+ q}

a) Proponga un AP que lo acepte.

b) Suponga la siguiente GLC (sus reglas) que genera dicho lenguaje:

1) <AD> — a<AD>d
2) <AD>— b<BD>d
3) <AD>— e

4) <AD> — a <AC>c
5) <BD>— b<BD>d
6) <BD>— b<BC>c
7) <BD>— e

8) <BC>— b<BC>c¢
9) <BC>— e
10) <AC> — a<AC>c¢
11) <AC> — b<BC>c¢
12) <AC> — e

El simbolo inicial es <AD>. Pruebe la correccion de la GLC por induccion sobre
la longitud de la derivacion.

7Ayuda: al despejar en la ecuacion la j el problema parece ser més facil, pues permite aplicar un disefio
modular.




164

CAPITULO 5. AUTOMATAS DE PILA

Obtenga un AP de tipo LL(1) a partir de esta gramatica.
Lo mismo, para un AP de tipo LR(0).

Para los dos incisos anteriores, obtener una traza de ejecucién, en forma de tabla
con columnas “estado”, “por leer”, “pila” y “accién”, para la palabra de entrada
“aaacdd” .

5. Para el AP de la figura y la palabra de entrada aabb:

a)
b)

Construir una traza de ejecucion, con columnas “estado”, “falta leer”, “pila”, y
“accién”.
Localizar los renglones de la tabla anterior donde se presenta un conflicto, e indicar

si es de desplazamiento contra reduccién o bien de una reduccién contra otra
reduccion.

6. Considere el lenguaje L = {a"b""c™}

a

SN o>

e

)
)
)
)
)

Proponga una GLC que genere L.

Elimine de la gramética las producciones vacias y las inttiles, si las hay
Pruebe por induccion que la gramatica es correcta.

Obtenga el AP correspondiente, del tipo LL.

Obtenga la tabla de previsién LL(1), calculando primero el “first” de cada vari-
able de la gramatica.

Obtenga un AP de tipo LR para la gramatica.

Indique si hay o no conflictos “shift-reduce” o “reduce-reduce” en el AP del inciso
anterior, utilizando la traza de ejecucién para la palabra de entrada abbbcc. | Es
posible escribiendo resolver los conflictos con los criterios de preferir “reduce”
a “shift”, para los conflictos shift-reduce, y en caso de conflicto reduce-reduce
preferir la transicién que reduzca mas simbolos?

7. Completar y detallar formalmente el procedimiento de combinacion modular de AP
para la concatentacion de lenguajes, delineado en la seccion [5.2.1

8. Formalice el procedimiento para obtener un AP que acepte la unién de los lenguajes
aceptados respectivamente por (K7, %1, T, Aq, 81, F1) v (Kg, 39, Ty, Ag, s9, Fy).

9. Considere una variante de los automatas pushdown, que podriamos llamar “autématas
de fila”, en los que en vez de la pila, que se accesa en orden UEPS (“LIFO”), se tiene
una fila que se accesa en orden PEPS (“FIFO”).

Dé una definiciéon formal de los autématas de fila.
Pruebe que el lenguaje {a"b"} es aceptado por algiin autémata de fila.

. Piensa que los autématas de pila y de fila son equivalentes? Justifique de manera
informal.
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Considere una variante de los autématas de pila, los AP “por estado final” (APEF),
en los que para aceptar una palabra basta con que al final de ésta el autémata se
encuentre en un estado final, sin necesidad de que la pila esté vacia.

a) Dé una definicién formal de los APEF, incluyendo la definicién de lenguaje acep-
tado.

b) Proponga un APEF que acepte el lenguaje {a"b"}.

Proponga maquinas lo menos poderosas que sea posible para que acepten los siguientes

lenguajes:

a) {00, <> ) [<0(<>)>0L--}

b) {0, (0), ((0)), (D)), -}

¢) {0,00,000,..}

Las maquinas reales tienen siempre limites a su capacidad de almacenamiento. Asi,
la pila infinita de los automatas de pila puede ser limitada a un cierto tamano fijo.
Suponga una variante de los AP, los APn, en que la pila tiene un tamano fijo n.

)

a) Proponga una definicién de APn y de palabra aceptada por un APn.

b) Pruebe (constructivamente) que los APn son equivalentes a los AF. (Ayuda:
se puede asociar a cada par (¢,0109...0,), donde ¢ es un estado del APn y
0109 ... 0, es el contenido de la pila, un estado del AF).

¢) Pruebe su método con el APn de pila de tamano 2 (caben dos caracteres), con
relacién de transicién como sigue: A = {((qo,a,e€), (qo,a)), ((go,b,a), (q1,¢€)),
(¢1,b,a), (q1,€))}, donde qp es inicial y ¢; es final.
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Capitulo 6

Maquinas de Turing

Asi como en secciones anteriores vimos como al anadir al autémata finito basico una
pila de almacenamiento auxiliar, aumentando con ello su poder de calculo, cabria ahora
preguntarnos qué es lo que habria que anadir a un autémata de pila para que pudiera
analizar lenguajes como {a"b"c"}. Partiendo del AP bésico (figura |6.1(a))), algunas ideas

podrian ser:

1. Anadir otra pila;
2. Poner varias cabezas lectoras de la entrada;

3. Permitir la escritura en la cinta, ademas de la lectura de caracteres.

Aunque estas ideas —y otras aiin més fantasiosas— pueden ser interesantes, vamos a enfocar
nuestra atencién a una propuesta en particular que ha tenido un gran impacto en el desarrollo
tedrico de la computacion: la Mdquina de Turing.

A. Turing propuso [24] en los anos 30 un modelo de méquina abstracta, como una
extension de los automatas finitos, que resulto ser de una gran simplicidad y poderio a la
vez. La maquina de Turing es particularmente importante porque es la més poderosa de
todas las maquinas abstractas conocidas (esto tltimo serd discutido en la seccion [6.5)).

6.1. Funcionamiento de la maquina de Turing

La maquina de Turing (abreviado MT, ver figura tiene, como los autématas que
hemos visto antes, un control finito, una cabeza lectora y una cinta donde puede haber
caracteres, v donde eventualmente viene la palabra de entrada. La cinta es de longitud
infinita hacia la derecha, hacia donde se extiende indefinidamente, llenandose los espacios con

169
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baaba._.._.\
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@

(a) Autémata de pila (b) Maquina de Turing

Figura 6.1:

el caracter blanco (que representaremos con “LJ”). La cinta no es infinita hacia la izquierda,
por lo que hay un cuadro de la cinta que es el extremo izquierdo, como en la figura [6.1(b)|

En la MT la cabeza lectora es de lectura y escritura, por lo que la cinta puede ser
modificada en curso de ejecucion. Ademas, en la MT la cabeza se mueve bidireccionalmente

(izquierda y derecha), por lo que puede pasar repetidas veces sobre un mismo segmento de
la cinta.

La operacién de la MT consta de los siguientes pasos:

1. Lee un caracter en la cinta
2. Efectda una transicion de estado

3. Realiza una accién en la cinta

Las acciones que puede ejecutar en la cinta la MT pueden ser:

= Escribe un simbolo en la cinta, o

= Mueve la cabeza a la izquierda o a la derecha

Estas dos acciones son excluyentes, es decir, se hace una o la otra, pero no ambas a la
vez.

La palabra de entrada en la MT estd escrita inicialmente en la cinta, como es habitual
en nuestros autématas, pero iniciando a partir de la segunda posiciéon de la cinta, siendo el
primer cuadro un caracter blanco. Como la cinta es infinita, inicialmente toda la parte de la
cinta a la derecha de la palabra de entrada esta llena del caracter blanco (L).
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b/b

/R
@ ) R @

Figura 6.2: MT que acepta palabras que empiezan con a

Por definicién, al iniciar la operacién de la MT, la cabeza lectora esta posicionada en el
caracter blanco a la izquierda de la palabra de entrada, el cual es el cuadro mas a la izquierda
de la cinta.

Decimos que en la MT se llega al “final de un célculo” cuando se alcanza un estado
especial llamado halt en el control finito, como resultado de una transicién. Representaremos
al halt por “h”. E Al llegar al halt, se detiene la operacion de la MT, y se acepta la palabra
de entrada. Asi, en la MT no hay estados finales. En cierto sentido el halt seria entonces el
unico estado final, sélo que ademas detiene la ejecucion.

Cuando queremos que una palabra no sea aceptada, desde luego debemos evitar que la
MT llegue al halt. Podemos asegurarnos de ello haciendo que la MT caiga en un ciclo infinito
(ver ejemplos adelante).

El lenguaje aceptado por una MT es simplemente el conjunto de palabras aceptadas por

ella. P

Al disenar una MT que acepte un cierto lenguaje, en realidad disenamos el autémata
finito que controla la cabeza y la cinta, el cual es un autémata con salida (de Mealy, ver
seccién . Asi, podemos usar la notacién grafica utilizada para aquellos autématas para
indicar su funcionamiento. En particular, cuando trazamos una flecha que va de un estado
p a un estado g con etiqueta /L, quiere decir que cuando la entrada al control finito (esto
es, el caracter leido por la cabeza de la MT) es o, la cabeza lectora hace un movimiento a
la izquierda, indicada por el caracter L (left, en inglés); similarmente cuando se tiene una
flecha con o/R el movimiento es a la derecha. Cuando la flecha tiene la etiqueta o /&, donde
¢ es un caracter, entonces la accién al recibir el caracter o consiste en escribir el caracter &
en la cinta. Con estos recursos es suficiente para disenar algunas MT, como en el siguiente
ejemplo.

Ejemplo.- Disenar (el control finito de) una MT que acepte las palabras en {a,b} que
comiencen con a. La solucién se muestra en la figura [6.2] Si la primera letra es una “a”, la
palabra se acepta, y en caso contrario se hace que la MT caiga en un ciclo infinito, leyendo y
escribiendo “b”. Nétese que la accion inmediatamente antes de caer en el “halt” es irrelevante;
igual se podia haber puesto “a/a” o “a/R” como etiqueta de la flecha.

No traduciremos el término “halt”, que en inglés significa detener, porque es tradicional usar exactamente
este nombre en maquinas de Turing.
2M4s adelante daremos definiciones formales.
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b/R
b/b

=/R

a/R

Figura 6.3: MT que acepta palabras que terminan con a

Ejemplo.- Disenar una MT que acepte las palabras en {a, b} que terminen con a. Aunque
este ejemplo parece bastante similar al precedente, en realidad es més complicado, pues para
ver cual es la ultima letra, hay que ir hasta el blanco a la derecha de la palabra, luego regresar
a la dltima letra y verificar si es una “a”. Una solucién se muestra en la figura [6.3]

Ejemplo.- Probar que hay lenguajes que no son libres de contexto, pero que pueden ser
aceptados por una méaquina de Turing. Proponemos el lenguaje a™b"c", que se sabe que no
es LLC. Ahora construiremos una MT que lo acepte. La estrategia para el funcionamiento
de dicha MT consistira en ir haciendo “pasadas” por la palabra, descontando en cada una de
ellas una a, una b y una c; para descontar esos caracteres simplemente los reemplazaremos
por un caracter “x”. Cuando ya no encontremos ninguna a, b o ¢ en alguna pasada, si queda
alguna de las otras dos letras la palabra no es aceptada; en caso contrario se llega a halt. Es
util, antes de emprender el diseno de una MT, tener una idea muy clara de como se quiere
que funcione. Para eso se puede detallar el funcionamiento con algin ejemplo representativo,

como en la tabla siguiente, para la palabra aabbcc. La posicion de la cabeza se indica por el
simbolo “A”.



6.2. FORMALIZACION DE LA MT 173

U a a b b ¢ ¢ U
A
U a a b b ¢ ¢ U
A
U * a b b ¢ ¢ U
A
U x a b b ¢ ¢ U
A
U *x a b b ¢ ¢ U
AN
U % a * b ¢ ¢ U
AN

>C

CD>C

*x a * b x ¢ U

A

Lo que falta por hacer es disenar los estados de la MT, lo cual es relativamente simple y
que dejamos como ejercicio (ver seccién de ejercicios).

6.2. Formalizacion de la MT

Habiendo en la seccién precedente hecho un recuento intuitivo de las caracteristicas fun-
damentales de la MT, ahora procedemos a su formalizacion, esto es, a su modelizacién
matematica en términos de la teoria de conjuntos.

Una MT es un quintuplo (K, %, T, 4§, s) donde:

= K es un conjunto de estados tal que h € K

¥ es el alfabeto de entrada, donde LI ¢ ¥;

I es el alfabeto de la cinta, donde U e 'y X C T’

s € K es el estado inicial;

d: (K —{h} xTI') - K x ('U{L, R}) es la funcién de transicién.
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La expresiéon de la funcion de transicion parece algo complicada, pero puede entenderse
de la siguiente manera: la funciéon de transiciéon del control finito debe considerar como
entradas el estado actual, que es un elemento de K —pero que no puede ser h— asi como el
caracter leido en la cinta, que es elemento de I'. Por eso a la izquierda de la flecha aparece
la expresién 0 : (K — {h} x T'). Luego, el resultado de la funcién de transicién debe incluir
el siguiente estado, que es elemento de K. Otro resultado de la funcion de transicién es la
accion a ejecutar por la MT, que puede ser una escritura o un movimiento a la izquierda
o a la derecha. La accién “mover cabeza a la izquierda” se representa por el simbolo L, y
similarmente R para la derecha. En el caso de la escritura, en vez de usar un simbolo o
comando especial, simplemente se indica el caracter que se escribe, el cual es un elemento de
I'. Desde luego, para que no haya confusion se requiere que ni L ni R estén en I'. Resumiendo,
el resultado de la funcién de transiciéon debe ser un elemento de K x (I'U {L, R}).

Asi, si d(q,a) = (p,b), donde b € T', esto quiere decir que estando la MT en el estado ¢
con la cabeza lectora sobre un caracter a, la funcion de transicién enviara al autémata a un
estado p, y adicionalmente escribird el caracter b. Similarmente si §(q,a) = (p, L), la cabeza
de la MT hara un movimiento a la izquierda ademaés de la transiciéon de estado.

Por ejemplo, sea la MT siguiente: K = {s,h}, (s6lo esta el estado inicial, ademds del
“halt”), ¥ = {a}, I' = {a,U}, 6(s,a) = (s, R), 6(s,U) = (h, R). Puede verse por la funcién de
transicién que esta MT ejecuta un ciclo repetitivo en que mueve la cabeza hacia la derecha
en tanto siga leyendo un caracter a, y se detiene (hace halt) en cuanto llega a un blanco.

Notese que, puesto que d es una funcién, en principio debe tenerse por cada estado y
cada caracter una transicion. Esto quiere decir que cada estado debe tener una cantidad
de flechas de salida igual a |I'|. Por ejemplo, si I' = {U,a,b}, y K = {q, h}, entonces debe
haber flechas de salida de ¢ con a, de ¢ con b y también de ¢ con L. Fj En la practica, sin
embargo, una gran cantidad de flechas tiende a hacer menos comprensible un diagrama, por
lo que solamente incluiremos las flechas “necesarias”, suponiendo en consecuencia que las
demés flechas pueden tener una salida cualquiera, sin afectar esto el funcionamiento de la
MT. Por ejemplo, a partir del estado inicial podemos suponer, sin arriesgarnos, que no es
posible encontrar mas que el caracter blanco, por lo que no tiene caso dibujar flechas del
estado inicial con a, con b, etc. E]

6.2.1. Configuracién

Como en otros autématas que hemos visto en secciones anteriores, en las MT la configu-
racion resume la situacién en que se encuentra la MT en cualquier punto intermedio de un
calculo, de manera tal que con sélo las informaciones contenidas en la configuracién podamos
reconstruir dicha situacién y continuar el célculo.

3Nétese que h es una excepcién, pues no debe tener ninguna flecha de salida.
4Desde luego, si se regresa al estado inicial después de haber ejecutado otras transiciones, si serd posible
encontrar otros caracteres.
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Las informaciones necesarias para resumir la situacion de una MT en medio de un calculo
son:

= Estado en que se encuentra la MT
= Contenido de la cinta

s Posicion de la cabeza

Ahora el problema es cémo representar formalmente cada uno de los tres componentes de
la configuracion, tratando de hacerlo en la forma mas similar posible a como representamos
la configuracion para otros tipos de autéomatas.

No hay problema con el estado en que se encuentra la MT, que es directamente un
elemento de K. Respecto al contenido de la cinta, existe la dificultad de que como es infinita,
no podemos representarla toda por una cadena de caracteres, que siempre serd de tamano
finito. Vamos a tomar la solucién de tomar en cuenta unicamente la parte de la cinta hasta
antes de donde empieza la sucesion infinita de blancos, pues esta tltima realmente no contiene
ninguna informacién 1til. Por ejemplo, en la figura [6.4(a) dicha parte de la cinta es “U a U
Ubbalbd’.

El siguiente problema es como caracterizar la posicién de la cabeza lectora. Recordemos
la solucién que habiamos adoptado para los AF y AP, en que representdbamos de una vez
el contenido de la cinta y la posicion de la cabeza limitandose a representar con una cadena
lo que falta por leer de la palabra —esto es, tirando a la basura la parte a la izquierda de
la cabeza lectora. El problema es que esta solucién no funciona, pues en el caso de las MT
hay movimiento de la cabeza a la izquierda, por lo que los caracteres a la izquierda de la
cabeza podrian eventualmente ser leidos de nuevo o hasta modificados. Otra solucién seria
representar la posicién por un nimero entero que indicara la posicion actual con respecto
a alguna referencia. Sin embargo, adoptaremos la solucién consistente en dividir la cinta
dentro de la configuracién en tres pedazos:

» La parte de la cinta a la izquierda de la cabeza, que es un elemento de I'*.
= El cuadro en la posicién de la cabeza lectora, que es un elemento de I'.

= La parte de la cinta a la derecha de la cabeza lectora, hasta antes de la sucesion de
blancos que se extiende indefinidamente a la derecha.

La parte a la derecha de la cabeza lectora es, desde luego, un elemento de I'*, pero
podemos hacer una mejor caracterizacién de ella considerando que el ultimo caracter de
ella no es blanco. Asi, serfa un elemento de I''(I' — {LI}). Sin embargo, hay un problema
técnico: esta expresion no incluye la cadena vacia, la cual puede producirse cuando todos
los caracteres a la derecha de la cabeza son blancos. La solucién es simplemente anadir este
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Figura 6.4: Contenido de la cinta en una configuracién
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Figura 6.5: Configuracion en MT

caso, por lo que finalmente la parte a la derecha de la cabeza lectora es un elemento de

(I = {u}) U {e}

Por ejemplo, la cinta de la figura (a) se representa con las cadenas de caracteres LalLILl,
by bab (parte izquierda, cuadro bajo la cabeza, y parte derecha, respectivamente), mientras
que la cinta de la figura (b) seria representada por ¢, Uy UUUball b.

Finalmente, la configuracién es un elemento de:

KxTI"xTx (I —={u})u{e}

(Ver figura

Como en los AF y los AP, en las MT vamos a indicar las configuraciones encerradas entre
dobles corchetes, como en [[g, aa, a, bb]|, que indica que la MT en cuestién se encuentra en el
estado ¢, habiendo a la izquierda de la cabeza una cadena “aa”, bajo la cabeza una “a”,y a
su derecha —antes de la secuencia infinita de blancos— una cadena “bb”. Para simplificar ain
mas la notacion, podemos indicar por un caracter subrayado la posicion de la cabeza lectora;
asi en vez de tener cuatro componentes la configuraciéon tendra tinicamente dos, como por

ejemplo en [[g, aaabb]|, que es equivalente al ejemplo que acabamos de dar.
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6.2.2. Relacion entre configuraciones

Vamos a definir una relaciéon binaria “C7 F C5” que nos indica que la MT puede pasar
de la configuracion C] a la configuracion Cs.

Definicion.- La relacion - en C' x C' —donde C' es el conjunto de configuraciones— se define
por casos, de la siguiente manera:

Caso escritura:
[P, w, a,u]] = [[q, w, b, ul]
ssi 0(p,a) = (q,b), donde b € T

Caso de movimiento a la izquierda, parte derecha no vacia:
[[p. wd, a,ul] - [[q,w,d, au]]
ssi 0(p,a) = (q,L), donde a # U o bien u # ¢
Caso de movimiento a la izquierda, parte derecha vacia:
[[p, wd, U, e]] = [lg, w, d, ]]
ssi 0(p,U) = (¢, L)
Caso de movimiento a la derecha, parte derecha no vacia:
[[p. w, a, du]] - [[q, wa, d, u]]
ssi 0(p,a) = (¢, R)
Caso de movimiento a la derecha, parte derecha vacia:
[P, w, a,e]] = {lg, wa, U, ]]

ssi d(p,a) = (q, R)

Ejemplos:
Si 6(q1,a) = (q2,b), [lq1,bba]] - [[g2, bbD]]
Si 5(Q1, @) = (Q27 R)7 th b@b]] - [[Q2, bab“
(g1, bad]] F [[g2, babLl]]
Si 6(q1,a) = (g2, L), th aabab]] - [[g2, aabab]]
[l

T
v ] - [, ]
g b - [, b ]
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6.2.3. Configuraciéon “colgada”

En el caso de que la cabeza lectora se encuentre en el cuadro de la cinta mas a la izquierda,
y se trate de hacer un movimiento a la izquierda, se produce un error llamado “configuracion
colgada”, que tiene como consecuencia que la MT no pueda seguir funcionando, y desde
luego no podra ser aceptada la palabra de entrada.

Formalmente, si tenemos una configuracién de la forma [[p,e,a,u]] y la transicién es
d(p,a) = (g, L), no existe una configuracién C' tal que [[p, ¢, a,u]] - C.

En general vamos a evitar el uso intencional de las configuraciones colgadas, de modo
que si no queremos que una palabra sea aceptada, se hard que la MT se cicle en vez de
“colgarse”.

6.2.4. Calculos en MT

Igual que en otros tipos de autématas que hemos visto anteriormente, en las MT un
calculo es una secuencia C1, Cs, . . ., C,, de configuraciones tal que C; = C;, ;. Un célculo puede
ser visto en términos computacionales como una “traza de ejecuciéon”, que nos describe de una
manera muy exacta la forma en que una MT responde ante una entrada en particular. Por
ejemplo, sea la MT siguiente (dada ya como ejemplo anteriormente): K = {s}, ¥ = {a, U},
d(s,a) = (s, R), 6(s,1) = (h,U). Ante la configuracién [[s, a, a, aa]] se presenta el célculo
siguiente:

[[s, aaaal] F [[s, aaaal]] - [[s, aaaal] & [[s, aaaal]] & [[h, aaaall]]

Se puede llegar de una configuraciéon C; a C;, para ¢ < j en cero o varios pasos; esto
se indica en forma compacta utilizando la cerradura reflexiva y transitiva de la relacién I+,
denotada por F*, quedando C; -* Cj.

6.2.5. Palabra aceptada

Con las definiciones dadas ahora estamos en condiciones de definir formalmente las no-
ciones de palabra aceptada y lenguaje aceptado:

Definicion.- Una palabra w € ¥*, es aceptada por una MT M si
[[s, e, U, w]] F* [[h, v, a, B]]

donde a,€ I', a, 3 € T'. Como se ve, el Unico criterio para que la palabra de entrada w se
acepte es que se llegue a halt en algin momento, independientemente del contenido final
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de la cinta, el cual es visto como “basura”. Por ejemplo, la MT del ultimo ejemplo acepta
cualquier palabra de entrada.

Decimos de que un lenguaje L es Turing-aceptable si hay alguna MT que da halt para
toda entrada w € L.

6.3. MT para calculos de funciones

Hasta el momento hemos visto las MT como analizadoras de palabras cuyo fin es deter-
minar si la palabra de entrada pertenece o no al lenguaje aceptado. Sin embargo, las MT
también pueden ser utilizadas para calcular resultados u operaciones a partir de la entrada.
En vez de considerar como “basura” el contenido de la cinta al llegar al halt, podriamos verlo
como un resultado calculado. Para poder interpretar sin ambigiiedad el contenido final de la
cinta como resultado, vamos a requerir que cumpla con un formato estricto, caracterizado
por los siguientes puntos:

» La palabra de salida no debe contener ningtin caracter blanco (LI).

= La palabra de salida comienza en el segundo caracter de la cinta, teniendo a su izquierda
un blanco y a su derecha una infinidad de blancos.

= La cabeza estara posicionada en el primer blanco a la derecha de la palabra de salida.

Se puede apreciar que el formato para la palabra de salida es muy similar al de la palabra
de entrada, salvo que en la primera, la cabeza esta posicionada en el caracter a la derecha
de la palabra.

Ejemplo.- Supongamos la funcién reverse, que invierte el orden en que aparecen las letras
en la palabra de entrada; asi, reverse(aabb) = bbaa. Si inicialmente el contenido de la cinta
es de la forma Laabbll. .., donde el caracter subrayado indica la posicion de la cabeza, la
cinta al final debe quedar como: Ubbaall. . ..

Es muy importante cenirse estrictamente a este formato, y no caer en ninguno de los
siguientes errores (frecuentes, desgraciadamente):

= Aparece algin espacio blanco dentro del resultado, como en la cinta LibbaallabLl. . ..

= El resultado no esta posicionado empezando en el segundo cuadro de la cinta, como en
LuULbbaall . . ..

= La cabeza no esta ubicada exactamente en el cuadro a la derecha del resultado, como
en la cinta Lbbaall. . ..
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» Aparece “basura” (caracteres no blancos) en la cinta, a la derecha o izquierda del
resultado, como en la cinta LbbadllLILbLI. . ..

Para precisar estas nociones, utilizamos la nocion formal de configuracion : Una MT
calcula un resultado u € ¥* a partir de una entrada w € X* si:

[[s,e, U, w]] F* [[h, u, L, £]]

Como se sabe, las funciones en matematicas sirven precisamente para describir la relacion
entre un resultado y una entrada. Podemos relacionar esta nocién con la definicién anterior
de la manera siguiente: Una MT M calcula una funciéon f : ¥* — ¥* si para toda entrada
w, M calcula un resultado u tal que f(w) = u.

Si hay una MT que calcula una funcién f, decimos que f es Turing-calculable.

FEjemplo.- Construir una méaquina de Turing que reste dos niimeros naturales en unario,
esto es, f(x,y) = x —y. Desde luego, como las MT reciben un solo argumento, para realizar
una funcién de dos argumentos como la resta en realidad se recibe un solo argumento que
contiene un simbolo para separar dos partes de la entrada. Por ejemplo, la resta de 5 — 3
quedaria indicada por la cadena “11111 — 1117, lo que seria el argumento de entrada; desde
luego, el resultado en este caso seria la cadena “11”. La cabeza lectora al final debe estar
posicionada en el blanco a la derecha del residuo. En caso de que el sustraendo sea mayor
que el minuendo, el resultado es cero. A esta forma de resta sin resultados negativos se le
llama a veces “monus” en vez de “menos”.

La estrategia para construir esta MT seria ir “descontando” cada 1 del minuendo contra
otro 1 del sustraendo, reemplazando ambos por un caracter arbitrario —sea “x”. Cuando se
termine el sustraendo, se borran los caracteres inutiles de manera que queden solo los restos
del minuendo. Para evitar tener que recorrer el residuo, descontamos caracteres del minuendo
de derecha a izquierda. Resumiendo, tendriamos una secuencia de configuraciones de la cinta

como las siguientes (la ultima linea indica la configuracion en la que debe dar halt).
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b1 11 — 1 1 U
A
ug o1 1 1 — 1 1 U
AN
b1 11 — 1 1 U
A
g o1 1 1 — 1 1 U
A
g1 11 — 1 % U
AN
b1 1 %« - 1 x U
AN
U 1 *x *x — % x|
A

Dejamos como ejercicio hacer el diagrama de estados del control finito de esta MT (ver
seccion de ejercicios).

6.4. Problemas de decision

Un caso particular de funciones es aquel en que el resultado sélo puede ser si o no. Si
representamos el sicon 1y el no con 0, estamos considerando funciones g : ¥* — {1,0}. En
este caso, la MT sirve para decidir si la entrada tiene una propiedad P o no la tiene.

Por ejemplo, si la propiedad P consiste en que la entrada es de longitud par, para una
palabra de entrada como aaba la salida seria 1, y para bab seria 0.

La MT correspondiente debe generar los calculos siguientes:

[[s,e, U, w]] F* [[h, U1, L, €]]

si |w]| es par, y
[[s,e, U, w]] F* [[h, L0, U, €]

si |w| es non.

Un diseno para la MT que decide si una entrada en el alfabeto ¥ = {a, b} es de longitud
par aparece en la figura [6.6] La estrategia en este disefio es primero recorrer la cabeza al
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Figura 6.6: MT que decide si la entrada es de longitud par

extremo derecho, y luego ir borrando los caracteres de entrada, de derecha a izquierda, y
“recordando” mediante los estados 3 y 5 si la cantidad de letras es, hasta el momento, par
o impar, respectivamente. Al terminar de borrar la palabra de entrada, segin que se haya
terminado en el estado 3 o 5, se escribe 1 0 0 en la cinta, y se llega a halt.

Definicion.- Decimos que un lenguaje L es Turing-decidible si hay alguna MT que entrega
un resultado 1 si la entrada w esta en L, y un resultado 0 en caso contrario.

Debe quedar claro que para que una MT entregue como resultado 1 o 0, es condicién
indispensable que la palabra de entrada haya sido aceptada. Esto tiene la consecuencia
siguiente:

Proposicion.- Un lenguaje es Turing-decidible solamente si es Turing-aceptable.

Si un lenguaje no es Turing-decidible se dice que es indecidible. Mas adelante veremos
lenguajes indecidibles.

6.4.1. Relacion entre aceptar y decidir

Las siguientes propiedades que relacionan “Turing-decidible” con “Turing-aceptable” son
utiles para comprender mejor ambas nociones:

1. Todo lenguaje Turing-decidible es Turing-aceptable
2. Si L es Turing-decidible, L¢ es Turing-decidible

3. L es decidible ssi L y L¢ son Turing-aceptables
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La prueba de (1| es muy sencilla, pues para decidir un lenguaje L, la MT debe primero
que nada llegar al halt para toda palabra de w € L, con lo que necesariamente acepta w.

También el punto[2]es sencillo, pues dada una MT M que decide el lenguaje L, producimos
una maquina M’ que decide L¢ cambiando en M el resultado 1 por 0 y viceversa.

La prueba de |3 es mas complicada. De hecho no probaremos que si L y L¢ son Turing-
aceptables entonces L es decidido por alguna MT, sino méas bien que hay un procedimiento
mecdnico para decidir L. Se supone que, por la llamada Tesis de Church, que veremos luego,
ambos enunciados son equivalentes. Supongamos que tenemos dos MT, M y M¢, que aceptan
respectivamente los lenguajes L y L¢. Ponemos a funcionar ambas maquinas “en paralelo”,
analizando ambas la misma palabra w. Ahora bien, si w € L, eventualmente M llegara al
halt. Si w ¢ L, entonces w € L°, y en algiin momento M se detendra. Ahora consideremos
una MT adicional M*, que “observa” a M y a M€ y que si M se para, entrega una salida
1, mientras que si M€ se para, entrega una salida 0. Es evidente que para toda palabra w,
M* decidird 1 o 0, por lo que el lenguaje es decidible.

6.5. Tesis de Church

Ha habido diversos intentos de encontrar otros modelos de maquinas u otros formalismos
que sean mas poderosos que las MT, en el mismo sentido que las MT son mas poderosas que
los AF y los AP. (Decimos que una tipo de maquina M4 es mas poderoso que un tipo Mpg
cuando el conjunto de lenguajes aceptados por alguna maquina en Mp es un subconjunto
propio de los aceptados por M,). Por ejemplo, independientemente de Turing, Emil Post

propuso aun otro modelo de maquina abstracta, basada en la idea de un diagrama de flujo
[12].

También se han tratado de hacer “extensiones” a la MT, para hacerla mas poderosa.
Por ejemplo, se propusieron MT no deterministas. Sin embargo, todos los intentos han sido
infructuosos al encontrarse que dichas extensiones son equivalentes en poder de calculo a la
MT original [10].

El mismo A. Turing propuso, en la llamada “Tesis de Turing”, que todo aquello que puede
ser calculado, podra ser calculado en una MT, y que no podra haber una méquina abstracta
que calcule algo que la MT no pueda calcular [I1]. Més atin, A. Church, a la sazén inventor
del calculo lambda —uno de los sistemas competidores de la MT—, propuso la conjetura de que
en realidad no puede haber ningiin modelo de cémputo mas poderoso que los desarrollados
hasta entonces, que incluian la MT, su calculo lambda, asi como otras maquinas abstractas,
como la méaquina de Post.

Hasta nuestros dias la llamada “tesis de Church” no ha podido ser probada ni refutada.
La tesis de Church, sin embargo, no se considera un teorema que pudiera ser eventualmente
probado, sino simplemente una hipétesis de trabajo.
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6.5.1. Comparacién de las MT con otras maquinas
Podemos considerar comparaciones de la MT con:

1. Extensiones a la MT

a) MT con varias cintas, varias cabezas

b) MT con no determinismo
2. Otras maquinas de cinta

3. Otros paradigmas (méaquinas de Post, Graméticas)

De todas estas posibilidades, s6lo consideraremos las maquinas de Post. Las compara-
ciones restantes pueden ser encontradas en la referencia [10].

Las pruebas que vamos a considerar se basan en el principio de la simulacion. Esta consiste
informalmente en que la maquina simuladora actiia como lo haria la maquina simulada.

Formalmente consiste en un mapeo p que asocia a cada configuraciéon de la méquina
simuladora M,,, una configuracion de la maquina simulada M,4,, y a cada accion de M,,, una
accion de M,q4,, de modo tal que se cumpla la correspondencia de los tres puntos senalados
arriba.

6.6. Maquinas de Post

En esta seccion presentaremos los elementos de la maquina propuesta por E. Post, de
manera similar a como aparecen en [12].

Conceptualmente las maquinas de Post tienen poca relaciéon con el modelo béasico de
maquinas que hemos visto hasta el momento —basicamente derivaciones de los AF. Las
méaquinas de Post (MP) estan basadas en el concepto de diagramas de flujo, tan habituales en
nuestros dias por la ensenianza de la programacién en lenguajes imperativos (C, Pascal, etc.).
La utilidad préactica de los diagramas de flujo es una de las razones para incluir el estudio de
las maquinas de Post en este texto, aiin cuando en muchos otros textos se prefiere comparar
a las MT con los “sistemas de reescritura”, con el “calculo lambda” y otras alternativas.

En un diagrama de flujo se van siguiendo las flechas que nos llevan de la ejecucién de
una accion a la siguiente; a este recorrido se le llama “flujo de control”. Algunas acciones
especiales son condicionales, en el sentido de que tienen varias flechas de salida, dependiendo
la que uno tome del cumplimiento de cierta condicién. E]

5Pensamos que el lector estd habituado a los diagramas de flujo, por lo que no abundaremos en ejemplos
y explicaciones.
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Maés especificamente, los diagramas de flujo de Post, llamados “Méquinas de Post” (MP),
consideran unas acciones muy elementales cuyo efecto eventualmente es alterar el valor
de una unica variable x. La variable x es capaz de almacenar una cadena de caracteres
arbitrariamente grande.

Inicio START
Rechazo ( REJECT )
Acepta ACCEPT

Condicion
#

a b @ £

Asignacion X - xa

X « xb

#

X « X@

Figura 6.7: Acciones en MP

En la figura [6.7) presentamos un resumen de las acciones de la MP, las cuales son: ]

Inicio. La accion START indica el punto en que empieza a recorrerse el diagrama de flujo.

Rechazo. La accion REJECT indica que la palabra de entrada no es aceptada (es rechaz-
ada). Adema&s termina la ejecucién del diagrama.

Acepta. La accion ACCEPT indica que la palabra de entrada es aceptada. También ter-
mina la ejecucion del diagrama.

Condicional. La accién = « tail(x) tiene el efecto de quitar el primer caracter de la
palabra almacenada en la variable z; la continuacion del diagrama dependeréd de cudl
fue el caracter que se quité a x, habiendo varias salidas de la condicional, indicadas
con sendos simbolos, que corresponden al caracter que se quité a la variable. En otras
palabras, si la palabra de entrada es o1, 09,...,0,, el camino que tomemos para seguir
el diagrama serd el indicado con un simbolo que coincida con ;. Hay ademés una
salida marcada con ¢, para el caso de que la variable z contenga la palabra vacia (antes
de tratar de quitarle el caracter).

Asignacion. Las acciones de la forma x < xa, donde a € X, tienen el efecto de anadir a la
variable x el caracter a por la derecha. Asi, si x = a antes de la asignacién, después de
ella tendremos x = aa. Hay una instruccion x «<— za para cada caracter a € 3.

SHemos utilizado los nombres en inglés para las acciones de la MP, simplemente por compatibilidad con
la gran mayoria de los textos disponibles.
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REJECT

Ejemplo.- La MP de la figura acepta el lenguaje {a"b"}. En efecto, siguiendo dicha
figura, podemos ver que la variable x toma los siguientes valores al recorrer el diagrama de

flujo:

X <X@
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START

X <=X@

X ~tail(x)

ACCEPT

Figura 6.8: MP para {a"b"}

Accién Valor de z
START aabb
xr — 2@ aabb@
x — tail(x) abb@
x « tail(x) bb@
T — za bbQa
x — tail(x) bQa
x — tail(x) Qa
x «— xb Qab
x « tail(x) ab
r — 2@ ab@
x «— tail(x) b@
x — tail(x) Q
x — tail(x) €
r — 2@ @
x « tail(x) €
ACCEPT

Como se puede observar en este listado, las letras a, b y el caracter @ salen de la variable x
por la izquierda, por la accién de z « tail(z), y luego entran por la derecha, como resultado
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de una acciéon x « xo, donde o es el caracter u se anade a la derecha. En la MP de este
ejemplo, comparando las lineas 2 y 10 del listado podemos ver que en la 10 ya se ha eliminado
una a y una b. Iterando en el diagrama es posible cancelar cada a con cada b hasta que se
agoten las letras.

6.6.1. Formalizacion de las MP

Recordemos antes que nada que la formalizacién de una maquina abstracta reviste dos
aspectos: uno es formalizar los componentes de una maquina en particular, esto es, las
informaciones que hacen diferente a una maquina de las demaés de su clase, IZ] mientras que
el otro aspecto es el de caracterizar el funcionamiento de las méaquinas que tratamos de
formalizar. En el primer aspecto, las MP podrian ser caracterizadas como grafos, donde los
nodos serian las acciones, y los vértices serian las flechas del diagrama de Post. Esto es, una
MP seria basicamente un conjunto de nodos N, clasificados de acuerdo con las acciones que
tienen asociadas, asi como una funcion de transicion que determine cudl es el nodo siguiente
en el diagrama. Asi tendremos:

Definicion.- Una MP es una tripleta (IV, X, 9), donde:

» N=NyUNcU{START, ACCEPT, REJECT?}, siendo N4 el conjunto de nodos de
asignacion y N¢ el conjunto de nodos condicionales. En otras palabras, los nodos estan
clasificados seguin la accién que tienen asociada. Adicionalmente N4 esta clasificado
segun la letra que se anade por la derecha, es decir, Ny = Ny, U Ngy, U... Nag,

= Como de costumbre, X es el alfabeto, que no incluye el caracter Q.

= § es la funcién de transicién que nos indica cuédl es el siguiente nodo al que hay que ir:

§: N —{ACCEPT,REJECT} x SU{@,c} — N — {START}

Como se ve, el nodo destino de § depende del nodo anterior y de un caracter (el caracter
suprimido, en el caso de la accién condicional —en todas las demas acciones el caracter es
irrelevante y el destino debe ser el mismo para todo caracter).

Ahora trataremos de formalizar el funcionamiento de las MP. Como habitualmente, nos
apoyaremos en la nocion de configuracion. En la configuracién debemos resumir todas las
informaciones que caracterizan completamente la situacion en que se encuentra una MP a
mitad de un calculo. En la configuraciéon de una MP vamos a considerar, evidentemente,
el punto en que nos encontramos al recorrer el diagrama de flujo —lo que formalmente se
representaria como un nodo n € N. E] Ademas necesitamos considerar el contenido de la
variable, que es una palabra formada por letras del alfabeto, pudiendo aparecer ademas el

"Este era el caso de las quintuplas (K, X, 6, s, F') para los AF.
8 Al decir que estamos en un nodo n, significa que atin no se ejecuta la accién del nodo n.
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caracter especial @Q. Entonces la configuracién es un elemento de N x (XU{@})*. Por ejemplo,
una configuracién seria [[n, abQaal].

La relacion entre dos configuraciones C4 5, Cy, que significa que se puede pasar en la
MP M de la configuracién C4 a Cs, se define de la manera siguiente:

Definicion.- [[m, au]] F [[n,bw]],a,b € ¥ U{e, @}, u,w € (XU {Q})* ssi 6(m,a) =n,y

1. Simé€ Np, u=bw
2. Simé€ Ny,, a=b,w=uoc

3. Sim=s,a=bu=w

Definicion.-Una palabra w € X* es aceptada por una MP M ssi [[START,w]|] F3,
[[ACCEPT,v]].

Una palabra puede no ser aceptada ya sea porque se cae en un REJFECT o bien porque
la MP cae en un ciclo infinito.

FEjercicio.- Definir similarmente a como se hizo con las MT la nocién de funcion calculada.

6.6.2. Equivalencia entre MP y MT

El mismo Post comprobd la equivalencia entre sus diagramas de flujo y las maquinas de
Turing, lo que contribuyé a reforzar la conjetura establecida por A. Church —esto es, que la
MT es la més poderosa expresion de lo algoritmicamente calculable.

Teorema de Post.- Para toda MT hay una MP que acepta el mismo lenguaje, o que
calcula la misma funcién, y viceversa.

La prueba del teorema de Post se hace mostrando que una MT puede ser simulada por
una MP, y viceversa. Al simular MT en MP mostramos que estas ultimas son al menos
tan poderosas como las primeras (en el sentido de que pueden hacer todo lo que haga MT);
similarmente en el sentido contrario. Al establecer ambas direcciones de la prueba se muestra
la equivalencia MP-MT. Por “simular” entendemos que, por cada accién de la MT, la MP
haga una acciéon correspondiente, de manera tal que al final del calculo, una palabra sea
aceptada en Post ssi es aceptada también en Turing; similarmente para el sentido contrario
de la prueba.

La simulacion de la MT involucra los siguientes aspectos:

» Codificar las configuraciones de la MT en configuraciones de la MP
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= Para cada acciéon de MT, encontrar un diagrama en MP que haga lo mismo.

La codificacion de la configuracion de la MT en una configuracion “equivalente” de la
MP involucra considerar como codificar cada una de las informaciones de la configuracién
de MT. En particular, hay que pensar cémo expresar en MP el contenido de la cinta de MT,
asi como la posicién de la cabeza lectora.

Sea una configuracion [[q, w, u,v]] en MT. Entonces en la variable de la MP tendriamos:
uv@uw. Como se ve, el primer caracter de la variable es el mismo caracter sobre el que esta la
cabeza lectora en la M'T; luego sigue a la derecha la misma cadena que en la MT. En cambio,
la parte izquierda de la cinta en MT es colocada en la variable de MP separada por el caracter
especial “@”. Por ejemplo, si en MT tenemos una cinta de la forma abaabbb, la variable de
MP contendra la cadena abbb@aba.

Ahora hay que considerar cémo “traducir” las acciones de una MT a acciones correspon-
dientes en una MP. Consideramos los siguientes casos:

» Escritura de caracter: Sea una transicién (p,d) = (q,0), donde o € T'. Al paso entre
configuraciones de MT:

[[p, abede fg]] = [[q, abeae fg]]

corresponde el paso de x a 2’ como sigue:
r = defgQabc x = ogefgQabc

Para hacer la transformacién indicada (de z a 2’) en MP, hay que encontrar un dia-
grama que la efectie. Un diagrama que cumple con esta funcién aparece en la figura
0.9

= Movimiento a la derecha: Al paso entre configuraciones de MT:

[[p, abede fg]] & [[q, abedef g]]

corresponde el paso de = a x':
x = defgQabc x' = efgQabed

Este paso de = a 2’ se puede hacer con el (muy simple) diagrama de MP de la figura
0. 10

= Movimiento a la izquierda: A un paso entre configuraciones en MT:

[[p, abede fg]] = [[q, abedef g]]

corresponde el paso de = a 2’
x = defgQabc x' = cdefgQab

El diagrama de la MP que hace dicha operacién es dejado como ejercicio (medianamente
dificil) al lector (ver seccién de ejercicios).
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{defg@abc}

x~<tail(x)

{efg@abc}
X=X@
{efg@abc@}

X=X0O
{efg@abc@ o}

X=X U {abc@ cefg}

{abc@ ocefg@}

Ut @ u=@
X=X U {Gefg@abc}

Figura 6.9: Escritura en MP

X <X

Figura 6.10: Movimiento a la derecha en MP
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La prueba de equivalencia MT-MP en el otro sentido —esto es, la simulaciéon por parte
de una MT de una MP- es mucho maés simple. Primero se toma el contenido inicial de la
variable de entrada como palabra de entrada de la MT. Luego cada una de las operaciones
de MP (z « zo, x « tail(x), ACCEPT, REJECT) pueden ser simuladas por la MT
correspondiente. Dejamos nuevamente los detalles de esta prueba al lector (ver seccién de
ejercicios).

6.7. Limites de las MT

Aunque parezca increible, hay problemas que no se pueden resolver como una secuencia
determinista de operaciones elementales, que es lo esencial de las MT. Estos problemas son
llamados algoritmicamente irresolubles. Vamos a concentrar nuestra atenciéon en problemas
del tipo: dados una palabra w y (la descripcién de) un lenguaje L, decidir si w € L, que son
llamados “problemas de pertenencia de palabras” (word problems). Decimos que un lenguaje
L es decidible si hay una MT para decidir el problema de la pertenencia de palabras. Muchos
otros problemas que no son del tipo mencionado pueden sin embargo expresarse en términos
de éstos mediante una transformaciéon adecuada; por ejemplo, el problema de determinar si
dos gramaticas GG; y G2 son equivalentes, puede expresarse de la manera siguiente: Para toda

w € L(GY), decidir si w € L(Gy).

6.7.1. El problema del paro de MT

Ahora vamos a considerar un problema irresoluble que histéricamente tuvo mucha im-
portancia porque fue el primer problema que se probé irresoluble. Una vez que se cuenta con
un primer problema irresoluble, la prueba de que otros problemas son irresolubles consiste
en probar que éstos pueden ser reducidos al problema de referencia. Este primer problema
irresoluble es el del paro de la MT.

El problema del paro de la MT consiste en determinar algoritmicamente —esto es, medi-
ante una MT— si una MT dada M va a parar o no cuando analiza la palabra de entrada w.
Desde luego, como una MT analiza el comportamiento de otra, se requiere que esta tultima
sea dada como entrada a la primera; esto puede ser hecho mediante una codificacion de la
MT que debe analizarse. Una manera simple de codificar una MT es considerando la cade-
na de simbolos de su representacién como cuadruplo (K, 3,9, s). Denotaremos con d(M) la
codificacién de una MT M. [l

Teorema.- No existe ninguna MT tal que, para cualquier palabra w y cualquier MT M,
decida si w € L(M).

9Esta solucién para codificar una MT no es perfecta, pues el alfabeto usado para codificar una MT
arbitraria no puede determinarse de antemano; no haremos por el momento caso de este detalle técnico.
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w
0 ™ Mno paraconw
Figura 6.11: El problema del paro de una MT

En la figura [6.11] se muestra como deberia funcionar la MT que resolveria el problema
del paro.

Prueba E Por contradiccion.- Sea A la MT de la figura . Entonces construimos
otra MT B, como se representa en la figura esto es, se tiene una unica entrada con
la codificacién d(M) de la MT M, y se pasa esta palabra a una MT copiadora, que duplica la
entrada d(M). La salida de la copiadora sera dos veces d(M). Esto es pasado como entrada
a una maquina A’ que es A modificada E de la siguiente manera: a la salida 1 de A la
cambiamos de forma que en vez de dar el halt se cicle; debe quedar claro que esto siempre

puede hacerse. Ahora bien, comparando A con A’ se ve que la salida 1 corresponde al hecho
de que M para con d(M).

Finalmente supongamos que aplicamos la maquina B a una entrada formada por la misma
méquina codificada, esto es, d(B). Entonces cuando B se cicla, esto corresponde a la salida
que indica que “B se para con d(B)”, lo cual es contradictorio. Similarmente, B entrega un
resultado 0 —esto es, se para— en el caso que corresponde a “B no se para con d(B)”, que
también es contradictorio. Esto se ilustra en la figura

Utilizando el problema del paro de la MT como referencia, se ha probado que otros
problemas son también insolubles. Entre los més conocidos, tenemos los siguientes:

= Kl problema de la equivalencia de las gramaticas libres de contexto.
= La ambigiiedad de las GLC.

= El problema de la pertenencia de palabras para graméticas sin restricciones.

No haremos la prueba de estos resultados; remitimos al lector a las referencias [10], [7].

6.8. MT en la jerarquia de Chomsky

En conclusién, las MT no son capaces de aceptar todos los lenguajes posibles en 2. Sin
embargo, este hecho puede ser establecido simplemente a partir de la enumerabilidad de las

0Esta prueba es debida a M. Minsky [14], aunque la primera prueba data de Turing [24].
HObsérvese que la segunda repeticién de d(M) es de hecho la palabra w que se supone que es sometida a
M.
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~

d(M) 1 M para con w

-
w = }‘

M no paracon w

(a) Maquina A

d(M)

'}

ciclajy- M para con d(M)

d(M)d(m) AL

O ™ M no paracon d(M)

(b) Maquina B

- d(B)
Yciclale B para con d(B)
d(B)d(B) —x\<
S O T™B no para con d(B)

(¢) Contradiccién

Figura 6.12: Prueba del paro de MT

MT: puesto que las MT son cuadruplos (K, ¥, d, s) -y por lo tanto elementos de un producto
cartesiano-, al ser enumerable cada uno de los componentes necesariamente el cuadruplo es
también enumerable. En efecto:

= Los conjuntos de los estados posibles son enumerables si estandarizamos los nombres
de los estados a qg, q1, @2, etc., lo cual evidentemente no altera ningin aspecto del
funcionamiento de la MT (ver seccién de ejercicios).

= Similarmente, un alfabeto estandar oy, o1, 09, etc., puede codificar cualquier alfabeto
en particular. Asi, también los alfabetos son enumerables.

= La funcion de transicion es parte de otros productos cartesianos de estados y caracteres,
por lo que es también enumerable.

= Los estados iniciales trivialmente son enumerables, siguiendo la estandarizacién del
primer punto.
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Ahora bien, al ser enumerables las MT, resulta que no puede mapearse un elemento de
2" con una MT distinta, y por lo tanto hay lenguajes que no tienen una MT que los acepte.

Desde luego, el resultado anterior no ayuda a localizar exactamente qué lenguajes no
son aceptados por ninguna MT; esto ya se habia hecho para algunos lenguajes en la seccién
precedente.

Resulta 1til entonces ubicar la parte de los lenguajes que si pueden aceptar las MT con
respecto a otras clases de lenguajes, siguiendo la estructura de clases de lenguajes llamada
“jerarquia de Chomsky”, que presentamos en las secciones y

Recordando la jerarquia de Chomsky, que clasifica los lenguajes en categorias, y la forma
en que se asocian distintos tipos de maquinas a dichas categorias de lenguajes, ahora estamos
en condiciones de refinar la tabla que fue presentada en la seccién [4.1], de la manera siguiente
(indicamos entre paréntesis las secciones de este libro donde se presenta cada tema):

Tipo de Lenguaje que Gramatica que
automata procesa lo genera
Automatas finitos Lenguajes Regulares Gramaticas regulares
22) B) B3
Autématas de Pila Lenguajes Libres de Contexto | Gram. libres de contexto

(5) () ()

Autém. linealmente acotados | Leng. Sensitivos al Contexto | Gram. sensitivas al contexto

(4.7) (7

Magq. de Turing decidiendo Lenguajes Recursivos
64
Maéq. de Turing aceptando Leng.Recursiv. Enumerables Gram. no restringidas

(6.2.5) (4.1)

En esta tabla hemos diferenciado la clase de lenguajes que pueden ser decididos por una
MT, que son llamados “recursivos”, de los lenguajes que pueden ser aceptados por una MT,
que son los “recursivamente enumerables”, aunque no hemos definido ninguno de ellos mas
que por su relaciéon con las MT. [1—_7]

Asimismo hemos mencionado, por completez, la clase de los lenguajes Sensitivos al Con-
texto, que fueron citados en la seccion [4.7) aunque no hemos estudiado los autématas “lin-
ealmente acotados” en este libro; pueden estudiarse en las referencias [21] o [7].

De acuerdo con la presentacién de la jerarquia de Chomsky que hicimos al estudiar las
gramadticas en la seccién [4.1] las MT son equivalentes en poder de cdlculo a las gramaticas
no restringidas. La prueba de esto puede ser consultada en diversas referencias [10], [7].

12 “Recursivamente enumerables” es solamente otro nombre para “Turing aceptable”, usado en textos como
[
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Asi, de acuerdo con la Tesis de Church, los lenguajes recursivamente enumerables son el

mas extenso conjunto de lenguajes que pueden ser algoritmicamente analizados.

6.9.

10.

Ejercicios
Disene un diagrama de estados para la MT del ejemplo de la seccion [6.2.5] esto es para
aceptar el lenguaje a™b"c". Obtenga también la representacion formal de dicha MT.

Disene un diagrama de méquina de Turing para calcular la funcién |logsn|, usando las
maquinas béasicas vistas. Describa las acciones efectuadas sobre la cinta.

Complete el diseno de la MT para el ejemplo de la seccion [6.3] esto es para calcular
restas de ntimeros en unario. Exprese esta MT usando la representacién formal.

Disenar una MT que decida si la entrada es de longitud par, para palabras en {a,b}*.
Proponga una MT (o diagrama) que:

a) Acepte las palabras de la forma ™0™, n,m > 0.

b) Decida si en una palabra a"b™ se cumple m < n.
Proponer una MT (su diagrama) que:

a) Acepte el lenguaje vacio (1)

o oS
~— ~— ~—

Decida el lenguaje vacio
Acepte el lenguaje {¢}

d) Decida el lenguaje {¢}

Representar formalmente la MP de la figura 6.8

Probar la enumerabilidad de los conjuntos de estados con nombres uniformizados ¢,
q1, g, etc. Ayuda: Considere una representacién binaria de cada conjunto de estados,
tomando 1 si el estado en cuestion esta presente, y 0 si no esté.

Una variante de la MT consiste en hacer que la maquina haga un movimiento y también
escriba en cada accién. Dichas maquinas son de la forma (K, 3,4, s), pero d es una
funcién de (K x S) a (KU{h}) x X x{L, R, S}, donde el “movimiento” S significa que
la cabeza permanece en el lugar en que estaba. Dé la definicién formal de la relacion
F (“produce en un paso”).

Supongamos unas “MTCE” que son como las MT, pero en vez de tener una cinta
infinita a la derecha, tienen una “cinta estirable”, que inicialmente contiene sélo cuadros
en la cinta para la palabra de entrada y para un blanco a cada lado de dicha palabra,
y que cuando se se mueve a la derecha fuera de la cinta, automaticamente es creado
un nuevo cuadrito, segtin se va requiriendo. Formalizar las MTCE, en particular la
definicion de palabra aceptada.
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11. Definir formalmente, en términos de configuraciones de MP y MT, qué quiere decir
que una accién de MP “hace lo mismo” que la accién correspondiente de MT. (Este
problema completa el enunciado del Teorema de Post).

12.  Un autémata de dos pilas (A2P) es una extensién directa de un autémata de pila, pero
que tiene dos pilas en vez de una, como en la figura[6.13] Formalice los A2P en la forma

Figura 6.13: Automata de dos pilas (A2P)

mas similar posible a los AP vistos en clase. Defina formalmente las nociones de:

Q

Configuracion.

S

Palabra aceptada y lenguaje aceptado.

o

Proponga un A2P que acepte el lenguaje {a™b"c"}.

S~ N N~

ISH

. Tienen los A2P el poder de célculo de las MT? (Es decir, jtodo lenguaje Turing-
aceptable es aceptado por algin A2P7). Pruebe su respuesta. Ayuda: mostrar
cémo simular una MT con A2P.

e) Adapte las definiciones de A2P, configuracién y palabra aceptada para A2Pn.

f) Dos A2Pn son equivalentes ssi aceptan el mismo lenguaje. Demuestre que el prob-
lema de la equivalencia de los A2Pn es / no es decidible.

X —tail(x)
a

a

g D
(ACCEPT)

Figura 6.14: Maquina de Post

REJECT

13.  Suponga un subconjunto MP1 de las maquinas de Post, con la restriccién de que no
tienen las instrucciones x <+ xo. Ahora bien, MP1 es equivalente a AF.

a) Demuestre esta afirmacién constructivamente, proponiendo un método sistemético
para pasar de una MP1 a un AF que acepte el mismo lenguaje.
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14.

15.

16.

17.

b) Pruebe el método propuesto en (a) con la MP1 dada en la figura

c) Pruebe si la MP1 del inciso anterior acepta o no el lenguaje (abb * a)x, basandose
en algun procedimiento sistemético (explicar cuél es dicho procedimiento sis-
tematico).

d) Si en una variante MP2 se permiten asignaciones z <« o, donde ¢ € ¥* ja

qué tipo de automata corresponde MP27 ; Porqué?

Si a las maquinas de Post les cambiamos ligeramente las asignaciones para que sean
de la forma x <+ ox , jsiguen siendo equivalentes a las MT? Pruebe su afirmacion; ya
sea

a) Sison equivalentes, probando que pueden hacer lo mismo (por ejemplo, por sim-
ulacién).

b) Sino son equivalentes a Turing, pero son equivalentes a alguna méquina inferior,
probando dicha equivalencia.

c) Si no son equivalentes a Turing, encontrando algin lenguaje que una si puede
aceptar y la otra no (habria que probar esto).

Suponga una variante de las maquinas de Turing, las MT2 en que se tienen dos cintas

(cinta 1 y cinta 2) en vez de una; ambas son infinitas hacia la derecha y tienen sendas
cabezas lectoras. Por cada transicion, se leen a la vez los caracteres de las dos cintas,
y el control finito determina la accién a realizar (simultdneamente) en las cintas, que
pueden ser movimientos o escrituras, como en una MT normal. Las acciones en las dos
cintas son independientes, esto es, en la cinta 1 puede tener una accién L y en la cinta
2 escribir, etc., en un solo movimiento. La palabra de entrada se escribe en la cinta 1.
a) Proponga una definicién formal de las MT2

b) Defina las nociones de configuracién y palabra aceptada.

c) Defina funcién calculada, suponiendo que el resultado queda en la cinta 2.
Suponga una variante de las MT, las MTS en que se puede al mismo tiempo escribir
en la cinta y hacer los movimientos a la izquierda y a la derecha (L y R); cuando se
quiere solamente escribir (sin mover la cabeza) se hace un movimiento nulo (N).

a) Defina las MTS, asi como su funcionamiento (hasta definir palabra aceptada).

b) Pruebe que las MTS son tan poderosas como la MT clésica (muestre como obtener
a partir de una MT la MTS equivalente).

¢) Pruebe ahora lo reciproco, mostrando cémo obtener una MT clésica a partir de
una MTS dada.

Conteste las siguientes preguntas, justificando la respuesta:

a) ;El complemento de un lenguaje Turing-decidible es también Turing-decidible?

b) (El complemento de un lenguaje Turing-decidible es Turing-aceptable?
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c) ;Todo lenguaje Turing-decidible serd subconjunto de algin lenguaje libre de con-
texto?

d) ;La interseccién de un Turing-aceptable con un libre de contexto sera libre de
contexto?

18.  Es sabido que el problema de la equivalencia de MT es indecidible. Sin embargo, para
algunos subconjuntos de las MT si es posible decidir la equivalencia. Para las sigu-
ientes MT (no deterministas), probar rigurosamente su equivalencia / no equivalencia
respecto a la aceptacién / rechazo de palabras (es decir, que los lenguajes aceptados
son iguales), describiendo el método utilizado para esta prueba:

MTy = ({/, 9,5 k,m}, {a,b},{a, 0,1}, 61, f)

C
=

B BT RS Tt SR

B 5 & o e e 09 00 e
YO C oY oY oN oD O
| o I e e e e e e e

MT2 = ({07 q, n,p}, {av b}v {a’ ba |—|}7 527 Q)

qlU]o|L
o|U|h|U
ola |n|L
o|b|p|L
nja|n|L
n|blo|L
pla|p|L
plb|p|L

19. Si limitamos el tamano de la cinta de una maquina de Turing a una cantidad fija k de
cuadros, dando una variante que llamaremos MTK,

a) ;disminuye por ello el poder de calculo? ;A qué tipo de autématas serian equiv-
alentes las MTk ? Pruebe su respuesta.

b) ;Es posible decidir si dos MTk son equivalentes? Pruebe su respuesta, y en el caso
afirmativo, proponga el método de decision correspondiente.
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20. Realizar el diagrama de MP que simula el movimiento de la cabeza a la izquierda en
una MT (esto es parte de la prueba de equivalencia de MP y MT).

21. Completar la prueba de equivalencia de las MP y las MT, detallando la simulacién de
la MP en una MT, siguiendo las ideas esbozadas en la pagina [191]
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